
Learning and Recognition of Hybrid Manipulation

Tasks in Variable Environments using Probabilistic

Flow Tubes

by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

Author
Departmertt of Aeronantesrd stronautics

" 1 /i,

Certified

August 23, 2012

by...

Certified by....I

Certified by.....

A/

Accepted by .. .

Prof. Brian C. Williams
Thesis Supervisor

........................
Dr. Andreas Hoffmann

Thesis Committee

........................
Prof. Patrick Winston

Thesis Committee

Prof. Eytan Modiano
Chair, Committee on Graduate Students

,

Learning and Recognition of Hybrid Manipulation Tasks in

Variable Environments using Probabilistic Flow Tubes

by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
on August 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Robots can act as proxies for human operators in environments where a human oper-
ator is not present or cannot directly perform a task, such as in dangerous or remote
situations. Teleoperation is a common interface for controlling robots that are de-
signed to be human proxies. Unfortunately, teleoperation may fail to preserve the
natural fluidity of human motions due to interface limitations such as communication
delays, non-immersive sensing, and controller uncertainty.

I envision a robot that can learn a set of motions that a teleoperator commonly
performs, so that it can autonomously execute routine tasks or recognize a user's
motion in real time. Tasks can be either primitive activities or compound plans.
During online operation, the robot can recognize a user's teleoperated motions on
the fly and offer real-time assistance, for example, by autonomously executing the
remainder of the task.

I realize this vision by addressing three main problems: (1) learning primitive
activities by identifying significant features of the example motions and generalizing
the behaviors from user demonstration trajectories; (2) recognizing activities in real
time by determining the likelihood that a user is currently executing one of several
learned activities; and (3) learning complex plans by generalizing a sequence of ac-
tivities, through auto-segmentation and incremental learning of previously unknown
activities.

To solve these problems, I first present an approach to learning activities from
human demonstration that (1) provides flexibility and robustness when encoding a
user's demonstrated motions by using a novel representation called a probabilistic
flow tube, and (2) automatically determines the relevant features of a motion so
that they can be preserved during autonomous execution in new situations. I next
introduce an approach to real-time motion recognition that (1) uses temporal in-
formation to successfully model motions that may be non-Markovian, (2) provides
fast real-time recognition of motions in progress by using an incremental temporal
alignment approach, and (3) leverages the probabilistic flow tube representation to
ensure robustness during recognition against varying environment states. Finally, I

3

develop an approach to learn combinations of activities that (1) automatically deter-
mines where activities should be segmented in a sequence and (2) learns previously
unknown activities on the fly.

I demonstrate the results of autonomously executing motions learned by my ap-
proach on two different robotic platforms supporting user-teleoperated manipulation
tasks in a variety of environments. I also present the results of real-time recognition
in different scenarios, including a robotic hardware platform. Systematic testing in
a two-dimensional environment shows up to a 27% improvement in activity recogni-
tion rates over prior art, while maintaining average computing times for incremental
recognition of less than half of human reaction time.

Thesis Supervisor: Prof. Brian C. Williams

4

Acknowledgments

First, I must thank my partner in life, Thomas Coffee, for the long hours talking

through the major stumbling blocks in my research with me, reviewing and proof-

reading my papers, and cooking for me so I can have more time to work.

This thesis would not have been possible without the support, insights, and en-

couragement of my research advisor, Brian Williams, and my committee members,

Andreas Hofmann and Patrick Winston. Their patience and understanding through-

out the thesis development and writing process has reduced a most stressful period

into something approachable and even enjoyable.

To all my friends in the MERS lab, past and present, I say "thank you" for being

such an important part of my life for the past number of years. In no particular order,

thank you, Julie Shah, for all your advice and friendship inside the lab and out; David

Wang for all those memories since freshman year; Hui Li, for introducing me to the

wonders of Seattle; Larry Bush, for providing entertainment in the most unexpected

ways; Lars Blackmore, for being such an inspirational go-getter; Bobby Effinger, for

showing me what lies ahead; Hiro Ono, for being the role model of hard work; Cristi

Wilcox, for reminding us that there is life outside of lab; Patrick Conrad, for all those

long hours on the WAM and ATHLETE; Peng Yu, for his humble brilliance; Eric

Timmons, for bringing social life to our group; Steve Levine, for making the WAM

work like magic; Andrew Wang, for his leadership and initiatives; Pedro Santana, for

his Brazilian sense of humor; and Simon Fang, for keeping the lab fun.

Special thanks also go to David Mittman, Sarah Osentoski, and Shuo Wang for

their help in operating the different robots used in the demonstrations and experi-

ments presented in this thesis. Special thanks also to Sonia Chernova for organizing

an excellent Learning from Demonstration Challenge at AAAI 2011.

This research was in part funded by the National Science Foundation graduate

fellowship and the National Defense Science and Engineering Graduate (NDSEG)

Fellowship, 32 CFR 168a. Additional support was provided by a NASA JPL Strategic

University Research Partnership.

5

In memory of Darrell Cain, a space visionary.

August 25, 1985 - July 31, 2012

6

19

. . . . 19

. . . . 24

. . . . 26

. . . . 26

. . . . 28

. . . . 29

. . . . 31

33

. . . . 33

. . . . 40

. . . . 40

. . . . 41

1 Introduction

1.1 M otivation

1.2 Problem Description

1.3 Approach Overview and Innovations

1.3.1 Activity Learning

1.3.2 Real-time Recognition

1.3.3 Plan Learning

1.4 Thesis Layout

2 Related Work

2.1 Learning from Demonstration

2.2 Motion Recognition

2.3 Flow Tube Background from Plan Execution .

2.4 Adaptive Interfaces

3 Problem Statement

3.1 Definitions of Inputs and Outputs

3.2 Definition of an Activity Learning Problem . .

3.3 Definition of an Activity Recognition Problem

3.4 Definition of a Plan Learning Problem

3.5 Relationship to Prior Art

43

. 45

. 48

. 49

. 50

. 50

53

7

Contents

4 Learning Single Activities

4.1 Identifying Motion Variables . 55

4.2 Data Processing and Flow Tube Generation 60

4.3 Pre-learning . 66

4.4 Enabling Autonomous Execution . 69

5 Recognizing Motions Online 71

5.1 Partial Flow Tube Matching . 73

5.2 Temporal Alignment of Partial Motion 75

5.3 Compute Log Likelihoods . 76

6 Learning High-level Plans 79

6.1 Determining Activity Sequence . 83

6.2 Learning Unknown Activities . 87

6.3 Auto-segmentation . 89

6.4 Validate auto-segmentation . 98

6.5 Generating Plan-level Probabilistic Flow Tube 99

7 Experimental Results 103

7.1 Validation of Activity Learning and Recognition 103

7.1.1 Two-dimensional Variable Environment 103

7.1.2 Two-dimensional Static Environment 108

7.1.3 Hardware Validation of Real-time Recognition 109

7.1.4 Hardware Demonstration of Autonomous Execution 111

7.2 Validation of Plan Learning . 117

7.2.1 Two-dimensional Environment Tests 117

7.2.2 Hardware Demonstration of Plan Learning 123

7.3 Results Summary . 131

8 Conclusions 133

8.1 Future Extensions. 133

8.1.1 Compliant Execution . 133

8.1.2 Obstacle Avoidance. 133

8

8.1.3 Plan Recognition . 134

8.2 Conclusion . 136

9

10

List of Figures

1-1 Docked Tri-ATHLETE robots transporting a habitat off of a lunar

lander mock-up. The initial and goal states are shown in the first and

last im ages, respectively. .

1-2 Knowing only the previous state at the highlighted position will not

distinguish the two motions. .

1-3 Example visual representation of a probabilistic flow tube

1-4 Architecture of learning and recognition problems

1-5 Probabilistic flow tubes can look drastically different for different en-

vironm ent states .

1-6 Given a user's current execution (black arrow), the algorithm first de-

termines correspondence points (pink dots) in each candidate learned

m otion .

1-7 Illustration of auto-segmentation .

2-1 Mixtures of Gaussians may not be an intuitive representation of con-

tinuous motions.

11

20

22

23

25

27

28

30

34

3-1 Illustrated example of a learning and recognition problem. Initially,

a user demonstrates a set of motions a few times (1). The learning

problem consists of generalizing the demonstrations into probabilistic

flow tube representations for each of the three motions in the new

environment state (2). Given a new user motion depicted as the shift

in the red box position in the direction of the arrow, the recognition

problem consists of determining which motion the user is most likely

perform ing (3). 44

4-1 Example illustrations of five possible ways that motion variables can

be relevant. Arrows refer to the robot end effector trajectories. 56

4-2 Four training examples of P, position data at time steps when contact

changes. Notice that across different training samples, the effector

(blue) and box (red) positions match at the start of contact, and the

effector (blue) and bin (green) positions match at the end of contact.

These are the relevant features of the "move box to bin" motion. . . . 57

4-3 Clustering identifies motion variables for a 2-D "move object to bin"

motion. Left: robot effector and bin locations at the start and end of

each demonstration. Middle: values of (Pbin (0) - peff (0)) to deter-

mine if relEffStart is a relevant motion variable for position-the large

spread indicates low relevance. Right: values of (Pbin (N) - Peff (N))

to determine if relEffEnd is a relevant motion variable for position-the

narrow spread indicates that this variable is relevant to this motion. . 58

4-4 Illustrated steps of the approach with three demonstrations of the

"move the box to the bin" task in the two-dimensional simulation en-

vironm ent . 62

4-5 Illustration of how normalization works for position and orientation

variables. 64

12

4-6 For two sets of environment states p ("prelearned") and c ("current")

that correspond to the same set of five training sequences shown in

blue, generating the PFT for c directly from training sequences (left)

is equivalent to generating the PFT for c from normalizing the PFT

for p (right). 68

5-1 An example partial test motion (black) is compared to each learned

PFT (blue) in a 2D environment initially with a red box, green bin,

and stationary locations x and o as shown. The magenta marking on

each PFT indicates the spot on the PFT that best matches the current

execution (rightmost end of black motion) as determined by lines 2 to 6

in A lgorithm 5.1. 74

5-2 During incremental dynamic time warping, the algorithm only needs to

update the cost and back pointer matrices from the previously stored

values (depicted by the inner box) to obtain a new temporal matching

(red and purple path). 76

6-1 Summary of plan learning approach 82

6-2 Illustration of performing online recognition on task sequences. In

the two keyframe trials Y1 and 22, the log likelihood of activity 2 is

highest during the first segment, activity 3 is highest during the second

segment, and activity 1 is highest during the third segment. Therefore,

it is likely that the activity sequence in this plan is {2, 3, 1}. 85

6-3 Example process of determining the sequence of activities that compose

the demonstrated plan from keyframe trials. Shading represents rec-

ognized log likelihood, and red values represent the percentage of time

steps during which a particular activity was recognized in a keyframe

segment. The keyframe trials "vote" on an average recognition fre-

quency for each segment and agree on a recognized activity sequence

for the plan. 86

13

6-4 Illustration of generating candidate keyframes on a non-keyframe trial

using time proportions in a keyframe trial, and updating candidate

keyframes based on motion variables observed in keyframe trial. . . . 91

6-5 Illustration of how a keyframe is selected based on motion variable

geom etry . 93

6-6 Generating the PFT for the entire plan involves concatenating the

PFTs for each activity in the sequence initialized at evolving environ-

m ent states . 101

7-1 Example learned PFTs in randomly generated initial environment states. 104

7-2 Example learned flow tubes of different activities overlaid in three dif-

ferent initial environment states. Blue PFTs represent "move box to

bin," red PFTs represent "move box left 1 unit," and green PFTs

represent "move box to x." . 105

7-3 Compare learned PFT and GMM models (blue) against user generated

trajectories (red) in different initial environment states. Blue ellipses

represent the range of 1 standard deviation. 106

7-4 Example log likelihoods over time for the same test cases using the

PFT approach (top row) and the HMM approach (bottom row) . . . 107

7-5 Example output of an "encircle bin clockwise with box" motion. Left:

the PFT model. Right: the GMM model. 108

7-6 WAM robot setups for the five motions: "move ball to bin" (A), "wind

cable" (B), "unwind cable" (B), "anchor rope left then right" (C), and

"anchor rope right then left" (C) . 110

7-7 WAM end effector trajectories . 111

7-8 ATHLETE move box to platform task 112

7-9 Five teleoperated demonstrations of the "ATHLETE move box to plat-

form" task. Autonomous execution of the task is shown in thick green. 112

7-10 Autonomous execution of ATHLETE move box to platform task . . . 113

7-11 PR2 and potential task setup . 114

14

7-12 Results of learning from 5 demonstrations of each motion. 115

7-13 Result of auto segmentation on non-keyframe trials (boxed) of "box to

bin, ball to center" plan, from 3 user provided keyframe trials using

motion variable inference approach. Compare with Figure 7-14. . . . 118

7-14 Result of auto segmentation on non-keyframe trials (boxed) of "box to

bin, ball to center" plan, from 3 user provided keyframe trials using

recognition optimization approach. Compare with Figure 7-13. 119

7-15 Example generated plan PFTs for "box to bin and ball to center" plan

from different initial environment states. 122

7-16 Hardware environment setup . 124

7-17 Simulation environment . 125

7-18 Auto-generated PFT trajectories for the "red on green, pink on red"

("rgpr" for short) task plan for various new environment states 127

7-19 Auto-generated trajectory and PFT for the "red on green, pink on red"

task plan for new environment state trial 2. 128

7-20 Auto-generated trajectory and PFT for the "red on green, pink on red"

task plan for new environment state trial 6. 129

7-21 Auto-generated trajectory and PFT for the "red on green, pink on red"

task plan for new environment state trial 9. 130

8-1 Obstacle avoidance may be achieved by overlaying a potential field that

pushes away from obstacles in the environment 134

8-2 To model a sequence of activities with different durations, one can ex-

plicitly model each activity at different time steps as separate states.

Each activity time slice aT represents the rth activity in the plan tra-

jectory at time step r since the beginning of the activity. At each time

(T)

step, an activity ar can transition either to itself a,('+') (downward)

or to the next activity a (rightward) 135

15

16

List of Algorithms

4.1 OFFLINEACTIVITYLEARNING (T, L, T (0)) 54

4.2 IDENTIFYMOTIONVARS (S) . 59

4.3 M AKEPFT (S,.F, T (0)) 61

4.4 PRELEARNPFTS (S, f, TO) 67

4.5 GETPFTSFROMHERE (f, T (0)) 68

5.1 ONLINERECOGNITION PFT ,r0I L, Tcurr, W) 72

6.1 OFFLINEPLANLEARNING (S, E. T (0) , E) 81

6.2 RECOGNIZETASKSUSINGKEYFRAMETRIALS (Y,) 84

6.3 LEARNUNKNOWNACTIVITIESINPLAN (S, E, q, TO) 88

6.4 UPDATEUSINGPOSITIONMOTIONVARS (T, q, F, K) 95

6.5 UPDATEUSINGORIENTATIONMOTIONVARS (T, q, F, K) 96

6.6 UPDATEUSINGRECOGOPTIMIZATION (T, q, L, K) 97

6.7 GENERATEPLANPFT (f', q, £, TO) 100

17

18

Chapter 1

Introduction

This thesis presents an approach to enable more natural interaction between hu-

mans and robots by allowing an agent to learn and recognize complex manipulation

tasks based on human demonstrations. This capability is necessary for agents to

play a more collaborative role in human-robot interactions, moving beyond the stan-

dard master-slave relationship of humans and computers today. This thesis provides

an enabling capability for learning from user demonstration and recognizing human

operated motions, through offline task learning and online recognition at both the

primitive activity level and more complex plan level.

In this chapter, I discuss the motivations for this research in Section 1.1 and

provide a problem description in Section 1.2. Next, I outline my approach to the

problem in Section 1.3. Finally, I lay out the roadmap for the rest of the thesis in

Section 1.4.

1.1 Motivation

Robots can act as proxies for human operators in environments where the human

operator is not present or cannot directly perform the task. These situations are

pervasive in our world today: robots have been designed to aid in the aftermath of

the recent nuclear reactor meltdown in Japan [32], assist in cleaning up the oil spill

in the Gulf of Mexico [51], perform intravehicular and extravehicular activities on the

19

Figure 1-1: Docked Tri-ATHLETE robots transporting a habitat off of a lunar lan-
der mock-up. The initial and goal states are shown in the first and last images,
respectively.

International Space Station [4, 16], transport space habitats on the moon [74], disarm

bombs in warring regions [10], extract injured soldiers from the battlefield [24], and

even execute surgeries in the operating room [45].

Many current day robots are controlled manually from low level commands. An

example is JPL's ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer),

which has 36 joints that can be independently controlled. It is designed to transport

large payloads on the surface of the Moon. Figure 1-1 shows two units of a newer

version of ATHLETE called Tri-ATHLETE docked together to carry a habitat off of

a lunar lander mockup. Currently, the robots are commanded at the level of joint

angles, with only a few higher level commands such as moving the end effector of the

20

robot in a certain direction. As a result, the process of moving the habitat off of the

lander shown in Figure 1-1 spanned several hours during the field test.

Teleoperation is a common alternative interface for controlling robots that are

designed to be human proxies. Unfortunately, motions that humans can produce

naturally may not maintain the same fluidity through teleoperation due to limitations

in the interface such as communications delay, non-immersive sensing, and controller

uncertainty [64]. Such teleoperation interfaces can make it tedious and difficult for

operators to perform a given task. A demonstrated undesirable consequence of fatigue

during a telepresence operation is a reduction in the achieved precision during the

task [70].

Instead of either direct low level commanding or continuous teleoperation, I envi-

sion a robot that can recognize a teleoperator's intended motion and autonomously

continue the execution of recognized routine tasks. To do this, the robot first learns

offline a library of generalized activities from a training set of user demonstrations.

During online operations, the robot can perform real-time recognition of a user's

teleoperated motions, and if requested, autonomously execute the remainder of an

activity. The real-time motion recognition problem involves determining which mo-

tion in the learned activity library an operator is currently most likely executing.

In many real-world motions, local state information is not enough to identify the

motion. For example, if a rope is made into an anchor loop around left and right

anchors as shown in Figure 1-2, it is necessary to know if the loop passes around

the left anchor first followed by the right one, or vice versa, in order to undo the

loop properly. Locally, the looping motion around each anchor looks the same in

both cases. Therefore, a model with a Markovian assumption will have difficulty

distinguishing between the two motions due to its limited history capacity. Instead,

I choose a representation that reflects the temporal history of the entire motion.

My approach builds upon the capabilities of existing motion recognition algo-

rithms while providing three important features. First, since physical manipulation

tasks are often non-Markovian, in that later parts of a motion may depend on past

states, I use a model that can describe non-Markovian motions by leveraging temporal

21

12 2

Figure 1-2: Knowing only the previous state at the highlighted position will not

distinguish the two motions.

information. Second, my approach achieves real-time performance by efficiently shar-

ing information across consecutive time steps. Third, the model of learned behaviors

is robust to variations in initial environment states.

I have developed a representation called probabilistic flow tubes (PFTs) [20, 19,

21], which are used to generalize the demonstrated motion to be applicable for new

situations. The covariance of the flow tube varies with the precision with which the

demonstrated motions are performed. For example, a motion that moves a limb to the

ground may have lots of variation in the trajectory initially, but when the limb reaches

closer to the ground, the motion is executed with more precision to avoid crashing

into the ground. Such a motion's flow tube would have larger covariance initially

and narrower covariance toward the ground. During execution, the controller should

follow the flow tube trajectory as well as possible, with deviations from the trajectory

penalized according to the covariance of the flow tube at that time. In this way, the

probabilistic flow tube representation provides robustness during execution.

Constraint-based flow tubes have been used in the context of planning and exe-

cution to represent sets of trajectories with common characteristics [26, 38]. In this

context, a flow tube defines a state region where valid trajectories of a motion can be

feasibly achieved given constraints on the system dynamics. In the motion learning

context, a probabilistic version of a flow tube is computed by inferring the desired

Gaussian state distribution at each time step from human demonstrations.

Geometrically, as shown in Figure 1-3, the width of a probabilistic flow tube rep-

resents flexibility in the robot's desired movement, enabling it to optimize additional

performance criteria or recover from disturbances. The PFT representation produces

22

Figure 1-3: Example visual representation of a probabilistic flow tube

humanlike trajectories because it is directly modeled from the user's demonstrations

with minimal abstraction. In contrast, some motions generated by planners may

not be intuitive for human collaborators, even though they may be valid. Further-

more, the PFT representation can be easily applied to situations with different initial

conditions because it is parameterized by the relevant variables of the motion.

Manipulation tasks of interest in this work can be either primitive activities, which

are described by important motion features at the start or end of the motion, or com-

plex plans composed of sequences of primitive activities. An example of a primitive

activity might be "reach for box," where the robot end effector starts from some loca-

tion and ends near the box location. An example of a complex plan might be "stack

boxes in corner," which might involve the sequence of primitive activities { "reach for

box1", "move box1 to corner", "reach for box2", "move box2 on box1" }. To learn a

task, the system must keep track of all the important features in the task so that if

the robot needs to autonomously execute the task in the future, the defining features

of the task are preserved, even if the environment is different.

When a user demonstrates a complex plan through teleoperation or kinesthetic

teaching, he or she might indicate when one subtask is complete and the next begins,

using interfaces such as voice, keyboard, or other devices. However, this is an added

layer of effort for the user, so a useful learning system should not require the user

23

to provide segmentations for every demonstrated trial. Thus, when learning complex

plans from user demonstrations, the system also has the added challenge of inferring

the points of segmentation in most trials from only a few pre-segmented trajectories

provided by the user.

