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Resumo

Esta dissertação foca-se no desenvolvimento da prova de conceito de uma interface cérebro-
computador (BCI), cujo objectivo final será o controlo de uma cadeira de rodas inteligente. Esta
permite ser controlada por meios externos, como os sinais cerebrais do seu utilizador, uma vez
que estes são um meio de o sistema nervoso central comunicar com os músculos efectores. A
existência destes sistemas é necessária uma vez que diferentes doenças como, a esclerose lateral
amiotrófica, acidentes vasculares cerebrais ou traumas na medula espinhal, são responsáveis por
quebrar o normal funcionamento das vias de comunicação cerebrais, bloqueando, consequente-
mente, a respectiva ligação aos músculos efectores.

De modo a que seja possível interpretar a informação fornecida pelo cérebro, são necessários
neuro-mecanismos. Durante a execução, preparação ou imaginação de acções motoras, existe uma
sincronização, ou dessincronização, nos ritmos cerebrais mu e beta. Estes neuro-mecanismos são
denominados de (des)sincronização relacionada com eventos. Posto isto, surge a interpretação da
imaginação de diversas partes do corpo, motor imagery (MI); como as mão direita e esquerda, e os
pés, que serão posteriormente traduzidos nos respectivos comandos de mudança de direcção. Os
pés foram também incluídos, uma vez que certas pessoas denotam mais apetência a distinguí-los
de uma das mãos, do que a distinguir as diferentes mãos entre si. Um terceiro comando, neutro,
foi também adicionado de modo a manter a mesma direcção.

Durante o desenvolvimento dos algoritmos, dois conjuntos de dados foram utilizados. O
primeiro, A, é originário da IV competição de BCIs, adquirido através de vinte e dois eléctro-
dos de Ag/AgCl e constituído por MIs das mãos direita e esquerda, e pés. O segundo, B, foi
obtido no laboratório usando um headset Emotiv Epoc e com as mesmas MIs. Ambos os conjun-
tos englobam sessões de nove sujeitos diferentes.

Diversas abordagens, referentes à extracção de características, foram testadas, nomeadamente,
duas versões baseadas na energia da densidade espectral do sinal, seguida de um filter bank, o uso
dos coeficientes das respectivas frequências e, por fim, duas versões do conhecido método Filter
Bank Common Spatial Pattern (FBCSP). A segunda versão deste método, FBCSP II, foi a que
obteve a melhor performance. De seguida, a selecção das características foi realizada através
das suas importâncias, usando o classsificador Extra Trees e, posteriormente, foram fornecidas a
uma combinação de classificadores. Destas, a que produziu melhores resultados para ambos os
conjuntos de dados foi o Ensemble Voting Hard, com dois classificadores. A escolha destes variou
entre a regressão logística, a linear discriminant analysis, as support vector machines e as redes
neuronais.

Relativamente aos resultados do FBCSP II; o conjunto A apresentou uma F1-score de 0.797 e
uma taxa de falsos positivos bastante baixa, 0.150. Mais se acrescenta que a kappa score atingida
foi de 0.693, na mesma ordem de grandeza que o valor de 0.57, obtido pelo vencedor da com-
petição. Para o conjunto B, os valores foram mais baixos, como esperado devido às condições do
headset e ao facto de não cobrir totalmente o cortex motor. Deste modo, o valor médio da F1-score
foi de 0.651, seguido de um kappa score de 0.447 e uma taxa de falsos positivos de 0.471. Con-

i



ii

tudo, é de notar que os alguns sujeitos do conjunto B apresentaram F1-scores de 0.747 e 0.911;
sugerindo que a aptidão dos diferentes utilizadores é um factor impactante na sua performance.

Em virtude do que foi mencionado, conclui-se que se está a evoluir no caminho correcto apesar
de certas limitações como o headset não estar adequado para o objectivo; e, o sistema ainda não se
encontar preparado para a aplicação final. A última restrição deve-se ao facto de o sistema ter de
assegurar a total segurança do seu utilizador, pelo que falsos positivos não podem ser aceitáveis.
Não obstante, foi provado que é possível obter bons resutados tendo ainda sido desenvolvida,
e testada, uma arquitectura para a aplicação em tempo real, validando, deste modo, o trabalho
realizado.



Abstract

This thesis focuses on the development of the concept proof of a brain-computer interface
(BCI), whose ultimate final goal will be to control an intelligent wheelchair. The latter can be
controlled by external means, such as the user’s brain signals, as these are the means by which the
central nervous system communicates with effector muscles. Such systems can have an impact in
real-life situations as different diseases, such as amyotrophic lateral sclerosis, strokes or trauma in
the spinal cord, are responsible for disrupting the normal functioning of the brain pathways; thus,
blocking the communication to the effector muscles.

In order to interpret the information provided by the brain, neuro-mechanisms are required.
In this work, an event-related (de)synchronization neuro-mechanismo will be used, since it corre-
sponds to a synchronization, or desynchronization, in the mu and beta brain rhythms, during the
execution, preparation or imagination of motor actions. Thus, the paradigm of the motor imagery
(MI) arises, which corresponds to the imagination of various parts of the body, such as the right
and left hand, and the feet. These will later be translated into the respective turn controls. The feet
were also included, since certain people are better at distinguishing them from one of the hands,
than at distinguishing the different hands from each other. A third neutral command has also been
added in order to maintain the same direction.

During the development of the algorithms, two sets of data were used. The first, data set
A, is from the IV competition of BCIs, acquired through twenty two Ag / AgCl electrodes and
encompasses MIs of the right and left hands, and feet. The second, data set B, was obtained in the
laboratory using an Emotiv Epoc headset, also with the same MIs. Both data sets include trials
from nine different subjects.

Regarding the feature extraction, several approaches were tested; namely, two versions of the
signal’s power spectral density, followed by a filter bank version; the use of respective frequency
coefficients and, finally, two versions of the known method Filter Bank Common Spatial Pattern
(FBCSP). The best performance was achieved with the second version of this method, denoted
by FBCSP II, as it will be seen later on. Additionally, the Extra Trees classifier selected the best
features, based on their importance, and fed them to several combinations of classifiers. From
these, the best results were achieved, for both data sets, via a hard majority vote with two classi-
fiers, which varied between the logistic regression, the linear discriminant analysis, support vector
machines and neural networks.

Concerning the results from the FBCSP II, data set A presented a F1-score of the 0.797 and a
rather low false positive rate of 0.150. Moreover, the correspondent average kappa score, reached
the value of 0.693, which is in the same order of magnitude as 0.57, obtained by the competition’s.
Regarding data set B, the overall results were worse, as expected due to the conditions of the
headset and due to the fact that it does not cover completely the motor cortex. Thus, the average
value of for the F1-score was 0.651, followed by a kappa score of 0.447, and a false-positive
rate of 0.471. However, it should be noted that some subjects, from this data set, presented F1-
scores of 0.747 and 0.911; suggesting that the aptness of the different users is a key factor in their
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performance.
By virtue of what has been mentioned, one concludes the system is evolving in the correct

direction, despite certain limitations such as the headset not being suitable for the purpose; and
the system not yet being ready for the final application. The latter is due to the existence of false
positive classifications that compromise the safety of the user. Nevertheless, it has been proved
that it is possible to obtain good results, and an architecture for the real-time application has been
developed and tested, thus validating the established work.



Acknowledgements

Ao Professor Luís Paulo Reis pela ajuda prestada e pelas orientações dadas.
A todos os meus amigos que perderam parte do seu tempo para serem os meus "pacientes"

durante o desenvolvimento deste trabalho.
Ao Afonso, Joana e Tiago, por baixarem os meus níveis de stress e pelas críticas construtivas.
Aos meus pais e família, pelo apoio incondicional, por me providenciarem com uma educação

e por me motivarem a seguir sempre em frente e a ser a melhor versão de mim mesma.
Aos meus amigos, pelas pausas de café, pelas conversas aleatórias e por me proporcionarem

os melhores anos da minha juventude.

A todos um sincero obrigada,

Carolina Avelar

v



vi



“ Let the future tell the truth, and evaluate each one according to his work and accomplishments.
The present is theirs; the future, for which I have really worked, is mine.”

Nikola Tesla

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Electroencephalography 5
2.1 Nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Peripheral nervous system . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Brain organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Brain activity patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Brain activity interpretation – Neuro-mechanisms . . . . . . . . . . . . . 10
2.2.4 EEG acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 EEG artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 BCI - State of the Art 17
3.1 Signal acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 EEG acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Dimensionality reduction and feature selection . . . . . . . . . . . . . . 25
3.2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Intelligent Wheelchair . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Types of BCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Methodologies 39
4.1 Concept validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Data sets description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



x CONTENTS

5 Results and Discussion 51
5.1 Filter Bank Common Spatial Pattern I - FBCSP I . . . . . . . . . . . . . . . . . 52

5.1.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Filter Bank Common Spatial Pattern II - FBCSP II . . . . . . . . . . . . . . . . 55
5.2.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Power Spectral Density I - PSD I . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Power Spectral Density II - PSD II . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Filter Bank Power Spectral Density I or II - FBPSD I or II . . . . . . . . . . . . 62
5.5.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Frequency Coefficients - FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6.1 Data set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6.2 Data set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Real time application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions and Future work 67
6.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Best results for each data set 69
A.1 Data set A using FBCSP II and the Ensemble Voting Hard . . . . . . . . . . . . 70
A.2 Data set B using FBCSP II and the Ensemble Voting Hard . . . . . . . . . . . . 71



List of Figures

2.1 Central and peripheral nervous system. . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neuron’s architecture and synapse. . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Action potential in a neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Scheme of the nervous system’s organisation. . . . . . . . . . . . . . . . . . . . 8
2.5 Brain organisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 International 10-20 system seen from left and above the head. . . . . . . . . . . . 13
2.7 EEG contaminated by artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Scheme of the BCI architecture and its parts. . . . . . . . . . . . . . . . . . . . . 17
3.2 Principles of neural activity recording of each neural-based technique. . . . . . . 18
3.3 Typical classification process in EEG-based BCI systems. . . . . . . . . . . . . . 21
3.4 Architecture of the Filter Bank Common Spatial Pattern method. . . . . . . . . . 25
3.5 Behaviour of a GNB classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Example of a 2-dimensional SVM classifier. . . . . . . . . . . . . . . . . . . . . 28
3.7 Representation of the LR and the SVM loss functions. . . . . . . . . . . . . . . . 28
3.8 Kernel’s action in SVMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Example of a 2-dimensional LDA classifier. . . . . . . . . . . . . . . . . . . . . 29
3.10 Example of a 2-dimensional K-NN classifier with K=3. . . . . . . . . . . . . . . 29
3.11 Architecture of a neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.12 Representation of four of the most used activation functions and respective equations. 30
3.13 Architecture of a decision tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14 Architecture of the random forest classifier. . . . . . . . . . . . . . . . . . . . . 31

4.1 Acquisition Protocol for data set A. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Plot of the obtained signal from subject’s 1A left MI - channel FC3. . . . . . . . 40
4.3 Acquisition Protocol for data set B. . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Plot of the obtained signal from subject’s 1B left MI - channel F3. . . . . . . . . 41
4.5 Electrodes’ placement, according to the 10/20 system, for both data sets. . . . . . 42
4.6 Extraction of two epochs from one MI trial. . . . . . . . . . . . . . . . . . . . . 48
4.7 Experimental procedure for the real time testing. . . . . . . . . . . . . . . . . . 50

5.1 Example of an oxidised sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



xii LIST OF FIGURES



List of Tables

2.1 Brain waves and rhythms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Comparison of the three main types of neuro-mechanisms. . . . . . . . . . . . . 12
2.3 Brain’s regions of interest according to the corresponding neuro-mechanism. . . . 14

3.1 Properties of brain activity acquisition methods. . . . . . . . . . . . . . . . . . . 18
3.2 Comparison of commercial EEG headsets. . . . . . . . . . . . . . . . . . . . . . 19
3.3 EEG headsets used in the literature. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Pre-processing methods according to the literature. . . . . . . . . . . . . . . . . 23
3.5 Summary of feature’s extraction methods. . . . . . . . . . . . . . . . . . . . . . 23
3.6 Main techniques for dimensionality reduction and feature selection. . . . . . . . 25
3.7 Summary of feature’s extraction and classification methods. . . . . . . . . . . . 26
3.8 Summary of different authors’ BCIs. . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Representation of a confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Threshold metrics for classification evaluations . . . . . . . . . . . . . . . . . . 33
3.11 Methods to evaluate the BCI’s performance according to the literature . . . . . . 34
3.12 Features and applications domains of BCI interaction paradigms . . . . . . . . . 36

4.1 Tested combinations of classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Optimised hyper-parameters for the different classifiers . . . . . . . . . . . . . . 49

5.1 Labels of the Linear and Statistical Classifiers . . . . . . . . . . . . . . . . . . . 52
5.2 Labels of the Non-Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 F1-score for data set A and FBCSP I, using the first set of classifiers. . . . . . . . 52
5.4 Kappa score for data set A and FBCSP I, using the first set of classifiers. . . . . . 53
5.5 False positives rate for data set A and FBCSP I, using the first set of classifiers. . 53
5.6 Best classifiers, from the first set, for each combination for data set A and FBCSP I. 53
5.7 F1-score for data set B and FBCSP I, using the first set of classifiers. . . . . . . . 54
5.8 Kappa score for data set B and FBCSP I, using the first set of classifiers. . . . . . 54
5.9 False positive rate for data set B and FBCSP I, using the first set of classifiers. . . 54
5.10 Best classifiers, from the first set, for each combination for data set B and FBCSP I. 55
5.11 F1-score for data set A and FBCSP II, using the first set of classifiers. . . . . . . 55
5.12 Kappa score for data set A and FBCSP II, using the first set of classifiers. . . . . 56
5.13 False positive rate for data set A and FBCSP II, using the first set of classifiers. . 56
5.14 Best classifiers, from the first set, for each combination for data set A and FBCSP

II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.15 F1-score for data set A and FBCSP II, using both sets of classifiers. . . . . . . . 57
5.16 False positive rate for data set A and FBCSP II, using both sets of classifiers. . . 57
5.17 Kappa score for data set A and FBCSP II, using both sets of classifiers. . . . . . 57
5.18 Best classifiers, from both sets, for each combination for data set A and FBCSP II. 57

xiii



xiv LIST OF TABLES

5.19 F1-score for data set B and FBCSP II, using the first set of classifiers. . . . . . . 58
5.20 Kappa score for data set B and FBCSP II, using the first set of classifiers. . . . . 58
5.21 False positives rate for data set B and FBCSP II, using the first set of classifiers. . 59
5.22 Best classifiers, from the first set, for each combination for data set B and FBCSP II. 59
5.23 F1-score for data set B and FBCSP II, using both sets of classifiers. . . . . . . . . 59
5.24 Kappa score for data set B and FBCSP II, using both sets of classifiers. . . . . . . 60
5.25 False positives rate for data set B and FBCSP II, using both sets of classifiers. . . 60
5.26 Best classifiers, from both sets, for each combination for data set B and FBCSP II. 60
5.27 Results from PSD I on data set A, using the first set of classifiers. . . . . . . . . . 61
5.28 Results from PSD I on data set B, using the first set of classifiers. . . . . . . . . . 61
5.29 Results from PSD II on data set A, using the first set of classifiers. . . . . . . . . 62
5.30 Results from PSD II on data set B, using the first set of classifiers. . . . . . . . . 62
5.31 Results from FBPSD I on data set A, using the first set of classifiers. . . . . . . . 62
5.32 Results from FBPSD II on data set B, using the first set of classifiers. . . . . . . . 63
5.33 Results from FC on data set A, using the first set of classifiers. . . . . . . . . . . 63
5.34 Results from FC on data set B, using the first set of classifiers. . . . . . . . . . . 64
5.35 Cues and respective outputs from subject’s 3 real time application. . . . . . . . . 66

A.1 Run LHvsRH using only linear and statistical classifiers. . . . . . . . . . . . . . 70
A.2 Run FvsRH using the first set of classifiers. . . . . . . . . . . . . . . . . . . . . 70
A.3 Run LHvsF using the first set of classifiers. . . . . . . . . . . . . . . . . . . . . 70
A.4 Run LHvsRH using both sets of classifiers. . . . . . . . . . . . . . . . . . . . . 71
A.5 Run FvsRH using both sets of classifiers. . . . . . . . . . . . . . . . . . . . . . 71
A.6 Run LHvsF using both sets of classifiers. . . . . . . . . . . . . . . . . . . . . . . 71



Abbreviations and Symbols

aBCI Active Brain-Computer Interface
acc Accuracy
Ag Silver
AgCl Silver Chloride
ALS Amyotrophic Lateral Sclerosis
ANC Activity of Neural Cells
AUC Area Under The Curve
BCI Brain-Computer Interface
BLDA Bayesian Linear Discriminant Analysis
CCA Canonical Correlation Analysis
CNS Central Nervous System
CSP Common Spatial Pattern
DFT Discrete Fourier Transform
DMD Duchenne Muscular Dystrophy
DT Decision Trees
DWT Discrete Wavelet Transform
ECG Electrocardiography
ECoG Electroencephalography
EEG Electrocorticography
EMG Electromiography
EOG Electrooculography
ERD Event-Related Desynchronization
ERP Event-Related Potential
err Error Rate
ErrPs Error Potentials
ERS Event-Related Synchronization
FB Filter Bank
FBCSP Filter Bank Common Spatial Pattern
FFT Fast Fourier Transform
fMRI Functional Magnetic Resonance Imaging
F Feet
FN False Negatives
FC Frequency Coefficients
FP False Positives
FPR False Positive Rate
FT Fourier Transform
fTCD Functional Transcranial Doppler
Gas Genetic Algorithms

xv



xvi ABBREVIATIONS AND SYMBOLS

GM Geometric Mean
GNB Gaussian Naive Bayes
ICA Independent Component Analysis
IW Intelligent Wheelchair
K-NN k-Nearest Neighbours
LDA Linear Discriminant Analysis
LH Left Hand
LR Logistic Regression
MEA Micro-electrode Arrays
MEG Magnetoencephalography
ML Machine Learning
mRMR Maximum Relevance Minimum Redundancy
MS Multiple Sclerosis
MSE Mean Square Error
NIRS Near-infrared Spectroscopy
NN Neural Networks
NS Nervous System
p Precision
pBCI Passive Brain-Computer Interface
PCA Principal Component Analysis
PNS Peripherial Nervous System
PSD Power Spectral Density
r Recall
rBCI Reactive Brain-Computer Interface
rbf Radial Basis Function
RF Random Forest
RH Right Hand
RP Readiness Potential
sec Seconds
SFFS Sequential Forward Feature Selection
sn Sensivity
sp Specificity
SSEP Steady-State Evoked Potential
SSVEP Steady-State Visual Evoked Potential
STFT Short Time Fourier Transform
SVM Support Vector Machine
TN True Negatives
TP True Positives
TPR True Positive Rate
WHO World Health Organization
µV micro-volts



Chapter 1

Introduction

1.1 Motivation

Many different disorders can disrupt the normal brain pathways by blocking its communica-

tion and consequently muscles’ control. Disorders such as amyotrophic lateral sclerosis, brainstem

stroke, brain or spinal cord injury, muscular dystrophies, multiple sclerosis are well known exam-

ples [1].

