282,874 research outputs found

    A Real-time Human Pose Estimation Approach for Optimal Sensor Placement in Sensor-based Human Activity Recognition

    Full text link
    Sensor-based Human Activity Recognition facilitates unobtrusive monitoring of human movements. However, determining the most effective sensor placement for optimal classification performance remains challenging. This paper introduces a novel methodology to resolve this issue, using real-time 2D pose estimations derived from video recordings of target activities. The derived skeleton data provides a unique strategy for identifying the optimal sensor location. We validate our approach through a feasibility study, applying inertial sensors to monitor 13 different activities across ten subjects. Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach, demonstrating its efficacy. This research significantly advances the field of Human Activity Recognition by providing a lightweight, on-device solution for determining the optimal sensor placement, thereby enhancing data anonymization and supporting a multimodal classification approach

    Continuous human motion recognition with a dynamic range-Doppler trajectory method based on FMCW radar

    Get PDF
    Radar-based human motion recognition is crucial for many applications, such as surveillance, search and rescue operations, smart homes, and assisted living. Continuous human motion recognition in real-living environment is necessary for practical deployment, i.e., classification of a sequence of activities transitioning one into another, rather than individual activities. In this paper, a novel dynamic range-Doppler trajectory (DRDT) method based on the frequency-modulated continuous-wave (FMCW) radar system is proposed to recognize continuous human motions with various conditions emulating real-living environment. This method can separate continuous motions and process them as single events. First, range-Doppler frames consisting of a series of range-Doppler maps are obtained from the backscattered signals. Next, the DRDT is extracted from these frames to monitor human motions in time, range, and Doppler domains in real time. Then, a peak search method is applied to locate and separate each human motion from the DRDT map. Finally, range, Doppler, radar cross section (RCS), and dispersion features are extracted and combined in a multidomain fusion approach as inputs to a machine learning classifier. This achieves accurate and robust recognition even in various conditions of distance, view angle, direction, and individual diversity. Extensive experiments have been conducted to show its feasibility and superiority by obtaining an average accuracy of 91.9% on continuous classification

    CAVIAR: Context-driven Active and Incremental Activity Recognition

    Get PDF
    Activity recognition on mobile device sensor data has been an active research area in mobile and pervasive computing for several years. While the majority of the proposed techniques are based on supervised learning, semi-supervised approaches are being considered to reduce the size of the training set required to initialize the model. These approaches usually apply self-training or active learning to incrementally refine the model, but their effectiveness seems to be limited to a restricted set of physical activities. We claim that the context which surrounds the user (e.g., time, location, proximity to transportation routes) combined with common knowledge about the relationship between context and human activities could be effective in significantly increasing the set of recognized activities including those that are difficult to discriminate only considering inertial sensors, and the highly context-dependent ones. In this paper, we propose CAVIAR, a novel hybrid semi-supervised and knowledge-based system for real-time activity recognition. Our method applies semantic reasoning on context-data to refine the predictions of an incremental classifier. The recognition model is continuously updated using active learning. Results on a real dataset obtained from 26 subjects show the effectiveness of our approach in increasing the recognition rate, extending the number of recognizable activities and, most importantly, reducing the number of queries triggered by active learning. In order to evaluate the impact of context reasoning, we also compare CAVIAR with a purely statistical version, considering features computed on context-data as part of the machine learning process

    Learning and recognition of hybrid manipulation tasks in variable environments using probabilistic flow tubes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.This thesis was scanned as part of an electronic thesis pilot project.Cataloged from PDF version of thesis. This thesis was scanned as part of an electronic thesis pilot project.Includes bibliographical references (p. 139-144).Robots can act as proxies for human operators in environments where a human operator is not present or cannot directly perform a task, such as in dangerous or remote situations. Teleoperation is a common interface for controlling robots that are designed to be human proxies. Unfortunately, teleoperation may fail to preserve the natural fluidity of human motions due to interface limitations such as communication delays, non-immersive sensing, and controller uncertainty. I envision a robot that can learn a set of motions that a teleoperator commonly performs, so that it can autonomously execute routine tasks or recognize a user's motion in real time. Tasks can be either primitive activities or compound plans. During online operation, the robot can recognize a user's teleoperated motions on the fly and offer real-time assistance, for example, by autonomously executing the remainder of the task. I realize this vision by addressing three main problems: (1) learning primitive activities by identifying significant features of the example motions and generalizing the behaviors from user demonstration trajectories; (2) recognizing activities in real time by determining the likelihood that a user is currently executing one of several learned activities; and (3) learning complex plans by generalizing a sequence of activities, through auto-segmentation and incremental learning of previously unknown activities. To solve these problems, I first present an approach to learning activities from human demonstration that (1) provides flexibility and robustness when encoding a user's demonstrated motions by using a novel representation called a probabilistic flow tube, and (2) automatically determines the relevant features of a motion so that they can be preserved during autonomous execution in new situations. I next introduce an approach to real-time motion recognition that (1) uses temporal information to successfully model motions that may be non-Markovian, (2) provides fast real-time recognition of motions in progress by using an incremental temporal alignment approach, and (3) leverages the probabilistic flow tube representation to ensure robustness during recognition against varying environment states. Finally, I develop an approach to learn combinations of activities that (1) automatically determines where activities should be segmented in a sequence and (2) learns previously unknown activities on the fly. I demonstrate the results of autonomously executing motions learned by my approach on two different robotic platforms supporting user-teleoperated manipulation tasks in a variety of environments. I also present the results of real-time recognition in different scenarios, including a robotic hardware platform. Systematic testing in a two-dimensional environment shows up to a 27% improvement in activity recognition rates over prior art, while maintaining average computing times for incremental recognition of less than half of human reaction time.by Shuonan Dong.Ph.D

