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Abstract

The usage of smart devices is an integral element in our daily life. With the richness of data streaming

from sensors embedded in these smart devices, the applications of ubiquitous computing are limitless

for future intelligent systems. Situation inference is a non-trivial issue in the domain of ubiquitous

computing research due to the challenges of mobile sensing in unrestricted environments. There are

various advantages to having robust and intelligent situation inference from data streamed by mobile

sensors. For instance, we would be able to gain a deeper understanding of human behaviours in certain

situations via a mobile sensing paradigm. It can then be used to recommend resources or actions for

enhanced cognitive augmentation, such as improved productivity and better human decision making.

Sensor data can be streamed continuously from heterogeneous sources with different frequencies in

a pervasive sensing environment (e.g., smart home). It is difficult and time-consuming to build a model

that is capable of recognising multiple activities. These activities can be performed simultaneously

with different granularities. We investigate the separability aspect of multiple activities in time-series

data and develop OPTWIN as a technique to determine the optimal time window size to be used in a

segmentation process. As a result, this novel technique reduces need for sensitivity analysis, which is an

inherently time consuming task. To achieve an effective outcome, OPTWIN leverages multi-objective

optimisation by minimising the impurity (the number of overlapped windows of human activity labels

on one label space over time series data) while maximising class separability.

The next issue is to effectively model and recognise multiple activities based on the user’s contexts.

Hence, an intelligent system should address the problem of multi-activity and context recognition prior

to the situation inference process in mobile sensing applications. The performance of simultaneous

recognition of human activities and contexts can be easily affected by the choices of modelling ap-

proaches to build an intelligent model. We investigate the associations of these activities and contexts at

multiple levels of mobile sensing perspectives to reveal the dependency property in multi-context recog-
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nition problem. We design a Mobile Context Recognition System, which incorporates a Context-based

Activity Recognition (CBAR) modelling approach to produce effective outcome from both multi-stage

and multi-target inference processes to recognise human activities and their contexts simultaneously.

Upon our empirical evaluation on real-world datasets, the CBAR modelling approach has significantly

improved the overall accuracy of simultaneous inference on transportation mode and human activity of

mobile users.

The accuracy of activity and context recognition can also be influenced progressively by how reliable

user annotations are. Essentially, reliable user annotation is required for activity and context recognition.

These annotations are usually acquired during data capture in the world. We research the needs of

reducing user burden effectively during mobile sensor data collection, through experience sampling

of these annotations in-the-wild. To this end, we design CoAct-nnotate — a technique that aims to

improve the sampling of human activities and contexts by providing accurate annotation prediction and

facilitates interactive user feedback acquisition for ubiquitous sensing. CoAct-nnotate incorporates a

novel multi-view multi-instance learning mechanism to perform more accurate annotation prediction.

It also includes a progressive learning process (i.e., model retraining based on co-training and active

learning) to improve its predictive performance over time.

Moving beyond context recognition of mobile users, human activities can be related to essential tasks

that the users perform in daily life. Conversely, the boundaries between the types of tasks are inherently

difficult to establish, as they can be defined differently from the individuals’ perspectives. Consequently,

we investigate the implication of contextual signals for user tasks in mobile sensing applications. To

define the boundary of tasks and hence recognise them, we incorporate such situation inference process

(i.e., task recognition) into the proposed Intelligent Task Recognition (ITR) framework to learn users’

Cyber-Physical-Social activities from their mobile sensing data. By recognising the engaged tasks

accurately at a given time via mobile sensing, an intelligent system can then offer proactive supports to

its user to progress and complete their tasks.

Finally, for robust and effective learning of mobile sensing data from heterogeneous sources (e.g.,

Internet-of-Things in a mobile crowdsensing scenario), we investigate the utility of sensor data in

provisioning their storage and design QDaS — an application agnostic framework for quality-driven

data summarisation. This allows an effective data summarisation by performing density-based clustering

on multivariate time series data from a selected source (i.e., data provider). Thus, the source selection

process is determined by the measure of data quality. Nevertheless, this framework allows intelligent

systems to retain comparable predictive results by its effective learning on the compact representations

of mobile sensing data, while having a higher space saving ratio.
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This thesis contains novel contributions in terms of the techniques that can be employed for mobile

situation inference and context recognition, especially in the domain of ubiquitous computing and intelli-

gent assistive technologies. This research implements and extends the capabilities of machine learning

techniques to solve real-world problems on multi-context recognition, mobile data summarisation and

situation inference from mobile sensing. We firmly believe that the contributions in this research will

help the future study to move forward in building more intelligent systems and applications.



Chapter 1

Introduction

Situation awareness (SA) has become a growing research aim for many interdisciplinary studies in the

past decades to support human decision making and understanding of their environments [Feng et al.,

2009, Foresti et al., 2015, Panteli and Kirschen, 2015, Preden et al., 2015, Yin et al., 2015, Adams

et al., 2017, De Maio et al., 2017, Stanton et al., 2017]. Although off-the-shelf smart devices are

embedded with cheaper and greater computational capacity, inferring the situation of mobile users is still

considered to be a tremendous challenge in ubiquitous and pervasive computing research. It is believed

that introducing situation awareness to ubiquitous computing via the mobile sensing paradigm is crucial,

in order to provide more meaningful assistance for users in an intelligent manner and proactively, if

possible. The benefits of such proactive intelligence could result in the reduced cognitive workload of an

individual (i.e., a user of smart devices), in a particular situation at that point in time and space.

In the early work on situational awareness, most studies focused on command and control research

for tactical decision-making purposes, such as the context-aware intelligent assistant approach (weather

assistant) to improve the situation awareness of an aircraft pilot [Spirkovska and Lodha, 2004]. Given

the prevalent usage of ubiquitous devices in daily human life, there are limitless opportunities for future

intelligent systems to offer proactive situation-aware assistance to mobile users. In-the-wild mobile

sensing data can be utilised to recognise human activities, contexts and even their behaviours to provide

more significant insights for situation inference for its users. Understanding human behaviours in

certain situations will then allow intelligent systems to recommend resources or actions for enhanced

augmentation (e.g., improved productivity and better decision making) through mobile sensing within

the smart environments.

4
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In the realm of pervasive computing [Ye et al., 2012], a situation is defined as “an abstraction

of the events occurring in the real world derived from context and hypotheses about how observed

context relates to factors of interest to designers and applications”. Domain knowledge and the expected

behaviour of the observed phenomena and its contexts (derived from spatial and temporal dimensions),

are required to construct the notion of a particular situation. In this case, the underlying situation

inference in context-aware computing relies heavily on the availability of sensor data and effective

behaviour modelling of mobile users in smart sensing environments. Hence, user-driven and data-driven

modelling strategies are crucial in helping the intelligent systems make sense of the relevant contexts

from the mobile sensor data. It should be noted that these data can be streamed from various sources

(e.g., multiple devices, physical, virtual and logical sensors) in an irregular manner. Nevertheless,

reliable multi-context recognition and situation inference should provide a greater avenue for a user to

have informed decision-making anytime and anywhere, through intelligent mobile sensing in pervasive

environments.

The general overview of our vision is presented in Figure 1.1. The processes of context recognition

and human task recognition play essential roles for intelligent systems and/or applications to offer

proactive assistance (e.g., intelligent notifications). All of these processes are part of the mobile

situation inference umbrella framework. In order to enable an affective situation inference, the collective

composition of relevant contexts needs to be defined and refined. This can be achieved through systematic

steps, starting from the processing of multivariate time series data of ubiquitous sensors, recognising

co-occurring contexts to modelling, and recognising the tasks of mobile users. Nevertheless, the output

of context recognition, task recognition, or proactive assistance, can be used to enrich the insights in

sensing applications for a mobile user. For future intelligent systems, they should be not only effective

but also affective [Picard, 2003]. We believe that the long term vision of affective computing is to

intelligently understand more about its mobile user’s situation and consequently provides responses that

are more affective.

Figure 1.1: Context recognition and situation inference for intelligent mobile sensing applications.
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Figure 1.2: Emerging trends and situation inference in ubiquitous and pervasive systems.

Figure 1.2 shows the bigger picture related to ubiquitous and pervasive systems, beyond just situation

inference for intelligent mobile sensing applications. Many of these emerging topics should be addressed

to support effective and affective situation awareness in the next decades. Within the scope of our

novel research and contributions, we focus on specific domains in situation inference (including context

recognition), data quality and provisioning.

In this thesis, we focus on the research gaps of context recognition and situation inference from

the perspective of mobile sensing. Therefore, the fundamental challenges of mobile situation inference

are addressed. These consist of 1) temporal segmentation and 2) recognition of human activities and

contexts over multi-dimensional spaces, 3) mobile-based task recognition, and 4) scaling up mobile

sensing applications for big data and efficient machine learning processes.
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1.1 Background and Motivations

In the domain of ubiquitous computing research, human activities and their relevant contexts can be

characterised by the intrinsic patterns derived from mobile sensor data (sourced by various smart devices).

According to Cook and Das [2007] (as identified in [Ye et al., 2012]), ubiquitous sensing focuses on

capturing data based on:

• Environment aspect, where sensing data are associated with the environment surrounding the

device, such as temperature, humidity, barometric pressure, light, electricity and gas usages.

• Device aspect, in which sensing data can be influenced by the state of a device. The information

that is associated with state transitions and the availability of its sensors sets immediate challenges

for ubiquitous computing to provide intelligent assistance for the users.

• User aspect, where sensing data can be used to characterise the user and relevant contexts, such

as motion, human activities and mobility.

• Interaction aspect, where sensing data can be affected by direct or indirect interaction with its

user.

The concept of automaticity should be embraced in the applications of intelligent mobile sensing to

offer proactive assistant services. This can be achieved by raising the situation awareness of a mobile

user through the processes of situation inference and multi-context recognition. It is also aligned with

the inherent notion of context-aware computing for mobile sensing and its future directions [Yürür et al.,

2016], where the user state is closely associated with a situation composed of the relationships of all

high-level contexts (inference of device, user, physical and temporal contexts) and low-level contexts

(sensed from physical, virtual and logical sensors).

Within the scope of this dissertation, we focus on the steps that lead to situation awareness from the

individual/first-person perspective based on multivariate mobile sensor data. Many real-world problems

can be tackled through the applications of ubiquitous sensing by recognising human activities alone.

For instance, individuals may be monitored via real-time applications of activity recognition in the

smart home environment [Chen et al., 2012b] and for elderly care [Torres et al., 2013]. Moreover, the

derived patterns can be used for knowledge discovery on a user, such as early diagnosis of psychiatric

diseases [Tacconi et al., 2008]. Geib et al. [2015] highlighted the needs for machines to be able to

recognise, understand and predict human actions in order to allow context-aware human-computer

interaction (HCI) in ever more complex situations. In the last few decades, the study of situation

inference and multi-context recognition has not been properly explored for intelligent mobile sensing



Research Challenges 8

applications, despite the aforementioned research efforts by Geib et al. [2015] on activity, plan and

intent recognition in ubiquitous computing. Our research encompasses the real-world problems where

sensor data (including their relevant contexts) can be streamed continuously in an irregular manner over

time. Consequently, the evolvability [Chang et al., 2009] of user contexts should be considered for a

ubiquitous system to adapt to dynamic and everchanging user requirements (e.g., behaviour change).

Let us consider a future scenario where intelligent applications are necessary to inform the users for

better decision-making and proactively assist them in achieving the goals of their activities in daily

life. The challenges and impacts of our research are simply breathtaking, with the overall motivation of

unleashing the full potential of mobile sensing applications to provide situation-aware mobile assistance

in-the-wild.

1.2 Research Challenges

In this thesis, we aim to maximise the capability of smart devices to support their users in daily life

through intelligent applications that are enabled through mobile sensing. With the prevalent use of

these ubiquitous devices (e.g., smartphones) in daily life, it is becoming increasingly important that

they should be more aware of what, where and when the users would like to be assisted in certain

situations. The time series characteristics of sensor data can be easily influenced by the noise within the

mobile user’s vicinity (e.g., environmental factors). This remains a continuous challenge for ubiquitous

computing to tackle, due to dynamic changes in human activities, and the contexts and properties

associated with user’s sensing environments. As a consequence, there is an inherent risk often associated

with the performance degradation of a predictive model deployed in an assistive system, especially with

in-the-wild sensing scenarios.

In summary, the core challenges in this research include, but are not limited to, the following:

• Fusion of activities and contextual information relevant to the mobile user, to infer a certain

situation.

• Providing intelligent recognition of human activities and contexts in multiple dimensions, given

the magnitude of sensor data streaming from multiple channels.

• Effective model building and learning from sparse sensing data and the user’s subjective annota-

tions.

• Optimisating and minimising learning time of annotated multivariate mobile sensor data.

• Scaling mobile sensing applications for Big Data and efficient machine learning processes.
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1.3 Research Questions

In order to progress the research in situation inference (especially for intelligent mobile sensing), the

following research questions are defined and addressed:

• RQ-1. How to find an optimal window size in processing multivariate sensor data for multi-context

recognition?

In this research, the aim of situation inference is to understand the relationships of all contextual

elements of a user that can be derived from mobile sensing. Foremost, such intelligent inference

requires systematic cleaning, processing and feature extraction on time series data (logged from

the streaming of mobile sensors).

In order to accelerate the learning process of context recognition, we first address the windowing

problem in processing multivariate time series data, given the multi-dimensional label spaces

of contexts associated with mobile users. Finding optimal window size for time-interval based

temporal segmentation is a non-trivial task, and it can be time-consuming to build an effective

model for multi-context recognition. For this research question, we use the scenario of multi-

activity recognition of users (with on-body sensors) in smart home environments.

• RQ-2. How to perform multi-context recognition from multidimensional sensor data and user

annotations?

Moving beyond the temporal segmentation problem in RQ-1, we discovered that independent

classification of contextual labels (derived from multi-dimensional label space) typically results in

inaccurate multi-context inference. In this research question, we address the modelling approach

for simultaneous recognition of multiple contexts including human activities, which can be

derived from human annotations and mobile sensing in uncontrolled environments. Inherently,

the accuracy of multi-context recognition is easily influenced by how reliable human annotations

are acquired from in-the-wild sensing. Consequently, we also address the problem of annotation

prediction that aims to improve the interactivity of experience sampling of human annotations and

reduce the burden during mobile sensor data collection. For example, the user can be presented

with the most probable selection of answers relevant to the user’s contexts, to minimise “choice

overload” issues in a survey form.

• RQ-3. How to recognise tasks of a mobile user from continuous contextual signals?

Once the collection of sensor data and annotations can be achieved effectively from mobile users

in-the-wild (through experience sampling), the contextual data are then utilised to recognise their
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daily tasks. In this case, we use the scenario where intelligent assistant should be proactive in

accurately recognising which type of task a user is currently engaged in.

• RQ-4. How to evaluate the quality of crowdsourced data from mobile sensing environments?

Given the proliferation of data collection on a larger scale, we address the problem of deriving a

compact representation of the mobile sensor data of individuals based on the notion of data quality.

We expand the application scenario where cloud resources are limited in terms of the storage of

raw sensor data (streamed from the Internet of Things). By having a compact representation of

data from mobile sensing empowers the learning process to be more efficient and effective in

producing intelligent predictive models for multi-context recognition and situation inference.

1.4 Research Contributions

To address the aforementioned research questions, the contributions of this thesis are as follows:

1. Optimal time-windowing technique for multi-context recognition in smart sensing environ-
ments
To facililate the model building for multi-context recognition, we investigated the effect of window

size on the accuracy of multi-activity recognition in smart home environments. As a result, we

developed OPTWIN as a technique that can determine optimal window size to be used in the

segmentation process of continuous time series data from ubiquitous sensors. As human activities

can overlap during a segmentation and recognition process, the measure of impurity (the number

of overlapped windows of human activity labels on one sequence dimension) is minimised while

maximising their class separability, to improve the overall performance of human activity recogni-

tion. Consequently, this technique is also expanded to adapt with a multi-activity scenario, where

a user can carry out multiple activities at once (i.e., different high-level and low-level human

activities over multi-dimensional label spaces).

2. Simultaneous multi-context recognition for intelligent mobile sensing
In relation to the first contribution, we further investigate the association of multiple contexts

and human activities from multi-dimensional label space. In fact, independent recognition of

contexts and human activities from respective label sets produces lower accuracy in comparison

with the assumption of label dependency for simultaneous recognition. This research is validated

on the crowdsourced mobile sensing data in urban cities, based on user annotations of daily home

activities and outdoor-commuting contexts. In this case, a problem of simultaneous transportation
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mode inference and human activity recognition is addressed. Consequently, a novel modelling

approach coined as Context-based Activity Recognition (CBAR) is proposed to be used in a

robust mobile context recognition system by combining the concepts of multi-stage and multi-

target inferences. Substantially, this modelling approach outperforms the models that are built on

the traditional approach, where there is no assumption of dependency between multiple contextual

label sets for the given human activities. Nonetheless, such accurate multi-context recognition can

be beneficial for mobile situation inference (e.g., identifying crowdedness in public transportation

situations from intelligent mobile sensing).

3. Multi-view user annotation prediction for interactive mobile sensing
The accuracy of multi-context recognition can be influenced by the reliability of user annotations.

The acquisition of user annotations relative to recent activities, including their contexts, is typically

enabled via the Experience Sampling Method (ESM) in psychological research and affective

computing. Mobile sensing provides an avenue to lead the study further for building intelligent

systems. To improve the process of the ESM-based survey in mobile sensing settings, we present

CoAct-nnotate, a novel semi-supervised learning technique tailored for annotation prediction

based on the time series data that are sourced from multiple sensors. This pipeline leverages both

multi-view and multi-instance learning techniques based on feature instances stored inside sensor

bags. Moreover, CoAct-nnotate can also be used for improving the model progressively over time

from active learning based on user feedback. Nevertheless, the ultimate aim of accurate annotation

prediction in this contribution is to minimise the user burden by reducing the number of choices in

ESM-based surveys in mobile sensor data collection.

4. Intelligent recognition of human tasks in daily life from mobile sensing
Once the annotations for human tasks have been acquired from mobile sensing in-the-wild,

recognising them in daily life is challenging due to the subjectivity of user annotations and also

the unclear boundaries of task annotations (acquired in-situ). In this case, we present the problem

of intelligent task recognition in a daily mobile sensing scenario. The main contribution of our

research is related to our novel Intelligent Task Recognition (ITR) framework for daily mobile

sensing. The ITR framework is comprised of 1) a presence-based task boundary construction

mechanism (on in-situ annotations), and 2) a learning module based on Cyber-Physical-Social

(CPS) contextual data and modelling. From the results of our empirical evaluation, it can be

concluded that an intelligent system needs to fully utilise all cyber, physical and social activities

in order to provide a greater predictive result and insights for situation inference.
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5. Quality-driven data summarisation for effective and scalable mobile sensing applications
To expand the mobile sensing data collection and experiments on a larger scale (e.g., crowdsensing),

an effective technique is needed to retain a compact representation of informative elements in

sensor data. In this case, we introduce the scenario of cloud instances having limited capacity to

store raw sensing data from Internet-of-Things (IoT). We develop QDaS, a novel domain agnostic

framework for effective storage and management of IoT data in the cloud. Based on the proposed

data quality estimation technique (using the notion of the utility value of sensor data), QDaS

leverages its unsupervised module to perform density-based data summarisation on continuous

multivariate time series sensor data. Our experimental results show the effectiveness of this

data summarisation technique, by having higher space saving ratio while maintaining reliable

inter-rater agreement between machine learning models. In fact, this smart data summarisation

technique has been proven to be effective in a semi-supervised learning module of CoAct-nnotate

framework for multi-view user annotation prediction (refer to Chapter 4).

1.5 Thesis Organisation

This chapter mainly discusses the challenges and motivation behind situation inference and context

recognition from mobile sensing. The rest of this dissertation is structured as follows. In the next chapter,

we provide the necessary background on different aspects of mobile sensing and intelligent applications

of ubiquitous computing in daily life. The main contributions of this dissertation are included in

Chapters 2 to 6 as shown in Figure 1.3. In Chapter 2, a technique for discovering the optimal time

window size in temporal segmentation process is presented, which scales up to multi-context recognition

in mobile sensing. In Chapter 3, we address the multi-context recognition problem for multivariate time

series data of mobile sensors, by considering the factor of context dependency of human activities. In

Chapter 4, we present a novel semi-supervised technique for predicting human annotations to improve

the experience of data collection for intelligent mobile sensing applications. In Chapter 5, we address

the situation inference problem by recognising human tasks in a daily mobile sensing scenario, utilising

the CPS activities. To scale up situation inference and context recognition efficiently from individual

mobile users (e.g., in a mobile crowdsensing scenario), we present an application agnostic framework for

quality-driven data summarisation (Chapter 6) to derive the compact representation of mobile sensing

data. Finally, Chapter 7 concludes this thesis with a summary of our contributions, key findings, and

discussion of future works.
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Figure 1.3: Overview of thesis structure and organisation.

Notes for connections:

• Chapter 2 to Chapter 3: The problem of multi-activity recognition in Chapter 2 is expanded to

simultaneous multi-context (activities and related contexts) recognition.

• Chapter 3 to Chapter 4: Multiple contextual labels and human activities in Chapter 3 are the

results of the decomposition process of raw human annotations. We expanded the problem of

acquiring these raw annotations (Chapter 4) to improve the interactivity of experience sampling.

• Chapter 4 to Chapter 5: Beyond context recognition and prediction, Chapter 5 addresses the

issue of situation inference in the form of human task recognition for intelligent assistants through

mobile sensing.

• Chapters 2, 3, 4 and 5 to Chapter 6: The topic of this research is constituted within the realm

of mobile sensing from first-person based situation inference and context recognition. Chapter 6

extends all of the preceding chapters by scaling up mobile sensing for large-scale experiments.
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Chapter 2

PROCESSING MULTIVARIATE SENSOR

DATA FOR MULTI-CONTEXT

RECOGNITION

2.1 Introduction

As discussed in Chapter 1, intelligent sensing can be enabled by accurate recognition of user contexts,

including multiple human activities in a smart environment. This chapter discusses our research

contributions in optimising the overall temporal segmentation process of multiple activity recognition,

by finding the optimal window size for feature extraction purposes.

The advances in ubiquitous computing in recent years have driven the research to automatically

observe, monitor and recognise contextual information for various benefits, which are enabled by direct

applications of machine learning algorithms. As an example, resident monitoring for smart home

applications can facilitate tracking and recognition of daily activities for Alzheimer’s patients and elderly

care. Several initiatives such as [Kidd et al., 1999, Cook et al., 2003, Intille et al., 2006, Kröse et al.,

2008, Cook et al., 2009] have brought various researchers to achieve significant contributions for activity

recognition in smart environments.

Human annotated data may not be aligned consistently in terms of the boundary between activities.

In other words, the impurity of the associated activity labels within a temporal segment may affect the

performance quality of classification tasks for activity recognition. It should be noted that throughout

the course of this chapter, labels and annotations are used interchangeably in the context of activity

recognition corresponding to class labels.

16
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On the other hand, it is crucial to consider a more dynamic and scalable use case for activity

recognition. In a real-world situation, multiple activities that can be observed from the streaming of

ubiquitous sensor data. However, this is not well explored in the current literature. Existing works mainly

focus on single activity recognition from one label set. In common practice, the techniques associated to

temporal segmentation involve optimised processes for one-dimensional space of an activity label set. It

is a standard mechanism before recognition process (i.e., classification of activities). However, these

techniques may need to be adjusted for multi-activity recognition scenario.

For many years, major works have been performed in order to understand the human behaviour and

mobility patterns in various interdisciplinary studies. Previous work by Gonzalez et al. [2008] had shown

the individual mobility patterns from trajectories of 100,000 mobile phone users in order to signify that

each individual is characterised by time-independent travel distance and the probability of return to

frequently visited locations. As the results, they could obtain the likelihood of a mobile phone user in

any location. Given the opportunities by ubiquitous computing capabilities, the application scenarios of

activity recognition in unconstrained environment could be limitless.

To illustrate the importance such recognition in a smart environment, possible scenarios that can

be applied in the medical sector include automatic recognition of user (staff) activities in smart hospi-

tal [Sánchez et al., 2008] and emotion recognition for measuring mental fitness [Tacconi et al., 2008,

Rachuri et al., 2010]. Therefore, the inferences of multi-activity recognition from ubiquitous sensors can

be leveraged to facilitate human mobility and contextual modelling in these dynamic smart environments.

These directions suggest the tremendous needs for innovations and efficient methods to handle

streaming of ubiquitous, yet irregular multivariate sensor data. Hence, it is a significant challenge

to improve the performance of multi-activity recognition. This is due to the fact that human activity

in a smart environment is bound to be dynamic. In addition, dynamic changing of activities in data

streams will incur a mixture of these activity labels during temporal segmentation process. Therefore,

methodologies in minimising the purity in temporal segments are needed without sacrificing much on

the performances of activity recognition. In this chapter, a window refers to a temporal segment in

sliding window model. Moreover, scalability of these methodologies is required to fit into multi-activity

recognition scenario.
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The contributions of this chapter are entailed on the preprocessing of ubiquitous sensor streams

for activity recognition tasks. In particular, our proposed technique provides these following key

contributions:

1. The multi-objective technique of finding optimal window size for time-interval based temporal

segmentation in streaming fashion. It is derived based on gaining the balance between minimising

label impurity in a segment and maximising factor for class separability (divergence) of ubiquitous

sensor features towards class labels.

2. Robust recommendation of optimal time-interval window sizes for temporal segmentation in

multi-activity recognition.

2.2 Related Works

The study of human activity recognition is a well-known area in many research communities, including

computer vision [Turaga et al., 2008, Aggarwal and Ryoo, 2011]. As the proliferation of mobile and

ubiquitous devices become prominent, activity recognition from streaming sensor data becomes an

emerging research area. It is difficult to be neglected due to its apparent realisation in near future by

enabling Internet of Things (IoT) technology. The inherent challenges of dealing with data streaming

from these ubiquitous sensor devices (such as wearables, mobile devices and on-body sensors) are

related to noisy sensor reading due to hardware limitation and environmental influences. Su et al. [2014]

recently presented a general overview of techniques and challenges in performing activity recognition

from the smartphone sensors. In the study of activity recognition, it is often treated as a classification

problem since there are annotations associated with certain states (e.g., human locomotion activities) for

training and testing phases. However, it is common practice to use one second window size for temporal

segmentation in many experiments [Pirttikangas et al., 2006, Zhu and Sheng, 2009, Wang et al., 2009,

Gordon et al., 2014]. Torres et al. [2013] verified in their recent study that the fixed time window (FTW)

achieved high performance of real-time activity recognition. In this chapter, we refer their FTW as

time-interval based segmentation. They also have performed comprehensive performance evaluation of

other segmentation techniques such as activity windowing, dynamic windowing and mutual information

windowing.

In addition, Guo et al. [2012] have proposed an adaptive approach for online segmentation through

PCA feature selection and model selection. In their approach, the window size can expand based on

feature selection and model selection criteria in order to incorporate the next frame. Unfortunately, the

mixture of labels is not included as an essential factor during their segmentation process. It is important
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to note that human activities are dynamic and subject to continuous change in data streams. Therefore,

we consider that maintaining high label purity in a temporal segment is crucial for activity recognition

application. However, it is insufficient to simply consider label purity alone. Another objective that can

be considered in maintaining label purity of temporal segments is related to the importance of features

for activity labels. In many image classification experiments such as [Guo et al., 2008], class separability

is crucial to select important features in order to improve and accelerate classification tasks.

Therefore, our study in this chapter is aimed towards finding the optimal time window size to

mitigate from simple selection of window size from common heuristics (e.g., one second windowing). In

the past literature, dynamic programming [Bellman, 1961] and k−segmentation [Himberg et al., 2001]

can be used to perform time series segmentation for the purpose of context recognition. However, the

drawback of these techniques is that it requires offline data processing for such context recognition. In

real world application, streaming of sensor data can be irregular, especially when a sensor device is

unavailable under certain circumstances. For example, GPS sensor of smartphone is unreliable when

the user is inside a building, or in an underground tunnel. Such temporal data (especially event-based

sensor data) can be challenging to process in a streaming fashion. On the other hand, Krishnan and

Cook [2014] recently proposed a sliding window approach to perform activity recognition in a streaming

fashion, which can be adapted for event-based sensor streaming. Their method incorporates time decay

and mutual information based weighting of sensor events within a window. They claimed that different

activities can be characterised with different lengths of sensor events. Consequently, their experimental

result is validated and tested on the real-world smart home dataset, which mostly consists of event-based

sensing data. However, the scope of their study is restricted towards one dimension of activity set.

Most of the research problems in past studies [Chen et al., 2012a, Riboni and Bettini, 2011, Hemminki

et al., 2013, Feng and Timmermans, 2013, Kim et al., 2014] addressed the challenge to perform a context

recognition on one label set. In other words, the primary objective is to classify a class label correctly

from a context label set. For example, a system needs to recognise user walking from home to work,

given an activity label set that is composed of “walking”, “standing” and “sitting”. In many real-world

scenarios, multiple activities are required to recognise to indicate a user’s intention or action. To

provide meaningful contextual information, multi-label classification can be leveraged to facilitate

such needs. The problem of multi-label classification is practical in real-world scenarios as a subject

can be associated with multiple annotations at a time. For example, a person is “sitting” in a cafe

while “drinking coffee”. On another occasion, she can be “running” while “listening to music” from a

smartphone. In the medical application, multi-label classification can be used for diagnosing diseases,

such as diabetes and prostate cancer [Tsoumakas and Katakis, 2006]. Furthermore, it can also be used for

classifying several characteristics during real-time ECG (Electrocardiography) analysis of data streaming
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from on-body sensors. Moreover, the multi-label problem is not strictly limited to smart environment

scenario. Consequently, it is also applicable for modelling the mobility of a user in a dynamic urban

environment. For example, Read et al. [2016] proposed a multi-label oriented technique to preprocess

sensing data to produce labelled data that are reliable for human mobility modelling. Due to various

benefits that can be attained for multi-label classification, the motivations of our studies are influenced to

pursue multi-activity recognition from continuous streaming of sensor data. A very simplistic approach

for solving multi-label classification is to construct a new label set that is composed of the possible

combination of labels from predefined label sets.

Throughout this chapter, we define the steps to find a reasonable parameter (window size) for

time-interval based temporal segmentation. They are designed to be robust for multi-activity recognition.

2.3 Problem Definition

2.3.1 Impure Windows in Temporal Segments

In order to identify certain activity label on data streams from ubiquitous sensors, it is a common practice

that the data points are annotated in a time-interval manner. In several scenarios, these sensor data could

arrive in irregular manner at different point of time. Temporal segmentation is necessary in order to

define the boundary of feature extraction process for recognition phase.

Figure 2.1: Non-overlapping temporal segmentation of sensor data streams with a given label set L. An
impure segment is composed of more than one label.

Let S = {S1,S2,S3,S4, ...,Sd} be the d number of sensors and Si (1 ≤ i ≤ d) is a sensor identifer

within the range of d sensor streams. Each arrival of the sensor reading instance I ji can be associated to

a unique timestamp t j that is continuous in a sensor stream Si.
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Let us consider a temporal segmentation through sliding window technique where a data stream

is processed in a continuous manner. It is apparent that temporal segmentation would produce several

windows that are composed of mixtures of multiple annotations from a label set L = {L1,L2, ...,Ln}
(Figure 2.1). Inherently, the most dominant label would be selected as the final label for the corresponding

window.

Assuming the process is performed via a time-interval based temporal segmentation approach with

non-overlapping sliding window, the problem is formulated as to how to find a reasonable time window

given the impurity of segments in ubiquitous sensor streams. The complexity of the problem increases

when these sensor streams need to be synthesised due to the variation of data arrival from heterogeneous

sensors. Synthesis in this chapter refers to the synchronisation process to align the time segments of

heterogeneous sensor streams in a format that is suitable for features extraction.