1.2 Problem Description

There are three main problems that this thesis focuses on: learning primitive motions,

learning complex motions, and recognizing motions in real-time. The term activity

is used to describe primitive motions, and plan is used to describe complex motions

composed of sequences of activities. The term task is used to generically refer to

either activities or plans. An overview of how the learning and recognition problems

relate to each other is illustrated in Figure 1-4.

Task learning refers to the problem of determining the relevant features of a mo-

tion and creating a generalization of it (in the form of probabilistic flow tubes) that

can be applied to new situations, given a set of labeled user demonstrations. The

demonstration trajectories are recorded as a hybrid combination of continuous and

discrete values. Specifically, the input data includes position and orientation informa-

tion for the robot end effector during teleoperation or kinesthetic teaching, position

and orientation of other sensed objects in the environment, other single dimensional

continuous variables such as temperature or voltage, and discrete variables such as

whether the power is on or off or whether the gripper is open or closed.

Both activity learning and plan learning aim to achieve the same goals of identify-

ing relevant motion variables and creating a general representation of the motion to

apply to different situations. The added complication in plan learning is that input

user demonstrations may not necessarily be pre-segmented, since providing this extra

information may be an additional burden on the user. I assume that out of all the

user demonstrations for a particular motion label, only a few contain segmentation

information. The system, therefore, must autonomously extrapolate this information

onto the non-segmented demonstrations.

24

Set of labeled user
demonstration trajectories

Current environment state

Current observed trajectory
Recognition
likelihoods

incrementally updated parameters

Figure 1-4: Architecture of learning and recognition problems

25

Execution

After a task or a set of tasks is learned in a generalized form, it can be stored

into the task library for future use. For example, tasks generalized as probabilistic

flow tubes can be sent to a controller for autonomous execution, or sent to the online

motion recognizer to perform real-time recognition of a new user execution. Controller

design is not within the scope of this thesis, but I envision a controller that can follow

the mean trajectory of the probabilistic flow tube while dynamically adjusting the

amount of allowable deviation based on the flow tube's width over time by tuning

parameters like stiffness, speed, or gain.

Task recognition refers to the problem of determining how likely a user is currently

executing one of several learned motions, given the currently observed user execution

trajectory. This is useful during long user teleoperation procedures, to enable the

system to recognize which task the user is trying to perform, and potentially au-

tonomously complete the task, saving the user some amount of effort. To enable the

recognition process to compute in real-time, the system reuses as much as possible the

analyzed information from one time step to the next, and only updates recognition

parameters incrementally as needed.

1.3 Approach Overview and Innovations

I now provide a brief overview of my approach to each of the activity learning, activity

recognition, and plan learning problems. For a detailed discussion of each of these

approaches, see Chapters 4 through 6.

1.3.1 Activity Learning

There are two key innovations in my approach to activity learning. First, from ob-

serving different demonstration trials of a motion, the system is able to determine

the important features that define the motion, without any a priori knowledge. For

example, suppose a sensing system is constantly tracking the positions of a box, ball,

and bin in the environment. Suppose the objects are initially located in different

places for every demonstrated trial. If the demonstrated motion is "move box to

26

bin," then only the box and bin positions are important while the position of the ball

is irrelevant for this motion. By comparison, a motion to "move up 1 foot" is not

concerned with any of the objects, but instead, is focused on the relative difference

between the start and end positions of the robot. The approach determines what

features are relevant or important in a motion by observing which features are per-

sistent throughout different trials. When learning a new motion, the system asks the

following questions: (1) Do the trials all start or end in the same absolute position?

(2) Do the trials all start or end relative to a particular object or point of interest in

the environment? (3) Do the trials all display a relative movement from the start to

end positions? If a consistent pattern is noted across different demonstration trials,

then the system identifies that pattern as a relevant motion characteristic. Once these

characteristics are found for a motion, the algorithm can create a motion model in a

new environment while ensuring that the same motion characteristics hold.

The second key innovation in my activity learning approach is the development of

the probabilistic flow tube model to represent a motion. The idea of the probabilistic

flow tube is grown from prior art in the planning and execution field, where constraint-

based flow tubes have been used for feasibility analysis in controller design [26, 38, 66,

76]. In these applications, flow tubes are computed from the dynamics of the system to

describe the region of possible trajectories. In the manipulation domain, the dynamics

are difficult or impractical to compute, so activity learning addresses the inverse

bin

box _bin box

Figure 1-5: Probabilistic flow tubes can look drastically different for different envi-
ronment states

27

problem of generating the flow tube probabilistically from example trajectories. A

motion's probabilistic flow tube is different for different initial environment states.

For example, a robot's motion during a "move box to bin" task may look drastically

different if the box is initially to the left of the bin as opposed to the right, as shown

in Figure 1-5. In a new environment state, the algorithm first determines what the

start and end states of the motion should be given the identified motion variables.

Next, it normalizes similar training trajectories to the desired start and end states

to generate a mean and covariance trajectory, which make up the probabilistic flow

tube. This probabilistic flow tube is then stored into the task library for future use

such as autonomous execution or real-time recognition.

1.3.2 Real-time Recognition

My approach to real-time recognition has three main components. In order to deter-

mine the likelihood that a user's current partial execution is of each learned motion,

the approach first determines the time step in each learned probabilistic flow tube

that best corresponds to the user's current executed state. Suppose a user has cur-

rently moved the robot half a foot to the right, in the direction of a distant object, as

illustrated in Figure 1-6. At this moment, an observer might estimate that the user

could be executing a motion such as "move right 1 foot," or "reach for the object."

If the correct motion were "move right 1 foot," then the point in the learned PFT

user execution

"reach for object"

correspondence points

"move right 1 ft"

Figure 1-6: Given a user's current execution (black arrow), the algorithm first deter-
mines correspondence points (pink dots) in each candidate learned motion

28

for the motion that best corresponds to the current executed state should be roughly

in the middle of the motion. If the correct motion were "reach for the object," then

the correspondence point should be more toward the beginning of this motion's PFT

since the object is assumed to be quite far away in the environment, and the execu-

tion has not reached very far yet. The algorithm determines these correspondence

points in the PFTs by looking at both how far the current executed state is spatially

from each PFT and how much time has passed in the execution as compared with

the trained models.

Once the system determines how much of each PFT corresponds to the user's

current execution, the next component in the recognition approach is to temporally

align the user's partial execution to the corresponding PFT portions to remove tem-

poral variations among different executions. An existing algorithm called dynamic

time warping exists to perform temporal matching between two trajectories, but my

online recognition approach implements an incremental version of this algorithm that

minimizes computation from one time step to the next by intelligently keeping ap-

propriate parts of certain algorithmic parameters in memory.

Finally, after the user's execution is temporally aligned with appropriate portions

of the learned PFTs, the last component of my recognition approach uses the mean

and covariances of the PFTs to compute the likelihood that the user's partial execu-

tion actually belongs to each PFT. The result of online recognition is a set of such log

likelihoods over the different motion labels at a particular time step of the execution.

New information as the user's execution progresses will result in updated recognition

likelihoods at each new time step.

1.3.3 Plan Learning

In order to teach a robot a compound activity, users generally find it more natural to

provide a demonstration for an entire plan in one continuous movement rather than

demonstrating each subtask separately. To generalize complex tasks consisting of

multiple activities in sequence,I developed a plan learning approach to overcome two

major challenges. First, not all the activities demonstrated in the plan are necessarily

29

Pre-segmented trial Un-segmented trial

1

2

3

t=40

Figure 1-7: Illustration of auto-segmentation

in the task library or learned in the past. The system may be encountering certain

activities in the plan for the first time. For these previously unknown activities,

the system uses the segments of the plan demonstration trials that correspond to

the unknown activity to learn that activity right away, as part of the plan learning

process.

Secondly, I assume that only a small subset of the demonstrated trials have user

provided segmentation information. My approach leverages the few pre-segmented

trials to auto-generate segmentation points on all other trials. As shown in the illus-

trated example in Figure 1-7, the algorithm first initializes candidate segmentation

points in un-segmented trials proportionately in time as the pre-segmented trials

(panel 2), then updates each candidate segment to reflect what the system knows

should happen based on the motion variables in the activity. Suppose running the

recognizer over the pre-segmented trials reveals that the plan's activity sequence is

{ "reach box" , "move box to bin" }, then the system knows that the point of segmen-

tation between the two activities should be whenever the robot end effector meets

the box (panel 3). Finally, the system can validate the auto-generated segmentation

points with the user through an interactive display.

30

t=30

1.4 Thesis Layout

I present this thesis in the following manner: In Chapter 2, I perform a literature

review of related work in the areas of learning from demonstration, motion recogni-

tion, flow tubes, and other related fields. In Chapter 3, I present formal definitions

of the problems to be solved in this thesis. I describe the approach and algorithms of

activity learning in Chapter 4, activity recognition in Chapter 5, and plan learning

in Chapter 6. Next, I present results in a two-dimensional world as well as on several

hardware platforms in Chapter 7. Finally, I discuss possible future advancements in

Chapter 8. This concludes the introduction as I move into the details of the work.

31

32

Chapter 2

Related Work

2.1 Learning from Demonstration

Learning and recognizing human motions has long been an interest for human-robot

interaction. [6, 40]. For example, learning human-taught policies has proven useful

in the domains of underactuated pendulum control [7], autonomous helicopters [12],

and vehicle navigation [1]. My work focuses on manipulation tasks, where interaction

with objects in the environment becomes important. My approach is inspired by

existing work in learning manipulation tasks from demonstration.

Peters and Campbell [52] demonstrated automatic skill acquisition by the hu-

manoid Robonaut developed at NASA Johnson Space Center. Robonaut was shown

several demonstrations of a task through teleoperation, and the data was time nor-

malized and averaged to produce a characteristic sequence that can be linearly scaled

to be autonomously executed in new situations. Their work showed that learning from

teleoperated demonstrations is an attractive approach to controlling complex robots.

With a more robust motion representation and better adaptability to new situations,

this type of approach will become compelling for a wider range of applications.

A comparable approach to mine is that developed by Muhlig et al. [43], who

demonstrated an imitation learning framework that allows a robot to autonomously

perform tasks that were shown to it by human demonstration. Specifically, the demon-

strated task was to pour fluid from a bottle to a cup, and experiments were run on

33

artificial kinks

Figure 2-1: Mixtures of Gaussians may not be an intuitive representation of contin-
uous motions.

Honda's humanoid ASIMO robot. The authors used task spaces to model motions,

which allowed them to track only object trajectories instead of full human postures.

They then applied Dynamic Time Warping (DTW) [44] to normalize the temporal

information in the demonstrated motions, and described the resulting normalized mo-

tion using Gaussian Mixture Models (GMM). To autonomously reproduce the motion,

the authors used the learned probabilistic trajectory to initialize an attractor-based

movement generation algorithm that takes into account additional criteria such as

collision avoidance.

One major difference between my approach and that of Muhlig et al. is the use of

probabilistic flow tubes instead of Gaussian Mixture Models to represent the proba-

bilistic motions. Determining the optimal number of Gaussian components in a GMM

approach can be somewhat arbitrary or cost-intensive [60]. Furthermore, I argue that

while mixtures of Gaussians work well in applications concerning discrete clusters

such as in localization [53] and classification [72], they do not describe continuous

motions as intuitively as probabilistic flow tubes. As shown in Figure 2-1, GMMs can

create artificial 'kinks' in the probability distribution of a learned trajectory.

Pastor et al. [49] also address the problem of learning general motions from demon-

stration. Their approach differs from mine because they represent the demonstrated

movement with a set of differential equations describing a linear spring system per-

turbed by an external forcing term, whereas I represent motions with probabilistic

flow tubes. Their representation is motivated by the dynamics of the system and can

describe any smooth motions, whereas I learn the demonstrated trajectories directly,

34

and thus my learned motions closely reflect those of the human's, even if the motions

are not smooth. Their actions are generalized by changing the goal parameter in the

differential equations, and they record these actions in a library of movement prim-

itives so that complex motions can be composed by sequencing. My approach also

maintains a library, but consisting of both primitive and higher level motions.

Hsiao and Lozano-Perez [27] have developed a method that uses imitation learn-

ing through teleoperation to teach a robot to perform complex grasping of differently

shaped objects. Their work differs from mine in their focus on the grasping task do-

main, where a large part of the problem is in identifying appropriate contact points

and determining the appropriate amount of force to apply. Instead, my motion learn-

ing approach is more concerned with determining the trajectory that a human would

take throughout a task.

An important part of my approach is the ability to identify the relevant features

of a motion, so that a learned flow tube can be adjusted to new environments ap-

propriately based on relations in existing data. Alissandrakis et al. [3] developed a

system called Jabberwocky that, given a single demonstration and the desired effect

metrics (which, in my terminology, are the motion characteristics), can produce the

same effect of the motion in a new environment setup. The problem they address is

quite different from my motion characteristic identification problem: in their prob-

lem, the metrics are known in advance and the goal is to produce an imitation of

the demonstrated behavior using those metrics, whereas in my problem, the metrics

(or motion characteristics) are not known in advance and have to be learned from

observing patterns across many demonstrations. I agree with Alissandrakis et al. in

their assessment that "the choice of metrics used is very important as it will have

an impact on the quality and character of the imitation," and thus I chose to allow

the system to autonomously learn them. I note that the candidate metrics presented

in their paper are very similar to mine, including "relative displacement," "absolute

position," "relative position," "rotation," and "orientation," suggesting that these

candidate metrics are good choices for describing manipulation motions.

Calinon et al. [9] present an approach to learn demonstrated movements for mo-

35

tion generation. Their approach represents motions as HMMs learned using the EM

algorithm, and employs Gaussian Mixture Regression to compute the desired veloci-

ties (and accelerations) for autonomous motion generation. The HMM representation

is starkly different from the probabilistic flow tube (PFT) representation used in my

approach. Learning an HMM using EM requires determining the optimal number

of states using, for example, a BIC criteria, which can be computationally intensive.

Furthermore, the resulting number of states is usually small: for example, 4 states in

the "S" shape motion presented by Calinon et al. In contrast, probabilistic flow tubes

approximate the region of flexibility in the trajectory by modeling a single Gaussian

at every time step. Despite having many Gaussians, the lack of a need to compute

Gaussian mixtures actually enables the PFT representation computation to be quite

efficient. For these reasons, the HMM representation is more compact while the PFT

representation is more detailed. The HMM representation presented by Calinon et al.

is closely related to that in Martin et al. (2010), to which I compared my results, with

the difference being that Calinon et al.'s HMM incorporates velocity data whereas

Martin et al.'s HMM does not.

Calinon et al. handle landmarks (objects in the environment) by first expressing

the training trajectories in the reference frames of each landmark, computing an HMM

in each landmark's reference frame, and upon the introduction of a new environment

state, project the respective HMMs back onto the robot torso frame, after which

taking a product of the corresponding Gaussians in the HMMs produces the final

representation in the new environment. In this setup, the relevant landmarks must

be given in advance. If irrelevant landmarks are included at random locations during

each demonstration, they could skew the final motion representation in unnecessary or

undesirable ways. Also, it is unclear if their approach would be able to handle motions

that, for example, start relative to a landmark that can be moved around, and end at

an absolute location, since it is unclear if their approach deals with motions that have

"relative displacement" or "absolute position" characteristics. Furthermore, training

trajectories for cases like these that could start all over the place and end in some

absolute location can have a radial appearance, in which case it is unclear how the EM

36

learning will determine where the Gaussian mixtures of the HMM should go. These

are all cases that are handled by the motion characteristic identification approach

developed in this thesis.

Cederborg et al. [11] present an unsupervised motion learning and generation

approach that first stores all of the demonstrated data of all different motions in

one data structure, then when given a starting state, selects a set of training data

points that are approximate nearest neighbors of that state, uses EM to learn a GMM

with a predefined number of mixtures on the local points, and uses GMR to estimate

the desired velocity for the next time step. Their motion representation is distinctly

different from my probabilistic flow tube representation. Their learning process occurs

entirely online at every time step during autonomous execution; after one time step

is over, the previously learned local model is forgotten and the algorithm moves on to

learn the next Gaussian mixture for the subsequent time step. My approach performs

learning globally over entire motions offline and uses the learned flow tubes for online

recognition. It is unclear in Cederborg et al. how their local algorithm handles, for

example, motion trajectories that have different sized loops that tangentially meet at

the same local state: for example, how will it know which branch is the correct one to

take at that point? The global temporal information used in the PFT representation

prevents my approach from getting "lost" locally.

Cederborg et al. consider three possible reference frames in which a motion can be

performed: relative to the starting position, relative to the robot frame, and relative

to an object position. The desired velocity estimated at every state is the weighted

sum of the desired velocities in each reference frame, where the weights reflect how

well the data trains in each frame. In all of their examples and results, the motion

belonged to exactly one of the reference frames; no examples were given of motions

that span multiple reference frames, such as moving an object to an absolute location,

so it is uncertain how their algorithm will perform in these cases. My approach does

not view the entire motion in multiple reference frames; instead, relevant motion char-

acteristics are determined at the start and end of a motion (which can correspond to

different reference frames in their approach), and the motion trajectories are adjusted

37

accordingly.

Lee and Ott [36] present an approach to combine teaching by observational demon-

strations (where a robot watches what a human does) with kinesthetic demonstrations

(where a human physically moves the robot around). Here the idea is that a robot

will learn the bulk of the motion from observational demonstrations, and then re-

fine the more precise manipulation parts of the movement from direct user guidance.

They present a representation called a refinement tube that "helps the human teacher

to correct only the desired part of the motion without accidentally disturbing other

joints" and present an impedance controller that increases the robot's stiffness once

outside the refinement tube. Despite the common word "tube" in the names of their

representation and mine, the essence of the two representations are distinctly differ-

ent. Their approach is as follows: use EM to learn an HMM on the training data

where the states are a GMM and the number of states is given in advance, then use

the Viterbi algorithm to determine the optimal state sequence through the HMM

after adding in temporal data. This sequence of Gaussians in space-time is used to

determine the refinement tube, whose radius is defined as a function of the condi-

tional variance at a given time step. In the conducted experiments, Lee and Ott

chose to set the number of learned HMM states to 10. The resulting refinement tube

bulges at time steps close to the middle of each Gaussian, and narrows at time steps

in between different Gaussians; had the number of states been chosen at 2, the re-

finement tube would have two bulges. It seems undesirable that the refinement tube

may arbitrarily change shape depending on the chosen number of states. In my PFT

representation, Gaussians exist in the spatial dimensions at each time step. If time

steps were sampled less frequently, the model would end up with a coarser PFT, but

it would maintain the same basic shape. The problem Lee and Ott are solving is also

quite different from the goals of this thesis. While I focus on online recognition of

user motions, they work toward a better paradigm of teaching robots.

Riley and Cheng [57] present an unsupervised motion learning and generation

capability that segments motions based on curvature, groups similar trajectories to-

gether, and generalizes the motion groups using linear regression where potentially

38

non-linear features are represented with radial basis functions. My approach differs

from theirs in three main ways: (1) My motion representation describes not only the

demonstrated motion itself, but also a probabilistic region of flexibility around it;

their representation is geared more towards autonomously generating specific trajec-

tories that are reasonable. (2) My approach is concerned with variable environments

during demonstrations whereas theirs maintains the same environment state through-

out different demonstrations. (3) I am focused on the online recognition problem after

supervised motion learning, while they are focused on autonomous motion generation

after unsupervised motion clustering.

The problem addressed by my probabilistic flow tube representation is also differ-

ent from regression using Gaussian processes [56]. Regression treats all demonstration

data points independently. Gaussian processes can then be used to determine a dis-

tribution over functions that best models the underlying function. In contrast, I am

interested in modeling the time sequence in a way that leverages the temporal infor-

mation. Consequently, my model maintains the temporal ordering of the data points

in each demonstration, and Gaussian distributions are used to describe the spatial

variability of the motion.

I note several other related works in the broader area of learning human mo-

tions. Blackburn and Ribeiro [8] used isometric feature mapping (Isomap) [67] for

dimensionality reduction in human motion recognition in videos abstracted as silhou-

ettes, and then used Dynamic Time Warping for motion pattern matching. They

reported that Isomap combined with DTW achieved recognition rates of over 95% on

the particular motions they used, which performed better or at least comparable to

methods using locally preserving projections (LPP) for dimension reduction with a

hidden Markov model (HMM) approach for recognition, as presented by Wang and

Suter [71]. This gives reassurrance over the efficacy of approaches using dynamic time

warping. Work by Jia and Yeung [30] introduced a manifold embedding method that

considers both spatial and temporal discriminative structure of silhouetted actions in

a supervised learning setting. Anthony [5] and Fitriani [22] developed an algorithm

called Dynamic Time and Space Warping that was used for video matching and align-

39

ing. Although these approaches focus on domains different from manipulation tasks,

they provide insight into the importance of utilizing both spatial and temporal in-

formation during motion learning and identification, which I also emphasize in my

approach.

2.2 Motion Recognition

Motion recognition applications have ranged from visual gesture recognition [42, 73] to

understanding domestic activities [25] to gait analysis [23], among others. I am mainly

interested in learning and recognizing teleoperated manipulation tasks, although my

approach is potentially extensible to other applications.

Recognition in the context of teleoperation has commonly been explored using

Hidden Markov Models (HMMs) [39, 64, 75]. Specifically, Martin et al. [39] model

motions learned from training data as sequences of HMM states, where each state

refers to a mixture of Gaussians, and recognition can be performed using either the

Viterbi algorithm or posterior probabilities during model learning. Their approach

proved promising in recognizing grasping tasks and provides a good basis of compar-

ison.

Using probabilistic flow tubes, my algorithm performs recognition of a new partial

motion by computing the likelihood of its being described by each model, after tem-

porally aligning relevant time steps. Real-time performance is achieved by storing

parts of the computation in memory and using an incremental version of dynamic

time warping [44] for temporal matching.