    Human behavior understanding for worker-centered intelligent manufacturing

    Get PDF
    “In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach is proposed for worker activity recognition using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos from a visual camera. To automatically learn the importance of different sensors, a novel attention-based approach is proposed to human activity recognition using multiple IMU sensors worn at different body locations. To deploy the developed algorithms to the factory floor, a real-time assembly operation recognition system is proposed with fog computing and transfer learning. The proposed worker-centered training & assistant system has been validated and demonstrated the feasibility and great potential for applying to the manufacturing industry for frontline workers. Our developed approaches have been evaluated: 1) the multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) the multi-modal approach achieves an accuracy of 97% on a worker activity dataset including 6 activities and achieves the best performance on a public dataset, 3) the attention-based method outperforms the state-of-the-art methods on five publicly available datasets, and 4) the developed transfer learning model achieves a real-time recognition accuracy of 95% on a dataset including 10 worker operations”--Abstract, page iv

    Situation inference and context recognition for intelligent mobile sensing applications

    Get PDF
    The usage of smart devices is an integral element in our daily life. With the richness of data streaming from sensors embedded in these smart devices, the applications of ubiquitous computing are limitless for future intelligent systems. Situation inference is a non-trivial issue in the domain of ubiquitous computing research due to the challenges of mobile sensing in unrestricted environments. There are various advantages to having robust and intelligent situation inference from data streamed by mobile sensors. For instance, we would be able to gain a deeper understanding of human behaviours in certain situations via a mobile sensing paradigm. It can then be used to recommend resources or actions for enhanced cognitive augmentation, such as improved productivity and better human decision making. Sensor data can be streamed continuously from heterogeneous sources with different frequencies in a pervasive sensing environment (e.g., smart home). It is difficult and time-consuming to build a model that is capable of recognising multiple activities. These activities can be performed simultaneously with different granularities. We investigate the separability aspect of multiple activities in time-series data and develop OPTWIN as a technique to determine the optimal time window size to be used in a segmentation process. As a result, this novel technique reduces need for sensitivity analysis, which is an inherently time consuming task. To achieve an effective outcome, OPTWIN leverages multi-objective optimisation by minimising the impurity (the number of overlapped windows of human activity labels on one label space over time series data) while maximising class separability. The next issue is to effectively model and recognise multiple activities based on the user's contexts. Hence, an intelligent system should address the problem of multi-activity and context recognition prior to the situation inference process in mobile sensing applications. The performance of simultaneous recognition of human activities and contexts can be easily affected by the choices of modelling approaches to build an intelligent model. We investigate the associations of these activities and contexts at multiple levels of mobile sensing perspectives to reveal the dependency property in multi-context recognition problem. We design a Mobile Context Recognition System, which incorporates a Context-based Activity Recognition (CBAR) modelling approach to produce effective outcome from both multi-stage and multi-target inference processes to recognise human activities and their contexts simultaneously. Upon our empirical evaluation on real-world datasets, the CBAR modelling approach has significantly improved the overall accuracy of simultaneous inference on transportation mode and human activity of mobile users. The accuracy of activity and context recognition can also be influenced progressively by how reliable user annotations are. Essentially, reliable user annotation is required for activity and context recognition. These annotations are usually acquired during data capture in the world. We research the needs of reducing user burden effectively during mobile sensor data collection, through experience sampling of these annotations in-the-wild. To this end, we design CoAct-nnotate --- a technique that aims to improve the sampling of human activities and contexts by providing accurate annotation prediction and facilitates interactive user feedback acquisition for ubiquitous sensing. CoAct-nnotate incorporates a novel multi-view multi-instance learning mechanism to perform more accurate annotation prediction. It also includes a progressive learning process (i.e., model retraining based on co-training and active learning) to improve its predictive performance over time. Moving beyond context recognition of mobile users, human activities can be related to essential tasks that the users perform in daily life. Conversely, the boundaries between the types of tasks are inherently difficult to establish, as they can be defined differently from the individuals' perspectives. Consequently, we investigate the implication of contextual signals for user tasks in mobile sensing applications. To define the boundary of tasks and hence recognise them, we incorporate such situation inference process (i.e., task recognition) into the proposed Intelligent Task Recognition (ITR) framework to learn users' Cyber-Physical-Social activities from their mobile sensing data. By recognising the engaged tasks accurately at a given time via mobile sensing, an intelligent system can then offer proactive supports to its user to progress and complete their tasks. Finally, for robust and effective learning of mobile sensing data from heterogeneous sources (e.g., Internet-of-Things in a mobile crowdsensing scenario), we investigate the utility of sensor data in provisioning their storage and design QDaS --- an application agnostic framework for quality-driven data summarisation. This allows an effective data summarisation by performing density-based clustering on multivariate time series data from a selected source (i.e., data provider). Thus, the source selection process is determined by the measure of data quality. Nevertheless, this framework allows intelligent systems to retain comparable predictive results by its effective learning on the compact representations of mobile sensing data, while having a higher space saving ratio. This thesis contains novel contributions in terms of the techniques that can be employed for mobile situation inference and context recognition, especially in the domain of ubiquitous computing and intelligent assistive technologies. This research implements and extends the capabilities of machine learning techniques to solve real-world problems on multi-context recognition, mobile data summarisation and situation inference from mobile sensing. We firmly believe that the contributions in this research will help the future study to move forward in building more intelligent systems and applications