Amyotrophic lateral sclerosis (ALS) is a fatal neuro-degenerative disease characterised by

progressive degeneration of motor neurons, leading to muscular atrophy, paralysis and death in

3–5 years from the first appearance of symptoms [2]. The average annual crude incidence rate for

this disease worldwide is 1.75 per 100,000 person-years and 1.89 in Europe [3].

According to the World Health Organization (WHO), stroke is the "second leading cause of

death and the third leading cause of disability" worldwide. A stroke occurs either when an artery

is blocked or a blood vessel is leaking, interrupting the brain’s blood supply. The brain stem is lo-

cated at the base of the brain and controls essential body functions, such as: breathing, swallowing,

eye movement, facial movement and sensation, hearing, heart rate and blood pressure. Strokes in

this area affect a person’s fundamental body functions and may lead to long-term complications

[4].

Spinal cord injuries may disable the functioning of muscles or nerves below the injured site,

as the lesion is responsible for damaging the nerve fibers from that area; thereby, blocking the

communication. For example, a chest or lower back injury can affect the chest, abdomen, legs,

bowel, bladder control and sexual function. As for a cervical injury, it can affect the movements of

the arms and might impact the ability to breathe [5]. According to the National Spinal Cord Injury

Statistic Center, the majority of the spinal cord injuries occur as a result of motor vehicle crashes

or motorcycle accidents. The following causes are slip or fall, sporting activities or accidents.

People affected by a spinal cord injury will most likely have medical complications.

Each year, approximately 10,000 new cases of spinal cord injuries are reported in European

Union, and due to an almost normal life expectancy, more than 200,000 patients are living with

a spinal cord injury in the EU [6]. The incidence in the United States of America is of 12,000

1
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new cases per year, where 38% of those, report incomplete tetraplegia, while 17% of the cases

result in complete tetraplegia. The level of recovery highly depends upon the extent of the injury;

however, less than 1% of the people experience complete neurological recovery by the time they

are discharged from the hospital [5].

Muscular dystrophy is a group of diseases responsible for causing progressive weakness

and loss of muscle mass. This happens due to mutations in the genes which interfere with the

production of proteins needed to form healthy muscle [7]. There are several different kinds of

muscular dystrophy; however, the most common one is the Duchenne muscular dystrophy (DMD)

affecting mainly boys, and usually before the age of six years. DMD affects less than 0.5 in

10,000 people in the European Union [8]. Other types of muscular dystrophies don’t surface until

adulthood. Currently, there’s no cure for muscular dystrophy, but medications and therapy can

help manage symptoms and slow the course of the disease [7].

In multiple sclerosis (MS), the immune system attacks the protective sheath (myelin) that

covers nerve fibers, inducing communication problems between the brain and the rest of the body.

Eventually, the disease can cause permanent damage or deterioration of the nerves [9]. In Europe,

there are more than 600,000 patients diagnosed, with a median prevalence of 100 cases and a

median incidence of 5.5 cases per 100,000 person-years [10].

In the absence of methods for repairing the damage caused by these disorders, there are three

main options for restoring function. The first is to increase the capabilities of remaining pathways,

as muscles that remain under voluntary control can substitute the paralyzed muscles. The second

option is to restore function by detouring around breaks in the neural pathways that control the

muscles. The final option lies on providing the brain with a new, non-muscular, communication

and control channel, a direct brain-computer interface (BCI) for transferring messages and com-

mands to the external world [1]; thus, the rise of intelligent wheelchairs (IW) controlled by these

BCIs.

Other interfaces such as speech or eye-tracking could be used to control an IW; however, they

may not be versatile enough as the first one requires the users being able to speak clearly, while

the second one imposes that users have neuro-muscular control capabilities so that they can move

their eyes [11]. Hereupon, these two types of interface are not suitable for people who suffer

from severe motor disabilities. Therefore, BCIs seem the best option to bridge the users’ will

and the wheelchair, as they provide a direct pathway between the “mind” and the external world,

just by interpreting the user’s brain activity patterns into corresponding commands [11]; thus, not

requiring neuro-muscular control capabilities whatsoever. Furthermore, people desire to be in

charge of their motion as much as possible even if they have lost most of their voluntary muscle

control; therefrom, BCIs being an exceptional option [12].

1.2 Goals and contributions

The use of human brain signals to control devices and software, in order to interact with the

world, is an important problem in bioengineering [13]. The goal of this dissertation is to develop
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a Brain-computer interface capable of controlling a simulation in real time, using Motor Imagery

neuro-mechanism as a way of outputting command controls. The final goal would be to control

the Intelligent Wheelchair, but due to the available time, only the concept validation is proposed.

The aim is to use the Emotiv EPOC headset as a way to record the user’s brain activity, as it is

rapidly installed and portable. Although many authors have already proposed several solutions, as

it will be disclosed throughout Chapter 3, none of them meets the required criteria to be commer-

cialised, either by the lack of portability or the lack of accuracy. Therefrom, the final goal would

be to have a portable, comfortable, affordable and reliable solution for an end-user consumer, so

that the system would ideally be prepared for an out-of-the-laboratory application. Thus, this dis-

sertation will contribute for the conceptualisation of the BCI system, regarding its architecture and

algorithms.

1.3 Document structure

Chapter 2, comprises the fundamental concepts to understand the scope of both the problem

and the solution; how the nervous system works and its architecture, and the key notions behind

electroencephalography, as they will be of extreme importance for the remaining work. Further-

more, the state of the art is presented in Chapter 3 focusing on the work developed by several

authors and their techniques and approaches. Moreover, the next chapter, Chapter 4, refers to

the methodologies developed in order to achieve the end solution, whereas the results from this

work, are analysed and discussed in Chapter 5. Finally, the conclusions and future work from this

dissertation are exposed in Chapter 6.
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Chapter 2

Electroencephalography

In this chapter, the nervous system will be discussed; namely, its architecture and organisation,

how the intention of the subject is delivered to the muscles and, finally, how this information

can be obtained. The latter focuses on the Electroencephalography, encompassing what is an

electroencephalogram, how can it be acquired and the artefacts that may be recorded as well.

Furthermore, together with the Electroencephalography, it is also mandatory to explain the brain

organisation, its rhythms and patterns, and how they can be interpreted.

2.1 Nervous system

The nervous system (NS) is organised into two parts: the central nervous system (CNS), which

consists of the brain and the spinal cord, and the peripheral nervous system (PNS), which is made

of nerves that connect the CNS to the rest of the body [14], as seen in Figure 2.1 [15].

Figure 2.1: Central and peripheral nervous system.
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2.1.1 Central nervous system

In the central nervous system, the brain and spinal cord are the main centres where correlation

and integration of nervous information occurs, coming from the sense organs. They are also in

charge of making decisions regarding the instructions to be sent to the rest of the body [14].

At the cellular level, the CNS is defined by the presence of neurons and glia cells; the first ones

are responsible for propagating the nervous impulse as a response to stimuli, while the second ones

provide structural and metabolic support [14, 16].

A neuron consists of a cell body (with a nucleus and cytoplasm), dendrites that carry electrical

impulses to the cell, and a long axon, which can exceed one meter, responsible for carrying the

impulses away from the cell. The axon of one neuron and the dendrites of the next neuron do not

actually touch, forming a gap between them, which is called the synapse [17, 16], as illustrated in

Figure 2.2, [18].

Figure 2.2: Neuron’s architecture and synapse.

Transmission of the signal through the neuron:

Neuronal function is complex, as it involves numerous processes in nerve transmission. In

order to generate a nerve impulse (action potential) in a sensory neuron, a stimulus of some sort of

type must happen. This stimulus can be light, a specific chemical compound, or the stretching of a

cell membrane due to sound. The conduction of the impulse occurs from the dendrites to the cell

body and then to the axon, and it corresponds to a temporary change in the membrane potential

along the neuron. This mechanism is described below and represented in Figure 2.3 [19, 20, 16].

1. The stimulus is responsible for the rapid change in voltage or action potential. A certain

amount of current must be administered to the cell in order to raise the voltage above the

threshold, triggering the depolarisation of the membrane. If the voltage is under this thresh-

old value, then the cell will not go through any change, which means that the stimulus was

weak and the electrical disturbance was only local.

2. Due to the rapid rise of the membrane potential, its sodium channels open, resulting in a

large influx of sodium ions, which ends in a depolarisation of the membrane. It should be
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Figure 2.3: Action potential in a neuron.

emphasised that neurons have a negative concentration gradient most of the time, which

means there are more positively charged ions outside than inside the cell.

3. When the membrane potential reaches another threshold value, it triggers a rapid sodium

channel inactivation, as well as the activation of the potassium channels, resulting in a large

efflux of potassium ions leading to repolarisation of the membrane.

4. Hyperpolarisation happens as the potassium channels stay open a little bit longer allowing

an efflux of these ions.

5. Resting state is achieved when the potassium channels close and the sodium-potassium

pump restarts, restoring the resting membrane potential.

In order for another stimulus to be processed and generate another action potential, approxi-

mately two milliseconds are required. Before this, the neuron is in the refractory period [16].

Transmission of the signal between two neurons:

As mentioned before, neurons are specialised in transmitting signals to individual target cells

and synapses are the means to do that. At a synapse, the plasma membrane of the signal-passing

neuron (the presynaptic neuron) comes into close apposition with the membrane of the target

(postsynaptic) cell. Both sites contain extensive arrays of molecular machinery which links the

two membranes together, allowing the signal transmission to proceed. In many synapses, the

presynaptic part is located on an axon and the postsynaptic part is located on a dendrite or soma

[14].

The billions of neurons in the brain are connected to neurons throughout the body by trillions

of synapses. The medulla, a narrow structure nearest the spinal cord, is the point at which many

of the nerves, which are enclosed cable-like bundle of axons, from the left part of the body cross

to the right side of the brain and vice-versa [14].



8 Electroencephalography

2.1.2 Peripheral nervous system

The PNS refers to parts of the nervous system outside the brain and the spinal cord. It includes

the cranial nerves, spinal nerves, and their roots and branches, peripheral nerves and neuromus-

cular junctions. The anterior horn cells (front column of grey matter in the spinal cord), although

technically part of the CNS, are sometimes discussed with the PNS as they are part of the motor

unit. A motor unit consists of an anterior horn cell, its motor axon, the muscle fibres it innervates,

and the connection between them (neuromuscular junction) [17].

The PNS can be split into two groups of nerves: the sensory or afferent group, and the motor

or efferent one [17], to better understanding, the division can be seen in Figure 2.4, [21]:

• Sensory nerves: carry sensory signals by way of afferent nerve fibers from receptors in the

CNS. They can be further sub-divided into two more groups: Somatic nerves, which carry

signals from receptors in the skin, muscles, bones, and joints; and Visceral nerves, which

carry signals mainly from the viscera of the thoracic and abdominal cavities.

• Motor nerves: carry motor signals by the way of efferent nerve fibres from the CNS to

effectors, mainly glands and muscles. Furthermore, this group can be divided into two

more: Somatic nerves, which carry signals to the skeletal muscles; and Visceral nerves,

which carry signals to glands, cardiac muscle, and smooth muscle. This subgroup can be

further sub-divided into two: Sympathetic - these tend to arouse the body to action; and

Parasympathetic - these have a more calming effect.

Figure 2.4: Scheme of the nervous system’s organisation.

2.2 Electroencephalography

During the synaptic excitation of several neurons’ axons, a current is formed and flows through

the nerves originating a magnetic field which can be measured. Electroencephalography is the

process of recording this brain activity during a period of time by using electrodes attached to
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the scalp, and it was first used on humans in 1924 by the German scientist Hans Berger. The

methods to obtain an electroencephalogram (EEG) can be invasive or non-invasive. On the one

hand, an invasive approach requires physical implants of electrodes directly on the exposed surface

of the brain, making it possible to measure single neurons’ activity or local field potentials. Such

technique is most commonly known as ECoG - electrocorticography. On the other hand, a non-

invasive approach, which is the standard EEG method, measures the activity from the scalp using

pairs of electrodes and their voltage differences. However, as the skull is responsible for a strong

attenuation of the signal, about a hundred times, it is very weak when recorded, and thus, requires

amplification [16].

2.2.1 Brain organisation

From an anatomical perspective, the brain can be divided into three main structures: the brain

stem, the cerebellum and the cerebrum. The brain stem is responsible for the involuntary functions

such as respiration, heart regulation, among others. The cerebellum coordinates the muscles’ vol-

untary movements and maintains balance. Finally, the cerebrum includes the regions responsible

for the behaviour and emotions’ expression, the awareness of sensations and movement as well as

complex analysis [16].

The cerebrum contains both brain’s hemispheres with highly intricate surface layers, known

as the cerebral cortex. The cortex is divided into four lobes: frontal, temporal, parietal, and

occipital. Each lobe has a specific function and comprises different areas, as seen in Figure 2.5.

The frontal lobe is constituted by the primary motor cortex and pre-motor cortex - involved in

the contralateral movement, the Broca area - implicated in the speech; the frontal eye fields -

involved in eye movement; and the prefrontal cortex - implicated in restraint initiative order. The

parietal lobe comprises the primary somatosensory cortex - involved in receiving contralateral

sensory information; and Wernicke area - responsible for language comprehension. The temporal
lobe has the primary auditory cortex - implicated in processing sound. Finally, the occipital lobe

comprises the visual and visual association cortex - essential for receiving and recognising visual

stimuli [22].

Figure 2.5: Brain organisation.
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2.2.2 Brain activity patterns

The amplitude of a brain activity signal is measured in micro-volts, typically between 30 and

100, with a frequency in the range of 0 to 50Hz [23]. The characteristics of the recorded signals

are highly dependent on the activities within the cerebral cortex. Berger found that different elec-

trical frequencies could be linked to actions and different stages of consciousness, as the features

of these waves change markedly between states of wakefulness, sleep, and coma. Thus, the brain

signal can be divided according to frequency bands, originating the different brain waves. Further-

more, depending on the area where this oscillatory activity appears, it can also be sub-divided into

different rhythms, as seen in Table 2.1 [23, 24, 25, 26, 27].

Table 2.1: Brain waves and rhythms.

Waves Description Cortex lobe Rhythms Description Cortex area

Gamma
(>30
Hz)

Dominant when the mind is in
quiet state; as a mechanism of
Consciousness; in situations of
universal love and altruism; in

higher level tasks.

— gamma
Amplitude increases when a voluntary

movement is performed. More
prominent in the primary sensory area.

Sensorimotor

Beta
(12-

30Hz)

Dominant in the waking state,
cognitive tasks and the outside

world, alert state, attentive.
When engaged in problem
solving, decision making,
judgement or focused on

mental activity.

Frontal and
Parietal

beta
Amplitude changes when the person is
not engaged in processing sensorimotor
inputs or in producing motor outputs.

Sensorimotor

Alpha
(7.5-

12Hz)

Dominant in the resting state;
during mental coordination; in
states of calmness or alertness;
during mind/body integration

or the process of learning.

Occipital
mu

Amplitude changes when the person is
not engaged in processing sensorimotor
inputs or in producing motor outputs.

Sensorimotor

alpha

Blocked or attenuated by attention,
especially visual, and mental effort. It

has been associated with physical
relaxations and relative mental

inactivity.

Visual

Theta
(3.5-

7.5Hz)

Dominant in sleep or deep
meditation.

Parietal and
Temporal

— — —

Delta
(0.5-

3.5Hz)

Dominant in dreamless sleep
and in deep meditation state.

Throughout the
cortex

— — —

Infra-
Low
(0-

0.5Hz)

Related to cortical rhythms and
brain timing.

— — — —

2.2.3 Brain activity interpretation – Neuro-mechanisms

By recording brain activity from various brain regions, and related to different mental efforts

[28], it is possible to obtain different neuro-mechanisms. These can be described as signals which

will be used to drive a brain-computer interface. Obviously, the best option is to have neuro-

mechanisms which can detect, or indicate, significant changes in the brain activity when an event,

or intention, occurs; an event is defined as a voluntary or involuntary action/reaction to a stimulus

or error [26]. The following covers the different neuro-mechanisms that can be used in order to

link the signal to an event or intention.

I. Sensorimotor activity

The brain maintains an ongoing activity, rhythm, when in the absence of an external or

internal intervention. These rhythms can be identified by their frequency and the area of
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the brain where they occur, as seen in the previous section. When an event occurs, these

rhythms can change providing two neuro-mechanisms to describe these modifications [26]:

1 Event-Related Desynchronization (ERD): suppression of the rhythmic brain activity

when an event occurs;

2 Event-Related Synchronization (ERS): enhancement of the rhythmic brain activity

when an event occurs.

Hereupon, a voluntary movement corresponds to a circumscribed desynchronization in the

mu and lower beta bands during the execution, preparation or imagination of motor actions

[26, 27].

The latter is at the origin of the so-called motor imagery paradigm, which is defined as the

imagination of kinesthetic movements of the left hand, right hand, foot, tongue, and so on,

causing (de)synchronization in the mu and beta rhythms [29].

II. Event Related Potentials

Event-related potentials (ERP) are short amplitude deflections in the brain signal, which

are timestamped to an event. They are characterised by the triggering event, direction of

deflection, observed location and latency [26]. Their detection is made difficult due to the

presence of artefacts originated in eye movements, blinking or face muscles’ movements

[30]. ERPs are usually analysed in the time domain and typically occur in the alpha section

of the spectrum (8-13Hz) [30]. Some of the most common ERPs are:

a) P300 - occurs after a person is exposed to a task-relevant stimulus. This makes it suitable

for detecting intention through the selection of tasks [26]. It derives its name from a drastic

peak in EEG signal, typically in the range of 150 micro-volts, that occurs 300 milliseconds

after a stimulus is recognised by an individual [30].

b) RP - readiness potential; it precedes voluntary motor movements [26].

c) ErrPs - error potentials; which are brain reactions to errors [26]. There is a negative

deflection 50–100ms and a positive deflection around 200–400 ms after the recognition of

an error that was made [28].

