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ABSTRACT

In a worker-centered intelligent manufacturing system, sensing and understanding of 

the worker’s behavior are the primary tasks, which are essential for automatic performance 

evaluation & optimization, intelligent training & assistance, and human-robot collabora

tion. In this study, a worker-centered training & assistant system is proposed for intelligent 

manufacturing, which is featured with self-awareness and active-guidance. To understand 

the hand behavior, a method is proposed for complex hand gesture recognition using Convo

lutional Neural Networks (CNN) with multiview augmentation and inference fusion, from 

depth images captured by Microsoft Kinect. To sense and understand the worker in a more 

comprehensive way, a multi-modal approach is proposed for worker activity recognition 

using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos 

from a visual camera. To automatically learn the importance of different sensors, a novel 

attention-based approach is proposed to human activity recognition using multiple IMU 

sensors worn at different body locations. To deploy the developed algorithms to the factory 

floor, a real-time assembly operation recognition system is proposed with fog computing 

and transfer learning. The proposed worker-centered training & assistant system has been 

validated and demonstrated the feasibility and great potential for applying to the manufac

turing industry for frontline workers. Our developed approaches have been evaluated: 1) the 

multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) 

the multi-modal approach achieves an accuracy of 97% on a worker activity dataset includ

ing 6 activities and achieves the best performance on a public dataset, 3) the attention-based 

method outperforms the state-of-the-art methods on five publicly available datasets, and 4) 

the developed transfer learning model achieves a real-time recognition accuracy of 95% on 

a dataset including 10 worker operations.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND

Industrial big data has been increasingly accessible and affordable, benefiting from 

the availability of low-cost sensors and the development of Internet-of-Things (IoT) tech

nologies [12, 21], which builds up the data foundation for advanced manufacturing. A 

variety of methods and algorithms have been developed to learn valuable information from 

the data, and to make the manufacturing more intelligent [24]. With the recent fast growing 

of Artificial Intelligence (AI) technologies, especially deep learning [20] and reinforcement 

learning [16] methods, AI-boosted manufacturing has been increasingly attractive in both 

the scientific research and industrial applications.

In an intelligent manufacturing system involving workers, recognition of the worker’s 

activity is one of the primary tasks. It can be used for quantification and evaluation of the 

worker’s performance, as well as to provide onsite instructions with augmented reality. Also, 

worker activity recognition is crucial for human-robot interaction and collaboration. It is 

essential for developing human-centered intelligent manufacturing systems. Furthermore, 

it can be used for knowledge/skill transfer between experienced workers and new workers.

1.2. WORKER-CENTERED SENSING

The first step for human behavior recognition is to sense the human’s activity. In 

this section, different sensing technologies are discussed. Considering their wearablity, they 

can be grouped as ambient sensing and wearable sensing technologies.
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1.2.1. Ambient Sensing. Ambient sensors are deployed in the environment to 

sense the subject in a passive manner. For example, optic cameras can be used to capture 

RGB images on human subjects; Depth cameras such as a Microsoft Kinect or Lidar (light 

detection and ranging) sensors can be applied to sense human objects in the 3D space; 

Infrared cameras can detect the subject in a dark environment; Pressure sensing mats can 

be used to capture human’s standing states; WiFi signals also have been used for HAR [14]. 

Ambient sensing can collect a large amount of data without interfering the subject’s activity.

1.2.2. Wearable Sensing. Nevertheless, ambient sensors require complex setups 

and their performance can be affected dramatically by occlusion issues, which are the 

main challenges in implementing ambient sensing. Also, it becomes more difficult when 

capturing a subject’s outdoor activities. To compensate for these limitations, wearable 

sensing can be applied. Wearable sensor based activity recognition has captured growing 

attention nowadays because of the pervasiveness of mobile devices (e.g., smart phones 

and smart watches), which are embedded with various sensors such as IMU (Inertial 

Measurement Unit) sensors, heart rate sensors, and ECG (Electrocardiogram) sensors.

1.2.3. Pros and Cons. Vision-based sensors are most widely used for ambient sens

ing purpose. In the computer vision area, image/video-based human activity recognition 

with deep learning has been intensively studied in recent years and unprecedented progress 

has been made [2, 13]. However, vision-based recognition suffers from the occlusion issue, 

which affects the recognition accuracy. Wearable devices, such as an armband embedded 

with an Inertial Measurement Unit (IMU), directly sense the movement of human body, 

which can provide information on the body status. In addition, there are a lot of inexpensive 

wearable devices in the market, such as Myo armbands [32] and smartphones, which are 

widely used in activity recognition tasks. Wearable devices are directly attached to the 

human body and thus do not have the occlusion issue. However, a wearable device can only 

sense the human body activity locally, and it is challenging to precisely recognize an activity
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involving multiple body parts. Although multiple devices can be applied to simultaneously 

sense the activity globally, it makes the system cumbersome and brings discomfort to the 

user.

1.3. DATA-DRIVEN WORKER BEHAVIOR UNDERSTANDING

In general, the activity recognition task can be broken down into two subtasks: 

feature extraction and subsequent multiclass classification. To extract more discriminative 

features, various methods have been applied to the raw signals in the time or frequency 

domain, e.g., mean, correlation, and Principal Component Analysis [1, 3, 25, 28]. Different 

classifiers have been explored on the features for activity recognition, such as the Support 

Vector Machine [1, 3], Random Forest, K-Nearest Neighbors, Linear Discriminant Anal

ysis [25], and Hidden Markov Model [28]. To effectively learn the most discriminative 

features, Jiang et al. [15] proposed a method based on Convolutional Neural Networks 

(CNN). They assembled the raw IMU signals into an activity image, which enabled the 

CNN model to automatically learn the discriminative features from the activity image for 

classification.

The critical factor attributed to the success of IMU data-driven activity recognition 

is to seek an effective representation of the time-series IMU signals. The most widely 

used approaches fall into two categories: handcrafted feature design and automatic feature 

learning.