2.3 Flow Tube Background from Plan Execution

Hofmann and Williams [26] proposed a robust plan execution approach that allows

for spatial and temporal plan flexibility for under-actuated systems performing mixed

discrete-continuous motions. The example used in their paper is a biped walking on

uneven terrain. Their approach compiles a temporally flexible plan, called a Qual-

40

itative State Plan (QSP), into a concurrent timed flow tube description called a

Qualitative Control Plan (QCP) that represents all feasible control trajectories and

their temporal coordination constraints. During execution, the plan dispatcher only

needs to maintain state trajectories within the bounds of the flow tubes. Thus this

execution approach is robust to disturbances as long as they do not perturb the states

outside the flow tubes.

The Qualitative State Plan is an input to their system that is manually defined by

the user. In applications where the user may not have a predefined idea of the exact

steps of a task, I propose to allow the user to start controlling the robot at a lower

level right away, and have the system learn possible plans along the way by observing

the user's interactions.

Furthermore, Hofmann and Williams compute the flow tubes in their Qualitative

Control Plans by performing reachability analyses, given the kinematics of the system.

Instead of deriving the flow tubes brute force, my approach uses human teleoperation

to demonstrate a few feasible state trajectories, and then learns a probabilistic flow

tube from the data. Learning from the user is advantageous because it can produce

a more intuitive motion. For example, experience with the Barrett Whole Arm Ma-

nipulator robot has shown that it can reach a certain location in a normal forward

motion, or in an awkward backward-handed way that is surprising to the user. In

human-robot interaction, the human operator needs to be able to trust the robot,

so the robot must behave in an intuitive way. The best way to determine what is

intuitive to a human is to learn directly from them.

2.4 Adaptive Interfaces

Although my plan learning capability applies human-robot interaction during training

and learning, it is different from prior art in adaptive interfaces such as [33, 62, 31,

29, 65, 68] where the focus is on designing user interfaces that change appropriately

with the task. For example, Kazi et al. [33] describe a multimodal interface that

uses speech and gesture along with stereo visual sensing to assist disabled persons,

41

and Serenko [62] describe an intelligent assistant for organizing e-mail. In contrast,

I focus on learning to execute physical actions rather than adapting to behavioral

tendencies of a user. I am also less concerned with the actual display of the interface

than with enabling the agent to gather information through the interaction process.

42

Chapter 3

Problem Statement

An illustrated example of the learning and recognition problem is shown in Figure 3-

1. In this example, user demonstration training data is collected in a 2D world

consisting of three movable objects: "box," "ball, " and "bin." The user has given

several demonstrations each of three different types of motion: "move box to bin,"

"move box left," and "move box home," in which "home" refers to the center position

of the environment. Given a new environment setup where the objects are in different

locations, the offline learning algorithm computes a probabilistic flow tube in the new

environment for each type of motion. As the user starts to execute a motion in this

environment, the recognition algorithm determines in real time the likelihood that

the user is executing each type of motion.

In my experiments, human motion data is collected directly using a teleoperated

or kinesthetic teaching interface, where human driven motion is recorded through

robot poses. Objects or other points of interest in the environment can be sensed

through vision, laser range finding, infrared, motion capture, or any other standard

devices.

In the rest of the chapter, I first define the variables involved in the inputs and out-

puts of the learning and recognition system, and then define three types of problems:

activity learning, activity recognition, and plan learning.

43

J 2. Learning problem

VM 0

0 IL

1. Given user demonstrations 3. Recognition problem

Figure 3-1: Illustrated example of a learning and recognition problem. Initially, a

user demonstrates a set of motions a few times (1). The learning problem consists of

generalizing the demonstrations into probabilistic flow tube representations for each of

the three motions in the new environment state (2). Given a new user motion depicted

as the shift in the red box position in the direction of the arrow, the recognition

problem consists of determining which motion the user is most likely performing (3).

44

3.1 Definitions of Inputs and Outputs

A user demonstration trajectory is a hybrid mix of time-evolved continuous and dis-

crete variables described in Definition 1. These variables capture the world state

through time, including the position and orientation of the robot end effector, the

position and orientation of objects or points of interest in the environment, other

single dimensional continuous variables that describe the world, and other discrete

variables in the world.

Definition 1 A demonstrated trajectory T is a tuple (C, D, P, Q) denoting a

sequence of values through time, where:

" C is a set of c single dimensional continuous variables at time steps t = 0 ... N.

Examples of such continuous variables include execution time, temperature, volt-

age, etc.

" D is a set of d discrete variables at time steps t = 0... N. Examples of such

discrete variables include gripper open/close, power on/off, etc.

" P is the set of Cartesian position variables x, y, z for each of b = 1 ... B points

of interest at time steps t = 0 . .. N. P ff denotes the position variables of the

specific point of interest where b = eff, the robot end effector. The index eff is

typically equal to 1.

" Q is the set of quaternion orientation variables q1, q2, q3 , q4 for each of B points

of interests at time steps t = 0 ... N. Similarly, Qeff refers to the orientation

variables of the robot end effector.

Points of interest in the environment can be the robot end effector, objects or parts

of objects that can be sensed, or other known markers in the environment. Future

extensions of the learning algorithm may also utilize velocity V and acceleration

A inputs for each point of interest over time, but is not within the scope of the

current discussion. The manipulation tasks studied here are generally slow enough

that position information alone is sufficient for good motion learning performance.

45

The state of the world at a particular time step t in the demonstrated trajectory

is denoted by T (t), which is the cross section of all the variables at that time step

(C (t) , D (t) , P (t) , Q (t)). Therefore the initial environment state of a trajectory

is denoted as T (0). N is the number of time steps for a particular demonstrated

trajectory, and can be different for different demonstrations.

When a user is executing a trajectory in real-time, it is useful to record the partial

execution of the motion by the current time step, especially for online recognition.

This current execution of a trajectory is described in Definition 2.

Definition 2 A current execution Tcu"r is a user's current partial execution of a

trajectory from t = 0 to the current time step t = tUM.

Every unique motion that the system learns is assigned a motion label, described

in Definition 3.

Definition 3 A motion label f is a unique string associated with a task.

Motion labels are typically provided by the user. In the absence of user interaction,

motion labels can also be randomly generated by the system.

When the system is learning a task, it is typically provided multiple trials of user

demonstrations for that task. Definition 4 describes the training set.

Definition 4 A set of training sequences for a particular motion S is the set

of demonstrated trajectories {Tk}k 1 K for a particular motion label f.

The number of time steps in a training sequence Nk may vary among different se-

quences. To enable batch learning of multiple motions, the system can be provided a

set of training sequences for multiple motions, described in Definition 5.

Definition 5 A set of all training sequences T is the combined set of training

sequences {Sf} LC for all M motions 'with labels L = {t, ... ,tf}.

A probabilistic flow tube (PFT) is formally described in Definition 6. It is com-

prised of a mean trajectory and its corresponding covariances through time.

46

Definition 6 A probabilistic flow tube associated with a motion label f and start-

ing from environment state T (0) is denoted as PFT() and is composed of a tuple

Teff,Eeff), where

" Teff - {C, D, Peff Qeff) refers to a nominal desired robot end effector trajec-

tory.

Seff = c, 0 D, Teff) refers to the covariances throughout the trajectory
PQ/

at time steps corresponding to those in Teff.

A probabilistic flow tube that is generated for a motion f is dependent on the starting

environment state for which it was computed (T (0)). PFTs created from different

environment states can be quite different from one another. For example, a "move

box to bin" motion trajectory will appear greatly different if the box is initially to

the left of the bin versus if the box is initially to the right of the bin.

A task library, described in Definition 8, is composed of a set of task entries,

described in Definition 7. Tasks can be either primitive activities composed of no

subtasks, or plans composed of more than one subtask.

Definition 7 A task library entry, or simply task, associated with a given label

f is denoted by libi and is composed of a tuple (PFT E, E, , q),, where:

" Ef is a set of initial environment states {Tk (0)}kCK.

" PFTE is a set of probabilistic flow tubes starting from the different initial en-

vironment states described by Et, or {PFT T(O)f } T(O) EEj

e Fe is a tuple of features (Fc, FD, Fp, FQ), also known as motion variables or

characteristics that describe motion f. Each Fx is a set { (y E, relevant) ode

where mode E { absStart, absEnd, relInit, relEffStart, relEffEnd }.

* qj is a sequence of motion labels { ... EM}, also known as subtasks, that com-

pose task f. If 1 is a primitive activity, then qj = 0.

Here I only provide the organizational structure of the variables used in the system.

For an in-depth description of motion variables F, see Section 4.1.

47

Definition 8 A task library L is the library of task entries {libt}eEL, where L is

the set of all task labels in the library.

When handling trajectories that represent plans, which consist of a sequence of

activities, the system must know or compute the segmentation points between activ-

ities in the trajectory. These points of segmentation are described in Definition 9.

Definition 9 A set of keyframes Kkey are time steps in a plan trajectory that seg-

ments one subtask from the next in the plan. Keyframes are embedded into a demon-

strated sequence T as part of the discrete variable Dkey E D, where Dkey (Kkey) - 1

and all other elements in Dkey are zero.

Next, I formally define the different kinds of problems that the system is able to

handle.

3.2 Definition of an Activity Learning Problem

The problem of learning an activity from user demonstrations is presented in Defini-

tion 10. The goal is to identify the important features of the activity and generate a

probabilistic flow tube in a new environment state. The detailed approach to activity

learning will be discussed in Chapter 4.

Definition 10 Given a set of training sequences S for activity label f and a starting

environment state T (0), determine the set of motion variables Fj that are relevant

in the activity, and generate a probabilistic flow tube PFTT(O) that describes the robot

end effector motion in the activity.

The outputs to the activity learning problem can be used for several purposes.

First, the learned probabilistic flow tube can be sent to a controller for autonomous

activity execution in the current environment state T (0). The controller would try

to follow the PFT's nominal trajectory while using the covariances as a guide to the

amount of deviation allowed.

48

Additionally, the resulting motion variables Fh and probabilistic flow tube PFTT(O)

that are learned can be used to create a new task library entry

libj KPFT T(),T (0) , Fh,0

if the motion labeled f does not already exist in the task library. In the case that f

already has an entry libe = (PFTE, E, F, q) , the entry can be updated with the new

PFT and initial environment, producing

libe = PFTE, PFTT(o)} {E, T (O)} , T, q).

The system is allowed to be able to learn multiple activities as a batch, so it is

also possible to provide a set of training sequences for multiple activities T with their

corresponding labels L and expect a set of different motions' probabilistic flow tubes

PFT {PFTf I)} that all start from the same environment state as output.

3.3 Definition of an Activity Recognition Problem

The problem of real-time activity recognition as a user executes a motion is presented

in Definition 11. Real-time recognition computes the likelihood that a user is currently

executing any one of several activities. These likelihoods change at every time step

with new user information. The detailed approach to activity recognition will be

discussed in Chapter 5.

Definition 11 Given a user's current partial activity execution Tc", a set of learned

probabilistic flow tubes PFT corresponding to activity labels L all starting at

environment state T" (0), compute in real-time, a set of log probabilities LL =

{ll1,..., llM} over the set of known labels L = {1,..., EM} that reflect the likelihood

that the label of the user's current motion is one of L.

The resulting log likelihoods LL are computed for a specific moment in time, up

to which the user's execution is Tcur. At the next time step, the user's execution

49

will have progressed, so a new set of log likelihoods would need to be computed.

3.4 Definition of a Plan Learning Problem

The problem of learning a plan from user demonstration trajectories is presented in

Definition 12. I assume that a small subset of demonstration trajectories contain

keyframes, or points of segmentation, indicating exactly when the trajectory transi-

tions from one activity to the next. Users can provide this information through voice

or keyboard inputs during demonstrations, or through data annotation post demon-

stration. Since providing this additional segmentation information is an additional

effort for the user, I assume that most of the training demonstrations do not contain

keyframes, and thus the system must extrapolate this information for most trials from

the few provided pre-segmented trajectories. The detailed approach to plan learning

will be discussed in Chapter 6.

Definition 12 Given a set of training sequences S for plan label t (of which a subset

Y C S contains keyframes), a starting environment state T (0), and the current task

library L, generate a task entry libe that describes the plan and update the task library.

Like activity learning, plan learning also involves generating a probabilistic flow

tube that can be used for execution. Again it is worth pointing out that the plan's

PFT can vary vastly depending on the initial environment state. For example, the

trajectory of a plan involving { "move box to bin", "reach for ball", "move ball to x" }

can look drastically different for different initial locations of the objects. The system

must utilize the important features of the subtasks in a plan to generate a correct

PFT for a given environment.

3.5 Relationship to Prior Art

As discussed in Chapter 2, many researchers have addressed the learning from demon-

stration problem [52, 12, 49, 43], but in each instance, the important features of the

50

task is known in advance. For example, Pastor et al. [49] teach a robot arm to place

a cup on a saucer while avoiding a ball obstacle. The roles of all the objects in the

world are known in advance, and the system just needs to reproduce the task. In

the problems addressed in this thesis, however, the relationships among objects and

the robot end effector that are important for one task or another are not known in

advance, and must be learned from the user demonstrations. For example, there may

be a dozen objects detected in the world, and only objects 1 and 2 are relevant for

task A while only object 10 is relevant for task B. This information is not known

in advance in the problems addressed here, while approaches presented in prior art

assume it is given.

I have now formally defined the inputs and outputs of the learning and recognition

system as well as presented the problem statements of the activity learning, activity

recognition, and plan learning problems. The next three chapters discuss my approach

in addressing each of these problems.

51

52

Chapter 4

Learning Single Activities

The activity learning procedure is summarized in Algorithm 4.1. The inputs

include the training set for all motions T, the set of motion labels L, and a new

environment state T (0) in which the test motion will be performed. The output

is a set of activity models describing the training motions in the new environment.

Additionally, certain computations are stored in memory during the offline activity

modeling phase in order to achieve fast performance during online recognition later.

There are two major steps in Algorithm 4.1. First, for each labeled motion,

the algorithm determines the important features or relations in the demonstrations,

which is called motion variables F. Then it uses the training sequences S to create a

probabilistic flow tube defined as (Teff, Eeff) that abides by the same relations (Y)

in the new environment T (0).

The nominal robot end effector trajectory Teff is defined as the tuple

(C, D, Peff Qeff)

where C and D are collections of c and d single-dimensional continuous and dis-

crete variables, respectively, through time, Peff is the 3-dimensional position vari-

able of the robot end effector through time, and Qeff is the 4-dimensional quater-

nion orientation variable of the robot end effector through time. Correspondingly,

Eeff - Kc, -D, Ef, is the covariance trajectory through time.

53

Algorithm 4.1 OFFLINEACTIVITYLEARNING (T, L, T (0))

Input:

T = {S}LL; Se, training set for motion f c L
L, set of labels of all learned motions

T (0), a new environment state

Output:
PFTp {PFTT}(EL, set of augmented probabilistic flow tubes
F, set of relevant motion variables

Notable local variables:
Teff = (C, D, Peff Qeff) PFT end effector trajectory

E: =K co-D, E , Ef, PFT covariance trajectory

1: for f c L do
2: F +- IDENTIFYMOTIONVARIABLES (Se)
3: (Teff, Eeff) - MAKEPFT (Se, F, T (0))
4: I = {eff (n) =1..N

(/im(T el)

5: G= -log (27r) 2 eff (n) 2

)n=1..Ne

6: PFTt = (Tef , Eeff, I, G)
7: end for

Aside from the two major steps in lines 2 to 3 of Algorithm 4.1, the probabilistic

flow tube is also augmented with some additional values that will be used during

recognition. The recognition problem involves determining how closely an unknown

motion follows each flow tube by computing probability density values based on the

nominal trajectories and corresponding covariances of each PFT. To generate these

probabilities quickly, the algorithm pre-computes the inverse covariance matrices

I ={Eef (n)- 1 }n=1..Nj

and probability density factors

(dim(Teff)

G~{ log (2-r) 2 Eeff (n) ,
I)n=1..Ng

where dim (Teff) is the dimension of the trajectory, and Ne is the number of time

steps activity f. Any function applied to the effector trajectory Tef or covariance

trajectory Eff is equivalent to applying that function to its subcomponents:

f (Tef , Eeff) K- VX{,D,P,Q}

Finally, all of these values computed for motion label f are stored in a data structure

PFT = Teff , Eeff ,I, G).

I now proceed to describe each of the two main steps in detail.

4.1 Identifying Motion Variables

A key feature of the learning system is the ability to autonomously determine what

features or relations, if any, are characteristic of a particular demonstrated motion.

I use the general term motion variables to describe a class of potentially important

features or characteristics of a motion. Of these, the relevant motion variables are

those preserved over different demonstrated trials of that motion, while other motion

variables may vary due to changes in the environment or the human's movement.

For example, demonstrated sequences of the motion "move box to bin" will show

a pattern whereby the robot end effector starts at the location of the box, makes

contact with it, moves to the location of the bin, and breaks contact with the box.

The system will learn that the distance between the robot effector and the box is

a relevant motion variable at the beginning of the motion, and that the distance

between the robot effector and the bin is a relevant motion variable at the end of the

motion. The system will also learn that the positions of any other objects known in

the environment are not relevant to this motion.

In the implementation described here, motions are segmented at a subset of time

steps determined by the operator, and the learning algorithm determines relevant

motion variables at the endpoints of these segments. Typically these are time points

corresponding to a qualitative change in the behavior of the task, such as the robot

making or breaking contact with an object. In Chapter 6, I extend the implemen-

tation to automatically determine these temporal segmentation points from changes

55

Figure 4-1: Example illustrations of five possible ways that motion variables can be

relevant. Arrows refer to the robot end effector trajectories.

in the discrete motion variables. Thus I assume in the remainder of this section that

demonstrated motions consist of a single segment.

For each of the continuous, discrete, position, and orientation input variables of

a demonstrated motion, I consider up to five possible modes for candidate motion

variables, as shown in Figure 4-1:

" absStart: Does this variable generally start at the same value across the demon-

strations?

" absEnd: Does this variable generally end at the same value across the demon-

strations?

" relInit: Does this variable generally shift the same amount from start to end

across the demonstrations?

" relEffStart: Is the starting position or orientation of the robot end effector gen-

erally the same relative to certain points of interest across the demonstrations?

56

I

4 6 A 10

10

6-

4-

2-

0
0 2 4 6 8

- peff pbox ._,. pbin D contact
x x x

10 10

8 -8

o 6 6

04 4

2 2

0 1 2 3 0 2 4 6
time time

Figure 4-2: Four training examples of P, position data at time steps when contact

changes. Notice that across different training samples, the effector (blue) and box

(red) positions match at the start of contact, and the effector (blue) and bin (green)
positions match at the end of contact. These are the relevant features of the "move

box to bin" motion.

* relEffEnd: Is the ending position or orientation of the robot end effector gen-

erally the same relative to certain points of interest across the demonstrations?

Since the continuous and discrete variables C and D (such as time and power on/off)

are independent of the points of interest (such as objects) in an environment, they

are not considered in the relEffStart and relEffEnd modes.

This particular set of candidate motion variables was chosen based on common-

alities observed among many practical robot manipulation tasks. A more thorough

study of other possible modes may be warranted for other task domains. The learning

approach described here remains applicable for additional types of motion variables.

After identifying all of the candidate motion variables, the algorithm uses clus-

tering to determine if patterns exist across different training samples, such as those

shown in Figure 4-2, for each candidate X C {C, D, P, Q} across the different modes.

57

10

8

0 4

2

0

All peff and Pbin at t=0 and t=N P bin(0)-P *f(0)
10 10-

5 . *

5 0 '-~- .5o ''

0 -10
0 5 10 -10 0 10

X relEffStart
of peff O Pp

- pbin IrelEffStart
P - P

10

5

Pbin(N)-Peff(N)

0 0

-5

-10-
-10 0 10

relEffEnd
liRp

relEffEnd

Figure 4-3: Clustering identifies motion variables for a 2-D "move object to bin" mo-
tion. Left: robot effector and bin locations at the start and end of each demonstration.
Middle: values of (Pbin (0) - peff (0)) to determine if relEffStart is a relevant mo-
tion variable for position-the large spread indicates low relevance. Right: values
of (Pbin (N) - Peff (N)) to determine if relEffEnd is a relevant motion variable for
position-the narrow spread indicates that this variable is relevant to this motion.

A narrow spread in the values of a motion variable across many training samples

indicates that the variable is relevant to the motion. Algorithm 4.2 describes the

details of the approach.

The approach determines which of the parameters listed above are statistically

similar over the different training sequences by fitting a Gaussian (p, E) for each

parameter at the start and end of all the trials. Resulting Gaussians with very narrow

spread compared to the range of the motion, i.e.

max (eig (Eymode)) < c max (range (Xmode)

indicate that the motion variable in question is relevant. Figure 4-3 visualizes the

process of determining the relevance of the variables relEffStart and relEffEnd for

position during a "move object to bin" motion. Judging by the large spread in

pbin (0) - peff (0) values, one can conclude that relEffStart is not a relevant feature

of the candidate variable P, or that the relative positions between the bin and effector

does not matter at the start of the motion. On the other hand, pbin (N) - Peff (N)

values have a very narrow spread, indicating that relEffEnd is relevant for P, or that

58

Algorithm 4.2 IDENTIFYMOTIONVARS (S)

Input:
S, set of K demonstrated sequences {Tk}kl , where T = (C, D, P, Q)

Output:
T, tuple of features (Fc, FD, Fp, FQ), where each F =(, E, relevant)

Notable local variables:
M = {absStart, absEnd, relInit, relEffStart, relEffEnd}

q TOQUATERNION P- P k), orientation of ray from object b to robot

end effector (eff = index 1) for trial k
e, small ratio to determine relevant motion variables, e.g., 0.01

A (X 1 , X 2) = { Xi-1 X 2

X 2 - X 1

if X= Q
otherwise

D,Peff,Qeff} do
absStart

absEnd - FITGAUSS
rellnit

relEffStart

relEffEnd

relEffStart

relEffEnd

+- FITGAUSS

<- FITGAUSS

{
~1'
I"

{{Xk (0)}klK
{Xk (Nk)klK

{A (Xk (0) , Xk (Nk))}k 1 .. K

b=2..B
Pb (0) - peff (0)}

k=b2..B
Pb (Nk) - peff (Nk)

Sb 1 Nk = B(Qb (N0)) q (N
k=1..K

mode E M, and b= 1... B as applicable do

if max eig Emode,b < c max (range (Xmodeb)) then
mod b

9: relevant ode,b=

10: end if
11: Fx = (t, E, relevant) vnodeeM

12: end for

59

1: for X C ,

2: (p, E)x

3: end for

4: P

5: Q

}
}

6:

7:

8:

for X E {C, D, P, Q},
relevantxode = 0

}

the relative position of the effector to the bin at the end of the motion is consistently

similar across demonstrations.

