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1. Introduction 

Epilepsy is a neurological disorder with prevalence of about 1-2% of the world’s population 

(Mormann, Andrzejak, Elger & Lehnertz, 2007). It is characterized by sudden recurrent 

and transient disturbances of perception or behaviour resulting from excessive 

synchronization of cortical neuronal networks; it is a neurological condition in which an 

individual experiences chronic abnormal bursts of electrical discharges in the brain. The 

hallmark of epilepsy is recurrent seizures termed "epileptic seizures". Epileptic seizures 

are divided by their clinical manifestation into partial or focal, generalized, unilateral and 

unclassified seizures (James, 1997; Tzallas, Tsipouras & Fotiadis, 2007a, 2009). Focal 

epileptic seizures involve only part of cerebral hemisphere and produce symptoms in 

corresponding parts of the body or in some related mental functions. Generalized 

epileptic seizures involve the entire brain and produce bilateral motor symptoms usually 

with loss of consciousness. Both types of epileptic seizures can occur at all ages. 

Generalized epileptic seizures can be subdivided into absence (petit mal) and tonic-clonic 

(grand mal) seizures (James, 1997).  

Monitoring brain activity through the electroencephalogram (EEG) has become an 
important tool in the diagnosis of epilepsy. The EEG recordings of patients suffering from 
epilepsy show two categories of abnormal activity: inter-ictal, abnormal signals recorded 
between epileptic seizures; and ictal, the activity recorded during an epileptic seizure (Fig. 
1). The EEG signature of an inter-ictal activity is occasional transient waveforms, as either 
isolated spikes, spike trains, sharp waves or spike-wave complexes. EEG signature of an 
epileptic seizure (ictal period) is composed of a continuous discharge of polymorphic 
waveforms of variable amplitude and frequency, spike and sharp wave complexes, 
rhythmic hypersynchrony, or electrocerebral inactivity observed over a duration longer than 
the average duration of these abnormalities during inter-ictal periods (McGrogan, 2001).  

Given that ictal recordings (recording during an epileptic seizure) are rarely obtained, EEG 
analysis of patients suffering from epilepsy usually relies on inter-ictal findings. In those 
inter-ictal EEG recordings, epileptic seizures are usually activated with photo stimulation, 
hyperventilation and other methods (McGrogan, 2001). However, one weakness of these 
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stimulation techniques is that provoked epileptic seizures do not necessarily have the same 
behaviour as the spontaneous ones. The introduction of long-term video-EEG recordings 
has been an important milestone providing not only the possibility to capture and analyze 
ictal events, but also contributing to valuable clinical information, especially in those 
candidates evaluated for epilepsy surgery. Prior to the advent of portable recording devices 
all EEG recording took place in special hospital units. The introduction of portable recording 
systems (ambulatory EEG), however, has allowed outpatient EEG recording to become more 
common. This method has advantages that patients are recorded in their normal 
environment without the reduction in seizure frequency usually seen during a long (and 
expensive) in-patient sessions. Many studies have shown that ambulatory EEG recordings 
generally increase the yield of useful diagnostic information and improve the overall 
medical management of patients (Casson, Yates, Smith, Duncan, & Rodriguez-Villegas, 
2010; Waterhouse, 2003). 

 

Fig. 1. During inter-ictal periods, or between epileptic seizures, EEG recordings of patients 

affected by epilepsy will exhibit abnormalities like isolated spike, sharp waves and spike-

wave complexes (usually all termed as inter-ictal spikes or spikes). In ictal periods, or 

during epileptic seizures, the EEG recording is composed of a continuous discharge of one 

of these abnormalities, but extended over a longer duration and typically accompanied by a 

clinical correlate (Exarchos, Tzallas, Fotiadis, Konitsiotis & Giannopoulos, 2006; Oikonomou, 

Tzallas & Fotiadis, 2007; Tzallas et al., 2006; Tzallas, Oikonomou, & Fotiadis, 2006; Tzallas, et 

al., 2007a; Tzallas, Tsipouras & Fotiadis, 2007b; Tzallas, et al., 2009). 

Generally, the detection of epilepsy can be achieved by visual scanning of EEG recordings 

for inter-ictal and ictal activities by an experienced neurophysiologist. However, visual 

review of the vast amount of EEG data has serious drawbacks. Visual inspection is very time 

consuming and inefficient, especially in the case of long-term recordings. In addition, 

disagreement among the neurophysiologists on the same recording is possible due to the 

subjective nature of the analysis and due to the variety of inter-ictal spikes morphology. 