III. Steady-State Evoked Potential

When a brain stimulus is provided, the stimulus has a certain frequency and it is processed in

a certain brain area. The amplitude of the processed signal is proportionally enhanced to the

stimulus frequency. This enhancement is known as steady-state evoked potential (SSEP).

So, by presenting multiple stimuli with distinct repetition frequencies, it is possible to detect

to which stimulus the person was paying attention to. A very used sub-type of this neuro-

mechanism is the SSVEP, where the V stands for visual. In this case, it occurs when the

stimulation is visual, and the enhancement is observed over the occipital cortex [26]. This

type of neuro-mechanism usually occurs in the alpha band; the stimulation frequencies can

vary from 4−20Hz according to Wang et al. [31], Mandel et al. [32] and Xu et al. [33].
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IV. Activity of Neural Cells

The activity of neural cells (ANC) can be used as a neuro-mechanism as it has been shown

that the firing rates of neurons in the motor cortex increase when movements are executed

in the preferred direction of the neurons. Once the movements are away from this direction,

the firing rate is decreased [27].

V. Hybrid

As previously explained, neuro-mechanisms will drive the BCI; however, it is possible to

have also a hybrid mechanism, which combines different brain and body monitoring meth-

ods, such as ECG or ocular movements, to achieve more accurate and comprehensive sys-

tems. Hybrid mechanisms can also combine different neuro-mechanisms, for example, an

imagery-based and an attention-based task, to increase the final performance and reduce the

illiteracy index - number of individuals who are unable to control a BCI system based on a

particular task [28].

Depending on the used neuro-mechanism, the performance of the brain-computer interface

may differ. The most commonly used principles are SSVEP, ERP-P300 and sensory-motor activity-

ERD/ERS; hence, the comparative Table 2.2, adapted from [12].

Table 2.2: Comparison of the three main types of neuro-mechanisms widely used to develop BCIs.

Input Signals Training Time Stimulation Accuracy Issuing Command
Interval

P300 Almost none Visual, auditory, or tactile
stimuli presenting randomly Typically 90% Long (typically 10-20s)

SSVEP Almost none Visually evoked by stimuli
modulated at fixed frequencies Typically 80-90% Short (typically 2-4s)

ERD/ERS Many weeks or longer No Typically 70-80% Short (typically 0.5-4s)

In comparison to SSVEP BCIs, P300 BCIs take a longer time to issue commands while SSVEP

BCIs can do it typically every 2–4 s [12]. Regarding the training time, ERD/ERS BCIs take much

more than the other two; however, they do not need any stimulation. Concerning the accuracy,

P300 and SSVEP-based BCIs present a higher value, which may be due to the fact that they

are stimulus dependent. Nevertheless, the accuracy for the ERD/ERS-based methods has been

increasing with the development of new processing techniques, as shown in Table 3.8, Chapter 3.

2.2.4 EEG acquisition

EEG signals can be collected with electrodes that are placed on the surface of the scalp. There

are different ways of positioning the electrodes; however, in 1958, the International Federation

in Electroencephalography, together with Clinical Neurophysiology, standardised the 10-20 elec-

trode placement system, being now the most widely used, and the one which will be used by the

EEG headsets further referred in this work [34]. This system standardises the physical electrode

placement on the scalp, and its name derives from the fact that the electrodes are located at 10%

and 20% of a measured distance from reference sites including nasion, inion, left, and right preau-

ricular point, see Figure 2.6 [30]. Depending on the lobe where the electrode is placed, it will
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receive the correspondent letter. Moreover, even numbers mean that the electrode is positioned

on the right hemisphere, while odds on the left. Electrodes placed on the midline sagittal plane

are characterised by the letter Z. This approach owes its endurance to its simplicity and fortu-

itous division of the scalp into corresponding brain regions which remain relevant to cognitive and

psychiatric research [27].

Figure 2.6: International 10-20 system seen from left and above the head. A= Ear lobe, C= Central,
P= Parietal, Pg= Nasopharyngeal, F= frontal, Fp= Frontal polar, O= Occipital.

The final EEG signal corresponds to the several measured potential differences between the

voltages of two different points/electrodes. Hence, there are two different ways of recording:

differential or referential, also known as bipolar or monopolar. Concerning the bipolar approach,

both electrodes are placed on the scalp, in the region of interest. For the monopolar, the first

electrode is positioned on the area of interest, while the second is placed away from this area

[35]. There are several placements for the reference, namely the Cz, the earlobe electrodes A1

and A2, which are connected respectively to the left and right earlobes, tip of the nose, hand, leg,

among others. The choice of a reference may cause topographic distortion if it is not neutral; thus,

the existence of reference-free recordings, which use a common average reference from all the

electrodes. However, it is considered that, in modern instrumentation, the choice of a reference

does not play a major role in the measurement [16].

As previously seen, in order to control a brain-computer interface, a neuro-mechanism will

be used. Depending on the neuro-mechanism of choice, different areas of the brain will provide

intensified signals, which means that the area to be recorded will differ; Table 2.3 summarises the

areas corresponding to each neuro-mechanism, adapted from [12, 28].

2.2.5 EEG artefacts

There are several types of artefacts in EEG recordings, which can be originated from internal

and/or external sources. These contribute to the recorded electrical activity [1], contaminating

the signal in both temporal and spectral domains [36]. The artefacts from internal sources are

caused by the subject, in other words, they have their origin from the subject’s physiological
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Table 2.3: Brain’s regions of interest according to the corresponding neuro-mechanism.

Neuro-mechanism Example Region of interest

ERP
P300 Parietal and occipital regions

ErrP
Negative Deflection Fronto-central region
Positive Deflection Fronto-parietal region

SSEP SSVEP Occipital region

Sensory-motor Activity
ERD

Central, frontal, and parietal regions
ERS

activities, such as ECG (electrocardiography), EMG (electromyography), muscle artefacts or EOG

(electrooculography), and the subject’s movement. Artefacts from external sources appear as a

result of environmental interference, recording equipment, electrode pop-up and cable movement

[36].

Moreover, some artefacts may be presented globally (in several neighbouring channels), while

others may be only found locally (in single-channel) [36]. Furthermore, some appear as regular

periodic events, such as ECG or pulse artefacts, while others may be extremely irregular [36].

A representative example of artefact contamination can be seen in Figure 2.7, from [36], where

on the left there is muscle activity contaminating almost all signals while on the right there is both,

muscle activity and eye movement.

Figure 2.7: EEG contaminated by artefacts - Left: a scalp EEG segment where all channels are
more or less contaminated with muscle activity during the 10 seconds. Right: the 10-second
scalp EEG recordings with 21 channels from a long-term Epilepsy Monitoring Unit (OSG EEG
recorders, Rumst, Belgium). The seizure EEG was contaminated with muscle artefacts and eye
blinks. Muscle artefacts can be observed between 0 and 3.9 seconds on channels F7, T3, T5, C3,
and T1 and between 5 sec and 10 sec on channels F8, T4, F4, C4, and P4.

Regarding artefacts from internal sources, they can be characterised as:

I. Ocular artefacts: they comprise the eye blinks and movements and are known for their

large amplitude mainly focused in the theta band in the frontal location of the scalp (elec-

trodes Fp1 and Fp2 - 10/20 system). By plotting a time-frequency representation of a signal

abundant in this type of artefacts, it would be possible to see an abnormal concentration of

the power in theta band, as ocular artefacts appear [37]. Furthermore, eye blinks are usually
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responsible for overpowering the EEG signal of interest; while a regular EEG signal ranges

from -50 to 50 µV, eye blink artefacts have amplitudes up to 100 µV [37].

II. Muscular artefacts: they appear due to the head and neck musculature which is activated

during head movement or stabilisation while performing motion tasks [38]. These artefacts

present amplitudes in the same order as the EEG signal and mostly appear in the beta and

mu rhythms preventing the features’ extraction as they mimic the regular EEG signal [1, 37].

They are more noticeable in central, temporal and parietal electrodes (T3, T4, T5, P3, P4,

and T6 – 10/20 system) [37]. Plotting the time-frequency representation of a signal contain-

ing muscular artefacts reveals the presence of these by exhibiting an abnormal concentration

of power in the beta and mu bands [37], usually with a peak above 20Hz [39].

The main problem regarding these artefacts is that different electrodes do not differentiate

electrical activity generated by cortical tissue, from the one generated by muscle movements (eye,

tongue, face, neck, or heart), changes in skin conductance, or equipment problems. So, in order

to get a higher quality EEG, pre-processing must be done. Some artefacts may be detected algo-

rithmically by resorting to low or high-pass filters, but others require human intervention – that is,

visual inspection and manual deletion [40]. The methods currently used to pre-process the signal

will be discussed in Chapter 3, Section 3.2.1.

2.3 Conclusion

The central nervous system communicates with the outside world through the peripheral ner-

vous system. The CNS commands and the PNS transmits the orders to the muscles. These orders

flow through as nervous impulses, which correspond to chained action potentials. These cause a

change of voltage in the brain, allowing to measure this activity. Depending on the brain lobe from

which it is obtained, it refers to a different action performed by the user. For example, activity from

the sensorimotor cortex has a different meaning than the activity from the visual cortex. Moreover,

this brain activity can be further divided depending on the frequency band where it appears. This

idea is the one behind the neuro-mechanisms, which are the principles that allow locking the user

intention into a command.

Hereupon, the principle can be changes in the signal amplitude due to a stimulus, ERP and

SSEP, or changes in the brain rhythms, ERD/ERS; thus, the first two will lead to a stimulus-

dependent BCI, while the latter to an independent one. Both types have their limitations. Stimulus-

dependent leads to the user focusing on the stimulus instead of the driving; however, their training

is not as extensive as for the independent ones. Nevertheless, stimulus-independent mechanisms

require a more extensive train in order to originate good results. Thus, it is of most importance to

understand the principles’ genesis so that these signals can be processed in the best way possible.

Only if this is met, can the correct and most important features be extracted and fed into a classifier;

hence, this topic will be further analysed in the next chapter.
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Chapter 3

BCI - State of the Art

Brain-Computer Interfaces (BCI) provide control and communication between human inten-

tion and physical devices by translating the pattern of the brain activity into commands [12]. The

flow of a BCI consists of the acquisition of the information from the brain, followed by the data

processing, and ending in the output of a control command [26]. Thus, usually, a BCI can be

conceptually divided into signal acquisition, pre-processing, feature extraction and classification,

being the last three the interpretation of the first one [12], as seen in Figure 3.1.

Figure 3.1: Scheme of the BCI architecture and its parts.

The next sections focus on the different blocks of the BCI. The first one concerns the different

possibilities of the signal acquisition, while the second includes all the parts which compose the

signal processing. Finally, the last section complies the applications of the BCI, namely the intel-

ligent wheelchair. Furthermore, the different types of BCIs will be presented in the last section.

3.1 Signal acquisition

There are several methods to acquire brain activity that can be fed into a BCI; however, the

most used acquisition method is EEG, explained in Section 2.2.4, as it is low cost and conve-

nient to use. Other factors that make it such an attractive tool are the standardisation of electrode

placement, plentiful and well-documented information on acquisition techniques and being a well-

established method with known filtering [30]. Table 3.1, adapted from [26], compares the different

17
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types of methods used to acquire signals for BCI use, the principles behind these techniques can

be seen in Figure 3.2 [28], and will be further explained below.

Table 3.1: Properties of brain activity acquisition methods.

EEG MEG NIRS fMRI ECoG MEA fTCD
Deployment Non-invasive Non-invasive Non-invasive Non-invasive Invasive Invasive Non-invasive

Measured Activity Electrical Magnetic Hemodynamic Hemodynamic Electrical Electrical Hemodynamic
Temporal Resolution Good Good Low Low High High High

Spatial Resolution Low Low Low Good Good High Low
Portability High Low High Low High High High

Cost Low High Low High High High

Figure 3.2: Principles of neural activity recording of each neural-based technique.

I. Magnetoencephalography (MEG) is a neuro-imaging technique which uses the magnetic

fields created by the natural currents that flow in the brain, to map the brain activity. In

order to do that, it uses magnetometers. The cerebral cortex’s sites, that are activated by a

stimulus, can be found from the detected magnetic field distribution [41].

II. Near-infrared Spectroscopy (NIRS) is a spectroscopic method which uses the near-infrared

(NIR) region of the electromagnetic spectrum (from 780 nm to 2500 nm). NIR light is able

to penetrate human tissues; however, it suffers a relatively high attenuation due to the main

chromophore haemoglobin (the oxygen transport red blood cell protein) which is presented

in the blood. So, when a specific area of the brain is activated, the localised blood volume

in that area changes quickly and, if optical imaging is used, it is possible to measure the

location and activity of specific regions of the brain. This is due to the continuous tracking

of the haemoglobin levels through the determination of optical absorption coefficients [42].

III. Functional Magnetic Resonance Imaging (fMRI), through variations associated with blood

flow, is able to measure brain activity. This technique relies on the fact that cerebral blood

flow and neuronal activation are coupled; thus, when an area of the brain is in use, the blood

flow to that region also increases [43].

IV. Electrocorticography (ECoG) is a type of electrophysiological monitoring that records ac-

tivity mainly from the cortical pyramidal cells (neurons). For that, it requires the electrodes

to be placed directly on the exposed surface of the brain so that the recorded activity comes

directly from the cerebral cortex [44].
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V. Micro-electrode Arrays (MEAs) are devices that contain multiple micro-electrodes, the

number can vary between ten to thousands, through which the neural signals are obtained.

These arrays basically function as neural interfaces that connect neurons to electronic cir-

cuitry [45].

VI. Functional Transcranial Doppler (fTCD) is a technique which uses ultrasound Doppler to

measure the velocity of blood flow in the main cerebral arteries during local neural activity

[28]. Changes in the velocity of the blood flow are correlated to changes in cerebral oxygen

uptake, enabling fTCD to measure brain activity [46].

However, the robustness of all existing BCI systems is not satisfactory due to the non-stationary

nature of non-invasive EEG signals. If a BCI system is not stable, other techniques should be

further developed to improve the overall driving performance [12]. Usually, these concern the

improvement of features extraction and classification as the other option would fall on trading to

an invasive approach.

3.1.1 EEG acquisition

In order to have a portable and easy to use BCI system to be incorporated into an IW, it

is necessary to have a simple, yet trustful, commercial EEG headset. Table 3.1, adapted from

[47, 48], compares the current headsets available in the market regarding their price, number of

electrodes, their sensors’ interpretation, applications, among others.

Table 3.2: Comparison of commercial EEG headsets.

Device Price Electrodes
ADC
bits

Sensors Interpretation Interface Applications

Aurora Dream
Headband

$199 1 8
frontal EEG/EOG sensor, open SDK, 4-stage sleep

tracking, 2 LEDs near the eyes

Bluetooth Low
Energy / USB / SD

Card
Consumer Sleep Device

Melon Headband $149 4 L+R hemisphere prefrontal EEG
Bluetooth Low

Energy
A headband and mobile

app to measure focus

iFocusBand $500 1 8 mental states, facial tension, eye movement & quiet eye Bluetooth Aims to improve focus

NeuroSky MindWave $99.95 1 12 2 mental states (based on 4 brainwaves), eye blinks games, focus
Mindflex (NeuroSky

chips)
$50 1 12 1 mental state Relax and Focus

Emotiv Flex $1699
32 - con-
figurable

16
Wireless

Transmission
high density wireless EEG

applications: eg. BCIs

Emotiv EPOC (+) $799 14 16
3 mental states, 13 conscious thoughts, facial

expressions, head movements (sensed by 2 gyros)
Wireless

Transmission
BCIs

Emotiv Insight $299 5 14 Bluetooth 4.0
BCIs and Wellness

tracking

NeuroSky MindSet $199 1 12 2 mental states (based on 4 brainwaves), eye blinks

Mindball $20,000 1 1 mental state Video Games
MyndPlay BrainBand

(NeuroSky chips)
$158 1 12 8 EEG bands Bluetooth

Used for video-games and
virtual Reality

Muse $250 4 16
7 sensors; 5 front (2 active, 2 DRL, 1 reference), 2 active

behind ears
Bluetooth

To reduce stress and
improve focus

OpenBCI Ganglion
Board

$99 4 24 EEG, EMG, EKG, and accelerometer data Bluetooth 4.0 BCIs

OpenBCI 32bit Board $499 8 24 EEG, EMG, EKG, and accelerometer data Bluetooth 4.0 BCIs

OpenBCI R&D Kit $899 16 24 EEG, EMG, EKG, and accelerometer data Bluetooth 4.0 BCIs

Although the range of existent commercial headsets is quite good, most of them lack in the

number of available electrodes as they are more turned to improve the user’s focus and to help
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him/her to relax, or to be used for gaming. Furthermore, the ones which present better character-

istics are the Emotiv EPOC, Emotiv Flex and the Open BCI [49]. Although the last two do not

restrict the electrodes’ configuration as Emotiv EPOC does, they are more expensive and com-

plex. As for the Open BCI one, it does not offer the same freedom of measurement and comfort as

Emotiv ones, as these are wireless with a 12h, for EPOC, and 9h, for Flex, lasting battery [50, 48].

Hereupon, authors nowadays do not really use commercial EEG headsets to obtain the signals

which will feed the BCI, they prefer assembling their own EEG set through an amplifier and elec-

trodes, as seen in Table 3.3. However, these are usually not wireless options. Nevertheless, there

is still a significant group who uses Emotiv EPOC, as this one offers a wider range of electrodes

when compared with other commercial options, allowing to better obtain the signals from different

brain lobes.

Table 3.3: EEG headsets used in the literature.