1.3.1. Hand-Crafted Feature Design. It is intuitive to manually pick statistical 

attributes (e.g., means) or quantity distributions (e.g., magnitude histograms) from IMU 

signals [10]. For example, Anguita et al. [1] designed as many as 341 features from 3-axis 

IMU signals while Hammerla et al. [8] preserved the statistical characteristics of IMU data 

using their empirical cumulative distributions. Xu el al. [35] proposed a multi-level feature 

learning framework which consists of the signal-based, components-based and sematic- 

based information for activity recognition. However, handcrafted feature design is mostly
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driven by the domain knowledge, prior experience and experimental validation, thus it is 

possible to neglect some useful features in this manner. In addition, a pre-defined feature 

extraction mechanism trained on a specific scenario might not work well on other scenarios 

with different sets of activities to be recognized. That is, those hand-crafted features in the 

literature might not be transferrable to new application domains, which further makes the 

feature design time-consuming and labor-costly.

1.3.2. Automatic Feature Learning. The drawbacks of handcrafted features moti

vate researchers to explore automatic feature learning [15][11]. Deep Convolutional Neural 

Network (DCNN), as one of the most effective deep learning models, attracts attentions in 

the mobile sensing domain considering it has achieved the superior performance in other 

research fields such as computer vision [18] and speech recognition [23]. To improve the 

accuracy of sensor-based activity recognition, Zeng et al. [37] designed a tri-thread DCNN 

architecture with the three inputs corresponding to the tri-axis accelerometry data, thus the 

inputs are one-dimensional time-series signals. To enhance the ability for feature learning, 

Duffner et al. [6] and Ha et al. [7] took as input the two-dimensional matrix obtained by 

stacking IMU signals. In order for further accuracy improvement, Ravi et al. [27] combined 

features learned from the deep model with complementary information from a set of hand

crafted features. In addition, Lane et al. [19] looked into this problem in a practical way 

and showed the application of deep learning to mobile sensing domain is hardware-efficient 

and can scale up to a large number of inference classes.

In short, the input to the deep learning network and the architecture of the deep 

learning model itself are two key factors to the success of automatic feature learning. The 

input is of great significance because a good representation of the IMU signals can make it 

easier for automatic learning. In the previous work, IMU signals are directly fed into the 

DCNN architecture and this simple and raw input may not be a good representation of IMU 

signals because each value of the raw time-series signals is less meaningful if we do not 

consider the statisctic property of the whole signals.
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In terms of the design of deep learning architecture, the aforementioned simple input 

restricts the depth of the deep model, limiting the capability to find discriminative features. 

For instance, the input in [36] is a small 3 x 30 matrix and there are only two convolutional 

layers in the architecture. Additionally, the tri-axis accelerometry signals are convolved 

with one-dimensional kernels in the deep model independently, thus the correlation among 

different signals is not taken into enough consideration.

1.3.3. Self-Attention Mechanisms. Just like humans can allocate different amount 

of attention to different aspects when performing a complex task, self-attention mechanisms 

can model attentions for deep neural networks and have been widely applied in many 

deep learning tasks [5]. The self-attention mechanism was proposed in [33] for machine 

translation tasks, in order to distribute different attention over words in a sentence. From then 

on, attention mechanisms have been increasingly popular in natural language processing 

(NLP) and computer vision fields, where multiple sources with different importance are 

involved. For example, Chen et al. [4] used spatial and channel-wise attention for image 

captioning, and He et al. [9] applied attention in both the spatial and temporal domains for 

HAR from videos.

1.3.4. Activity Recognition in Manufacturing Fields. Worker activity recogni

tion in the manufacturing area is still an emerging topic and few studies have been made. 

Stiefmeire et al. [29] utilized ultrasonic and IMU sensors for worker activity recognition in 

a bicycle maintenance scenario using a Hidden Markov Model classifier. Later they pro

posed a string-matching based segmentation and classification method using multiple IMU 

sensors for recognizing worker activity in car manufacturing tasks [30, 31]. Koskimaki 

et al. [17] used a wrist-worn IMU sensor to capture the arm movement and a K-Nearest 

Neighbor model to classify five activities for industrial assembly lines. Maekawa et al. [22] 

proposed an unsupervised measurement method for lead time estimation of factory work 

using signals from a smartwatch with an IMU sensor. Recently, deep learning methods have 

been introduced to recognize worker activity in human-robot collaboration studies [26, 34].
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1.3.5. Technology Gap. Few attempts have been made for the worker activity 

recognition in the manufacturing field, and most of them only use single sensing modality, 

which cannot guarantee robust recognition under various circumstances.

1.4. OBJECTIVES

The overall objective of this dissertation study is to to achieve an effective and 

efficient understanding of the worker’s behavior on the factory floor, which provides the 

foundation for worker-centered intelligent manufacturing. A few fundamental questions 

need to be answered:

1. What are the desirable types of sensors to sense the workers in the manufacturing 

context?

2. How to integrate and fuse the data from multi-modal signals?

3. How to integrate and fuse the data from multiple sensors?

To answer the above mentioned questions, some fundamental research has been 

performed in this dissertation study as follows:

1. A multi-modal sensing system has been developed.

2. Algorithms for multi-modal signal fusion have been developed.

3. Algorithms for multi-sensor fusion have been developed.

A set of underlying fundamental challenges are: 1) complexity and uncertainty 

of worker activity, due to the high interclass similarities, high interclass similarities, large 

intraclass variations, large intersubject variations, and constant occlusions; 2) complexity of 

multi-source and heterogeneous sensing and modeling; and 3) complexity for human-object 

interaction understanding.
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1.5. ORGANIZATION OF DISSERTATION

In this dissertation, five papers are included.

1. Paper I: A worker-centered training & assistant system is proposed for intelligent 

manufacturing, which is featured with self-awareness and active-guidance.

2. Paper II: To understand the hand behavior, a method is proposed for complex hand 

gesture recognition using Convolutional Neural Networks (CNN) with multiview 

augmentation and inference fusion, from depth images captured by Microsoft Kinect.

3. Paper III: To sense and understand the worker in a more comprehensive way, a 

multi-modal approach is proposed for worker activity recognition using Inertial Mea

surement Unit (IMU) signals obtained from a Myo armband and videos from a visual 

camera, where four different modalities are applied.