Moreover, the EEG patterns that characterize an epileptic seizure are similar to waves that 

are part of the background noise and to artefacts (especially in extracranial recordings) such 

as eye blinks and other eye movements, muscle activity, electrocardiogram, electrode "pop" 

and electrical interference. For these reasons, methods for the automated detection of inter-

ictal spikes and epileptic seizures can serve as valuable clinical tools for the scrutiny of EEG 

data in a more objective and computationally efficient manner. 
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2. Automated analysis of epileptic EEG recordings 

Automated analysis of EEG recordings for assisting in the diagnosis of epilepsy started in 
the early 1970s (Gotman, 1999; Tzallas, et al., 2007a, 2007b, 2009; Wilson & Emerson, 2002). 
From the beginning, the automated analysis of epileptic EEG recordings has progressed in 
two main directions:  

 inter-ictal spike detection or spike detection analysis, and  

 epileptic seizure analysis.  

2.1 Automated spike detection analysis 

The automatic spike detection problem can be simply transferred to the detection of the 

presence of inter-ictal spikes in the multichannel EEG recording with high sensitivity and 

selectivity (James, 1997; Oikonomou, et al., 2007). That means that high proportion of true 

events must be detected with a minimum number of false detections. Although desirable, it 

is not realistic to expect high sensitivity and selectivity due to the imprecise definition 

among neurophysiologists of what constitutes a spike varies. Several studies evaluated this 

issue by extracting features from the raw EEG recordings that best describe the spike 

morphology. On the other hand, other studies have chosen to use machine learning 

techniques (usually artificial neural networks) as a means of using the raw EEG without 

having to make any decision concerning what parameters are more important than others in 

detecting spikes (James, 1997). Whatever the method used, the spike detection problem 

seems to be divided into two main stages: feature extraction and classification (Fig. 2). 

 

Fig. 2. The spike detection problem seems to be broken down into two main stages: feature 
extraction and classification. This can be viewed as mapping the N-dimensional EEG pattern 
space to a F-dimensional feature space (where N≥F) and then performing classification in 
the feature space. In the case of use of raw EEG recordings without feature extraction, this 
can be seen as the case where the N-dimensional EEG space is mapped onto an identical N-
dimensional feature space where classification then takes place (James, 1997). 

It is well established that, apart from the spike detection on a single channel itself, other 
contextual information (spatial and temporal) is also vital to neurophysiologists when 
identifying candidate transient waveforms as spikes (James, Jones, Bones, & Carroll, 1999; 
Tzallas, Karvelis, et al., 2006). This information is related to other channels waveforms that 
take place at the same time. Based on the above, the spike detection problem depicted in Fig. 
2, can now be modified, as shown in Fig. 3, to incorporate the use of spatio-temporal 
information in helping detect spikes in the multichannel EEG recordings. 

The following provides a short summary of the most common methods to the spike 

detection problem in the literature (Gotman, 1999; Wilson & Emerson, 2002). These methods 

have been grouped according to their spike detection criterion into nine (9) categories:  

a. methods based on traditional recognition techniques, known as mimetic techniques, 
b. methods based on morphological analysis,  
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c. methods using template matching algorithms, 
d. methods based on parametric approaches 
e. methods based on independent component analysis 

f. methods based on artificial neural networks, 
g. methods based on clustering techniques, 
h. methods employed data mining and other classification techniques, and 
i. methods utilizing knowledge-based rules. 

 

Fig. 3. The spatial and temporal information (contextual) is important in the spike detection 
problem. The N-dimensional EEG pattern space is mapped onto a F-dimensional feature 
space for each channel in the EEG recording. The multichannel features introduce spatial 
information into the method. The classification of candidate spikes then takes place using 
features extracted from the pattern space. Temporal information can then be introduced to 
the classification process by considering the presence of previous spikes in the EEG 
throughout the multichannel recording and allowing this to strengthen or weaken the 
outcome due to spatial information alone (James, 1997). 

a. Methods based on traditional recognition techniques, known as mimetic techniques 

Mimetic methods are based on the hypothesis that the process of identifying a transient 

waveform in EEG recordings as spike could be divided into well-defined steps representing 

the reasons and expertise of a neurophysiologist (Gotman, 1982; Gotman & Gloor, 1976; 

Guedes de Oliveira, 1983; Ktonas, 1983; Ktonas, Luoh, Kejariwal, Reilly, & Seward, 1981). 