It is assumed that a complex streaming scenario involves different timestamp for the arrival of

data from each sensor. A sensor may be inactive for a certain period of time depending on particular

predefined rules. For example, the GPS sensor of a smartphone user is activated only when the person is

close to specific locations. When the battery level of the smartphone is low, the sampling frequency of

sensor data may be reduced or scheduled in a short time-span in a controlled interval. Hence, a common

approach, such as frame-based temporal segmentation would be inappropriate due to these irregular

behaviours of sensor data streaming. Hence, the problem definition defined in this chapter is constrained

to time-interval based temporal segmentation for streaming ubiquitous sensor data.

A common practice is to assume a predefined fixed window size for the segmentation process.

For activity recognition on motion sensors (such as the accelerometer), the one-second window size

is commonly assumed in many experiment settings [Pirttikangas et al., 2006, Zhu and Sheng, 2009,

Wang et al., 2009, Gordon et al., 2014], including applications in the medical field such as monitoring

for Parkinson’s disease rehabilitation [Cancela et al., 2015]. Another alternative method is to perform

sensitivity analysis on various time-interval window size based on quality metrics of recognition results

(e.g., accuracy of classifier validation results). In most cases, sensitivity analysis requires a significant

amount of time to evaluate. In the recognition phase (i.e., classification tasks), another sensitivity analysis

may need to be performed on each classifier for parameter tuning of machine learning algorithms.



Problem Definition 22

2.3.2 Multi-label Problem of Temporal Segments

As described previously, real world applications may require multiple annotations to be associated with

an instance. This is commonly addressed as multi-label problem. Assume that label vector L can be

constructed with multiple label sets L = {L1,L2, ...,Lk}, which are derived from human annotations.

Each label set Lk is composed of multiple labels Lk = {Lk.1,Lk.2, ...,Lk.n}. Therefore, it is clear that I ji

can be associated with annotations from each Lk label set as depicted in Figure 2.2.

Figure 2.2: Sensor data streams (annotated with multiple labels).

Figure 2.3: Impure segments in multi-label scenario.

Previously the problem of impure segments in temporal segmentation is explained. However,

this problem is not limited to annotations from one label set. Hence, the impure segments can be

scaled to several dimensions, given the annotations from heterogeneous label sets (as illustrated in

Figure 2.3). Each label set may be associated with others or be independent according to certain contexts.

Thus, finding a reasonable window size for temporal segmentation presents as a crucial problem in

multidimensional scales.
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Intuitively, it is feasible to find a balance for recommending optimal time-interval window size by

minimising the impurity proportion of windows in temporal segmentation. Furthermore, the magnitude

of complexity increases when sensor data streams are associated with annotations from multiple label

sets. This is due to the assumption that each label set may have different optimal window size. For

example, detecting a human activity from {standing, walking, sitting} may have smaller window size in

comparison to recognising higher level activity from {cooking, exercising, relaxing on couch, eating}

set. In addition, window size may be significantly different in the scenario where multiple activities

must be predicted from given k label sets. In other words, the dynamic combination of items from

heterogeneous label sets requires a balanced window size. Therefore, our contribution aims to improve

and to accelerate part of processes in multi-activity recognition.

2.4 Methodology

Finding a reasonable window size for temporal segmentation requires a significant amount of time and

effort from a typical sensitivity analysis of output quality of classifier results, especially in multi-activity

scenarios. Hence, we present a data-driven approach of time-interval window size recommendation from

annotated multivariate data streams. The objective of our algorithm is to achieve the balance between

minimising impurity of segments in data streams and maximising factor for class separability based on

given k number of label sets. Given the proposed multi-objective method of data-driven approach in

finding optimal window size, we formalise the following metrics:

1. Impurity proportion of segments

2. Class separability

2.4.1 Impurity Proportion

In real world scenario, a window from temporal segmentation may contain a mixture of multiple

annotations. Therefore, it is impractical to assume that a segment can contain only one annotation. We

consider the portion of annotation mixture is important in the case of transition points between activities.

In this chapter, we define impure segments for the windows that contain more than one annotation from

temporal segmentation.

The first objective of our method requires minimising the impurity proportion. Impurity proportion

can be calculated via:

pimpure =
mimpure

m
(2.1)

where mimpure is the count of impure segments over total m segments in data streams.
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2.4.2 Class Separability

Class separability for data streams refers to the notion of representation for distinct separation between

features in data streams with respect to each class label. Typically, the class separability score is

calculated for each feature in a given data distribution. In this case, feature values of sensor streams are

temporarily stored, which then be processed in order to identify which features are dominant towards a

class label. In our method, Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] is used to

calculate the class separability score. This is a common technique to measure the difference between

two probability distributions P and Q.

It is assumed that the streaming of sensor data is constrained by numeric features. The overall values

of each feature can be represented in histogram (frequency distribution) format. In other words, there

would be one histogram per feature for each class. Hence, KL divergence can be calculated for each

feature after the histogram representation has been attained from discretization using b equally-spaced

bins. This histogram representation would fit into different scenarios where the numeric features are

discrete or continuous. In other problem domain, class separability is used for feature selection [Benoit

et al., 2015, Guo et al., 2008, Liu et al., 2010, Oh et al., 1999, Zhang et al., 2013, Zhou et al., 2014].

For each feature f , we calculate maximum score of the class separability (i.e., maximum divergence

of f ) as:
mdivergence f = max

1≤i≤n
1≤ j≤n

KL f (i, j), (2.2)

where n is number of class labels in a label set Lk and KL f (i, j) is the KL distance between two

distributions (histograms) corresponding to class labels i and j:

KL f (i, j) =
b

∑
m=1

Pr f (m | i) log
(

Pr f (m | i)
Pr f (m | j)

)
(2.3)

where b is the number of bins in the histograms. Both probabilities Pr f (m | i) and Pr f (m | j) should

never be 0; instead we define 0.0000001≤ Pr f (m | l)≤ 1 heuristically where l is the class label index.

In any case, a larger value of mdivergence f relates to greater separability of f over all labels in Lk.

As KL divergence holds asymmetric property, it is practically useful to derive which top-k features

provide significant contributions for a classifier by ranking class separability scores. However, this

can be replaced with a symmetric solution such as Jensen-Shannon (JS) divergence [Lin, 1991] when

a strict metric is required. Despite the distinction between symmetrical and asymmetrical divergence

distances, it is prominent that the average of these pairwise measures is typically used for the extension to

multi-class scenario [Guo et al., 2008]. In our case, the mean is derived from maximum divergences for

all features. Maximum divergence was also used as scoring in [Abeel et al., 2009] for feature selection.
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2.4.3 Multi-objective Function

Based on the above two critical metrics, multi-objective function is leveraged that aims to gain balance

between minimising the impurity proportion in data streams and maximising the divergence in terms of

class separability of activity recognition. The balance is found by looking for optimal window size that

has impurity proportion measurement close to the intersection of metrics within the defined window size

search range. The details of multi-objective operation would be elaborated in the following algorithm

section.

2.4.4 Algorithm

Our proposed method is formalised as Optimal Window (OPTWIN) for time-interval based temporal

segmentation. In order to recommend time-interval window size for segmentation, it requires finding the

balance between the above impure proportion and class separability measure.

As described in Algorithm 1, the recommendation of window size include the initial parameters of:

1. Three main inputs for the search range of window size:

a) Smallest window size wsstart .

b) Biggest window size as the upper boundary wsend .

c) Time-interval step wsstep for window size.

2. An additional input for data streams from ubiquitous sensors Dstreams.
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Algorithm 1 OPTWIN based window size recommendation
1: procedure recommendWindowSize(wsstart ,wsend ,wsstep,Dstreams)
2: global wscurrent ← wsstart
3: while wscurrent ≤ wsend do . Label purity and divergence derivation
4: for each Lk ∈ L do
5: Dsegments← temporalSegmentation(wscurrent ,Lk)
6: pimpureLk [wscurrent ]← impurityProportion(Dsegments)
7: multiActivities← isMultiActivities(Lk)
8: if multiActivities then
9: discoreLk [wscurrent ] =

1
i ∑

n
i=1 discoreLi [wscurrent ]

10: else
11: for each f in Dsegments do
12: maxdivergencesLk [ f ]← maxKL(values f ,Lk)
13: end for
14: discoreLk [wscurrent ] =

1
f ∑

f
i=1 maxdivergencesLk

15: end if
16: end for
17: wscurrent ← wscurrent +wsstep
18: end while
19:
20: for each Lk ∈ L do . Optimal window size recommendation
21: wscurrent ← wsstart
22: while wscurrent ≤ (wsend do
23: dideviationcurrent ← nrmlDvt(discoreLk [wscurrent ],discoreLk )
24: metricscurrent ← (pimpureLk [wscurrent ], dideviationcurrent)
25: wsnext ← wscurrent +wsstep
26: dideviationnext ← nrmlDvt(discoreLk [wsnext ],discoreLk )
27: metricsnext ← (pimpureLk [wsnext ], dideviationnext)
28: wsoptimal ← intersect(metricscurrent , metricsnext )
29: if wsoptimal then
30: wsrec[Lk]← wsoptimal
31: break;
32: end if
33: wscurrent ← wscurrent +wsstep
34: end while
35: end for
36:
37: return wsrec
38: end procedure

This algorithm requires scanning operation for impurity proportion and class separability measure

of every window size (with incremental of wsstep) within the boundary of wsstart and wsend . The

computation of impurity proportion pimpureLk and divergence score from all maximum divergence of

features discoreLk are stored for each label set Lk. In this case, the average function of all maximum

divergences of features is used to compute discoreLk .
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The process of window size recommendation is composed of two stages. Firstly, the necessary

metrics (e.g., impurity proportion and divergence score) are computed and stored for each Lk from

a given L label sets in data streams Dstreams. This stage is referred as label purity and divergence

derivation in Algorithm 1. Within iteration of every possible window size, the derivation begins with

temporal segmentation procedure where time-interval segmentation is performed on the given Dstreams.

In temporal segmentation procedure, feature extraction is performed to derive the summary of data

points in each time window. It should be noted that the results of feature extraction would be later

used in calculating the class separability score. Afterwards, the impurity proportion of each window

size pimpureLk [wscurrent ] is calculated through Equation 2.1. The divergence score discoreLk [wscurrent ]

is then calculated subsequently through the mean maximum divergence from maxdivergencesLk [ f ] of

all f features. The corresponding maxdivergencesLk [ f ] is computed through Equation 2.2. All of these

metrics are stored temporarily for optimal window size recommendation stage.

Furthermore, for any Lk that is defined as multi-activity (i.e., Lk is composed by combination of

several other Lk in L label sets), mean maximum divergence can be computed from the following:

discoreLk [wscurrent ] =
1
i

n

∑
i=1

discoreLi [wscurrent ] (2.4)

where Lk is identified as multi-activity label set and Li is single-activity label set that is part of n label

sets being associated with composition of corresponding Lk. For example, let us consider a multi-activity

scenario where Lk is composed of combination between locomotion activity L1 label set and gesture

activity L2 label set. Both of label sets L1 and L2 are considered as single-activity label sets. Therefore,

the result discoreLk [wscurrent ] is derived from averaging divergence score discoreLi [wscurrent ] from L1

and L2 corresponding to the same window size.

The second stage after metrics derivation refers to optimal window size recommendation in Algo-

rithm 1. It involves finding optimal window size for each label set Lk with given metrics computed

from the first stage. For each label set Lk, the optimal window size is derived from metrics intersection

between current window size and next window size in an iterative operation. In order to decide the

window size to be optimal, the metrics for impurity proportion and normalised squared deviation of

divergence score are used.
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Given the divergence score dsi and mean of divergence scores (ds) from all possible window sizes,

normalised squared deviation nddi can be computed via:

nddi =
ddi−min(dd)

max(dd)−min(dd)
(2.5)

where squared deviation ddi of dsi is defined as:

ddi = (dsi−ds)2 (2.6)

As a result, divergence deviation of available window sizes would be scaled from 0 to 1 and can be

used to find the intersection with impurity proportion. For temporal segmentation, larger time-interval

window size corresponds to the following assumptions:

1. Greater impurity proportion is included.

2. Increasing mean of maximum divergences from all features.

These assumptions would be validated via the experiments in next section. In Algorithm 1, the

intersection function would return the optimal window size wsoptimal . The wsoptimal is non-empty in a

condition of rangepimpure∩ rangedideviation where

rangepimpure = (pimpureLk [wscurrent ], pimpureLk [wsnext ]) (2.7)

and

rangedideviation = (dideviationcurrent , dideviationnext) (2.8)

Given the ranges rangepimpure and rangedideviation, the optimal window size is defined based on the

first intersection occurrence. Hence, the candidate of optimal window size (either wscurrent or wsnext)

for wsoptimal depends on closest absolute distance of impurity proportion (either pimpureLk [wscurrent ] or

pimpureLk [wsnext ]) to average value (centroid) of S value set:

S =


pimpureLk [wscurrent ],

pimpureLk [wsnext ],

dideviationcurrent ,

dideviationnext


The final output of algorithm results in optimal window sizes wsrec corresponding to all Lk in L label

sets.
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2.5 Experiments and Evaluation

In this section, we present the experimental settings and evaluation. The method is validated with the

benchmark OPPORTUNITY Activity Recognition Dataset [Sagha et al., 2011] from UCI repository. It

is a dataset that was collected from wearable, object and ambient sensors for activity recognition. This

rich dataset contains 242 features in total. For the purpose of this study, we only use 101 features that

are related to body sensors and wearables. The remaining unused features are associated with sensors

that are attached to objects such as knife, spoon, plate and fridge.

There are several characteristics of this dataset that can be associated to our problem definition:

1. Dynamic sensor data from ubiquitous sensors in an irregular manner. In several occasions,

feature values in a sensor stream can be empty due to unavailability of specific ubiquitous device.

For example, unavailability of accelerometer sensor in certain time period would result in empty

reading for three axes of accelerometer values. Therefore, the data contains inherent sparsity

problem, which may result in less accurate and inconsistent performance of a classifier model.

2. The dataset contains multi-activity label sets, which is suitable for our evaluation in terms of

scalability of the proposed method.

2.5.1 Data Preparation

The OPPORTUNITY Activity Recognition Dataset contains several activity sets including 5 high level

activities, 4 locomotion activities, 17 gesture activities, low-level actions relating 13 actions to 23 objects.

There are 4 users associated with the sensor data, 6 recordings for each user. In our experiments, we

randomly selected 2 recordings for each user. Time-interval based temporal segmentation is performed

for each recording in a streaming fashion. All temporal window instances from selected recordings of

users are combined, producing a dataset that would be used for training and testing phases.
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Consequently, our method would be demonstrated and validated with this dataset for multi-activity

recognition scenario. In this instance, we use the following label sets:

1. High level activity (HLA) label set:

L1 =



Relaxing,

Coffee time,

Early morning,

Cleanup,

Sandwich time,

None


2. Locomotion activity (LA) label set:

L2 =
{

Stand, Walk, Sit, Lie, None
}

3. Gesture activity (GA) label set:

L3 =



Open Door 1, Close Door 1,

Open Door 2, Close Door 2,

Open Fridge, Close Fridge,

Open Dishwasher, Close Dishwasher,

Open Drawer 1, Close Drawer 1,

Open Drawer 2, Close Drawer 2,

Open Drawer 3, Close Drawer 3,

Clean Table, Drink from Cup, Toggle Switch,

None


For the instance without class label Lk above, it is automatically assigned to "None". Furthermore,

feature extraction is subsequently performed on each window that is produced by temporal segmentation

process. The generated features include: mean, median, minimum, maximum, standard deviation, IQR

(interquartile range), median and RMS (root-mean-square).
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As a result, there are 707 features that can be used for training and testing a classifier. For recognition

of activities, these following classifiers are used:

1. Naive Bayes (NB) classifier

2. Decision Tree (J48) classifier

3. Random Forests (RF) classifier

Throughout our experiments, the activity recognition models are built using a well-known data

mining software: Weka 3.8 [Hall et al., 2009] with default parameters corresponding to each classifier.

For multi-activity recognition, a new label set is constructed from the combination of three label sets.

In other words, the new label set of multi-activity recognition L4 contains labels in a given structure

L1:L2:L3 (denoted as HLA:LA:GA), e.g., "Coffee time:Sit:Drink from Cup".

The boundary to search for optimal window size is defined as the following:

• wsstart = 600 milliseconds (0.6 seconds).

• wsend = 5000 milliseconds (5 seconds).

• wsstep = 100 milliseconds (0.1 seconds).

2.5.2 Observation of OPTWIN Metrics

In order to validate our assumptions on increasing window size for temporal segmentation towards

OPTWIN metrics, impurity proportion and mean of maximum divergences (from all features) are

observed in this section.

2.5.2.1 Impurity Proportion

As shown in Figure 2.4, the impurity proportion increases as window size used for temporal segmentation

is larger. The decrease of purity is especially prominent for LA, GA and HLA:LA:GA label sets.

However, it is less noticeable for HLA as its class labels have larger activity duration compared to other

label sets. It is within the expectation that the impurity proportion for HLA:LA:GA label set would

be significantly dominant. Essentially, this can be caused by the dynamic combination of classes from

available label sets.
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Figure 2.4: Impurity proportion.

Furthermore, we noticed that the locomotive state changes frequently in OPPORTUNITY dataset (as

described in Figure 2.5). These activities include instances without a class label, which are reassigned as

"none". As a result, the frequent changes of locomotive state lead to impurity level exceeding 50% at 4.5

seconds (window size) for locomotion activities.

Figure 2.5: Box plot of locomotion activity duration (zoomed). Maximum locomotion activity duration
is 224.994 seconds for "none" class label.
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2.5.2.2 Mean Maximum Divergence

Before calculating maximum divergence for each feature, the feature values are converted to a histogram

as explained in the methodology section. However, the sparsity problem is inherent in the OPPORTU-

NITY dataset since a sensor can be unavailable for a period of time in a stream. To solve this problem in

relation to KL divergence computation, the empty feature values are allocated to the middle of defined b

bins. In this case, 100 bins (b = 100) are used for the normalisation to a histogram. For the label set

that is used for multi-activity recognition, discoreL4 (mean maximum divergence of HLA:LA:GA label

set) is computed by averaging the mean maximum divergences of associated label sets. In other words,

discoreL4 =
1
3(discoreL1 +discoreL2 +discoreL3).

Similarly, the mean average divergence metrics appear to be increasing corresponding to larger time

window size (up to 10 seconds) as shown in Figure 2.6. Moreover, the mean maximum divergence score

is expected to degrade after reaching the peak at a certain time window size. This phenomenon is clearly

shown in the sudden drop of discoreL4 and discoreL3 at 33 seconds window size. In many applications,

this could be viewed as a convex optimisation problem. However, our observation revealed that larger

window size would eventually reduce the number of unique class labels (especially for L3 and L4). This

observation indicates that the optimal divergence score would not be convincing since the number of

unique class labels will significantly decrease if activities are shifted rapidly. It should be noted that

the range of divergence score to be used in our analysis is defined between 600 milliseconds and 5000

milliseconds for finding optimal window size.

Figure 2.6: Mean of maximum divergences.
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2.5.3 Optimal Window Sizes

The OPTWIN algorithm finds the optimal window sizes for label sets based on the above metrics within

a constrained search range. The optimal window size is set from the closest window size’s impurity

proportion to the intersection of impurity proportion and normalised deviation of divergence score. As

an example, the optimal window size for HLA:LA:GA label set is found to be 1.2 seconds as depicted

in Figure 2.7.

Figure 2.7: Intersection between impurity proportion (pimpure) and normalised squared deviation of
divergence score (ndd).

Performing sensitivity analysis of every label set would be a time consuming task in overall activity

recognition operation, excluding parameter tuning for each classifier. The proposed method specifically

operates as multi-objective function that intends to gain the balance between minimising the impurity

proportion of time segments and maximising class separability measure. Moreover, the algorithm is

scalable to tackle multi-activity recognition problem. For our experiments, 1-second window size is used

as the baseline comparison. It was mentioned previously that many experiments leveraged 1-second

as a heuristic way to select the window size, especially for activity recognition. The performances of

classifiers are tested with F1 score (harmonic mean of precision and recall) via 10-folds CV (Cross

Validation) on optimal and baseline window sizes.

The following wsoptimal are returned from the window size recommendation:

1. HLA: 2.4 seconds - single-activity recognition

2. LA: 1.5 seconds - single-activity recognition

3. GA: 1.4 seconds - single-activity recognition

4. HLA:LA:GA: 1.2 seconds - multi-activity recognition
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2.5.4 Sensitivity Analysis

In this section, the result of sensitivity analysis for multi-activity recognition is shown by the performance

of classifiers on L4. Thus, this brief analysis will verify that general classifier performance varies for

each window size. The performances of classifiers are tested with both F1 score and accuracy via

10-folds CV. As shown in Figure 2.8 and Figure 2.9, fluctuation of quality performances on the classifiers

are prominent for both F1 score and accuracy as the window size increases, especially on RF (best

classifier). Thus, this is essentially aligned with the motivations and challenges in this research to find

optimal window size for multi-activity recognition. It should be clear that multi-activity recognition in

this chapter aims to detect multiple activities (one activity from each label set) for a given time window

instance.

Figure 2.8: Sensitivity analysis - F1 score (OPPORTUNITY).

Figure 2.9: Sensitivity analysis - Accuracy (OPPORTUNITY).

2.5.5 Discussion for Optimal Window Size

From all performance comparisons of F1 scores shown in Figure 2.10 and Figure 2.11, NB classifier

gains significant improvement for F1 scores for the defined label sets. This suggests that finding optimal
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window size would generally improve the performance of generative model based classifier such as NB in

comparison to the baseline (1-second window size). It is important to note that in several applications of

activity recognition, generative models can outperform discriminative approaches, especially when there

are errors associated with activity labels (e.g., streaming data from crowdsensing [Ganti et al., 2011]).

However, the performances of F1 scores appear to be slightly worse for the optimal window size of

single-activity recognition of HLA and LA. The slight degradation of these classifier performances can

be found as the trade-offs to finding balanced window size for recognising multiple activities. However,

an improvement of single activity recognition for the atomic activity (GA) is gained. In short, finding

optimal window sizes through OPTWIN algorithm corresponds to better and balanced performance for

multi-activity recognition (e.g., HLA:LA:GA) in comparison to single activity recognition from a single

label set. Furthermore, the recommended window size can be used for real-time activity recognition

according to user application context (either single-activity recognition or multi-activity recognition).

Figure 2.10: F1 score comparison between optimal and baseline window size for single-activity recogni-
tion (HLA, LA and GA).

Figure 2.11: F1 score comparison between optimal and baseline window size for multi-activity recogni-
tion (HLA:LA:GA).
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2.6 Conclusion

In this chapter, we have proposed a specialised technique of finding optimal window sizes for time-

interval based temporal segmentation. This technique is composed of multi-objective function that

aims for the balance between minimising the impurity segments during temporal segmentation and

maximising class separability measure. The scalability of proposed technique is demonstrated by the

capabilities to produce optimal window size for each label set, including one for the combined label set

(for multi-activity recognition). From the experimental results, the optimal window size for multi-activity

recognition is found to be improving the quality of classifier performances from the baseline window

size. In addition, the improvement appeared to be dominant for generative model based recognition

techniques (such as Naive Bayes classifier). Nevertheless, OPTWIN can be used as an alternative method

for automatic selection of window size instead of simple one second heuristic or a very time consuming

sensitivity analysis.

The contribution of this chapter is mainly targeted towards time-interval temporal segmentation

for multi-context recognition purposes. Moreover, another challenge is associated with the study of

dependency between activity and context label sets. In this chapter, the multi-label classification is

achieved by constructing a new label set. This new label set consists of the combination class labels

that we can derive from heterogeneous label sets. Unfortunately, this approach is not robust in terms

of inferring the accuracy for each activity label. An ideal solution is needed for the mobile sensing

scenario where the human activity and context label sets can be dependent or independent from each

other. Therefore, this particular issue of simultaneous multi-context recognition from mobile sensor data

is addressed in the next chapter.



Chapter 3

RECOGNISING MULTIPLE CONTEXTS

FROM MOBILE SENSOR DATA

3.1 Introduction

As discussed previously in Chapter 2, the problem of multi-activity recognition in constrained envi-

ronments (e.g., smart homes) can be expanded further to simultaneous context recognition in-the-wild,

via intelligent mobile sensing. In this chapter, we prove that such dependency assumption between

contextual labels from multi-dimensional label spaces is extremely important, especially in cases where

smart devices (e.g., smartphones) are used to recognise both human activities and transportation modes

through daily mobile sensing.

Rapid development and population growth in urban areas have gained tremendous attention from

researchers to study human dynamics via mobile sensing technology. In order to close the gaps

towards a smarter city, it is also important for the local authorities to discover the relevant knowledge

from the observation of human mobility patterns within various transportation contexts. The human

movements within the cities are becoming more dynamic and complex due to the high availability of the

public transportation services and dynamic environmental factors, especially with the involvement of

surrounding spatial and temporal elements that could affect the accuracy in mobile sensing applications.

In daily commuting routines, smartphone users travel between urban areas via certain transportation

modes. The dynamic mobility of the humans in each journey involves activities across multiple

transportation modes. Hence, the mode of transportation associated with human activities always

changes over the time, depending on user’s spatial and temporal contexts. For example, in the morning a

mobile user travels from home to the office using a bus, train and light rail while he could be standing

38
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or sitting while inside those transportation mediums. Furthermore, during the transition between these

transportation mediums, the user might be required to walk for a certain distance in order to get onboard

on different transportation mode (e.g., train or light rail). At a certain time slot, the user could be relaxing

while sitting on a couch at home, which means having no transportation mode for the given contexts of

this mobile user. It should be noted that a mobile user in this chapter is defined as a user that frequently

moves (i.e., commute) and utilises mobile devices (not limited to smartphones) in daily life.

In major metropolitan areas, smartphones are heavily used and carried everywhere by individuals

in order to perform their daily tasks. These smartphones are embedded with various built-in mobile

sensors that are capable of perceiving the user contexts, such as transportation modes, human activities

and types of environment the mobile users are contained in, from the signals captured within the

vicinity of smart devices. In this case, the smart devices are not only limited to first-person perspective

(smartphone users), but also to the ubiquitous devices that could be deployed throughout the city. In this

chapter, the scope of our study is focused on a non-trivial issue to perform simultaneous inference of

human activities, transportation modes and their related contexts from mobile users’ perspective for the

purpose of intelligent applications. For instance, let us imagine the future intelligent assistant that can

automatically understand human commuting behaviour and recommend the best route based on user

contexts (including the past behaviour from user’s mobility patterns).

In this chapter, transportation mode, human activity and their related contexts (e.g., environment

type) can be inferred from the data streamed from the ubiquitous sensors embedded in a smartphone.

Such independent assumption of modelling human activities and transportation mode may result in a

wrong conceptual interpretation of an action, which is unfavourable for applications such as intelligent

assistants. For example, it may be less practical for a human to "stand" in a car while the actual activity

in such transportation could be "driving" or "sitting". Furthermore, we focus on the simultaneous

inference of mobile user contexts (transportation modes, human activities and associated environment

contexts) based on non-location based sensors. As a result, a less reliant solution to location-based

sensors (e.g., GPS sensor) can be leveraged for low-energy mobile sensing applications in dynamic

urban environments. Inherently, this type of solutions will be an energy efficient option as GPS sensors

typically consume more energy in most mobile sensing applications.
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Hence, the contributions of this chapter include:

1. More accurate inference of transportation mode and human activities without relying on the

locations of mobile users.

2. Simultaneous inference of transportation modes, human activities and mobile user’s environmental

contexts (e.g., whether the user is in a moving environment or not) based on the dependency of

contextual labels of user’s annotations.

3. A robust system for mobile context recognition on data streaming from low-energy ubiquitous

sensors.

3.2 Related Works

For many years, major works have been performed in order to understand the human behaviour and

mobility patterns in various interdisciplinary studies. To understand the human behaviour in social

interactions, previous study in [Wang et al., 2011] includes empirical analysis and prediction that

incorporates the essence of human mobility patterns to network measure such as connectivity in social

networks. They derived the mobility patterns from similarities in movements and interactions via

trajectories and communication records, which subsequently be correlated with the social connectedness

in order to produce models for social link prediction.

In regards to human activity recognition, Su et al. [2014] presented a general overview of techniques

and challenges in performing activity recognition from the mobile phone sensors. Mainly, the research

in activity recognition is often treated as a classification problem, such as [Chen et al., 2012a, Riboni and

Bettini, 2011, Hemminki et al., 2013, Feng and Timmermans, 2013, Kim et al., 2014]. In most cases,

there are class labels associated with certain human activities for training and testing phases. Another

issue in this domain is related to the adaptability to perform real-time activity recognition on continuous

streaming of sensor data. The challenges are predominant in such environments due to the variability

and evolving user’s behaviours. These changes can be affected by the presence of concept drift [Widmer

and Kubat, 1996]. Therefore, adaptive approaches such as [Wang et al., 2012, Abdallah et al., 2015] are

recommended to perform incremental learning in order to adjust with the evolving sensor streams and

user’s behaviours.

Furthermore, Lane et al. [2010] has produced a survey in regards to the significance of the sensors

embedded in mobile phones to be integrated within the space of personal, group and community sensing

applications. It is aligned with the fact that mobility patterns can be inferred from these powerful mobile
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phones through variety of built-in sensors. In the transportation domain, it is known that traffic remains

a major problem, which is visible in our current society in the last decades. This issue signifies greatly

given the growing population and limited services that are able to satisfy the transport needs. Therefore,

congestion becomes prominent, which affects the processes in urban planning and traffic management.

Hence, it brings a significant motivation for our study to then help in extending the horizon of human

mobility research. As one of the benefits, the congestion can be reduced to a certain extent with improved

quality of service delivery and transport resource allocation. Since our communities have been emerged

with the usage of mobile phones in their daily operations, the potential is limitless to extract more

knowledge from human behaviour and mobility patterns. Many works such as [Sohn et al., 2006, Lu

et al., 2010] included the tracking of user positioning characteristic in conjunction to activities in order

to offer location-based model of mobility patterns.

In the context of human activity recognition based on mobile sensors, segmentation on live streaming

data is often required in order to extract the summary for further analysis and prediction tasks. Within

the field of activity recognition, relevant solutions such as [Okeyo et al., 2014, Wan et al., 2015, Cho

et al., 2015] have been proposed for time segmentation purposes. However, these did not address the

problem where each of the sensors can be sampled at a different rate. Thus, it is feasible to have a

sparse segment when the time window size is small. This problem was then addressed in the previous

work [Liono et al., 2016] for optimal windowing of multivariate sensor data, especially in the scenario of

multi-activity recognition. In a larger scenario of human activities in daily life, multi-context recognition

is a prominent problem, especially when different environments have their intrinsic sensing patterns.

Therefore, the immediate challenges that we face in multi-context recognition in an uncontrolled

environment are associated with the noise of streamed sensor data that are subject to different types

of user’s environments and their activities. Such in-the-wild sensing settings [Vaizman et al., 2018b]

require non-trivial consideration of many factors associated with the user’s daily life, which increases

the magnitude of real challenges and needs in multi-context recognition exponentially. For example,

the users may turn off the location tracking (e.g., GPS sensor) in order to preserve the operational

time of smartphone in their daily life (i.e., minimising battery usage as highlighted in [Vaizman et al.,

2018b]). Hence, another immediate challenge is addressed in this chapter to design and construct a

mobile context recognition system that relies less on the location data of users. Consequently, our

hypothesis initially assumed that these multiple contextual label sets are associated with each other,

reflected by multi-faceted contexts of human activities in the daily life of these mobile users.
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The scope of this chapter includes the study of human activity recognition from the mobile sensors

that are induced within the context of transport mobility patterns. Therefore, the problems addressed

in our study are related to transportation mode discovery and the associated human activities within

the temporal domain. The mobility patterns presented are derived from overlapping labels in temporal

segmentation of sparse sensor data streams. To the best of our knowledge, there is a lack of study in

terms of inferring mobility patterns for recognising both transportation mode and human activity.

3.3 Problem Definition

In this section, we present the problem definition based on the applications of smart sensing to infer

multiple contextual labels simultaneously from raw activity annotations in daily life. Inherently, these

multiple contextual labels are related to mobile user contexts such as transportation modes, human

activities and their environmental contexts (i.e., mobility of corresponding transportation modes).