Article EEG Headset Principle Article EEG Headset Principle

[51] 12 Ag/Cl electrodes ERP - P300 [52] NuAmps and 12 electrodes ERP - P300

[53] NuAmps and 15 electrodes ERP - P300 [54]
gTec EEG (16 electrodes and

g.USBamp amplifier)
ERP - P300

[55] 16-channel electrode cap ERP - P300 [56] Biopac MP150 EEG system ERP - P300

[57]
gTec EEG (12 electrodes and

g.USBamp amplifier)
ERP - P300 [58] Neuroscan (15 electrodes’ cap) ERP - P300

[31]
BioSemi ActiveTwo system 32

channels
SSVEP [59]

g.USBamp amplifier with
g.Butterfly active electrodes

SSVEP

[60]
8 gold electrodes connected to the

g.USBamp amplifier
SSVEP [32]

gTec EEG with g.USBamp
amplifier

SSVEP

[33] EEG Cap and g.USBamp amplifier SSVEP [61] BrainNet-36 with 12 channels SSVEP

[62] BrainNet BNT-36 with 3 channels SSVEP [63] 6 channels EEG cap SSVEP

[23] NeuroSky mindset ERD/ERS [37]
Grass Telefactor EEG Twin3

Machine
ERD/ERS

[64]
G-TEC system with 5 Ag/AgCl

electrodes
ERD/ERS [65] 8 channels EEG cap ERD/ERS

[66]
5 bipolar EEG channels and a g.tec

amplifier
ERD/ERS [67] ActiveTwo 64-channel EEG system ERD/ERS

[68] Emotiv EPOC ERD/ERS [69] Emotiv EPOC ERD/ERS

[70] Emotiv EPOC ERD/ERS [71] Emotiv EPOC ERD/ERS

[13] Emotiv EPOC ERD/ERS

[72] EEG Cap - 15 electrodes ERD/ERS and SSVEP [73] Gtec Amplifier (15 channels) ERD/ERS and SSVEP

[74] g.BSamp amplifier (5 channels) ERD/ERS and SSVEP [75, 76] NuAmps device (15 channels) ERD/ERS and ERP - P300

[77] NeuroSky
ERP - P300 and Eye

Blinking (EMG)
[11]

SYMPTOM amplifier with 10
electrodes

ERP - P300 and SSVEP

3.2 Signal processing

The signal processing module is divided into different parts as seen in Figure 3.3 [78]. The

steps vary depending on whether the stage is training or testing; however, the training steps are

broader than the testing ones; hence, these will be the ones to be discussed. The first step is to

pre-process the signal and it is further subdivided into band-pass and spatial filtering; afterwards,

the features are extracted and selected. Finally, the classification is done, and the performance is

evaluated. In order to perform this, techniques of machine learning must be applied, thus the brief

explanation of this concept.
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Machine Learning (ML) is based on data analytics, that automates analytical model building.

By using algorithms that iteratively learn from data, the computer can find hidden insights without

being explicitly programmed where to look. This approach is used when the problem is complex

and can be described by many variables. It creates an unknown target function that models the

input into the desired output [79]. The learning algorithm receives a set of labelled examples

(inputs with corresponding outputs) and learns by comparing its predicted output with correct

outputs to find errors, modifying the model accordingly. The resulting model can predict future

events.

When exposed to new data, the model is able to adapt itself. In theory, if the algorithm works

properly, the larger the amount of data, the better the predictions. However, they are limited by

bias in the algorithm and in the data, which can produce systematically skewed predictions. So,

the complexity of the learning algorithm is critical and should be balanced with the complexity of

the data [79].

Figure 3.3: Typical classification process in EEG-based BCI systems. The oblique arrow denotes
algorithms that can be or have to be optimised from data. A training phase is typically necessary
not only to identify the best filters and features, but also to train the classifier. The resulting filters,
features and classifier are then used to operate the BCI.

3.2.1 Pre-processing

The EEG signal, per se, is very noisy, which is due to several aspects such as the low signal-

to-noise ratio - as it is collected from the individual’s scalp surface; the low spatial resolution and

other sources as artefacts or interfering frequencies [80]. Artefact removal involves cancelling or

correcting the artefacts without distorting the signal of interest, and can be implemented in both

the temporal or spatial domain [81]. Usually, the pre-processing concerns two types of filtering,

in the frequency and in the spatial domain [78]:

I. Band-Pass Filtering: Consists of removing some frequencies, or frequency bands, from

the signal [81], outputting the frequency range of interest.

II. Spatial Filtering: Consists of combining the original sensor signals, usually linearly, which

can result in a signal with a higher signal-to-noise ratio than that of individual sensors [78].



22 BCI - State of the Art

Basically, it combines the electrodes which lead to more discriminating signals [81].

According to Pejaś [82], approaches which rely on spatial filtering not only provide more

true positives but also allow more flexibility when choosing the electrodes placement. Spa-

tial filters that linearly combine signals acquired from different EEG channels have the abil-

ity to extract and enhance the desired brain activity; thus, usually, it is enough to place the

electrodes somehow in the desired area and not in the exact location.

The most widely known approaches, which use multi-channel spatial featuring, are itemised

below:

• Common Spatial Pattern (CSP): It is a mathematical procedure which separates a

multivariate signal into additive sub-components. These present maximum differences

in variance between two windows. This separation is made by using a linear trans-

formation that projects the EEG data into a low-dimensional spatial subspace with a

projection matrix, in which each row represents the weight for each channel [83].

• Principal Component Analysis (PCA): It is a statistical procedure which gets nu-

merical variables of a set of observations and orthogonally transforms them into a set

of values of linearly uncorrelated variables called principal components. If there are

n observations and p numerical variables from each observation, then the number of

principal components would be min(n-1,p).

The first principal component has the largest possible variance, which means that it

is responsible for the greatest possible variability of the data, and each succeeding

component in turn has the highest variance possible under the constraint that it is or-

thogonal to the preceding components. By applying it to the signal, it is possible to

rank the EEG components and remove the artefacts [36].

• Independent Component Analysis (ICA): It is a computational method which di-

vides a signal into its statistically independent and non-Gaussian components, and it

is a frequently used approach to eliminate artefacts of EEG signals. Nevertheless, it

is hard to apply and of high complexity, which is why just filtering or the Discrete

Wavelet Transform are usually preferable [36].

• Canonical Correlation Analysis (CCA): It is a method used to derive inferences from

cross-covariance matrices. It finds linear combinations of random variables’ vectors,

maximising the correlation with each other. Opposite to ICA, CCA considers temporal

correlations by being capable of finding uncorrelated components [36]. Although it is

not a pure spatial filter, it plays a similar role by linearly combining the information

from different sources [82].

3.2.1.1 State of the art

Throughout the literature, several ways of pre-processing the EEG signals, for BCI use and

aiming to remove the artefacts, were found and can be summarised in Table 3.4. Unwanted signals
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Table 3.4: Pre-processing methods according to the literature.

Pre-processing Down-sampling
does not

refer factor ? factor 2 factor 5 factor 6 factor 16

Sampling
rate
(Hz)

128 [32],[68],
[70], [71] — — — — —

240-260

[53], [31],
[59], [33],
[62], [64],
[66], [72],
[73], [74],

[57]

[51],
[58],
[14]

— [52] [75] [54]

500-600 [61], [63],
[37], [67] — — — — —

1000 [56], [65] — [11] — — —

Artefact
Removal

Noise and
Ocular Artefacts Filter

[51], [52], [53], [56], [57], [58], [31], [60], [33], [61], [62],
[63], [37], [64], [65], [66], [67], [60], [70], [12], [72], [73],

[74], [75], [77],[11]

Muscular
Artefacts

PCA [12], [84], [64], [11]
ICA [12], [84]

DWT [84], [65]

created by ocular artefacts are usually easily removed by a band-pass filter as they originate low-

frequency signals in the theta band, which is not a band of interest. Furthermore, some muscle

artefacts created by the subject’s body can be eliminated as well, as they mostly appear in high

frequencies [80]. As for the standard power lines, these create interference in the range of 50-60Hz

[80]. Thus, through only a band-pass filter, it is possible to eliminate some EMG artefacts, EOG

artefacts, and external interference [12, 51, 65, 52]. However, those regarding muscular artefacts

near the head, namely face movements or neck movements, or even some eye blinking, are harder

to remove as their frequencies overlap with the EEG’s desired ones. So, for those, spatial filtering

is usually chosen. Nevertheless, some authors proposed other approaches to remove the artefacts,

which are not spatial filters; as for example the Discrete Wavelet Transform:

I. Discrete Wavelet Transform (DWT): A wavelet is a quick zero-mean oscillation, that ex-

ists for a finite period of time, contrarily to sinusoidal waves. A DWT allows to represent a

signal as a set of wavelets, which are dilated and translated versions of a basis function, the

mother wavelet [36], and their coefficients. As the noise corresponds to fast variations in a

signal, high frequencies, by removing the small coefficients it is possible to denoise it [85].

3.2.2 Features extraction

There are different types of features according to the domain from where they are extracted:

time, frequency or spatial, as seen in Table 3.5.

Table 3.5: Summary of feature’s extraction methods.

Time Domain Moving Average Technique, Signal Averaging, Statistical Methods etc.
Frequency Domain Fast Fourier Transform, Band power,Power Spectral Density etc

Time - Frequency
Auto-regressive, Continuous and Discrete Wavelet Transform , short time Fourier

transform (STFT) etc
Spatial Common Spatial Patterns (CSP), Filter Bank CSP (FBCSP), etc

I. Time point features: Consist in the concatenation of EEG samples from all channels. They

are used by BCIs which require timestamped amplitude variations in the signal, as ERP-

P300 BCIs do [78].
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II. Frequency band power features: Compute the power/ energy of the EEG signal for a

given frequency band in a given channel, average over a given time window [78]. Thus,

they are used by BCIs which principles require variations both in amplitudes and rhythms,

such as ERD/ERS and SSVEP BCIs.

• Fast Fourier Transform (FFT): It is a computational tool which eases signal analysis

such as power spectrum analysis and filter simulation by means of digital computers.

It is a method for efficiently computing the discrete Fourier transform of a series of

data samples (referred to as a time series) [86].

• Power Spectral Density (PSD): Calculates the signal’s energy as a function of fre-

quency. So, it shows at which frequencies there is more or less energy. The unit of PSD

is energy per frequency (width); however, it is possible to obtain the energy within a

specific frequency range by integrating it within that frequency range. In conclusion,

it is a way of obtaining the spectral energy distribution of the signal per unit of time.

III. Time-frequency features: They use both time and frequency analysis simultaneously. This

is due to the non-stationary properties of the EEG signal. Therefore, any momentary change

in frequency values for any signal components (e.g. artefact) can be captured in a particular

temporal window [36].

• Short Time Fourier Transform (STFT): It consists in dividing a long time signal into

equal length segments and then compute the Fourier transform for each one of them.

Thus, it can be basically defined as a way of determining the sinusoidal frequency and

phase content of segments that are part of a signal which changes over time.

IV. Spatial features: They consider the signal spatial information and can be used for all BCIs

type, regardless the principle.

• Filter Bank Common Spatial Pattern (FBCSP): It is a spin-off of the already ex-

plained CSP, and has been arising in such a way that won the best-performing method

for the BCI competition IV [87]. The first stage employs a filter bank that band-pass

filters the EEG measurements into multiple bands. The second stage performs spatial

filtering on each of these bands using the CSP algorithm, as it can be seen in Figure

3.4. Thus, each pair of band-pass and spatial filter returns CSP features specific to the

frequency range of the band-pass filter [88]. In summary, it computes spatial filters

that enhance class discriminative band power features contained in the EEG [87].

3.2.2.1 State of the art

The state of the art regarding the features extraction for BCI use, can be found in Table 3.8,in

the Subsection 3.2.4, along with the used classifiers, and it will be discussed in the referred section.
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Figure 3.4: Architecture of the Filter Bank Common Spatial Pattern method.

3.2.3 Dimensionality reduction and feature selection

These steps are very important in order to obtain better results; the different methods can be

seen in Table 3.6. First, dimensionality reduction is a way of representing the data, retaining the

relevant information, while reducing the amount of information necessary to represent it, showing

the same information as the original data set but with fewer data. Feature selection consists of

selecting the features that contribute the most to the distinction of the class and can be divided into

two types of methods:

I. Filter Methods: They output a correlation coefficient which measures the relationship be-

tween each feature and the target class independently of the classifier. This coefficient is

only able to detect linear dependencies between features and classes; hence, to analyse non-

linear relationships, a simple solution is to apply non-linear pre-processing, such as taking

the square or the log of the features [78].

II. Wrapper Methods: They rely on a classifier to obtain a subset of features. In other words,

they train a classifier with a selected subset of features, observe the resulting performance

and stop the search if the stop criterion is satisfied; if not, they propose a new subset. Em-

bedded methods integrate the features selection and evaluation in a unique process (e.g. in

a decision tree) [78].

Table 3.6: Main techniques for dimensionality reduction and feature selection.

Dimensionality Reduction PCA, ICA, etc

Feature Selection
Filter Methods maximum relevance minimum redundancy (mRMR), R2 feature selection, ...

Wrapper methods Genetic algorithms (Gas), Sequential forward feature selection (SFFS), ...

Importance of feature selection:

There are several reasons as to why this step is of such importance, the main ones are listed

below [78]:

1. Some features can be redundant;

2. They may not be related to the target mental state;
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3. The number of parameters for the classifier to optimised is directly related to the number of

features. By doing this, the over-training is reduced and the performance increased;

4. A model with less features is more efficient as it computes the classification quicker;

5. Less features relates to less collection and storage of data.

3.2.4 Classification

Table 3.7 presents the most commonly used classifiers in this area and their type.

Table 3.7: Summary of feature’s extraction and classification methods.

Linear Linear Discriminant Analysis (LDA), Linear Support Vector Machines
(SVM), ...

Non-Linear Neural Network (NN), kernel SVM, Decision Trees (DT), Random
Forest (RF), ...

Statistical Bayesian Statistical Classifier, ...

I. Naive Bayes: Naive Bayes methods are a set of supervised learning algorithms, which

means that they require the knowledge of ground truth. These methods apply the Bayes’

Theorem to know the probability of an event by having a priori knowledge about the same

event. In other words, what the probability for object o to belong to class wi is, while

knowing its characteristics x, which can be represented by Equation 3.1. The chosen class

will be the one with the maximum probability.

P(wi|x) =
P(x|wi)×P(wi)

P(x)
(3.1)

The different naive Bayes classifiers will mainly differ regarding their assumptions of the

distribution of P(x|w). The most commonly used one considers that the likelihood of the

features presents a Gaussian distribution. Figure 3.5 demonstrates how the Gaussian Naive

Bays (GNB) classifier works considering that the samples present a Gaussian distribution.

Figure 3.5: Behaviour of a Gaussian Naive Bayes classifier. For each data point, the z-score
distance between that point and each class mean is calculated, namely the distance from the class
mean, µ , divided by the standard deviation, σ , of that class.
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II. Logistic Regression (LR): This method is a supervised learning algorithm which considers

that the class of an object can be estimated based on a linear combination of the objects’

features, as follows in Equation 3.2, where x represents the features and θ the coefficients.

fθ (x) = θ0.x0 +θ1.x1 + ...+θn.xn = θ
T .x (3.2)

In order to obtain a classification and not a regression model, the sigmoid function, Equation

3.3, is applied, and values bigger than 0.5 will be consider 1 and values under 0.5 will be 0.

σ(z) =
1

1+ e−z (3.3)

hθ (x) = σ( fθ (x)) =
1

1+ e−θ t .x (3.4)

To obtain the best model, the loss function, in other words, the difference between the

model’s prediction and the true values, must be minimised by choosing the right set of

parameters - θ . To do that, the Gradient Descendent technique is used. This method starts

with a set of parameters θ 1, calculates the gradient for those parameters’ loss function, as it

allows to discover in which direction the function is decreasing more rapidly, and creates a

new set of parameters θ 2. The rate at which the algorithm moves is defined by α . If α is

too big, then the optimal solution may never be found, if it is too low, then the model will

take too many iterations.

To fight overfitting, which may come with the high complexity of the model, regularisation

is required. Hence, a regularisation parameter, λ , is added to the loss function with the

idea of reducing the importance of the polynomial’s parameters of the n higher degrees.

Obviously, the regularisation is a trade-off between fidelity to the data and the complexity

of the model, a too high of a λ will lead to underfitting, while a λ too small will not perform

a lot of regularisation, culminating in overfitting.

III. Support Vector Machine (SVM): Represents the objects, from the training set, as points

in space so that objects from different classes are as far as possible from each other and

separated by a hyperplane with a maximised margin, as illustrated on Figure 3.6. New

objects, from the classification set, are then mapped into that same space. Their class is

predicted based on which side of the maximised margin they fall, according to their features.
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Figure 3.6: Example of a 2-dimensional SVM classifier. The best hyperplane to separate the
classes would be H3, as it is the one which separates them with the biggest margin.

Linear SVM: This hyperplane is calculated based on the logistic regression; however, the

loss function suffers a little twist, as represented in Figure 3.7.

Figure 3.7: Representation of the LR and the SVM loss functions: Blue - Logistic’s Regression
loss Function; Red - SVM’ loss Function.

Due to the fact that the SVM has different conventions than the LR, the regularisation pa-

rameter is substituted for C, where C = 1
λ

.

Non-Linear SVM: They are used when the frontier to separate the data is not linear. In

order to do so, the features are turned into polynomial features, using a kernel, changing the

features space into a higher dimensionality, which will allow to be separable, as illustrated

in Figure 3.8. Regarding the kernel functions, Gaussian radial basis function (rbf) and linear

and non-linear polynomial have been used in this area.

Figure 3.8: Kernel’s action in SVMs.
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IV. Linear Discriminant Analysis (LDA): It can be used either for dimensionality reduction

or for classification. It outputs a linear combination of features as it creates a new axis,

2d-problem, and projects the features in it. This axis is traced by maximising the distance

between the mean value of those classes, and minimising the variation, called scatter, within

each class, as represented in Figure 3.9.

Figure 3.9: Example of a 2-dimensional LDA classifier. The samples are projected into a new axis
which maximises the distance between each class’s mean, µ , and minimises the scatter within
each class, s.

V. K-Nearest Neighbours (K-NN): This ML method is a non-parametric learning algorithm,

which means that it is a lazy learner, during the training it does not do much. When a

new instance/object is presented, it is classified based on its neighbours, in other words, it

is assigned to the most common class among its K nearest neighbours, as represented in

Figure 3.10. In order to calculate the distance between the given instance and the train data

set, the most usual method is the Euclidean distance; however, there are other methods such

as the city block or the chess board.

Figure 3.10: Example of a 2-dimensional K-NN classifier with K=3. The black arrows represent
the distance to the 3 nearest neighbours. Assuming equal voting weights, the green point would
be assigned to the blue class.

VI. Neural Networks (NN): As the name suggests, it is a network of neurons in which each

neuron represents a function that receives a set of features as input, attributes them a weight,

and generates an output. Then, all the outputs from each neuron are weighed again, generat-

ing a final output, the classification. A NN can have several layers, meaning that the outputs

can be joined and weighed again several times, as represented in Figure 3.11.



30 BCI - State of the Art

Figure 3.11: Architecture of a neural network.

Moreover, activation functions, which are non-linear functions, can be applied to the output

of a node, in order to originate a non-linear model. There are different activation functions

which are currently used, the most used ones are illustrated In Figure 3.12.

Figure 3.12: Representation of four of the most used activation functions and respective equations.

VII. Decision/Classification Trees (DT): It uses decision trees to classify an object. The branches

represent conjunctions of features, which were extracted from the object, and the leaves the

correspondent class labels, as illustrated in Figure 3.13.

Figure 3.13: Architecture of a decision tree.