Distinctive attributes of the spikes such as slope, height, duration and sharpness are 

compared with values provided by the neurophysiologists. Gotman and Gloor (1976) 

decomposed the waveform into two half-waves with opposite directions. Similar methods 

for decomposing the EEG waveform into half-waves have been used by many authors 

(Davey, Fright, Carroll, & Jones, 1989; Faure, 1985; Webber, Litt, Wilson, & Lesser, 1994). 

Faure (1985) introduced a concept where the duration, amplitude, and slope attributes of 

half-waves were used to classify them into states.  

b. Methods based on morphological analysis  

Methods based on morphological analysis characterize the waveforms, frequency bands, or 

time-frequency representations of spikes (Gotman, 1990, 2003; Michel, Seeck, & Landis, 

1999). Morphological analysis has proven an efficient tool in EEG signal processing since it 

can decompose raw EEG signal into several physical parts. Background activity and spike 

component are separated and the main morphological characteristic of spikes is retained. 
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Pon and coworkers (2002) selected a circle structure element and utilized mathematical 

morphology and wavelet transform to detect bi-directional spikes in epileptic EEG 

recordings. Nishida and coauthors (1999) presented a detection method based on 

morphological filter, in which open–closing operation was selected as the basic algorithm 

and the general structure elements are designed by second-order polynomial functions. 

Using a morphological filter with proper morphological operation and structure elements, it 

was possible to restrain the background activity completely. Xu and coworkers (2007) 

presented a method for automatic spike detection by using an improved morphological 

filter. The basic idea of the improved morphological filter was to separate spikes and its 

background activity by the differences of their geometric characteristics.  

c. Methods using template matching algorithms, 

In the template matching algorithms, the user manually selects spikes from a set of test EEG 
recordings that are averaged to create a template (El-Gohary, McNames, & Elsas, 2008; 
Lopes da Silva, A., & H., 1975; Sankar & Natour, 1992). Many researchers (Goelz, Jones, & 
Bones, 2000; Schiff, Aldroubi, Unser, & Sato, 1994; Senhadji, Dillenseger, Wendling, Rocha, 
& Kinie, 1995; Senhadji & Wendling, 2002) used wavelets to obtain features of the signal for 
template building and spike detection.  

d. Methods based on parametric approaches 

In the parametric approaches, researchers (Birkemeier, Fontaine, Celesia, & Ma, 1978; 
Diambra & Malta, 1999; Lopes da Silva, et al., 1975) assume local stationarity of the noise 
and spikes are detected as deviation from that stationarity. Tzallas and coauthors (2006) 
presented a new technique based on a time-varying autoregressive model that made use of 
the nonstationarities of EEG. The autoregressive parameters were estimated via Kalman 
filter. The signal was first processed to accentuate the spikes and attenuate background 
activity and then passed through a thresholding function to determine spikes locations.  

e. Methods based on independent component analysis 

Various spike detection approaches based on independent component analysis (ICA) have 
been proposed in applications to EEG recordings (Hesse & James, 2007; Ossadtchi et al., 2004). 
Kobayashi and coauthors (1999) performed both model based and real data demonstrations of 
the use of ICA to isolate spikes from multichannel EEG data (Ossadtchi, et al., 2004). In this 
approach, ICA is applied to spatio-temporal data and components resembling abnormal 
epileptic activities selected by visual inspection and then interpreted by a neurophysiologist 
(Hesse & James, 2007; Ossadtchi, et al., 2004). Kobayashi and coworkers (2002) used ICA 
decomposition together with the RAP-MUSIC source localization approach (Mosher, Baillet, & 
Leahy, 1999; Mosher & Leahy, 1998; Mosher, Leahy, & Lewis, 1999) to detect potentially 
epileptogenic regions (Ossadtchi, et al., 2004). Rather than fitting a dipole to each independent 
component separately (Zhukov, Weinstein, & Johnson, 2000), Kobayashi and coauthors (2002) 
followed a multidimensional ICA paradigm and defined an inter-ictal subspace spanned by 
the columns of the estimated mixing matrix visually identified as corresponding to epileptic 
components (Ossadtchi, et al., 2004).  

f. Methods based on artificial neural networks  

In the sixth category belong approaches built upon artificial neural networks (ANNs) which 
simulate the behavior of a collection of neurons (Tzallas, Karvelis, et al., 2006). ANNs have 

www.intechopen.com



 
Epilepsy – Histological, Electroencephalographic and Psychological Aspects 

 