Figure 3.1: Inferring multiple contexts (human activity and related mobile contexts) on multivariate time
series data of mobile sensors.

Let S= {S1,S2, ...,Sd} be the set consisting of d number of mobile sensors of a user and Si (1≤ i≤ d)

is a sensor identifer within the range of d sensor streams. Each arrival of sensor reading instance point

I ji is associated to unique timestamp t j that is naturally continuous in a sensor stream Si. It should be

noted that sensor streams set S correponds to a segment dedicated to a given raw user annotation a. In

this case, the raw user annotation refers to the short description (typically in a diary-based study) of a
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human activity and its related contexts (e.g., transportation mode and the type of environment). Given

the temporal set T = {t1, t2, t3, t4, ..., tm} in a segment, the timestamp t j ∈ T corresponds to a particular

sensor data instance I ji. Each instance I ji consists of a collection of values corresponding to multiple

channels of a given sensor Si.

Given the feature vectors that can be computed from all segments of human activities in daily life, we

formulate the following problem to infer multiple contexts simultaneously from a raw user annotation.

Definition 1. Let a be the instance of a set of raw human annotations Annotations= {a1,a2,a3,a4, ...,ar}
in a mobile sensing application.

For a general overview of the inferring mobile user contexts, Figure 3.1 describes that an instance of

user annotation a can be decomposed into multiple contextual labels consisting of human activity A and

its related mobile contexts Cmobile (including transportation mode).

Definition 2. Therefore, we can define a = {A,Cmobile} where A is the instance of human activity and

Cmobile is the mobile contexts set associated to A. In this case, a transportation mode trans is a member

of Cmobile = {C1,C2, ...,Cn}. Hence, the aim of a mobile sensing application is to infer A and each

member in Cmobile simultaneously, assuming there are dependencies between the instances of A, and

members in Cmobile.

3.4 Mobile Context Recognition System

In this chapter, our mobile context recognition system is used to tackle the problem of simultaneous

inference of human activities, transportation modes (including their environments) of mobile users in

their daily life. Therefore, we designed this system to be generic for mobile context recognition purposes.

In overall, this system is composed of two overarching sub-modules (refer to Figure 3.2): contextual

modelling and multi-contexts inference.

Figure 3.2: General overview of mobile context recognition system.
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In the first module, the process of constructing structured hierarchical contexts is performed using

the proposed modelling approach (defined in Section 3.4.1) by generalising, decomposing and extracting

the contexts associated with human activities in a mobile sensing application. The second module is

dedicated to a simultaneous inference of the human activity and related contexts of the mobile user.

In the contextual modelling module (refer to Figure 3.3), there are two major components associated:

1) feature construction and extraction, and 2) modelling human activities, transportation modes and their

related contexts in a hierarchical structure. The first component relates to typical process to produce

important features of a segment, which is related to a raw user annotation a. The second component will

be elaborated in Section 3.4.1.

Figure 3.3: Process workflow in contextual modelling component of mobile context recognition system.

3.4.1 Context-based Activity Recognition (CBAR) Modelling

Raw annotations can be noisy and inconsistent in a diary-based study, especially the ones collected

through Experience Sampling Method (ESM) [Csikszentmihalyi and Larson, 2014]. In this section,

context-based activity recognition (CBAR) modelling is presented as a conceptual modelling approach

that can be used to interlink the raw annotations to human activities and mobile contexts defined in

Definition 2. In other cases, entity recognition [Schweizer and Schmidt, 2014] can be performed on

textual data of the raw user annotation, which can then be automatically associated to a relevant human

activity and its mobile contexts (including transportation mode).
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Since the human activities are being contained in a space, there are several common properties that

can characterise the transportation modes and environments of the mobile users. In this chapter, we refer

these as the properties of sensing space, which consist of:

1. Mobility of the sensing space. For instance, the environment can move in spatial and temporal

domains. In other words, the mobile users will experience dynamic mobility extrapolated by their

sensing space (environment) by moving from one location to another location. In this chapter, the

nature of a sensing space can defined whether it is: 1) moving or 2) stationary.

2. Motorisation of the sensing space. In this case, the environment (space) where mobile users

are contained in can be characterised whether it is motorised or not. Consequently, further

categorisations (e.g., vehicle vs. non-vehicle) of the environments can be derived from this

property.

As a result, the human activities can be modelled based on the above properties, which could produce

a significant distinction of where the mobile users are contained in (including the environmental contexts

associated to the contained space). It should be noted that the above properties can be expanded further

to characterise human activities in the wild. In this chapter, these properties are presented in our initial

framework for the purpose of multi-context recognition of mobile users.

Figure 3.4: CBAR Modelling from raw user annotation.

As shown in Figure 3.4, a given raw user annotation a can be decomposed through a pre-defined entity

recognition process. The objective of this conceptual process is to first derive relevant transportation

modes and human activities from all user annotations. In Cmobile set, the last item (i.e., Cn) should
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correspond to the transportation mode (i.e., Cn = trans) where a human activity A is performed in.

Consequently, the commonalities (based on properties of sensing spaces) of all transportation modes

in the system can be derived into a sequence of C1 to Cn−1. Since there is an assumption of dependencies

between all mobile contexts and human activities, the modelling can be expressed as: C1→C2→ ··· →
Cn→ A.

For a typical implementation of simultaneous recognition of all contextual labels (C1,C2, ...,Cn,A), a

simplistic approach is to build an independent classifier per each member of the contextual labels. This

typical approach is used as the baseline in our experiment.

Based on our conceptual modelling approach, there are two approaches to address the simultaneous

inference issue:

1. Multi-stage inference from multiple classifiers that are modelled hierarchically. In other words,

inference is made from C1 sequentially to Cn (transportation mode), then A.

2. Inference from a multi-target classifier. In particular, multi-target classification [Last, 2016] is a

special case of multi-label classification in terms of modelling the dependencies between target

classes from multiple label sets.

As a result of CBAR modelling process in our system, all raw annotations can be then be forwarded

to the label set decomposition process, where multi-context graph (schema) is produced as an output for

the next phase (models construction in multi-context inference module of our mobile context recognition

system).

3.4.2 Multi-context Inference of Transportation Mode and Human Activity

Given the multi-context graph (schema) and feature instances produced from the previous module,

various machine learning models can be constructed (refer to Figure 3.5).

Figure 3.5: Process workflow in multi-context inference of mobile context recognition system.
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The construction of models are based on two approaches that have been previously mentioned in

Section 3.4.1. The first approach refers to construction of a classifier set, where inferred context (output)

becomes the input for next inference stage. In other words, the classifiers are modelled in a hierarchical

structure until the final inference is achieved. The second approach of constructing a model is by training

a classifier based on multi-target algorithms. Each model is constructed based on the input of training set

(from feature instances). Ultimately, contexts inference sub-component takes the best model to perform

simultaneous recognition of C1,C2, ...,Cn and A. Consequently, the best model is selected through an

internal evaluation process in our system based on appropriate metrics (e.g., the proportion of exact

match).

3.5 Experiments and Evaluation

3.5.1 CrowdSignals Dataset

In order to validate our mobile context recognition system, CrowdSignals dataset [Welbourne and Tapia,

2014] is used in the experiment. This dataset consists of rich crowdsourced mobile sensor data from

smartphones and wearable devices through in-the-wild data collection campaign. Hence, each annotation

is labelled by real participants in their daily life. In particular, we leverage the time-interval labels (refer

to the ground truth annotations of scripted behaviour) in this dataset, due to the presence of exact start

and end time of specific and ongoing activities, events and situations. Although this dataset consists of

the lifelog mobile sensor data from more than 30 participants, we use the Android smartphone data of

five representative participants for the experiment and evaluation in this chapter. From these five mobile

users, we identified the following unique raw annotations:

1. Walking

2. Riding in a car

3. Bus riding

4. Playing video game

5. Stairs

6. Light rail riding

7. Escalator

8. Elevator

9. Drinking

10. Riding scooter
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Figure 3.6: Multi-context graph from CBAR modelling of CrowdSignals dataset.

For a typical solution of activity recognition, these ten annotations can be used directly to classify

the human activity based on single-label-classification mechanism. However, it should be noted that

from the recognised human activities, their transportation modes need to be inferred further. Through

the CBAR modelling approach, we can decompose these annotations to three different mobile context

label sets Cmobile = {C1,C2,C3} and an activity label set A as shown in Figure 3.6. In other words, each

raw annotation a above will be associated to all decomposed contextual labels (i.e., a = {C1,C2,C3,A}).
In this case, the ultimate aim of a mobile sensing application is to infer the all decomposed labels

accurately.

Although the decomposition of a raw user annotation can be performed through entity recognition,

the schema graph (refer to Figure 3.6) is manually defined in our experiment. Hence, a mobile context

recognition system should be able to perform an accurate simultaneous inference of mobile user contexts

from the following label sets derived from CrowdSignals dataset:

1. Environment type of transportation mode (C1) label set:

C1 =
{

Moving, Stationary
}

2. Type of sensing space (C2) label set:

C2 =

{
Vehicle Riding, Non-vehicle Riding,

Stairs, Others

}
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3. Transportation mode (C3) label set:

C3 =


Bus, Light Rail,

Car, Scooter,

Escalator, Elevator


4. Human activity (A) label set:

A =


Riding,

Walking,

Drinking,

Playing video game


Table 3.1: Activity segments and their annotations for sampled mobile users of CrowdSignals dataset.

User ID Smartphone Annotated segments Annotations

A Asus Zenfone 2 56 1, 2, 3, 4, 5

B Samsung Galaxy S7 20 1, 2, 3, 5, 6, 7, 8, 9

C Samsung Galaxy S7 Edge 131 1, 3, 4, 5, 6, 7, 8, 9, 10

D Samsung Galaxy S6 Edge 212 1, 2, 3, 4, 5, 6, 7, 8, 9

E Samsung SM-A800F 325 1, 2, 3, 4, 5, 6, 7, 8, 9

In terms of the coverage of activity segments, the annotations are not always given by the participants

at all time. This evidence is also shown in Table 3.1 and Figure 3.7.

As described in Table 3.1, the sampled mobile users have different types of Android smartphones.

Consequently, the accuracy of multi-context inference could also be affected by the quality of mobile

sensors assembled by the device manufacturers. Moreover, each smartphone model has different

capabilities for mobile sensing due to availability of sensor streams and limited types of embedded

mobile sensors. To build a generic model (i.e., person-independent model), we leverage the following

sensor streams that exist for the five sampled mobile users:

1. Accelerometer

2. Magnetic field

3. Light

4. Screen status
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Figure 3.7: Number of annotated days and total days for sampled mobile users of CrowdSignals dataset

In the CrowdSignals dataset, these sensors may be sampled at different frequencies. In particular,

accelerometer, magnetic field and light sensors are sampled with SENSOR_DELAY_FASTEST setting

during the mobile data collection on Android smartphones. This setting corresponds to the default

setting of the associated smartphone model for reading the sensor data as fast as possible. Hence, the

frequency might also be affected by the quality of sensors embedded in these smartphones. For instance,

an accelerometer sensor may be sampled at 20Hz for a particular smartphone while another model would

be sampled at 50Hz. For the screen status, the smartphone listens to the callback events when the screen

is on or off. Consequently, the granularity of the data used in our experiment is shown in Table 3.2 in

terms of counts of sensor data points.

Table 3.2: Granularity (count) of raw sensor data points from Android smartphones.

User ID Accelerometer Magnetic field Light Screen status

A 10,270,550 10,149,507 51,896 371

B 1,044,436 247,243 24,981 49

C 17,318,445 4,786,078 447,907 460

D 22,554,947 9,627,477 521,762 1,214

E 40,040,845 20,814,032 40,755,734 1,664
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3.5.2 Feature Construction and Extraction

For each annotated segment, we applied time-interval based temporal segmentation (1 second window

size τ with 50% overlap) and extract the features for each sensor stream. In this case, we extracted

the statistical features (mean, median, maximum, minimum, standard deviation, interquartile range,

root-mean-square) from each window of sensor streams. In other words, a statistical feature is computed

via a given function for all feature values in a window, bounded by τ .

For accelerometer and magnetic field sensor streams, the features are extracted from the magnitude

value computed from tri-axial sensor readings. In other words, the magnitudes for accelerometer mgacc

and magnetic field mgmag are calculated as follows:

1.

mgacc :=
√

x2
acc + y2

acc + z2
acc

where xacc, yacc, zacc are the tri-axial sensor values of phone’s acceleration.

2.

mgmag :=
√

x2
mag + y2

mag + z2
mag

where xmag, ymag, zmag are the tri-axial sensor values of magnetic field measurement.

The purpose of computing and leveraging the magnitude values is to construct a more robust model,

which is invariant towards smartphone’s orientation [Yurtman and Barshan, 2017]. For light sensor

stream, the statistical features are extracted from the raw reading of illuminance (measured in lx) within a

given window. On the other hand, the screen status corresponds to whether the screen on the smartphone

is on or off, which may indicate how users are actively engaged with their smartphones. Furthermore, it

is known that there are distinct variations of accelerometer and magnetometer reading inside various

indoor spaces [Susi et al., 2013]. Hence, it is justified that a robust and effective model could be build to

infer the transportation mode of a mobile user at a given point in time. Unlike the systems such as [Reddy

et al., 2010, Byon and Liang, 2014] that require GPS sensor to determine the transportation mode, our

mobile context recognition system do not need to rely on the user’s locations. In fact, sampling from the

GPS sensor is known to have significant energy consumption compared to other sensors (also proven in

the study by Hemminki et al. [Hemminki et al., 2013]). It should be noted that the gyroscope sensor

stream is excluded during the modelling stage due to its unavailability for user E’s smartphone model.
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3.5.3 Experiment Setup

A pre-defined schema (refer to Figure 3.6) is used to map the predicted raw annotation to the associated

environment type (C1) of transportation mode, further categorisations (C2) of C1, transportation mode

(C3) and human activity (A).

Our experiment is composed of two distinct sets. The first set refers to inference made by independent

classifiers for each contextual label (shown in Figure 3.8). In this case, the classifiers are independently

trained based on decomposed label sets (defined in Section 3.5.1). The first experiment set is used as the

baseline of a typical mobile sensing application.

Figure 3.8: Inference from independent classifiers.

The second set of our experiment is associated with the inference of all contextual labels using

our mobile context recognition system. We implemented two approaches of models construction of

multi-context inference. The first one is referred as multi-stage inference where a classifier is trained on

each target label set. Subsequently, the output of inference will be appended to the feature instances that

are used the next stage of inference (refer to Figure 3.9). For instance, the training process of classifier

for C2 relies on feature instances (consist of feature vectors and ground-truth vector of C1).

Figure 3.9: Multi-stage inference from classifiers.
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The second approach of models construction is based on the pre-defined multi-target algorithms

(refer to Figure 3.10). Hence, the multi-target classifiers are deployed and evaluated on the following

algorithms:

1. Class Relevance (CR), which is the multi-target version of the Binary Relevance (BR) method for

multi-label classification.

2. Classifier Chains (CC)

3. Nearest Set Replacement (NSR), which is the multi-target version of Pruned Set (PS) method for

multi-label classification.

4. Ensemble of Classifier Chains of boosted classifiers (EN-CC-AdaBoost). For the boosting

implementation, AdaBoost algorithm is used. The setup of EN-CC-AdaBoost could require

significant memory resources in order to operate. This fact is also proven during our experiment.

Figure 3.10: Multi-target inference from a classifier.

For both experiment sets, we leverage the following algorithms as the base classifiers:

1. Naïve Bayes (NB).

2. Support Vector Classifier (SVC).

3. Multilayer Perceptron (MLP).

4. Decision Tree (DT).

5. Random Forests (RF).

6. k-Nearest Neighbor with k=1 (1NN).
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For the baseline (first experiment set) and multi-stage classification experiment (in our mobile

context recognition system), we implemented the inferences using WEKA (version 3.8.1) data mining

software library [Hall et al., 2009]. It contains the various functions needed for data exploration and

data mining tasks. For base classifiers, the default configurations are used imperatively in WEKA. In

this case, decision tree classifier is named as J48 in WEKA. Default parameter for k-Nearest Neighbor

classifier is set where k = 1. In particular, we use the SMO algorithm [Keerthi et al., 2001] for SVC in

WEKA. Furthermore, the maximum number of trees for Random Forests is set to 100.

For the multi-target inferences (in our mobile context recognition system), they are evaluated based

on our experiment using MEKA (version 1.9.0) [Read, 2012–2015], a multi-label/multi-target extension

to WEKA.

3.5.4 Evaluation

In order to validate the accuracy of multi-context inferences, 10-fold cross-validation was applied to all

runs in our experiment.

As mentioned previously, the experiment is evaluated on following two experiment sets: inference

from independent classifiers (baseline) and mobile contexts inference in our system (using both multi-

stage and multi-target algorithms approaches in models construction process).

For the evaluation, we leverage exact match and accuracy metrics. Accuracy is computed for each

inference from the corresponding contextual label set, while exact match measure refers to the proportion

of correct prediction of all contextual labels (simultaneous inference of all contextual labels). Table 3.5

shows the overall performance for independent inference, given the base classifiers. Although the

accuracy performance between independent inference and multi-stage inference is competitive, the

exact match (simultaneous inference of mobile contexts) through multi-stage models shows a significant

difference, proving that the dependencies between human activities and transportation mode (including

related contexts) are not to be neglected for a reliable inference in a mobile sensing application.

Table 3.3: Performance of independent classifiers (baselines).

Metric
Baseline

NB SVC MLP DT RF 1NN

Exact Match 1.4% 45.5% 34.5% 70.8% 89.4% 88.7%

Accuracy: C1 66.0% 66.9% 68.5% 88.1% 93.4% 92.1%

Accuracy: C2 11.6% 65.3% 67.3% 87.5% 93.0% 91.6%

Accuracy: Transportation Mode (C3) 5.4% 49.4% 56.4% 83.5% 91.7% 89.3%

Accuracy: Activity 16.8% 67.0% 69.2% 87.5% 93.0% 91.6%
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Table 3.4: Performance of Multi-stage models.

Metric
Multi-stage classification

NB SVC MLP DT RF 1NN

Exact Match 2.6% 48.0% 49.7% 81.0% 90.7% 88.7%

Accuracy: C1 66.0% 66.9% 68.5% 88.1% 93.4% 92.1%

Accuracy: C2 12.3% 65.2% 67.0% 87.2% 92.8% 91.6%

Accuracy: Transportation Mode (C3) 5.8% 48.2% 52.7% 82.4% 91.1% 89.3%

Accuracy: Activity 22.4% 66.8% 65.9% 87.1% 93.1% 91.6%

Table 3.5: Performance of Class Relevance (CR) models.

Metric
Class Relevance

NB SVC MLP DT RF 1NN

Exact Match 1.4% 45.3% 36.7% 70.8% 92.9% 88.7%

Accuracy: C1 66.0% 66.9% 68.8% 88.1% 93.5% 92.1%

Accuracy: C2 11.5% 65.3% 66.8% 87.5% 93.1% 91.6%

Accuracy: Transportation Mode (C3) 5.4% 49.6% 56.0% 83.4% 91.8% 89.3%

Accuracy: Activity 16.8% 67.0% 68.5% 87.5% 93.2% 91.6%

Table 3.6: Performance of Classifier Chains (CC) models.

Metric
Classifier Chains

NB SVC MLP DT RF 1NN

Exact Match 2.6% 48.8% 49.1% 82.1% 91.4% 88.7%

Accuracy: C1 66.0% 67.2% 67.4% 88.3% 93.7% 92.1%

Accuracy: C2 12.2% 65.7% 65.9% 87.4% 93.3% 91.6%

Accuracy: Transportation Mode (C3) 22.4% 49.6% 56.0% 83.4% 91.8% 89.3%

Accuracy: Activity 5.8% 66.6% 61.2% 87.3% 93.4% 91.6%

From the performance comparison in Table 3.3, 3.4, 3.5, 3.6 and 3.7, we can conclude that best

base classifier is dedicated to Random Forests in most cases (except the performance in Table 3.8), thus

maintaining itself as the state-of-art algorithm for a real mobile sensing application. Although the basic

tree based classifier (i.e., Decision Tree) has the best performance in Table 3.8, its overall performance

is yet lower than our proposed multi-stage inference models (Table 3.4). Hence, this result suggests that

the applications of ensemble and boosting on multi-target algorithms may not increase the performance

of a mobile context recognition system. However, this approach can still be used for model selection (in
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Table 3.7: Performance of NSR models.

Metric
NSR

NB SVC MLP DT RF 1NN

Exact Match 11.4% 49.5% 50.4% 82.4% 91.6% 88.9%

Accuracy: C1 38.1% 68.1% 69.0% 88.2% 93.8% 92.4%

Accuracy: C2 32.7% 66.5% 67.4% 87.3% 93.4% 91.9%

Accuracy: Transportation Mode (C3) 27.3% 49.8% 56.2% 83.3% 91.8% 89.6%

Accuracy: Activity 22.5% 67.9% 63.8% 87.4% 93.6% 91.9%

Table 3.8: Performance of mobile context recognition system using En-CC-AdaBoost.

Metric
EN-CC-AdaBoost

NB SVC MLP DT RF 1NN

Exact Match 1.6% 48.7% 50.1% 90.1% 89.8% 86.9%

Accuracy: C1 65.9% 67.4% 70.9% 93.1% 92.9% 91.3%

Accuracy: C2 10.5% 65.8% 69.4% 92.7% 92.4% 90.7%

Accuracy: Transportation Mode (C3) 4.9% 49.2% 57.1% 90.8% 90.4% 87.9%

Accuracy: Activity 18.0% 67% 67.5% 92.8% 92.5% 90.6%

the internal evaluation process), in case if it outperforms other inference approaches. Inherently, the

applications of both ensembles and boosting consume significant resources (in terms of training time,

memory and space requirements).

Through our mobile context recognition system, its performance for the exact match is increased by

2.2% (from the baseline), which is ultimately achieved by a multi-target inference approach of NSR

algorithm on RF classifier. Although the exact match measurement of NSR is lower than CR algorithm,

we selected NSR as the best model due to better independent prediction result for C1, C2, transportation

mode and human activity. If those criteria were not considered, the increased exact match would be

3.5% over the baseline for RF classifier. On the other hand, the most significant increase of 19.3% can

be noticed (for exact match in Table 3.10) through the usage of ensemble, multi-target classifier chains

and boosting strategy on decision tree (as base classifier). Furthermore, the significant improvement is

also shown for the accuracy of each contextual label (e.g., inference of transportation mode depicted in

Table 3.9).

By being able to recognise multiple contexts of mobile users simultaneously, many interactive and

ubiquitous applications can be enabled. Let us consider the scenario of a smart device to be able to

recognise the user contexts in daily life ubiquitously. Given the accurate simultaneous recognition of
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Table 3.9: Accuracy of transportation mode inference for baseline and mobile context recognition
system.

System NB SVC MLP DT RF 1NN

Baseline 5.4% 49.4% 56.4% 83.4% 91.7% 89.3%

Proposed system
27.3%
(NSR)

49.8%
(NSR)

56.0%

(CR, CC)

90.8%
(EN-CC-AdaBoost)

91.8%
(NSR)

89.6%
(NSR)

Table 3.10: Exact match for baseline and mobile context recognition system.

System NB SVC MLP DT RF 1NN

Baseline 1.4% 45.6% 34.5% 70.8% 89.4% 88.7%

Proposed system
11.4%
(NSR)

49.5%
(NSR)

50.4%
(NSR)

90.1%
(EN-CC-AdaBoost)

91.6%
(NSR)

88.9%
(NSR)

both user environments and activities, it can be used by the assistive technologies to improve the quality

of life for these mobile users. For example, intelligent reminders of user activities and notifications

for major transportation delays due to the current situation of the users. This outcome can also be

leveraged for the applications of discovering user routines [Sadri et al., 2017, Rahaman et al., 2017a,

2018] based on personal contexts of mobile users. In an intelligent healthcare scenario, a robust and

simultaneous recognition of multiple user contexts would be important to be considered for elderly and

disabled people, while travelling through various accessible paths [Rahaman et al., 2017b]. In a large and

pervasive sensing scenario (e.g., [Liono et al., 2018b]), mobile context recognition would be beneficial

for crowdsensing from smart devices (e.g., Internet of Things) if the model can be used for robust and

simultaneous user contexts recognition. In smart city applications, simultaneous contexts recognition

can be used to enable smarter citizen violation prediction based on real-time inference from multiple

sources, such as parking violation prediction [Shao et al., 2018] that can be improved by considering

the ubiquitous contexts from both parking officer and IoT devices on the parking spaces. In the case of

analysing the space utilisation (e.g., [Arief-Ang et al., 2016, 2017, 2018a,b]), simultaneous recognition

of contexts from multiple rooms can be leveraged for better occupancy counting and recommendation

of places to occupy, also by considering the dynamic environment and personal user contexts. In a

smart home environment, intelligent electricity consumption prediction (e.g., [Song et al., 2017]) can be

improved by considering multiple contexts recognition of tenant activities.
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3.6 Conclusion

In this chapter, a mobile context recognition system is presented for simultaneous inference of transporta-

tion modes and human activities, including the environmental contexts of transportation modes. Our

system and study aim to enable smarter mobile sensing applications by being able to provide intelligent

assistance from the accurate inference of related mobility contexts associated with human activities in

daily life. Through our hierarchical and contextual modelling approach (combined with multi-target

algorithms), our system is capable of outperforming the traditional approach of independent inference

for multiple contexts of mobile users. Through the exact match of all contextual labels of the mobile

users, 19.3% improvement is noticeable for a solution with decision tree as the base classifier. On

the other hand, the best performance of exact match is acquired by random forests based solution in

multi-context recognition by far.

Furthermore, our system is robust towards the intelligent inference for the data streamed from

low-energy sensors, which reduces the overall reliance on location-based sensors. Nevertheless, many

challenges should be addressed to improve our system further. For example, one of the immediate chal-

lenges in real-world is related to coping context recognition with subjective and in-situ user annotations

(e.g., in a mobile crowdsensing scenario). Given that multiple contexts of mobile users can be sensed

seamlessly and accurately, it provides a greater avenue for situation inference from mobile sensing

perspective, which also enables the future intelligent mobile applications to be more context-aware in

providing proactive assistance for their users.



Chapter 4

PREDICTING USER ANNOTATION IN

INTERACTIVE MOBILE DATA SENSING

AND COLLECTION

4.1 Introduction

The inherent noise that is related to sensor data and human annotations heavily influences the accuracy of

context recognition. Moreover, human annotations may include contextual information on their activities

and environments. The acquisition of human annotations is a non-trivial task in mobile sensor data

collection, which is typically a crucial step before every mobile sensing experiment. In this chapter, we

provide the avenue to improve the interactivity of annotation acquisition process of mobile sensing by

performing intelligent user-driven annotation prediction.

The Experience Sampling Method (ESM) [Csikszentmihalyi and Larson, 2014] provides opportuni-

ties to record ground-truth data through self-reports (i.e., annotations) from the participants in a data

collection campaign. Originally, ESM was widely used in the domain of psychological research, for

example [Fuller-Tyszkiewicz et al., 2015]. However, it has offered significant benefits for ubiquitous

computing research in recent years, for example, emotion recognition [Ghosh et al., 2015], mobile user

intimacy and smartphone usage [Gustarini et al., 2016, van Berkel et al., 2016], human activity recogni-

tion [Bao and Intille, 2004], lifelogging [Gurrin et al., 2014, Li et al., 2010, Gouveia and Karapanos,

2013, Atz, 2013] and mobile sensor data collection [Welbourne and Tapia, 2014, Vaizman et al., 2018a,b,

Berkel et al., 2017].

59
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ESM can be configured in various ways, such as having either regular or intermittent sampling.

Inherently, human annotations acquired from ESM in a pervasive sensing environment can be associated

with their past or recent activities, events, social encounters and spatiotemporal contexts (e.g., proximity

of locations and surrounding point-of-interest (POI) categories in a certain time segment). These

annotations can be requested based on specific events or changes of sensor signals. Asking users to

annotate their activities, events and contexts while these are ongoing can be challenging because of users’

subjective mental states and cognitive workload during the annotation processes. Moreover, identifying

such changes or events in the data streams is also a significant challenge because of the reliability of these

perceived human annotations in the wild. A less subjective way to identify specific activities or events

can be performed with a restricted experiment setting. In this case, these events can be distinguished

based on sudden changes in multidimensional sensor channels or streams, such as fall detection [Chen

et al., 2006] and human activity recognition [Junker et al., 2008, Cornacchia et al., 2017].

In a typical application of in-the-wild data collection, ESM must be performed in a low-burden

manner to produce a higher rate of compliance [Gershuny, 2004]. To perform a specific task in daily

life, retrospective memory [Brewer et al., 2017] is an essential aspect of remembering previous events

or human activities, which can also affect the process of annotation in a real-world scenario. Ideally,

an annotation should be attained interactively through a ubiquitous instrument (e.g., surveys through

mobile apps), given the possibility of undefined time boundaries for such activities and the contextual

information recorded. For example, daily annotations can be performed by users as they perform their

activities.

Our proposed framework applies multi-instance learning (MIL) to the features extracted from the

multivariate sensor data, which correspond to the recent time duration of a given user’s annotation.

Additionally, a semi-supervised learning component corresponds to the usage of both co-training and

active learning to predict and improve the annotation classifier progressively. In this case, the aim of

annotation prediction is for an ESM system to be confident to obtain the next annotation interactively

through accurate inference of user context. Consequently, the direct implication of our contribution is

targeted towards process optimisation in ESM-based data collection — in particular, by reducing the

burden of annotations (e.g., minimising choice overload in a survey form).
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Our pioneering work shows its effectiveness in reducing the burden during an ESM study by

predicting user annotations just before ESM-based surveys are triggered. Further, its capability in

progressive learning is based on active feedback from its corresponding user and a variety of sensor

data streams from mobile devices. The outcome of our work considers the following aspects in mobile

sensor data collection (especially the in-the-wild data collection and sensing applications that rely on

ESM-based annotations):

• Our framework can predict user annotations during an ESM study, and it enables the model to

adapt progressively based on a mutual agreement between co-trained models from heterogeneous

data sources (mobile sensors). In other words, a semi-supervised learning approach is applied

to the small amount of labelled data during bootstrapping, which aims to predict the annotation

accurately before an annotation (e.g., ESM-based survey) is requested from the mobile user.

Consequently, the model can evolve progressively (through a model re-training mechanism) based

on the inclusion of newly unlabelled data in the training pool.

• As a result of semi-supervised learning, our work is resilient to missing sensor data. For example,

the light sensor in a smartphone might not always be available during a human activity performed

just before the user is requested to participate in an ESM-based survey. Multi-view (i.e., co-

training) and active learning approaches are applied to feature subsets of the unlabelled sequences

streamed from available sensors at the time of annotation prediction.

• The design considerations are important, to improve the interaction and engagement of prevalent

ESM-based surveys for user-driven mobile data collection in-the-wild. Hence, our initial work

aims to provoke the ubiquitous computing research to increase the reliability and quality of

annotations by providing context-aware human-computer interaction in intelligent applications.

4.2 Related Work

Experience Sampling Method. The ESM is a prevalent approach used in many domains [Bao and

Intille, 2004, Kahneman et al., 2004, Froehlich et al., 2007, Krueger and Schkade, 2008, Froehlich

et al., 2009] to recall recent or past activities of a user. Its reliability and validity have been empirically

studied in [Csikszentmihalyi and Larson, 2014], which provides convincing results for the labels

(activities) that are obtained through a systematic random sampling of daily life. Experience-Sampling

Forms (ESF) can be easily embedded in mobile phone applications. As Csikszentmihalyi and Larson

detailed in [Csikszentmihalyi and Larson, 2014], ESF is typically designed for a short (in-situ) survey
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or self-report questionnaire that should take no more than two minutes to complete. Many studies in

recent years have focused on reducing the cognitive workload of the ESM by leveraging the unique

characteristics of mobile users’ behaviours or activities—for example, ESM that is driven by micro-usage

of mobile applications [Ferreira et al., 2014] and break-points between a user’s activities [Obuchi et al.,

2016]. According to [Ghosh et al., 2015], the experience sampling could be triggered for the mobile

users from the signal, event or time (at regular intervals). Moreover, the users in [Bao and Intille, 2004]

self-annotated the start and end time for before and after their activities. However, these types of data

collection typically require the users to be actively engaged in defining the start time and end time of their

activities. When the data collection is performed through participatory or opportunistic sensing [Lane

et al., 2008] in the wild (such as daily commuting journeys), users may forget to define the end time

of the activities due to their environmental contexts and the constant distractions within their vicinity.