    A Method for Sensor-Based Activity Recognition in Missing Data Scenario

    Get PDF
    Sensor-based human activity recognition has various applications in the arena of healthcare, elderly smart-home, sports, etc. There are numerous works in this field—to recognize various human activities from sensor data. However, those works are based on data patterns that are clean data and have almost no missing data, which is a genuine concern for real-life healthcare centers. Therefore, to address this problem, we explored the sensor-based activity recognition when some partial data were lost in a random pattern. In this paper, we propose a novel method to improve activity recognition while having missing data without any data recovery. For the missing data pattern, we considered data to be missing in a random pattern, which is a realistic missing pattern for sensor data collection. Initially, we created different percentages of random missing data only in the test data, while the training was performed on good quality data. In our proposed approach, we explicitly induce different percentages of missing data randomly in the raw sensor data to train the model with missing data. Learning with missing data reinforces the model to regulate missing data during the classification of various activities that have missing data in the test module. This approach demonstrates the plausibility of the machine learning model, as it can learn and predict from an identical domain. We exploited several time-series statistical features to extricate better features in order to comprehend various human activities. We explored both support vector machine and random forest as machine learning models for activity classification. We developed a synthetic dataset to empirically evaluate the performance and show that the method can effectively improve the recognition accuracy from 80.8% to 97.5%. Afterward, we tested our approach with activities from two challenging benchmark datasets: the human activity sensing consortium (HASC) dataset and single chest-mounted accelerometer dataset. We examined the method for different missing percentages, varied window sizes, and diverse window sliding widths. Our explorations demonstrated improved recognition performances even in the presence of missing data. The achieved results provide persuasive findings on sensor-based activity recognition in the presence of missing data

    Embedding-based real-time change point detection with application to activity segmentation in smart home time series data

    Get PDF
    [EN]Human activity recognition systems are essential to enable many assistive applications. Those systems can be sensor-based or vision-based. When sensor-based systems are deployed in real environments, they must segment sensor data streams on the fly in order to extract features and recognize the ongoing activities. This segmentation can be done with different approaches. One effective approach is to employ change point detection (CPD) algorithms to detect activity transitions (i.e. determine when activities start and end). In this paper, we present a novel real-time CPD method to perform activity segmentation, where neural embeddings (vectors of continuous numbers) are used to represent sensor events. Through empirical evaluation with 3 publicly available benchmark datasets, we conclude that our method is useful for segmenting sensor data, offering significant better performance than state of the art algorithms in two of them. Besides, we propose the use of retrofitting, a graph-based technique, to adjust the embeddings and introduce expert knowledge in the activity segmentation task, showing empirically that it can improve the performance of our method using three graphs generated from two sources of information. Finally, we discuss the advantages of our approach regarding computational cost, manual effort reduction (no need of hand-crafted features) and cross-environment possibilities (transfer learning) in comparison to others.This work was carried out with the financial support of FuturAALEgo (RTI2018-101045-A-C22) granted by Spanish Ministry of Science, Innovation and Universities