4. Paper IV: To learn the importance of different sensors, a novel attention-based ap

proach is proposed to human activity recognition using multiple IMU sensors worn 

at different body locations.

5. Paper V: A fog computing framework is proposed for assembly operation recognition, 

which brings computing power close to the data source in order to achieve real-time 

recognition.
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ABSTRACT

Training and on-site assistance is critical to help workers master required skills, 

improve worker productivity, and guarantee the product quality. Traditional training meth

ods lack worker-centered considerations that are particularly in need when workers are 

facing ever-changing demands. In this study, we propose a worker-centered training & 

assistant system for intelligent manufacturing, which is featured with self-awareness and 

active-guidance. Multi-modal sensing techniques are applied to perceive each individual 

worker and a deep learning approach is developed to understand the worker's behavior and 

intention. Moreover, an object detection algorithm is implemented to identify the parts/tools 

the worker is interacting with. Then the worker’s current state is inferred and used for quan

tifying and assessing the worker performance, from which the worker’s potential guidance 

demands are analyzed. Furthermore, onsite guidance with multi-modal augmented reality 

is provided actively and continuously during the operational process. Two case studies are 

used to demonstrate the feasibility and great potential of our proposed approach and system 

for applying to the manufacturing industry for frontline workers.
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1. INTRODUCTION

Cyber-Physical Systems (CPS) have allowed the traditional manufacturing to enter 

into a new era, which is currently further boosted by Artificial Intelligence (AI) technologies, 

such as machine learning and deep learning, towards intelligent manufacturing [8, 22]. To 

meet the fast-growing consumer demands for highly-customized, high-quality products, 

manufacturers must make their manufacturing systems more flexible and efficient and, 

meanwhile, ensure that workers in the systems are agile and highly skilled. Workforce 

training and on-site assistance is essential to help workers learn desired skills, improve 

worker productivity, reduce the rate of rejects, and guarantee the product quality. Therefore, 

how to train and assist the workforce flexibly, efficiently and effectively is one of the critical 

factors contributing to a company's market success. Traditionally, operational instructions 

are provided in a lecture-based manner or a mentor-based manner. However, these methods 

have some limitations. For example, the lecture-based training can simultaneously teach 

lots of workers but is lack of immediate interaction. While it is more interactive and can 

have real-time communications, the mentor-based training is more costly and inefficient. 

For further evaluation of the worker's performance and optimization of the operational 

workflow, a time-motion study is often applied. Nevertheless, it requires a direct and 

continuous observation of the task and manual analysis for each operational step, which is 

time-consuming and lack of flexibiliy [5]. To provide the instructional information more 

interactively and immersively, Augmented Reality (AR) technologies have been widely 

deployed in industry, and it has been proven to be an excellent interface for presenting 

multi-media information to workers [4, 11, 12, 17, 21]. However, existing AR methods
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often use pre-defined scripts to control how the instructional information is provided and 

they lack worker-centered considerations that are particularly in need when workers are 

facing ever-changing demands.

The limitations of existing methods have motivated us to develop a training & 

assistant system that can effectively improve the workforce outcomes. It is worker-centered, 

i.e., every element in the system is to assist the worker in achieving the best operational 

result. To realize worker-centered training, a necessary task is to perceive the worker’s 

states, such as behavior and intention. There exist different kinds of sensors that have been 

used for this purpose [1, 2, 6, 9, 19]. To recognize worker activities, various methods 

have been applied [10, 13, 14, 16, 18, 20]. While being aware of a worker’s states during 

the training, necessary instructional information can be introduced to guide the worker’s 

training with AR techniques.

This project aims to develop a self-aware, active-guiding training & assistant system 

for worker-centered intelligent manufacturing by exploring advanced sensing technologies, 

AI methods, and AR techniques. Specifically, as shown in Figure 1, we have designed a 

multi-modal sensing system to sense the worker via different modalities, and have developed 

efficient and robust deep learning algorithms that analyze sensor data to recognize worker 

states. This awareness of worker state allows the system to understand the worker both 

physically and mentally, thus creating a basis for intelligent decision making. Finally, 

we have created multi-modal AR instructions that are generated according to the training 

decision made and provided to meet the worker’s needs.
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Figure 1. Overview of the proposed worker-centered training & assistant system.

2. WORKER STATE AWARENESS

2.1. MULTI-MODAL SENSING SYSTEM

To comprehensively perceive the worker, we developed a multi-modal sensing sys

tem illustrated in Figure 2. The system is composed of both ambient and wearable sensors 

with different modalities. Each sensor has a unique capability in collecting specific informa

tion about the worker. Various ambient sensors were used to capture the worker's activities 

in the workplace. Optic cameras were used to capture RGB images. Depth cameras such 

as a Microsoft Kinect or Lidar (light detection and ranging) sensors were applied to ob

tain data in the 3D space. Infrared cameras can detect the worker in a dark environment. 

Pressure sensing mats were developed to capture the standing states. Ambient sensing can 

collect a large amount of data without interfering the worker's activity. Nevertheless, the
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complex setup and occlusion issue are main challenges in implementing ambient sensing. 

To compensate for these limitations, wearable sensing was applied. A smart Eyewear con

taining cameras was worn to perceive the surroundings from the first-person view of the 

worker. IMU (Inertial Measurement Unit) sensors were used to capture the movement of 

the worker body. sEMG (surface Electromyography) sensors were utilized to obtain the 

muscle activities. ECG (Electrocardiogram) sensors were used to monitor the worker’s 

heart activities. EEG (electroencephalogram) sensors were used to collect electrical events 

of the human brain. All of the data were synchronized and sent to the local workstation via 

different transmission protocols.
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Figure 2. Schematic of the proposed multi-modal sensing system.



13

2.2. WORKER BEHAVIOR AND INTENTION UNDERSTANDING

With data obtained from the above multi-modal sensing system, we developed 

deep learning models, such as convolutional neural networks (CNN) and recurrent neural 

networks (RNN), to understand the worker behavior and intention from both spatial and 

temporal perspectives (e.g., walking towards a workstation, turning a screwdriver, etc.). 