In several cases, experience sampling can be performed to ask about the recent or current activity of a

user without strictly defining the start and end time of activity. Hence, it is inherently challenging to

extract relevant data related to each experience sampling label recorded at a particular timestamp (i.e.,

point-based experience sampling) and build suitable models to predict the annotations ahead of time.

In this chapter, the challenge of annotation prediction is inherently different to a forecasting problem.

Annotation prediction refers to the classification of a label just before a user is presented with information

that may be relevant to the final prediction output (e.g., ESM-based surveys where the questions can

be relevant to recent user activities). In contrast, a forecasting problem is targeted towards the future

occurrence of the annotations. Minor and Cook [Minor and Cook, 2017] proposed an activity forecasting

method to predict the expected time until a target activity occurs using a regression tree classifier. In

fact, such a method could also be leveraged to infer when is the best time to prompt the user for an

ESM-based survey.

Multi-instance and Multi-view Learnings. MIL can be used to tackle problems in behavioural

studies where the boundary of target labels is unclear because of subjective experience during the user’s

annotations at those moments. Typically, the research problems in this space are formulated so that data

can be continuously streamed, which can then be organised into bags for inference purposes.

In a real-world scenario of mobile sensor data collection, the availability of reliable training data

is often seen as a critical issue for building a better predictive model. In this case, building a classifier

based on small subsets of data might not be enough for accurate prediction of ESM annotations because

they might also be influenced by the mobile user’s activities and environmental contexts. In [Zhou

and Xu, 2007], semi-supervised learning was used to solve the multi-instance problem by treating

instances in the positive bags as unlabelled data. A common semi-supervised method that has been

used in real-world applications is co-training [Blum and Mitchell, 1998], which allows the training of
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two distinct classifiers from multi-view perspectives by labelling unlabelled instances for each other.

For instance, this concept has then been adapted to the application of activity recognition in [Guan

et al., 2007]. In ubiquitous environments, sensor data can be collected through streaming from multiple

sources. Hence, a multi-view perspective is needed for the inference of subjective human behaviours.

In [Jaques et al., 2015], multi-task multi-kernel learning (MTMKL) exploits the kernel functions that

are represented from different views or modalities for affective computing studies. Due to its single

task objective, MTMKL does not suit the purpose of annotation prediction for ESM-based surveys.

Co-training was also applied in multi-transfer [Tan et al., 2014] for cross-domain knowledge transfer.

Since annotation prediction in a typical ESM process is targeted to one domain, such a transfer learning

technique may not be feasible in our case.

Active Learning. Inherently, a model can be improved progressively by reliable annotations (ground-

truth) during the data collection process. This improvement can be achieved by the application of active

learning, to determine the most informative points based on direct feedback from a user. In [Hossain

et al., 2017], active learning was applied to the annotation process in a crowdsourcing scenario in

which multiple annotators were required to provide their own activity labels. However, this solution

could be over-generalised since they are generally used for determining informative sensing data on

a specific community of individuals. In our case, the daily activities are more tailored to each person

for personal intelligent mobile sensing (i.e., first-person based activity recognition). Moreover, the true

label complexity in the authors’ proposed framework was heavily dependent on the number of clusters

derived from unlabelled data instances. In a typical ESM-based survey, this complexity can be simplified

since the true label is obtained based on the mental state of the user at a given time. To the best of our

knowledge, we are the first to investigate and propose a continuous learning framework for predicting

annotations in ESM, using multi-view multi-instance learning.
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4.3 Methodology

We address the following main research question: Given an ESM-based annotation acquired from time-

point based experience sampling, can a smartphone predict the annotation just before an ESM-based

survey is presented to the user?

4.3.1 Problem Formulation

We first formulate the problem we are addressing, in terms of human activities and contextual information

captured in an ESM study. Hence, we define the following notations:

Let SSS === {SSS111,,,SSS222,,, .........,,,SSSnnn} be the set of sensors available during the collection of data on a mobile user,

where i is the index of i-th sensor, 111≤≤≤ iii≤≤≤ nnn and nnn is the total number of sensors. Let sensor SSSiii be the

source of time series data containing sequences of real-valued numbers. It should be noted that the time

series data streamed from SSSiii could be composed of multiple time series (e.g., an accelerometer sensor

that produces the reading of acceleration in x, y and z axes, and its magnitude).

Let the discrete label aaa be a unique member of a label set AAA === {aaa111,,,aaa222,,, .........,,,aaaddd}, where ddd is the

number of unique experience sampling labels aaa in AAA.

Let SSSia === {sss111,,,sss222,,, .........,,,sssmmm} be the particular time series streamed by sensor SSSiii in which a point-based

experience sampling label aaa exists after the last instance (i.e., jjj = mmm), where j is the index of j-th instance

in the observed time series SSSia, 111 ≤≤≤ jjj ≤≤≤ mmm and mmm is the length of SSSia within a certain time-interval

boundary ttt∆ ≤≤≤ tttδ before the occurrence of aaa and tttδ is a constant for a maximum time range of observed

time series for aaa.

Consider this scenario. The time series of magnitude for the accelerometer sensor contains two

annotations (see Figure 4.1). Let tttδ be a constant of 30 minutes that results in the observed time series

with the duration of 30 minutes before the annotation ‘Bus Riding’ (i.e., ttt∆ === tttδ ). However, the duration

of ‘Light Rail Riding’ is less than 30 minutes (i.e., ttt∆ === tttδ −−− zzz ) since the time portion zzz of tttδ belongs to

‘Bus Riding’.

In a scenario of ESM-based surveys that are triggered at particular time points, the experience

sampling labels are given by the users. Hence, we formulate the problem in which labelled data are

scarce while not all sensors are available within the duration of tδ before the ESM-based survey is

triggered. Let us consider the following application scenario in which the mobile app is constantly

recording sensor data in the background. If the annotation can be predicted correctly before the app

notifies the mobile user, an interactive survey form can be constructed based on such intelligent inference.

Hence, a simple binary choice can be presented instead of having potential overloaded options that may

disengage or demotivate the user to contribute high-quality annotations.
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Figure 4.1: Point-based experience sampling label problem for user annotations. Blue (‘Bus Riding’)
and red (‘Light Rail Riding’ dashed lines are the ESM data points (i.e., point-based experience sampling
labels).

Therefore, the problem of annotation prediction is formulated as follows: given an unlabelled time

series set for all sensors SSSuuu === {SSS1u,,,SSS2u,,, .........,,,SSSnu} within the constrained time interval ttt∆, predict the

annotation that the mobile user will choose during an ESM process, where iii corresponds to iii-th sensor

SSSi of SSSiu and 111≤≤≤ iii≤≤≤ nnn.

Let au be the label to be predicted for the recent time range ttt∆ containing SSSuuu. Hence, the objective of

annotation prediction is to accurately classify au from A (i.e., aaauuu in AAA).

4.3.2 Implementation

In a typical ESM scenario, a robust and progressive model is needed to predict the annotation just

before the user is asked. Therefore, we design a framework based on the assumption that only a small

amount of data are available for those annotations. In other words, there exists the initial subset of data

corresponding to each member a of A. Here we present a semi-supervised framework (CoAct-nnotate)

to predict a user’s experience sampling labels at the time they are about to be requested. Thus, our

framework aims to predict users’ ESM annotations and continuously learn to improve the model over

time.

An overview of CoAct-nnotate’s architecture is presented in Figure 4.2. This framework consists

of multi-instance and semi-supervised modules. Instances from the mobile sensors are organised into

bags where the representative features of each bag need to be extracted in the multi-instance module.

A classifier is then trained for each data source (i.e., each mobile sensor). These initially trained

classifiers are based on a small subset of data. For example, training of a classifier is based on the first
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occurrence (instances in the first bag) of a particular annotation. Next, the semi-supervised module aims

to improve the overall performance of annotation prediction based on the inputs of predicted annotations

in multi-view perspectives (from co-trained classifiers).

Figure 4.2: CoAct-nnotate: user-driven annotation prediction framework for mobile experience sam-
pling labels.
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4.3.3 Multi-instance Learning for Experience Sampling Labels

To address the loosely-coupled nature of experience sampling labels on the recent streaming of sensor

data, MIL is applied, whereby the boundary of an annotation is weakly assumed on a sequence of

training instances. In a typical task of MIL, the ultimate aim is to predict a class label from a bag of

instances, which contains at least one positive instance for the true label. As shown in Figure 4.3, the

process of MIL is generalised to allocate all instances from each sensor into a bag first, which is labelled

as a. For learning and prediction purposes, feature bags for a are prepared through feature construction

and extraction. In our work, feature construction refers to the process of creating new information that

can be derived from instances within the dimension of all mobile sensors S, for instance, the magnitude

of acceleration that can be computed from all three axes of x, y and z from the accelerometer of a

wearable device.

Consequently, feature extraction corresponds to the derivation of new information through a mapping

function. This process is typically performed in a time interval manner (e.g., extracting features from

temporal and frequency domains within a given time window). Thus, the final product of the MIL

component in our proposed framework is the set of feature bags, which will be used for learning and

prediction purposes. A feature bag refers to a representation of a multi-instance set. Each bag contains

instances of extracted features (from a particular sensor). Each set of feature bags (for all sensors) is

associated with an annotation.

A sensor feature bag for label a is represented as Sia throughout this chapter. The purpose of this

process is to derive the sets of representative data from sensors with respect to all possible annotations

A. In the CoAct-nnotate framework, we propose one classifier should be trained on each set of sensor

feature bags of A. In other words, there would be at least one classifier trained for each mobile sensor.

This approach is preferred due to the real-world scenario where there would be the possibility of no data

(instance) to be streamed from a particular sensor Si within a recent time duration t∆.
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Figure 4.3: Workflow of multi-instance learning of instance streaming from multiple mobile sensors.

In this chapter, MIL problem entails the aim to predict a bag of unlabelled data containing the final

product of feature construction and extraction processes (refer to Figure 4.3). Hence, we define the MIL

prediction problem as follows:

Let us define unlabelled feature bags Su, where SSSuuu === {SSS1u,,,SSS2u,,, .........,,,SSSnu}, i is the index of i-th feature

bag for i-th sensor, 111≤≤≤ iii≤≤≤ nnn and nnn is the total number of feature bags. A feature bag Siu can contain no

feature instances (i.e., count(Siu)≥ 0).

Feature instances in a feature bag is defined as a set XXX === {xxx1,,,xxx2,,, .........,,,xxxl}, k is the index of k-th feature

instance in a bag, 111≤≤≤ kkk ≤≤≤ lll and lll is the total number of instances in the feature bag.

A classifier Hi is used to predict the annotation/class label of Siu, where HHHAAA === {HHH1,,,HHH2,,, .........,,,HHHn}, i

is the index of i-th classifier for i-th sensor, 111≤≤≤ iii≤≤≤ nnn and nnn is the total number of sensor classifiers.

In a real-world setting, a sensor may be unavailable or turned off by users. For instance, a user

may turn off the Bluetooth and Wi-Fi sensors or location services to preserve her smartphone’s battery.

Therefore, the condition of count(Siu)≥ 0 holds a conclusive inference when an experience sampling

label a may have no entry of feature instances computed within the recent t∆.

As a sensor may stream no data for a, the MIL component in CoAct-nnotate trains a classifier

for each sensor on the feature instances (contained in feature bags for all experience sampling labels

A). Consequently, each feature instance in the unlabelled sensor feature bag Siu can be predicted

for its annotation by the posterior probability Pr(y|X) of trained classifier Hi. Ultimately, annotation

prediction can be performed on the unlabelled bag Siu by gaining consensus of annotation for all its

feature instances. The simplest form of the consensus is the majority voting mechanism, which is used

in our CoAct-nnotate implementation in this chapter. In other words, the bag labels can be defined as

yiu = maxl(yiul), where yiul are the instance labels inferred from Siu using Hi and yiu is the product of

annotation prediction inferred from maximum count function over all yiul . Our CoAct-nnotate framework

is not restricted to this maximum inference function for the annotation prediction.
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4.3.4 Co-training of Sensor Classifiers

In everyday settings, the availability of sensors and annotations is one of the primary roadblocks to

enable intelligent sensing and ESM applications. By nature, the signals that are streamed from the

sensors embedded in a smart device (i.e., smartphone) can characterise the traits of human activities and

their contextual information, which can be analysed and differentiated in a multifaceted perspective (i.e.,

multi-view annotation prediction from heterogeneous sensor streams).

To build a multi-view model for annotation prediction, the co-training approach is applied in our

framework by randomly allocating sensor classifiers to two distinct views (refer to Figure 4.2). In

theory, co-training (also known as co-regularisation) [Yu et al., 2011] is a multi-view consensus learning

approach that leverages two feature representations (i.e., ‘views’) to minimise the misclassification rate

by maintaining the consistency of classification decisions from two independent classifiers. Hence, this

semi-supervised learning approach is adapted to our problem to predict annotations reliably from the

two distinct views of heterogeneous sensor classifiers.

In this case, the splitting of sensor classifiers should be performed evenly into two subsets (corre-

sponding to first and second views). Hence, these two sets of classifiers would be used as a joint-model

to predict an annotation for unlabelled bags of sensor data. The multi-view model evolves by including

the sample of unlabelled data in the training pool (to rebuild the classifiers) upon mutual agreement

between the two views. The main objective of co-training, in this case, is to improve the performance of

classifiers by mutual agreement of predicted annotations from two views. Inherently, the consensus of

annotation prediction in a view should be achieved via an intrinsic mechanism to select the predicted

annotation amongst all instances in each sensor feature bag. Hence, the simplest form that can be used is

majority voting from predicted class labels from all sensor bags (i.e., yuv = maxi(yiu)).

Given the view V , yiu corresponds to the inferred annotation of the unlabelled sensor feature bag Siu

contained in V and yuv is the product of annotation prediction from maximum count function over all

yiu in V . V is a general representation of view for either first view Vf irst or second view Vsecond in the

co-training process of CoAct-nnotate’s semi-supervised module (as shown in Figure 4.2).

For an unlabelled bag Su, the prediction of annotation can be performed with a three-step process:

summarisation of instances in unlabelled bags, prediction of annotation and improvement of the overall

multi-view model based on the evaluation of mutual agreement of classification decisions.
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4.3.5 Data Summarisation of Feature Instances

Since the number of instances contained in the sensor feature bags can be unpredictable (given the

natural settings of mobile data collection), it is important to derive the representative instances that can

be used for prediction (which can also be included in the training pool for the progressive improvement

of the proposed multi-view model). In this case, data summarisation is leveraged to derive representative

instances by clustering the instances of features for one sensor bag based on density measures.

For the unlabelled time series of a sensor Siu, data summarisation is performed before annotation

prediction. We employ a density based data summarisation based on cluster change of sequential

instances of the sensor data. Previously in [Liono et al., 2018b], density based data summarisation

has been studied to maintain reliable inter-rater agreement between machine learning models while

inducing a high space saving ratio. In this case, such space saving factor provides beneficial inputs for

the co-training mechanism of training sensor classifiers to allow progressive learning over time and

according to the mobile user’s behaviour in the wild and dynamic environments.

As a result of the data summarisation process in the proposed CoAct-nnotate framework, repre-

sentative features can be ultimately obtained in a compact form. This compact form is then used for

multi-view annotation prediction. In several cases, the direct benefit can be directed towards the model

that may require more time for prediction, such as nearest neighbours based classifiers.

The product of this data summarisation process is not only beneficial for multi-view annotation

prediction but also to improve the overall performance of a multi-view model with less data to be

included in the proceeding training phase (after the process of annotation prediction and active feedback

obtained from the user). Without the data summarisation process, the time taken for multi-view model

re-training would be exponential when the system is deployed and used progressively.

4.3.6 Multi-view Annotation Prediction

Once the sets of summarised bags (summarisedBags f irst and summarisedBagssecond) are acquired

through the process in Section 4.3.5, the subsequent objective of CoAct-nnotate is to predict the

annotation accurately. The prediction can be achieved in a multi-view approach, utilising the concept of

co-training by allowing sensor classifiers that were previously trained to predict the annotation for a

given set of summarised bags, corresponding to a particular view. Let us denote y f irst as the predicted

annotation for summarisedBags f irst and ysecond as the predicted annotation for summarisedBagssecond .

The corresponding sensor classifiers in a view will predict the annotation according to a consensus

mechanism in the bags. Consequently, the concept of co-training is applied to improve the overall

prediction model. This enables the views to benefit each other by being able to continuously learn or
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improve the sensor classifiers based on the mutual agreement of predicted annotations from each view.

The posterior probability of predicted annotation (i.e., Pr(y|X)) from a view can be acquired by the

inference of all predicted annotations of sensor feature bags in the corresponding view.

Irrespective of whether a mutual agreement (y f irst == ysecond) is reached or not, the posterior

probability (Pr(yagreed |X)) of the multi-view annotation predictor can be inferred from the highest

posterior probability of the two views, either Pr(y f irst |X f irst) or Pr(ysecond |Xsecond). Moreover, if there is

no mutual agreement between the two views, the predicted annotation can be inferred from the view

that has the highest posterior probability. Conversely, a random selection process would be used if

the posteriors are equivalent (i.e., Pr(y f irst |X f irst) == Pr(ysecond |Xsecond)). At the end of the prediction

procedure for the summarised bags, a special evaluation module is included to determine whether the

summarised bags need to be thrown to the training pool where each sensor classifier could be re-trained

after performing the annotation prediction. The output of this evaluation is denoted as macEvaluated.

We call this process Mutually Agreed Confidence (MAC) evaluation, whereby its binary value is based

on the condition of mutual agreement in the multi-view prediction, and either the posterior probability

(Pr(yagreed |X)) is below a given threshold β or there is a disagreement between predicted annotation

and true annotation. Hence, the purpose of this MAC evaluation module is to determine the needs to

improve the sensor classifiers if the confidence level of multi-view annotation prediction is insufficient.

Conclusively, the binary output of MAC evaluation can be expressed with the following equation:

macEvaluated = MA · ceil
(

ceil(β−Pr(yagreed |X))+DA
2

)
(4.1)

where MA is the binary value indicating a mutual agreement occurrence (i.e., MA ∈ {0,1}), β

is the parameter threshold for confidence evaluation of the posterior Pr(yagreed |X) on the predicted

annotation, and DA is the binary value indicating a disagreement between the predicted annotation and

true annotation (i.e., DA ∈ {0,1}). In this case, the true annotation refers to the actual label provided by

the user through an active feedback mechanism (i.e., an answer to the ESM-based survey). Consequently,

this true annotation is also used for the following active learning component to improve the classifiers in

CoAct-nnotate (explained in Section 4.3.7 below).

4.3.7 Improvement of Sensor Classifiers

In this section, the process of improving sensor classifiers is elaborated in detail, given the intrinsic

output (i.e., macEvaluated) produced in the previous process (annotation prediction in Section 4.3.6).

In a real-world scenario, we take the input from the mobile user as the consideration to improve the

performance of sensor classifiers for the multi-view annotation prediction. The acquisition of such input
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is based on the data collected by the ESM protocol, which inherently conducts a query of annotation

feedback from the mobile user in an interactive manner. Hence, the process of improvement for sensor

classifiers is based on the binary condition of macEvaluated with an additional input userAnnotation

acquired from the mobile user’s feedback. Within the improvement process in the co-training module

of CoAct-nnotate, active learning is applied whereby the true annotation is obtained through the ESM

process and is used as the expected annotation to label Su, for which the contained bags need to be

included in the training pool. Inherently, the usage of semi-supervised learning in CoAct-nnotate

(consisting of co-training and active learning) is applicable for both generative and discriminative base

classifiers of the respective sensor feature bags. When macEvaluated returns zero, there would be no

improvement process undertaken by CoAct-nnotate. In other words, the feature bags (with the user’s

annotation) will not be included in the training pool.

To resolve the potential issue of data imbalance in the summarised unlabelled bags (i.e., summarisedBags),

up-sampling (or oversampling) is applied to each sensor feature instance in the corresponding bag,

thereby increasing the number of possibly important data points (i.e., feature instances) within a sum-

marised sensor bag. The simplest form of up-sampling is the duplication of a feature instance. In this

case, k-number of duplication is applied to a given summarised feature instance, where k is obtained

from a Poisson distribution with a rate parameter δ (i.e., Poisson(δ )). The method of upsampling is

not restricted to instance replication because other forms, such as generative approaches of sampling

(also known as generative oversampling [Liu et al., 2007, Das et al., 2015]), can be performed on a

given feature instance (extracted from a sequence of feature instances in a summarised sensor bag).

Ultimately, these upsampled bags (labelled with userAnnotation) are then added to TrainingPool to

re-train all sensor classifiers.
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4.4 Experimental Evaluation

4.4.1 Dataset

We use the CrowdSignals dataset [Welbourne and Tapia, 2014] for our analysis. This dataset contains rich

sensor data from smartphones and wearables in the wild (annotated by participants). In our experiment,

the prediction of annotations is based on multiple sensors in Android smartphones. For the construction

of instances in a bag, the temporal value of tδ is set to 30 minutes. Thus, each sensor bag in the MIL

phase contains at least the data points within the duration of t∆. For the standard approach of preparation

to train the classifiers, we use a window size of one-minute time interval with 50% overlapping windows

of temporal segmentation.

The CrowdSignals dataset consists of daily logs for more than 30 Android smartphone users. In our

analysis, the datasets of nine participants are sampled for the experiment, and timestamped ESM labels

are extracted from their data. Using these labels, we simulate a scenario in which the users are asked

to respond to the ESM questions, at the time of these timestamped labels. Although only smartphone

sensor data are used within the scope of our experiment, it should be noted that other data sources

(e.g., smartwatches, wearable sensors) could be used to enrich the contextual inference to enable better

annotation prediction.

Given the rich amount of data collected in the CrowdSignals campaign, we leverage the following

sensor data: Accelerometer, Gyroscope, Magnetic field, Rotational vectors, Battery, Light, Screen status,

Step counter and Pressure.

The following ESM labels (annotations) are derived from the end timestamps of time-interval labels

that the participants recorded: Riding bus, Riding train, Riding light rail, Riding ferry, Riding in a car,

Riding a bicycle, Riding an elevator, Riding an escalator, Riding a Scooter, Walking, Walking on stairs,

Drinking water and Playing video game.
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4.4.2 Experimental Setup

During the initial training process of each sensor classifier, only one sensor bag is used per ESM label

provided by a mobile user. Our model is trained with a limited amount of sample data for all labels (i.e.,

one bag per class label), which then need to perform annotation prediction progressively throughout

the simulated data collection in a day-to-day manner. In other words, the objective of the experiment

is to perform annotation prediction accurately based on the streaming of multidimensional sensor data

during an ESM study, given the influence of in-situ contexts of the mobile user. Consequently, this

experiment compares the performance of annotation prediction by general approaches with our proposed

semi-supervised approach.

In our work, the density-based bag summarisation component employs the same strategy as [Birant

and Kut, 2007, Shao et al., 2016] and [Liono et al., 2018b] by setting the parameters E ps = 0.3 and

minpts = ln(n) for the given DBSCAN algorithm (for density-based clustering), where n is the number

of feature instances in an unlabelled sensor feature bag Siu. In the co-training process, a random split

operation is performed proportionally on the set of sensor classifiers to produce two different views

Vf irst (View 1) and Vsecond (View 2). In this case, the number of distinct sensor classifiers in a view is

at least (n/2). At the end of the annotation prediction process, the binary value of MAC evaluation is

calculated under the condition of a mutual agreement between the views of sensor classifiers where

y f irst == ysecond , and its agreeable posterior (i.e., Pr(yagreed |X)) is being under a certain threshold

β = 0.9. Therefore, a MAC evaluation is considered valid when it satisfies the output of Equation 4.1

where macEvaluated == 1. Before the summarised sensor bags are added to TrainingPool (given a

valid MAC evaluation) for the sensor classifiers to be re-trained, the upsampling operation is performed

on the summarised sensor bag by using the k-number of the instance replication strategy, where k is

withdrawn from the Poisson(δ ) distribution with δ = 5. To simulate the active learning component of

the semi-supervised module in CoAct-nnotate, we leverage the actual annotation at the end time of the

time interval based on the actual user labels in the CrowdSignals dataset. For the time duration of recent

sensor data on the given annotation a, 30 minutes of past mobile sensor data (i.e., tδ = 30 minutes) are

used to construct a bag (containing a sequence of raw sensor data) for the respective sensor channel.
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Since annotation prediction is crucial for mobile data collection in the wild, we simulate an experi-

ment in which the end time of self-annotation (user-driven labelling) is the time point of ESM annotation.

All participants involved in CrowdSignals data collection are mobile users who own Android smart-

phones. Different phone models are noticeable within the dataset since the capability of smartphones

to sense their context and environments varies. Due to the diversity of sensors in different smartphone

models, the performance of annotation prediction can be greatly influenced by the limited composition

of sensor classifiers contained within a view.

As the base classifier of the mobile sensors, we leverage the following algorithms in our evaluation

(using scikit-learn [Pedregosa et al., 2011]):

• Naive Bayes (NB)

• Support Vector Classifiers (SVC)

• Multilayer Perceptron (MLP) with 0.00001 as the L2 penalty (regularisation parameter), L-

BFGS [Andrew and Gao, 2007] as the solver for weight optimisation and structure of two hidden

layers (consisting of five neurons for the first layer and two neurons for the second layer)

• Random Forests (RF) with 100 trees

• Decision Tree (DT)

• k Nearest Neighbour (k-NN) with k = 1 (1NN)

For the baseline of annotation prediction, we leverage the general approaches that can be used for

annotation prediction as follows:

• Multivariate time-window based annotation prediction (denoted as MAP). In the MAP approach,

only one classifier is trained for all sensor feature dimensions and instances in TrainingPool.

• Non-multivariate time-window based annotation prediction (denoted as 1C1S). In 1C1S approach,

one classifier is trained per sensor.

• 1C1S with co-training (denoted as Co-1C1S). In the Co-1C1S approach, the concept of co-training

is applied to perform multi-view annotation prediction. The basic operation of view split is similar

to CoAct-nnotate, except for the process of sensor classifiers improvement. For the improvement

process, the predicted annotation (i.e., yagreed) is used to label Su, which will be included in

TrainingPool only if there is a mutual agreement (i.e., MA == 1) between two views of sensor

classifiers.
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For both the MAP and 1C1S approaches, the training of classifiers is based on the bags of all first

occurrences of each a in A. In other words, only one bag is used for a class label during the training phase,

which results in no progressive learning over time. In contrast, both Co-1C1S and CoAct-nnotate employ

the concept of progressive learning by a co-training mechanism. The only difference between Co-1C1S

and CoAct-nnotate is in the criteria for sensor classifier improvement and cost-efficient performance of

bag summarisation for Su in CoAct-nnotate. In the feature extraction process of all annotation prediction

approaches (MAP, 1C1S, Co-1C1S and CoAct-nnotate), time-interval based temporal segmentation is

used for a given bag whereby the size of the time window is set to 60 seconds (1 minute) with 50%

overlapping parameters. In each time window, statistical features are extracted, such as mean, median,

maximum, minimum, standard deviation, interquartile range and root mean square. In terms of general

evaluation performance of annotation prediction, the correctness metric is used to measure the accuracy

of an annotation predictor. Consequently, the correctness metric can be measured by calculating the

fraction of the total count of correct predictions over the number of annotation prediction, as expressed

in the following equation:

Correctness =
∑

v
u=1 annotationu

correct

v
(4.2)

where v is the total number of annotation predictions and annotationu
correct is the binary value whether

the u-th annotation prediction is correct or not. To evaluate the performance of the systems empirically,

the experiment is performed with 10 iterations per base classifier on each approach.

4.4.3 Results

As shown in Figure 4.4, we leverage nine sensor channels (mentioned in Section 4.4.1) as the source of

data streams, and use those to predict the ESM labels in the dataset.

In our dataset, there are several instances of incomplete sensor channels that are due to the smartphone

hardware. For instance, user E’s dataset lacks gyroscope, rotational vectors, step counting and air

pressure. Although air pressure data are available for users B, C and D, the step counter sensor channel

is missing for user B. Similarly, battery information is missing for user C within tδ (30 minutes) before

all occurrence of ESM annotations. Due to the variability of sensors that may be missing and their

inconsistent sampling in a given Su, this increases the difficulty of ESM label prediction. Despite the

inconsistent number of data points (with many noticeable outliers) for heterogeneous sensor channels,

shown in Figure 4.4, the time lengths of data points are varied with fewer outliers, as shown in Figure 4.5.

In this case, the time length tlength can be computed by tlength = tmax− tmin, where tmax is the maximum

timestamp and tmin is the minimum timestamp of data points in a given sensor bag Sia.



Experimental Evaluation 77

Figure 4.4: The granularity of data points in sensor bags.

Table 4.1: Correctness of annotation prediction (normalised from 0 to 1).

User ID Number of Classes
MAP 1C1S Co-1C1S CoAct-nnotate

NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN

A 3 0.125 0.125 0.125 0.125 0.15 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.138 0.138 0.188 0.188 0.138 0.125 0.613 0.4 0.7 0.713 0.863

B 9 0.14 0 0 0.067 0.033 0.087 0.173 0.207 0.18 0.213 0.18 0.167 0.181 0.125 0.131 0.106 0.144 0.144 0.281 0.413 0.363 0.563 0.706 0.744

C 10 0.232 0.246 0.008 0.128 0.129 0.169 0.304 0.289 0.297 0.293 0.299 0.288 0.283 0.215 0.016 0.22 0.269 0.275 0.295 0.515 0.437 0.727 0.785 0.818

D 10 0.175 0.206 0.206 0.121 0.156 0.079 0.281 0.262 0.275 0.271 0.279 0.265 0.357 0.268 0.17 0.284 0.29 0.281 0.343 0.386 0.268 0.679 0.754 0.792

E 9 0.088 0.256 0.26 0.089 0.073 0.129 0.229 0.236 0.23 0.235 0.228 0.245 0.198 0.277 0.262 0.194 0.175 0.21 0.19 0.296 0.22 0.463 0.553 0.579

F 4 0.18 0.2 0.2 0.26 0.26 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.285 0.305 0.345 0.4 0.33 0.185 0.235 0.585 0.4 0.83 0.89 0.9

G 11 0.033 0.597 0 0.10 0.153 0.10 0.147 0.133 0.15 0.157 0.15 0.137 0.11 0.206 0.097 0.09 0.119 0.129 0.258 0.561 0.729 0.858 0.877 0.884

H 10 0.093 0.139 0.139 0.22 0.141 0.247 0.3 0.314 0.312 0.307 0.307 0.306 0.26 0.222 0.148 0.235 0.24 0.286 0.37 0.441 0.421 0.951 0.891 0.915

I 7 0.148 0.093 0.093 0.109 0.161 0.351 0.335 0.317 0.322 0.367 0.337 0.361 0.131 0.109 0.085 0.093 0.093 0.111 0.528 0.748 0.716 0.781 0.77 0.763

Although multiple metrics can be used for evaluating the performance of classifiers, we leverage

the correctness metric as the dominant measurement for the performance of annotation prediction.

As shown in Table 4.1, we believe that one classifier should be trained for each sensor (refer to the

1C1S experiment result). By observing the average correctness values of base classifiers from our

iterative experiment, the maximum performance gain of 28.9% is noticeable by training one classifier
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Figure 4.5: The time length of data points in sensor bags (seconds).

per sensor (i.e., 1C1S) over a simplistic multivariate setup (i.e., MAP). However, the repeated measure

of ANOVA test found a statistically significant mean difference between the correctness of MAP and

1C1S, F(1,1078) = 152.2, p < .001. The results of the two-sample t-test (assuming unequal variance)

also found a statistically significant evidence of a difference of mean correctness between MAP and

1C1S, t(d f = 1004.7) = 12.34, p < .001, 95% CI for the difference in means [0.06, 0.08].