VIII. Random Forest (RF): It uses several decision trees to classify an object, where its class is

predicted based on the major vote between the different trees, as represented in Figure 3.14.
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Figure 3.14: Architecture of the random forest classifier.

3.2.4.1 State of the art

Different methods are used to extract the features from the EEG signal and further classify

them, so that the control commands can be obtained. Table 3.8, partly adapted from [89], presents

a group of techniques used by different authors. It comprises several examples referring to the

different principles: ERPs, SSVEP, ERD/ERS and Hybrid.

ERD/ERS neuro-mechanism is a widely used one and has been producing noticeable results.

As mentioned in Section 2.2.3, this corresponds to a change in the power of specific frequency

bands since the user is imagining or visualising a certain motor movement. The best combination

is obtained with SVM or NN as classifiers. Moreover, Authors such as Abiyev et al. [13] and

Khare et al. [37] achieved an impressive accuracy of 100%. The extracted features were all in the

frequency domain, mostly from the frequency coefficients, band power or spatial filtering.

SSVEP BCIs are able to originate ace outcomes regardless of the classifier. This is probably

due to the neuro-mechanism itself as it is linked to a specific frequency, facilitating the extraction

of the feature vector. However, contrarily to the ERD/ERS BCIs, these require some sort of

hardware, usually flashing buttons (each one at a unique frequency rate), which will act as the

stimulus for the user. The latter will focus on the button which represents the desired direction;

hence, proportionally amplifying the EEG signal band correspondent to the button frequency. So,

logically, the extracted features fall in the frequency domain and regard the power in specific

frequency bands (correspondent to the respective button).

ERPs are short amplitude deflections in the brain signal which are timestamped to an event.

They are identified by the triggering event, direction of deflection, observed location and latency

[26]. So, that is why these BCIs usually use temporal features, whereas ERD and SSVEP BCIs

employ frequency features [12]. Concerning the used classifier, the BCI performance does not

seem to really depend upon this choice.

Regarding hybrid BCIs, it can be deduced that methods which aim to decompose the signal

are preferentially used to extract the features. Concerning the classification, the used classifiers

are mainly SVM and LDA.

It is possible to conclude that depending on the chosen neuro-mechanism, the type of extracted

features will differ. However, for the classifiers, the same cannot be applied; although it is possible

to infer that some classifiers have a better performance than others, namely, SVM, NN and LDA.
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Table 3.8: Summary of different authors’ BCIs regarding the used EEG headset, the neuro-
mechanism, the extracted features, the classification methods, the outputted commands and ac-
curacy. It is ordered by the used neuro-mechanism

Article EEG Headset Principle Features Classifier Control Accuracy

[51] 12 Ag/Cl electrodes ERP - P300 Signal averaging and standard
deviation 2 class Bayesian L/R/F/B(45◦ or 90◦)/S 95%

[52] NuAmps and 12 electrodes ERP - P300 Data vectors of concatenated epochs BLDA (Bayesian) 9 destinations 89.6%

[53] NuAmps and 15 electrodes ERP - P300 Raw Signal SVM 7 locations, an ‘application
button’ and lock 90%

[54] gTec EEG (16 electrodes
and g.USBamp amplifier) ERP - P300 Moving average technique LDA 15 locations, L/R and

validate selection 94%

[55] 16-channel electrode cap ERP - P300 Signal averaging Linear classifier 6 for the IW (not specified) 92%
[56] Biopac MP150 EEG system ERP - P300 Signal averaging Linear classifier F/B/L/R —

[57] gTec EEG (12 electrodes
and g.USBamp amplifier) ERP - P300 Optimal statistical spatial filter Binary Bayesian F/B/L/R(45◦ or 90◦/S 88%

[58] Neuroscan (15 electrodes’
cap) ERP - P300 Signal averaging SVM

37 locations, validate or
delete selection, stop and

show extra locations
—

[31] BioSemi ActiveTwo system
32 channels SSVEP Peaks in the Frequency Magnitude — L/R >95%

[59] g.USBamp amplifier with
g.Butterfly active electrodes SSVEP Frequency Band Power (PSD) SVM L/R/F/S 95%

[60] 8 gold electrodes connected
to the g.USBamp amplifier SSVEP — LDA L/R/B/F/S 90%

[32] gTec EEG with g.USBamp
amplifier SSVEP Frequency band power (PSD) Threshold method

not specified L/R/B/F 93.6%

[33] EEG Cap and g.USBamp
amplifier SSVEP CCA Bayesian F/L/R /turn On/Off 87%

[61] BrainNet-36 with 12
channels SSVEP Frequency Band Power (PSD) Decision trees L/R/F/S Qualitative

evaluation

[62] BrainNet BNT-36 with 3
channels SSVEP Frequency Band Power (PSD) Statistical maximum L/R/F/B 95%

[63] 6 channels EEG cap SSVEP FFT and CCA CCA coefficient L/R/F/B/S >90%

[23] NeuroSky mindset ERD/ERS Frequency Band Power (PSD) NN Game 91%

[37] Grass Telefactor EEG
Twin3 Machine ERD/ERS coefficients from the wavelets Radial Basis

Function NN L /R/F/B/rest 100%

[64] G-TEC system with 5
Ag/AgCl electrodes ERD/ERS common spatial frequency subspace

decomposition (CSFSD) SVM L/R/F 91-95%

[65] 8 channels EEG cap ERD/ERS mean, zero-crossing and energy from
different levels of the DWT ANN L/R/F/S 91%

[66] 5 bipolar EEG channels and
a g.tec amplifier ERD/ERS Logarithmic Frequency Band Power LDA L/R 75%

[67] ActiveTwo 64-channel EEG
system ERD/ERS Frequency Band Power (PSD) and

CSP SVM Exoskeleton Control
LH/LF/RH/RF 84%

[68] Emotiv EPOC ERD/ERS PCA and Average Power of the
wavelets’ sub-bands NN w/ BP L/R/F/B 91%

[69] Emotiv EPOC ERD/ERS —– Emotiv program L/R/F/S 70%
[13] Emotiv EPOC ERD/ERS Frequency Components SVM L/R/F/B/S 100%
[13] Emotiv EPOC ERD/ERS Frequency Components NN L/R/F/B/S 100%
[13] Emotiv EPOC ERD/ERS Frequency Components Bayesian L/R/F/B/S 94%
[13] Emotiv EPOC ERD/ERS Frequency Components Decision Trees L/R/F/B/S 74%
[70] Emotiv EPOC ERD/ERS Frequency Band Power (PSD) LDA L/R 70%
[71] Emotiv EPOC ERD/ERS Metrics from the EEG signal Decision Trees L/R 82%
[90] Emotiv EPOC ERD/ERS CSP SVM L/R 60%
[91] Emotiv EPOC ERD/ERS — LDA L/R 60%

[92] Emotiv EPOC ERD/ERS PSD, Hjort parameters, CWT and
DWT - PCA for feature reduction K-NN L/R 86-92%

[93] Emotiv EPOC ERD/ERS Energy distribution from the DWT SVM L/R/T/N 97%
[94] Emotiv EPOC ERD/ERS CSP LDA L/R 68%
[94] Emotiv EPOC ERD/ERS CSP SVM L/R 68%

[94] Emotiv EPOC ERD/ERS CSP Nu-SVC RBF
Kernel L/R 68%

[72] EEG Cap - 15 electrodes
ERD/ERS -
(L/R) and
SSVEP

CSP (ERD/ERS); CCA (SSVEP)

SVM (ERD/ERS);
Canonical
correlation

coefficient (SSVEP)

L/R/A/DA, maintain an
uniform velocity and turn

on/off
—

[73] Gtec Amplifier (15
channels)

ERD/ERS -
(L/R) SSVEP-
(Des)accelerate

CSP (ERD/ERS); CCA (SSVEP) SVM L/R/A/DA —

[74] g.BSamp amplifier (5
channels)

ERD/ERS and
SSVEP Frequency Band Power (PSD) LDA L/R 81%

[75,
76]

NuAmps device (15
channels)

ERD/ERS and
ERP - P300 CSP LDA L/R/A/DA 100%

[77] NeuroSky
ERP - P300 and

Eye Blinking
(EMG)

Changes in the level Threshold L/R/F/B/S —

[11] SYMPTOM amplifier with
10 electrodes

ERP - P300 and
SSVEP PCA (ERP); PSD (SSVEP) LDA ERP - 9 destinations

SSVEP - confirm 99%

L- Left; R- Right; F- Forward; B- Backward; S- Stop; A- Accelerate; DA- Decelerate; H- Hand; F- Foot; T- Tongue; N- No imaging



3.2 Signal processing 33

3.2.5 Performance evaluation

To evaluate the BCI performance, it is necessary to know that the different components of the

BCI loop will contribute. Regarding the classifier, there are several metrics:

Threshold types of discriminator metrics

For binary classification problems, the evaluation of the best classifier or solution can be

mostly done based on the confusion matrix, which is shown in Table 3.9. The rows represent

the predicted classes while the columns represent the actual classes; hence, TP and TN denote,

respectively, the number of positive and negative instances that are correctly classified, while FP

and FN represent the number of misclassified negative and positive instances [95].

Table 3.9: Representation of a confusion matrix.

Predicted Positive Class Predicted Negative Class
Actual Positive Class True Positive (TP) False Positive (FP)
Actual Negative Class False Negative (FN) True Negative (TN)

From this Table, it is possible to generate several metrics, as seen in Table 3.10, adapted from

[95]. However, due to multi-class problems, just a few metrics can be extended for multi-class

classification evaluations (see the last five metrics) [95].

Table 3.10: Threshold metrics for classification evaluations

Metrics Formula Evaluation Focus

Accuracy (acc) T P+T N
T P+FN+T N+FN

In general, the accuracy metric measures the ratio of correct predictions over the total number
of instances evaluated.

Error Rate (err) FP+FP
T P+FP+T N+FN

Misclassification error measures the ratio of incorrect predictions over the total number of
instances evaluated

Sensitivity (sn) T P
T P+FN This metric is used to measure the fraction of positive patterns that are correctly classified

Specificity (sp) T N
T N+FP This metric is used to measure the fraction of negative patterns that are correctly classified

Precision (p) T P
T P+FP

Precision is used to measure the positive patterns that are correctly predicted from the total
predicted patterns in a positive class

Recall (r) T P
T P+T N Recall is used to measure the fraction of positive patterns that are correctly classified

F1-score 2×p×r
p+r This metric represents the harmonic mean between recall and precision values

Geometric-
mean
(GM)

√
T P×T N

This metric is used to maximize the TP rate and TN rate, and simultaneously keeping both
rates relatively balanced

Averaged
Accuracy

∑
l
i=1

T Pi+T Ni
T Pi+T Ni+FPi+FNi

l
The average effectiveness of all classes

Averaged Error
Rate

∑
l
i=1

FPi+FNi
T Pi+T Ni+FNi+FPi

l
The average error rate of all classes

Averaged
Precision

∑
l
i=1

T Pi
T Pi+FPi
l

The average of per-class precision

Averaged
Recall

∑
l
i=1

T Pi
T Pi+FNi
l

The average of per-class recall

Averaged
F1-score

2×pM×rM
pM+rM

The average of per-class F1-score

Ci each class of data; T Pi- true positive for Ci; FPi - false positive for Ci; FNi – false negative for
Ci; T Ni - true negative for Ci; and M macro-averaging.
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Mean Square Error (MSE)

In general, the MSE measures the difference between the predicted solutions and the desired

solutions. The smaller the value, the better. The MSE is defined as in Equation 3.5

MSE =
1
n

j=1

∑
n
(Pj−A j)

2 (3.5)

where (Pj is the predicted value of instance j, A j is real target value of instance j and n is the total

number of instances [95].

However, there are other metrics to evaluate the BCI performance as a whole; namely, the time

it takes to select a command or the path optimal length (when the command is a destination), task

success, among others.

3.2.5.1 State of the art

Table 3.11 presents the performance metrics used by several authors throughout the literature.

As it can be observed, the evaluation methodologies match with the ones previously explained.

Table 3.11: Methods to evaluate the BCI’s performance according to the literature

Article Performance Article Performance
[51] FP rate, FN rate, Error rate and Transfer rate [63] Unrecognised rate, Path length and Time required

[52]
Time to perform, Command ratio, FP, FN, Time to

issue a command and Accuracy
[37] Accuracy

[53] Error rate, Selection time and False acceptance rate [64] Error rate

[54]

Task success, Path length, Time required, Path
optimality rate, Time optimality rate, Errors,

Collisions, Used commands, Errors caused by a
misunderstanding of the interface, Obstacle clearance,

Number of missions, Workload, Learnability and
Confidence

[65]
Hit Rate, Successful commands, Unclear commands

and wrong commands

[55] Selection time [66] TP, FP and Accuracy
[56] Time required [67] Accuracy, Precision, Recall and F1-score

[57]
Task success, Path length, Time, Path length optimality
ratio, Time optimality ratio, Collisions and Success rate

[68] Classification rate

[58]
Concentration time, Incorrect selections, Response
time to stop, Success rate, Error distance of the stop

area and False activation rate
[70] Cumulative score and Accuracy

[31] ITR( bits/min) and Accuracy [77]
Recognition rate, Error rate, Sensitivity, Specificity and

Accuracy

[59] Accuracy [72]
Accuracy, Mean error, Standard deviation of errors,
Path length optimal ratio, Time consumption, ITR,

Collisions

[60] Overall error, No decision and Wrong Class [73]
Time required and Frequency of use of the auxiliary

button (to manually avoid collisions)
[32] Success rate, Best time required and Used commands [74] Accuracy

[33] Time required [75]
Accuracy, Path length, Path length optimality ratio,

Time (to accomplish the task), Time for low speed and
collisions

[61] Qualitative evaluation [11] Accuracy and Selection time

[62]
ITR, Positive predictive value (PPV) and usability

measures
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3.3 Applications

There are several applications for the BCI such as exoskeletons [67], games [23] or robotic

arms [55]; however, the ultimate goal for the future of this project is the intelligent wheelchairs, as

this BCI is being developed in order to integrate the Intellwheels project, which aims to develop

an intelligent wheelchair; hence, the more in-depth explanation about this concept.

3.3.1 Intelligent Wheelchair

A wheelchair is a wheeled device that may be propelled either manually or using motors. This

instrument was initially developed to give mobility to handicapped human beings; however, nowa-

days it has been seen as a possibility to increase the quality of life of people with other disorders

and limitations. Thus, a new concept arises, intelligent wheelchairs (IW). These encompass the

reduction of physical, perceptual, and cognitive skills necessary to operate a power wheelchair,

granting simultaneously a great adaptation to the user interface [96, 97].

Essentially, an IW is a locomotion device used to assist a user who has some type of physical

disability by reducing or eliminating the user’s task of having to drive a motorised wheelchair. To

achieve that goal, it is composed by a computer and a set of sensors. The sensors provide informa-

tion, which is processed, resulting in an output encoded in motor commands for the wheelchair.

The control can be automatic, using just the processed output from the sensors, or it can be a

shared control. If the latter is chosen, then there is the necessity to have an interface control such

as a joystick, voice commands, facial expressions or even eye movement [96].

The main feature responsible for differentiating a common electric wheelchair from an intel-

ligent one is that, in the latter, the wheelchair has a control system of its own which can work in a

total or semi-autonomous way [96].

This field has seen a lot of research and development in the last few years allowing the elec-

tromagnetic waves of the patient’s brain to be used as a way of controlling the wheelchair. With

a Brain-Computer interface, it is possible to decode the user "thoughts" and convert them into

commands to control the wheelchair.

3.4 Types of BCIs

Depending on the type of acquisition, interpretation, and interaction, the resultant BCI is going

to have different characteristics. Keeping this in mind, there are different ways to classify the BCIs.

User interaction

The first division can be made regarding user interaction with the BCI, emerging three classes:

active, reactive and passive, as seen in Table 3.12, adapted from [26].
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Table 3.12: Features and applications domains of BCI interaction paradigms

Type of BCI Interaction With BCI System Generation of Brain Activity Used for Example Applications

Active Intended Consciously Direct control Motor imagery-based
navigation

Reactive Intended Unconsciously (as response to
stimulation) Direct control SSVEP-based selection,

P300 speller

Passive Unintended Through interaction Support systems User state detection, error
handling via ErrPs

• In an active BCI, aBCI, the user intends to interact with the BCI application and for this

purpose directly generates brain activity.

• In a reactive BCI, rBCI, the user still intends to interact with the BCI application, but the

brain activity is generated indirectly as a reaction to an external stimulation. The user voluntarily

attends to a stimulus, but what causes the brain to react are the stimulus features, not the act of

attending.

• In a passive BCI, pBCI, the user’s primary aim is not to interact with the BCI application,

or possibly he does not have an aim at all. pBCIs rely on brain signals generated during natural

interaction of the user with his environment so they do not require any additional effort (such as

attention to stimulation). Therefore, they can operate within aBCIs and rBCIs without demanding

extra experimental requirements [26].

External stimulus dependency

The next classification considers that BCIs can be divided depending on whether they are

external stimulus dependent or not, and are usually related to the type of neuro-mechanism that

they use:

• Exogenous or Synchronous BCIs are based on external stimulation, which means, they de-

pend on the stimulus. Ex. P300 and SSVEP.

• Endogenous or asynchronous BCIs as they do not require any external stimulus [12]. Ex.

ERD/ERS

Since asynchronous BCIs do not require any external stimulus, they seem to be more suitable

and natural for brain-controlled mobile robots, where users need to focus their attention on driv-

ing but not on external stimuli [12]. However, they still present some disadvantages, such as: 1)

they require extensive training that may take many weeks; 2) their performance is quite variable

between users, and their accuracy is not as high as the synchronous BCIs. Compared with asyn-

chronous BCIs, synchronous BCIs require minimal training and have stable performance and high

accuracy [12].

3.5 Conclusion

A BCI provides control and communication between human intention and physical devices,

by translating the pattern of the brain activity into commands. The goal of the future dissertation

is to use it as a way of controlling an IW, which will eventually lead to an increase in the quality
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of life of people with disorders and limitations. A BCI has different blocks, being the main ones:

the signal acquisition, signal processing and the application of the output commands. The first one

aims to collect the brain signals to feed it to the signal processing unit. There are several ways

of achieving it; being the most common, affordable and well-documented way EEG. In order to

make it even more accessible and portable for the patient, the EEG headset should be wireless;

hence the Emotiv EPOC as the chosen one.