4.2 Data Processing and Flow Tube Generation

After identifying the motion variables, the system knows which points of interest

in the environment are relevant to the motion in the new situation. The next step

is to process the training data into a format with which the system can create the

probabilistic flow tube. Algorithm 4.3 describes this process.

The algorithm can be summarized intuitively in the following steps, with numbers

corresponding to the illustrations in Figure 4-4:

1. Collect training data: Training data includes continuous, discrete, position,

and orientation information. In Figure 4-4, there are three recorded training

sequences.

2. Identify the relevant motion variables: Using the motion variable identification

algorithm, the system determines the relevant features of the demonstrated

motion. In the "move box to bin example," the locations of the box and bin

are identified as relevant, while the ball location is not.

3. Extract relevant states in new environment (line 1): During autonomous exe-

cution of the demonstrated task in the new environment, the system can use

sensing to determine the new environment states. This step simply extracts

those states that are relevant based on the identified motion variables. In the

example, the system will examine the new scene and extract the locations of

the box and bin for the next steps.

4. Gather similarly initialized demonstrations (line 2): Identify a subset of the

demonstrated data sequences that have a relevant initial environment most

similar to the new situation. In the example, the system will select a subset

of demonstrations in which the relative initial positions of the box and bin are

most similar to those in the new situation.

60

Algorithm 4.3 MAKEPFT (S, F, T (0))

Input:
S, set of K demonstrated sequences {Tk}klK,

where T = (C, D, P, Q)
F, tuple of features (Fc, FD, Fe, FQ)

T (0), a new environment state
Output:

Teff = (C, D, Peff , Qeff), robot trajectory

Eeff, covariances at each corresponding time step
Notable local variables:

w, temporal matching indexes for two trajectories

1: T' (0) <- EXTRACTRELEVANTOBJECTS (T (0) , 7)
2: S' C S <- SIMILARINITCONDSEQS (S, T' (0))
3: Snom "<- NORMALIZESCALEROTATE (S', 7, T' (0))
4: Teff = Tin "T , where T"nor" E Sno

5: fork =2 to K do
6: w <- FASTDTW ([p, Q]eff [P Q]norm

7: Teff +- [(k - 1) Teff (w:,1) + Tno"m (w:, 2)]
8: end for
9: for k = 1 to K do

10: w <- FASTDTW ([P, Q]eff , [p, Qnorm

11: TanterP <- INTERPOLATE (Tk" (W:, 2), Teff)
12: end for
13: for n = 1 to JTeffI do

14: Eeff (n) +- COVARIANCE {TJnter (n) : k = 1..K}

15: end for

61

1. Collect user 2. Identify relevant
demonstrations motion variables

3

U

3. Sense new
parameters

4. Choose similarly
initialized
demonstrations

5. Normalize
demonstration
sequences

6. Generate
probabilistic flow tube

Figure 4-4: Illustrated steps of the approach with three demonstrations of the "move
the box to the bin" task in the two-dimensional simulation environment

62

5. Normalize demonstration sequences (line 3): Normalize the selected subset of

demonstrated data sequences to fit the values of the motion variables for the

new situation. In the example, the system will scale, translate, and rotate

the data sequences so that the robot end effector location upon initial contact

with the box matches the box location in the new situation, and the effector

location upon releasing contact with the box matches the bin location in the

new situation.

The steps during normalization in position is shown on the left of Figure 4-5:

Suppose there exists a demonstrated sequence shown in black, and the cur-

rent environment state desires the motion to start from point A and end at

point B. First, the sequence is scaled to the proper size. Next, the sequence

is translated to match the start with the desired start location. Finally, the

sequence is rotated so the end matches the desired end location. The steps

during normalization in orientation is shown on the right of Figure 4-5: Sup-

pose a demonstrated sequence has initial orientations depicted as black arrows,

and the current environment state desires the motion to start in the orientation

marked in green and end in the orientation marked in red. First, all orientations

throughout the motion are rotated by an amount equal to the offset between the

start orientation and the desired start orientation. Next, incremental rotations

are computed using spherical linear interpolation (slerp) from the resulting end

orientation and the desired end orientation. Finally, the incremental rotations

are applied to the orientations along the trajectory such that the start orien-

tation is rotated by zero amount and remains at the desired start orientation,

and the end orientation is rotated by the full offset to end up at the desired end

orientation.

6. Generate flow tube (lines 4-15): Temporally match all the space-normalized

sequences, and create a probabilistic flow tube to be used for autonomous exe-

cution. This is accomplished through the use of dynamic time warping, which

is discussed next.

63

Position

1. Scale

2. Translate

Orientation

2. Slerp from end to desired

3. Apply slerp increments

Figure 4-5: Illustration of how normalization works for position and orientation vari-

ables.

64

1. Rotate all by initial offset

3. Rotate

The algorithm uses dynamic time warping (DTW) [44, 61] to temporally match

observed sequences. Intuitively, dynamic time warping temporally deforms two se-

quences to minimize the overall difference between them. The basic algorithm takes

two recorded state sequences R = [R1 , R2.... , Rm]T and S = [SI, S2 ... , Sn]T, and

creates an m x n local cost matrix with entries containing the pairwise distances be-

tween all the data points in both sequences, cij = IRi - Sj 1, where i E {1 . .. m} and

j {1. ... n}.

Any temporal matching of the two sequences corresponds to a traversal of the

cost matrix from the element matching the origin of the two sequences, cil, to the

opposite corner, cmn. Thus the problem of finding the best temporal matching reduces

to finding the traversal of the cost matrix that results in the least total cost. Dynamic

programming is employed to find this optimal matching by computing the minimal

cumulative cost:

00, if i = 0 or j = 0

ciy, 7if ij = 1

ci + min Ci_,,j , otherwise

ci,1

The minimal cumulative cost at the last entry, Cm,n, is the minimal total cost, and

the path taken to achieve it reflects the best matching between the two sequences.

If the two sequences are very similar, the traversal of the cost matrix will be near

diagonal. This optimal matching is represented as a p x 2 matrix w containing the

indices of R and S such that R (wi,1) is aligned with S (wi,2), where p > m, n is the

number of elements along the matched path.

My implementation uses a fast DTW algorithm developed by Salvador and Chan

[58), which uses a projection algorithm to recursively refine a solution from coarse

resolution approximations, resulting in comparable accuracy performance but linear

time and space complexity.

Using dynamic time warping, the algorithm can determine the mean of two tra-

65

jectories R and S as 1 (R (wi) + S (wi,2)). Referring back to the set of normalized

demonstrated sequences S"'" in Algorithm 4.3, the approach iteratively computes

a representative mean sequence using this procedure (lines 4-8). This is the output

trajectory sequence of the robot end effector Teff. For orientation variables, the al-

gorithm takes the arithmetic mean of the quaternions. The result is very close to the

true quaternion mean if the collection of observations are clustered near each other.

The true quaternion mean can be used instead, but is more computationally intensive

[501.

The demonstrated sequences may have different numbers of data entries, so fast

dynamic time warping is used again to temporally match each of the normalized

demonstrated sequences in S"" to the mean sequence Teff, and interpolate them

so that all have the same number of data entries (lines 9-12). Finally, the algorithm

computes covariances at each corresponding time step across the temporally matched

normalized demonstrated sequences (lines 13-15).

4.3 Pre-learning

To enable faster performance online, the approach can pre-learn a large set of proba-

bilistic flow tubes randomly initialized at different environment states offline. These

pre-learned PFTs are stored so that during online recognition, the PFT with envi-

ronment states most similar to the online environment is selected and normalized to

the online environment. The pre-learning process is described in Algorithm 4.4. The

inputs to pre-learning include a set of demonstrated sequences S, a task label f, and

a set of initial environment states TO, potentially randomly generated. The essence

of pre-learning involves calling OFFLINEACTIVITYLEARNING for each environment

state in TO, and then storing all of the pre-learned PFTs in the library entry for

activity f.

Once PFTs have been pre-learned for many activities in the library, new activity

PFTs can be easily generated given a new environment state by selecting the stored

PFT that has the most similar initial environment state. The process of generating

66

Algorithm 4.4 PRELEARNPFTs (S, f, TO)
Input:

S, set of K demonstrated sequences {Tk}kl , where T = (C, D, P, Q)
E, the label of the task

TO, set of initial environment states from where to prelearn PFTs

Output:
libj = (PFTE, E, F, q),, library entry containing

a set of prelearned PFTs (PFT),
a set of corresponding initial environment states (E),
relevant motion characteristics (F),
and subtasks (q)

1: for TO E TO do
2: (PFTT', F) <- OFFLINEACTIVITYLEARNING (S, f, TO)
3: end for
4: libe a K{PFTfO} To ,TO, F, 0

a PFT for a new environment state given pre-learned flow tubes is described in Al-

gorithm 4.5. The inputs include the library of learned tasks L, where pre-learned

PFTs are stored, and a new environment state T (0). For each entry in the library,

GETPFTsFROMHERE first determines the relevant components of the initial envi-

ronment state using each library entry's identified motion variables. It next selects

among the pre-learned PFTs in the library entry the one PFT that has the most sim-

ilar relevant initial environment state components as the current situation. Finally,

the selected PFT is normalized through scaling, translation, and rotation in position

and spherical interpolation in orientation (as depicted in Figure 4-5) to fit the current

environment state.

The idea of pre-learning PFTs is made useful by the following property: two envi-

ronment states that correspond to the same set of k similarly initialized demonstra-

tions will produce PFTs that are equivalent after normalization. Figure 4-6 illustrates

this property using an example: Suppose there exists some set of training demonstra-

tions, of which the five shown in blue are most similar in initial environment state to

the environment state depicted by p. There may exist other training sequences not

depicted in the illustration. Suppose also that among all training sequences, the five

with most similar initial environment states to that of c also happen to be the same

67

Algorithm 4.5 GETPFTsFROMHERE (f, T (0))
Input:

L, library of previously learned task entries {lib}eEL
where each entry libe = (PFT, E, F, q)e

T (0), a new environment state
Output:

PFT I), set of probabilistic flow tubes for different labels starting from T (0)

1: for f E L do
2: T (0) +- EXTRACTRELEVANTOBJECTS (T (0) , Fe)
3: PFTfEE < SIMILARINITCONDSEQ (PFTf, Te (0))
4: PFTt(0) +- NORMALIZESCALEROTATE (PFTf, Fe, Te (0))
5: end for
6: PFT(-- PFT O L

L ~ t E 1L

Figure 4-6: For two sets of environment states p ("prelearned") and c ("current")
that correspond to the same set of five training sequences shown in blue, generating

the PFT for c directly from training sequences (left) is equivalent to generating the
PFT for c from normalizing the PFT for p (right).

68

C
Generate PFTs separately forp and c

C
Normalize p's PFT to c's environment

five blue trajectories as before. Given the training set, one can generate a probabilistic

flow tube for the environment state given by c using the OFFLINEACTIVITYLEARN-

ING algorithm. This option, shown on the left side of Figure 4-6, requires performing

dynamic time warping twice along the entire sequence of the trajectory, which takes

on the order of 0.5 seconds to run on an Intel Core i7 processor for trajectories on

the order of 30 data points. Alternatively, one can pre-learn the PFT associated with

environment state p (by calling PRELEARNPFTs offline), and normalize its flow tube

to the environment state given by c (by calling GETPFTsFROMHERE). This option

is shown on the right side of Figure 4-6. Generating a PFT from pre-learned PFTs

takes on the order of 0.01 seconds, and is thus far more desirable when it is necessary

to generate a PFT on the fly, such as when preceding online recognition.

The property described above is only useful if there are enough pre-learned PFTs

to provide good coverage of the environment states. Without specific domain knowl-

edge of the tasks of interest, one can safely assume that randomly generating envi-

ronment states from which to pre-learn PFTs will give good coverage as the number

of pre-learned PFTs goes toward infinity. To achieve reasonably good coverage of

the state space in the implementation, I typically use a large number of randomly

generated initial environment states (e.g. 100 to 500) from whence to pre-learn PFTs.

Since the pre-learning process is performed offline in advance and storing a large num-

ber of PFTs in memory is not a problem for modern machines, a generous number

of PFTs is chosen to be pre-learned for good performance. For specific applications,

domain knowledge may be used to intelligently select the set of environment states

from which to generate pre-learned PFTs.

4.4 Enabling Autonomous Execution

The probabilistic flow tubes generated by the learning algorithm can be used to per-

form autonomous execution in new environment states. In a simple implementation,

the mean trajectory of a PFT can be down sampled and sent to a controller as way-

points to follow. This approach assumes the existence of an inverse kinematics solver

69

on the robot to generate appropriate robot poses that move the end effector to the

target waypoint positions in Cartesian space. A more sophisticated implementation

can incorporate the covariances as cost functions for deviations from the nominal tra-

jectory. This approach is presented as a possible future extension in Section 8.1.1.

70

Chapter 5

Recognizing Motions Online

After a library of probabilistic flow tube models of all the different motions f E L

from the current environment state Tcurr (0) is learned by calling either

PFT I) - OFFLINEACTIVITYLEARNING (7, L, Tcur (0))

or

PFTT(O) <- GETPFTsFROMHERE (f, Tcurr (0))

if the motion was pre-learned, the system is ready to perform real-time recognition

of a user's executed motion online.

The real-time motion recognition approach is summarized in Algorithm 5.1. The

inputs include the data structure PFT obtained from activity model learning, the set

of motion labels L, a current execution trajectory Tcurr containing Ncur data points,

and a set of utility parameters /V that is incrementally updated every time the current

execution proceeds. When ONLINERECOGNITION is called for the first time, i.e. an

operator is starting a new motion to be recognized, W/V is initially empty. As the

execution progresses, the algorithm reuses parameters in W' as much as possible to

avoid redundant computations and enable real-time recognition.

The three main components of the recognition approach are: determine where in

each probabilistic flow tube the current partial motion might correspond, temporally

align the identified portion of the PFT with the current partial motion, and compute

71

Algorithm 5.1 ONLINERECOGNITION (PFT"urr(L, TcUrr,)
Input:

PF T ={PF T}EL, where PF Te = (Teff , Eff , I, G), and
Teff = (C, D, Peff, Qeff)

Eeff = - e-D,

L, set of labels of all learned motions
Tcurr, current observed trajectory
W, cost matrices for dynamic time warping

Output:
LL = {lle}EL, set of log likelihoods for each motion in L

W, updated cost matrices for DTW
Notable local variables:

Ctime, 0 .Cme, temporal component of C, -c in PFT
d, spatial distance between a PFT and current state
p, probability densities evaluated at time steps in PFT
Ne, length of flow tube f
Ncurr, length of current trajectory Tcu

teurr, time at current position Tcu" (NCU")
w, temporal matching indexes for two trajectories
7, prior log likelihood of flow tube f

1: for E c L do
2: d = [P,Q]cU (Ncur) - [P, Q]ff (n)

=~~ ~ ~ n=1] l... Nj
3: p = { N (C time (n) 0 .g e (=1. t..

4: p <
max(p)

5: d' =
Pn=1 ...N

6: n*= argminn (d')
7: PFT* = PFTf (1... n*)

8: (w, W) -- INCREMENTDTW Tef* TCUrr , W)

9: lie =7+ G (wj,1) - (wj,)
j=1

where 6 = Tcur (wj,2) - Tjf (wj, 1)
10: end for

72

the log likelihood that the current partial motion is recognized as each PFT. I now

discuss each component in more detail.

5.1 Partial Flow Tube Matching

To determine the location in a probabilistic flow tube that best corresponds to the

current executed state (lines 2 to 6 in Algorithm 5.1), the approach looks at both

how far the current executed state is from the PFT, and how much time has passed

in the execution as compared with the trained models. Intuitively, the point in the

PFT that best corresponds to the current executed state should have a small spatial

distance to it while having been executed at around the same time.

The algorithm first computes the distances from the current position and orienta-

tion in Tc"" (NC"") to those in the nominal trajectory Teff for motion f through all

the time steps in the PFT, or

d { [P, Q] CUr (NCu"") - [P, Q] ff (n)

Small values in d may help indicate which time steps in the PFT correspond to the

current executed state.

Next, the algorithm represents how temporally different the current execution

time tcurr is from the points in the temporal component of the PFT, or (C ime me

by evaluating the probability density of the current time at each point in the tube,

or

p = { C (Ct' (n) 0 - e (1. ti)e

The distances are weighted by the temporal similarity measure to obtain

, d n
Pn n=1...N

The time step in the PFT that corresponds to the current executed state occurs when

the weighted distance is smallest.

73

10 10 10

5 X 5 X 5 U

0 0 0
0 5 10 0 5 10 0 5 10

Circle CW Circle CCW Anchor x,o Anchor o,x
10 10 10 10

5 5 X) 5 5

0 0 0 0
0 5 10 0 5 10 0 5 10 0 5 10

Figure 5-1: An example partial test motion (black) is compared to each learned
PFT (blue) in a 2D environment initially with a red box, green bin, and stationary
locations x and o as shown. The magenta marking on each PFT indicates the spot
on the PFT that best matches the current execution (rightmost end of black motion)
as determined by lines 2 to 6 in Algorithm 5.1.

I choose to use the actual distances between the current state and the points

in the nominal PFT trajectory (i.e., JTcurr (NCu") - Teff (n)||) to represent spatial

consistency instead of computing the spatial probability densities of the current state

evaluated through all the Gaussians in the PFT (i.e., K (Teff (n) 'eff (n)) |TCT(Neurr))
because of the real-time recognition requirement. While spatial probability densities

give a more accurate estimate of a point's deviation from the flow tube, they take

longer to compute due to the higher dimensionality of spatial states. I have found

direct distances to be good estimates of spatial consistency for motions with flow tube

widths that do not vary greatly with high frequency, as is true in most robotic tasks.

Figure 5-1 shows the result of determining the best correspondence points in 7

different learned PFTs for a partially executed test motion. The data is collected in

a 2D world consisting of two movable objects "box" and "bin" and two stationary

locations x and o. The trained motions are "move box to bin," "move box left 1

unit," "move box to point x," "circle the box around bin in clockwise direction,"

74

Move to bin Move to xMove left 1

"circle the box around bin in counter-clockwise direction," "make an anchor loop (or

'figure 8'), first around x, then around o," and "make an anchor loop, first around

o, then around x." The highlighted magenta markings indicate the positions in each

PFT that was determined to best correspond to the current position of the partial

test motion in black. Notice that the identified position in the "circle clockwise"

PFT is not spatially near the current test position, but rather in a more reasonable

position that is temporally consistent with the current execution.

5.2 Temporal Alignment of Partial Motion

The next step in the recognition approach is to temporally align the identified por-

tion of each PFT to the current execution trajectory in order to compute likelihoods.

While the algorithm could use basic dynamic time warping to perform temporal

matching in the recognition problem, it is undesirable that the algorithm would re-

compute similar cost matrices each time the test motion progresses.

To leverage as much information as possible from one time step to the next, the

algorithm performs incremental dynamic time warping [17] by keeping previously

computed cost and back pointer matrices in memory and updating as necessary.

The INCREMENTALDTW algorithm used in line 8 of ONLINERECOGNITION ac-

cepts two input trajectories R and S of lengths M and N, respectively, and an input

parameter W = (c, C, b), where c, C, and b are the m x n cost matrix, cumulative

cost matrix, and back pointer matrix, respectively, computed at the previous time

step. Incremental DTW reuses these matrices when temporally aligning R and S by

computing new values only for rows m + 1 to M, and columns n + 1 to N. A new

temporal matching is found by tracing the updated back pointer matrix from the end

to the beginning, as shown in Figure 5-2. The temporal alignment is represented as

a two column matrix w of corresponding indexes of the two input trajectories.

75

Rc

Cmn

CM.N

Figure 5-2: During incremental dynamic time warping, the algorithm only needs to
update the cost and back pointer matrices from the previously stored values (depicted
by the inner box) to obtain a new temporal matching (red and purple path).

5.3 Compute Log Likelihoods

Finally, after temporally matching the current partial trajectory with the corre-

sponding portions of each probabilistic flow tube, the algorithm can proceed to

compute the likelihood that the current trajectory belongs to a particular mod-

eled motion. Formally, I define random variables L and 0 to represent motion la-

bels and observations, respectively. The probability that the motion is f given the

current observation sequence Tc' is PrIo (ETc""), and applying Bayes Rule gives

PlIo (|ITc") c poIL (Tcu"|) pL (f). The prior probability of each motion label PL (V)
is obtained by recording the number of times the motion was used during training

weighted by how far along the current motion is in the flow tube, i.e. pL (E) = NAe

The problem that remains is computing the likelihood of observing the current tra-

jectory given a particular flow tube.