It should be noted that both MAP and 1C1S do not use progressive learning. In this case, the models

are constructed based on the first set of sensor feature bags for each label. Hence, the overall performance

is insufficient. Even by including the co-training process for progressive learning (refer to Co-1C1S), the

difference in correctness measurements is not substantial in comparison with non-progressive learning.

This argument is evident from the results of two-sample t-test (assuming unequal variance) between

progressive learning (i.e., Co-1C1S) and non-progressive learning (i.e., MAP and 1C1S), which found no

statistically significant evidence of a difference for the mean correctness values, t(d f = 1145.3) = 0.715,

p = 0.475, 95% CI for the difference in means [-0.01, 0.01].
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Ultimately, our proposed CoAct-nnotate pipeline can significantly improve annotation prediction

(increasing average correctness by 35.94%) over all baselines. From the results of the two-sample t-test

assuming unequal variance, there is statistically significant evidence of a difference of mean correctness

between CoAct-nnotate and all baselines, t(d f = 588.2) = 33.302, p < .001, 95% CI for the difference

in means [0.37, 0.42]. In other words, co-training alone (refer to the result of Co-1C1S) is not enough to

enhance the predictive performance over time in daily annotation tasks. It is evident that by combining

both co-training and active learning (i.e., CoAct-nnotate), the outcome becomes progressively accurate

(as shown in Figure 4.6).
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Figure 4.6: The average progression of correctness over the time for sampled users.

As shown in Figure 4.6, the average correctness values are aggregated per user over time (for the

iterative experiment on all base classifiers), spanning from late August to the end of November in 2016.

In fact, this is aligned with the duration of the data collection campaign of the CrowdSignals dataset in

which each user participated for four to six weeks of automatic logging of their smartphone sensor data

in daily life.
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From the visualisation of average correctness over the time, we can conclude that our proposed

CoAct-notate clearly outperforms all the baseline approaches in annotation prediction in most the cases.

For the co-training approach without active feedback from the users (Co-1C1S), the average performance

degrades at an alarming pace in comparison with MAP and 1C1S. Unfortunately, the weakness of

original co-training is known to result in degrading performance over time if the sampling bias shifts

towards the unlabelled bags with mutual agreement and misclassification of class labels (i.e., incorrect

annotation predictions). Therefore, this weakness is tackled in our proposed framework by integrating

active learning (feedback from the users) to reduce the bias shifting towards the misclassification of

class labels.

For over 50% of the time length of annotation prediction, our CoAct-nnotate visually demonstrates

steady improvement of average correctness, which is also supported by the trend depicted in Figure 4.7.

We plot the smooth line of the linear model (using a second degree polynomial term) on all correctness

values of classifiers in the iterative experiment on all users within the normalised scale of time. Thus,

we see a stable increase of the performance of CoAct-nnotate by the early convergence starting from

40% of the time duration of annotation prediction. Considering there are 13 annotations in total that can

be predicted for users, the baseline accuracy can be set to 7.7% (1/13) for an application of annotation

prediction. Therefore, it can be concluded that our proposed CoAct-nnotate pipeline can guess the

correct user annotation 50% of the time, which is significantly above this baseline.

It should be noted that our experiment is limited to evaluation in which we assume the test bags

to have active feedback from users. In a real scenario of ESM studies, users might ignore such survey

notifications and not provide any feedback on the underlying predicted annotations. Further, the

correctness measure presented in this chapter is based on the notion of single-annotation prediction.

If the ESM survey question is presented with multiple choices, then top-k predicted annotations can

be displayed based on their ranked posterior probabilities. However, an option of ‘other’ should be

displayed in an interactive annotation process of a real-world application to provide an alternative for

the user that reveals more choices or inputs an answer via free text input. Our study aims to reduce such

a choice overload issue during the ESM annotation process. An immediate challenge for future work is

to measure the real-time performance of annotation prediction and evaluate it based on actual experience

(in terms of user burden). Given such challenges, future research is required to improve the techniques

used in ESM studies, leading to fewer interruptions and burdens for participants.

Ideally, the model training should be performed in a powerful instance (e.g., in the cloud) because

mobile devices are restricted in terms of their computational resources. Therefore, the time taken to

perform training on mobile devices is not evaluated in our current study. The summarisation technique

that we applied in the experiment aims to derive a more compact representation of the given feature
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bags. Our previous results [Liono et al., 2018b] show that the applied summarisation technique tends

to maintain a relatively stable and reliable inter-rater agreement between machine learning models.

Training the model on smart devices should be considered as another significant challenge that will lead

to more intelligent mobile sensing applications (e.g., for assistive technologies). Nevertheless, the main

contribution of this chapter is to improve the model of annotation prediction over time by using both

concepts of co-training and active learning.

Figure 4.7: The progression of correctness over the time for MAP, 1C1S, Co-1C1S and CoAct-nnotate.
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4.5 Conclusion

This chapter presents a framework to reduce user burden in ESM studies. Specifically, our work shows

how semi-supervised learning can be used to predict the ESM labels that could be relevant to users at

the time of questioning. We demonstrate the ability to predict the annotations before they are acquired

from the users through an active feedback mechanism. Through the application of both co-training

and active learning in our proposed multi-view models, the overall accuracy of annotation prediction

systems is increased by 35.94% in comparison with conventional approaches. Therefore, researchers can

customise the scheduling of ESM questionnaires to collect labels from all required instances. This can

help overcome situations in which less frequent instances are not captured due to the limited sampling

rate of ESM studies.

CoAct-nnotate is designed as a system for generic prediction of ESM labelling. Although the target

application in this chapter is for activity recognition, this approach can also be used for other types of

applications, such as mood or emotional changes (assuming different sets of sensors are deployed, e.g.,

wearables for emotion prediction). Moreover, we envision that the future intelligent digital assistants

(e.g., Amazon Alexa, Google Assistant and Microsoft Cortana) would be able to infer and support daily

user activities and tasks [Liono et al., 2019b, Trippas et al., 2019] through ubiquitous sensing. In this

case, our proposed framework can be used to improve such virtual assistants to be more aware of the

contexts of a mobile user and adapt accordingly based on active feedback.

In this study, we assume a scenario in which the user provides an annotation at a given time for an

experiment performed on an existing dataset. Moreover, the selection of appropriate features and learning

parameters can have direct effects on the accuracy of an annotation prediction. In our study, we chose the

parameter values heuristically. By having mobile devices to be more context-aware, annotations can be

acquired seamlessly for the purpose of situation inference on intelligent mobile sensing applications. As

previously mentioned in Chapter 3, these raw annotations can be composed of various contexts that are

relevant to the users. Once a system is capable of performing an accurate context recognition, they can

be then utilised for situation inference. Thus, the next chapter presents the intelligent task recognition

based on the modelling of cyber, physical and social activities of mobile users in daily mobile sensing.



Chapter 5

RECOGNISING TASKS OF MOBILE

USERS FROM CONTINUOUS

CONTEXTUAL SIGNALS

5.1 Introduction

Understanding the user’s situation is paramount to enable evidence-based insights for daily decision-

making purposes. Previously, we have covered the prediction of in-situ annotations based on activities

and recognition of their decomposed contexts in mobile sensing environments. Leveraging the contextual

information of related mobile users is crucial in order to make sense of their actual situation at a given

time in-the-wild. In this chapter, we focus on recognising the tasks of mobile users based on the cyber,

physical and social signals that are derived from multi-sourced sensor data.

The rise of digital assistants in recent years is evidenced by the popular usage of voice assistants

such as Siri or Alexa, and the growing uptake of smart speakers such as Google Home or Amazon

Echo. These voice assistants are not only embedded in computing devices such as smartphones, tablets,

wearables, laptops, desktops, but also becoming more ubiquitous. From the home to the office, the

kitchen and to the meeting room, everyday appliances, like fridge, television, microwave, and conference

facilities, have become voice-assistant enabled.

Existing AI-powered assistants, however, still fall short of its ultimate vision to truly complement,

support, and empower users in their daily lives. Recent findings on a large user study of smart-speaker

assistants by Bentley et al. [2018] highlight the main user interactions with these voice assistants mainly

are to issue basic commands for specific domain applications, such as queries for music mainly for smart

83
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speakers, and commands related to communication or messaging applications on smartphone-based

assistants.

In order to truly enable a richer user interaction with digital assistants, it is essential to enable these

assistants to serve wider range of user queries while they are performing specific tasks. Supporting task

progression and completion is the last mile in search interactions [White, 2018], and more generally in

supporting digital assistant applications. Characterising and modelling tasks are the first steps to enable

this support.

Let us imagine a future personal digital assistant that can identify and track our tasks ubiquitously,

whenever and wherever it is required based on mobile user contexts. Such intelligent applications would

be beneficial not only to track human tasks in daily life but also for assisting users to complete the tasks,

providing recommendations of actions to improve the work productivity and the overall life experience

and well-being.

If tasks can be recognised and tracked, support systems, such as digital assistants, recommender

systems or search engines, can be adapted to better help humans complete their tasks. An intelligent

assistant could then monitor the progress of a task, understand when a task is complete, or even encourage

someone to switch from their current task to one that is currently critical.

In the field of psychology, the terminology of task was first defined by Leont’ev in 1978 [Leont’ev,

1978]. Based on the literature of activity theory mentioned by Bedny and Meister [2014], Leont’ev

[1978] defined a task as “a situation requiring achievement of a goal in specific conditions”. Bedny

and Karwowski [2006] states that a goal is a “conscious mental representation of humans’ own activity

in conjunction with a motive”. In other words, humans perform specific activities in order to progress

and complete a task. We form a hypothesis, therefore, that we can better recognise a task when the

underlying activities to achieve a task can be inferred.

Recognising human tasks in daily life is non-trivial. While the research into Human Activity

Recognition (HAR) in the Ubiqutious Computing community has matured in recent years [Sigg et al.,

2014, Khalifa et al., 2015, Liono et al., 2016, Abdallah et al., 2018], there has been little to no research

on using intelligent sensing applications to recognise human tasks in daily life. Existing research mainly

focuses on specific activities to be recognised, such as to identify the current or next app usage or email

activities from weblogs; or the well-established study of HAR for simple and more complex locomotive

activities (e.g., from walking, running, climbing stairs to travelling in cars, buses, trains, etc.). Research

into tasks in Information Retrieval has been mainly used to improve search engine performance, as the

knowledge of the task is used as a context to provide better results to user queries [Jones and Klinkner,

2008, Hua et al., 2013, Li et al., 2014, 2016]. The main challenges in recognising human tasks in

daily life from a ubiquitous sensing perspective are due to the noisy environment and the dynamics
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of human activities. The immediate challenge for modelling mobile user behaviours come from the

user annotations that are acquired from different users with a wide range of tasks and professions, and

multiple the underlying contexts. This, if not addressed, can significantly impact the performance of

task recognition.

A task can be characterised by many factors in the ubiquitous sensing scenario, such as human

activities, actions, mobility, social encounters, and online behaviours. We, therefore, approach task

recognition with the Cyber-Physical-Social (CPS) modelling paradigm [Ren et al., 2017, 2018a,b]. We

hypothesise that tasks can be recognised from modelling the underlying signals of cyber activities (e.g.,

app and online activities), physical activities (e.g., mobility [Rahaman et al., 2018] and locomotive

activities) and social activities (e.g., interaction with others during a task). Specifically, this research

recognises five different categories1 of tasks: work-related, personal, social-exercise-entertainment,

caring, and civil obligation related. We capture these task categories through a task entity recognition

process. For each task category, we further expand the annotations to tasks that the users were engaged

in. The list of tasks may include travel, physical, education, meals and breaks, communication, planning,

project, documentation, low-level, admin and management, finance, IT (software or hardware-related

tasks), customer care and problem-solving. These tasks were labelled leveraging the idea of task-

taxonomy by Trippas et al. [2019].

For this research, we have generated a task behaviour dataset, which includes hourly and daily

logs of user tasks over a four-week period. Participants include non-professionals (e.g., students) and

busy professionals with a wide range of occupations, from office workers to business owners. We

collect participants’ task behaviours by continuously logging the smartphone sensor and app foreground

and background data, and their laptop/desktop running application logs, along with the annotations

of performed tasks based on the recall mechanisms of both in-situ (e.g., recalling a recent task in the

past one hour) and retrospective (e.g., recalling all tasks at the end of the day which were performed

throughout the day).

To our knowledge, this is the first work aimed at recognising tasks in daily life, utilising cyber,

physical, and social activity signals. Our key research contributions include:

• A new problem formulation for task recognition in daily life.

• A novel framework to capture and recognise tasks in daily life.

• The proposed CPS activity modelling to derive intrinsic and specific characteristics of a wide

range of daily tasks, from personal, social, and caring to work-related tasks.

1American Time Use Survey (ATUS): https://www.bls.gov/news.release/pdf/atus.pdf

https://www.bls.gov/news.release/pdf/atus.pdf
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• Analysis and discussion of the underlying cyber, physical, and social activity signals in modelling

task behaviours across different cohorts of busy professionals and students.

5.2 Related Work

The proliferation of ubiquitous computing has enabled humans to perform daily tasks, depending on

their activities, mobility, and online and social factors, in both spatial and temporal dimensions. For an

efficient system interface design, a human task can be leveraged as the reference to guide the design

process to allow successful human-computer interactions, especially in a ubiquitous scenario. The

urgency of such research was first mentioned by Miller in 1976 [Miller, 1976], which led to further

studies in computer graphics and visualisations [Pfautz, 2002, Chen and Thropp, 2007, Peng et al., 2010,

Lin and Kuo, 2011].

A machine-learning-based approach to task boundary identification was presented by Khabsa et al.

[2018], who trained a binary classifier to decide whether two consecutive interactions are part of the

same task. However, task recognition is not considered in that research. Moreover, the study is restricted

to the realm of cyberspace for human tasks. In recent work, Stisen et al. [2017] proposed task phase

recognition and task progress estimation by modelling highly mobile workers in a large hospital complex,

via the approximation of localisations from WiFi access points and human activities from workers’

smartphone accelerometer sensors. However, their sensing scenario is only focused on a set of tasks

that have clear objectives (achievement criteria), for example, the completion of tasks based on the

delivery of orderlies. Furthermore, their experiment is conducted in a restricted and closed environment,

i.e., within the coverage of WiFi access points inside a hospital. In a broader view of context-aware

computing, ubiquitous sensing should be addressed in uncontrolled environments, where users’ activities

and mobility change over time and space. In this case, task recognition is a non-trivial and difficult

challenge to be studied in the daily life of a mobile user.

The discovery of contextual information from daily routines has been previously addressed by Nguyen

et al. [2016] by simultaneous context (i.e., latent patterns) and community extraction using a unified

Bayesian nonparametric framework. Such structure and group discovery of mobile users are important

for context-aware computing, especially to recognise human tasks from ubiquitous sensing “in the wild".

In other words, this approach of social grouping could be crucial in distinguishing typical tasks being

performed by mobile users, based on their daily behaviours and common profiles (e.g., users who work

in the academic and educational sector). Another ubiquitous sensing application is presented by Sarker

and Salim [2018] to mine behavioural rules from smartphones in managing incoming calls. Discovering

such behavioural rules would provide greater impact if a user’s on-task behaviour can be identified prior
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to receiving potentially distracting calls. Sensor data and machine learning have been studied to construct

attention management systems and interruptibility models [Anderson et al., 2018], i.e., to predict when,

or in which device [Mehrotra et al., 2019], to send a notification in order to minimise the negative

impact on user experience. The prediction of user tasks using human-computer interaction and machine

learning is presented by Stumpf et al. [2005]. They identify a task by observing an activity sequence,

e.g., opening a file, saving a file, sending an email, cutting and pasting information. Recently, Ren et al.

[2018b] investigated how to predict users’ demographics by considering their CPS behaviours. However,

the CPS aspects that could further describe a user task were not considered.

Our work falls under the umbrella of anticipatory mobile computing [Pejovic and Musolesi, 2015],

where different types of sensors in mobile phones are used to feed a machine-learning algorithm to

recognise the task the user is performing. Sensors and behavioural data have been used to address

different data mining problems, including the modelling and prediction of time-based reminders [Graus

et al., 2016], the estimation of the duration of tasks [White and Hassan Awadallah, 2019], and the

modelling of context and intent of users for context-aware recommender systems [Sun et al., 2016].

To the best of our knowledge, the recognition of tasks from ubiquitous sensing in daily life is yet

untapped, especially by incorporating CPS contexts in behaviour modelling of mobile users. Therefore,

the contributions of this chapter will enable future intelligent and assistive applications from ubiquitous

sensing to support daily and time-consuming human tasks, powered by smart devices in the personalised

and ubiquitous environments of mobile users.

5.3 Problem Formulation

Figure 5.1: Task recognition problem in daily life.
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Table 5.1: Symbols used throughout the description and analysis.

Symbol Description
u the user
t the time stamp
A = {ai} the set of tasks ai
Aesm = {aesm} the set of raw annotation in ESM
Fc = { fc} the set of cyber features fc
Fp = { fp} the set of physical features fp
Fs = { fs} the set of social features fs
z(·, ·) presence-based task boundary construction func-

tion
g(·) function to mapping CPS features and tasks

In this section, we formulate the problem of recognising daily tasks based on CPS activities of

human participants. The CPS activities are derived from the sensing log signals (refer to Figure 5.1).

Note that these signals can be sourced from smart devices (e.g., smartphones, tablets, wearables, desktop

computers and the Internet of Things). Moreover, the ground truth labels of daily tasks performed by the

participants are also captured through in-situ task annotations. Our aim is to derive the task annotations

by characterising the sensing log signals. Table 5.1 shows the notations used throughout this chapter.

Cyber Activities: These include users’ involvement in different cyber activities, such as emailing,

Web browsing, social networking, entertainment and many other applications. Each cyber activity

contains the cyber content and the timestamp, e.g., web browsing activity contains the website visited

and the corresponding timestamp of visitation. In this research, we investigate the following cyber

activities: social Networking, utilities, communication & scheduling, news & opinion, entertainment,

design & composition, business, reference & learning, software development and shopping. We define

each kind of cyber activity as a binary variable fc to represent whether users are involved in the

corresponding activity at a certain time. Thus, a user’s cyber activity is defined as a set of records:

< u,Fc, ti >, where u is the user, ti is the timestamp, and Fc is the set of cyber features, denoting the

user’s involvement in the above mentioned cyber activities.

Physical Activities: These contain mainly the physical activities of users in the spatio-temporal

domain. These activities are captured through the readings of accelerometer, gyroscope, magnetometer

sensors, transport mode, and even the semantic labels of visited locations (e.g., home, office and train

stations). Thus, a user’s physical activity is defined as a set of records: < u,Fp, ti >, where Fp is the set

of physical features, denoting the users’ physical activities as mentioned. The details of each feature

fp ∈ FP are presented in Section 5.5.

Social Activities: These contain information about social interactions during the progress of users’

daily tasks including direct interactions with other people. These activities (i.e., interactions) are
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captured through the presence of WiFi/Bluetooth access points, the surrounding noise levels, and in-situ

annotations, all of which characterise the types of environment and degree of social encounters with

other individuals. A user’s social activity is defined as a set of records: < u,Fs, ti >, where Fs is the

set of social features, denoting the users’ social environment as mentioned above. Again, details of the

social features used in this study are presented in Section 5.5.

Tasks: These denote the daily tasks performed by users. There are various categories of tasks [Trip-

pas et al., 2019] including travel, physical, education, meals and breaks, communication, planning,

project, documentation, low-level, admin and management, finance, IT (software- or hardware-related

tasks), customer care and problem solving. We claim that each task a can be characterised by the

associated combination of cyber, physical and social activities. To evaluate the completeness and

accuracy of our claim, all tasks under each task category are also obtained via the Experience Sampling

Method [Csikszentmihalyi et al., 1977, Csikszentmihalyi and Larson, 2014]. For ESM-based annotation

acquisition, the description of the most recent tasks are requested in-situ from the users. The users are

required to recall the most recent tasks performed by them, with responses entered using a survey-style

smartphone app.

Task Boundary Construction: Since the techniques and queries of task description (including their

CPS activities) are distinct from user to user, the boundary of a task and granularity of contextual infor-

mation can be different for the same experienced task when a mobile user is providing a corresponding

annotation. The annotation that the user provides can be associated with its relative perception upon

answering the short questionnaire. These associations can be inferred from both temporal and spatial

user contexts. In this study, we consider the relative user contexts on the temporal domain where the

recall of recent user task is based on restricted time range (e.g., recent one-hour time slot). Defining the

task boundary is an essential process, in order to reconstruct the inferred time-slot of user annotation for

intelligent task recognition purpose.

Task Recognition: This is formulated as follows: Given the CPS activities of a user u at time t, the

recognition of the task a currently being undertaking is defined as:

g(Fc,Fp,Fs)→ a, (5.1)

where g(·) is a function that establishes a mapping between a task and its CPS activities denoted as

Fc,Fp and Fs, respectively.
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5.4 Proposed Framework

In this section, we propose a framework to recognise daily tasks for mobile users based on their CPS

activities. As shown in Figure 5.2, this consists of the following key components: task annotation,

presence-based task boundary construction, CPS feature construction, CPS-based modelling, and CPS-

based learning.

Figure 5.2: Conceptual framework of intelligent task recognition.

5.4.1 Task Capture: In-situ Annotations

In a typical ESM-based study, the annotations are acquired from timepoint-based experience sampling.

In this case, the acquisition of task annotations (i.e., ESM-based annotations) is achieved through in-situ

surveys that can be triggered by notifications through an app.

ESM-based annotations: These are based on a quick questionnaire in order to minimise interruption

to daily activities and tasks. Therefore, the questions in relation to the performed tasks should not be
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too long and must be straightforward. ESM aims to minimise human cognitive bias while reducing the

reliance on participants’ abilities to accurately recall earlier experiences [Berkel et al., 2017] (i.e., human

tasks). Hence the ESM process typically does not include a question that asks the mobile user about the

actual task start time. In this study, the annotations acquired from the ESM process are defined as in-situ

annotations. As shown in Figure 5.3, an in-situ survey is displayed upon a mobile app notification at t;

the annotation is conducted at time tδ , corresponding to the task and its contextual information within

the boundary of tβ and t; β is the estimated boundary of a performed task that can be inferred from the

ESM annotation process. For example, the question of “What kind of task did you engage in between

10:00 AM and 11:00 AM, that you spent most of your time on?” corresponds to t = 11:00 AM when the

ESM was requested through a mobile app notification, β = 60 minutes and tβ = 10:00 AM. On the other

hand, the question of “What kind of time-consuming task are you currently engaged in?” corresponds

to t = 11:15 AM when the ESM was requested through a mobile app notification and β = 30 minutes

according to a predefined parameter in the system.

Figure 5.3: Task annotation acquisition through ESM.

5.4.2 Presence-based Task Boundary Construction

For in-situ annotations acquired through ESM, a mobile user can answer the questionnaire the moment

an app notification comes. In a real-world scenario, the nature of the user’s engaged tasks can be

complex. Therefore, the user could be very busy on a complex task and answer it later when the chance

occurs, either before or after the next hourly mobile app notification for ESM survey.

Defining such a task boundary from ESM annotations is an essential process for our proposed

intelligent task recognition framework due to subjective perceptions of mobile users. In many instances,

point-based ESM annotations are predominant in the field of ubiquitous computing and intelligent
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mobile sensing, where no exact start and end time are defined concretely by the user. The intuitive

approach to address this issue is to assign a task to a specific time segment based on its presence.

A rule-based function can be applied to all in-situ (i.e., Aesm) annotations for a particular day to

establish the boundaries of these tasks. A simplistic approach applied in our framework refers to the

following rules. Any timestamped in-situ annotations correspond to previous hour time segments, where

each segment has β time length. This condition is only valid for an annotation that has its timestamp

recorded before the maximum time segment of the day. Any annotation outside the range of defined time

segments should be allocated to the maximum time segment of the day. For example, a user can answer

the ESM survey at 11:00 PM where the questionnaire would refer to what task the user was performing

during the 06:00 PM to 07:00 PM time slot (i.e., the maximum time segment of the day). Furthermore,

this rule-based function should be robust towards the shifting temporal context (i.e., timezone shift)

of the mobile user. In fact, the user could be moving between countries (e.g., for holiday or business

purposes) during the course of mobile sensing data collection, which is also evident from the participants

in this study.

The boundary of a task can be expanded to the predefined time segments of a day. In this case, the

function for presence-based task boundary construction can be expressed as follows:

z(aesm) = Laesm⊕T Zaesm , (5.2)

where Laesm denotes the set of words from the raw annotations of aesm, T Zaesm corresponds to set of

epoch-timestamps (including their timezones) when the ESM surveys are answered, and ⊕ refers

to the element-wise operator that links the two sets (i.e., Laesm and T Zaesm) for presence-based task

boundary construction process. It should be noted that Laesm and T Zaesm must have equal item length naesm .

Inherently, the z function generates a set of items (with naesm length) consisting of the time boundaries of

the in-situ task annotations.

Moreover, the result of task boundary construction can be used as the input for task entity recognition.

In this case, the purpose of this entity recognition module (refer to the conceptual framework in

Figure 5.2) is to define the categorisation of common tasks from textual annotations. The output of the

entity recognition process would be the set of class labels to be used for task recognition. For instance, our

running example “meeting friends social get together” will be labelled as “social/exercise/entertainment”

task by the entity recognition module.

We note that the result from task boundary construction can also be used for constructing CPS

features. For example, the indication of a task being performed collaboratively with the presence of

other people as one of the social features in a meeting (e.g., attending a meeting with colleagues or in a

group discussion), which is allocated to specific time segment (inferred task boundary).
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5.4.3 CPS Feature Construction

This module utilises sensing logs from users’ smart devices to construct CPS features associated with

a task. Since raw sensing signals are timestamped and can be streamed from these smart devices, we

define the following general process for CPS feature construction.

All features (i.e., CPS feature sets) can be constructed based on the alignment of user tasks and the

time segments defined within the scope of annotation fusion. Therefore, several functions can be applied

to these raw signals to construct the following feature sets:

• Fc: A cyber feature set consisting of the features that are related to a user’s cyber activities, such

as smartphone app usage patterns, categories of visited web domains and application usage.

• Fp: A physical feature set consisting of the features that are related to a user’s physical movement,

locations (including their semantics), and mobility, such as the magnitude of the accelerometer,

gyroscope and magnetometer signals of user’s smartphone or wearable device, transportation

mode, change of location clusters, and transportation hotspots.

• Fs: A social feature set consisting of the features that are related to a user’s ambient sensing

environment, social profiles and interactions with other individuals on the tasks, such as the

relative noise level surrounding the user, indication of proximity to other individuals or sensing

devices, direct interaction with an individual, or the number of people involved in completing a

task.

Table 5.2: CPS feature sets used in modelling.

Feature Set Features

Cyber Activities

Binary features of uncategorized, social networking, utilities, communication
& Scheduling, news & opinion, entertainment, design & composition, business,
reference & learning, software development, shopping within the scope of one
hour before the task and during the task.

Physical Activities
Statistical features from sliding window model on magnitudes of accelerometer,
gyroscope, and magnetometer readings.

Social Activities
The count of unique ID of wireless access points (i.e., BSSID) and statistical
features from sliding window model on noise level.

Task Labels [Trippas et al., 2019]
Travel, physical, education, meals and breaks, communication, planning,
project, documentation, low-level, admin and management, finance, IT
(software or hardware-related tasks), customer care, or problem-solving.
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Note that the statistical features about CPS activities (as described in Table 5.2) correspond to the

following temporal features extracted from a sliding window model with window size δ = 300 seconds

and 50% overlap: mean, median, maximum, minimum, standard deviation, interquartile range (IQR),

and root mean square (RMS).

Specifically, in each window for Fp construction, the magnitudes of accelerometer, gyroscope and

magnetic field are computed according to the following equation:

magnitude :=
√

x2
sensor + y2

sensor + z2
sensor (5.3)

where xsensor, ysensor, zsensor are the tri-axial sensor values of a smartphone’s sensor (i.e., accelerometer,

gyroscope or magnetometer). Moreover, the noise level and magnitude values from accelerometer,

gyroscope and magnetometer readings are normalised using min-max normalisation.

5.4.4 CPS-based Task Modelling and Learning

Figure 5.4: An example of CPS-based task modelling, illustrating the computation of CPS features for
two tasks (a1 and a2) in different time segments.

In this module, features constructed from the three different feature spaces are integrated together

to build a CPS-based task model. Figure 5.4 shows an example of a task timeline between 10:00 and

15:00 and consisting of two tasks: a1 and a2. Ideally, the CPS-features can be seen in anywhere in the

task timeline (before, during and after a specific task). To build the CPS-based task model, the temporal

dependency of feature sets before, and during the task were considered in our experiment.

CPS-based modelling can be applied to any of the CPS feature sets (i.e., Fc, Fp or Fs). As shown in

the previous section, we expanded Fc to include the cyber features one hour before and during a task,

while a sliding window model is applied to extract statistical features from smartphone sensors for Fp

and Fs. The combination of Fc, Fp and Fs will produce the final set defined as the CPS feature set, which

will be used for learning purposes (i.e., building classifiers for intelligent task recognition).
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The CPS feature set is then used to build a set of classifiers. In this module, the learning process

includes training, testing and internal evaluation processes. Hence, the best classifier can be selected

(based on certain metrics, such as accuracy and F1-score) and used for real-world task recognition on

a mobile user. In our conceptual framework, a real-world scenario is also considered where a mobile

user may provide the feedback for the actual tasks and the portion of sensing logs can be used to

retrain the model (i.e., improve the performance of task recognition model from CPS-based learning

using semi-supervised approach). However, the scope of this research is currently limited towards the

recognition of tasks based on the CPS activities of mobile users.

5.5 Experiment and Evaluation

5.5.1 Mobile Data Collection and Task Capture

To evaluate our task recognition framework, we collected a task dataset from 17 participants over a

maximum of 20 week-days.2 In other words, each participant had to dedicate her time to provide

annotations during a one month period of data collection (from Monday to Friday).

The data collection was performed using Android smartphone apps (RescueTime3 and our sensor

data collection app, denoted as sensing-app) and a desktop app (i.e., RescueTime4, to collect cyber data,

from visited web domains and their categorisations). Our sensing-app recorded sensor data with the

following reading frequency settings:

• Accelerometer: 50 Hz.

• Magnetometer: 50 Hz.

• Gyroscope: 50 Hz.

• Noise level: 1 second.

It should be noted that the actual number of data points are subject to the hardware capabilities of

user’s phones and resource availability, although the frequencies of these sensors were prepared with

these settings. For example, if the user’s phone has the maximum capability of 20 Hz, then the Android

operating system will choose 20 Hz instead of 50 Hz. Moreover, the phone may also run out of battery

during the period of data collection in a day.

To minimise the battery usage of the data collection Android app, we collected these sensor data

within 30 seconds timeframes, and a one minute gap between frames for no data collection mode. The
2Data collection protocol reviewed and approved by the Human Research Ethics Committee at RMIT University
(see Appendix C).

3https://play.google.com/store/apps/details?id=com.rescuetime.android
4https://www.rescuetime.com/download
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collection of sensor data was only scheduled from 06:00 AM to 07:00 PM. Moreover, we provided

the flexibility for the users to pause the sensing-app during the day. The participants reported their

timestamped tasks through the ESM (triggered through hourly app notifications, from 08:00 AM to

07:00 PM). In our proposed framework, a task entity recognition process can be used on the in-situ

annotations after their boundaries are constructed (refer to Section 5.4.2) to assign each reported task to

one of the following task categories (compact categorisation derived from American Time Use Survey5):

• Work-related tasks: Tasks related to the participant’s roles. A participant can have multiple roles

(e.g., many jobs).

• Personal tasks: Tasks related to personal organisation, reflection or care (includes commuting,

cleaning and house improvement).

• Social/exercise/entertainment tasks: Tasks related to social events, exercise and relaxation

(entertainment).

• Caring tasks: Tasks related to taking care of household or non-household members.

• Civil obligations: Tasks related to civil obligations of the participant (e.g., “voting (election),

signing the petition, or participating in a strike (protesting against government policies)”.