The worker intention comprises mental activities related to specific tasks such as having 

confidence in, or feeling confused for, a specific operation. Specifically, we explored 

designing different models, including vision-based, IMU-based, sEMG-based, and EEG- 

based deep learning models, to recognize the worker activity and mental intention. A 

single sensing modality cannot guarantee robust perception under various circumstances. 

Therefore, we developed data fusion algorithms to take advantage of multi-modal sensing. 

Different sensing modalities were fused to augment individual speculations for making 

the final inference. The optimal fusion method was identified by comparing their overall 

performance.

2.3. INTERACTING PART/TOOL DETECTION

Most activities of a worker involve worker-object interactions. Detecting objects 

the worker is interacting with is important for understanding activities of the worker and 

for providing instructional information to help the worker locate desired objects. In this 

study, object detection algorithms, such as R-CNN [18], were implemented to recognize 

the interacting parts or tools in real time (e.g., Figure 3(a)). To establish the dataset for 

training the algorithms, we designed a data collecting system to take pictures of the objects 

automatically (see Figure 3(b)). Manually collecting data of some objects from all kinds 

of scales and viewpoints is difficult or inefficient. Thus, we developed a data synthesis 

approach to generate data directly from CAD models (see Figure 3(c)). The CAD model 

of an object was designed from CAD software or 3D scanning data and then imported to
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virtual scenarios. The model was rendered with different poses, obtained by setting the 

camera from various distances and perspectives, to simulate the variations in the physical 

world. With the synthesizing method, a large amount of data were generated with labels 

annotated efficiently.

Cameras

Tool/Part

Turntabl

Figure 3. (a) Part/Tool detection results with highlighted bounding boxes; (b) Our developed 
data collecting system; (c) Image data synthesis rendered from a CAD model.

3. ACTIVE GUIDANCE FOR WORKER

3.1. MULTI-MODAL GUIDANCE WITH AUGMENTED REALITY

Augmented Reality (AR) technologies have been applied to manufacturing train

ing, mainly for simulating costly or dangerous processes beforehand. In this study, we 

developed an instructional system with multi-modal AR to provide timely, onsite guidance 

for the worker. The working scenario was captured with a first-person camera to perceive 

the physical world. The camera pose was estimated in real time to allow the generated 

virtual information to be superimposed upon the real world with intuitive mapping, which 

effectively eliminates the discomfort that virtual information may bring to the worker. A 

monitor-based or glasses-based AR interface was applied to provide graphics that are ren

dered for the worker and can be overlaid on the physical world. Finger-wearable haptic 

rings were used to give the worker a realistic feedback of the sense of touch. An auditory
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display was included to give the worker a timely sound feedback such as a vocal warning. 

An assistant laser pointer with two degrees of freedom was designed to help the worker 

search for the desired tools or parts. All modalities of guidance were integrated to achieve 

a comprehensive and complementary operational assistance. If the required parts/tools do 

not appear in the workspace or are not detected, the instructional information still can be 

provided via the visual or audio interfaces.

3.2. DEMAND ANALYSIS AND GUIDING STRATEGIES

Estimating the worker’s potential demands for assistance (i.e., assistant information 

that can instruct workers to optimize their current operational workflows, e.g., how well 

the current operation is performed and what the next operation is) and then providing 

guidance accordingly is crucial to achieving the functionality of active guiding. After 

the worker’s states are perceived, including 1) what the worker is doing, 2) what the 

worker’s mental intention is, and 3) what the desired tools/parts are, all the information is 

integrated to determine the effective assistance that can meet the worker’s demand, such 

as instructional information to conduct the current step or a reminder warning to fix a 

previous illegal operation. Furthermore, a guiding strategy was developed in order to 

provide instructions appropriately. A worker’s performance was evaluated in comparison 

to experienced workers, and a “Demanding Score” is defined to represent the level of 

demanding for assistant information. Specifically, the time taken of each operational step 

can be obtained using the deep learning approaches mentioned above. If a particular action 

takes more time than average, the Demanding Score is increased. Then, if the Demanding 

Score is higher than a threshold, the needed assistant information will be actively added 

with the above developed multi-modal guidance system. For example, graphics information 

will be displayed via the monitor or AR glasses, and the laser pointer will point to the 

desired tool/part for the next step if the worker is in a confused state. In addition, the 

training progress of each worker is logged, and it can be retrieved by worker identification
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techniques, such as RFID tag or facial recognition. Also, the timing, i.e., how to provide 

the guidance at the right time, is critical in the training process. It should be timely enough 

but not disturb the ongoing operation.

4. CASE STUDY

The proposed self-aware and active-guiding training & assistant system has been 

progressively validated. In this section, two case studies in manufacturing assembly are 

presented.

4.1. MULTI-MODAL RECOGNITION OF WORKER ACTIVITY

In this case study, we developed a multi-modal approach for worker activity recog

nition in manufacturing assembly tasks using Inertial Measurement Unit (IMU) signals 

obtained from a Myo armband and videos from a visual camera (see Figure 4(a)). A worker 

activity dataset of six assembly activities has been established, as shown in Figure 4(b). 

These activities are: grabbing tool/part, hammering nail, using power-screwdriver, resting 

arm, twisting screwdriver, and using wrench. For IMU signals, we designed two modalities 

in both frequency and spatial domains. For the camera data, two more modalities were 

included at the video frame and video clip levels. Accordingly, four deep learning networks 

were built to cope with data from the different modalities. Then, all the individual networks 

were fused to output the final inference. Various fusion methods were evaluated including 

the maximum fusion, average fusion and weighted fusion. The developed approach has 

been evaluated and shown to achieve promising recognition accuracy in experiments, i.e., 

97% and 100% in the leave-one-out and half-half experiments, respectively [3, 14, 15].
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Figure 4. (a) Experimental setup and (b) examples of the six worker activities.

4.2. COMPARISON OF AR AND MANUAL GUIDANCE IN A MECHANICAL AS
SEMBLY TRAINING TASK

In this case study, we applied multi-modal AR guidance in a training task, i.e., 

assembling the spindle subassembly of a desktop carving machine (see Figure 5(a, b)). 