80

been trained using either raw data (Ko & Chung, 2000; Ozdamar & Kalayci, 1998; Pang, 
Upton, Shine, & Kamath, 2003; Webber, et al., 1994) or select features (Acir, Oztura, Kuntalp, 
Baklan, & Guzelis, 2005; Castellaro et al., 2002; Gabor & Seyal, 1992; Liu, Zhang, & Yang, 
2002; Pang, et al., 2003; Tzallas, Karvelis, et al., 2006; Webber, et al., 1994) to detect spikes. In 
the first case, windows of raw EEG data are fed into an ANN. In the second case, two types 
of features are used: (1) waveforms features such as duration, slope, sharpness, and 
amplitude, which are extracted from spikes and (2) context features, such as EEG variance 
and baseline crossings, which are extracted from the EEG activity surrounding the spikes.  

g. Methods based on clustering techniques 

Clustering techniques in the field of automated spike detection analysis has also been 

addressed. Hierarchical agglomerative methods and self organizing maps have been used 

for clustering EEG segments (Sommer & Golz, 2001). The nearest mean (NM) algorithm 

(Wahlberg & Salomonsson, 1996),  the ant K-mean algorithm (Shen, Kuo, & Hsin, 2009 ) and 

the fuzzy C-means (FCM) algorithm (Inan & Kuntalp, 2007; Wahlberg & Lantz, 2000) have 

been employed in order to cluster spikes. In addition, the K-means algorithm has been used 

in order to cluster spikes and other types of transient waveforms (Exarchos, et al., 2006; 

Tzallas, Karvelis, et al., 2006).  

h. Methods employed data mining and other classification techniques 

Data mining (DM) techniques are also used to build automatic spike detection models, 

(Exarchos, et al., 2006; Valenti et al., 2006). In DM, the identification of spikes does not need 

a clear definition of spike morphology. In addition, other classification schemes such as 

support vector machines (SVMs) have also been applied to spike detection (Acir & Guzelis, 

2004; Acir, et al., 2005; Tzallas et al., 2005). The main idea was to adjust the position of the 

separator (line, plane, hyperplane) between spike and non-spike patterns based on the 

distance from misclassified outliers.  

i. Methods utilizing knowledge-based rules 

The majority of the methods, mainly those belonging to the first four categories (mimetic, 

morphological, template matching and parametric) deals with the single EEG channel data 

only. Knowledge-based reasoning in addition to the aforementioned methods is widely 

used (Tzallas, Karvelis, et al., 2006). This arises from the need to incorporate knowledge of 

neurophysiologists that adopt spatial and temporal rules (Acir, et al., 2005; Dingle, Jones, 

Carroll, & Fright, 1993; Edwards, James, Coakley, & Brown, 1976; Glover, Raghavan, Ktonas, 

& Frost, 1989; James, 1997; James, et al., 1999; Liu, et al., 2002; Ozdamar, Yaylali, Jayakar, & 

Lopez, 1991; Tzallas, Karvelis, et al., 2006; Webber, et al., 1994). More specifically, Glover 

and coauthors (1989), Dingle and coauthors (1993), and Liu and coauthors (2002) used a 

knowledge-based system with a high degree of success, taking advantage of both spatial 

and temporal information. Ozdamar and his coworkers (1991) made use of spatial 

information by integrating the outputs of individual channel spike detection ANNs, from 

four channels into a single ANN module trained to recognize the common spatial 

distributions of spikes. Webber and coauthors (1994) used four channels simultaneously, 

while including spatial contextual information of a 1 sec long window around the spike, in 

the training of their ANN. James and coworkers (1999) have employed a spatial-combiner 

stage with the outputs of a self-organizing ANN, using a fuzzy logic approach, in order to 
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incorporate spatial information in the multichannel EEG recordings. In a similar way, Acir 

and coauthors (2005) and Tzallas and coauthors (2006), in the final stage of their spike 

detection method, combined the outputs of the classification stage (ANN or SVM) in such a 

way as to confirm the presence of spike across two or more channels of the EEG recordings.  

Based on the foregoing, it is apparent that when deciding on a method capable of the 
detection of spikes in the multichannel EEG recordings, a few number of important 
questions need to be answered. Fig.4 illustrates the questions and some of the possible 
answers (James, 1997). To sum up, these are:  

 Should raw EEG recordings be used for the classification or should features be 
extracted first and the classification performed in the new feature space? 