    Deep HMResNet Model for Human Activity-Aware Robotic Systems

    Full text link
    Endowing the robotic systems with cognitive capabilities for recognizing daily activities of humans is an important challenge, which requires sophisticated and novel approaches. Most of the proposed approaches explore pattern recognition techniques which are generally based on hand-crafted features or learned features. In this paper, a novel Hierarchal Multichannel Deep Residual Network (HMResNet) model is proposed for robotic systems to recognize daily human activities in the ambient environments. The introduced model is comprised of multilevel fusion layers. The proposed Multichannel 1D Deep Residual Network model is, at the features level, combined with a Bottleneck MLP neural network to automatically extract robust features regardless of the hardware configuration and, at the decision level, is fully connected with an MLP neural network to recognize daily human activities. Empirical experiments on real-world datasets and an online demonstration are used for validating the proposed model. Results demonstrated that the proposed model outperforms the baseline models in daily human activity recognition.Comment: Presented at AI-HRI AAAI-FSS, 2018 (arXiv:1809.06606

    Human activity classification using micro-Doppler signatures and ranging techniques

    Get PDF
    PhD ThesisHuman activity recognition is emerging as a very import research area due to its potential applications in surveillance, assisted living, and military operations. Various sensors including accelerometers, RFID, and cameras, have been applied to achieve automatic human activity recognition. Wearable sensor-based techniques have been well explored. However, some studies have shown that many users are more disinclined to use wearable sensors and also may forget to carry them. Consequently, research in this area started to apply contactless sensing techniques to achieve human activity recognition unobtrusively. In this research, two methods were investigated for human activity recognition, one method is radar-based and the other is using LiDAR (Light Detection and Ranging). Compared to other techniques, Doppler radar and LiDAR have several advantages including all-weather and all-day capabilities, non-contact and nonintrusive features. Doppler radar also has strong penetration to walls, clothes, trees, etc. LiDAR can capture accurate (centimetre-level) locations of targets in real-time. These characteristics make methods based on Doppler radar and LiDAR superior to other techniques. Firstly, this research measured micro-Doppler signatures of different human activities indoors and outdoors using Doppler radars. Micro-Doppler signatures are presented in the frequency domain to reflect different frequency shifts resulted from different components of a moving target. One of the major differences of this research in relation to other relevant research is that a simple pulsed radar system of very low-power was used. The outdoor experiments were performed in places of heavy clutter (grass, trees, uneven terrains), and confusers including animals and drones, were also considered in the experiments. Novel usages of machine learning techniques were implemented to perform subject classification, human activity classification, people counting, and coarse-grained localisation by classifying the micro-Doppler signatures. For the feature extraction of the micro-Doppler signatures, this research proposed the use of a two-directional twodimensional principal component analysis (2D2PCA). The results show that by applying 2D2PCA, the accuracy results of Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers were greatly improved. A Convolutional Neural Network (CNN) was built for the target classifications of type, number, activity, and coarse localisation. The CNN model obtained very high classification accuracies (97% to 100%) for the outdoor experiments, which were superior to the results obtained by SVM and kNN. The indoor experiments measured several daily activities with the focus on dietary activities (eating and drinking). An overall classification rate of 92.8% was obtained in activity recognition in a kitchen scenario using the CNN. Most importantly, in nearly real-time, the proposed approach successfully recognized human activities in more than 89% of the time. This research also investigated the effects on the classification performance of the frame length of the sliding window, the angle of the direction of movement, and the number of radars used; providing valuable guidelines for machine learning modeling and experimental setup of micro-Doppler based research and applications. Secondly, this research used a two dimensional (2D) LiDAR to perform human activity detection indoors. LiDAR is a popular surveying method that has been widely used in localisation, navigation, and mapping. This research proposed the use of a 2D LiDAR to perform multiple people activity recognition by classifying their trajectories. Points collected by the LiDAR were clustered and classified into human and non-human classes. For the human class, the Kalman filter was used to track their trajectories, and the trajectories were further segmented and labelled with their corresponding activities. Spatial transformation was used for trajectory augmentation in order to overcome the problem of unbalanced classes and boost the performance of human activity recognition. Finally, a Long Short-term Memory (LSTM) network and a (Temporal Convolutional Network) TCN was built to classify the trajectory samples into fifteen activity classes. The TCN achieved the best result of 99.49% overall accuracy. In comparison, the proposed TCN slightly outperforms the LSTM. Both of them outperform hidden Markov Model (HMM), dynamic time warping (DTW), and SVM with a wide margin
    • …
    corecore