To assess its effectiveness compared with traditional manual guidance, we recruited 20 

subjects without any prior experience on the assembly task. They were divided into two 

groups and asked to conduct the task with manual and AR instructions, respectively. Then 

their performances were compared in terms of the completion time and number of errors 

(see Figure 5(c, d) and Table 1). The AR method has shown superiority over the manual 

one. This has demonstrated the feasibility and potential of applying the AR method to the 

industry for the frontline workers [7].
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Figure 5. (a) Experimental setup; (b) AR display content; Performance comparison between 
manual and AR guidance: (c) completion time and (d) number of errors.

Table 1. Error reduction using the multi-modal AR instruction.

Error Type Reduction (%)
Tool/Part Selection 72.7

Assembly Sequential Order 100
Installation 4.8

5. CONCLUSIONS

In this ongoing research, we have proposed a novel worker-centered training & 

assistant system for intelligent manufacturing. This system has the self-awareness of the 

worker’s state and can provide active guidance to the worker as needed. Compared to 

traditional approaches, our proposed system starts with the worker’s experience, considers 

more of the worker’s learning effect, and has more interactions with the worker. The 

worker’s state is perceived with multi-modal sensing and deep learning methods, and is 

used to analyze and determine the potential guiding demands. Then active instructions with
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augmented reality are provided to suit the worker’s needs. The case studies have shown the 

feasibility and promise of applying the proposed system for training and assisting frontline 

workers. Also, our proposed self-aware and active-guiding training & assistant system has 

constructed a framework for further studies in worker-centered intelligent manufacturing.
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ABSTRACT

American Sign Language (ASL) alphabet recognition by computer vision is a 

challenging task due to the complexity in ASL signs, high interclass similarities, large intr

aclass variations, and constant occlusions. This paper describes a method for ASL alphabet 

recognition using Convolutional Neural Networks (CNN) with multiview augmentation 

and inference fusion, from depth images captured by Microsoft Kinect. Our approach 

augments the original data by generating more perspective views, which makes the training 

more effective and reduces the potential overfitting. During the inference step, our ap

proach comprehends information from multiple views for the final prediction to address the 

confusing cases caused by orientational variations and partial occlusions. On two public 

benchmark datasets, our method outperforms the state-of-the-arts.

Keywords: Intelligent manufacturing; Deep learning; Augmented reality; Cyber-physical 

system; Smart manufacturing

1. INTRODUCTION

American Sign Language (ASL) is an important communication way to convey 

information among the deaf community in North America. Although it is primarily used by 

people who have hearing or speech difficulties, similar signs also can be used in Natural User
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Interface (NUI) systems to realize human-computer/robot interaction by hand gestures. Its 

automatic recognition using various sensing devices has been studied extensively for decades 

with significant progress having been made. There are mainly two categories of sensing 

devices used in those studies: (1) wearable devices, such as a cyber glove embedded with 

a flex sensor or an Inertial Measurement Unit (IMU) sensor, and a set of trackable markers 

of a motion capturing system; and (2) non-wearable devices, or markerless vision-based 

devices, such as a RGB camera or a depth camera. Wearable devices directly sense the 

hand status like adjacent joints’ angles, spatial positions and movements, which can provide 

fairly precise information of the hand [15, 16]. However, they are still too heavy and 

uncomfortable for daily use. Markerless vision-based recognition has been increasingly 

popular recently because it does not need sensors attached to a human and the low-cost 

vision/depth cameras such as Microsoft Kinect are commercially available. However, it is 

still challenging to recognize ASL signs because of the complexities of these signs, high 

interclass similarities, large intraclass variations, and constant finger occlusions.

1.1. RELATED WORK

In this paper, we focus on recognizing the alphabet of American Sign Language 

(ASL). In general, the ASL alphabet recognition task is formulated as two subtasks: feature 

extraction and subsequent multiclass classification. Researchers have been using different 

methods to extract discriminative features and create powerful classifiers.

Pugeault and Bowden [17] applied Gabor filters to extract features from both color 

and depth images at 4 different scales. Then a multiclass random forest classifier was 

used to recognize the 24 static ASL alphabet signs. They had 49% recognition rate in the 

leave-one-out experiment. Half of the signs could not be recognized, showing that Gabor 

filters cannot capture enough discriminative information for differentiating different signs. 

In addition, they developed a realtime recognition system which provides an interface for
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the user to select the desired sign among ambiguous ones. It is worth mentioning that they 

publicized their dataset well and this dataset has been the most common benchmark in this 

research area, as surveyed in the following.

Wang et al. [23] also used color and depth images for recognition. They proposed 

a Superpixel Earth Mover’s Distance (SP-EMD) metric to measure the distance between 

two signs based on the shape, texture and depth information. Then a template matching 

technique was utilized for the sign classification. They reported 75.8% recognition rate 

on the benchmark dataset. Some researchers only focused on either color or depth image. 

Maqueda et al. [13] deployed a Volumetric Spatiograms of Local Binary Patterns (VS-LBP) 

descriptor on color videos or images, without using depth images, for extracting spatio- 

temporal features. By using a Support Vector Machine (SVM) classifier, they had 83.7% 

leave-one-out accuracy on the benchmark dataset. Nai et al. [14] extracted features from 

only depth images on randomly positioned line segments and used a random forest for 

classification, with 81.1% accuracy reported in their paper.

Some studies attempted to exploit the 3D information embedded in the depth images 

(3D approach). Kuznetsova et al. [10] implemented an Ensemble of Shape Function (ESF) 

descriptor [24] on the 3D point cloud for feature extraction and a multi-layered random 

forest for classification. Zhang et al. [26] proposed a Histogram of 3D Facets (H3DF) 

descriptor to encode the 3D shape information of different hand gestures. Then they used 

a SVM with a linear kernel for the classification step and got 73.3% in the leave-one-out 

accuracy. Later, Zhang and Tian [25] combined their H3DF with a dense sampling method 

and achieved an improved accuracy of 83.8%. Rioux-Maldague and Giguere [19] created 

a mask from the depth image and applied it on the intensity image to filter out the hand 

region to form the intensity features. Six binary images were generated using cross-sections 

of depth images to form depth features, which were then fed into a Deep Belief Network 

(DBN) and achieved 77% recall and 79% precision on the benchmark dataset. These 3D 

approaches are promising to achieve better performance than image representations due
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to the extra dimension. However, the 3D point cloud obtained from the depth image is 

sparse at the regions with large gradients and absent at the occluded areas, which affects 

the overall performance. To fully exploit the 3D benefits from the depth image, some 3D 

reconstruction methods can be used to recover more valuable information.