I model the observation likelihood PoiL (TC""|I) as the product of the probability

densities of each spatial distribution in the flow tube evaluated at the temporally

aligned points in the current trajectory, i.e.,

wl - _

171 [r (Tf (wi), Ef (w,i)) .u(Wj,2)]

76

Since the length of the temporal matching matrix JwI can vary between max (M, N)

and M + N - 1, I use the exponent (!) to perform a multiplicative renormalization

over the resampled points to ensure that the overall contribution of the probability

values for the trajectory is not inflated by the resampling process.

Taking the log of the observation probability gives

-log y(2 ,T)2 Zefwf) ,) _ 6Tefwii)
1 1 . -~ " ,1

where d = dim (Teff) and 6 =cTr (wj,2) -Tf (wj,1). Finally, the approach uses the

pre-computed inverse covariances I and probability density coefficients G obtained

from model learning to efficiently compute the posterior log likelihood as shown in

line 9 of Algorithm 5.1,

1 1
7r + w I Ge (wj,1) - ±6TIf (w,1) 6]

=1 --

where 7rt = log (pL (f)) is the log of the prior on motion label f.

In the case that the trajectory does not belong to any of the motion labels in the

library, the computed log likelihoods of all labels will be very small in value. I define

the log likelihood that the motion is "unknown" to be

T - max (LL),

where T is a user-generated threshold, and is set to -1000 in experiments. In practice,

"unknown" is treated as an additional entry in the task library with its computed log

likelihood value. During recognition, the most likely recognized activity can be any

of the activities in the library, including "unknown."

77

78

Chapter 6

Learning High-level Plans

The two challenges when extending learning and recognition to high-level tasks con-

sisting of activity sequences are (1) determining where activities should be segmented

in a sequence and (2) identifying and learning previously unseen activities embedded

in a sequence. Existing research typically assume that either sequences are already

pre-segmented into discrete action labels, or no segmentation information is provided

and unsupervised learning is required to cluster portions of motion trajectories into

activities.

In practical applications of teleoperation or kinesthetic teaching, users may nat-

urally provide segmentation information to a subset of the training demonstrations.

Akgun et al. [2] describe an intuitive kinesthetic teaching method that enables users

to easily provide important points called keyframes during a training demonstration

through a voice commanding interface. Kinesthetic teaching involves a user physically

moving a robot's end effector around in the environment. The goal of Akgun et al. is

to provide easier and more intuitive ways for users to generate demonstrations during

teaching. In their experiments, users could choose to provide only keyframes and not

worry about the trajectories between keyframes, relying on a planner to autonomously

proceed from one keyframe to another during autonomous execution. I borrow their

idea of keyframes and use them as segmentation points overlaid on the demonstrated

trajectories that describe the behavior of the activities within the segments. Akgun

et al. show that trajectory demonstrations without providing keyframes require less

79

time for the user [2], so I assume that of a set of K demonstrations of a particular

task plan, only a small subset contain keyframes.

As shown in the setup of Algorithm 6.1, the inputs of plan learning consist of

a set of demonstrations S of the sequence of activities that compose the plan, a

new label f' that is used to describe the plan, a new environment state T (0), and

the current library of learned tasks L. Of the demonstrations, a subset Y contain

keyframes recorded as an additional discrete variable in the demonstrations. My plan

learning approach as illustrated in Figure 6-1 achieves the following: (1) determines

the sequence of activities that compose the demonstrated plan if it is a new plan, (2)

learns any previously unseen activities in the plan, (3) auto-segments non-keyframe

trials by bootstrapping on keyframe trials, and (4) generates a new probabilistic flow

tube for the entire plan in the new environment state. The resulting output of plan

learning is an updated task library with the new learned plan and any additional

previously unknown activities.

The plan learning approach also allows for and encourages an interactive mode

that actively probes the user for validation of the bootstrapped auto-segmentation if

the system is below a certain level of confidence. In practice this feature is natural

and unencumbering for the user as it mimics a student asking a teacher for validation

when performing a task, which is common in human teacher-student interactions.

More discussion of the user validation capability can be found in Section 6.3.

An overview of the plan learning approach is shown in Algorithm 6.1. The algo-

rithm first checks whether the input plan label f' already exists in the set of library

task labels L (line 1), and if so, updates the entry in the library libe' with a new plan

PFT from the input environment state T (0) (line 2). More steps are involved if the

input demonstrations refer to a new label not already in the library. I now discuss

each major step in more detail.

80

Algorithm 6.1 OFFLINEPLANLEARNING (S, ', T (0) , L)
Input:

S, set of K demonstrated sequences {Tk}klK for a particular plan,
where T = (C, D, P, Q)

', a new plan label

T (0), a new environment state

L, library of previously learned task entries {libe} EL,

where each entry lib = (PFT, E, F, q) has a label (f), a set of pre-learned

PFTs (PFT), a set of corresponding initial environment states (E),
relevant motion characteristics (F), and a list of subtasks (q)

Output:
L, updated task library

Notable local variables:

Y c S, trials with user-provided segmentation keyframes

Z = S\Y, trials without user-provided segmentation keyframes

DkeY E D, discrete keyframe variables in Y trials

Kkey - {Dke" == 1}, indexes of discrete keyframes in Y trials

-y, confidence in bootstrapped auto-segmentation

1: if f' c L then
2: libe GENERATEPLANPFT (f', qf, L, T (0))
3: else
4: LL +- RECOGNIZETASKSUSINGKEYFRAMETRIALS (Y, L)
5: q <- VOTEACTIVITYSEQUENCE (LL)
6: while Z#f 0 do
7: (L', q') <- LEARNUNKNOWNACTIVITIESINPLAN (Y, E, q, {Tk (0)vTkCz)
8: for j = 1...IZ| do
9: K ey " INITIALIZEPROPORTIONATELYINTIME (,Z, y)

3

10: K3e, 7, U)- UPDATEUSINGMOTIONVARS (Zj, q', { hT)L' , Kr'

11: if !u then
12: K ey, 7) <- UPDATEUSINGRECOGOPTIMIZATION (\Zj, q', L', Ky

13: end if
14: end for

15: (Y, Z) +- VALIDATEAUTOSEGMENTATIONS (KeY

16: end while
17: TO <- RANDOMENVIRONMENTSTATES 0
18: (f, q') <- LEARNUNKNOWNACTIVITIESINPLAN (Y, L, q, TO)

19: libe' <- GENERATEPLANPFT (f', q', 1, T (0))
20: L <- {, libe}
21: end if

81

Task library

ttto bin

Activity sequence:
to bin
unknown

1. Determine activity sequence from keyframe trials

3. Iteratively auto-segment
non-keyframe trials

Figure 6-1: Summary of plan learning approach

82

Activity sequence:
to bin
reach ball

2. Learn previously unknown subtasks

Keyframe trial

6.1 Determining Activity Sequence

First, to determine the sequence of activities that compose the demonstrated plan,

the algorithm performs recognition on the keyframe training sequences (line 4 in

Algorithm 6.1), which are the pre-segmented demonstrations of the plan. RECOG-

NIZETASKSUSINGKEYFRAMETRIALS (Algorithm 6.2) is a wrapper function that calls

ONLINERECOGNITION for all the segments in the keyframe trials Y. Its inputs in-

clude the set of keyframe trials Y and the task library L, and it outputs a set of log

likelihoods through time LL that reflects which label each activity segment describes.

For each trial in Y, the algorithm walks through each time step t in the trial (lines 1

and 3). If the time step marks the beginning of a new activity segment because it is

a keyframe for trial i (t - KjeY), then the algorithm makes a note of the environment

state at that time step Y2 (t), and generates PFTs from that environment state using

the pre-learned PFTs in the library (line 7). Once the PFTs for an activity segment

are obtained, it can call ONLINERECOGNITION on each partial segment Yi (tpre, ... t)

in the activity (lines 10 and 11) until the next keyframe is reached. In addition to the

generated PFTs from the current environment state, the set of motion labels, and the

current partial execution, ONLINERECOGNITION also requires a set of parameters W

for incremental dynamic time warping, which is initialized to empty in the beginning

of each activity segment (line 8). For each time step in a trial, ONLINERECOGNITION

outputs a set of log likelihoods LL (t) = {LLj}iL that reflect how likely the current

segment Yi (tprev . . . t) belongs to each activity label e in the library.

An example illustration of the log likelihoods is shown in Figure 6-2. With time

progressing horizontally across, suppose there are two keyframe trials represented

by the two blue lines (simplified down to one dimension for illustration purposes)

with keyframes indicated by red markers. The goal of the RECOGNIZETASKSUS-

INGKEYFRAMETRIALS algorithm is to generate the log likelihoods depicted as green

lines, so that after a bit of processing, the system can derive the most likely sequence

of activity labels that is represented by the keyframe trials. Judging by the illus-

trated log likelihoods in the example, one might eventually conclude that the activity

83

Algorithm 6.2 RECOGNIZETASKSUSINGKEYFRAMETRIALS (Y, f)
Input:

Y, set of keyframe trials
L, library of previously learned task entries {lib4}tEL

where each entry libi = (PFT, E, T, q)
Output:

LL, set of log likelihoods
Notable local variables:

Dkey E D, discrete keyframe variables in Y trials

Kkey = { DkeY == 1}, indexes of discrete keyframes in Y trials

1: for i = 1 ... lY| do
2: tprev <- 0
3: for t =0 ... Yj do
4: if t E K eY then
5: tprev - t
6: T (0) - Yi (tprev)
7: {PFTe}EiL <- GETPFTSFROMHERE (L, T (0))
8: W +- (0, 0 0)
9: end if

10: T CU" < Yi (tprev ... t)
11: (LL, (t) , W) <- ONLINERECOGNITION ({PFTf}eEL , L, Tcu, W)

12: end for
13: end for
14: LL <- {LL }

84

t

L 1

LL Activity 1

LL1 t=2 Activity 2

LL 1 3 Activity 3

2

LL 2 , 1 Activity 1

LL2,t=2 Activity 2

2, =3 Activity 3

Figure 6-2: Illustration of performing online recognition on task sequences. In the

two keyframe trials Y1 and Y2, the log likelihood of activity 2 is highest during the
first segment, activity 3 is highest during the second segment, and activity 1 is highest
during the third segment. Therefore, it is likely that the activity sequence in this plan
is {2, 3, 1}.

85

Keyframrne
trial 1

U U U

Keyfra me
trial 2
yCN M

U U U

Keyfrarme
trial 3

U U U

Average
frequency

'P-
U U U

99% 1% 0%

27% 2% 71%

13% 197% 10% 1

Agreed
sequence

1

3

Figure 6-3: Example process of determining the sequence of activities that compose
the demonstrated plan from keyframe trials. Shading represents recognized log likeli-
hood, and red values represent the percentage of time steps during which a particular
activity was recognized in a keyframe segment. The keyframe trials "vote" on an
average recognition frequency for each segment and agree on a recognized activity
sequence for the plan.

sequence for Y is activity 2, followed by activity 3, followed by activity 1.

Next, suppose the log likelihoods have been computed for each activity segment

through time for each trial, the keyframe trials "vote" on an activity label sequence

by determining the fraction of the time spent in each activity segment recognizing

each of the labels (Algorithm 6.1 line 5). The label with the most "votes" is deemed

the recognized activity for that segment.

Figure 6-3 illustrates this process in an example: Suppose there are three keyframe

trials, and time progresses downwards vertically. Keyframes are depicted as dark

black lines that segment the trials, and the computed log likelihoods are represented

as gray scale shading along the trials for activity labels 1, 2, and 3. Focusing on

a single activity segment in a trial and comparing the likelihoods, the algorithm

86

identifies the percentage of time the recognizer labels the activity segment with a

certain label (in this case, "1", "2", or "3"). For example, in the first segment of

trial 1, the recognizer found that 96% of the time spent in that segment, activity 1

had the highest log likelihood among the three activity labels. If this pattern persists

across different trials, then the system can conclude that the first segment is activity

1. Sometimes, a keyframe trial can be noisy, causing errors in recognition. These can

be averaged out among the different trials. For example, the second segment of trial 1

is recognized as most likely activity 1, but after averaging the recognition frequencies

from the other two trials, it becomes clear that the label of the second segment is

most likely activity 3.

6.2 Learning Unknown Activities

The resulting activity sequence may contain activities in the task library or previously

unknown activities. For every activity segment in the sequence that was recognized

most likely as "unknown," the training segments in the keyframe trials Y are used

to learn new PFTs in the task library for the previously unseen activities using the

LEARNUNKNOWNACTIVITIESINPLAN algorithm. A temporary new library L' is cre-

ated, and a new activity sequence q' is generated from the new library. For example, a

previously recognized activity sequence q might be "activity 2", "unknown" , "activity

4", "unknown", and after calling LEARNUNKNOWNACTIVITIESINPLAN, the updated

activity sequence q' might be { "activity 2", "activity 5", "activity 4", "activity 6" }.

If all input demonstration trials are pre-segmented with keyframes, the algorithm

directly pre-learns PFTs (using the methods presented in Section 4.3) for a large set

of randomly generated environment states (lines 17-18 in Algorithm 6.1). Otherwise,

an iterative process is used to determine segmentation for the non-keyframe trials,

the first step of which is to generate PFTs starting at all the initial environment

states of the non-keyframe trials (line 7 in Algorithm 6.1). More discussion about the

auto-segmentation process is described in Section 6.3.

Details of the LEARNUNKNOWNACTIVITIESINPLAN function can be found in Al-

87

Algorithm 6.3 LEARNUNKNOwNACTIVITIESINPLAN (S, L, q, TO)

Input:
S, set of K pre-segmented demonstrated sequences {Tk}kl K for a plan,

where T = (C, D, P, Q) and
Dkey - D contains segmentation information

L, library of previously learned task entries {libt}L
q, sequence of activities in plan, including unknown activities

TO, a set of initial environment states

Output:
L', updated task library

q', updated sequence of activities in plan

Notable local variables:

{T,}k ,K' set of all ith segments of trials in S

1: q' +- q
2: for all i : qj== 'unknown' do

3: qj <- GETNEwLABEL ()
4: libi +- PRELEARNPFTs ({Tj} k , q, TO)

5: end for
6: L' - L, {libi}i:q=='unknown'}

gorithm 6.3. The inputs to the algorithm include a set of pre-segmented demonstrated

sequences S (when calling the function, the keyframe trials Y can be given as input),

the existing task library L that will be updated, the activity sequence q determined

by the algorithms in Section 6.1 that contains "unknown" activities, and a set of

initial environment states TO, possibly randomly generated, from which to pre-learn

PFTs.

The algorithm first searches through the activity sequence in the plan for previ-

ously unknown activities (line 2), and generates a new label for each new activity by

calling GETNEwLABEL (line 3). GETNEwLABEL is a simple function that queries

the user for a new label on the activity, or if the system is run without user interac-

tion, randomly generates a new string label by default. Next, the new activities are

pre-learned using the initial environment states specified by the input (line 4), and

the library is updated with the new entries (line 6).

When LEARNUNKNOWNACTIVITIESINPLAN is used in the context of learning a

plan, it is first called using the keyframe trials that are provided as training input.

88

This works well if there are many such keyframe trials provided. However, in typical

operations, because of the additional overhead of providing keyframes, I assume that

the user only provides a few keyframe trials, while a greater number of trials do

not have keyframes. In order to also take advantage of the non-keyframe trials,

the OFFLINEPLANLEARNING algorithm iterates the process of learning previously

unknown activities from keyframe trials and using the newly learned activities to aid

in auto-segmentation, which converts more non-keyframe trials into keyframe trials.

The details of auto-segmentation is discussed next.

6.3 Auto-segmentation

Since it is easier for a user to demonstrate entire plan trajectories without having

to indicate where one activity stops and the next starts, the system auto-segment

the activities in a plan for most trials from observing just a few fully pre-segmented

trials. In this approach, auto-segmentation proceeds incrementally in lines 6 to 16 of

Algorithm 6.1, in which the goal is to determine a set of key time frames Kkey that

correctly segments the corresponding set of previously unsegmented trials Z.

For every non-keyframe trial in Z, the algorithm first initializes its candidate

keyframes proportionately in time based on average keyframe trials (line 9 in Algo-

rithm 6.1) in order to provide a rough temporal estimate on where keyframes are

located. For example, suppose a non-keyframe trial Zj of a plan containing three ac-

tivities has 120 time steps, and there are three keyframe trials Y with keyframes [5, 20],

[30, 60], [25, 75] and total time steps 40, 80, and 100, respectively. The initial temporal

estimate of the keyframes for trial z should be 12 [(2 +2- + 5 (20 +8 + n)]3 \40 +80 lOk4 0 1001]'

or [30,80].

Next, the candidate keyframes are updated based on geometric information from

the motion characteristics of each activity segment. As an illustrative example, con-

sider the "move box to bin" motion that always ends at the same position relative

to the bin (to within a small epsilon). This relevant motion variable reveals that a

task sequence containing this activity can be reliably segmented at the point where

89

the effector position reaches the observed position relative to the bin.

Figure 6-4 illustrates an example of determining candidate segmentation points on

a non-keyframe trial using information provided by a keyframe trial. In this example,

there are three objects-a red box, a green bin, a blue ball-and a stationary location

marked by x. The demonstrated task sequence in both trials is { "reach box", "move

box to bin", "reach ball", "move ball to x", "done with ball" }. The shaded regions in

the keyframe trial (panel 1) depicts objects' motions. Let's assume the keyframes fall

at time steps 20, 60, 70, and 80 of a 100 time step keyframe trajectory, as shown panel

3. Given a new non-keyframe trial as illustrated in panel 2, candidate keyframes are

initially assigned at the same temporal proportions as in the keyframe trial (panel

4). These temporally assigned candidate keyframes typically give a good estimate of

where the true keyframes lie.

Next, in panels 5 through 8, each candidate keyframe is updated based on the

identified motion variables from the keyframe trial, following procedures in Algo-

rithms 6.4 and 6.5. The search window for updating the ith candidate keyframe (Ki)

is from keyframe Ki 1 to Ki+1 , where KO and KjK+1 are set to the beginning and

end time points of the entire trial. Limiting the search space when updating the can-

didate keyframes based on spatial motion variables helps to prevent large temporal

discrepancies caused by spatial reasoning alone. Such an error can occur when earlier

and later activity segments in a task sequence revisit the same spatial feature-in this

case, spatial reasoning alone may confuse the two segments, but limiting the temporal

focus on the generated candidate keyframes can help reduce the confusion.

The function UPDATEUSINGMOTIONVARS handles both position and orientation

motion variables, given in Algorithms 6.4 and 6.5, respectively. The inputs to each

algorithm include an unsegmented plan trajectory T, the sequence of activities q

that the trajectory is supposed to describe based on other keyframe trials, a set of

learned motion characteristics F for activities in the library, and the set of candidate

keyframes K initialized by temporally matching keyframe trials. Each algorithm steps

through the candidate keyframes and makes adjustments to the target end effector

position P*eff or the target end effector orientation Q*eff, respectively, based on which

90

I U
1. Keyframe trial 2. New non-keyframe trial

3. Keyframe trial t=100 4. Initialize candidate keyframes proportionately
in time on new non-keyframe trial

KO
t=60

K2=60 K =
t=70 KK=100

t =20

t=80 K3_ 70 K4-80

5. Update keyframe K based on motion
Keyframe trial recognized activity sequence (and variables, t=KO... K2

identified motion variables):
- reach box (relEffEndat box)
- box to bin (re/EffStart at box, relEffEndat bin) K2=60
- reach ball (relEffEndat ball) K,=25
- ball to x (relEffStartat ball, absEndat x)
- done with ball (re/EffStart at ball)

6. Update keyframeK 2 based on motion 7. Update keyframeK 3 based on motion
variables,t=K...K3 variables,t=K2...K 4

K2=57 K2=57
K1=25

K 70 K3 =65 K4=80

8. Update keyframe K4 based on motion 9. Final candidate keyframes for new trial
variables,t=K3...K5

K5=100

Ks=65 K4=82

Figure 6-4: Illustration of generating candidate keyframes on a non-keyframe trial
using time proportions in a keyframe trial, and updating candidate keyframes based
on motion variables observed in keyframe trial.

91

motion variables are relevant for each activity qi being considered.

For example, if any relEffEnd motion variables are relevant in position for a par-

ticular activity qi, then p'fffd,b reflects what the mean difference between the end

effector position and a relevant object b's position should be at the end of activity qi.

In the training trajectory, an object b's motion is recorded as pb (t), and the end effec-

tor's motion is Peff (t). When the difference in these two trajectories closely matches

what the mean indicates it should be, then that time step is the point that marks the

end of activity qi, and where the keyframe should be placed. Figure 6-5 illustrates

this in an example: three (faded) training samples of a "move to bin" activity sug-

gest that for a new bin location (in dark green), a "move to bin" activity should end

at the location marked by the asterisk. Given an executed plan trajectory (in dark

blue) that contains the "move to bin" activity followed by some other activity, the

algorithm selects the point in the trajectory that is closest to the target end location

(red) to mark the segmentation between the two activities. This type of analysis is

performed for each mode (absStart, absEnd, relInit, relEffStart, relEffEnd) in both

position (Algorithm 6.4) and orientation (Algorithm 6.5).

For a motion with multiple identified motion variables, the variables are prioritized

in the following order:

1. relEffEnd

2. rellnit

3. absEnd

4. relEffStart

5. absStart

For example, let's say a "move box to bin" motion is trained in environments where

the bin is always positioned at the stationary point x, then both relEffEnd at bin

and absEnd at x would be relevant motion variables. In this case, the higher priority

motion variable (relEffEnd at bin) is used for geometrically determining trajectory

segmentation. In other words, if in a new trial the bin were placed at a different

location from x, the activity's trajectory should end up at the bin location, not at

92

peff

P*eff

LMI
Figure 6-5: Illustration of how a keyframe is selected based on motion variable geom-
etry

93

LI

x, and UPDATEUSINGPOSITIONMOTIONVARS would look for the point in the plan

trajectory closest to the bin location to place the segmentation keyframe.

