534 research outputs found

    Transparent authentication: Utilising heart rate for user authentication

    Get PDF
    There has been exponential growth in the use of wearable technologies in the last decade with smart watches having a large share of the market. Smart watches were primarily used for health and fitness purposes but recent years have seen a rise in their deployment in other areas. Recent smart watches are fitted with sensors with enhanced functionality and capabilities. For example, some function as standalone device with the ability to create activity logs and transmit data to a secondary device. The capability has contributed to their increased usage in recent years with researchers focusing on their potential. This paper explores the ability to extract physiological data from smart watch technology to achieve user authentication. The approach is suitable not only because of the capacity for data capture but also easy connectivity with other devices - principally the Smartphone. For the purpose of this study, heart rate data is captured and extracted from 30 subjects continually over an hour. While security is the ultimate goal, usability should also be key consideration. Most bioelectrical signals like heart rate are non-stationary time-dependent signals therefore Discrete Wavelet Transform (DWT) is employed. DWT decomposes the bioelectrical signal into n level sub-bands of detail coefficients and approximation coefficients. Biorthogonal Wavelet (bior 4.4) is applied to extract features from the four levels of detail coefficents. Ten statistical features are extracted from each level of the coffecient sub-band. Classification of each sub-band levels are done using a Feedforward neural Network (FF-NN). The 1 st , 2 nd , 3 rd and 4 th levels had an Equal Error Rate (EER) of 17.20%, 18.17%, 20.93% and 21.83% respectively. To improve the EER, fusion of the four level sub-band is applied at the feature level. The proposed fusion showed an improved result over the initial result with an EER of 11.25% As a one-off authentication decision, an 11% EER is not ideal, its use on a continuous basis makes this more than feasible in practice

    A systematic review on artifact removal and classification techniques for enhanced MEG-based BCI systems

    Get PDF
    Neurological disease victims may be completely paralyzed and unable to move, but they may still be able to think. Their brain activity is the only means by which they can interact with their environment. Brain-Computer Interface (BCI) research attempts to create tools that support subjects with disabilities. Furthermore, BCI research has expanded rapidly over the past few decades as a result of the interest in creating a new kind of human-to-machine communication. As magnetoencephalography (MEG) has superior spatial and temporal resolution than other approaches, it is being utilized to measure brain activity non-invasively. The recorded signal includes signals related to brain activity as well as noise and artifacts from numerous sources. MEG can have a low signal-to-noise ratio because the magnetic fields generated by cortical activity are small compared to other artifacts and noise. By using the right techniques for noise and artifact detection and removal, the signal-to-noise ratio can be increased. This article analyses various methods for removing artifacts as well as classification strategies. Additionally, this offers a study of the influence of Deep Learning models on the BCI system. Furthermore, the various challenges in collecting and analyzing MEG signals as well as possible study fields in MEG-based BCI are examined

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Konaklama işletmelerinde doluluk oranının tahmini için yapay arı koloni (abc) algoritması kullanarak ANFIS eğitimi

    Get PDF
    Bu çalışmada, konaklama işletmelerindeki doluluk oranının tahmini için ABC algoritması kullanılarak, ANFIS eğitimi gerçekleştirilmiştir. 1990 - 2014 yılları arasındaki tesis sayısı, yatak sayısı, konaklayan yabancı ziyaretçi sayısı, geceleme sayısı ve ortalama kalış süresi giriş değişkeni olarak alınarak 5 giriş ve 1 çıkıştan oluşan ANFIS yapısı oluşturulmuştur. Çıkış olarak ise doluluk oranı kullanılmıştır. ANFIS'in yapısında bulunan başlangıç ve sonuç parametrelerinin optimizasyonu, ABC algoritması kullanılarak gerçekleştirilmiştir. Elde edilen sonuçlar regresyon ve ANFIS tabanlı diğer yöntemlerle (ANFIS-PSO, ANFIS-DE) karşılaştırılmıştır. Simülasyon sonuçları konaklama işletmelerindeki doluluk oranının tahmininde önerilen yöntemin etkili olduğunu göstermektedir

    Meta Heuristics based Machine Learning and Neural Mass Modelling Allied to Brain Machine Interface