Due to the articulated structure of hands, some studies implemented a hand part 

segmentation step before the gesture recognition (bottom-up approach). Keskin et al. [8] 

extracted depth comparison features from depth images following the method proposed by 

Shotton et al. [21] and fed them into a per-pixel random forest classifier. The final predicted 

label for the whole image is determined by majority voting. They reported their leave- 

one-out recognition rate as 84.3% on the benchmark dataset. Furthermore, they introduced 

multi-layered random forests in classifying hand parts to estimate its pose. This classifier 

is trained using synthetic depth images which have the parts' groundtruth of a hand. To 

generate more realistic training data for per-pixel hand part classification, a colored latex 

glove was employed in the research of Dong et al. [5]. They added kinematic constraints on 

the estimated joint locations to improve the localization accuracy, based on which 13 key 

angles of the hand skeleton were extracted and fed into a random forest classifier, resulting 

in 70% recognition rate on the benchmark dataset. One of the major drawbacks for these 

bottom-up approaches is that the sign recognition performance is highly dependent upon 

the result of the hand part segmentation, and it is challenging to improve the performance 

of the hand part segmentation because of the high complexities and constant occlusions.

Recently, deep learning methods such as Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) have demonstrated their extraordinary performance 

in various classification and recognition tasks. For example, in the traffic sign classification 

task and the ImageNet challenge, the CNN systems achieved even better performances 

than those of humans [7, 20]. Unlike the handcrafted feature extractor, which is designed 

to capture only specific patterns, the deep learning based feature extractor is automatically 

trained to capture the most discriminative features using the real data. Ameen and Vadera [2]
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introduced a CNN model with both color and depth inputs in the ASL alphabet recognition 

task. This model has two convolutional layers for each input to extract features from them. 

Those two sets of features are concatenated into one before being fed into fully connected 

layers. They reported the accuracy of 80.34% on the benchmark dataset. RNNs have also 

been utilized for hand gesture recognition tasks and achieved promising results [3].

1.2. PROPOSED METHOD

Depth images contain distance information from the camera plane to the objects in 

the camera view, where each pixel represents a measured distance. Therefore, it is easier to 

segment the target object in a depth image than a color image. Thus, this research focuses 

on recognizing finger spelling signs from depth images as follows:

1. Considering the challenges of the ASL alphabet recognition task, we choose CNN as 

the basic model to build the classifier because of its powerful learning ability that has 

been shown.

2. To fully exploit the 3D information provided by depth images, we develop a novel 

multiview augmentation strategy. It generates more views from different perspectives, 

in order to augment the perspective variations that cannot be achieved using traditional 

image augmentation methods.

3. To solve the interclass similarity issues caused by perspective variations and partial 

occlusions, we first make predictions for all individual views and then fuse information 

from them for the final prediction.

The remainder of this paper is organized as follows. Our proposed methods of 

multiview augmentation, CNN model, and inference fusion are detailed in Sections 2, 3 

and 4, respectively. The experimental setups and experimental results using the public 

datasets are described in Sections 5 and 6. Finally, Section 7 gives the conclusions of this

research.
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2. MULTIVIEW AUGMENTATION

To train a valid CNN classifier with good performance, a large amount of labeled 

data needs to be fed into it. However, it is always time-consuming and costly to collect 

enough data with annotated labels. Data augmentation is a common method to solve such 

an issue, which synthesizes additional data derived from original ones.

Traditionally, data augmentation refers to implementing a series of image trans

formation techniques on the original images, which consist of rotating, scaling, shifting, 

flipping, shearing, etc. The image transformation is able to introduce more variations and 

still keep the recognizable features. However, the basic image transformation cannot in

troduce realistic variations of different perspectives (e.g., out-of-plane transformations in 

the real world), which are common for hand gestures because they are highly perspective- 

dependent.

Figure 1. Multiview augmentation strategy.

To synthesize those perspective variations, we propose a multiview augmentation 

strategy illustrated in Figure 1. A hand gesture is represented as a depth image in its original 

view, from which a 3D point cloud is obtained. Then additional virtual cameras are set up
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and oriented to the point cloud with different perspectives. Finally, a set of additional views 

are generated from those distributed virtual cameras. The central image on the right hand 

side in Figure 1 is the original depth image, based on which the other views are generated.

The generation process of a new view is shown in Figure 2. Given a hand depth image 

I  with M pixels (Figure 2(a)), to extract the point cloud P  = { p i,...,pm, ...,pM} from the 

depth image, each pixel I(i, j ) is projected into the 3D space as a point p m = (p j^ ,p j^ ,p i?). 

This projection first translates the origin to the image center and then uses the depth values 

as the Z values, which is formulated as follows (Figure 2(b)):

pm° = j  -  w/2

p jy) = - i  + h /2  (1)

p j  = 1 (U j )

where i and j  represent the indices of row and column of I , respectively, w and h are the 

width and height of the depth image, respectively.