How closely the position or orientation of the end effector can match the geometric

targets described by the motion variables is an indicator of how reliable the keyframe

placement is. For example, if a position mode is relevant, a keyframe is placed at the

time step t when the difference between the end effector position and the target end

effector position 1peff (t) - P*eff (t)tK K is minimum for the keyframe between

activity qi and qiwi. But how much is too much difference? From the motion variables,

the algorithm knows that the spread of the of the motion variable E is an indicator

of how much variation the motion variable had during training. Although E was

computed from different variables (effector versus object positions), by properties of

linear transformation of Gaussian distributions, the system can evaluate the current

end effector position difference against the Gaussian distribution centered at zero,

with covariance E to reflect how good the keyframe placement is, as shown in line 21

of Algorithm 6.4. A normalization factor a = 1 is applied to obtain values

between 0 and 1. The confidence measure of the quality of keyframes is defined as

the product of these "keyframe goodness" values across all candidate keyframes.

If certain candidate segmentation points have no associated relevant motion vari-

ables, then a gradient-free optimization method is used to determine the points of

segmentation based on recognition likelihood of candidate subtasks (line 12 in Al-

gorithm 6.1). Conceptually, the points of segmentation should occur when activity

segments, or subtasks, adjacent to the segmentation points are recognized with highest

likelihood as compared to those generated from any other set of candidate segmen-

tation points. The optimization function is defined by the sum of the recognized log

likelihood of each activity in the subtask sequence. My implementation employs the

Nelder-Mead simplex algorithm as the optimizer [35]. Since this algorithm is a min-

imizer, the optimization function is the negative sum of the subtask log likelihoods.

The Nelder-Mead simplex algorithm is gradient-free and is widely used for uncon-

strained optimization problems due to its ability to produce rapid initial decreases in

function values.

94

Algorithm 6.4 UPDATEUSINGPOSITIONMOTIONVARS (T, q, F, K)

Input:
T = (C, D, P, Q), a training trajectory for a plan
q, sequence of activities in plan

F = {fTfL, motion characteristics of previously learned task entries in
library, where each F = (Fc, FD, Fe, FQ), and each F = (i, E, relevant)

K, candidate keyframes
Output:

K, updated keyframes
-y, confidence in keyframes
U, whether or not there exist relevant position motion variables

Notable local variables:
N, number of time steps in T
b: relevant ,,,l == 1, indexes of any relevant objects in subtask qi for

position motion variable mode E { absStart, absEnd, relInit, relEffStart, relEffEnd}

1: KO <- 1
2: K|Kl+1 <- N
3: u <- true

4: for i = 1... jKJ do
5: if Vrelevant ffnd then

6: P*eff (t) <- avgb (- iip JEffEnd b) ... K 1

7: else if relevantr'f2n. then

8: {P*eff(t)} - Peff (K 1) + ,renit

9: else if relevantPbEnfl then

10: {p*eff (t)}tK K absEnd

11: else if Vrelevant art then

12: { P*eff (t) - avgb P t) - ,eEqStartb} Vb tKi_ 1 ...Ki+1

13: else if relevant bstart then
14: { P*eff (t)}l=i . <--J pabs"tr

t=K 1 .K +1 ? =qi+1
15: else

16: {p*eff (t)} K <- peff (K)

17: u +- false
18: end if
19: Ki +- argmint (peff (t) -- P*eff (t) tK,

20: end for

HK modeb\21: '7 <-] I mNt (t0 E.."K"d'
i=1 ' * mint ~~Pef(t)-P*eB~)tK~..

95

Algorithm 6.5 UPDATEUSINGORIENTATIONMOTIONVARS (T, q, .F, K)

Input:
T = (C, D, P, Q), a training trajectory for a plan

q, sequence of activities in plan

= f T If CLmotion characteristics of previously learned task entries in

library, where each F = (Fc, FD, Fp, FQ), and each F = (p, E, relevant)

K, candidate keyframes
Output:

K, updated keyframes
-y, confidence in keyframes
U, whether there exist relevant orientation motion variables

Notable local variables:
N, number of time steps in T
b: relevant --q. 1, indexes of any relevant objects in subtask qi for

orientation motion variable mode C { absStart, absEnd, rellnit, relEffStart, relEffEnd

q +' = TOQUATERNION (P' - Pef), orientation of ray from object b to robot
end effector (eff = index 1) for input trial T

1: KO +- 1
2: K|K|+1 <- N
3: u -- trUe

4: for i= 1...KI do
5: if VrelevantEffEnd then

6: {Q*eff (t) <-- avgb q preEffEnd,b)1 Vb) t=K...Ki+ 1

7: else if relevant'" then

8: {Q*eff (t)t=Ki- 1 ... K+ 1 Qeff (K 1 1) e

9: else if relevantabsd then
10*ef absEnd
10 {*eff (t)}t=Ki-1 .. K +1 fq

11: else if Vrelevant "t then

12: Q*vef (t) - relEffStartb
- agb (+' t) (IQ~fqi~l Vb) t=Ki _1...Ki+1

13: else if relevantSart then

14: *ef (t} absStart

15: else
16: {Q*eff (t)} Ki- 1 ...K+ 1 Q eff (K)

17: u <- false
18: end if
19: Ki <- argmint (arccos Qeff (t) - Q*eff (t)I=K. 1 Kl)

20: end for

21: y < - (c a (o, Em odeb)
i= 'a mint Qef (t)-Q-,ff(otK- ..K+

96

Algorithm 6.6 UPDATEUSINGRECOGOPTIMIZATION (T, q, L, K)

Input:
T = (C, D, P, Q), a training trajectory for a plan

q, sequence of activities in plan

L, library of previously learned task entries {libe} L
K, candidate keyframes

Output:
K, updated keyframes

-/, confidence in keyframes

Notable local variables:
y, the same trial as T, but with keyframes K incorporated

J, the optimization function

T, log likelihood threshold, set at -1000, below which the trajectory

being evaluated is considered not the current activity

1: loop
2: y +- ADDKEYFRAMESTOTRIAL (T, K)

3: LL <- RECOGNIZETASKSUSINGKEYFRAMETRIALS (y, L)

4: J K - E (LLg)
5: K <- NELDERMEADITERATE (J, K)

6: end loop

7: -y exp(Z, LLq)

exp(Z maxt LL)

The UPDATEUSINGRECOGOPTIMIZATION function is described in Algorithm 6.6.

The inputs include a plan trajectory T, the previously determined activity sequence

q that the plan should contain, the task library L, and the initial guess of keyframe

locations K. Using the initial keyframes, the system first converts the plan trajec-

tory T into keyframe trial format y (line 2). Next, running RECOGNIZETASKSUS-

INGKEYFRAMETRIALS on the candidate keyframe trial y produces log likelihoods

that the trial describes each activity in the library, computed at each time step.

Recall from Figure 6-2 that these log likelihoods can be visualized as the green

lines in one of the green boxes. Parts of the log likelihoods corresponding to the

previously determined activity sequence q are then collected and concatenated as

LLq. In Figure 6-2, if q were { "activity 2", "activity 3", "activity 1" }, then LLq =

{LLe=2 (0 ... K 1) , LLe=3 (K 1 ... K 2), LLj=1 (K 2 . .. K 3)}. The larger the log likelihood

values are across all time steps, the more likely the found keyframes are the correct

97

ones. Thus, the algorithm uses the negative sum of the log likelihoods over time as

the optimization function to hand to the Nelder-Mead minimizer. This whole process

loops until convergence.

To assess how good the set of computed keyframes are, the algorithm compares

the recognition likelihoods of the identified activity sequence, LLq, with the maximum

likelihood over all activity labels, max LL, accumulated over all time steps in the

trajectory. The maximum likelihood over all labels maxi LL represents the maximum

likelihood potential of the trial trajectory given what has been learned in the library,

so if the activity sequence likelihood LLq is very close to the max potential, then the

system can be very confident about the keyframe placements that come out of the

optimizer. To compare the two, the algorithm converts them both into probabilities

first by taking the exponential, and then take the ratio to represent the confidence

level (line 7 in Algorithm 6.6).

6.4 Validate auto-segmentation

Once the optimal segmentation points in the plan sequence are determined, the system

validates the auto-generated segmentation points (line 15 in Algorithm 6.1) with the

user depending on the confidence level of the auto-segmentation. If the confidence

is below a certain threshold, the system will ask the user to verify the correctness

of the auto-segmentation. During this process, the user interface first displays all

auto-segmentation results of non-keyframe trials to the user, and then asks the user

to indicate which trials, if any, had been segmented incorrectly.

If none of the additional trials were correctly segmented, i.e. no improvement was

made on the non-keyframe trials and the user indicated that all auto-segmented trials

were incorrect, then the interface will ask the user for the correct keyframes on one of

the previously non-keyframe trials. Asking the user to specify keyframes for just one

additional trial minimizes the amount of work the user has to perform, while ensuring

that the algorithm improves on at least one trial during each iteration.

Finally, the "keyframe" (Y) and "non-keyframe" (Z) sets of trials can be up-

98

dated. Those among the non-keyframe trials that have been newly segmented, either

autonomously with high confidence, or validated by the user, are removed from the

"non-keyframe" set and added to the "keyframe" set. The updated keyframe trials

can now provide more information for learning unknown activities and autonomous

segmentation, so the process described in Sections 6.2 through 6.4 iterates until no

more non-keyframe trials exist (lines 6 to 16 in Algorithm 6.1).

6.5 Generating Plan-level Probabilistic Flow Tube

After all plan trajectories are successfully segmented, i.e. all trials have been assigned

keyframes, a final pass is made to officially pre-learn the previously unknown activities

in the plan from a set of randomly generated initial environment states (lines 17

and 18 in Algorithm 6.1). The new pre-learned activities are saved into the original

plan library L, and a new subtask sequence q' is generated using the updated plan

library entries.

The final step in plan learning is to create a new library entry for the plan and

add it to the library (lines 19 and 20 in Algorithm 6.1). Each library entry libe

with label f is composed of a tuple (PFT, E, F, q) consisting of a set of pre-learned

probabilistic flow tubes PFT, a set of corresponding initial environment states E,

relevant motion characteristics F, and a list of subtasks q. The GENERATEPLANPFT

function is described by Algorithm 6.7. Inputs include the plan label f, the plan's

activity sequence q, the existing task library L which contains motion variable and

PFT information for all learned tasks, and a new environment state TO in which to

generate the plan PFT.

As illustrated in Figure 6-6, to generate the library entry, the set of initial envi-

ronment states is set to include the new environment state, and the corresponding

plan PFT is piecewise constructed from component activity PFTs (also called subtask

PFTs) such that the environment state at the end of one subtask becomes the initial

environment state in which to generate the PFT for following subtask (lines 1 to 6).

If the plan already exists in the library, then the new PFT generated from the new

99

Algorithm 6.7 GENERATEPLANPFT (f', q, L, TO)

Input:
l', new plan label
q, sequence of activities in plan
L, library of previously learned task entries {libt}eEL
TO, new environment state in which to generate PFT

Output:
lib = (PFT, E, F, q), new library entry describing the plan

Notable local variables:
L, set of task labels that exist in library L
M = |q , number of activities in sequence

1: TOnext <- TO
2: for i = 1. .. M do
3: PFT TOext - GETPFTsFROMHERE (qi, TO next)
4: PFT <- {PFT, PFTqi

5: TO"ex <- ENVSTATEATEND PFT onex, TO , extF,

6: end for

7: if fl E L then
8: libg, <- ({PFTt, PFTj 0 } , {Et, TO},.Fe, q)
9: else

10: {Fabsstart < F }absstart1
-0 f, X qi,x f xE{C,D,P,Q}

11: { relEffstart <- F r" EfStart
q J,X jXE{C,D,P,Q}

12 {FabsEnd - FabsEnd
12 , x qm,x lxE{C,D,P,Q}

13: FrelEffEnd <- F reXEndI- f1'J XE{C,D,P,Q}

14: TV = (FC, FD, FP, FQ)e
15: libe - (PF T , TO, q)
16: end if

100

Task library

tto bin tt to bin

left left

ball to x ball to x

reach ball reach ball

box bin ball x

Figure 6-6: Generating the PFT for the entire plan involves concatenating the PFTs
for each activity in the sequence initialized at evolving environment states

101

Task library

environment state is added to the set of previously stored PFTs for that library entry.

The library entry's list of subtasks is directly set to the learned activity sequence q.

Plan characteristics with modes absStart and relEffStart are set to those of the first

subtask in q' while plan characteristics with modes absEnd and relEffEnd are set to

those of the last subtask in q' (lines 10 to 14).

102

Chapter 7

Experimental Results

7.1 Validation of Activity Learning and Recogni-

tion

In this section, I first present my activity learning and recognition results in a two-

dimensional simulated environment. Next, I test recognition performance on the

Barrett Technologies Whole Arm Manipulator (WAM) robot. Finally, I demonstrate

the system executing on the JPL ATHLETE and Willow Garage PR2 robots.

7.1.1 Two-dimensional Variable Environment

In the simulated environment, there are four entities: a red box, a green bin, and two

stationary locations marked x and o. The box and bin are positioned at varying ran-

dom locations in the environment, while the x and o always mark the fixed locations

(5,5) and (5,3), respectively. A user can produce a motion by moving the mouse

around in the region. During training, the user labels each demonstrated sequence

with the name of the motion.

In the first experiment, users taught the system three different motions: "move the

box to the bin," "move the box left one unit," and "move the box to x." During each

trial, the box and bin locations were randomly generated. Two users demonstrated

150 trials across the three motions. Thirty randomly chosen trials of each motion

103

Move box left I
10 10 10

8 8 8

6 6 6

4 x 4

2 2 2

0 0 0.
0 5 10 0 5 10 0

10 10 10

8 8 8

6 6 L?6

4 4 4

2 2 2

0 0

Move box to bin

0 ~.0 5 10 0 5 10 0 5 10

Figure 7-1: Example learned PFTs in randomly generated initial environment states.

were used for training, and the remaining 60 trials were used for testing.

Figures 7-1 and 7-2 show some examples of what the learned PFT models look

like in the environment states of three randomly chosen test cases. One can see from

Figure 7-2 that distinguishing among different motions is easier in some environments

than others due to the relative positions of objects. For example, if the bin were

located at x and the box straight above, then it is impossible to distinguish between

"move to bin" and "move to x."

I compare the PFT model to that presented by Mhlig et al. [43], which also

uses dynamic time warping to temporally match demonstrated trajectories, but uses

Gaussian mixture models (GMM) to describe learned motions. These GMMs are

generated using Expectation Maximization with a Bayesian Information Criterion

to determine the optimal number of Gaussians. Mhlig's approach assumes prior

knowledge of the type of motion; for comparison purposes, I used my algorithm for

motion variable identification, and then normalized all trajectories to the appropriate

start and end positions before applying the GMM.

104

Move box to x

5 1

I
0

10 10 10

8 8 g ! N 8

6 6 6

4 4 4

2 2 2

0 0' 0
0 5 10 0 5 10 0 5 10

Figure 7-2: Example learned flow tubes of different activities overlaid in three differ-
ent initial environment states. Blue PFTs represent "move box to bin," red PFTs
represent "move box left 1 unit," and green PFTs represent "move box to x."

Figure 7-3 compares the learned models on three motions in random environment

states. In each case, the GMM approach automatically determines the number of

Gaussians based on training data. In the "move box to bin" motion, the GMM

approach determined that two Gaussians were sufficient to represent the motion.

While the generated Gaussians work well for the "move box left 1" and "move box

to x" motions, I argue that the generated Gaussian mixture model for the "move

box to bin" motion does not entirely capture the complexity of the motion. When

compared against the user generated trajectory, the Gaussian mixture model is a poor

representation in the "move box to bin" motion.

For recognition, I compare my approach to that of Martin et al. [39], which rep-

resents learned motions as tied-mixture hidden Markov models based on GMMs, and

uses a buffered Viterbi algorithm for fast recognition. For comparison, I implemented

their modeling approach using 3 states and 6 Gaussian mixtures, which was found to

perform reasonably well.

Table 7.1 compares the results of the first experiment. The first comparison is

how many test cases were correctly recognized by the end of each motion using the

PFT approach (Np) versus the HMM approach (NH). My algorithm recognized 49

of the 60 test motions (82%), while the HMM-based algorithm recognized 33 (55%).

The second comparison is how long throughout a test motion did the algorithm

maintain the correct classification (%p versus %H). On average, my algorithm rec-

ognized the motion correctly 71% of the time spent during a test motion, while the

105

Move box to bin

5

5

10

8

6

4

2

Move box left 1
10

8

6 Lix

4

2

-- 0-
10 0 5 10

10

8

6 Lix

4

2

01
10 0 5 10

Move box to x

Li

0 5 10

I Li

0

10

8

6

4

2

0

10

8

6

4

2

0
10

Figure 7-3: Compare learned
trajectories (red) in different

PFT and GMM models (blue) against user generated
initial environment states. Blue ellipses represent the

range of 1 standard deviation.

HMM approach spent on average 40%. This second comparison metric reflects how

frequent the real-time estimates are correct throughout a test case, since as a test

motion progresses, the estimated most likely motion label may change given new

infomation at each time step.

An example of how estimation likelihoods may change for the two approaches

throughout the same test cases is shown in Figure 7-4. The PFT approach starts

Table 7.1: Comparison of recognition approaches using PFTs (P) and HMMs (H) in
variable environments. N is the number tests out of 20 that was correctly recognized
by the end of each motion. % is the mean percent of real-time execution that the
correct motion was recognized. t is the average computation time at each real-time
instance (in seconds).

I NP | NH I

To bin
Left
To x

20
13
16

12
6
15

1P I H

81.1
56.0
74.4

55.3
28.0
36.3

tP tH

0.008 0.047
0.004 0.004
0.005 0.006

106

5

F-
LL
a-

0 '-
0

10

81

6

40

2

0 -
0

X qN

Move to bin Move left 1 Move to x

' 0 0- 0 -U-

0 -200 -200- -200

~; -400 -400 -400

0 50 0 10 20 0 50

- Move to bin - Move left 1 - Move to x

2 0 0 0
I

6 -200- -200 -2000

-400 -400 -400
0)

0 50 0 10 20 0 50
Time Time Time

Figure 7-4: Example log likelihoods over time for the same test cases using the PFT
approach (top row) and the HMM approach (bottom row)

each motion with low likelihood, while the HMM approach starts each motion with

equally high likelihood. Throughout the motion, the HMM approach updates the

log likelihoods smoothly, but is often unable to distinguish among the motions. The

PFT approach often produces higher frequency likelihood changes as a result of the

spatio-temporal relationships among the motions, but it is often able to appropriately

distinguish among them through time. For example, comparing the "move to x" test

case in Figure 7-4, the HMM approach has difficulty distinguishing it from the "move

to bin" motion. The PFT approach, however, quickly concludes that the label "move

to x" is most likely, but "move to bin" also has a small log likelihood throughout.

During the first part of execution, "move left 1" is also a low probability contender,

but after the user moves beyond 1 unit, the likelihood of the motion being "move left

1" quickly drops to zero, which is a behavior that makes sense intuitively.

Finally, the third metric comparison in Table 7.1 is how long, on average, the

algorithm takes to compute new likelihoods at each time step in a test motion (tp

versus tH). Both approaches have fairly short average computation times considering

107

1 10

9-

6-

5-

4-

3-

2 -

1-

01 11 01 1
0 2 4 6 8 10 0 2 4 6 8 10

Figure 7-5: Example output of an "encircle bin clockwise with box" motion. Left:

the PFT model. Right: the GMM model.

human reaction time is generally longer than 0.1 second.

One can see that the PFT approach is able to perform real-time recognition rea-

sonably well even when the environment state varies among the different training and

test trials. This is an important advantage in learning and recognizing manipulation

tasks because the state of the environment often changes with manipulation, and it

is desirable to reduce the number of redundant training demonstrations an operator

must perform in any given environment setup.

7.1.2 Two-dimensional Static Environment

When comparing the PFT model to the GMM model, I found that the GMM repre-

sentation suffers particular drawbacks in cases where temporal ordering of a motion

is important, since it is computed based on spatial coordinates alone. For instance,

GMMs cannot distinguish a clockwise circular motion (such as winding a cable) from

a counter-clockwise motion (unwinding), since they occupy the same spatial region,

as shown in Figure 7-5's comparison of the GMM representation with our probabilis-

tic flow tube representation. Lack of temporal ordering in the GMM model poses a

limitation during online recognition, as I will present below.

Since the HMM/GMM-based technique is not designed to handle variations in the

108

Table 7.2: Comparison of recognition approaches using PFTs (P) and HMMs (H).

There were 100 cross-validation test cases for each motion.
NP | Nn 11 7 %H tP tH

To bin 95 94 65.6 67.9 0.020 0.064
Left 94 100 81.6 95.6 0.007 0.009
To x 96 98 79.3 85.1 0.009 0.010
CW 100 72 83.2 65.2 0.023 0.038
CCW 99 72 94.3 80.7 0.022 0.031
xo 96 56 79.0 52.8 0.034 0.370
ox 99 57 86.7 45.4 0.035 0.386

environment state, I chose a particular environment state and generated 25 trials for

each of 7 motions in order to make a more fair comparison. The environment state and

the 7 motions are the same ones shown in Figure 5-1. I used 5-fold cross-validation

using 5 trials for training and 20 for testing on each motion. Only 5 trials are needed

for training because the motions are fairly similar in the static environment.