5.5.2 Collected Mobile Sensing Data and Task Annotations

In our data collection campaign, the protocol for logging mobile sensing data and its task-capture survey

design are reproduced (and adjusted) from [Liono et al., 2019b] on task intelligence to collect rich

pervasive sensing data. The collection of sensor data is built upon two independent approaches in

acquiring task annotations from participants. The first approach was to use ESM on hourly surveys

(see Appendix A) through the mobile app notifications from 08:00 AM to 07:00 PM. Our sensor data

collection also acquires user annotations via a Daily Reconstruction Method (DRM) approach, to chrono-

logically recall the tasks that the user has performed in a day (see the survey in Appendix B). It should

be noted that the experiments in this chapter are only targeted on the ESM-based task annotations since

their boundaries are not strictly defined (as previously mentioned in the formal problem formulation).

Hence, utilising the data that we collect (including personal lifestyles, movement behaviours and

progress of tasks according to user perception) from real participants will expand the task understanding

beyond this study, which could lead to many interesting research directions on ubiquitous computing.

Figure 5.5 illustrates the sample snapshot of logged mobile sensing data except raw logs of accelerometer,

gyroscope, magnetometer and noise level for a de-identified participant. Note that the data shown in

5American Time Use Survey (ATUS): https://www.bls.gov/news.release/pdf/atus.pdf

https://www.bls.gov/news.release/pdf/atus.pdf
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Figure 5.5 is an obfuscated version of the original logs to preserve the privacy (including GPS locations)

of the participant.

Figure 5.5: A partial snapshot of the raw sensing logs.

We conducted the task annotations surveys based on the ESM method since the idea of ESM is to

minimise human cognitive bias while reducing the reliance on the participants’ ability to accurately recall

earlier experiences. Specifically, a short questionnaire is sent through push notification on an hourly

basis aiming to minimise the interruption to daily activities and tasks. In this study, the annotations

acquired from the ESM process are defined as in-situ annotations. Figure 5.6 illustrates a partial snapshot

of captured task annotations through ESM.

Figure 5.6: A partial snapshot of the captured tasks using ESM.

5.5.3 Task Annotations: Non-professionals and Busy-professionals

In this subsection, we perform an exploratory analysis of in-situ task annotations collected from ESM-

based hourly surveys. The 17 participants in our study are diverse, consisting of two distinct cohorts:

twelve non-professionals (e.g., full-time or part-time students) and five busy-professionals.
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Figure 5.7: Frequency of non-work and work-related tasks: non-professionals and busy-professionals.

Figure 5.7 shows the frequency distribution of non-work and work-related tasks. It is evident from

the independent groups that the busy-professionals have a relatively higher proportion of work tasks

than non-work tasks, and vice versa for non-professional participants. Non-work tasks comprise the

other four big task categorisations: personal, social/exercise/entertainment, caring and civil obligation

related tasks.

Figure 5.8: Frequency of tasks: non-professionals and busy-professionals.

We further expand each task category into more granular tasks based on the recent study performed

by Trippas et al. [Trippas et al., 2019] on work-tasks. Specifically, we leverage their taxonomy to assign

task annotations given by the users to one of the following tasks: travel, physical, education, meals and

breaks, communication, planning, project, documentation, low-level, admin and management, finance,

IT (software- or hardware-related tasks), customer care and problem solving. Any task annotations that

do not belong to any of these task categories are relabelled as “other”. Given the task taxonomy, an

independent research annotator manually assigned each raw task annotation to any of these task categories

(denoted as tasks throughout this chapter). The distribution of these tasks are shown in Figure 5.8 for
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both non-professionals and busy-professionals. In this chapter, we perform task recognition based on

CPS activities of daily human life in various pervasive sensing environments.

5.5.4 Non-professionals vs. Busy-professionals by Sub-categories

5.5.4.1 Work-related Tasks

For work-related tasks, Figure 5.9 evidently shows a large number of education tasks for non-professionals.

it is usual since the majority of these users has the main role of being a student. The following communi-

cation and customer care appeared with total numbers of annotations (below 50 in-situ annotations). This

drastic drop of work-related non-education tasks could be caused by inconsistencies in their other roles

(such as part-time work, which typically starts from late afternoon or evening). We discovered this from

the direct interaction with the users (through weekly meetings between a researcher and corresponding

participant). It should be remembered that all the hourly surveys are subject to the time slots from 07:00

AM to 07:00 PM. On the other hand, the top-five work-related tasks of busy-professionals consist of

admin and management, communication, documentation, project and planning. This distribution is

inherently aligned with busy-professional demographics, where the majority of those in our study are

office-workers.

Figure 5.9: Frequency of tasks in the work-related category, for non-professionals and busy professionals.

5.5.4.2 Personal Tasks

For personal tasks (shown in Figure 5.10), it is interesting that the majority of in-situ annotations reported

for both non-professionals and busy-professionals are associated with travel. From the raw annotations

that the user answered on the ESM-based hourly surveys, we discovered that most of the travel related

tasks are associated with the act of travelling to the locations where they spend most of the time in their
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Figure 5.10: Frequency of tasks in the personal category, for non-professionals and busy professionals.

main roles or occupations (e.g., commuting to university or going to the office in the morning). On

the other hand, the act of leaving those locations, e.g., heading back home after work, are likely to be

marked as personal tasks by these participants. For busy-professionals, there are limited numbers of

physical tasks (personal tasks) reported during the weekdays. This outcome is relatively aligned with

the fact that office workers could be progressing on their tasks without much physical movement, and

be seated for the work-related tasks, such as admin and management, communication, documentation,

project and planning tasks.

Figure 5.11: Frequency of tasks in the social/exercise/entertainment category, for non-professionals and
busy professionals.
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5.5.4.3 Social/exercise/relaxation Tasks

Social, exercise and relaxation (entertainment) related tasks may not be completely aligned with the

taxonomy of tasks. This is shown in Figure 5.11, where the majority of in-situ annotations could not be

associated with any of the information workers’ task categories, therefore being relabelled as “other”.

In the top-five tasks reported (except “other”) by both non-professionals and busy-professionals, these

three tasks are included: communication, travel and education. For social activities, a person would

communicate with another in a gathering event. An activity such as travelling outside the CBD area

can be relaxing and is typically marked as travelling for relaxation. The appearance of travel tasks

(relaxation) is likely to be prominent during public holidays.

5.5.4.4 Caring Tasks

Busy-professionals are more likely to focus on work-related tasks during the days. Therefore, tasks such

as “caring” were less likely to be engaged on weekdays (from morning to afternoon). However, both

cohorts agree that at least communication and physical were usually involved in caring tasks (as shown

in Figure 5.12).

Figure 5.12: Frequency of tasks in the caring category, for non-professionals and busy professionals.

5.5.4.5 Civil-obligation related Tasks

On the other hand, the task such as communication is typically more dominant for civil obligation related

tasks (refer to limited sample data in Figure 5.13). In an event such as signing a petition or participating

in a protest, communication is important to complete the task goal. However, it shows this task category

occurs rarely for the two cohorts. For busy-professionals, caring and civil obligation related tasks would

be sporadic during a typical working day.
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Figure 5.13: Frequency of tasks in the civil obbligation category, for non-professionals and busy
professionals.

After data pre-processing and feature extraction (as detailed in Section 5.4.3), we use a five-minute

sliding window model with 50% overlap for our experiment in the next subsection), the CPS feature sets

contain a total of 7,653 instances for non-professional cohort (on all reported 1,121 in-situ annotations)

and 5,271 instances for busy-professional cohort (on all reported 721 in-situ annotations), respectively.

Consequently, 62 features are extracted corresponding to each task label of the instances, consisting of

22 features of Fc, 21 features of Fp and 8 features of Fs.

5.5.5 Experimental Setup

In order to signify our contributions for CPS activity modelling, we conduct our study over three different

experiment sets:

1. Work-related tasks: In this experiment set, the annotations categorised as “work-related” are

included to perform task recognition (i.e., tasks associated with the main roles/occupations of

corresponding users).

2. Social/exercise/entertainment tasks: In this experiment set, the annotations that belong to tasks

related to social events, exercise and relaxation are included for recognising the associated tasks.

3. Personal/caring/civil tasks: As shown in the previous subsection, the annotations of “caring”

and “civil obligation” related tasks are sparse. Therefore, these two task categories would be

grouped together with personal tasks in the experiment set due to the similar nature of these tasks

(to be completed personally by the corresponding user).
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For each experiment set defined above, we conduct an empirical performance evaluation of in-

telligent task recognition using these following settings on both cohorts of non-professionals and

busy-professionals:

• task recognition based on cyber set (i.e., Fc).

• task recognition based on physical set (i.e., Fp).

• task recognition based on social set (i.e., Fs).

• task recognition based on CPS contexts (i.e., combination of Fc, Fp and Fs).

Separate task recognition using the CPS feature sets discretely are defined as the baselines in our

experiment. In our implementation of intelligent task recognition, we deployed the following classifiers:

• Support Vector Machine (SVM).

• Naive Bayes.

• k-Nearest Neighbour (k-NN).

• Logistic Regression Classifier with Restricted Boltzmann Machine feature extractor, denoted as

LRC (RBM).

• Decision Tree.

• Random Forests.

These classifiers are instantiated using the scikit-learn [Pedregosa et al., 2011] machine learning

tools in Python. To build a Decision Tree classifier, information gain (entropy function) is used in the

tree splitting process. One hundred trees are used to construct the ensembles for a Random Forests

classifier. For building a classifier based on the SVM algorithm, a tolerance parameter of 0.001 is used

with a radial basis function (RBF) kernel. For the Naive Bayes classifier, a variant algorithm Gaussian

Naive Bayes is used. For LRC (RBM), we leverage a Bernoulli Restricted Boltzmann Machine model

to perform effective non-linear feature extraction from CPS feature sets with a 0.06 learning rate, 100

hidden units, and 20 iterations. For k-Nearest Neighbour (k-NN) classification a setting of k = 5 is used.

Before we include the data for training and testing, all annotations that belong to “other” tasks are

removed from our experimentation to reduce the performance bias in the classification result. Therefore,

the intelligent system (e.g., a digital assistant) can focus on recognising essential tasks to provide

necessary supports towards their task completion.
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5.5.6 Evaluation

In order to evaluate and validate the performance of task recognition, stratified five-fold cross-validation

was applied to the instances (produced by the five-minute sliding window model with 50% overlaps)

of CPS feature sets. For the independent experiment of only the cyber feature set (Fp), there are 1,605

instances (951 instances for non-professional and 654 instances on busy-professional cohorts) comprised

of binary features (refer to Table 5.2). These instances correspond to the total number of reported

tasks. This means that different instances (task-windowed instances for Fp, Fs and CPS feature sets and

task instances for the Fc feature set) for the same user can be in both train and test sets. The model

for intelligent task recognition is built based on a person-independent approach. In other words, our

proposed intelligent task recognition framework aims to discover and distinguish the general tasks for

all mobile users, based on CPS contexts.

In our framework, the internal evaluation process is based on F1-score. F1-score refers to the

harmonic mean of precision and recall of task recognition:

F1−scorea =
2∗ precisiona ∗ recalla

precisiona + recalla
(5.4)

Here precisiona refers to the number of correctly recognised tasks divided by the number of all

recognised tasks of a particular class label, and recalla refers to the number of correctly recognised tasks

divided by the total number of existing tasks in a test set, for a particular class label.

The results in Figures 5.14 and 5.16 (F1-score and confusion matrix of best classifier) show the

example of the imperative performance on work-related task recognition when our application is trained

using all CPS features. From the outcome of our empirical evaluation on the three experiment sets, it

is evident that incorporating all CPS feature sets together in the process of building a classifier, will

provide better overall predictive performance.
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5.5.6.1 Recognition of Work-related Tasks

For work-related tasks, the experiment result is validated on the recognition of the following tasks:

• Non-professionals: travel, physical, education, meals and breaks, communication, planning,

project, documentation, low-level, admin and management, customer care and problem solving.

• Busy-professionals: travel, physical, education, meals and breaks, communication, planning,

project, documentation, low-level, admin and management, finance, IT (software- or hardware-

related tasks) and customer care.

Figure 5.14: F1-score of task recognition (work-related): non-professionals and busy-professionals.

Figure 5.15: Boxplots of F1-scores on work-related task recognition: non-professionals and busy-
professionals.

Figure 5.14 shows the overall result of work-related task recognition based on the F1-score (weighted

average over all F1-scores of tasks). The RF model for the non-professionals cohort achieves the best

classifier performance (with F1-score of 52.06%). On the other hand, the RF model is also suggested

as the best classifier (with F1-score of 39.13%) for task recognition. The best models for both cohorts

are attained when they are trained on CPS feature set. Here, RF models are suggested based on the

consideration of F1-scores of all tasks (see Figure 5.15). Although the performance of the best classifier
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Figure 5.16: Confusion matrix of task recognition (work-related): non-professionals and busy-
professionals.

for busy-professionals is relatively lower than non-professionals, this presents an on-going challenge for

an intelligent assistant to optimise work-related task recognition. Moreover, the side-by-side confusion

matrix is detailed in Figure 5.16, which respectively shows the exact proportion of prediction across all

class labels (excluding “other” tasks) of RF models on non-professionals and busy-professionals.

Based on the misclassification we identify from the confusion matrix, we propose possible improve-

ments of work-related task recognition for intelligent assistants on the following associated tasks under

these conditions:

• Proportion of misclassifications on tasks is at least 10%, and

• Accuracy of classification for “true” class label (e.g., “Travel” task) is below 70%.

From our analysis on non-professionals, the majority of work-related tasks are often being mis-

classified as “education” task, despite the stratified cross-validation approach applied to the model.

This result can be caused by the broad task category that is highly relevant to the professions of these

non-professional participants, who are mainly students. On the other hand, physical tasks have a distinc-

tively large proportion of instances being predicted as “admin/management” (62%), “documentation”

(12%), “planning” (12%) or “communication” (12%) for busy-professionals. This result could be caused

by limited physical activities being performed by typical office workers in daily life. For “education”

related tasks, busy-professionals may require a certain environmental condition (e.g., similar to their
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office environment) in order to progress/complete such tasks, given the misclassifications of instances on

“admin/management” (35%), “communication” (28%) and “project” (12%). Evidently, there are repeated

patterns of misclassification between all these tasks of “admin/management”, “documentation” and

“communication”, which may explain the association of these tasks in a typical office setting. Grouping

these tasks (depending on the cohort) could enhance the performance of work-related task recognition.

However, it is a growing challenge for an intelligent assistant to be able to distinguish these tasks to

seamlessly support the mobile users in carrying their everyday work-related tasks.

5.5.6.2 Recognition of Social/exercise/entertainment Tasks

For social/exercise/entertainment tasks, the experiment result is validated on the recognition of the

following tasks:

• Non-professionals: travel, physical, education, meals and breaks, communication and planning.

• Busy-professionals: travel, physical, education, meals and breaks, communication and IT

(software- or hardware-related tasks).

From our observation over the result of five-fold cross-validation, RF model also has shown the best

performance with an F1-score of 36.99% for professionals. However, the DT model is suggested for

busy-professionals since it achieves overall F1-score of 56.44%, which outperforms the RF model by an

absolute difference of 4.2%. The highest performance can still be achieved by these models based on the

CPS feature set. This result suggests that social/exercise/entertainment tasks could be more predictable

to work-related tasks for busy-professionals, and vice-versa for non-professionals.

By understanding the confusion matrix of tasks prediction on social/exercise/entertainment tasks,

it is evident that such degradation of F1-score for non-professionals are mainly affected by substantial

misclassification of “education” (45%) and “meals/breaks” (42%) tasks as “communication”. However,

the misclassification of “meals/breaks” tasks as “communication” (13%) is substantially lower than

“communication” tasks as “meals/breaks” (38%) for busy-professionals. High numbers of misclassifica-

tion are also noticeable for travel and physical tasks for busy-professionals, where they are often being

recognised as “meals/breaks” (23%-37%) and “communication” (17%-28%). Although the number of

class labels for social/exercise/entertainment tasks is limited, it is still important for intelligent assistants

to support mobile users in daily life. Certain types of professions may require high concentration on

work-related tasks. In between those work-related tasks, the users may be engaged on non-work tasks

that may affect user’s activities or even the performance of their tasks on that day. It should be noted that

the progression of their tasks can be affected by user situations in-the-wild.
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5.5.6.3 Recognition of Personal/caring/civil Tasks

For personal/caring/civil tasks, the experiment result is validated on the recognition of the following

tasks:

• Non-professionals: travel, physical, education, meals and breaks, communication, planning,

documentation, admin and management, IT (software- or hardware-related tasks) and problem

solving.

• Busy-professionals: travel, physical, education, meals and breaks, communication, planning,

documentation, admin and management and finance.

Our comprehensive evaluation revealed that RF model for busy-professionals achieves the highest

classifier performance (with F1-score of 51.19%) while RF is also selected as the best model for non-

professionals (with F1-score of 30.43%). Although RF models provide lower overall performance for

non-professionals, a substantial improvement is still noticeable when the model is trained using all CPS

features.

By understanding the confusion matrix of tasks prediction on personal/caring/civil tasks, it is evident

that many of the tasks are misclassified as “travel”, especially for the following tasks: 1) “physical”,

2) “education”, 3) “meals/breaks”, 4) “communication”, 5) “planning”, 6) “documentation” and 7)

“admin/management” for both non-professionals and busy-professionals. For non-professionals, an

intelligent assistant would need deeper insights on how users can be supported on both “planning”

and “documentation” tasks. It is generally known that non-professionals have issues with personal

organisation tasks, especially with the fact that the majority of them are students. Nevertheless, an

intelligent assistant should support more personal tasks because users could be more productive and

have more time to spend on other complex work-related tasks.



Exploratory Insights 109

5.6 Exploratory Insights

The evaluation in the previous section has shown a dominating performance of CPS task recognition

in daily life. In order to understand how informative these CPS signals on intelligent task recognition,

the performance evaluation alone is insufficient. This section presents additional feature analysis and

exploratory insights on the CPS aspect of user perception in performing or completing a task at a given

time.

5.6.1 Feature Importance for Task Recognition

By fitting sensing data altogether (i.e., Fc, Fp and Fs) into the best classifiers (according to task categories),

the feature importance scores can be computed. Once these scores are ranked in descending order, they

can be used to infer which features play crucial roles for intelligent task recognition.

Figure 5.17: Top-10 features for work-related tasks: non-professionals and busy-professionals.

Figure 5.17 shows the example of top 10 features to recognise work-related tasks for non-

professionals and busy professionals, respectively. The machine learning algorithm that performed best

overall (random forests) has been used to compute the feature importance scores. Scores are ranked in

descending order.

We can see that the count of unique access points “social_bssid_f_count” is always included in the

top 10 features in most experiment sets (except social/exercise/entertainment tasks for non-professionals).

At least 80–90% of top 10 features for task recognition are in fact, dominated by physical features.

For busy-professionals, the analysis shows that the recognition of social/exercise/entertainment tasks is

mainly affected by the importance of whether a user is engaged in “Business”, “Design & Composition”

or “Communication & Scheduling” cyber activities in the previous hour, and is currently engaged in

“Shopping” based cyber activities. This is aligned with the results reported in Section 5.5.6.2, where



Exploratory Insights 110

the predictability for social/exercise/entertainment tasks is higher than work-related tasks on busy-

professionals. In fact, the presence of cyber activities does not emerge in top-10 features for work-related

task recognition on both cohorts. Our experiment also shows that no cyber activities are included in

top-10 features for both cohorts to recognise personal/caring/civil tasks. This could be aligned with

substantial needs for physical and social activities in carrying the tasks, such as “preparing myself to go

to work (personal care or organisation)” or “taking care of my nephew”.

5.6.2 Participant Perception of CPS Activities

Figure 5.18: Overall participant perception of CPS activities on their tasks.

Figure 5.18 shows the general overview of participant perceptions of CPS activities on their engaged

tasks, reported in the hourly surveys. From the survey answers, it is evident that users perceive that

the majority of work-related tasks (up to 673 tasks) require either cyber activities only or both cyber

and social activities. At least 93 tasks were reported requiring all CPS activities in order to progress or

complete the work-related tasks. For social/exercise/entertainment-related tasks, the majority of tasks

also required cyber activities only. Examples for this set of tasks would be “watching/browsing youtube

videos”, “read online news”, “watching a tv series on Netflix”, “listening to podcast” and “listening to

music”.

On the other hand, such social/exercise/entertainment-related tasks that users perceive to require all

CPS activities can be complex and more abstract by their nature, for example: “shopping for swimwear

in the CBD”, “Sport, fitness and calling with a friend” and “relaxing at home”. For personal/caring/civil

tasks, a total of 254 tasks were reported as majority tasks that required physical activities only. However,
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the lowest count of 30 tasks was reported to require both cyber and social activities, followed by 38

tasks reported to require cyber activities only. In both cases, the participants may perceive less needs for

physical activities to complete personal-related tasks such as “making a phone call to parents”, “asking a

friend to follow up with a certain application (administrative related)”, “market research”, “checking

emails”, “waiting for the train” and “personal admin tasks at home”. Interestingly, participants reported

that any of CPS activities may not be needed for 83 personal/caring/civil, 35 social/exercise/entertainment

tasks and four work-related tasks. These tasks can be subjective depending on the in-situ mental state

of the participants, which explains the higher concentration of the “other” category of tasks identified,

followed by education, meals/breaks, travel, and planning-related tasks.

5.6.3 CPS and Participant Perception Models

As described previously, users have their own perception on the needs of CPS activities in progressing

or completing their tasks. It is natural to wonder whether the type of signals indicated by participants

may be useful to select which set of features to use to feed a machine learning model. Hence, we extend

our exploration by comparing models that use the set of signals (i.e., a combination of C, P, and S

signals) based on participant perception against the combination of features that performs best overall:

using all CPS signals. Based on the needs of CPS activities reported/perceived by the participants,

the combination of binary answers (i.e.,“YES”/“NO”) can be used to construct participant perception

models. There are six possible combinations of feature sets to construct a participant perception model,

consisting of: C & P, P & S, C & S, C, P, and S.

Figure 5.19: Perception of CPS activities on top 4 work-related tasks (non-professionals).
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Figure 5.20: Perception of CPS activities on top 4 work-related tasks (busy-professionals).

Figures 5.19 and 5.20 show the overview of participant perception on the needs of CPS activities for

top four work-related tasks (ranked by the frequency of tasks for each cohort). For each task type, we

create the baseline task recognition model, which selection of feature sets is decided by the mode of

participant perception inputs. For example, the recognition model for admin/management tasks would

be built by taking in C and S feature sets.

Figure 5.21: User-perception vs. CPS models: top-4 work-related tasks.

Our analysis reveals the following accuracy comparisons on the recognition of top-four work-related

tasks (shown in Figure 5.21):

1. Non-professionals.

• Education (CPS model: 72% vs. C model: 73%)

• Communication (CPS model: 35% vs. C&S model: 27%)

• Customer care (CPS model: 40% vs. P&S model: 40%)

• Documentation (CPS model: 14% vs. C model: 4%)
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2. Busy-professionals.

• Admin/management (CPS model: 59% vs. C&S model: 62%)

• Communication (CPS model: 35% vs. C&S model: 32%)

• Documentation (CPS model: 28% vs. C model: 18%)

• Project (CPS model: 40% vs. C model: 16%)

Based on the above comparisons, the participant perception model slightly outperforms the top tasks

for both cohorts. The greatest improvement by 3% can be noticed on admin/management recognition,

where the model is constructed based on the C & S feature set. In most cases, no substantial improvement

is prominent in these comparisons. In fact, some features sets informed by the participant perception

(especially when the amount of annotations is low) may lead to lower performance than the model that

uses all CPS signals. In summary, all CPS signals seem to be informative for recognising all types of

tasks. Our analysis also suggests that the perception of CPS signals reported by participants may be

subjective and not necessarily accurate when used to select features for task recognition models.

5.7 Implications and Limitations

The development of accurate task recognition methods such as those described in this chapter has several

implications for the design of intelligent and assistive technologies. By being able to reliably recognise

tasks from users’ CPS activities, a range of supports can be provided to users as the task is ongoing, e.g.,

• Recommend resources or skills/actions that are relevant and/or required for task completion.

Figure 5.22 shows an overall distribution of application types started over a randomly selected

task “documentation” for the busy professional participants in our study.

Figure 5.22: Top-10 features for work-related tasks: non-professionals and busy-professionals.
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Note that this application types are automatically generated by the RescueTime app. Though

the association between this particular task type and the applications is not guaranteed, some

interesting patterns were observed which may suggest some personalised resource recommendation

for task completion. For instance, a major portion of documentation tasks required ‘entertainment’

applications to be run concurrently. The future intelligent assistant could recommend appropriate

entertainment contents based on the user profile which would enhance the work productivity.

• Task progression measurement. Task recognition can also be applied retrospectively after the task

is performed. By understanding the context of a task could help measure task progression and

task completion;

• Task-related content recommendation. Task recognition can be utilised to recommend contents

that promote serendipity and information discovery related to the current task;

• Guided tasks. The accurate recognition of a particular task would offer direction on next steps

(e.g., next task/sub-tasks).

• Notification management. Some tasks may require uninterrupted attention for an efficient com-

pletion. Task recognition could enable maintaining singular focus on the task at hand (e.g., to

suppress notifications unrelated to the task);

• Detect on-task/off-task behaviours. Task recognition could further facilitate the understanding of

on-task/off-task behaviours of users which may be affected by digital/physical intrusions (e.g.,

receiving e-mails/calls from clients, someone entering the office).

• Task reporting. Retrospective task recognition could be leveraged to generate summaries / periodic

reports related to the completed tasks. It would be utilised to understand the tasks users perform

in different situations and to generate contextual reminders if required.

It should be noted that the study described in this chapter is constrained by the time frame for data

collection: over four consecutive weeks, only during working days, and from 7am to 7pm. Collecting

data for a longer period, including weekends, and more time per day, would allow to analyse seasonal

behaviour of tasks and activities, as well as a broader set of tasks (e.g., more social/exercise/entertainment

tasks for busy professionals).

In reality, collecting longitudinal life sensing data involves significant challenges for ubiquitous

computing research due to the natural course of human behaviours (e.g., disengagement). For instance,

we had multiple cases of early abandonment during our data collection (e.g., participants dropping out

after the first week). One area for future investigation is the cross-validation that we have performed,

In our study, all instances are stratified for different partitions according to the discretisation of tasks,

similar to the approach in the activity recognition study (e.g., [Liono et al., 2016, Abdallah et al., 2018,
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Liono et al., 2018a]). For the progression of tasks over time (e.g., weeks to months on a certain task

related to a particular project), the stratification of instances based on the discretisation of tasks for

different partitions may no longer valid, due to the potential loss of sequential information that may be

crucial for recognising the task. Different validation strategies such as stratification by days per user

may lead to more accurate recognition of tasks. Moreover, the current experimental results are limited to

task recognition using the historic sensing logs collected from participants. Real-time task recognition

may require sequential contextual information from the sensing data. The labelled sensing logs used in

this chapter can aid automated analysis and labelling of future unlabelled data sets in an unsupervised

manner. Eventually, this data could be used to analyse a broader variety of task behavior.

5.8 Conclusions and Future Work

Task recognition has many applications in digital assistants, productivity applications, and other intelli-

gent and assistive technologies. This includes interruption support, task management, and generating

task-relevant recommendations to help users make progress on their tasks. In this chapter, we presented

methods to recognise user tasks based on sensing logs of CPS activities. We conducted a detailed

analysis and showed that we can recognise tasks more accurately by fully utilising a range of CPS

features.

Future work includes experimenting with richer feature sets, performing additional user studies (with

more users, a broader portfolio of tasks, and different user cohorts), and integrating our task recognition

methods into technologies to help boost user task efficiency and effectiveness, among other goals.
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Chapter 6

MANAGING AND SCALING MOBILE

SENSING AND IOT DATA WITH

QUALITY-DRIVEN SUMMARISATION

6.1 Introduction

Previously, we have discussed progressive steps of our contributions from optimal windowing (for

temporal segmentation), multi-context recognition, annotation prediction, to human task recognition.

All of these chapters are presented based on the notion of in-the-wild mobile sensing. Consequently, we

expand our contributions further to scale up mobile sensing data collection and experiment effectively. In

this chapter, we formalise the problem of extracting compact representations of raw data streamed given

the data quality measure that can be derived from multi-sources (i.e., large number of smart devices

acting as “raw data providers”).

Internet of Things (IoT) is an emerging area where everyday objects can be included as an integral

component of the Internet and are able to communicate and share the knowledge between each other, and

with users [Atzori et al., 2010, Georgakopoulos and Jayaraman, 2016]. In the IoT age, we envision that

there exists a need for multiple data-as-a-service providers (we term these providers as data brokers such

as [Perera et al., 2014]) who perform the collection, aggregation and sharing (for monetary benefits) of

IoT data. Cloud computing has been used in the past to store IoT data. However, with the rapid increase

of IoT device deployments and applications the cost of storage per unit can increase exponentially over

time.

116
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New techniques and approaches are required to cope with the growing amounts of data that are

collected from IoT devices (and the supporting ecosystem) to serve the needs of various applications and

users (e.g., data analytics applications that rely on IoT data to arrive at critical decisions). For example,

in ubiquitous computing research, smart data-analytics applications rely on robust, yet compact machine

learning models which are essential for the functioning of such applications. It is clear that providing

unlimited storage for the raw data stemming from IoT in the cloud is impractical.

An important aspect of storage management of IoT data concerning such applications is the quality

of data (QoD). Quality of data is defined as a metric that influences the performance (i.e., accuracy,

recall and validity) of a machine learning model used by data analytics applications. Therefore, QoD

is an essential factor to meet requirements such as accuracy of the machine learning and data mining

models employed by the smart applications. According to the Data Warehousing Institute [Wayne, 2004],

data quality problems result in estimated costs of $600 billion a year for US businesses. In addition,

US economy receives significant impact that costs $3.1 trillion a year due to poor data quality within

businesses and government [Wikibon, 2012]. However, determining QoD without prior knowledge of

the application, nor any feedback from data consumers is a difficult challenge.

The problem of data quality (especially in the IoT domain) is challenging to address due to the noise

and uncertainty induced by the large amounts of data produced by heterogeneous IoT devices (we term

these devices that produce data as data providers). Moreover, the existing work (e.g., [Batini et al., 2009,

Wang et al., 1993, Wang and Strong, 1996, Lee et al., 2002, Cai and Zhu, 2015, Zaveri et al., 2016])

on data quality often requires domain knowledge, annotations, or semantic labels. To the best of our

knowledge, there is no study that has addressed the reliable measurement of data quality from large

amounts of IoT data, regardless of their data types and application domains. Consequently, it is critical

to address this issue of data quality to cope with the emerging problem of storing and managing IoT data

in cloud.

In this chapter, to achieve the goals of developing a domain agnostic approach for QoD-aware

storage management in IoT, we propose:

1. A formal model to represent data quality for data stemming from IoT;

2. A novel technique to define and compute the QoD without requiring any feedback from users of

the data (we term them consumers) nor any prior knowledge of the application domain;

3. A smart data summarisation mechanism for managing storage based on computed quality of data

(QoD);

4. A novel framework named QDaS that enables management of big data and incorporates the novel

QoD estimation and data summarisation techniques.
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To the best of our knowledge, this work is a pioneering effort that addresses the ability to perform

storage management autonomously based on the quality of data inferred from the use of the acquired

data (we call this data utility). Consequently, it requires no direct feedback and domain knowledge of the

data consumers. Most importantly, our proposed system offers the capability to provide the indicative

measurement that can be leveraged by data providers in improving the quality of their datasets.

The rest of this chapter is organised as follows. Section 6.2 provides the background and related

work. This is followed by problem definition in Section 6.3. Section 6.4 describes QDaS, the domain

agnostic framework for storage management. Section 6.5 presents a technique to generate data usages

when the data utility is unavailable. Finally, Section 6.6 presents the outcome of extensive evaluations to

validate the robustness and effectiveness of QDaS using real-world datasets.