Figure 2. Generation of a new view.
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To capture the point cloud from a new perspective, a yaw-pitch-roll rotation trans

formation on the point cloud around its volume center is implemented. For point p m in P , 

its new location after rotation can be calculated by

Pm = R(a,J3,y)Pm (2)

where R(a,fi,y) is the rotation matrix, a , S  and y  represent yaw, pitch and roll angles 

around z, y and x axes, respectively. It can be further expressed as a multiplication of three 

orthogonal rotation matrices [11]:

R(a ,S ,y ) = Rz (a)Ry (fi)Rx (Y)

cos a  cos S  r\2 r\3

sin a  cos S  r22 r23

-  sinS  cos S  sin y cos S  cos y

w here

ry2 = cos a  sinS  sin y -  sin a  cos y  

r\3 = cos a  sinS  cos y  + sin a  sin y  

r22 = sin a  sinS  sin y + cos a  cos y  

r23 = sin a  sinS  cos y -  cos a  sin y

(3)

By implementing the yaw-pitch-roll rotation on each point, a new point cloud P  is 

generated (Figure 2(c)). Then P  is reprojected onto a plane to form a new depth image 

(Figure 2(d)), which is the reverse process of point cloud extraction in Equation 1. After 

reprojection, the new depth image might have holes because the occluded regions in the 

original image get exposed in the new one after the yaw-pitch-roll rotation transformation.
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Those small holes can be filled by interpolation using their neighboring pixels’ values 

(Figure 2(e)). Then the hand region in the new image is cropped and re-centered by 

removing its surrounding isolated noises (Figure 2(f)).

3. CNN MODEL

The overall architecture of our CNN model is shown in Figure 5. It is composed of 

a layered feature extraction module and a classification module.

Output

.32x32x1 16x16x32 16x16x64 8x8x64
8x8x128 | 4x4x128 

Conv.3 Pool.3
5x5 2x2

Pool.l Conv.2
2x2 5x5

Conv.l
.5x5

Feature Extraction Classification

Figure 3. The overall architecture of our CNN model.

In the feature extraction module, suppose there are N depth images Xn, n e [1, N ] 

after data augmentation, they are scaled to the size 32 x 32 (width x height) and normalized 

to the interval [0,1], and then fed into three 5 x 5 convolutional layers for feature extrac

tion. Rectified Linear Unit (ReLU) activation function [6] is applied to each convolutional 

operation. Then each convolutional layer is followed by a 2 x 2 max pooling layer, which 

downsamples the previous feature map by a half.

The classification module accepts the 4 x 4 x 128 feature map from the feature 

extraction module and flattens it as a 2048 feature vector. Then two fully connected layers 

are used to densify the feature vector to the dimensions of 128 and C sequentially, where 

C is the number of ASL alphabet sign classes. Then this C-dimensional score vector 

S([S1,.. . ,Sc,...,SC]) is transformed to output the predicted probabilities with a softmax
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function as follows:

P(yn = c | Xn) =
exp(Sc) 

zC=i exp(sc)
(4)

where P (yn = c |Xn) is the predicted probability of being class c for sample Xn.

Dropout has been proved to be a powerful regularization technique used to avoid 

the overfitting, which randomly drops units from the neural network during training [22]. 

Therefore, it is implemented after each pooling layer in our CNN model.

The process of training a CNN model involves optimization of the network’s param

eters w to minimize the cost function for the training dataset X . We select the commonly 

used regularized cross entropy [6] as the cost function, which is

N C
L(w) = I I  ync log[P(y„ = c | Xn)] + Afe(w) (5)

n=1 c=1

where ync is 0 if the ground truth label of Xn is the cth label, and is 1 otherwise. The 12 

regularization term is appended to the loss function for penalizing large weights, and A is 

its coefficient.

4. MULTIVIEW INFERENCE FUSION

Due to the high interclass similarities, some signs are almost the same from certain 

perspectives. The inference relying on only one view may not be convincing enough. There

fore, we propose a multiview inference fusion strategy in order to augment the speculation 

of each individual view, as illustrated in Figure 4.

In the inference step, suppose the CNN model described in Section 3 has been 

trained with the augmented dataset, and we have Ntest depth images for inference. First of 

all, each query sample is preprocessed to the right input X®, n e [1, Ntest] which has the size 

of 32x 32 and the value range of [0,1]. Then, similar to the multiview augmentation process, 

a set of new views {Xn\  X„, • • • , X ^ ^ 5} are generated from the original ones X®, where
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Figure 4. Multiview inference fusion strategy.

Naps is the number of augmentations per sample. After that, there are (NAPS + 1) views 

{X°, X ,  • • • , X V, • • • , x n APS } for the original query sample. Each view X V, v e [0, Naps] is 

inferred individually by the trained CNN to get the probablity distribution P v of the top-K 

predicted classes (K e [1, C], e.g., K  = 5). Then they are fed into an inference fusion step 

for the final prediction.

In the inference fusion step, predictions from all individual views are fused together. 

We introduce the informativity value I v to evaluate the prediction confidence at each view 

v. Iv is calculated with Equation 24, which is modified from the Shannon entropy of a 

discrete probability distribution to vary in the interval of [0,1].

Iv z L  pvk log pvk + 1
log K (6)

where v is the index of views and k is the index of top-K candidates. pvk represents the 

probability of the kth class candidate at the vth view. Iv will be close to 0 if all the top-K 

candidates have similar probabilities (i.e., pvk ~ 1/K), and 1 if the probability of top-1 class 

candidate is about reaching 1 (i.e., p\ ~ 1).



33

Then every predicted probability pvk at the vth view is weighted by Iv of this view. 

The final predicted label is chosen as the one that maximizes the Ivpvk value:

yfusion -  max yfusion (7)

where

ffusion -  arg maax IVPk (8)

5. EXPERIMENTS

5.1. DATASETS

To compare our method with others, we evaluate it on the public ASL alphabet 

dataset [17]. Some examples of the depth images in this dataset are shown in Figure 5. It 

has 24 finger spelling signs ( ‘7  and ‘Z ’ are excluded because they involve finger movement) 

captured by a Kinect with color and depth images recorded. Those signs were performed 

by 5 different subjects and each of the 24 signs consists of about 500 to 600 samples. As 

shown in Figure 5, the hand regions were approximately cropped.

Figure 5. Depth image examples of the 24 signs in the ASL alphabet dataset.
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To validate the generalization of our method, the NTU digit dataset [18] is also 

chosen for experiments. This dataset has 10 signs representing digits from 0 to 9 captured 

by a Kincet containing color and depth images as well. They are performed by 10 different 

subjects and each sign has 10 samples. Examples of the depth image of the 10 signs in this 

dataset are shown in Figure 6. Each image contains background and the hand region is not 

cropped or annotated.