    Get PDF
    New understanding of the brain function and increasing availability of low-cost-non-invasive electroencephalograms (EEGs) recording devices have made brain-computer-interface (BCI) as an alternative option to augmentation of human capabilities by providing a new non-muscular channel for sending commands, which could be used to activate electronic or mechanical devices based on modulation of thoughts. In this project, our emphasis will be on how to develop such a BCI using fuzzy rule-based systems (FRBSs), metaheuristics and Neural Mass Models (NMMs). In particular, we treat the BCI system as an integrated problem consisting of mathematical modelling, machine learning and classification. Four main steps are involved in designing a BCI system: 1) data acquisition, 2) feature extraction, 3) classification and 4) transferring the classification outcome into control commands for extended peripheral capability. Our focus has been placed on the first three steps. This research project aims to investigate and develop a novel BCI framework encompassing classification based on machine learning, optimisation and neural mass modelling. The primary aim in this project is to bridge the gap of these three different areas in a bid to design a more reliable and accurate communication path between the brain and external world. To achieve this goal, the following objectives have been investigated: 1) Steady-State Visual Evoked Potential (SSVEP) EEG data are collected from human subjects and pre-processed; 2) Feature extraction procedure is implemented to detect and quantify the characteristics of brain activities which indicates the intention of the subject.; 3) a classification mechanism called an Immune Inspired Multi-Objective Fuzzy Modelling Classification algorithm (IMOFM-C), is adapted as a binary classification approach for classifying binary EEG data. Then, the DDAG-Distance aggregation approach is proposed to aggregate the outcomes of IMOFM-C based binary classifiers for multi-class classification; 4) building on IMOFM-C, a preference-based ensemble classification framework known as IMOFM-CP is proposed to enhance the convergence performance and diversity of each individual component classifier, leading to an improved overall classification accuracy of multi-class EEG data; and 5) finally a robust parameterising approach which combines a single-objective GA and a clustering algorithm with a set of newly devised objective and penalty functions is proposed to obtain robust sets of synaptic connectivity parameters of a thalamic neural mass model (NMM). The parametrisation approach aims to cope with nonlinearity nature normally involved in describing multifarious features of brain signals

    Translational pipelines for closed-loop neuromodulation

    Get PDF
    Closed-loop neuromodulation systems have shown significant potential for addressing unmet needs in the treatment of disorders of the central nervous system, yet progress towards clinical adoption has been slow. Advanced technological developments often stall in the preclinical stage by failing to account for the constraints of implantable medical devices, and due to the lack of research platforms with a translational focus. This thesis presents the development of three clinically relevant research systems focusing on refinements of deep brain stimulation therapies. First, we introduce a system for synchronising implanted and external stimulation devices, allowing for research into multi-site stimulation paradigms, cross-region neural plasticity, and questions of phase coupling. The proposed design aims to sidestep the limited communication capabilities of existing commercial implant systems in providing a stimulation state readout without reliance on telemetry, creating a cross-platform research tool. Next, we present work on the Picostim-DyNeuMo adaptive neuromodulation platform, focusing on expanding device capabilities from activity and circadian adaptation to bioelectric marker--based responsive stimulation. Here, we introduce a computationally optimised implementation of a popular band power--estimation algorithm suitable for deployment in the DyNeuMo system. The new algorithmic capability was externally validated to establish neural state classification performance in two widely-researched use cases: Parkinsonian beta bursts and seizures. For in vivo validation, a pilot experiment is presented demonstrating responsive neurostimulation to cortical alpha-band activity in a non-human primate model for the modulation of attention state. Finally, we turn our focus to the validation of a recently developed method to provide computationally efficient real-time phase estimation. Following theoretical analysis, the method is integrated into the commonly used Intan electrophysiological recording platform, creating a novel closed-loop optogenetics research platform. The performance of the research system is characterised through a pilot experiment, targeting the modulation of cortical theta-band activity in a transgenic mouse model

    DYNAMIC SELF-ORGANISED NEURAL NETWORK INSPIRED BY THE IMMUNE ALGORITHM FOR FINANCIAL TIME SERIES PREDICTION AND MEDICAL DATA CLASSIFICATION

    Get PDF
    Artificial neural networks have been proposed as useful tools in time series analysis in a variety of applications. They are capable of providing good solutions for a variety of problems, including classification and prediction. However, for time series analysis, it must be taken into account that the variables of data are related to the time dimension and are highly correlated. The main aim of this research work is to investigate and develop efficient dynamic neural networks in order to deal with data analysis issues. This research work proposes a novel dynamic self-organised multilayer neural network based on the immune algorithm for financial time series prediction and biomedical signal classification, combining the properties of both recurrent and self-organised neural networks. The first case study that has been addressed in this thesis is prediction of financial time series. The financial time series signal is in the form of historical prices of different companies. The future prediction of price in financial time series enables businesses to make profits by predicting or simply guessing these prices based on some historical data. However, the financial time series signal exhibits a highly random behaviour, which is non-stationary and nonlinear in nature. Therefore, the prediction of this type of time series is very challenging. In this thesis, a number of experiments have been simulated to evaluate the ability of the designed recurrent neural network to forecast the future value of financial time series. The resulting forecast made by the proposed network shows substantial profits on financial historical signals when compared to the self-organised hidden layer inspired by immune algorithm and multilayer perceptron neural networks. These results suggest that the proposed dynamic neural networks has a better ability to capture the chaotic movement in financial signals. The second case that has been addressed in this thesis is for predicting preterm birth and diagnosing preterm labour. One of the most challenging tasks currently facing the healthcare community is the identification of preterm labour, which has important significances for both healthcare and the economy. Premature birth occurs when the baby is born before completion of the 37-week gestation period. Incomplete understanding of the physiology of the uterus and parturition means that premature labour prediction is a difficult task. The early prediction of preterm births could help to improve prevention, through appropriate medical and lifestyle interventions. One promising method is the use of Electrohysterography. This method records the uterine electrical activity during pregnancy. In this thesis, the proposed dynamic neural network has been used for classifying between term and preterm labour using uterine signals. The results indicated that the proposed network generated improved classification accuracy in comparison to the benchmarked neural network architectures
    corecore