 If features are to be extracted, what features adequately describe spikes for the 
classification purposes? 

 Once the decision made on raw vs. features, which machine learning algorithm should 
be used? 

 

Fig. 4. Questions to be answered in choosing the best spike detection criterion. Once the 
method for spike detection has been established, it is important to keep in mind the need to 
incorporate spatial and temporal information (James, 1997). 
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2.1.1 Spike enhancement before spike detection analysis 

From the preceding discussion, in the spike detection problem, a balance must be obtained 
between having high sensitivity and high selectivity. It is relatively easy to adjust method 
parameters to obtain performance where all spikes are found in a given patient, but this 
would usually be accompanied by an unacceptably large number of false detections (James, 
1997; James, Hagan, Jones, Bones, & Carroll, 1997; Oikonomou, et al., 2007). Alternatively, it 
is relatively easy to have a method with very low false detection rates, but this would be 
accompanied by an unacceptably large number of missed events. Many researchers argue 
that it is better to have a high sensitivity, to minimize missed events, and to have more false 
detections that can be checked by a neurophysiologist, rather than missing the events 
altogether (James, 1997; Oikonomou, et al., 2007). If we look at the method from the point of 
view of minimizing the number of false detections then the number of missed events will 
increase. However, if spikes can be enhanced prior to the use of a spike detection criterion, it 
should be possible to increase the sensitivity minimizing missed events, while maintaining 
the selectivity at a satisfactory level. Thus, a spike enhancement stage would not be a 
detection stage, but it would simply aim to enhance anything vaguely spike like, is needed. 
This means that actual spikes, as well as spike like artefacts and background will be 
enhanced, i.e. a large number of unwanted waveforms will be enhanced along with real 
spikes. This is quite acceptable as long as the spike detection method has high selectivity. To 
our knowledge, there few methods that explicitly addressed the spike enhancement 
problem in epileptic EEG recordings (James, et al., 1997; Lopes da Silva, et al., 1975; 
Oikonomou, et al., 2007). Lopes da Silva and co-authors (1975) used the method of 
modelling the background EEG with an autoregressive prediction filter and detecting 
transient waveforms by examining the prediction error. The autoregressive filter was 
calculated from a segment of the background EEG which is assumed to be stationary. James 
and coworkers  (1997) made use of the multireference adaptive noise cancelling (MRANC) 
in which the background EEG on adjacent channels in the multichannel EEG recording is 
used to adaptively cancel the background EEG on the channel under investigation. 
Oikonomou and coauthors (2007) have presented a method for spike enhancement in EEG 
recordings, based on time-varying autoregressive model in order to take advantage of the 
nonstationarity nature of the EEG signal. More specifically, the method was based on the 
assumption that EEG consists of an underlying background activity, which was assumed 
stationary, and superimposed transient nonstationarities such spikes and artifacts. The 
method used a time-varying autoregressive model for the accentuation of spikes and other 
transient waveforms that are similar to spikes. The parameters of the model were estimated 
by Kalman filter.  

After that, a complete spike detection scheme can be thought as a two-stage process: 
enhancement and detection (Fig. 5).  

The purpose of the enhancement stage is to make the spike samples stand out from the rest of 
the data, thereby simplifying the subsequent task of detection. Depending on the nature of the 
enhancement strategy, several EEG spike detection schemes have been proposed categorized 
into three broad classes: (i) time domain techniques (Kim & Kim, 2000; Malarvili, Hassanpour, 
Mesbah, & Boashash, 2005; Mukhopadhyay & Ray, 1998) (ii) signal modeling approaches 
(Dandapat & Ray, 1997; James, et al., 1997; Tzallas, Oikonomou, et al., 2006), and (iii) transform 
domain methods (Durka, 2004; Hassanpour, Mesbah, & Boashash, 2004). 
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Fig. 5. Complete spike detection methods consists of two stages: (I) spike enhancement and 
(II) spike detection analysis. The spike enhancement stage processes an EEG recording by 
attenuating the background EEG, thus primarily leaving only transients waveforms -which 
are then classified as spikes or non-spikes by following stage II (spike detection analysis 
which is analytically described in the section 2.1). The main goal of the spike enhancement 
stage is to increase the sensitivity of the overall method to candidate spikes, while 
maximizing selectivity (minimizing the number of candidate spikes which are not epileptic 
passed onto the next stage) (Tzallas, Oikonomou, et al., 2006). 