Table 7.2 summarizes the comparative results. The HMM-based approach per-

formed slightly more favorably for the goal directed motions "move to bin," "move

left 1," and "move to x." It had more trouble with motions where directionality plays

an important role, and it performed poorly on motions that are not Markov in nature,

such as the anchor loops. To the Markovian model, the loop, say around x, looks the

same locally in the "anchor around x then o" motion as it does in the "anchor around

o then x" motion. The PFT representation performs especially well for these more

complex motions. Averaging over all seven motions, the HMM approach achieved a

78% recognition rate. My algorithm achieved an overall 97% recognition rate while

using less computation time on all of these motions. If we look at only the non-goal

directed motions, the HMM approach achieved a 64% recognition rate while my PFT

approach averaged 99%.

7.1.3 Hardware Validation of Real-time Recognition

I also demonstrated my motion recognition capability on a Barrett Whole Arm Ma-

nipulator (WAM) robot to illustrate the performance on a real-world platform. A

user trained the robot by physically moving it through each of 5 motions in gravity

109

Figure 7-6: WAM robot setups for the five motions: "move ball to bin" (A), "wind

cable" (B), "unwind cable" (B), "anchor rope left then right" (C), and "anchor rope

right then left" (C)

Table 7.3: Results on WAM robot using PFT approach. There were 10 cross-

validation test cases for each motion.

_ _ NpI 1 %p| tp
To bin 10 93.5 0.024
Wind 10 92.7 0.013
Unwind 10 96.4 0.011
Anchor LR 10 84.1 0.032
Anchor RL 10 86.2 0.033

compensation mode 10 times. The motions include: "move ball to bin," "wind cable,"

"unwind cable," "anchor rope left then right," and "anchor rope right then left," the

setups of which are shown in Figure 7-6. Each trial for a motion started with the

same environment state and was recentered in post-processing to all have the same

starting location. Training trajectories can be found in Figure 7-7. Five of the 10

trials for each motion were used for testing for each of two cross-validations.

Table 7.3 shows that my algorithm successfully recognized all 50 cross-validation

test trials correctly by the end of each motion, and spent on average 91% of each test

trial classifying the motion correctly. It seems that the higher dimensionality of the

state space is quite favorable for recognition as it allows motions to diverge more.

In this demonstration, the environment state did not change for the different

demonstrations, so only a few number of user demonstrations were required to be

110

To bin
Wind

0.5
Unwind

NO0 N O -Anchor LR
-0.5 -nchor RL
0.4

0.2

x
-0.5

-0.2 0
0.5

-0.4 1.5

Figure 7-7: WAM end effector trajectories

able to learn generalized PFTs of each motion. An interesting future study could

determine the optimal number of user demonstrations needed for a certain degree of

variation in the environment state.

7.1.4 Hardware Demonstration of Autonomous Execution

To exhibit the ability of my learning algorithm in generating reasonable humanlike

motions that can be used for autonomous execution, I performed demonstrations on

two different robotic platforms. My colleagues and I have previously reported a proof-

of-concept demonstration [20, 19] on the All-Terrain Hex-Limbed Extra-Terrestrial

Explorer (ATHLETE) robot [41] through a collaboration with Caltech's Jet Propul-

sion Laboratory. This robot is designed to transport habitats and other large objects

on the moon. Its six wheeled limbs can be used for driving, walking, or object ma-

nipulation with certain tool attachments. We demonstrated autonomous execution

on a "move box to platform" task as shown in Figure 7-8.

We provided five teleoperated demonstrations of a construction motion that picked

up a large box and placed it on top of a platform, as shown in Figure 7-9. In each

demonstration, the box and platform were moved to slightly different locations. Be-

cause ATHLETE had no onboard sensing, we manually provided the positions of the

111

Figure 7-8: ATHLETE move box to platform task

Demonstrated motions

-1

0.4 0.5
x y

Figure 7-9: Five teleoperated demonstrations of the "ATHLETE move box to plat-
form" task. Autonomous execution of the task is shown in thick green.

112

N

Figure 7-10: Autonomous execution of ATHLETE move box to platform task

objects. We then moved the objects to previously unseen locations and used my

learning algorithm to generate a trajectory for autonomous execution. The algorithm

successfully identified the relevant motion variables for this task, and the resulting au-

tonomously executed motion (the nominal trajectory of the learned probabilistic flow

tube) shown in green in Figure 7-9 appropriately resembled the demonstrations and

successfully accomplished the task. Note that the original five user demonstrations

had a large amount of noise. The resulting learned trajectory was smoother due to

the averaging during the learning process and down sampling to generate waypoints

to send to the controller. Figure 7-10 shows ATHLETE autonomously executing the

learned task.

I also demonstrated my learning algorithm on the PR2 robot developed by Willow

Garage, as part of the Learning from Demonstration (LfD) Challenge at the 2011

AAAI conference. Prior to the conference, users performed teaching demonstrations

and preliminary testing through the Bosch remote lab facility [47, 46]. The system

used the PR2's onboard sensing and the Robot Operating System (ROS)'s object

recognition software to record the environment states throughout the demonstrations.

In the physical setup shown in Figure 7-11, the PR2 faced a table where certain objects

are placed, and all motions were taught kinesthetically by manually moving the right

arm of the robot.

Users taught the robot and tested the learning algorithm on several different

motions, including: "move left," "move up and over," "go home," "pour into," "pour

done," "reach," "put on table," "shake," "stir." Five demonstrations of each motion

113

Figure 7-11: PR2 and potential task setup

were provided. Some additional helper commands including "close grip," "open grip,"

and "detect objects," were handled separately through ROS and were not learned.

During execution, learned objects for the "pour into" and "reach" motions could be

optionally replaced by user-specified objects. Users could also optionally instruct the

robot to use its left arm to complete the task, which was accomplished by inverting

the sign of the y position and q., qy quaternion values during execution.

Figure 7-12 shows the behaviors of the learned motions compared with the original

user demonstrations. During autonomous execution in these example outputs, the

environment contains only one object (an odwalla bottle). For each demonstration,

the object and robot end effector (measured at the PR2 wrist roll link) are set to

begin with the same arbitrary poses. The computation time for offline PFT learning

for each motion ranged between 0.9 seconds and 1.3 seconds for user inputs sampled

to about 100 data points each.

The "pour into," "pour done," and "reach" motions were demonstrated with an

object in the environment. The algorithm learned that at the end of the "pour into"

114

move-left
Identified motion variables: none

0.4.
0.2.

0.
-024

-0.6
-0.8

move-up-and-over go-home
Identified motion variables: none Identified motion variables: PabsEnd QabsEnd

0.4
0.2

0
N -0.2

-0.4
-0.6

N

**
y -*- x

pour-into odwalla pour-done reach odwalla
Identified motion variables: prelEffEnd Identified motion variables: PrelEffStartIdentified motion variables: prelEffEnd QrelEffEnd

N

-0.5

y y
put-on-table

dentified motion variables: none
shake

Identified motion variables: none

N

y
stir

Identified motion variables: prelinit

0.4

N-02

0.2
0

-0.2
-0.4
-0.6 0.5

-0 .8 0
y AV. AX

tC)--. Initial pose Training poses * Autonomous motion Objects

Figure 7-12: Results of learning from 5 demonstrations of each motion.

115

0.2

0

N -0.2
-0.4

-0.6

-C

0.2,

0.

S-0.2,

-0.4,

motion, the robot end effector is always a certain distance away from the object, and

consequently in the beginning of the "pour done" motion, the effector always starts

relative to the object it was just pouring into. In the "pour done" example in Figure 7-

12, although the effector's initial pose is not over the object, it is immediately moved

to the appropriate position before executing the motion. The "shake" motion was a

quick up-down-up-down activity inspired by the movement used to shake an orange

juice bottle. The "stir" motion involved making five complete circular movements.

Interestingly, this resulted in the algorithm learning that the end position of the

"stir" motion should be relative to the initial position. The learned motion turned

out to be more of a small vibration around a point. After investigating the issue

further, it appeared that the user demonstrations generally all consisted of circular

motions, but each was on a different plane, so that taking geometric means became

less representative of the original motions.

In the motions where the object is determined to be not relevant, the autonomous

execution correctly ignores the object completely. In the pouring and reaching mo-

tions, users taught the motions using an object different from the odwalla bottle.

During execution, users can specify which object to use if different from those in the

demonstrations. In this way, learned motions using one object may be extended to

other similar objects.

During the AAAI LfD Challenge, my teammate and I enabled the PR2 robot

to autonomously execute a scenario that involved many of the motions shown in

Figure 7-12. The initial setup resembled that of Figure 7-11, except both bottles

were on the right side. First, the right arm was commanded to reach for the coffee-

mate bottle, then move it up and over to the left. The left arm then reached for the

coffee-mate, poured it into the bowl, and placed it back down. Next, the right arm

reached for the odwalla bottle, gave it a shake, and poured it into the bowl. Each

time we performed this demonstration scenario, we arbitrarily put the objects in new

locations.

We were limited in the kinds of tasks and number of objects we could use by the

physical abilities of the robot. The PR2 vision system had a very narrow field of

116

view, so all motions had to be performed in an area of about one square foot on the

table. This limited the number of objects that could feasibly fit in the visible range.

Another frequent issue was that the object recognition would become confused when

the robot end effector was holding an object because it would detect its own effector

and object as one large unidentifiable object. Despite these issues, we were able to

successfully demonstrate the aforementioned scenario and other motions.

7.2 Validation of Plan Learning

This section demonstrates the results of learning complex plans from user demon-

stration, first in the two-dimensional simulated environment, and then on the Barrett

Technologies Whole Arm Manipulator robot.

7.2.1 Two-dimensional Environment Tests

In the two-dimensional world, a blue ball was added to the environment in addition

to the red box and green bin objects to allow for more complex activity sequences. A

user demonstrated plan learning on two plans in the two-dimensional environment:

"move box to bin and ball to x" and "move box to x, then bin." The first plan is

composed of the activity sequence { "reach box", "move box to bin", "reach ball",

"move ball to x", "done with ball"}. The second plan is composed of the activity

sequence { "reach box", "move box to x", "move box to bin", "done with box" }.

I first compare different approaches to auto-segmentation. In the approach dis-

cussed in Section 6.3, the system typically determines segmentation points in non-

keyframe trials by incorporating the geometric information provided by motion vari-

ables. For motions without identifiable motion variables, the algorithm uses an op-

timization on recognition likelihoods approach as a backup option. Here, I compare

the performance of auto-segmentation using entirely the motion variable approach

versus using entirely the recognition optimization approach. Both are compared to

ground truth segmentations that the user provides.

For each plan, a user provided 50 demonstration trajectories, of which 3 were

117

10

5

Trial 2 (keyframe)

0 ' '
0 5 10

10

5

0 L
0

10

5

S 0
5 10 0 5 10

1

1

Trial 4 (auto-seg)
U

5

01
0 5 10

Trial 7 (auto-seg)
o

5

0'
0 5 10

Trial 10 (auto-seg)
10

5,

0 5
0 5 10

C

10

5c

0C

10C

5

0

Trial 5 (auto-seg)

0 5 10

Trial 8 (auto-seg)

0 5 10

Trial 11 (auto-seg)

C

10

5

0

10

5

0

Trial 6 (auto-seg)

0 5 10

Trial 9 (auto-seg)

0 5 10

Trial 12 (auto-seg)

0 5 10 0 5 10

Figure 7-13: Result of auto segmentation on non-keyframe trials (boxed) of "box to
bin, ball to center" plan, from 3 user provided keyframe trials using motion variable
inference approach. Compare with Figure 7-14.

118

Trial 1 (keyframe) Trial 3 (keyframe)

Trial 1 (keyframe)
10

5-

0'
0 5 10

10

5

0

Trial 2 (keyframe)
10

5

Trial 3 (keyframe)

I I - 0 '
0 5 10 0 5 10

10

5

0

10

5

Trial 4 (auto-seg)

0 5 10

Trial 7 (auto-seg)

10

5

0

10

C

0'
0 5 10

Trial 10 (auto-seg)
10

5.

01
0 5 10

0

10

5

0

Trial 5 (auto-seg)
10

5

0 5 10

Trial 8 (auto-seg)
1

5U

0 5 10

Trial 11 (auto-seg)
1

Trial 6 (auto-seg)

0'
0 5 10

Trial 9 (auto-seg)
0

5

0
0 5 10

Trial 12 (auto-seg)
0

5

0
0 5 10 0 5 10

Figure 7-14: Result of auto segmentation on non-keyframe trials (boxed) of "box

to bin, ball to center" plan, from 3 user provided keyframe trials using recognition

optimization approach. Compare with Figure 7-13.

119

0

Table 7.4: Comparing results of auto-segmentation using motion variable approach

and recognition optimizati6n approach on two plans (47 trials each)

pt (sec) c t perror || error

"Box bin ball x" (recog. optimization) 25.6 17.0 0.1023 0.0753
"Box bin ball x" (motion variable) 0.0018 0.0011 0.0604 0.0283

"Box x bin" (recog. optimization) 24.6 9.4 0.2569 0.1322
"Box x bin" (motion variable) 0.0013 0.0003 0.0513 0.0322

assumed to be pre-segmented keyframe trials. Figure 7-13 shows the results of auto-

segmentation using the motion variable inference approach on nine of the first twelve

trials (where the first three are keyframe trials) of the "box to bin, ball to x" plan

("x" is also referred to as the "center"). The robot effector start position is marked

with an asterisk, while the initial environment states of the objects are also noted in

each trial. The trajectory colors indicate the portions of each trajectory that belongs

to each activity label after segmentation. Trials 1 through 3 were the keyframe trials

provided by the user while trials 4 though 12 are auto-segmented by our algorithm.

Note that the auto-segmentation is nearly perfect in every trial.

I compare these auto-segmentation results with those obtained from recognition

optimization in Figure 7-14. The first three trials are the same user provided keyframe

trials. One can see that the recognition optimization approach also performs well in

most trials while making some mistakes in a few trials. For example, the algorithm

failed to identify the "move ball to center" activity in trial 5, instead considering it

a part of the "move box to bin" activity. This is possibly because the "move box

to bin" activity has a very wide flow tube allowing much room for deviation while

the "move ball to center" motion has a very narrow flow tube allowing for very little

deviation based on the training trajectories, causing the recognizer to consider it more

likely that the trajectory is executing the "move box to bin" activity in a roundabout

way, rather than the "move ball to center" activity since it deviates slightly from the

learned flow tube. Additionally, I note that the recognition optimization approach

slightly overestimates the "move ball to center" activity in trials 8 and 11.

Table 7.4 compares the motion variable inference auto-segmentation approach

with the recognition optimization auto-segmentation approach in terms of computa-

120

tion time and auto-segmentation accuracy. These measurements are taken from all

47 test trials based on the 3 user provided keyframe trials for each of the "move box

to bin and ball to x" and "move box to x, then bin" plans. The mean computation

time pt and corresponding standard deviation ot are given in seconds, and reflect the

amount of time spent performing auto-segmentation on a single trial, using a MAT-

LAB implementation on an Intel Core i7 processor. The auto-segmentation accuracy

is reflected in the error rate perror, which is the fraction of time steps in the trial

that has an erroneous activity label due to segmentation error, and its corresponding

standard deviation oerror.

The motion variable inference approach outperforms the recognition optimization

approach in both computation time and segmentation accuracy. Since motion vari-

able inference is computed in one shot whereas recognition optimization is computed

iteratively until convergence, the former is orders of magnitudes faster than the latter

(on the order of a thousandths of a second versus over twenty seconds). The mo-

tion variable inference approach also has better segmentation accuracy. As shown in

Table 7.4, in the "box to bin, ball to x" plan, on average 94% of time steps were cor-

rectly segmented using the motion variable inference approach whereas 90% of time

steps were correctly segmented using the recognition optimization approach. In the

"box to x, then bin" plan, the segmentation accuracies are 95% versus 74% in favor

of the motion variable inference approach. Therefore, it seems reasonable to use the

motion variable inference approach for auto-segmentation whenever possible, and use

the recognition optimization approach as a backup for motions without identifiable

motion variables.

Next, the approach generates plan PFTs in new environment states using our

training trials. Figure 7-15 displays the results of generating PFTs for the "box to

bin and ball to center" plan in nine new environment states depicted by the locations

of the objects and effector. The pink trajectory describes the generated nominal

trajectory of the PFT, and the covariances are shown in light blue. Prior to learning

this plan, the task library already contained "reach for box" and "move box to bin"

activities. However, the other activities ("reach ball", "move ball to x", and "done

121

boxbinballx 1
10

8

6

4

2

0
0 5

x

10

8

6

4

2

0
10 0

boxbinballx 2
10

8

boxbinballx 3

6

4

2

5
x

0L
10 0 5

x

boxbinballx 4

5
x

10

8

6

4

2

boxbinballx 5
10

8

6

4

2

10 0 5 10
x

boxbinballx 7
10

8

6

4

5

2

- 0 -
10 0

boxbinballx 8

boxbinbalix 6

0 L
0

10

8

6

4

5

2

- 0 -
10 0

5
x

boxbinbalIx 9

5
x x x

ball to center" plan

122

10

10

8

6

4

2

0
0

10

8

6

4

2

0-
0

10

10

Figure 7-15: Example generated plan PFTs for "box to bin and
from different initial environment states.

I MONO=&&W

with ball") were identified as "unknown" activities and learned on the fly. In each new

environment state, the plan learner was able to generate a reasonable trajectory that

achieves the task. I note that the training demonstrations generally ended toward the

upper right of the environment in order to reach a "save" button in our user interface,

hence the generated "done with ball" activities also reflect this behavior.

7.2.2 Hardware Demonstration of Plan Learning

As shown in Figure 7-16, the hardware setup consists of a 7-degree of freedom Whole

Arm Manipulator (WAM) robot developed by Barrett Technologies complete with

a 3-fingered Barrett Hand [69], a rolling cart, and four colored (blue, red, pink,

and green) blocks. Each item is labeled with fiducial tags that can be detected

by a ground based vision system. The user interface also incorporates the Sphinx

voice commanding system [28] to actuate the WAM hand. The software to run the

hardware, sensing, and user interfaces are created through ROS (Robot Operating

System), an open source and reusable set of robot software libraries developed by

Willow Garage [54]. I also developed a ROS node to interface with the learning code

in MATLAB. A complete description of the hardware system capabilities is presented

by Levine [37].

All hardware control and sensing feedback is handled through a simulation envi-

ronment built on the OpenRAVE platform [15], an open source 3D simulation and

collision detection environment, as shown in Figure 7-17. During the experiments,

the simulator is run in hardware mirroring mode, in which the simulator models the

state of the world as well as possible given the limitations of the sensing system. The

WAM arm hardware controller is equipped to send proprioceptive sensory informa-

tion as joint angles to the simulator, which tracks the kinematics of the arm. The

vision sensing system is composed of several standard webcams that track and filter

the fiducial markers on each object in the environment and relays the information to

the simulator. The vision software, developed by Santana [59], applies several lay-

ers of additional data filtering to handle noise and data intermittence during object

tracking.

123

Figure 7-16: Hardware environment setup

124

Figure 7-17: Simulation environment

A user performed kinesthetic teaching to demonstrate motion trajectories by

putting the WAM in gravity compensation mode and physically manipulating the

arm through desired motions. Along the way, the user could command the hand to

open or close through the voice interface.

In the hardware environment, the user trained the WAM to perform a construction

task involving activities { "reach red block", "put red block on green block", "reach

pink block", "put pink block on red block", "done with pink block" }. During each

trial, blocks were initially in different positions, including at different heights as well.

All blocks were placed in accessible locations. Nine training samples of the plan

were demonstrated to the system, 3 of which were assumed to be pre-segmented

keyframe trials. By the nature of this plan, the signal to open or close the hand

gripper naturally segments the task into activities. During learning, I assumed this

information was available for only 3 of the trials while the the others were used as

test cases for auto-segmentation. Trials contained on average 800 data points.

Table 7.5 summarizes the results of auto-segmentation on the construction task

125

Table 7.5: Results of auto-segmentation using motion variable approach on construc-

tion task (6 trials)
-tt (sec) t error error

Red on green, pink on red 0.0032 0.0025 0.2523 0.2030

using the motion variable identification approach. The algorithm was able to achieve

75% segmentation accuracy despite many hardware and sensing issues that caused

the training data to be inaccurate. Auto-segmentation computation time averaged

around 3 thousandths of a second per trial.

Figure 7-18 shows the resulting auto-generated PFT trajectories in a variety of

randomly generated new environment states. In each case, the effector position first

reaches toward the red box, moves it in an arc toward a position above the green

box, then reaches toward the pink box, and moves it to a higher position above the

green box (where the red box was last placed), before moving the arm back up to

an arbitrary position. Figures 7-19, 7-20, and 7-21 display the PFT trajectories with

the PFT covariances for trials 2, 6, and 9, respectively, from which one can see that

the range of allowable deviations is quite large for most of the plan because of large

variability during training. Prior to plan learning, there were no pre-trained activities

in the task library, so all activities were identified as "unknown" and learned during

the plan learning process.