Depending on the used principle to acquire the EEG signal, the features extraction process

will be different as the ERD/ERS or SSVEP BCIs use power band frequency features, while

ERPs- P300 use time point features. However, pre-processing is required for all of them in order

to obtain the desired frequency bands and to remove the artefacts, which overlap with the desired

portion of the signal. After the features’ extraction, these should be selected so that the best set

is chosen and fed into a classifier. Moreover, different sets of features and classifiers should be

tried out to get the best combination possible. After examining the State of the Art regarding the

control of an IW through a BCI, the best results and approaches were used to define the steps for

the practical work of this dissertation, as seen in the next chapter.
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Chapter 4

Methodologies

As previously exposed, the ultimate goal of this dissertation is to control an IW using a BCI.

However, due to the tight schedule, particular attention is given to the performance of the real

time classifier on assessing the intention of the user. In order to do so, the use of Motor Imagery-

based neuro-mechanism is proposed, contrarily to the SSVEPS or ERPs, as it allows the user to

be focused on the path instead of having to focus his/hers attention to the user interface, as the

last two are stimulus-dependent neuro-mechanisms. Three classes will be used, namely Left (0),

Right (1) and Neutral (2). The first two correspond to changes in the direction, whereas the last

one implies that the subject wishes to maintain the same direction. This choice relies on the fact

that the left and right are the basic commands to control a moving device and, since the system will

be working in continuum, the necessity of a neutral class to maintain the direction of movement

arises.

According to Tang et al. [67], some subjects present a better ability to distinguish between the

feet and hands, rather than the left hand from the right one. Consequently, three different runs

will be tested, where the subject can substitute one of the hands for the thought of feet. More

specifically, the subject can have a better performance while differentiating the left hand from the

feet so, it may be advantageous to use the thought of the feet to turn to the right.

Moreover, this chapter will be divided into two main parts: the validation of the concept and

the corresponding execution or testing. Regarding the first part, two data sets will be used, the

data set 2a from the BCI competition IV, data set A, and another one acquired in the laboratory

using the Emotiv EPOC headset, data set B. Concerning the execution of the algorithm, a real time

acquisition from the headset was attempted and evaluated.

4.1 Concept validation

4.1.1 Data sets description

Two data sets were used for this part. The first one, data set A, is from the last BCI competition

and will serve as a control, while the second one, data set B, was acquired during the realisation

of this dissertation. The latter was obtained using the Emotiv EPOC headset, as it was the one

39
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available during this period and it primes for its portability and easy-to-use characteristic. The

main difference between these two is the electrode placement. While data set A presents the ideal

electrode placement for the MI paradigm, as it comprises the whole motor cortex area, the Emotiv

EPOC presents a fixed electrodes positioning, as it will be further enunciated. Nevertheless, data

set A had to be used as control, despite the different electrodes’ positioning, due to the lack of

publicly available Emotiv EPOC acquired MI data sets.

Data set A

Contains a four-class MI for different body parts, the left and right hand (LH/RH), feet (F)

and tongue. This data set corresponds to the data set 2a of the BCI competition IV and comprises

2 sessions of 288 trials from 9 different subjects. In each session, there were 6 smaller sessions

of 48 trials each separated by breaks. It also encompasses an evaluation data set with the same

characteristics of the previously described one. For this work, the tongue MI was discarded as it

was not of interest.

The acquisition protocol for each trial can be seen in Figure 4.1 and it is a sequence composed

of a fixation cross (2 sec), followed by an arrow representing the desired MI (1.5 sec), a period of

blank screen for the subject to imagine the asked cue (2.75 sec) and it finishes with a break (∼2

sec). Furthermore, there is a sound alerting for the beginning and ending of the MI period (4 sec).

Figure 4.1: Acquisition Protocol for data set A.

The signals were obtained by using 22 Ag/AgCl electrodes, which were positioned following

the 10/20 system shown in Figure 4.5a. These were placed mostly at the central part of the cortex,

where the sensorimotor part is located, which matches the stated in Chapter 2. An example of the

obtained signal is illustrated in Figure 4.2.

Figure 4.2: Plot of the obtained signal from subject’s 1A left MI - channel FC3.
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Data set B

The acquisition protocol was approximately the same as for the data set A, with two differences

inspired by Tang et al. [67], Dharmasena et al. [70] and Stock and Balbinot [98]. More specifically,

in the MI cue, the arrows were displayed on the screen for the whole period, as shown in the

diagram presented in Figure 4.3. Furthermore, the indication of the start of a cue was not used in

order to simplify the process. There were three different cues, right hand (right arrow), left hand

(left arrow) and foot (down arrow). The set of sessions comprised 360 trials, 120 for each MI.

Figure 4.3: Acquisition Protocol for data set B.

In total, signals from nine different healthy subjects were acquired, where subjects 4 and 6 are

left-handed, while the others are right handed. All subjects are below 25 years old, except subject

5 that is 51. Moreover, during acquisition, the subjects were seated comfortably in a chair, in a

quiet room, with their hands on the top of the table while looking at the screen; they were also

asked to keep their movements to a minimum, such as eye gazing, sniffing or coughing. All the

procedures were performed in accordance to the ethical standards of the 1964 Helsinki declaration.

An example of the obtained signal is illustrated in Figure 4.4.

Figure 4.4: Plot of the obtained signal from subject’s 1B left MI - channel F3.

The electrodes placement can be seen in Figure 4.5b. Although none of these match the

placement for the data set 2a, they still cover part of the central, parietal and frontal locations

of the cortex, which are known for contributing to the MI [28]. However, it is expected that

the results will not be as satisfactory as the centre of the cortex’s is not covered [94]. It is also

important to state that the recorded points may also depend on the subject’s head’s format, as

electrode placement on narrower heads will not be the same as for wider ones, due to the fact that

the electrodes in the headset are fixed.
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(a) Data set A. (b) Data set B.

Figure 4.5: Electrodes’ placement, according to the 10/20 system, for both data sets.

Moreover, since four sensors were not working properly, the locations AF3, AF4, T7 and T8

were the four chosen to not be recorded. This lies on the fact that the initial plan was to also use

SSVEPS, to accelerate and decelerate the IW, which requires the occipital area. Thus, the first two

to be removed were the T7 and T8 as these were not necessary for either of the neuro-mechanisms.

Then, AF3 and AF4 may contribute to the MI; however, they were the furthest ones in relation to

the motor cortex.

The goal was to process the data from both data sets as similarly as possible; however, due to

the availability of the subjects, it was not possible to perform the sessions for data set B in a row,

but rather on different days. Moreover, due to a malfunction of the headset, Subject 7B (7 from

data set B), presents 20 trials less for each MI.

4.1.2 Data processing

4.1.2.1 Data Division

The two data sets were divided into training and test as follows:

Data set A: The training data supplied by the BCI Competition IV was used as train and the

evaluation one as test. The duration of the epochs was of two seconds, as explained in [99].

Data set B: 100 trials of each MI were used as training data, and the remaining 20 were used as

test. Usually, each subject would do a 20-trial session, which results in 5 sessions for training and

one session for testing. For each visual cue and motor imagery moment, as these had a duration

of 5 seconds, two epochs of two seconds each were extracted, allowing to double the data, ending

up with 240 epochs, in total, for each class.

4.1.2.2 Pre-processing

As previously concluded from Chapter 3, just filtering the EEG signal is already enough to

remove noise and ocular artefacts, which are the most common. The first comprises high fre-

quencies, which are discarded as these are not included in the bands of interest. Moreover, ocular
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artefacts, mainly appear in the theta band, which, once again, is not a band of interest for the MI

paradigm. Thus, for every feature extraction approach, presented in the next section, a filtering

step is always applied to eliminate these artefacts.

4.1.2.3 Feature extraction

According to Chapter 3, the main methods for feature extraction regarding the MI paradigm

are: the spatial filtering using the Common Spatial Pattern (CSP) approach and the use of the

signal’s frequency band or the frequency coefficients as features. The different approaches were

tested; however, with some variations. The next steps, feature selection and classification, were

the same for all the approaches.

4.1.2.3.1 Approach 1 - Filter Bank Common Spatial Pattern I

As the data set A is from a competition, the first approach was to develop an algorithm based

on the winning method, denoted Filter Bank Common Spatial Pattern (FBCSP), as described in

[99]. The goal is to maximise the best band for each user, which results in dividing the alpha and

beta bands into nine sub-bands, from 4Hz-40Hz, as explained in Figure 3.4 from Chapter 3.

Although Ang et al. [99] uses a Chebyshev II filter, in this work a Butterworth filter of order

five and zero phase was applied. This choice lies on the facts that this filter is known for being the

flattest in the passing band, the zero phase provides zero group distortion, and the order five is a

nice compromise speed wise.

As explained in Section 3.2.2, the FBCSP algorithm applies the CSP procedure to each sub

band of the signal. The algorithm generates a linear filter, which is used to extract features that best

discriminate between classes, by maximising the ratio between their covariance matrices [100].

The covariance is a metric which represents the level of interdependence between two random

variables; in particular, independent variables will present a covariance of zero. Moreover, a N×N

covariance matrix is a symmetric and summarises the covariance between N random variables, and

the diagonal corresponds to their variance, which represents how far it is from its expected value.

The steps to perform this algorithm are described below [101]:

1. The first step is to obtain the EEG signal matrix, from the ith class whose dimensions are

Nchannels×duration.

2. Next, the covariance matrix of the ith class is calculated based on Equation 4.1, where ′

corresponds to the transpose and trace to the trace of the matrix (sum of the diagonal):

Ci =
E.E ′

trace(E.E ′)
(4.1)

3. After this, the average spatial covariance matrix Ci is obtained by averaging over all the

trials of each class. The composite matrix is then defined as follows, where c is the number
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of classes:

C =
c

∑
i=0

Ci (4.2)

4. The composite matrix is then factorized onto its eigenvalues, λ , and eigenvectors, U , as

expressed in Equation 4.3:

C =U.λ .U ′ (4.3)

5. The eigenvalues are then organised by descendent order and a whitening transform is ap-

plied. This transform is responsible for converting the composite covariance matrix into

the identity matrix which makes the variables not correlated anymore. A new matrix, P, is

obtained as represented in Equation 4.4:

P =
√

λ−1.U (4.4)

6. Using P, the covariance matrices of each class are transformed according to Equation 4.5:

Si = P.Ci.P′, (4.5)

7. With this construction, S1 and S2, for i= 1 and i= 2, share eigenvectors, B. The eigenvectors

with the higher eigenvalues for S1 correspond to the ones with the lowest eigenvalues for S2,

and vice-versa. Thus, the sum of λS1, eigenvalues of S1, and λS2, eigenvalues of S2, will be

the identity matrix.

8. For a three-class problem, as it is the case for this approach, as there are three matrices S, the

mutual information between them and the class labels is computed. The final eigenvectors,

B, are computed sorting the mutual information values by descending order [102].

9. From this, it is possible to calculate the spatial Filter W , as in Equation 4.6, where the

columns of the W−1 correspond to the spatial patterns, which can be interpreted as EEG

source distribution vectors [83]. The transformed EEG, Z, is obtained using Equation 4.7.

W = B.P′ (4.6)

Z =W.E (4.7)

The resultant matrix Z has the shape of Nchannels×Nepochs, as there are 9 different bands, the

number of features for each epoch is Nchannels×Nbands.

However, this approach uses just the m first and last columns of W T , the CSP projection matrix,

and computes the features for the ith epoch of the b sub-band as exposed in Equation 4.8:

vb,i = log

(
diag(W̄ T

b .Eb,i.ET
b,i.W̄b)

tr[W̄ T
b .Eb,i.ET

b,i.W̄b]

)
(4.8)
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W̄b represents the first m and last m columns of W T
b . The value of m = 2 was used since,

according to Ang et al. [99], it produced the best results. The feature vector for the ith trial is as

described in Equation 4.9 and the final feature vector is as described in Equation 4.10

vi = [v1,i,v2,i, ...,v9,i] (4.9)

v = [v1,v2, ...,vnt ] (4.10)

where nt corresponds to the total number of epochs. As the number of features is still too high, fea-

ture selection is also performed, both here and on the following approaches. The feature selection

step will be discussed later in this chapter.

4.1.2.3.2 Approach 2 - Filter Bank Common Spatial Pattern II

This approach follows the same principles of the first approach but, after obtaining W , the

average power of Z is computed and used as features.

4.1.2.3.3 Approach 3 - Power Spectral Density I

The signal is filtered using a Butterworth filter, for the reasons previously enunciated, from

4-35Hz in order to comprise the alpha and beta bands. Afterwards, epochs of two seconds are

obtained and normalised. The latter consists on centring each channel to have zero mean. For that,

the mean of each epoch for each channel is calculated and then subtracted [13]. Afterwards, the

Welch method, with a Hanning window, is applied to obtain the power spectral density for each

epoch, which is used as the features vector. The Welch method consists of dividing the signal

into overlapping segments, which are further windowed. Then, the signal periodogram, which is

an estimate of the signal spectral density, is calculated, resorting the Discrete Fourier Transform.

Windowing the segments, for example with the Hanning window, allows to mitigate spectral leak-

age. This is due to the fact that the Fourier transform assumes that the signal is periodic, and

non-periodic signals lead to sudden transitions which have a broad frequency response [103].

4.1.2.3.4 Approach 4 - Power Spectral Density II

The steps are the same as for Approach 3 except for the last one. After computing the PSD

for each epoch, the PSD of a non-MI observation is calculated and the features are obtained as

[70, 67]:

v j,i =
Pj,i−R j

R j
(4.11)

where v j,i is the feature vector from the jth channel and ith epoch, Pj,i is its power, and R j is

the power of a reference observation. This approach allows to detect an increase, or decrease, of

power in relation to that reference.
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4.1.2.3.5 Approach 5 - Filter Bank Power Spectral Density

It is a variation from Approach 3, where the signal is divided into 9 sub-bands, similarly to

Approaches 1 and 2, and to each sub-band the PSD for each epoch and each channel is computed

and used as features, as represented in Equation 4.12:

vb, j,i = Pb, j,i (4.12)

where vb, j,i denotes the feature vector from the bth band-pass filter, the jth channel and ith epoch.

Compared to Approach 3, this one has 9 times more features.

4.1.2.3.6 Approach 6 - Frequency Coefficients

The signal is filtered and the epochs are normalised, as explained in Approach 3. The only dif-

ference is that instead of using the square of the magnitude of the frequencies, only the magnitude

of the frequency components is used as features.

4.1.2.3.7 Approach 0

Although it appears last, it was the first approach to be tested and is similar to Approach 2 but,

instead of being a three-class problem, it considers only two and does not apply the filter bank.

However, the results were less satisfactory than the remaining approaches and thus will not be

presented in the next chapter.

In summary, in this approach, the signal is filtered from 4-35Hz using a Butterworth filter.

Then, CSP is used to compute filters capable of distinguishing Left from Right+Neutral, and

other set of filters to distinguish Right from Left+Neutral. Following the same steps described in

Approach 1, matrix Z1, obtained via Equation 4.7 for the first set of filters, is used to train the first

classifier while the matrix Z2, obtained again via Equation 4.7 using the second set of filters, is

used to train the second classifier. Hereupon, the samples that are classified as the negative class

in the first classifier, Right or Neutral, would be fed to the second classifier.

4.1.2.4 Feature Selection

Different methods for choosing the most significant features were tested, namely a method

based on a mutual information criterion [104], the ANOVA F test [105] and the Extra Trees clas-

sifier [106] to compute the features’ importance. The first measures the dependency between two

random variables and relies on non-parametric methods based on entropy estimation, such as from

K-nearest neighbours, to improve the selection. The second assesses the amount of variability

between each class mean, in the context of the variation within the different classes to determine

whether the mean differences are statistically significant or not. Finally, the Extra Trees classifier

is used to compute the importance of the features, allowing to discard the ones that are irrelevant.

For either of the methods, only the K best features are selected. This is performed by a 10 folds



4.1 Concept validation 47

cross-validation, using from 5−70% of the features. The 70% limit is imposed in order to prevent

overfitting.

4.1.2.5 Classification

The output commands, as mentioned before, are three: Left, Right and keep the same direction

– Neutral. Thus, the classifiers were trained to differentiate between three different classes. Due to

slower computational time and the fact that they might generate overfitting, non-linear classifiers

were not used as a first approach. Thus, four classifiers were trained: Gaussian Naive Bayes,

Linear Discriminant Analysis, Linear Support Vector Machines and Logistic Regression. Using

these four classifiers, different combinations were tested, as represented in Table 4.1:

Table 4.1: Tested combinations of classifiers.

Number of Classifiers Type

1
Non-probabilistic
Probabilistic - F1

2
Non-Probabilistic
Probabilistic - F1

2 - Ensemble
Voting Hard
Voting Soft
AdaBoost

When using a single classifier to predict the result, there are two main approaches: predict a

class or predict the probability of belonging to each class. In the latter approach, the ideal value

for the probability threshold can be obtained through different metrics. However, F1-score was

the chosen one, as it considers both the precision and the recall of the classifier. Moreover, as it

is a three-class problem and the false positives and negatives play a major-role, the F1-score is

preferable to the accuracy [107].

When using two classifiers to predict the final command, different approaches were applied,

which are further explained:

• Two classifiers: if both classifiers predict that the class is 0, then the class is 0; the same is

applied for class 1 and 2. However, if they do not agree in the classification, then the trial is

classified as 2 in order to decrease the number of false positives, which in this case are the

trials miss-classified as MI to the left or right.

• Two classifiers with variable probability: the idea behind this approach is the same as before;

however, the output of each classifier is a probability and not a class label. Thus, a threshold

is estimated for each one of the classifiers to output a label, and then, the same method is

applied as explained for the two classifiers.

• Ensemble Methods: These methods are already developed and are widely used to combine

the different predictions so that a more generalised and robust model can be obtained. These
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methods can be divided into two main groups: the Averaging and the Boosting. Regarding

the first one, the different classifiers are built independently and only after that are their

outputs combined to reduce the variance. Concerning the Boosting methods, the classifiers

are built sequentially so that the next classifier can try to decrease the bias of the combined

prediction [108].

– Voting Classifier: it combines the predictions of the different classifiers and outputs a

final prediction as the result of a majority vote. This majority vote can be hard or soft:

Hard: Each classifier predicts the class, and the final prediction is the one which most

of them predicted. The final prediction can be obtained using a weighted averaging

procedure if the classifiers have different weights.

Soft: Each classifier has a weight and predicts the probability of each class, then the

final prediction is obtained using a weighted averaging procedure.

– AdaBoost: Considers several initial classifiers, called weak learners, and combines

their individual predictions through a weighted majority vote. This process is repeated

and at each iteration/boost the data is modified. Each sample starts with a weight, and

if it is incorrectly classified its weight increases in order for the classifier to notice it

more; on the other hand, correctly classified samples have their weights reduced. After

a number of iterations, the overall classifier, or strong learner, is expected to be better

than the individual ones [109].

