162,029 research outputs found

    A Numerical Approach to Space-Time Finite Elements for the Wave Equation

    Full text link
    We study a space-time finite element approach for the nonhomogeneous wave equation using a continuous time Galerkin method. We present fully implicit examples in 1+1, 2+1, and 3+1 dimensions using linear quadrilateral, hexahedral, and tesseractic elements. Krylov solvers with additive Schwarz preconditioning are used for solving the linear system. We introduce a time decomposition strategy in preconditioning which significantly improves performance when compared with unpreconditioned cases.Comment: 9 pages, 5 figures, 5 table

    Space-time enriched finite elements for acoustic and elastodynamic problems

    Get PDF
    This thesis investigates a generalised finite element method for time-dependent elastic and acoustic wave propagation, based on plane-wave enrichments of the approximation space. The enrichment allows good approximation of oscillatory solutions even on coarse mesh grids and for large time steps. Significant reductions of the computational cost are obtained in comparison to standard h-version finite element methods, which are limited by the need for both fine meshes and small time-steps. For time-independent problems in the frequency domain, such enriched methods have been shown since the late 1990s to significantly reduce the computational cost of the numerical approximation of emission and scattering problems. The proposed method is illustrated for both the acoustic wave equation and linear elastodynamics and compared with conventional finite element methods. It is based on a discontinuous Galerkin approach in time and a continuous finite elements in space. Numerical experiments study the stability and accuracy of the proposed method and confirm the reduction of the computational effort required to achieve engineering accuracy.Engineering and Physical Sciences Research Council (EPSRC) grant EP/L016508/0

    Transparent boundary conditions based on the Pole Condition for time-dependent, two-dimensional problems

    Get PDF
    The pole condition approach for deriving transparent boundary conditions is extended to the time-dependent, two-dimensional case. Non-physical modes of the solution are identified by the position of poles of the solution's spatial Laplace transform in the complex plane. By requiring the Laplace transform to be analytic on some problem dependent complex half-plane, these modes can be suppressed. The resulting algorithm computes a finite number of coefficients of a series expansion of the Laplace transform, thereby providing an approximation to the exact boundary condition. The resulting error decays super-algebraically with the number of coefficients, so relatively few additional degrees of freedom are sufficient to reduce the error to the level of the discretization error in the interior of the computational domain. The approach shows good results for the Schr\"odinger and the drift-diffusion equation but, in contrast to the one-dimensional case, exhibits instabilities for the wave and Klein-Gordon equation. Numerical examples are shown that demonstrate the good performance in the former and the instabilities in the latter case

    Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method

    Get PDF
    This paper discusses the computation of derivatives for optimization problems governed by linear hyperbolic systems of partial differential equations (PDEs) that are discretized by the discontinuous Galerkin (dG) method. An efficient and accurate computation of these derivatives is important, for instance, in inverse problems and optimal control problems. This computation is usually based on an adjoint PDE system, and the question addressed in this paper is how the discretization of this adjoint system should relate to the dG discretization of the hyperbolic state equation. Adjoint-based derivatives can either be computed before or after discretization; these two options are often referred to as the optimize-then-discretize and discretize-then-optimize approaches. We discuss the relation between these two options for dG discretizations in space and Runge-Kutta time integration. Discretely exact discretizations for several hyperbolic optimization problems are derived, including the advection equation, Maxwell's equations and the coupled elastic-acoustic wave equation. We find that the discrete adjoint equation inherits a natural dG discretization from the discretization of the state equation and that the expressions for the discretely exact gradient often have to take into account contributions from element faces. For the coupled elastic-acoustic wave equation, the correctness and accuracy of our derivative expressions are illustrated by comparisons with finite difference gradients. The results show that a straightforward discretization of the continuous gradient differs from the discretely exact gradient, and thus is not consistent with the discretized objective. This inconsistency may cause difficulties in the convergence of gradient based algorithms for solving optimization problems

    Explicit local time-stepping methods for time-dependent wave propagation

    Get PDF
    Semi-discrete Galerkin formulations of transient wave equations, either with conforming or discontinuous Galerkin finite element discretizations, typically lead to large systems of ordinary differential equations. When explicit time integration is used, the time-step is constrained by the smallest elements in the mesh for numerical stability, possibly a high price to pay. To overcome that overly restrictive stability constraint on the time-step, yet without resorting to implicit methods, explicit local time-stepping schemes (LTS) are presented here for transient wave equations either with or without damping. In the undamped case, leap-frog based LTS methods lead to high-order explicit LTS schemes, which conserve the energy. In the damped case, when energy is no longer conserved, Adams-Bashforth based LTS methods also lead to explicit LTS schemes of arbitrarily high accuracy. When combined with a finite element discretization in space with an essentially diagonal mass matrix, the resulting time-marching schemes are fully explicit and thus inherently parallel. Numerical experiments with continuous and discontinuous Galerkin finite element discretizations validate the theory and illustrate the usefulness of these local time-stepping methods.Comment: overview paper, typos added, references updated. arXiv admin note: substantial text overlap with arXiv:1109.448

    Mixed finite elements for numerical weather prediction

    Full text link
    We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the ff-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-\pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.Comment: Revision after referee comment
    corecore