6.2 Related Work

6.2.1 Data Collection from Internet of Things

Many research experiments such as Reality Mining [Eagle and Pentland, 2006], Mobile Data Chal-

lenge [Laurila et al., 2012], Device Analyzer [Wagner et al., 2014], and StudentLife [Wang et al., 2014a]

exemplify analytics-based applications based on data sensed from IoT devices such as smartphones. The

data collected from the IoT ecosystem (called data providers) would require large storage capacity in

cloud repositories. Inherently, it needs to be easily accessed with high availability and be consumed

seamlessly for further analysis by data consumers such as data analytics platforms.

Another inherently significant challenge with IoT data collected for data analytics applications is

the difficulty in establishing the notion of quality of data, especially if they are provided by multiple

IoT data providers. For example, consider a smart city scenario. There are many environmental and

experimental conditions that can affect the quality of collected data, such as malfunction of sensors

within the smart city networks and infrastructure. Moreover, the signal patterns that are captured by the

ubiquitous sensors may change due to a particular environmental condition such as [Ye et al., 2014],

which results in the needs for calibration and smoothing techniques in order to produce a better data

quality. Consequently, these data quality issues are strongly related to the study of "veracity", one critical

element of the Big Data concept [Assunção et al., 2015].
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6.2.2 Quality of Services (QoS) and Quality of Data (QoD)

In service-oriented research such as [Hachem et al., 2014, Neiat et al., 2014], the focuses were directed

towards composition and quality service deliveries that are often associated with certain measurements

such as coverage, service time, certainty and freshness. Other related work on cloud computing

such as [Beloglazov and Buyya, 2010, Nathuji et al., 2010] provided energy-efficient solutions while

maintaining high QoS for cloud data centres. In [Wang et al., 2014b], a solution to evaluate the quality of

cloud services accurately was proposed by using fuzzy logic control based on the uncertainty of services.

However, this study is restricted to the performance of cloud service providers (i.e., service uncertainty),

which is mainly measured based on the response time of service transactions. According to the basic

QoS measure models proposed in 2007 [Ardagna and Pernici, 2007], data quality is included as one of

the important aspects of web service composition. Unfortunately, there is a lack of study relating to data

quality of service providers.

The notion of QoD is prevalent in the systems that provide Data as a Service (DaaS). Inherently,

QoD is often associated with data privacy where data is exposed through web services based on certain

criteria (in [Truong and Dustdar, 2010], they are called data concerns). At the theoretical level [Batini

et al., 2009], the dimensions of data quality consist of the following basic components: accuracy,

completeness, consistency and timeliness. In recent years, the dimensions of QoD have been expanded

through the studies in many domains [Wang et al., 1993, Wang and Strong, 1996, Lee et al., 2002, Even

and Shankaranarayanan, 2007, Lane et al., 2010, García-Recuero et al., 2013, Cai and Zhu, 2015, Zaveri

et al., 2016] (e.g., availability, validity, integrity and relevancy). In IoT applications, it is important

to ensure high QoD is maintained progressively according to certain Service Level Objective (SLO).

In service-oriented computing, SLO is enabled through the Service Level Agreement (SLA) between

service providers and consumers. Essentially, this concept is also applied to the distribution of data in

DaaS applications, which can be described through provider-consumer interaction model [Wu et al.,

2013]. In [García-Recuero et al., 2013], the fulfilment of high QoD is achieved through data replication

across different geo-located clusters, which requires high resource availability for data storage. In this

chapter, we are particularly concerned with the limited cloud storage space for data providers to retain

continuous streaming of high quality of data from the IoTs.

Despite the comprehensive research to achieve high data quality from data collection tasks (e.g.,

[Ganti et al., 2011, Sherchan et al., 2012, Jayaraman et al., 2014, Kawajiri et al., 2014, Maharjan et al.,

2016, Cardone et al., 2016, Hu et al., 2017], there is a lack of study on the estimation and maintenance

of data quality based on contributions from the crowds. In this chapter, we envision that once the quality

can be defined concretely, it can be enhanced further by motivating data providers to review their datasets.
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To the best of our knowledge, there is no related work (including a utility model) that has addressed the

contributions provided by data consumers that can be used to motivate data providers to enhance their

data quality.

In the field of data management, Fan [2015] claimed data consistency, data deduplication, information

completeness, data currency and data accuracy as foundations of data quality. However, service-oriented

computing provides a different paradigm to deliver information based on a user’s criteria, which focus

on coverage, accuracy and freshness of application services. In fact, poor data quality often results in the

degradation of predictive models that are produced by machine learning algorithms. In this chapter, we

present a domain agnostic framework that can be used to assess data quality in order to perform quality

driven summarisation of data for efficient storage management.

6.2.3 Data Trading and Resource Provisioning

In recent years, there have been many research efforts focusing on the policy design and governance

of data trading [Iyilade and Vassileva, 2013, Aïmeur et al., 2016] to resource provisioning [Calheiros

et al., 2011, Chaisiri et al., 2012, Laatikainen et al., 2014, Cheng et al., 2015] to retain these data. Most

of these studies have focused on the area of cloud computing research given its benefits in terms of

optimising the costs of ephemeral resources and preservation of user privacy for the given datasets.

In this domain, data trading is the core process that enables the collaboration between peers and

knowledge sharing between data providers and data consumers. Consequently, the notion of integrity,

security and privacy of data have to be established - a common theme in recent studies [Iyilade and

Vassileva, 2013, Aïmeur et al., 2016]. Moreover, the emergence of the data marketplaces (such as [Cao

et al., 2016]) has become increasingly significant due to the needs of data owners to share and sell

their datasets. However, our study involves the design of data brokers as the general representations of

data marketplaces or data exchange services. In a real-world scenario, data brokers may have limited

resources to store data from the providers and provide reasonable QoS for consumers. Despite the related

works in resource provisioning, there is a lack of study on storage management based on data quality

that is estimated from data utility. In addition, a domain agnostic solution is required to manage diverse

datasets that are supplied by data providers.
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6.3 Problem Definition

The main challenge in this study is to define the Quality of Data (QoD) in a broader context, where the

data can be shared collaboratively between the users and their data usage can be used as an indicative

measurement of their usefulness. Therefore, we formalise the problems based on a traditional data

provider-consumer interaction model. In general, data providers would require on-going subscriptions

from the data consumers (government, data analytics platform, etc.). Since permanent storage is not

feasible to retain all datasets supplied by the data providers, the main research challenges addressed in

this chapter are:

• How to assess the quality of heterogeneous datasets provided by multiple IoT data sources?

In this chapter, dataset refers a collection of data from a provider over a certain time period, for a

specific application domain.

• How can we summarise the datasets for effective storage and management while maintaining a

high quality of data?

6.3.1 Provider-Consumer Interaction Model

In a practical application of a provider-consumer interaction model [Wu et al., 2013], data is distributed

by the providers through a data broker to meet consumer queries and requirements. The data broker

is responsible for storing and managing the IoT data. There have been many research efforts in this

area, including the exchange of data agreements [Truong et al., 2011] and the management of data

stores [Sellami et al., 2016]. However, the related work on the quality of data itself have shortcomings.

Therefore, the clear gap that can be found in this research is related to the value-based quality estimation.

In this chapter, value-based quality estimation refers to the quality estimation that can be derived from

the data consumers, which can also be beneficial to them. Consequently, the quality of data is essentially

determined by the value it holds for the consumers. This can be measured by the frequency and the

relevancy of data consumption from the consumers’ point of view.

Figure 6.1 shows a simple representation of a responsible entity (namely a data broker) in distributing

the data between providers P and consumers C. In the proposed formal modelling of quality of data, we

use the term datasets to represent IoT data to be used by data analytics applications.
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Figure 6.1: Data broker layer in provider-consumer interaction model.

6.3.2 Storage Management for Data Brokers

Let P = {P1,P2, ...,Pn} be the set of providers with n as the index of P and C = {C1,C2, ...,Pm} with m

as the index of C, r is the index of r-th dataset provided by Pn (i.e., Dnr). Each Dnr contains the instances

composed of < t,F > where:

• t is the unique timestamp of the corresponding instance.

• F is the vector of d-dimensional feature values, where F = { f1, f2, ..., fd}. In this chapter, we

describe the attributes of a given dataset Dnr (excluding t) as features. Each dataset Dnr provided

by Pn may have different d feature dimensions. In this case, the type of application, data and

dataset dimension are not known a priori. Moreover, Dnr may be updated by Pn over a period of

time and be accessible through data subscriptions of Cm (refers to Figure 6.2).

In the given example of Figure 6.1, the data broker has several issues in terms of storing all the

data in the given Dnr and the capacity to deliver these datasets to Cm due to storage limitation. In

cloud computing, this can also be affected by external factors such as the budget (costs) for having the

resources to store the data.

Since the storage is limited, the problem can be formalised to reduce the number of instances in the

given dataset. In other words, compact representation of datasets should be stored instead of permanently

retaining all the raw data given by Pn. Hence, storage management should be performed when a certain
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Figure 6.2: An example of data flow from data providers P to data consumers C.

threshold α is reached in terms of storage capacity. To extract a compact representation of dataset

instances for each Dnr, the quality of data needs to be measured.

Essentially, quality of data can be inferred based on the intelligence that can be acquired from the

data consumers. In other words, the value of a dataset can be determined based on the utilisation by

Cm. Inherently, high quality of data can be inferred as the product of high data utility. In short, frequent

access/usage of data results in a higher utility value.

6.4 QDaS: a QoD-driven Framework for IoT Storage Management

In a typical IoT application, the data streamed from the real world are often found with noise and

inconsistencies. The variability of data is dominant and thus the application domains, feature dimension,

data size and data predictability are unknown in a priori. Therefore, there is a significant need to provide a

smart solution for storage management in the cloud, since there can be constraints in terms of operational

costs and availability of storage resources. In this chapter, we seek to solve this problem by selectively

summarising data based on the notion of estimated data quality which can be inherently derived from the

consumption of corresponding datasets. To address these challenges, our QDaS framework incorporates

a mechanism for smart data summarisation based on QoD that are derived from usage patterns of the

data.
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Figure 6.3: General architecture of QDaS.

The general architecture of QDaS is depicted in Figure 6.3. It is designed to be domain agnostic

and hence does not require direct feedback or additional metadata from data consumers. Instead, QDaS

assumes a typical setting where data consumers need to have continuous subscriptions to the datasets

given by the data providers. The details of QoD estimation and technique for smart data summarisation

will be elaborated in the following subsections.

6.4.1 Quality of Data Estimation

6.4.1.1 Quality Definition based on Data Usages

The utility monitor component (as shown in Figure 6.3) in QDaS should capture the usage metrics (such

as frequency of download/access) of subscribers (data consumers) for each dataset over the time. These

metrics are then used as indicative measures to define the quality of data of a given dataset Dnr. In short,

the quality of a dataset is defined based on the data utility (i.e., data usage) within a certain temporal

duration (i.e., from a start time tstart to end time tend as shown in Figure 6.4).
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Figure 6.4: Data slice for quality estimation and data summarisation.

In this case, let us define the frequency of usage as a metric for data utility. For every non-empty

data slice of Dnr from tstart to tend (referred as SlicedDi), the quality of data Qutlty of SlicedDi can be

computed as follows:

Qutlty = usage(SlicedDi)/
b

∑
j=1

usage(SlicedD j) (6.1)

where usage(X) is the usage function that produces measurement for data usage of data slice X , b is

the total number of all non-empty data slices (denoted as SlicedDall ), SlicedDi ∈ SlicedDall . SlicedDall

is the list of data slices that is derived from all datasets Dnr having t of its data point within the range

of tstart ≤ t ≤ tend . In short, the numerator in Equation 6.1 is the usage of data slice extracted from

the target dataset for quality estimation, while the denominator is the sum of usages for all data slices

obtained from all datasets of the listed providers. In Figure 6.3, the process to compute Qutlty refers to

Value-based Quality Estimator component.

6.4.1.2 Categorisation of QoD

Once the quality of data utility Qutlty is computed for each data slice, they can be grouped according to

their quality measures. In this case, the categorisation of high and low QoD can be established by simply

setting a threshold δ , which can be derived by a given function for all Qutlty of non-empty data slices

as a data-driven approach. In our case, the median function is used to compute δ , where ∀ Qutlty > 0.

Hence, the categories can be divided into the following:

• Low Quality LowQutlty where min(Qutlty) ≤ LowQutlty ≤ δ

• High Quality HighQutlty where δ < HighQutlty ≤ max(Qutlty)
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It should be noted that the categorisation of QoD is crucial due to fact that data slices are likely to be

summarised if they belong to LowQutlty category.

6.4.2 Coin Toss Test for Data Summarisation

In this section, we explain the process that we included before the actual execution of data summarisation.

All data slices will have chances to be selected for summarisation. However, the decision to summarise a

given data slice should be determined by a random chance (with a certain probability) that is influenced

by its data quality (i.e., Qutlty). Hence, we propose a generative approach (refers to Section 6.4.2.2)

that can be integrated with the coin toss process. Consequently, the result of the coin toss process will

determine if the data slice needs to be summarised. The result of a coin toss is either Head or Tail.
In this case, no summarisation would be performed on a given data slice if the result of a coin toss is

Head. Hence, the probability of getting a Head (denoted as P(M)) is redefined based on the following

approach.

6.4.2.1 Chinese Restaurant Process (CRP)

CRP is a stochastic process that is derived from the concept of customer seating allocation to potentially

infinite number of tables [Aldous, 1985]. In the machine learning research, it is often associated

with many applications of nonparametric bayesian methods (e.g., Dirichlet process [Ferguson, 1973]).

The overall intuition is driven where the customer will likely to sit at a table with more customers in

comparison to the tables that have fewer customers. In CRP, a concentration parameter α is used to

control the computation of probability for each table. Therefore, first customer will be allocated to the

first table with probability α

α
= 1. Subsequently, the following customer ci will be either allocated to an

empty table with probability α

i−1+α
or occupied table with probability n

i−1+α
. In this context, n refers to

the number of customers that have already been allocated to the corresponding occupied table.

6.4.2.2 Monte Carlo Chinese Restaurant Process (MC-CRP)

In the Monte Carlo approach, the simplest form of the test can be performed where the probability P(M)

is derived from the repeated ntrial number of trials, which is also based on the quality Qutlty of a data

slice. Hence, we propose to incorporate CRP in every trial where each table is labelled as Head with

the probability P(H). In this chapter, we call this method as Monte Carlo Chinese Restaurant Process

(MC-CRP).

P(H) is derived based on the proportion of the region (category of QoD in Section 6.4.1.2) that

Qutlty belongs to.
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If Qutlty of SlicedDnr is LowQutlty, then

P(H) =
median(Qutlty)−min(Qutlty)

MAXQ−min(Qutlty)
(6.2)

where MAXQ is the upper bound of QoD. MAXQ is defined as:

MAXQ =

max(Qutlty)+ γ, if (max(Qutlty)+ γ)< 1

1, otherwise
(6.3)

where γ is an additional parameter introduced to control the output MAXQ.

If Qutlty of SlicedDnr is HighQutlty, then

P(H) = 1−
median(Qutlty)−min(Qutlty)

MAXQ−min(Qutlty)
(6.4)

From our observations, high P(H) resulted in a higher probability P(M) from repeated trials of

Monte Carlo simulation. On the other hand, low P(H) resulted in a lower probability P(M). In this case,

P(H) signifies the survivability of SlicedDnr . Hence, a result of Tail will let SlicedDnr to be summarised,

given a biased chance of having Head with probability P(M).

6.4.3 Smart Data Summarisation Technique

This subsection will discuss the technique of Smart Data Summarisation employed by QDaS. One

algorithm of the smart data summarisation is described below: Algorithm 2.

Algorithm 2 Data Summarisation Algorithm
1: procedure DS(Dnr, tstart , tend )
2: countori← Count(Dnr) . Original count of Dnr
3: Qutlty← QualityForDataUtility(Dnr, tstart , tend ) . refers to Equation 6.1
4: Pn← GetDataProvider(Dnr)
5: RulesPn ← RetrieveRules(Pn) . Retrieve the rules of data summarisation for Pn
6: ClusR← DC(Dnr) . Extract clusters using density based methods
7: SlicedDnr ← Pop(Dnr, tstart , tend ) . Data slicing on Dnr
8: R(SlicedDnr ,ClusR,Qutlty,RulesPn ) . Apply the summarisation function to data slice
9: Dnr ← SlicedDnr +Dnr . Add data slice into Dnr

10: countprov←Count(Dnr) . Count the instances in Dnr after data summarisation
11: SS =

countori−countprov
countori

. Calculate the ratio of space saving
12: U pdateDataBank(Dnr,SS)
13: return Dnr
14: end procedure

The input for data summarisation algorithm consists of three main parameters: Dnr, tstart and tend .

These parameters are required as the data summarisation can be performed for a given data slice of

Dnr within the range of tstart and tend . Essentially, the input parameters are similar to the Section 6.4.1.
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In fact, the estimation of QoD for the given data slice is an inclusive process in the early steps of

the summarisation procedure (denoted as DS procedure in Algorithm 2). For a given data slice of

Dnr denoted as SlicedDnr (a portion that is taken out through the Pop(...) operation), the data slice

summarisation process referred as R(...) requires the following items:

1. Data slice (denoted as SSSllliiiccceeedddDnr ) within the range of tstart and tend from Dnr.

2. Quality of data (denoted as QQQutlty), regarding the utility from data consumers’ viewpoint.

3. Rules (denoted as RRRuuullleeesssPn) for data summarisation, pre-defined by the provider Pn that is identified

from Dnr.

4. List of clusters (denoted as CCCllluuusssR), produced by density-based clustering process.

The procedure of data summarisation requires the initial computation of QQQutlty, which refers to

previous quality estimation in Equation 6.1. Subsequently, it is followed by the provider identification

for the dataset and its RRRuuullleeesssPn , which are essentially pre-defined by the corresponding provider. In QDaS,

the providers have to be aware that their data is subject to summarisation. Hence, the summarisation

functions (rules) must be defined prior to publishing their data through QDaS’s platform (i.e., a data

broker).

Before slicing the portion of data out of Dnr for data summarisation, clustering must be performed.

In the QDaS framework, density-based clustering (e.g., DBSCAN) is recommended. Essentially, the

clustering is required as it plays a significant role in transforming the data slice SSSllliiiccceeedddDnr into a new set

of data representation. In this chapter, the transformation of these instances refers to data summarisation

process according to the rules given by the dataset’s provider. Hence, to perform the transformation of

data representation, both quality (inferred from its usage) and natural grouping of the given data portion

are required in our proposed framework.
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The following Algorithm 3 shows the sequence of data slice summarisation process (referred as

R(...) function), which requires the set of parameters SlicedDnr , ClusR, Qutlty, and RulesPn .

Algorithm 3 Summarisation of a Data Slice
1: procedure R(SlicedDnr ,ClusR,Qutlty,RulesPn )
2: coin_test← MonteCarloTest(Qutlty)
3: if coin_test is success then
4: cluster← None
5: bu f ← [ ] . Initialise empty time-interval buffer
6: summarisedData← [ ]
7: for each instance in SlicedDnr do
8: prevCluster← cluster
9: cluster← Identi f yClusterO f Instance(instance,ClusR)

10: if cluster , prevCluster and prevCluster is not None then
11: newInstance← Summarise(bu f ,RulesPn )
12: summarisedData.append(newInstance)
13: bu f ← [ ]
14: end if
15: previousCluster← cluster
16: bu f .append(instance)
17: end for
18: if length(bu f )> 0 then
19: newInstance← Summarise(bu f ,RulesPn )
20: summarisedData.append(newInstance)
21: bu f ← [ ]
22: end if
23: if NeedsArchiving(SlicedDnr ) then
24: ExecuteArchivingProcess(SlicedDnr )
25: end if
26: SlicedDnr ← summarisedData
27: end if
28: end procedure

Before justifying whether to produce a new data representation, a coin toss test (based on probability

derived from Monte Carlo simulation) needs to be performed. Consequently, the data summarisation

process will continue if the coin toss test is successful based on the intuition that low quality of data will

have a high chance for data summarisation (refer to the approach in Section 6.4.2.2).

For every instance in SlicedDnr , its cluster needs to be identified. Hence, a buffer bu f is used to hold

consecutive instances that belong to the same cluster. When the identification of cluster changes, the

data summarisation is applied to all instances in the buffer according to the provider’s rules RulesPn .

In other words, the cluster change detected in Algorithm 3 determines the portion of data (indexed by

timestamp t) in SlicedDnr to be summarised since the last cluster change.

In a real world scenario, the raw data could still need to be stored for certain purposes (e.g.,

provenance). Therefore, we also introduce the notion of data archiving in QDaS, which is enabled after

summarising SlicedDnr (line 23–25 in Algorithm 3). Ultimately, this procedure will replace the original

SlicedDnr with a new data representation, which will be integrated back to Dnr.
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6.4.3.1 Provisioned Value for Data Providers

Since the number of instances for a dataset Dnr can be reduced through the smart data summarisation

process in QDaS, the ratio of space saving (referred as SS in Algorithm 2) can be used as the indicative

measure to motivate the data providers to review and improve the quality of their data. Essentially, SS of

a given dataset Dnr can be computed via:

SSDnr =
C(Dnr)−C(DS(Dnr, tstart , tend))

C(Dnr)
(6.5)

where C(DS(Dnr, tstart , tend)) is the total count of instances in Dnr after data summarisation and C(Dnr)

is the total count of original instances in Dnr (i.e., before data summarisation). In this case, greater SS

indicates worse result as the size of dataset Dnr for a provider Pn is greatly reduced. Hence, high SS

values should motivate data providers to review their datasets carefully before publishing them to data

consumers.

6.4.3.2 Reputation of Providers

Moreover, our framework offers the capability to estimate the quality of providers based on the space

saving ratio of their data, as the immediate result of QDaS’s data summarisation. The indicative

measurement to be given to data consumers is referred as reputation. Hence, the reputation of a data

provider Reputation.Pn can be computed as the following:

Reputation.Pn =
SS.Pn

∑
b
i=1 SS.Pi

(6.6)

for b is the count of all providers P, Pn ∈ P and SS.Pn is the product of an aggregate function for all

datasets of Pn. Essentially, SS.Pn can be obtained by computing mean space saving ratio for Dnr as

shown in the following equation.

SS.Pn =
∑

c
r=1 SSDnr

c
(6.7)

where c is the total count of heterogeneous datasets provided by Pn and 0 < SSDnr < 1. It should

be noted that SSDnr should only be included in Equation 6.7 if it is non-zero. Consequently, a smaller

Reputation.Pn value indicates a better reputation for a data provider Pn. Therefore, the ranking of

data providers should be performed based on the inversed order of the computed reputation. It should

be noted that the value SS.Pn corresponds to the reputation within the time range from tstart to tend

for data summarisation. Thus, the overall reputation of a provider within the restricted time period

(tmin ≤ t ≤ tmax) would depend on the function provided in QDaS. For example, a data broker may define

summation or moving average as the function to produce the measurement of providers’ reputation (in

terms of space saving ratio of data summarisation) for the data consumers.
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6.5 IoT Data Usage Generation Technique Employed in QDaS

The prerequisite for the QDaS framework is to have data usages available before quality estimation

and summarisation. However, the availability of such data usage is not common due to the fact that

most current applications in the literature do not consider a data-as-a-service model. Hence, in order

to validate the effectiveness of the proposed QDaS framework, in this section we present an IoT data

usage estimation technique that is built on data generation approaches available in the literature. The

proposed technique first computes the agreement (referred to as the inter-rater agreement in Section 6.5.1)

between data consumers and data providers through an analytical mechanism, which can then be used

for generating IoT data usages (Section 6.5.2).

6.5.1 Inter-rater Agreement for Data Usage Generation

In order to simulate the behaviour of data consumers for their data access, the QDaS framework allows

the mechanism to generate data usages by leveraging the analytical models that can be derived from the

providers’ datasets. Given a fixed number of usages Nu, the task is to generate the usages for each dataset

supplied by the providers. It should be noted that the data usage generation process corresponds to the

act of QDaS performing smart data summarisation task within the time range of tstart and tend , ∀ Dnr.

The generation of data usage is based on the average inter-rater agreement that can be obtained through

the following steps:

1. Generate Nc numbers of data consumers cz for a given Dnr, where Nc can be generated from

Poisson(γ) distribution.

2. Pick a portion of random data points from the Dnr for each data consumer. For each portion,

random noise (e.g., Gaussian noise) can be embedded. Consequently, this step allows each data

consumer to build a consumer model (denoted as Modelc).

3. Prepare training PTrain and testing PTest portions from the Dnr.

4. Build a provider model (denoted as Modelp) from PTrain.

5. Perform test on PTest for the Modelp and all Modelc.

6. Compute inter-rater agreement between each Modelc and Modelp.

7. Compute the average of inter-rater agreement values from the previous step.

The above steps are executed in every cycle of storage management. It should be noted that the

terms "iteration" and "cycle" are being used interchangeably in this chapter. Every cycle of storage
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management corresponds to the non-overlapping sliding window for a fixed time interval of tstart and

tend (within the temporal domain). Consequently, all generated models Modelc in the first cycle can

be reused subsequent cycles of storage management. Hence, the following approaches can be used to

calculate inter-rater agreement between Modelp and each Modelc.

1. Correctness based generation approach
In 1960, Cohen [Kohen, 1960] introduced a method for measuring inter-rater agreement to test the

reliability of data. With this measurement, insights about data reliability can be attained to the

extent that the representation of variables correctly meets expectations [McHugh, 2012]. In many

studies, the kappa statistic has been used globally for reliability measurement.

The standard Cohen’s kappa coefficient can be attained through the following formula:

κ =
Po−Pe

1−Pe
(6.8)

where Po is the relative observed agreement amongst raters(i.e., probability of observation) and Pe

is the probability of expected agreement.

In QDaS, this approach is typically used for supervised learning. Inherently, the inter-rater

agreement IRAκ between Modelp and Modelc can be calculated through the following:

IRAκ =
Evalo−Evale

1−Evale
(6.9)

where Evalo corresponds to the observed evaluation metric for an analytical model Modelc, Evale
is the expected evaluation metric produced by the testing phase of Modelp. Both Evalo and Evale
should be normalized to a ratio value r where 0≤ r ≤ 1.

This measurement can be used for an application that requires a categorical vector to be predicted,

such as classification. In this case, the applicable correctness based quality metrics for both Evalo
and Evale are: accuracy, precision, recall, F1 score, etc.

In this case, the boundary of inter-rater agreement ranges between the worst value IRAκ_worst

where Evalo = 0 and optimal value IRAκ_best where Evalo = 1. Hence, the quantification of

inter-rater agreement IRAc can be finally computed as follows:

IRAc =
IRAκ − IRAκ_worst

IRAκ_best − IRAκ_worst
(6.10)
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where IRAc is within a value range of [0,1]. Ultimately, the final inter-rater agreement IRADnr (for

a given dataset Dnr) can be inferred by averaging all IRAc values. In real world scenario, there is a

condition where Evale = 1 as the testing result of Modelp. Therefore, the result of IRAκ would be

undefined. In this case, the IRAc can be derived from the value of Evalo as it fits the assumption

of how agreeable the estimation of Evalo towards Evale = 1. In addition, IRAc = 1 is assumed

when Evalo = Evale.

2. Deviation based generation approach
In several cases, annotations or ground-truth vectors can be in numerical form. In practice,

this scenario is often be handled by a model built using regression methods. Deviation based

generation approach leverages the intrinsic characteristic of how far a prediction deviates from the

given analytical model. Hence, common data mining techniques aim to minimise the deviation, to

assess better fit for the analytical model.

In 1982, Koch [Koch, 1982] introduced a method called intraclass correlation coefficient (ICC)

to measure the relative similarity of units that are organized in groups. The standard intraclass

coefficient from two subjects can be attained through the following formula:

ICC =
SD2− sd2

SD2 (6.11)

where SD is the between-subject standard deviation and sd is the within-subject standard deviation

(the typical or standard error of measurement). Hence, the inter-rater agreement for deviation

based approach is defined as the following:

IRAicc =
(Evale)2− (Evalo)2

(Evale)2 (6.12)

where Evalo corresponds to the observed evaluation metric (deviation) for modelc, Evale is the

expected evaluation metric (deviation) produced by the testing phase of modelp.

Therefore, the optimal value can be derived when Evalo is equal to Evale. For example, root mean

squared error (RMSE) and root mean squared (RMS) are commonly used in regression analysis to

validate its model. Therefore, the predictability of annotations for given data can be redefined as:

IRAicc =
(RMSEe)

2− (RMSEo)
2

(RMSEe)2 (6.13)

where RMSEo corresponds to testing of Modelc and RMSEe is the expected deviation derived

from testing of Modelp. On the contrary, (RMSEo)
2 and (RMSEe)

2 can be substituted with MSEo

and MSEe for predictability measure of regression with respect to mean squared error.
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The boundary of deviation scales from worst value IRAicc_worst where Evalo = 2∗Evale to optimal

value (IRAicc_best = 0) where Evalo = Evale. It is assumed that both Modelp and all Modelc
have non-zero deviation measures from testing phase. Consequently, the evaluation metrics should

follow the rules defined in Equation 6.14.

IRAicc =


IRAicc_best , if Evalo < Evale

IRAicc_worst , if Evalo > 2∗Evale

IRAicc from Equation 6.12, otherwise

(6.14)

Hence, the quantification of inter-rater agreement IRAc can be finally computed as follows:

IRAc =
IRAicc− IRAicc_worst

IRAicc_best − IRAicc_worst
(6.15)

where IRAc is within a value range of [0,1]. Similar to the correctness based generation approach,

the final inter-rater agreement IRADnr can be inferred by averaging all IRAc values. Moreover, the

deviation based generation metric can be leveraged for unsupervised learning - for instance, the

measure of reconstruction error for dimensionality reduction [Saul et al., 2006]. In a real-world

scenario, the value of Evale produced by Modelp can be zero. Therefore, the result of IRAicc

would be undefined. In this case, the IRAc can be set to zero where it is assumed that the expected

model would produce zero deviation (i.e., Evale = 0).

6.5.2 Data Usage Generation Algorithm

Having the values of inter-rater agreement for each dataset, the list of datasets D is constructed from

Dnr by descending order of IRADnr . In this case, the first dataset will have the highest rank in D.

Consequently, the first cycle of storage management will only use IRADnr for ranking. Subsequent cycles

will leverage multiple criteria: inter-rater agreement measure IRADnr (from the current cycle) and the

ratio of space saving SSDnr (from the previous cycle of storage management). Essentially, the rank of

each dataset can be obtained by following:

RankDnr =
IRADnr +(1−SSDnr)

2
(6.16)

In order to generate the data usage, CRP is leveraged to reflect the behaviour in consuming data

based on the popularity of each dataset. In this case, it is determined by the relevance of analytical

models (of data consumers) to the given dataset from the provider and reputation of data summarisation
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(as a result of previous data summarisation). Consequently, each table in CRP represents a dataset that

may be consumed. Therefore, the number of allocated customer in a table (CRP) represents the data

access/usage of a dataset in QDaS.

The order of generated tables in CRP is aligned with the order of datasets in D. In other words, Dnr

will be used as the label for the tables according to the rank order. Since the number of tables in CRP is

potentially infinite, it is feasible to have unlabelled tables. In this case, these tables can be labelled as

Dnr with the probability IRADnr as described in the following Algorithm 4.

Algorithm 4 Data Usage Generation Algorithm
1: procedure GenerationProcedure
2: for each table in unlabelledTables do
3: isLabelled← False
4: while isLabelled is False do
5: for each dataset in D do
6: IRADnr ← dataset.getIRA()
7: isLabelled← table.labelAsDataset(dataset, IRADnr )
8: if isLabelled then
9: break;

10: end if
11: end for
12: end while
13: end for
14: end procedure

Finally, the usage for a given dataset Dnr is aggregated via:

UsageDnr =
m

∑
i=1

usage(tablei) (6.17)

where m is the number of tables with Dnr label and tablei corresponds to the labelled table (as Dnr) from

CRP.