2.2 Automated epileptic seizure analysis 

Automated epileptic seizure analysis (Fig. 6) refers collectively to methods for:  

 epileptic seizures detection,  

 epileptic seizures prediction, and  

 epileptic seizures origin localization. 

 

Fig. 6. Automated analysis of epileptic EEG recordings addresses two major problems: 1) 
inter-ictal spike detection or spike detection (section 2.1) and 2) epileptic seizure analysis. In 
addition, methods for automated epileptic seizure analysis can be divided into three 
categories: (i) epileptic seizure detection, (ii) epileptic seizure prediction, and (iii) epileptic 
seizure origin localization (Tzallas, et al., 2007a, 2007b, 2009). 

In the literature, many algorithms for epileptic seizures detection have been proposed using 
classical signal processing methods (Gotman, 1999; McSharry, He, Smith, & Tarassenko, 
2002). All suggested signal processing’s methods aim to detect various patterns in EEG 
recordings that are the manifestation of an epileptic seizure. The entire process of methods 
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developed for automated epileptic seizure detection can be generally subdivided into two 
main stages: (i) feature extraction, and (iii) classification (Fig. 7). 

The selection of discriminative features is the basis of almost all epileptic seizure detection 
methods. Sometimes the choice for certain features is based on the physiological phenomena 
that need to be detected. Some authors referred to the fact that during an epileptic seizure 
many neurons fire synchronously (Gotman, 1999). To get a measure or this "synchronicity" 
they determined features such as the autocorrelation function (Liu, et al., 2002), the 
synchronization likelihood (Altenburg, Vermeulen, Strijers, Fetter, & Stam, 2003), or the 
nearest neighbour phase synchronization (van Putten, 2003). Other authors based their 
feature choice on morphological characteristics of epileptic EEG recordings. Epileptic 
seizures are often visible in EEG recordings as rhythmic discharges or multiple spikes. For 
spike detection, Gotman (1982) developed an algorithm that first breaks down the EEG 
signal into half-waves. Then morphological characteristics of these half-waves, such as 
amplitude and duration, were used to determine whether they are part of an epileptic 
seizure or not (Gotman, 1982, 1999). 

 

Fig. 7. Most of the automated epileptic seizure detection methods share certain common 
stages: (i) feature extraction and (ii) classification. By means of a moving-window analysis, 
features are calculated which is intended to characterise the multichannel EEG recordings. 
Then, the classification stage is employed to decide, from the calculated features, whether 
this EEG represents an epileptic seizure or not. 