Due to non-satisfactory results presented by the above linear classifiers on data set B, as it

will be seen in Chapter 4, several non-linear classifiers were tested. These include the K-nearest

Neighbours, Kernel Support Vector Machines, Decision Trees, Neural Networks and, finally, Ran-

dom Forrest. Similarly to linear classifiers, the same combinations of classifiers were tested as

well.

As these classifiers require more data in order to obviate overfitting, for each trial of MI,

which had a duration of five seconds, more epochs were extracted. For each trial, two epochs of

two seconds were extracted, as illustrated in Figure 4.6. The first second of the signal was not

used, as a preventive way, since the image of the arrow could act as a stimulus for the pretended

direction. Hereupon, this time is sufficient for the person to assimilate which MI (s)he must do.

Nevertheless, the approach of doubling the number of epochs ended up being used, as well, for

the linear and statistical classifiers, as enunciated in Sub-section 4.1.2.1. This was to ensure that

both methods would use the same amount of data,

Figure 4.6: Extraction of two epochs from one MI trial.
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Excepting for the Gaussian Naive Bayes, the LDA and the linear SVM, all the other classifiers

needed to be optimised. Table 4.2 summarises all the optimised hyper-parameters for the respec-

tive classifiers, as well as a brief description of their function. The optimisation process was done

using a a grid search with a 5 folds cross-validation decided by the F1-score.

Table 4.2: Optimised hyper-parameters for the different classifiers

Supervised
Classifier

Hyper-parameter Grid Search space Description

LR C
logspace -4 to 6, step

size 1
Regularisation parameter which has a significant effect on

the generalisation performance of the classifier

K-NN n_neighbors 1 to 50, step size 10 Number of neighbours to use

SVM
Kernel

rbf - Gaussian Kernel
function

Function used to compute the kernel matrix for
classification

gamma
logspace -3 to 6, step

size 1
Regularisation parameter used in RBF kernel, which has

significant impact in the performance of the kernel

C
logspace -3 to 7, step

size 1
Regularisation parameter which has a significant effect on

the generalisation performance of the classifier

DT
max_depth 1 to 20, step size 2

The maximum depth of the tree. If None, then nodes are
expanded until all leaves are pure or until all leaves contain

less than min_samples_split samples.
min_samples_split 10 to 500, step size 20 Minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2
Minimum number of samples required in a newly created

leaf after the split

NN

hidden_layers 5 to 55, step 10
The ith element represents the number of neurons in the ith

hidden layer

activation
relu - rectified linear

unit function
Activation function for the hidden layer

solver
adam - stochastic

gradient-based
optimiser

The solver for weight optimisation

learning_rate constant
Learning rate schedule for weight updates. If ’constant’,

learning rate is given by learning_rate_init

learning_rate_init logspace -4 to 4, step 1
The initial learning rate used. It controls the step-size in

updating the weights.
alpha logspace -4 to 4, step 1 L2 penalty (regularisation term) parameter.

RF

n_estimators 10 to 100, step 20 Number of Trees in the Forest

max_depth
None or 2 to 10, step

size 2

The maximum depth of the tree. If None, then nodes are
expanded until all leaves are pure or until all leaves contain

less than min_samples_split samples.
min_samples_split 10 to 500, step size 20 Minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2
Minimum number of samples required in a newly created

leaf after the split

4.2 Application

4.2.1 Architecture

For a real time testing it is required an interface to deliver the raw data acquired by the headset

to Python, which was the used programming language. Since the headset is an Emotiv EPOC, an

old model, there are not many programs able to read the signals from it. For example, the approach

suggested by Hasbulah et al. [110] using OpenVIBE could not be applied as this model requires a

32 bit processor and no python 32 could work properly in the available computers. Other available

options were:
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• The emokit [111]: which is a Python library that applies reverse engineering to directly ac-

cess the data; Thus, not requiring the Emotiv EPOC research SDK. Nevertheless, it requires

more external libraries and dependencies.

• The Cortex [112]: provided by Emotiv; however, to obtain the raw EEG data a license is

required.

• the pyemotiv [113]: which is another Python library that connects to the Emotiv EPOC

research SDK provided by the distributor, outputting the raw EEG.

The latter was chosen as the best approach; however, it requires Python version 2.7, which will

not be maintained past January of 2020. This library creates an object epoc, epoc = E poc(), and

then, the raw data is returned in µV using raw = epoc.get_raw().

4.2.2 Procedure

Due to the fact that the process is very time consuming and this step is merely a proof o

concept, only the subject with the best performance for the data set B was chosen to do the real

time testing. The subject was asked to sit still and maintain the movements to a minimum, similarly

to the training phase, as described in Section 4.1.1.

An external person conducted the experiment and asked the subject to imagine a certain MI.

Every 2 seconds an epoch was sent to the system and a class was predicted. The person conducting

the experiment waited for ten predictions to appear before asking for the next one, as a way of

allowing the system to stabilise. Again, due to stabilisation, the first three outputs after a new MI

were discarded. Figure 4.7 illustrates the procedure of the experiment.

Figure 4.7: Experimental procedure for the real time testing.
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Results and Discussion

In order to evaluate the results from the different approaches on the two data sets, the F1-

score, the kappa score and the false positive (FP) rate were used. The F1-score is the average of

the precision and recall and it reaches its best value at 1 (perfect precision and recall) and worst at

0. The kappa score expresses the level of agreement between two annotators. Although it is not

usually used to compare a prediction with a ground truth, it was the only metric provided from

the IV BCI Competition. A kappa value between -1 and 0 denotes a random classifier, while a

value near 1 means a perfect one. Concerning the FP rate, a new metric was developed since it

is more important, for the final application, to penalise the FP’s from classes 0 and 1, than from

class 2. Nevertheless, a high rate of true positives is still desirable, independently of the class.

Thus, the false positive rate used for this evaluation is described by Equation 5.1, where each pair

of numbers corresponds to a position of the represented confusion matrix:

FP =
(0,1)+(1,0)+(2,0)+(2,1)

(0,0)+(1,1)+(2,2)
(5.1)

Thus, for a FP rate higher than 1, the classifier is producing more false positives than true

positives; hence, a rate smaller than 1 is desirable.

For each subject, the best run out of the three is obtained based on the F1-score. Then, for that

run, the respective kappa score and FP rate are also presented. So that it is easier to recognise,

a different colour is assigned to each run. LHvsRH is blue, LHvsF is yellow, whereas FvsRH is

purple. The colour green is attributed when the runs had the same F1-score. Furthermore, for

all the approaches, the features selector was the Extra Trees classifier as this one presented better

results than the other methods exposed in Chapter 4.

Moreover, in order to more easily interpret the information from the tables, each classifier is

substituted by a number. Table 5.1 contains the used linear and statistical classifiers, whereas for

Table 5.2, the non-linear classifiers are enumerated:

51
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Table 5.1: Labels of the Linear and Statistical
Classifiers - first set of classifiers

Number Name
0 Gaussian Naive Bayes
1 Linear Discriminant Analysis
2 Linear Support Vector Machines
3 Logistic Regression

Table 5.2: Labels of the Non-Linear Classifiers -
second set of classifiers

Number Name
4 K-Nearest Neighbours
5 Kernel Support Vector Machines
6 Decision Trees
7 Neural Networks
8 Random Forest

Furthermore, due to time restrictions, the first step consisted in only applying the classifiers

from the use Table 5.1, as exposed in Chapter 4. Afterwards, with the intent of improving even

more the performance of the approach which presented the best results, the non-linear classifiers,

along with the first set of classifiers, were only applied to the correspondent approach. This is due

to the fact that these classifiers take longer to run and to optimise.

5.1 Filter Bank Common Spatial Pattern I - FBCSP I

As it will be further seen, the results from this approach were not the best ones; thus, only the

linear and statistical classifiers are used to build the different classifiers combinations.

5.1.1 Data set A

Table 5.3 presents the obtained F1-score for the different combinations, using only linear or

statistical classifiers. The row "Best" corresponds to the best score for each subject. Most subjects

presented a preferable run regardless the combinations, except for subject 1, who chose, at least

once, one of the three runs. The highest F1-score, on average, was obtained by the Ensemble

Voting Hard, which can be explained as it corresponds to the major vote between the two best

classifiers; thus, by combining their predictions, comes out as more accurate.

Table 5.3: F1-score for data set A and FBCSP I, using the first set of classifiers.

Table 5.4 presents the respective kappa score, corroborating with the Ensemble Voting Hard

being the best combination. The last row corresponds to the kappa score from the winner of the

IV BCI competition. However, the competition involved the classification of four classes: Left

hand, Right hand, Foot and Tongue; as for this work, there are only three classes: Left, Right

and Neutral. Thereafter, the results from the competition are here exposed just as a qualitative

comparison. Hereupon, the obtained kappa value of 0.604 is in the same order of magnitude as
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the result from the competition, 0.57, and thus higher than 0.5, which surely reflects the non-

randomness of the classifiers.

Table 5.4: Kappa score for data set A and FBCSP I, using the first set of classifiers.

Moreover, the FP rate, Table 5.5, had its lowest value, on average, for the One Probabilistic

Classifier, whose threshold was decided based on the maximisation of the F1-score. This result

is logic as by maximising the F1-score, there is an implicit maximisation of the precision and

the recall; thus, minimising the FP rate. However, it was expected that the lowest FP rate would

belong to the Ensemble Voting Hard, due to the fact that it was the combination with the highest

F1-score.

Table 5.5: False positives rate for data set A and FBCSP I, using the first set of classifiers.

As exposed in Chapter 4, these different approaches, (first column of the tables) correspond

to different combinations of several classifiers. Table 5.6, presents the best ones for the different

approaches and subjects. It can be concluded that the best algorithms correspond to the Gaussian

Naives Bayesian Classifier (0), the Linear Discriminant Analysis (1) and the Logistic Regression

(3), which was not presumed as the LR was seldom mentioned during the literature review. Con-

cerning the Linear SVM (2), it was never picked, suggesting that it is not a good classifier for this

data set, using these features, as it is not capable of accurately distinguishing the three classes.

Table 5.6: Best classifiers, from the first set, for each combination for data set A and FBCSP I.
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5.1.2 Data set B

Similarly to what was presented for data set A, Table 5.7 introduces the F1-score for the best

run in each approach. Contrarily to A, several subjects picked all the three runs at least once as their

best. Only subjects 5, 6 and 7 picked one or two. This already suggests that the extracted features

were not very strongly indicative of the class. Once again, the best F1-score was obtained by the

Ensemble Voting Hard approach, followed by the two classifiers. However, since F1-score varies

from 0− 1, the obtained result is not satisfactory as it stays in the bottom half of the spectrum.

Similarly, for the kappa score, Table 5.8, the value of 0.218 is closer to 0 than to 1, indicating that

the classifier is closer to random than to perfect, as presumed.

Table 5.7: F1-score for data set B and FBCSP I, using the first set of classifiers.

Table 5.8: Kappa score for data set B and FBCSP I, using the first set of classifiers.

Table 5.9 exposes the FP rate. This value is quite high, reaching almost 1, that is to say the

number o FP is almost the same as TP. Thus, manifesting that this approach is not adequate for

the ultimate goal of controlling an IW. A very low FP rate is mandatory in order to maintain the

safety of the IW driver.

Table 5.9: False positive rate for data set B and FBCSP I, using the first set of classifiers.

Nevertheless, subjects 3 and 1 presented a better performance than the others, presenting

scores equivalent to data set A, which corroborates with the fact that people have different aptness

regarding the MI [68]. This major difference between subjects may also be due to the positioning
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of the headset, as the electrodes are fixed, which may lead to more coverage of the motor cortex

in some subjects than others, as previously enunciated in Section 4.1.1.

Table 5.10 contains the chosen classifiers for the different methods. Similarly to A, the LR (3)

and the LDA (1) presented the best performance. However, the Gaussian Naives Bayes (0) did not

perform well enough in order to be chosen. Once again, the linear SVM (2) was not picked.

Table 5.10: Best classifiers, from the first set, for each combination for data set B and FBCSP I.

5.2 Filter Bank Common Spatial Pattern II - FBCSP II

5.2.1 Data set A

5.2.1.1 Linear and statistical classifiers

Table 5.11 presents the F1-score for data set A, regarding the use of only linear or statistical

classifiers. Most of the subjects present a preference concerning the run; for others, such as 3

and 5, it is not clear, as the three runs were chosen as the best one, at least once. Globally, the

different classifiers combinations presented results more or less in the same ranking and behaved

as expected. The best F1-score was obtained, once again, for the Ensemble Voting Hard approach,

followed by the One Classifier approach, which was not prospected as it is intuitive that the output

of two classifiers would be more accurate than just one. The worst score corresponds to the

AdaBoost; thus clearly excluding it as a recommended approach.

Table 5.11: F1-score for data set A and FBCSP II, using the first set of classifiers.

Regarding Table 5.12, as previously enunciated, the last row corresponds to the kappa score

from the winner of the IV BCI competition. The best kappa was from the Ensemble Voting Hard

approach, 0.693, which is higher than the one from the previous approach, 0.607, and in the same

order of magnitude as 0.57, the kappa score of the competition’s winner.
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Table 5.12: Kappa score for data set A and FBCSP II, using the first set of classifiers.

Table 5.13 contains the FP rate. It was already prospected that both the two classifiers ap-

proaches would present a lower FP rate, due to the fact that they prevent the FP for classes 0 and 1.

This is also one of the reasons why their F1-score is slightly lower than for the other approaches.

AdaBoost presented the lower F1-score and kappa, therefore presenting the highest FP rate.

Table 5.13: False positive rate for data set A and FBCSP II, using the first set of classifiers.

From Table 5.14, it can be concluded that the best algorithms correspond once again to the Lin-

ear Discriminant Analysis (1) and the Logistic Regression (3). Concerning the Gaussian Naives

Bayesian Classifier (0), was chosen a few times; however, almost always as the second best clas-

sifier, whereas the Linear SVM (2) was never picked. Therefore, it is possible to conclude that the

latter is not a good classifier for this data set using these features, as it is not capable of accurately

distinguishing the three classes.

Table 5.14: Best classifiers, from the first set, for each combination for data set A and FBCSP II.

5.2.1.2 Non-linear classifiers

Due to their promising results, the use of non-linear classifiers was also tested. However, as it

can be interpreted by Table 5.15, the results, contrarily to what was expected, did not improved;

instead, they stayed roughly the same. Furthermore, the best combination was not the Ensemble

Voting Hard but the Two Classifiers, which reflects into a lower FP rate, as exposed in Table 5.16.
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Regarding the kappa score, represented in Table 5.17, as anticipated due to the obtained F1-score,

its average value is very close to the one previously obtained for the first group of classifiers.

Table 5.15: F1-score for data set A and FBCSP II, using both sets of classifiers.

Table 5.16: False positive rate for data set A and FBCSP II, using both sets of classifiers.

Table 5.17: Kappa score for data set A and FBCSP II, using both sets of classifiers.

Table 5.18 presents the best classifiers chosen for each approach. As prospected from the

bibliography, the Kernel SVM (5) and the Neural Networks (7) were widely chosen as the best

or second best classifier. However, the Logistic Regression (3), despite of being a linear method,

was still considered the best for many subjects. Nevertheless, is important to state that the K-NN,

Decision Trees and Random Forest were never picked.

Table 5.18: Best classifiers, from both sets, for each combination for data set A and FBCSP II.

Furthermore, it is possible to conclude that for this approach, in this data set, it is not required

to use non-linear classifiers in order to obtain better results; as the average F1-score was lower
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than the one obtained when using only linear and statistical classifiers. Thus, decreasing greatly

the training time and the model complexity.

5.2.2 Data set B

5.2.2.1 Linear and statistical classifiers

Similarly to what was presented for the data set A, Table 5.19 introduces the F1-score for the

best run in each approach. Most of the subjects presented a preference regarding a run or two. The

best Classifier was the AdaBoost with an average F1-score of 0.504, immediately followed by the

Ensemble Voting Soft with a score of 0.497. Moreover, the highest F1-score value, was lower than

for A, but higher than for the previous approach, 0.484. Once again, it is important to emphasise

that subject 1 and subject 3 present scores equivalents to data set A.

Table 5.19: F1-score for data set B and FBCSP II, using the first set of classifiers.

Furthermore, the best value for the average kappa score, 0.256, in Table 5.20, is both lower

than the one for data set A and also than the value of the competition; however, higher than the

value of 0.218 from FBCSP I. Nevertheless, is still not a desirable value as it is too close to 0.

Table 5.20: Kappa score for data set B and FBCSP II, using the first set of classifiers.

As presumed from the previous scores, the FP rate is higher for data set B, than for the data

set A, as shown in Table 5.21. The lowest value, 0.444, was obtained with the One Probabilistic

Classifier approach. The FP rate for the best approach, AdaBoost, was 0.513, which is high but

still lower than the best for approach FBCSP I, 0.730.
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Table 5.21: False positives rate for data set B and FBCSP II, using the first set of classifiers.

Concerning the selected classifiers, it is clear, from Table 5.22, that the LDA and the LR were

preferred over the other two. Moreover, the Gaussian Naive Bayes classifier was not chosen as the

best one for neither of the combinations. Despite of what was concluded from the data set A, the

linear SVM was picked for this one, even if only once; which endorses that the LDA and LR are

the most suitable classifiers for this approach.

Table 5.22: Best classifiers, from the first set, for each combination for data set B and FBCSP II.

5.2.2.2 Non-linear classifiers

Due to the fact that the formerly exposed results were not satisfactory, in the sense that are

not acceptable for a real application; further approaches demanded to be tested. Moreover, as

FBCSP II was better than FBCSP I, non-linear classifiers were added to the previous classifiers to

be trained and tried out.

Table 5.23 contains the F1-score from this method. As expected, the results improved com-

pared to the linear and statistical classifiers approach. Two combinations obtained the same aver-

age F1-score, the One Classifier and the Ensemble Voting Hard, which was not foreseen has it was

presumed that two classifiers would predict a more accurate result rather than just one.

Table 5.23: F1-score for data set B and FBCSP II, using both sets of classifiers.

Nevertheless, regarding the kappa score, Table 5.24, it was higher for the Ensemble Voting

Hard, which is better than the score for the just linear and statistical classifiers, but still lower than
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for data set A, which corroborates with the previously stated about the headset used to acquire

these signals. Finally, Table 5.25, presents the FP rate, which is lower than previously, as it was

anticipated due the rise of the F1-score.

Table 5.24: Kappa score for data set B and FBCSP II, using both sets of classifiers.

Table 5.25: False positives rate for data set B and FBCSP II, using both sets of classifiers.

In spite of these results, it is still important to mention that subjects 1, 3 and, now 6 as well,

produced results comparable to the ones from data set A, even if with a slightly higher FP rates

than the ones of the A’s.