There were several difficulties when using the hardware system. First, vision

sensors were frequently unreliable and had narrow range, causing sporadic errors in

the tracked positions of the objects. Secondly, the Barrett hand frequently had circuit

failures causing the hand to reset. This information would fail to be passed back to

the simulator, so often the simulator would believe the arm was holding an object

when in reality it was not. Thirdly, the voice sensing was noisy, forcing the user to

repeat gripper commands multiple times before the correct action took place. Finally,

the simulation often had slight errors in calibration causing simulated objects to be

off from reality. Consequently, even when the WAM was able to pick up an object in

the real world, the simulation often failed to register it picking up the object. These

difficulties in the hardware and interface often occurred so frequently that successfully

126

rgpr 2

0.5

0

0.8-

0.6-

N 0.4,

0.2,

0.-1.5 -

-0.5
x0 -0-fD.6-P,0.2) 0.2 52 0 -Q2-0.4-0.6-0.8

1 .
0.8 -

0.6-

0.4-

0.2-

0
5

0.2 0-0.2-0.4-0.6-0.8
y x

rgpr 4

1-

0.5-

0-

-1.5 -1 -0.5
x

rgpr 7

1 -

N
0.5 -

0-

rgpr 5

0.4 0.2 0 -0.2-0.4-0.6-&-.D5
y x

rgpr 8

N 0.50
0

-0.4.5 -1.5 -1 -0 5 0~6

11z

N 05-

0-

y

127

N

rgpr 6

N 0.5

0-
0

1.

0.5.

0N
0

y

rgpr 9

Figure 7-18: Auto-generated PFT trajectories for the "red on green, pink on red"

("rgpr" for short) task plan for various new environment states

rgpr 1 rgpr 3
11

1.5-

1-

N
0.5-

0

1.

0.

-0

51-. -1 -0.5 00

5-

0

.5

-15 -1 -0.5 0 0

-2

Figure 7-19: Auto-generated trajectory and PFT for the "red on green, pink on red"
task plan for new environment state trial 2.

128

-0

-2

1.2-

1 -

0.8-

N 0.6-

0.4-

0.2-

0-

0

1.2-

0.8-

N 0.6 -

0.4-

0.2-

0-

0

U
U

-1
5 y

-1.5

05/
/0.

x -1 -1.5

Figure 7-20: Auto-generated trajectory and PFT for the "red on green, pink on red"
task plan for new environment state trial 6.

129

-0.
0 5 0. x -1

-1

- .

1.2-

1,

0.8,

0.6-

0.4,
N

0.2,

0,

-0.2,

-0.40

-0.6

-1.2
-0.5 -1.5

0
.0.5 0 -0.5

1.2

1

0.8,

0.6-

0.4,

0.2-

0

-0.2

-0:4

-0.6
-1.5

-1-2
00

-1........
Y 0.5 0 -0.5 x

Figure 7-21: Auto-generated trajectory and PFT for the "red on green, pink on red"

task plan for new environment state trial 9.

130

teaching a whole demonstration trial was a challenge, and demonstrated trajectories

often contained erroneous movements. Given these challenges, the algorithm was still

able to produce reasonable plan trajectories, which is greatly encouraging.

7.3 Results Summary

This chapter presented testing and demonstration results of activity learning and

recognition in both variable and static two-dimensional environments. In the vari-

able environment, my PFT approach recognized 82% of the test cases in comparison

to 55% recognized by the HMM approach, which translates to the PFT approach

recognizing 27% more cases than the competition. In the static environment, the

PFT approach recognized 97% of the test cases in comparison to 78% recognized

by the HMM approach, translating to a 19% improvement over prior art. I also

presented a demonstration of real-time recognition on the Barrett Whole Arm Ma-

nipulator robot, and demonstrations of autonomous execution on the JPL ATHLETE

and Willow Garage PR2 robots.

This chapter next covered test and demonstration results of plan learning. Com-

paring two different approaches for auto-segmentation revealed that the motion vari-

able inference approach outperforms the recognition optimization approach by orders

of magnitudes in computation time while achieving slightly better segmentation ac-

curacy. Furthermore, autonomously generated plan PFTs behave as expected to

successfully accomplish the desired tasks. I also presented a demonstration of plan

learning on the Barrett Whole Arm Manipulator robot.

131

132

Chapter 8

Conclusions

8.1 Future Extensions

This section presents some ideas for expanding the capabilities of the research in this

thesis.

8.1.1 Compliant Execution

In the future, I expect to achieve compliant execution using PFTs. The covariance

sequence of a probabilistic flow tube can be provided to a controller as a cost function

during compliant execution. In narrow regions of the flow tube, a deviation from

the nominal trajectory would have a high cost, whereas the same deviation in a wide

region of the flow tube would have a lower cost. On some robots, this may correspond

to variation in the robot stiffness as it follows the nominal trajectory.

8.1.2 Obstacle Avoidance

I also foresee achieving obstacle avoidance during execution by overlaying probabilistic

flow tubes on potential fields [34, 48], as illustrated in Figure 8-1. The resulting cost

map would lead the robot toward the low cost nominal trajectory while guiding it

away from the high cost obstacles. In this case the optimal path may not be the same

as the original nominal trajectory, as nearby obstacles may push the optimal path

133

Figure 8-1: Obstacle avoidance may be achieved by overlaying a potential field that
pushes away from obstacles in the environment

away from the original trajectory.

8.1.3 Plan Recognition

This thesis presented approaches to activity learning, activity recognition, and plan

learning. A natural extension of this work is to achieve plan recognition, or detecting

in real-time which activity in the plan is being executed by a human teleoperator.

This involves determining the likelihood that an activity is transitioning to another.

Although outside the scope of the current work, I offer some ideas on how to approach

this problem in the future.

I refer to my earlier work in human intent recognition [18] for an approach to

recognize which activity in a plan a user is executing. One can incorporate the

134

Activity 2 Activity 3

Figure 8-2: To model a sequence of activities with different durations, one can ex-
plicitly model each activity at different time steps as separate states. Each activity
time slice a(T) represents the rth activity in the plan trajectory at time step T since
the beginning of the activity. At each time step, an activity ar can transition either
to itself ar ' (downward) or to the next activity aT) (T)

to isel ar dowward orto te nxt ativty r+1 (rightward).

concept of duration distributions to model the range of time each activity takes. A

standard hidden Markov model (HMM) can model activity states and transitions

among them, but cannot capture arbitrary state duration distributions. Therefore, I

propose to model a plan with a non-stationary hidden Markov model (NSHMM) based

on work by Sin and Kim [63] and Rabiner [55]. The standard HMM can be expanded

to explicitly model self state transitions, as shown in Figure 8-2. Each activity is

still modeled as a probabilistic flow tube, from which observation likelihoods can be

obtained. By considering activities at different time steps as different states, the non-

stationary HMM can be treated as a standard HMM, and standard filtering techniques

can be applied to achieve recognition.

Transitions from one activity to another can be based on the duration of activities.

For example, if the duration of an activity is on average ten seconds and the current

user execution is five seconds in, then the likelihood is high that the user is still

executing the same activity and has not transitioned to the next one yet. But if

the user execution is already fifteen seconds in, then the likelihood of staying in

135

Activity 1

the same activity is lower. The change in transition probabilities over time makes

the problem non-stationary. The distribution of activity durations can be modeled as

gamma distributions F (kr, O,) [13, 14], so that the probability of staying in an activity

P (arT±1)IarT)) reflects the probability that the current activity's duration is longer

than the time elapsed since the activity began, or o F (kr, 0,) du. The probability

of the user moving to the next activity is then given by 1 - P (ar1 a r).

Observation likelihoods PolL (TC If) can be obtained by the same procedure de-

scribed in Section 5.3 from the learned probabilistic flow tubes for each activity.

Now the standard HMM filtering techniques are available to be applied to the

HMM to determine which partial plan a user is most likely executing, and which

activity in the plan the user is most likely on. This can be especially useful when

identifying subcomponents in a plan is necessary and recognizing the plan as a whole

is not enough.

8.2 Conclusion

This thesis focuses on the problems of activity learning (identifying significant fea-

tures of a primitive motion and generalizing its behavior from user demonstration

trajectories), activity recognition (determining in real-time the likelihood that a user

is currently executing one of several learned activities), and plan learning (generalizing

the behavior of a sequence of activities from user demonstration trajectories).

I have presented an approach to learning activities from human demonstration

that (1) provides flexibility during execution while robustly encoding a human's in-

tended motions using a novel representation called a probabilistic flow tube, and

(2) automatically determines the relevant features of a motion so that they can be

preserved during autonomous execution in new situations.

I have also introduced an approach to real-time motion recognition that (1) lever-

ages temporal information to successfully model motions that may be non-Markovian,

(2) provides fast real-time recognition of motions in progress by using an incremental

dynamic time warping approach, and (3) employs the probabilistic flow tube rep-

136

resentation that enables our method to recognize learned motions despite varying

environment states.

Finally, I developed an approach to learn combinations of activities represented

as PFT plans, given longer user demonstration sequences, that (1) automatically

determines where activities should be segmented in a sequence and (2) identifies and

learns previously unseen activities embedded in a sequence.

I have validated the approach in a two-dimensional environment and demonstrated

the algorithms on several different robotic platforms. The algorithms perform more

favorably over prior art in the domain of robotic manipulation tasks, and are especially

useful for generating robust, humanlike, temporally ordered, and trajectory oriented

motions.

137

138

Bibliography

[1] Pieter Abbeel, Dmitri Dolgov, Andrew Y. Ng, and Sebastian Thrun. Appren-
ticeship learning for motion planning with application to parking lot navigation.
In IROS, 2008.

[2] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz.
Trajectories and keyframes for kinesthetic teaching: a human-robot interaction
perspective. In HRI, 2012.

[3] Aris Alissandrakis, Chrystopher L. Nehaniv, Kerstin Dautenhahn, and Joe Saun-
ders. An approach for programming robots by demonstration: Generalization
across different initial configurations of manipulated objects. In IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and Automation,
2005.

[4] Robert Ambrose. Development and deployment of robonaut 2 to the interna-
tional space station. In ICRA, 2011.

[5] Brian Anthony. Video based system monitoring. PhD thesis, Massachusetts
Institute of Technology, 2006.

[6] Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A sur-
vey of robot learning from demonstration. Robotics and Autonomous Systems,
57(3):469-483, 2009.

[7] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration.
In ICML, pages 12-20, 1997.

[8] Jaron Blackburn and Eraldo Ribeiro. Human motion recognition using isomap
and dynamic time warping. In Workshop on Human Motion, pages 285-298,
2007.

[9] Sylvain Calinon, Florent D'halluin, Eric Sauser, Darwin Caldwell, and Aude
Billard. Learning and reproduction of gestures by imitation: An approach based
on hidden markov model and gaussian mixture regression. IEEE Robotics and
Automation Magazine, 17(2):44-54, 2010.

[10] Matthew Carey, Eric Kurz, Joshua Matte, and Timothy Perrault. Novel EOD
robot design with a dexterous gripper and intuitive teleoperation. Technical
report, Worcester Polytechnic Institute, 2011.

139

[11] Thomas Cederborg, Ming Li, Adrien Baranes, and Pierre-Yves Oudeyer. Incre-
mental local online gaussian mixture regression for imitation learning of multiple
tasks. In IROS, 2010.

[12] Adam Coates, Pieter Abbeel, and Andrew Ng. Apprenticeship learning for heli-
copter control. Communications of the ACM, 52(7):97-105, July 2009.

[13] Carroll Croarkin and Paul Tobias, editors. NIST/SEMA TECH e-Handbook of
Statistical Methods, chapter 1.3.6.6.11. Gamma Distribution. National Institute
of Standards and Technology, July 2006.

[14] Philip J. Davis. Gamma function and related functions. In Milton Abramowitz
and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, chapter 6. Superintendent of Documents,
U.S. Government Printing Office, Washington, DC, 1972.

[15] Rosen Diankov and James Kuffner. OpenRAVE: A planning architecture for
autonomous robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute,
Carnegie Mellon University, 2008.

[16] M. A. Diftler, J. S. Mehling, P. A. Strawser, W. R. Doggett, and I. M. Spain.
A space construction humanoid. In IEEE-RAS International Conference on
Humanoid Robotics, pages 92-97, 2005.

[17] Simon Dixon. An on-line time warping algorithm for tracking musical perfor-
mances. In IJCAI, 2005.

[18] Shuonan Dong. Unsupervised learning and recognition of physical activity plans.
Master's thesis, Massachusetts Institute of Technology, 2007.

[19] Shuonan Dong, Patrick R. Conrad, Julie A. Shah, Brian C. Williams, David S.
Mittman, Michel D. Ingham, and Vandana Verma. Compliant task execution
and learning for safe mixed-initiative human-robot operations. In AIAA Infotech,
2011.

[20] Shuonan Dong and Brian Williams. Motion learning in variable environments
using probabilistic flow tubes. In ICRA, 2011.

[21] Shuonan Dong and Brian Williams. Learning and recognition of hybrid manip-
ulation motions in variable environments using probabilistic flow tubes. Journal
of Social Robotics, 2012.

[22] Fitriani. Multiscale Dynamic Time and Space Warping. PhD thesis, Mas-
sachusetts Institute of Technology, 2008.

[23] Jordan Frank, Shie Mannor, and Doina Precup. Activity and gait recognition
with time-delay embeddings. In AAAI, 2010.

140

[24] Gary Gilbert and Michael Beebe. United States Department of Defense re-
search in robotic unmanned systems for combat casualty care. Technical Report
ADA526596, NATO/RTO, 2010.

[25] Raffay Hamid, Siddhartha Maddi, Amos Johnson, Aaron Bobick, Irfan Essa,
and Charles Isbell. A novel sequence representation for unsupervised analysis of
human activities. Artificial Intelligence, 173(14):1221-1244, 2009.

[26] Andreas Hofmann and Brian Williams. Exploiting spatial and temporal flexibil-
ity for plan execution of hybrid, under-actuated systems. In AAAI, 2006.

[27] Kaijen Hsiao and Tomas Lozano-Perez. Imitation learning of whole-body grasps.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2006.

[28] Xuedong Huang, Fileno Alleva, Hsiao wuen Hon, Mei yuh Hwang, and Ronald
Rosenfeld. The SPHINX-I speech recognition system: An overview. Computer,
Speech and Language, 7:137-148, 1992.

[29] Anthony Jameson. Adaptive interfaces and agents, chapter 15, pages 305-330.
L. Erlbaum Associates Inc., 2002.

[30] Kui Jia and Dit-Yan Yeung. Human action recognition using local spatio-
temporal discriminant embedding. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition CVPR 2008, pages 1-8, 23-28 June 2008.

[31] Kazuhiko Kawamura, Phongchai Nilas, Kazuhiko Muguruma, Julie A. Adams,
and Chen Zhou. An agent-based architecture for an adaptive human-robot in-
terface. In 36th Hawaii International Conference on System Sciences, 2003.

[32] Shinji Kawatsuma, Mineo Fukushima, and Takashi Okada. Emergency response
by robots to fukushima-daiichi accident - summary and lessons learned. Indus-
trial Robot: An International Journal, 39(5), 2012.

[33] Zunaid Kazi, Shoupu Chen, Matthew Beitler, Daniel Chester, and Richard
Foulds. Multimodal hci for robot control: Towards an intelligent robotic as-
sistant for people with disabilities. In AAA, 1995.

[34] Bruce H. Krogh. A generalized potential field approach to obstacle avoidance
control. In International Robotics Research Conference, Bethlehem, PA, 1984.

[35] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence properties of the nelder-mead simplex method in low dimensions.
SIAM Journal of Optimization, 9(1):112-147, 1998.

[36] Dongheui Lee and Christian Ott. Incremental kinesthetic teaching of motion
primitives using the motion refinement tube. Autonomous Robots, 31(2-3):115-
131, 2011.

141

[37] Steven Levine. Robust robotic task execution for collaborative manufacturing
environments. Master's thesis, Massachusetts Institute of Technology, 2012.

[38] Hui Li and Brian Williams. Generative planning for hybrid systems based on
flow tubes. In ICAPS, 2008.

[39] Rodney A. Martin, Kevin R. Wheeler, Mark B. Allan, and Vytas SunSpiral. Op-
timized algorithms for prediction within robotic tele-operative interfaces. Tech-
nical report, NASA/TM-2010-216417, 2010.

[40] Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. IEEE
Transactions on Systems, Man, and Cybernetics, 37(3):311 - 324, 2007.

[41] David Mittman, Jeffrey Norris, Mark Powell, Recaredo Torres, and Christopher
McQuin. Lessons learned from All-Terrain Hex-Limbed Extra-Terrestrial Ex-
plorer robot field test operations at Moses Lake Sand Dunes, Washington. In
AIAA SPACE, 2008.

[42] M. A. Moni and A. B. M. Shawkai Ali. HMM based hand gesture recognition:
A review on techniques and approaches. In IEEE ICCSIT, 2009.

[43] Manuel Muehlig, Michael Giengerand, Sven Hellbachand, Jochen Steil, and
Christian Goerick. Task-level imitation learning using variance-based movement
optimization. In ICRA, 2009.

[44] C. S. Myers, L. R. Rabiner, and A. E. Rosenberg. Performance trade-offs in
dynamic time warping algorithms for isolated word recognition. Journal of the
Acoustical Society of America, 66(S1):S34-S35, 1979.

[45] Takayuki Osa, Chrostoph Staub, and Alois Knoll. Framework of automatic robot
surgery system using visual servoing. In IROS, 2010.

[46] Sarah Osentoski, Victoria Manfredi, and Sridhar Mahadevan. Learning hierar-
chical models of activity. In IROS, Sendai, Japan, 2004.

[47] Sarah Osentoski, Benjamin Pitzer, Christopher Crick, Graylin Jay, Shuonan
Dong, Daniel Grollman, Halit Bener Suay, and Odest Chadwicke Jenkins. Re-
mote robotic laboratories for learning from demonstration. Journal of Social
Robotics, 2012.

[48] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement
reproduction and obstacle avoidance with dynamic movement primitives and
potential fields. In IEEE-RAS International Conference on Humanoid Robots,
2008.

[49] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and
generalization of motor skills by learning from demonstration. In ICRA, 2009.

142

[50] Xavier Pennec. Computing the mean of geometric features - application to

the mean rotation. Technical Report 3371, Institut National de Recherche en

Informatique et en Automatique, 1998.

[51] Fernando Pereda, Hector Garcia de Marina, and Juan Jimenez. Towards auto-

matic oil spill confinement with autonomous marine surface vehicles. In IEEE

Oceans, 2011.

[52] Richard Alan Peters and Christina L. Campbell. Robonaut task learning through

teleoperation. In ICRA, 2003.

[53] Patrick Pfaff, Christian Plagemann, and Wolfram Burgard. Gaussian mix-

ture models for probabilistic localization. In IEEE International Conference

on Robotics and Automation, 2008.

[54] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy

Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source robot

operating system. In ICRA Workshop on Open Source Robotics, 2009.

[55] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected appli-

cations in speech recognition. IEEE, 77(2), February 1989.

[56] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for

Machine Learning. MIT Press, 2006.

[57] Marcia Riley and Gordon Cheng. Extracting and generalizing primitive ac-

tions from sparse demonstration. In IEEE-RAS International Conference on

Humanoid Robots, 2011.

[58] Stan Salvador and Philip Chan. FastDTW: Toward accurate dyamic time warp-

ing in linear time and space. Intelligent Data Analysis, 11(5):561 - 580, 2007.

[59] Pedro H. R. Q. Santana. Stochastic filtering for hybrid systems and its applica-

tions to aerial robotics. Master's thesis, University of Braslia, 2011.

[60] Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461-464, 1978.

[61] Pavel Senin. Dynamic time warping algorithm review. Technical report, Univer-

sity of Hawaii at Manoa, 2008.

[62] Alexander Serenko. The use of interface agents for email notification in criti-

cal incidents. International Journal of Human-Computer Studies, 64:1084-1098,
2006.

[63] Bongkee Sin and Jin H. Kim. Nonstationary Hidden Markov Model. Signal
Processing, 46(1):31-46, September 1995.

143

[64] Viytas SunSpiral, Kevin R. Wheeler, Mark B. Allan, and Rodney Martin. Mod-
eling and classifying six-dimensional trajectories for teleoperation under a time
delay. In AAAI Spring Symposium, 2006.

[65] Mostafa Syiam, Mostafa Abd El-Aziem, and Mohamed El-Menshawy. Adagen:
Adaptive interface agent for x-ray fracture detection. International Journal of
Computing & Information Sciences, 2(3):143-148, 2004.

[66 Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized
trees. In Robotics: Science and Systems, 2009.

[67] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323,
December 2000.

[68] Bill Tomlinson, Eric Baumer, Man Lok Yau, Paul Mac Alpine, Lorenzo Canales,
Andrew Correa, Bryant Hornick, and Anju Sharma. Dreaming of adaptive in-
terface agents. In ACM Conference on Human Factors in Computing Systems,
2007.

[69] William Townsend and Jeffrey Guertin. Teleoperator slave - WAM design
methodology. Industrial Robot: An International Journal, 26(3):167-177, 1999.

[70] Sachiko Wakabayashi, Darby F. Margruder, and William Bluethmann. Test
of operator endurance in the teleoperation of an anthropomorphic hand. In
SAIRAS, 2003.

[71] Liang Wang and David Suter. Analyzing human movements from silhouettes
using manifold learning. In IEEE International Conference on Video and Signal
Based Surveillance, 2006.

[72] Xiaogang Wang and Xiaoou Tang. Bayesian face recognition based on gaussian
mixture models. In International Conference on Pattern Recognition, 2004.

[73] Zheshen Wang and Baoxin Li. Human activity encoding and recognition using
low-level visual features. In IJCAI, 2009.

[74] Brian Wilcox. ATHLETE: A cargo and habitat transporter for the moon. In
IEEE Aerospace conference, 2009.

[75] Jie Yang, Yangsheng Xu, and C. S. Chen. Human action learning via hidden
Markov model. IEEE Transactions on Systems, Man and Cybernetics, Part A,
27(1):34-44, 1997.

[76] Feng Zhao. Automatic Analysis and Synthesis of Controllers for Dynamical Sys-
tems Based On Phase-Space Knowledge. PhD thesis, Massachusetts Institute of
Technology, 1992.

144