For rhythmic discharges, fast Fourier transform based (Polat & Gunes, 2007, 2008a, 2008b), 
frequency domain (Alkan, Koklukaya, & Subasi, 2005; Chua, Chandran, Acharya, & Lim, 
2008; Gabor, 1998; Iscan, Dokur, & Tamer, 2011; Mousavi, Niknazar, & Vahdat, 2008; Murro 
et al., 1991; Nigam & Graupe, 2004; Sadati, Mohseni, & Magshoudi, 2006; Srinivasan, 
Eswaran, & Sriraam, 2005; Ubeyli, 2010a), time-frequency based (Martinez-Vargas, 
Avendano-Valencia, Giraldo, & Castellanos-Dominguez, 2011; Subasi & Gursoy, 2010; 
Tzallas, et al., 2007a, 2007b, 2009) or wavelet based features (Adeli, Ghosh-Dastidar, & 
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Dadmehr, 2007; Guler & Ubeyli, 2005, 2007; Guo, Rivero, Dorado, Rabunal, & Pazos, 2010; 
Guo, Rivero, & Pazos, 2010; Guo, Rivero, Seoane, & Pazos, 2009; Kiymik, Subasi, & Ozcalik, 
2004; Lima, Coelho, & Eisencraft, 2010; H. Ocak, 2008; H.  Ocak, 2009; Orhan, Hekim, & 
Ozer, 2011; Polat & Gunes, 2008b; Sadati, et al., 2006; Subasi, 2007a, 2007b; Subasi, Alkan, 
Koklukaya, & Kiymik, 2005; Subasi & Gursoy, 2010; Ubeyli, 2008c, 2009b, 2009c; Wang, 
Miao, & Xie, 2011) were often used. Some studies did not use prior information and just 
used large sets of various features. Aarabi and coauthors (2006) evaluated a large feature 
set containing various feature types. Their results showed that the most discriminative 
features for neonatal seizure detection1 are morphological based features, such as 
amplitude, shape and duration of waveforms. In addition, time domain features such as 
statistical features (Adjouadi et al., 2005), Hjorth’s descriptors (Hjorth, 1970), nonlinear 
features (Kannathal, Acharya, Lim, & Sadasivan, 2005; McSharry, et al., 2002)- correlation 
dimension (Elger & Lehnertz, 1998), Lyapunov exponent (Guler & Ubeyli, 2007; Guler, 
Ubeyli, & Guler, 2005; Ubeyli, 2006; Ubeyli, 2010b) and other features obtained from 
convolution kernels (Adjouadi et al., 2004), eigenvector methods (Naghsh-Nilchi & 
Aghashahi, 2010 ; Ubeyli, 2008a, 2008b, 2009a; Ubeyli & Guler, 2007), principal component 
analysis (PCA) (Ghosh-Dastidar, Adeli, & Dadmehr, 2008; Hesse & James, 2007; James & 
Hesse, 2005; Polat & Gunes, 2008a; Subasi & Gursoy, 2010), ICA (Hesse & James, 2007; 
James & Hesse, 2005; Subasi & Gursoy, 2010), crosscorrelation function (Chandaka, 
Chatterjee, & Munshi, 2009; Iscan, et al., 2011), and entropy (Guo, Rivero, Dorado, et al., 
2010; Guo, Rivero, & Pazos, 2010; Kannathal, Acharya, et al., 2005; Kannathal, Choo, 
Acharya, & Sadasivan, 2005; Liang, Wang, & Chang, 2010; Naghsh-Nilchi & Aghashahi, 
2010 ; H.  Ocak, 2009; Srinivasan, Eswaran, & Sriraam, 2007; Wang, et al., 2011)  have been 
proposed to characterize the EEG signal. It is also possible to select features using genetic 
programming (Firpi, Goodman, & Echauz, 2005; Guo, Rivero, Dorado, Munteanu, & 
Pazos, 2011). In this way, various features were extracted that were able to detect epileptic 
seizures, but these features did not have a physiological meaning.  

Once a set of features has been obtained to characterise a section of EEG, it is necessary to 
apply a classification method in order to decide whether this section of EEG is taken from an 
epileptic seizure or not. Just as a wide variety of features has been used, an equally varied 
set of classification methods can be found in the literature. The classification methods varied 
from simple threshold (Altunay, Telatar, & Erogul, 2010; Martinez-Vargas, et al., 2011), rule 
based decisions (Gotman, 1990, 1999), or linear classifiers (Ghosh-Dastidar, Adeli, & 
Dadmehr, 2007; Iscan, et al., 2011; Liang, et al., 2010; Subasi & Gursoy, 2010) to ANNs 
(Ghosh-Dastidar, et al., 2007, 2008; Guler, et al., 2005; Mousavi, et al., 2008; Nigam & 
Graupe, 2004; Srinivasan, et al., 2005, 2007; Tzallas, et al., 2007a, 2007b, 2009; Ubeyli, 2006, 
2009c; Ubeyli, 2010b) that have a complex shaped decision boundary. Other classification 
methods have been used using SVMs (Chandaka, et al., 2009; Guler & Ubeyli, 2007; Iscan, et 
al., 2011; Liang, et al., 2010; Lima, et al., 2010; Subasi & Gursoy, 2010; Ubeyli, 2008a; Ubeyli, 
2010a), k-nearest neighbour classifiers (Guo, et al., 2011; Iscan, et al., 2011; Liang, et al., 2010; 
Orhan, et al., 2011; Tzallas, et al., 2009), quadratic analysis (Iscan, et al., 2011), logistic 
regression (Alkan, et al., 2005; Tzallas, et al., 2009), naive Bayes classifiers (Iscan, et al., 2011; 

                                                 
1 The detection of epileptic seizures in neonates  is quite different from that in adults: the discharges are 
often much slower (down to 0.5 Hz), epileptic seizure onset can be gradual and epileptic seizures can 
last several minutes, the waveforms of epileptic seizures and the inter-ictal background show a high 
level of variability. 
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Tzallas, et al., 2009), decision trees (Iscan, et al., 2011; Polat & Gunes, 2007; Tzallas, et al., 
2009), Gaussian mixture model (Chua, et al., 2008; Lima & Coelho, 2011), mixture of expert 
model (Subasi, 2007b; Ubeyli, 2007, 2008c; Ubeyli & Guler, 2007) and adaptive neurofuzzy 
inference systems (Guler & Ubeyli, 2005; Kannathal, Choo, et al., 2005).  