6.6 Experimental Evaluation of QDaS Using Datasets from real-world
Case Studies

In this section, the evaluation of QDaS framework is presented, using open datasets such as the

StudentLife dataset [Wang et al., 2014a] and the air quality dataset [Vito et al., 2008]. We use the

correctness based usage generation approach for the StudentLife dataset and deviation based generation

approach for air quality dataset [Vito et al., 2008]. In all the experiments, the analytical models are built

using scikit-learn [Pedregosa et al., 2011], a well-known machine learning library for Python.
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6.6.1 Activity Recognition - StudentLife

The StudentLife dataset was collected from students in Dartmouth College over ten weeks term to assess

their mental health, academic performance and behavioural trends. However, the experiment for this

case study only leverages the automatic inference of physical activity from the accelerometer sensor of

the mobile phones.

6.6.1.1 Data Preprocessing

The dataset contains summarised sensor data that are derived from 49 subjects (mobile phone users).

The original authors of StudentLife [Wang et al., 2014a], Wang et al. extracted the 25 features from

smartphone accelerometer sensor for activity inference. Therefore, these features (such as mean vertical

acceleration, mean horizontal acceleration, etc.) are included in our experiments to predict the inferred

activities (e.g., stationary, walking, running and unknown).

6.6.1.2 Simulation for QDaS Framework (Student Life Activity Recognition)

In our study, each mobile sensing node (user) acts as a data provider, which delivers a dataset continuously

to a data broker. Hence, each dataset could be utilised by a set of data consumers. Figure 6.5 shows a

comprehensive and general workflow of our experiment settings and processes of QDaS simulation.

Figure 6.5: Workflow of storage management in the experiments.
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In a given cycle, the range of temporal boundary for the data is restricted to 5 days in which the

storage management would be performed for the first day. In short, sliding window model of 5 days is

used to simulate the data arrival in next cycle and define the portion of data to be managed in a cycle

(i.e., the first day of 5 days window). The summarised data from previous cycles are included in the

process of provider model generation. In the simulation, 25 data providers are randomly selected from

the StudentLife subjects (mobile phone users).

The first cycle of storage management requires the generation of data consumer models which are

based on the given dataset Dnr. Before these models are built, a k-number data consumers is determined

for a given dataset where k is withdrawn from Poisson(γ) distribution with γ = 5. For each data consumer,

20% portion of random samples are taken from Dnr, which features are infused with Gaussian noise given

a fixed probability for an instance Prob(Noise)= 0.3, noise variance variancenoise = 0.3∗varianceoriginal

where varianceoriginal is the variance of a feature.

The type of model for each data consumer is chosen randomly from these classifiers with default

parameters: Naive Bayes (NB), Decision Tree (DT), Random Forests (RF), Multilayer Perceptron

(MLP) and Support Vector Classifiers (SVC). On the other hand, the generation of provider model is

based on the state-of-art algorithm, RF classifier.

The classification model of the provider is built based on train set of Dnr in which each instance can

be infused with Gaussian noise given an initial probability 0 ≤ Prob(Noise) ≤ 0.9 which is defined

randomly. In this case, the variancenoise is similar to the setup used in the generation of data consumer

models. It should be noted that Prob(Noise) can vary in the consecutive cycles, which can affect the

provider’s decision to increase the quality of data for Dnr. Moreover, the train and test are randomly

sampled applying the 60%-40% rule. Hence, the inter-rater agreement (IRA) measure can be computed

from classification accuracy metrics between the provider’s and consumer’s models on the 40% of Dnr

(i.e., test set). Consequently, the generated consumer models would be utilised for the next cycle of

storage management.

Once IRA is computed for Dnr, the Chinese Restaurant Process (CRP) is used to generate data

usages for all ranked datasets of the data providers with the following parameters: n = 10,000,000 and

α = 1.0 (refers to Section 6.5.2). Subsequently, the data usages that are generated from the previous

step are then used for quality measurement of SlicedDnr . In this case, SlicedDnr is extracted within the

temporal boundary of the first day from the 5 days window. Hence, the data summarisation may be

performed on SlicedDnr . The computation of quality measurement (Qutlty) for SlicedDnr shall not include

the generated data usages that may have been allocated to other empty SlicedDnr .



Experimental Evaluation of QDaS Using Datasets from real-world Case Studies 138

The survivability of SlicedDnr (i.e., not to be summarised) depends on the random chance of simulated

MC-CRP process (refers to Section 6.4.2.2) where the number of Monte Carlo trial ntrial = 1000, and

the parameters for CRP in each trial are: n = 10,000 and α = 1.0.

To build the model of density based clustering (used for data summarisation), we leveraged DBSCAN

algorithm with E ps = 0.3 and minpts = ln(n) (heuristic used in [Birant and Kut, 2007]) where n is the

number of instances in a given Dnr. It should be noted that the clustering process is only performed on

the feature vectors. In our evaluation, we use k-means clustering (with default parameters) as the non-

density based algorithm for the performance comparison. Consequently, the instances in SlicedDnr can be

associated with the generated cluster labels, which would be used for the purpose of data summarisation

process. In terms of the provider rules, data summarisation complies with the following rules: latest

time is picked, the average function is applied to all feature dimensions, and majority voting for the

human activity vector (i.e., the most frequent activity label). After the process of data summarisation

of SlicedDnr , the ratio of space saving (SS) can be computed and be given to the data provider, so that

the provider may improve their quality of data (with less noise) in the next cycle. As a result, RR

may control the new value Prob(Noise) that is used to generate noise in next cycle (for the purpose

of building provider’s model). Moreover, we parallelised the processes for data summarisation on all

ranked datasets in order to fully utilise CPU resources and speed up the runtime of our experiments. The

implementation was programmed in Python, which runs in a platform with 2 CPUs of Intel Xeon 5607

(total 8 cores with frequency 2.27GHz), 48 GB RAM (12x4GB DDR ECC) and CentOS 7 operating

system.

6.6.1.3 Evaluation and Discussion

The simulation ranges to the total of 23 iterations (cycles) for QDaS data summarisation (denoted as

DS). First, the effect of DS on the space saving ratio is observed between the usage of density-based

clustering (DBSCAN) and non-density clustering (k-means). The evaluation is mainly focused on the

summarised datasets which are mainly categorised as LowQutlty (low quality of data according to the

usage measures). As shown in Figure 6.6, the density plot reflects a distinct concentration of high space

savings for density-based clustering (on summarised datasets), which leap closer to 100% space savings.

On the other hand, non-density based clustering algorithm shows a significant difference in terms of

lower space savings, which are condensed between 12% and 37%.

Inherently, higher space savings of the given datasets should stimulate their data providers to

improve the quality of data which could lead to increased data usages. As shown in Figure 6.7, inter-rater

agreement measures (mean IRAc) between data providers and consumers reach a high concentration



Experimental Evaluation of QDaS Using Datasets from real-world Case Studies 139

Figure 6.6: Density plot for space saving ratio (refers to Equation 6.5) of summarised LowQutlty datasets.

between 55% and 75%. Although some datasets may have lower inter-rater agreement measures for

density based clustering prior to DS process, the repeated measure of ANOVA test (p = 0.06) suggests

no significant difference between clustering techniques (density and non-density based algorithms) for

inter-rater measures. In other words, density based clustering proves to be an effective approach to

produce a higher ratio of space saving in a DS cycle, and stable inter-rater agreement (derived from

analytical models of data providers and consumers) is relatively maintained throughout the simulation

cycles.

Figure 6.7: Density plot for mean IRAc (refers to Equation 6.10) of summarised LowQutlty datasets.
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6.6.2 Regression Analysis - Urban Air Quality

The air quality dataset was collected in an Italian city where the area is significantly polluted. All

corresponding features of sensed data were generated by average responses of 5 metal oxide chemical

sensors embedded in an Air Quality Chemical Multisensor Device. The co-located reference certified

analyzer also recorded five ground-truth measurements of air quality in the same area. In our study,

the problem is addressed by using IoT devices which are significantly cheaper than deploying a more

accurate and expensive static machine. In this case, the objective of a regression model is to predict the

numerical values of ground-truth given the features of a ubiquitous sensing device.

6.6.2.1 Data Preprocessing

The air quality dataset contains 9357 instances. It consists of 9 feature vectors (including timestamp)

and 5 ground-truth vectors. In our experiment settings, we divided this dataset to 5 different datasets

in order to simulate various data providers and data types. For each dataset, all the feature vectors are

retained and only one ground truth vector is used for prediction. As a result, we set a fixed number of

providers to 10 where each of them owns 5 datasets.

In total, 50 datasets will be used for the QDaS experiment in terms of data usage generation, ranking

and data summarisation. In addition, we constructed new feature vectors by calculating the value

differences between the current hour and previous hour for each feature dimension (excluding the

timestamp). In other words, given feature value fi and previous feature value fi−1, the difference ∆ f is

calculated by simple subtraction:

∆ f = fi− fi−1 (6.18)

In short, the dimensions expand to the following features: timestamp, ∆CO, CO, ∆NMHC, NMHC,

∆NOx, NOx, ∆NO2, NO2, ∆O3, O3, ∆Temperature, Temperature, ∆RelativeHumidity, RelativeHumidity,

∆AbsoluteHumidity and AbsoluteHumidity. For each dataset owned by the data provider, the predicted

vector corresponds to one of these ground-truth vectors (captured by the reference certified analyzer):

CO(GT), NMHC(GT), C6H6(GT), NOx(GT) and NO2(GT). Inherently, these experiments would be

based on the objective to predict the measurements of air quality captured by the expensive and accu-

rate sensors. Therefore, regression models are used for predicting the numerical values of air quality

measurements.
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6.6.2.2 Simulation for QDaS Framework (Air Quality Prediction)

In terms of the experiment settings, the parameters used for QDaS simulation are similar to the previous

case study (in Section 6.6.1.2). In a given cycle, the range of temporal boundary for the data is restricted

to 20 days in which the storage management would be performed for the first 5-days. In short, a sliding

window model of 20 days is used to simulate the data arrival in the next cycle and define the portion

of data to be managed in a cycle (i.e., the first 5-days of 20 days window). The summarised data from

previous cycles are included in the process of provider model generation.

The type of model for each data consumer is chosen randomly from these algorithms with default

parameters: Linear Regression (LN), Decision Tree (DT), Random Forests (RF), Multilayer Perceptron

(MLP) and Support Vector Regression (SVR). On the other hand, the generation of the provider model is

constructed based on the RF algorithm. Moreover, the inter-rater agreement measure is calculated using

the deviation based generation approach. In this case, root mean squared error (RMSE) is leveraged as

the deviation metric.

6.6.2.3 Evaluation and Discussion

In terms of the evaluation of the ratio of space saving and inter-rater agreement measures between

density and non-density based clustering, the output of experimental results is similar to the previous

case study. Figure 6.8 shows a significant difference between space saving ratio between DBSCAN and

k-means. In other words, a more compact data representation is produced that leads to a better output of

storage management for a data broker. Inherently, non-density based clustering leads to lower space

saving ratio, with concentration skewed below 55% for later cycles of DS.

Figure 6.8: Density plot for space saving ratio (refers to Equation 6.5) of summarised LowQutlty datasets.
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Figure 6.9: Density plot for mean IRAc (refers to Equation 6.15) of summarised LowQutlty datasets.

In Figure 6.9, the density plot shows an even concentration of inter-rater agreement in later cycles of

DS. This result suggests data providers are behaving in ways to revise and improve their quality of data

over the time. Consequently, we applied the repeated measure of ANOVA test (p = 0.54) which indicates

no significant difference between clustering techniques (density and non-density based algorithms) for

inter-rater measures. Hence, the variation of IRAc distribution for summarised datasets may also be

affected by many types of datasets that are owned by each data providers. In this case, the dimension of

datasets (total of 50 heterogeneous ranked datasets) is significantly higher than the previous case study.

To conclude, our experiments suggest that the density-based clustering approach of data summarisa-

tion proves to be more effective for storage management, by producing high space saving ratio while

maintaining stable inter-rater agreement between data providers and consumers.

6.7 Conclusion

In this chapter, we presented (QDaS), a novel domain agnostic framework for effective storage and

management of IoT data in cloud. The proposed framework incorporated a novel technique to estimate

the quality of data driven derived from the utility of the IoT data. Based on the quality estimation

technique, QDaS employs a smart summarisation mechanism to manage the storage of IoT data in the

cloud.

Extensive experimental evaluations were conducted in order to demonstrate the effectiveness of

the proposed QDaS framework using real-world datasets. The results have shown that our framework

provides a robust approach in performing efficient storage management, based on the notion of quality

of data that is determined by the usage measures. We demonstrated experimentally that the amount of
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data stored in the cloud could be reduced as a result of the QoD-driven data summarisation mechanism.

The output of this research presents promosing result that can be used for scaling mobile sensing in

smart environments. In fact, the density-based data summarisation has been utilised to derive a more

compact representation of sensor features and accelerated the overall learning process of our previous

experiments (refer to Chapter 4).



Chapter 7

CONCLUSION

Situation awareness plays a significant role in intelligent systems and therefore has become a critical

subject in multiple research disciplines over recent decades. In the realm of pervasive computing,

understanding the situation of mobile users will enable the full capacity and capabilities of their smart

devices to be more context-aware for their engaged activities and tasks wherever and whenever.

In this dissertation, we have taken a critical step closer towards situation awareness in ubiquitous

computing research by novel contextual modelling approaches to mobile users based on their pervasive

signals from mobile sensing. To conclude, current research on situation inference and context recognition

from mobile sensing is growing. With the rapid development of smart devices in terms of their processing

power and resources, it is believed that the future assistive technologies should enable more ubiquitous

applications to be more aware of user situations and their contextual dependencies to offer proactive

support in recommending resources or actions for enhanced cognitive augmentation (i.e., improved

productivity and decision making).

The aim of the research was to build systematic frameworks that have intelligent predictive capabil-

ities in situation inference, not only from the first-person view for multi-context recognition but also

expanding our study towards a larger scale of mobile sensing experiments from the crowd. Hence, this

result is achieved through incremental research efforts from contextual modelling on the collection

of multivariate time series data that can be sampled in an irregular manner, with the risks of sensor

deactivation during pervasive sensing in daily life. Moreover, the mobile data that are sourced by

multiple sources can be easily influenced by the sensing noise within the environments and subjective

user annotations under certain circumstances. Nonetheless, the benefit of this study can be reaped

directly from our extensive experiments and their novel contributions, ranging from awareness and

insights that can be gained by the mobile users on their environments, to better support for activity-based
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decision making and proactive resource recommendations enabled by the future intelligent assistive

technologies. We again believe that this research is truly pivotal for more innovative development of

ubiquitous applications given the exponential proliferation of internet-connected smart devices.

7.1 Research Questions and Answers

The core chapters in this thesis addressed the cumulative research challenges facing intelligent situation

inference from in-the-wild mobile sensing. The issues that we have discussed so far are circulated around

building intelligent assistants that can be situation-aware, given the traits of human activity, behaviours

and mobility from pervasive signals sensed in daily life. To understand the key factors associated with

situation inference and context recognition from mobile sensing, four distinct research questions were

developed, as outlined in Section 1.3. In each core chapter, we validated our proposed frameworks,

modelling approaches and novel algorithms by experimenting on real-world datasets and mobile sensing

data collection. Therefore, each research question and its solution is summarised below.

• RQ-1. How to find an optimal window size in processing multivariate sensor data for multi-context

recognition?

The first research question was addressed in Chapter 2. We presented OPTWIN, a novel technique

to provide a recommendation for window size to perform effective extraction of time-interval

based features in the temporal segmentation process of continuous multivariate sensor data stream-

ing. This technique leverages the proposed multi-objective function, which minimises the window

impurity and maximises the measure of class separability between the window instances. For the

measure of class separability, we use the metric computation of Kullback-Leibler (KL) divergence

scores as mentioned in Section 2.4.2, to measure the difference between two probability distribu-

tions P and Q on numeric features (extracted from multivariate sensor data). In other domains,

the class separability measure is often used to rank features, mainly for feature selection. On the

other hand, we introduced an additional metric in our multi-objective technique, a notion of an

impure window where there is at least a mixture of two subsequent contextual labels in a window

during the temporal segmentation process. Such phenomenon that occurs in the sliding window

model denotes the transition of user contexts in time series data when they are processed in a

continuous manner. To improve the performance of context recognition, it was initially assumed

that this overlapping issue of contextual labels should be minimised. Consequently, we extended

this technique to adapt to the multi-context scenario, which is evaluated with the real-world dataset

to perform multi-activity recognition in smart home environments. As a result, this technique
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improves the confidence in performing multi-context recognition in smart environments, while

reducing the general effort in sensitivity analysis and fine-tuning model parameters in the learning

phase.

• RQ-2. How to perform multi-context recognition from multidimensional sensor data and user

annotations?

The second research question is constituted by the interrelated issues that we addressed in

Chapters 3 and 4. For mobile situation inference, recognition of human activities and contexts

is extremely important, since the results of such processes can be used to describe and construct

a particular user situation. Therefore, we aim to improve the general accuracy of multi-context

recognition by contributing new modelling approaches and machine learning techniques, which

require rigorous iterations of testing and validation against the typical ways of performing activity

and context recognition.

To address the second research question (RQ-2), we sub-divided our focus to two distinct issues.

Firstly, the issue of simultaneous recognition of multiple mobile user contexts was addressed in

Chapter 3. Since the combination of multiple user contexts (e.g., human activities and transporta-

tion modes) in Chapter 3 were the result of decomposition of raw user annotations, our research

direction was then targeted to improving the predictability of these annotations. More research

challenges were imposed particularly for Chapter 4 due to the fact that these raw user annotations

could be acquired via the prevalent use of the experience sampling method in mobile sensor data

collection. In many situations of each mobile user, these raw annotations could be subjective

according to the mental state of the corresponding user.

In Chapter 3, we developed a new modelling approach to tackle the issue of simultaneous inference

of multiple user contexts for in-the-wild mobile sensing. In short, we proposed a new modelling

approach (refer to Section 3.4.1) called Context-based Activity Recognition (CBAR). This novel

modelling approach assumes that the user contexts can be described in a hierarchical form, and

therefore should have tightly coupled relationships (i.e., dependencies) with the low-level labels

of human activities. In this case, the typical approach of performing multi-context recognition on

multiple prediction targets is to build independent classifiers on various label sets. Our proposed

Mobile Context Recognition System (MCRS) utilises both multi-stage and multi-target inference

concepts to perform a robust simultaneous recognition of human activity and transportation

mode, including their associated environmental contexts accurately. Our results on iterative

experiments showed general accuracy improvement, highlighted for Decision Tree based classifier
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with the most significant gain of 19.3% in terms of exact match on the predicted output of multi-

dimensional label sets. In this case, the independent classification of these context labels was

performed as the baseline approach for our iterative experiments, yielding the worse performance

in general (as shown in Table 3.10).

Since we were able to perform more accurate multi-context recognition previously, our research

in Chapter 4 was mainly focused on the issue of improving the predictability of the raw user

annotations. Essentially, the multiple contextual labels that we used in the experiments of Chap-

ter 3 are in fact the result of a decomposition process (e.g., through entity recognition) from

raw user annotations. Consequently, we leveraged the same real-world mobile sensing dataset

(i.e., CrowdSignal dataset [Welbourne and Tapia, 2014]) for the experiment in Chapter 4. We

proposed a new problem definition for predicting raw user annotations just in time before the

experience sampling of user annotation is triggered (i.e., in-situ survey to ask for recent user

activities, contexts or even a situation). Consequently, we proposed a novel framework named as

CoAct-nnotate, which comprises semi-supervised learning components of multi-view learning

(co-training) and active learning. CoAct-nnotate leverages the multi-view learning concept by

first building a classifier per sensor. To perform an annotation prediction, the semi-supervised

learning module in CoAct-nnotate requires the input of feature bags (for all sensors that are

available at the prediction time). Essentially, a feature bag is a derived representation from the

concept of multi-instance learning, where a “bag” should contain multiple instances of extracted

features. Inherently, this “bag” should be marked with a raw user annotation/label. Moreover,

our framework is robust enough to adapt to user feedback and be able to improve the overall

predictive model progressively through the application of active learning. Thus, the empirical

evaluation of our repeated experiments yielded the improvement of correctness measure (accuracy

over the whole duration of mobile sensing in-the-wild) by 35.94%, outperforming the result of

those conventional approaches. In particular, the average progression of correctness for annotation

prediction of CoAct-nnotate can also be visibly seen to outperform all baselines, as shown in

Figure 4.6 of Section 4.4.3.

• RQ-3. How to recognise tasks of a mobile user from continuous contextual signals?

The effective acquisition of user annotations was addressed for RQ-2. Hence, the system to log

pervasive signals from smart devices and record user annotations was then leveraged for data col-

lection of human tasks in daily life. For the third research question (RQ-3), we addressed an issue

of situation inference (i.e., task recognition) in Chapter 5. To answer this research question, we
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proposed a novel contextual modelling approach over CPS signals that can be derived from daily

activities in mobile sensing, and align the extracted features for task recognition. Consequently, we

presented a new intelligent task recognition problem, which consists of 1) the definition of cyber,

physical and social activities of a mobile user, 2) presence-based task boundary construction, and

3) final recognition phase for user tasks. In order to solve this problem, we proposed a process

(refer to Section 5.4.2) to define the boundary of user tasks based on in-situ annotations. Moreover,

we included the process of CPS-based task modelling and learning on the feature sets that can be

derived from both sensing data and user annotations. To validate the proposed framework, we

evaluated the intelligent task recognition models on the four-week dataset that we collected on

non-professionals and busy-professionals. We conducted a detailed analysis and showed that we

could improve the overall performance of task recognition by leveraging all CPS activities of these

mobile users. Based on the feature importance analysis, physical and social activities that are

predominantly included in top-10 ranked features for intelligent task recognition. Inherently, cyber

activities could be used to enhance the task recognition in certain situations (e.g., for working or

leisure purposes).

• RQ-4. How to evaluate the quality of crowdsourced data from mobile sensing environments?

Given that the data could be streamed from many providers through in-the-wild mobile sensing, the

fourth research question (RQ-4) is tailored for the scalability issue of mobile sensing experiment

itself. Therefore, we addressed this issue in Chapter 6. In this case, we considered a limitation

of cloud computing to store raw sensing data. This limitation is a non-trivial issue which would

restrict the innovations in ubiquitous computing research. For scalable context recognition and

situation inference via mobile sensing, there is a need to build compact machine learning models

based on the most informative sensing data. In order to address this issue, we presented a smart

data summarisation technique based on the quantification of quality measure (i.e., data utility) on

crowdsourced sensor data. The processes of QoD (Quality of Data) estimation (Section 6.4.1) and

data summarisation (Section 6.4.3) are essentially integrated into QDaS, a novel domain agnostic

framework for effective storage and management of IoT data in the cloud. The data summarisation

process can be initiated on the slice of multivariate sensing data, which are categorised as for

example “low-quality data”. To determine if a data slice needs to be summarised, it requires a

novel coin toss test process which depends on the outcome of MC-CRP (Section 6.4.2.2).

Not only can the QoD be quantified, but the reputation of data providers belonging to the mobile

sensor data can also be computed. This mechanism can be used to encourage the data providers
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(e.g., mobile users) to improve the quality of their future data collection for mobile sensing

experiments. Based on our empirical experiment and evaluation, the amount of stored data could

be significantly reduced by density-based data summarisation process. Nevertheless, our smart

data summarisation technique was able to achieve a high space-saving ratio while maintaining

stable inter-rater agreement between machine learning models, according to the simulation that

we performed on activity recognition and air quality estimation datasets. In fact, the density-based

data summarisation component in QDaS was also used in CoAct-nnotate for deriving a compact

representation of feature bags to improve the multi-view annotation prediction model progressively

in a scalable manner.

7.2 Limitations and Future Directions of Research

The contributions in this thesis are built upon progressive research efforts on the systematic processes

towards situation inference. In particular, the methods, algorithms and frameworks presented in this

research can be utilised, adapted and extended to solve various problems within the mobile sensing

domain. It should be noted that we envision situation awareness as the norm in future intelligent

systems. Therefore, we consider this research as a pioneering stepping-stone with many possible

research directions, given the current on-going challenges of mobile sensing in-the-wild.

Approximating the best window size for temporal segmentation across multiple label sets (context

or human activity sets) is beneficial to building an intelligent model. However, this approach could

be limited with the emergence of new contexts (e.g., new modes of transportation) in the mobile

sensing environments. For instance, the ferry1 is integrated as another mode of transportation in

New South Wales, Australia. Uber recently announced2 their plan to trial the aerial taxi service in

Melbourne, Australia. With the everchanging user activities, behaviours and trends in mobile sensing

environments, the future research on adaptable window sizes should be considered. In such cases, the

window sizes should grow and shrink according to activities, contexts and situations of the mobile

users. Since our windowing technique is robust for multi-activity recognition scenarios, the limitation of

modelling multiple contexts is thus addressed in Chapter 3. It was indicated that the overall classification

performance can be improved by inducing the notion of dependency between context labels (including

human activities) across multidimensional context spaces. However, the on-going challenge of mobile

sensing in-the-wild is incorporated with the emergence of a new class label in daily life. Consequently,

this research direction could be pursued with the utilisation of non-supervised learning techniques.

1https://transportnsw.info/tickets-opal/opal/fares-payments/adult-fares
2https://www.abc.net.au/news/2019-06-12/uber-elevate-set-to-take-off-in-australia/11199466
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Human activities and their contextual information can be inferred from annotations during the mobile

sensing in-the-wild. In Chapter 4, the prediction of mobile user annotations can be improved using

progressive learning techniques. Since the acquisition of in-situ user annotations can be performed

through ESM, the issues on the subjectivity are still prominent during in-the-wild mobile sensing. Such

issues require immediate needs for future work to investigate and explore the actual user burden in a

typical diary study on mobile sensing. Moreover, the selection of features and learning parameters can

also affect the performance of intelligent models. Hence, progressive techniques to adapt the feature

selection and its learning parameters can be pursued by considering evolving user contexts in daily life.

It should be noted that the user contexts can evolve based on behaviour changes that are the long-term

goals of an individual. Given the evolving user activities and contexts, recognising human tasks in daily

life (Chapter 5) would be insufficient, to build a more proactive intelligent assistant. Thus, tracking

the progression of tasks in a particular situation should be included for future works, in order for an

intelligent system to be helpful in supporting humans in daily life. Since annotations that are related

to user situations can be acquired through both experience sampling and daily reconstruction methods,

another future work should include reasoning and fusing both types of annotations for situation inference.

On the other hand, a compact representation of individual mobile sensing data is crucial for building

a robust and scalable intelligent system. Hence, its computation, including the required resources, is

often designed in a centralised approach. By offloading such computation (also the model building) in a

decentralised manner (e.g., federated learning [Smith et al., 2017] and blockchain technology [Dai et al.,

2019]), future research should consider extending the notion of data quality and summarisation.



Appendix A

Experience Sampling Method (ESM):
Survey

Considering the following user task of Writing WSDM workshop paper, the questions in ESM-based survey

would be presented as follows (based on user contribution on the hourly survey at 01:35 pm):

Q1. Have you engaged in one or more activity between [12:00 PM] and [01:00 PM]?

• Yes, I engaged in one activity. » Proceeds to Q2.

• Yes, I engaged in more than one activity. » Proceeds to Q2.

• No, I did not engage in any activities. » Finishes the survey.

Q2. Which activity did you spend most of your time on?

• Writing WSDM workshop paper.

Q3. What category does this activity belong to?

• Work-related tasks

• Personal organization, reflection or care (includes commuting, cleaning and house improvement)

• Caring (household or non-household members)

• Social, exercise & relaxation (entertainment)

• Civil obligations

• Other: ____________________
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Q4. To which activity does “Writing WSDM workshop paper” belong to?

• Communication

• Documentation

• Planning

• Admin and management

• Education

• IT

• Finance

• Physical

• Problem solving

• Low-level

• Project

• Customer care

• Meals and breaks

• Travel

• Other: _______________

Q5. When did you start this activity?

• Between [12:00 PM] and [01:00 PM]

• Between [11:00 AM] and [12:00 PM]

• Before [11:00 AM]

Q6. Is this a new activity?

• Yes, this is a new activity

• No, I was working on this activity previously (e.g., yesterday)

Q7. How much progress did you make towards completing this activity by [01:00 PM]?

• 0% – 19%

• 20% – 39%

• 40% – 59%

• 60% – 79%

• 80% – 99%

• 80% – 99%

• 100% (complete)
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Q8. Did you use electronic device(s) in order to complete your task/activity? (such as using a computer,

smartphone, or tablet)

• Yes

• No

Q9. Did you engage in any physical activities in order to complete your task/activity? (such as moving desks,

walking to the shops, or cycling home)

• Yes

• No

Q10. Did you engage in any social interactions in order to complete your task/activity? (such as meeting someone

in person, calling someone)

• Yes

• No



Appendix B

Daily Reconstruction Method (DRM):
Survey

Considering the following user task of Writing WSDM workshop paper, the questions in DRM-based survey

would be presented as follows:

Q1. What time did you wake up today? (hh:mm)

Q2. How many hours did you spend for sleeping (in total)?

• More than 8 hours

• 8 hours

• 7 hours

• 6 hours

• 5 hours

• Less than 5 hours

Introduction to rest of survey: Thinking about today, we’d like you to reconstruct what your day was like, as if

you were writing in your diary.

Think of your day as a continuous series of scenes or episodes in a film. Each episode is a task that you

have performed or in progress towards the completion.

Each task should at least be performed in one-hour duration. In this study, we aim to understand how

an intelligent assistant can help in recognizing and managing your daily tasks, to increase the overall

productivity and your quality of life. Next »

Q3. Have you attempted/progressed on any tasks today?

• Yes » Proceeds to Q4.

• No » Finishes the survey.

Q4. Please enter the description of one task you attempted/progressed on today.
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Q5. To which category does Writing WSDM workshop paper belong to?

• Work-related tasks

• Personal organization, reflection or care (includes commuting, cleaning and house improvement)

• Caring (household or non-household members)

• Social, exercise & relaxation (entertainment)

• Civil obligations

• Other: ____________________

Q6. To which of the activity/task-type does Writing WSDM workshop paper belong to?

• Communication

• Documentation

• Planning

• Admin and management

• Education

• IT

• Finance

• Physical

• Problem solving

• Low-level

• Project

• Customer care

• Meals and breaks

• Travel

• Other: _______________

Q7. What kind of trigger did you initiate Writing WSDM workshop paper?

• Deadline

• Reminder/alarm (e.g., through digital notification)

• Ad-hoc/spontaneously

• Needs for resources

• Other: ____________________

Q8. What is the approximate time when you started Writing WSDM workshop paper (hh:mm format)?

Q9. Approximate progress when you started Writing WSDM workshop paper:

• 0% – 19%

• 20% – 39%

• 40% – 59%

• 60% – 79%

• 80% – 99%

• 80% – 99%

• 100% (complete)
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Q10. What is the approximate time when you stopped Writing WSDM workshop paper (hh:mm format)?

Q11. Approximate progress when you stopped Writing WSDM workshop paper:

• 0% – 19%

• 20% – 39%

• 40% – 59%

• 60% – 79%

• 80% – 99%

• 80% – 99%

• 100% (complete)

Q12. How satisfied are you with the progress of Writing WSDM workshop paper?

• Extremely satisfied

• Somewhat satisfied

• Neither satisfied nor dissatisfied

• Somewhat dissatisfied

• Extremely dissatisfied

Q13. Thinking about the urgency of this task, what was your perceived priority of when you started Writing
WSDM workshop paper:

• High

• Medium

• Low

Q14. Who were you directly interacting with in the progression of Writing WSDM workshop paper?

• None

• Spouse/significant other

• Household member(s)

• Friend(s)

• Co-worker(s)

• Boss(es)

• Others: _______________

Q15. Describe your activities and contexts involved for the progression of Writing WSDM workshop paper.

Q16. Writing WSDM workshop paper? Recalling today’s tasks, is there any more task you attempted to

progress on?

• Yes » Loops back to Q4.

• No » Finishes the survey.
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11 May 2018 
 
 
 
Dr Flora Salim 
School of Science 
RMIT University 
 
 
 
Dear Dr Salim 
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I am pleased to inform you that the CHEAN has approved your application for a period 
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