Table 5.26 presents the chosen classifier(s) for each combination. These encompass mainly the

Kernel SVMs, followed by the Neural Networks. For some cases, K-NN is chosen as the second

best classifier. None of the linear or statistical classifiers were chosen, which indicates that this

data set requires more complex models in order to predict better results.

Table 5.26: Best classifiers, from both sets, for each combination for data set B and FBCSP II.

5.3 Power Spectral Density I - PSD I

5.3.1 Data set A

Table 5.27 summarises the results for this approach on data set A, using a single linear classi-

fier. As mentioned before, since the best results with linear classifiers was not obtained with the

PSD I approach, non-linear strategies were not employed. Moreover, as no single linear classifier

produce satisfactory results on its own, combinations thereof were not evaluated either.
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Table 5.27: Results from PSD I on data set A, using the first set of classifiers.

It can be concluded that the obtained F1-score of 0.510 is much lower than the F1-score of

0.793 for the combination of One Classifier and FBCSP II. Moreover, the FP rate is also much

higher than the one for FBCSP II; thus, endorsing the idea that this approach is not the best for

this data set.

5.3.2 Data set B

Similarly to data set A, only the One Classifier approach was tested due to not satisfactory

results. However, the difference from these to the FBCSP II was not as larger as the one for data

set A, which was unexpected. Since the results were so bad for A, it was prospected the same for

this data set. Table 5.28 exhibits the results.

Table 5.28: Results from PSD I on data set B, using the first set of classifiers.

It can be concluded that the average F1-score, 0.443, was quite similar to the one for data set

A, 0.510, which did not happen for the other approaches. However, the kappa score and the FP

rate were worse. The latter presents a high value of 0.844, which lies close to 1, that is to say,

there is almost more FP than TP, which is not the goal.

5.4 Power Spectral Density II - PSD II

5.4.1 Data set A

This approach should allow to enhance the power difference of the ERD and ERS; thus, de-

livering more specific features. However, the results were worse than the ones from the PSD I,

as exposed on Table 5.29. Moreover, subject five was not even able to distinguish the different

classes, resulting in a null F1-score and kappa, and with the highest FP rate. Moreover, also sub-

ject 2 also presented a FP rate greater than 1, resulting in more FP than TP. Hereupon, it is possible

to infer that this method is not adequate for this data set, as it cannot generalise for the different

subjects.
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Table 5.29: Results from PSD II on data set A, using the first set of classifiers.

5.4.2 Data set B

Contrarily to data set A, data set B increased its F1-score when compared to the PSD I ap-

proach, as shown in Table 5.30. This may suggest that the signal is noisy, being enhanced by the

subtraction of a baseline from a non-MI epoch. Although subjects 7 and 8 slightly improved their

performance with this method, subjects 3 and 5 worsen. Once again, similarly to what was previ-

ously concluded throughout the results, LR and LDA were the chosen classifiers, suggesting that

contrarily to what is usually used with recent State of the Art methods, LR is a strong classifier for

this type of data.

Table 5.30: Results from PSD II on data set B, using the first set of classifiers.

5.5 Filter Bank Power Spectral Density I or II - FBPSD I or II

5.5.1 Data set A

As data set A presented better results for the PSD I approach, a filter bank was applied to this

method in order to evaluate if the scores increased. That would be the prospected as the FB allows

to enhance the subjects’ best frequency bands. However, the result was not the expected one, as

illustrated on Table 5.31:

Table 5.31: Results from FBPSD I on data set A, using the first set of classifiers.

Just one run, LHvsRH, and the One Classifier combination was experimented. No further

testing was performed due to the non-satisfactory results. The average F1-score, 0.471 was lower

than for that of the PSD approach, 0.510, similar for kappa, close to 0, which is an indicator for a

bad classifier. Moreover, a FP rate of, 0.817, close to 1, is again a bad indicator for this approach.
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5.5.2 Data set B

Data set B presented better results for the approach PSD II than PSD I and thus, a filter bank

was applied to PSD II. Similarly to what occurred for data set A, the results did not improved as

expected; consequently, only the One Classifier combination for the LHvsRH run was tested. The

results are presented on Table 5.32

Table 5.32: Results from FBPSD II on data set B, using the first set of classifiers.

The average F1-score value, 0.397, is lower than that of the PSD II, 0.452, inevitably originat-

ing a lower kappa score, suggesting that the developed classifiers are close to random. Moreover,

the average FP rate is greater than 1, which indicates that the number of FP is higher than the

number of TP.

Therefore, it can be concluded that the FB allied to the PSD is not a good approach for neither

of the data sets. For both of them the kappa scores were close to 0 and the FP rate too close to 1.

Thus, endorsing that it is not a suitable method for this type of system.

5.6 Frequency Coefficients - FC

5.6.1 Data set A

Similarly to the previous approach, only the LHvsRH run with the One Classifier combination

was experimented, and did not present satisfactory results either. The results are presented on

Table 5.33. The average F1-score was 0.440, followed by a kappa score of 0.161, which is very

close to 0, indicating that the method is close to random. Furthermore, the FP rate of 0.936,

corroborates with the previous conclusion; thus, excluding completely this approach as a valid

one.

Table 5.33: Results from FC on data set A, using the first set of classifiers.

5.6.2 Data set B

As expected from the results for data set A, this approach did not perform well for this data

set either, as shown in Table 5.34. The average F1-score was 0.399, with a kappa score of 0.099
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and a FP rate of 0.983. Thus, similarly to what was concluded for data set A, this approach is not

adequate.

Moreover, the fact that this approach produced similar results to the previous PSD approaches,

could have been anticipated as the power spectral density is the square of the frequency coeffi-

cients’ magnitude.

Table 5.34: Results from FC on data set B, using the first set of classifiers.

5.7 Discussion

Overall, data set A, independently of the approach, produced better results than data set B.

The only exception might be for the PSD approaches, where the average F1-score value for both

data sets was very similar.

There are several possibilities for this discrepancy in the results, such as:

• Data set A was obtained using a stable headset, with movable electrodes. This leads to

the electrodes always assuming the same known position throughout the different sessions.

Moreover, it was obtained by professionals in a carefully controlled environment.

• Data set B was collected using an old Emotiv EPOC, as it was the only one available in the

laboratory. There are several problems regarding the EPOC and worsen by the fact that is

an old device:

– It has fixed electrodes. This leads to the absolute position being different for all the

subjects and even vary from session to session. Moreover, not fitting everyone’s head,

as four subjects did not make it to this data set due to limitations in positioning the

electrodes correctly.

– As the EPOC was old, all the sensors were oxidised, as it can be proved by Figure 5.1.

This leads to noisy acquisitions, which hampers the already difficult EEG processing,

as the signal is very sensitive. Moreover, some of the sensors were actually broken,

which restricted to only 10 sensors being used instead of 14.

Figure 5.1: Example of an oxidised sensor.
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– Additionally, for unknown reasons, the device took approximately 50 minutes to set

up in the last sessions while it only took 5 minutes to set in the first one, for the same

subject; this might suggest some type of malfunction or bad communication between

the headset and the Emotiv software.

• Emotiv EPOC, as already stated, does not cover the motor cortex. Although the literature

corroborates with the fact that it works for the parietal and frontal area, it is expected for the

performance to not be the best.

Comparing the different approaches, it was already prospected that the best method would be

related to the CSP, as it was the winning method of the competition. This suggests that spatial

methods perform better than the others, which may be related to the elimination of existent arte-

facts in the bands of interest. However, it was interesting that FBCSP II produced slightly better

scores than the FBCSP I; implying that feeding the whole spatial filtered signal to the feature se-

lector, works better than feeding a transformed version of the signal filtered by just the m columns

of the spatial filter.

Although the results from the competition are merely qualitative, for the reasons already ex-

posed, the results from FBCSP II also indicate that using the Extra tree Classifier to get the fea-

tures’ importance and the Ensemble Voting Hard, employing the LR and the GNB, or the LDA, to

classify the epochs, represents a valuable update. This led to a final average kappa score of 0.69

which is 20% higher than the winner value of 0.57. Despite of the 20% not being a real quantita-

tive evaluation, the value of 0.69 already suggests that the algorithm is considerably better than a

random classifier and is able to correctly classify the epochs, presenting a F1-score of 0.797 and

the smallest FP rate of all the tested approaches, 0.150.

Similarly, data set B also presented better results for the FBCSP II than for the FBCSP I.

Moreover, contrarily to data set A, data set B improved its results by allowing the use of non-

linear classifiers. From Chapter 3, Fakhruzzaman et al. [90] and Muñoz et al. [94] used the Emotiv

EPOC headset and the CSP method as a features extractor. Fakhruzzaman et al. [90] got a average

accuracy of 60%, whereas Muñoz et al. [94] obtained an average accuracy of 67,5% using the

LDA classifier, 68,3% using the SVM and 96,7% using Nu-SVC RBF kernel. Overall, the result

of 65% from the data set B regarding the FBCSP II approach with the Ensemble voting Hard

classifier, presented in Appendix A, falls in the mean values presented by these authors, except the

last method of Muñoz et al. [94]. The latter, is greatly higher than the others, suggesting that this

classifier is indicated for this type of features, and should be considered for further implementation

in the future work.

Furthermore, is important to state that the signals in data set B were acquired without AF3

and AF4 electrodes, due to the reasons previously enunciated, which may be important electrodes

accordingly to Lin and Lo [93] and Muñoz et al. [94] ; thus decreasing the obtained accuracy and

the F1-score.

The average accuracy of other authors using the EPOC and the magnitude of frequency com-

ponents or the power spectral density (square of the magnitude) as features, was of 74− 100%
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for Abiyev et al. [13], 70% for Hurtado-Rincon et al. [92], and 86− 92% for Lin and Lo [93].

These are already higher values than for the CSP, which led to an expected higher score for the

PSD or the PSD II methods. However that did not happen. Again, this may be due to the EPOC’s

condition and/or the lack of the AF3 and AF4 electrodes.

5.8 Real time application

As subject 3 was the one which presented the best results, the steps described in the previous

chapter were applied in a real time scenario, leading to the results in Table 5.35. The final system

consisted of applying the FBCSP II approach, which, as previously concluded, produced the best

score. 70% of the features were extracted and fed to an Ensemble Voting Hard classifier built with

the major vote between the Kernel SVM and the K-NN, where the vote percentage was of 2 to 1,

respectively.

Table 5.35: Cues and respective outputs from subject’s 3 real time application.

MI Output Majority % MI Output Majority %

N 2 1 1 2 2 2 0 0 2 2 2 60% R 1 2 1 1 1 1 1 1 1 1 1 90%

R 1 1 0 1 2 1 1 0 0 1 1 60% N 2 2 2 2 1 2 0 0 2 2 2 70%

N 2 0 2 2 2 2 2 0 0 2 2 70% L 2 1 1 1 1 1 0 0 1 0 1 30%

L 0 0 0 1 0 0 1 1 2 2 0 50% N 2 2 2 0 2 2 2 2 2 2 2 90%

L 0 1 0 0 0 1 0 1 2 2 0 50% R 1 0 1 1 1 0 1 1 1 2 1 70%

N 2 0 2 2 0 2 2 2 0 2 2 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

R 1 0 1 2 1 1 2 1 1 0 1 60% L 0 0 2 0 2 0 2 0 2 2 0 50%

L 0 0 2 0 0 0 1 1 0 1 0 60% N 2 1 2 2 2 1 2 2 2 2 2 80%

N 2 2 2 1 2 2 1 2 0 2 2 70% R 1 2 1 2 1 2 0 2 0 2 2 30%

R 1 1 1 1 0 0 2 1 1 1 1 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

N 0 2 2 0 2 2 0 0 2 2 2 60% L 0 0 0 1 0 0 0 0 2 2 0 70%

Overall the results were satisfactory and as anticipated from the performance previously anal-

ysed. From twenty-two cues, there were only two cues incorrectly classified, represented in red,

one for the left and another for the right. The left one was misclassified as right, which is a problem

since if it was an IW, it would go to the opposite direction. The right cue was classified as neutral.

In spite of misclassified, it is not the worse since an hypothetical IW would have maintained the

same direction. Nevertheless, none of the neutral cues was incorrectly classified.

To conclude, this approach is still not ready for a real-life application. Some limitations are

related to the accuracy of the classifiers, as some cues were misclassified and others were border

close to be, represented in orange; while others concern the fact that the results were obtained over

ten samples, which is too much time for a real application. Nevertheless, these results prove that

the system is evolving towards the right direction, suggesting that a new headset and a refinement

of the algorithm would deliver promising results.
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Conclusions and Future work

6.1 General conclusions

The goal of this dissertation was being able to decode MI intentions from the users, using an

Emotiv EPOC as the headset to extract the EEG signals. The intentions were Left, Right and Neu-

tral, which would be further translated into control commands for an Intelligent wheelchair. As the

available headset was not in the best conditions, another data set, A, from the IV BCI competition,

was used to validate the algorithms. From the results presented in the previous chapter, it can be

concluded that it is possible do fulfill the goal. This was shown for data set A, the reference data

set, and the data set B, acquired with the Emotiv EPOC headset. Although the results from the

latter are not as good as the ones from the first, its acquisition and the remarkable score of some

subjects, present a valuable contribution of this dissertation.

In spite of being similar to the winning method implemented for the competition, FBCSP I

performed worse than FBCSP II, for both data sets, being the average F1-score of the former for

data set A 0.748, while for the latter it was 0.797. Moreover, the FP rate was also lower for the

FBCSP II, 0.150, which is crucial since a main concern for this system is to minimise the false

positives, guaranteeing the safety of the driver. Furthermore, the kappa score of 0.693 was greater

than the 0.57 of the competition’s winner (although the number of used MI is different); thus,

validating the developed algorithm. Nevertheless, for this data set, the use of non-linear classifiers

for approach FBCSP II did not improve significantly the overall performance; it reduced the FP

rate slightly, to 0.141.

Furthermore, the Ensemble Voting Hard produced the best results which can be explained by

the fact that it consists of a major vote between the two best classifiers. The two chosen classifiers

were mainly the LR and the LDA or the GNB. The systematic choice of the LR was a surprise as

it was seldom referred during the literature review in Chapter 3.

Regarding data set B, the best approach was the FBCSP II too, with the Ensemble Voting Hard

combination; however, using also non-linear classifiers in addition to the linear and statistical ones.

The average score was of 0.691 for F1-score and 0,471 for the FP rate. Although these values are

considerably lower and higher, respectively, than for data set A, two subjects, 1 - F1-score of

67
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0.747; and 3 - F1-score of 0.911, presented results in the same order of magnitude as data set A,

which may be due to the different positioning of the sensors in each head, or the aptness of the

person for MI.

The major limitation for this dissertation was the fact that the Emotiv’s sensors were all oxi-

dised and some of them broken; which does not guarantee the quality of the acquired signal. De-

spite of these, the obtained results were still satisfactory. Moreover, the lack of publicly available

Emotiv EPOC acquired MI data sets, did not allow for a more thorough comparison. Furthermore,

the fact that the headset is quite old requires that the real time application uses libraries which are

only supported by Python version 2.7. This might be a limitation since the latter will stop being

maintained by January 2020.

Overall, this project allowed to develop a proof of concept for the future projects and a thor-

ough study regarding the different algorithms. Additionally, it helped to conclude that a new

headset is required in order to deliver more accurate results, as these are a paramount for the

correct functioning of the system, putting at risk the safety of the driver in case they are not met.

Nevertheless, although the real time results are still not suitable for the actual application, they

clearly validate the concept and the developed architecture to connect the different parts of the

system.

6.2 Future work

As it has been concluded, the system is not yet perfected; thus, more testing in new classifiers,

or combinations, is still needed. For example, the Nu-SVC RBF kernel, proposed by Muñoz et al.

[94], which performed a lot better than the LDA and the SVM. Another alternative is to develop a

second classifier, responsible from distinguishing only Left from Right, which would receive the

samples classified as 0 or 1 from the first classifier, and would reevaluate them. Only if the two

classifiers agreed, would the sample fall on class 0 or 1, otherwise, it would be considered neutral.

This approach would allow to decrease the FP rate.

Furthermore, a new headset is advisable, for example the Emotiv Flex, in order to record viable

data. This headset encompasses 32 channels that can be rearranged in order to cover the desired

area, which in this case would be the motor cortex. Moreover, the accompanying software of the

more recent headsets, is also more up to date and compatible with other development tools.

The final goal is, once again, to apply the developed BCI to an IW. In order to do so, it is

important to state that the obtained commands are still not fulfilling the necessities of a future user.

Outputs, such as accelerate and decelerate, are important so that the best comfort and autonomy

can be provided. A possible way of doing so is by using LEDs, built in the user interface, that

would toggle at different frequencies. These frequencies would fall into the alpha band wave,

between 4− 20Hz, allowing to apply the SSVEP neuro-mechanism. As explained in Chapter

3, this neuro-mechanism is known to have a high accuracy, which suggests that it would be an

adequate approach to test.



Appendix A

Best results for each data set

For both data sets the Ensemble Voting Hard, using two classifiers, was the combination which

produced the best results. The following tables are organised as followed:

• #Feats: the number of features used. This number varies between 0.05− 0.7 and corre-

sponds to the final ratio of used features. It was obtained via a 10 folds cross-validation, as

previously explained in Chapter 4.

• cl f 1 and cl f 2: the two chosen classifiers which will compose the Ensemble Voting Hard

classifier. They were obtained via a grid search, combined with a 5 folds cross-validation,

as previously explained in Chapter 4. The correspondence between each number and the

classifier is exposed in Tables 5.1 and 5.2.

• w1 and w2: the weight of each classifier for the vote. These values were obtained by using

a combination of a grid search with a 10 folds cross-validation.

• Con f usion matrix: confusion matrix where the rows correspond to the true labels and the

columns to the predicted ones. Label 0 corresponds to the class Left, 1 to Right and 2 to

Neutral.

• Accuracy: accuracy classification score.

• Kappa: Cohen’s kappa score.

• F1: F1-score for the test data.

• Prec: precision for the test data.

• Rec: recall for the test data.

• FP: false positive rate for the test data.
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A.1 Data set A using FBCSP II and the Ensemble Voting Hard

Table A.1: Run LHvsRH using only linear and statistical classifiers.

Table A.2: Run FvsRH using the first set of classifiers.

Table A.3: Run LHvsF using the first set of classifiers.
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A.2 Data set B using FBCSP II and the Ensemble Voting Hard

Table A.4: Run LHvsRH using both sets of classifiers.

Table A.5: Run FvsRH using both sets of classifiers.

Table A.6: Run LHvsF using both sets of classifiers.
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