In addition to epileptic seizure detection methods, prediction methods have become 
increasingly valuable since detection of seizures at an early stage can warn a patient that a 
seizure is about to occur. Additionally, these methods can alert medical staff, and allow 
them to perform behavioural testing to further assess which specific functions may be 
impaired because of an epileptic seizure and help them in localizing the source of the 
epileptic seizure activity. Methods used to predict epileptic seizures include time-domain 
analysis (Lange, Lieb, Engel, & Crandall, 1983), frequency-based methods (Schiff et al., 
2000), nonlinear dynamics and chaos (Lehnertz et al., 2001), methods of delays (Le Van 
Quyen et al., 2001), and intelligent approaches (Geva & Kerem, 1998). Advances in seizure 
prediction promise to give rise to implantable devices able to warn of impending seizures 
and to trigger therapy to prevent clinical epileptic attacks (Litt & Echauz, 2002; McSharry, 
Smith, & Tarassenko, 2003). Treatments such as electrical stimulation or focal drug infusion 
could be given on demand and might eliminate side effects in some patients taking 
antiepileptic drugs. 

On the other hand, if drug control of epileptic seizures is not successful and if the epileptic 
seizures are serious enough, then a further option for treatment is surgery. Epilepsy surgery 
outcome strongly depends on the epileptic seizure origin localization. The analysis of ictal 
EEG recordings (scalp or intracranial) is a gold standard for definition of localization of sn 
epileptic seizure origin. Several linear (Parra, Spence, Gerson, & Sajda, 2005) and nonlinear 
methods (Acar, Aykut-Bingol, Bingol, Bro, & Yener, 2007) for analysis of epileptic EEG 
recordings as well as multi-way arrays models (Miwakeichi et al., 2004) have been used to 
understand the complex structure of epileptic seizure and localize seizure origin. 

Table 1 shows a number of automated epileptic seizure detection methods found in the 
literature which is evaluated using the same dataset (Andrzejak et al., 2001). In Table 1, all 
methods are listed with their methodological standards (detection method, dataset, and 
classification accuracy). The dataset described in (Andrzejak, et al., 2001) is used for training 
and evaluation of these methods. This dataset includes five subsets five sets (denoted as Z, 
O, N, F and S), each containing 100 single-channel EEG segments of 23.6 sec duration, with 
sampling rate of 173.6 Hz. These segments were selected and cut out from continuous multi-
channel EEG recordings after visual inspection for artifacts, e.g., due to muscle activity or 
eye movements. Sets Z and O consisted of segments taken from surface EEG recordings that 
were carried out on five healthy volunteers using a standardized electrode placement 
scheme. Volunteers were relaxed in an awake state with eyes open (Z) and eyes closed (O), 
respectively. Sets N, F, and S originated from an EEG archive of presurgical diagnosis. 
Segments in set F were recorded from the epileptogenic zone, and those in set N from the 
hippocampal formation of the opposite hemisphere of the brain. While sets N and F 
contained only activity measured during seizure-free intervals, set S only contained 
epileptic seizure activity. All EEG signals were recorded with the same 128-channel 
amplifier system, using an average common reference. The data were digitized at 173.61 
samples per second using a 12-bit resolution and they have the spectral bandwidth of the 
acquisition system, which varies from 0.5 to 85 Hz. 
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3. Conclusion 

Locating epileptic activity in the form of epileptic seizures or inter-ictal spikes in EEG 
recordings (usually lasting days or weeks in case of long-term recordings) is a demanding, 
time-consuming task because this activity constitutes a small percentage of the entire 
recording. This difficulty has motivated the development of automated methods that scan, 
identify, and then present to a neurophysiologist epochs containing epileptic events. Two 
types of automated methods for analysis of epileptic EEG recordings have been reported in 
the literature: those aimed at inter-ictal spike detection, and those aimed at epileptic seizure 
analysis and characterization of abnormal EEG activities in long-term recordings. In this 
chapter, a literature survey of the significant and recent studies that are concerned with 
effective detection of spike and epileptic seizures using EEG signals are presented. The main 
goal behind this review is to assist the researchers in the field of EEG signal analysis to 
understand the available methods and adopt the same for the detection of neurological 
disorders associated with EEG recordings. 
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