Figure 6. Depth image examples of the 10 signs in the NTU digit dataset.

5.2. PREPROCESSING

The image size of an input sample is a design parameter when building a CNN 

model and is fixed after the model is created. Thus, it only accepts input samples with the 

predefined sizes, e.g., our CNN model described in Section 3 needs each input sample to 

have the uniform size of 32 x 32 (width x height).

Samples from the first dataset introduced in Section 5.1 have various sizes (as shown 

in Figure 5). Although each sample in the second dataset shares the same size (as shown in 

Figure 6), the size is 640 x 480 and the hand region is only a small part of the entire image. 

Therefore, a preprocessing procedure is needed to prepare the data for the CNN model. 

Taking an image from the NTU digit dataset [18] as an example, this process is illustrated
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Can be iterated for better segmentation

Figure 7. Hand region segmentation.

in Figure 7, where S1-6 denote the processing steps. Suppose there is a raw depth image 

D (Figure 7(a)) captured by a depth camera and it is assumed that the hand is the closest 

object to this camera. First, a band-pass filter is applied to filter out the pixels in the range of 

[dmin, dmin + 6], where dmin is the minimum distance value and 6 is the threshold distance that 

should approximately represent the hand occupation along the direction out of the image. 

After that, the depth image is reversed using the equation D' = dmin + 6 -  D ( i f  D ^  0), and 

then on the new depth image D', hand regions that are nearer to the camera will be brighter, 

while further regions will be darker. This conversion will let our CNN model focus on the 

nearer regions which contain more information in distinguishing different signs. There is 

only one hand and it is the frontmost object in a depth image for both of the datasets. Then 

the bounding box of the hand is detected (Figure 7(b)) and cropped by using histograms 

projected onto x and y axes (Figure 7(c)).
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The palm center is approximated by calculating the mass center of the depth image 

and the palm is segmented as a circular region (Figure 7(d)). Then we calculate the polar 

histogram of the pixels that are outside the palm region, followed by a clustering step. The 

number of pixels is counted for each cluster. The cluster with the most pixels is segmented as 

the arm and its direction is taken as the mean of the directions of all its pixels (Figure 7(e)). 

Finally the arm region is removed, the image is rotated to make the arm direction point 

down and translated to make the mass center as the image center. Finally, the hand image is 

reshaped to the size of 32 x 32 and normalized to the interval of [0,1] (Figure 7(f)). Note 

that the processing steps S3-6 in Figure 7 can be iterated to get a better segmentation result 

because in some cases the resulted hand still has a large arm area. For example, as shown 

in Figure 8, the first S3-6 processing does not remove all the arm region (Figure 8(d)). By 

implementing the second S3-6 processing, most of the arm pixels are removed (Figure 8(g)).

Figure 8. An example of iteration of the processing steps S3-6 for better segmentation 
result.

The above preprocessing methods are implemented on the two datasets using tools 

from the OpenCV library [4], and the resulted samples are shown in Figures 9 and 10, 

respectively. For the ASL benchmark dataset, the direction normalization step (S6 in 

Figure 7) is discarded because some signs (e.g., ‘G’ and ‘H ') are related to orientations.
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The implementation of preprocessing and hand segmentation removes the background and 

prepares the images to have a centered hand on each with a uniform size 32 x 32 for the 

subsequent CNN training process.

Figure 9. Examples of the 24 signs of each of the five subjects in the preprocessed ASL 
alphabet dataset.

Figure 10. Examples of the 10 signs of each of the ten subjects in the preprocessed NTU 
digit dataset.
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5.3. EVALUATION METRIC

We conduct comparisons with state-of-the-art recognition results on the above two 

datasets using the same evaluation policies as in [17], which are half-half and leave-one-out 

policies. For the half-half policy, one half of the dataset is randomly chosen and fed into the 

CNN model for training, and the other half is reserved for evaluation. For the leave-one-out 

policy, the samples from Nsubjects -  1 out of Nsubjects subjects are used for CNN training, 

and the samples from the left one subject are used for evaluation. We employed a few 

commonly used metrics to evaluate this multiclass classification performance, which are

1. Accuracy

Accuracy = lLntest i (% = yn)
Ntest

2. Precision and Recall

Precision = 

Recall =

TP
TP + FP 

TP
TP + FN

(9)

(10)

3. F score

F = 2-
Precision • Recall 
Precision + Recall (11)

where 1() in Equation 9 is an indicator function. In Equation 10, True Positive (TP) 

describes a sample Xn from a certain class yn that is correctly classified as yn; False Positive 

(FP) is defined as a sample Xn from a ’not yn’ class is incorrectly classified as yn; False 

Negative (FN) means a sample Xn of the class yn is misclassified as other ’not yn’ classes. 

In Equation 11, F score evaluates the overall performance of the of Precision and Recall, 

which is their harmonic mean in the interval [0,1].
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5.4. SOME CNN TRAINING DETAILS

TensorFlow [1] is used in creating the CNN model described in Section 3. For 

the hyperparameters, we set the batch size, learning rate, dropout rate, regularizer as 256, 

0.001, 0.1, and 1e-5, respectively. The Adam optimizer [9] is used in training, and the 

training is stopped after 100 epochs, which takes approximately 2 hours for a leave-one-out 

experiment on a workstation with one 12 core Intel Xeon processor, 64GB of RAM and one 

Nvidia Geforce 1080 Ti graphic card.

6. RESULTS AND DISCUSSION

6.1. EVALUATION OF THE CNN ARCHITECTURE

Due to the high architectural complexity and parametric variation of a CNN model, 

it is not feasible to evaluate all possible architectures and associated parameters (e.g., 

number of convolutional layers, kernel size, activation function, pooling method, etc.). 

In this study, a few representative CNN designs with increasing numbers of layers and 

different parameters are compared to find the optimal design. As shown in Table 1, eight 

CNN architectures (listed in columns) are selected and their performance of leave-one-out 

evaluations is compared. We can see that increasing the depth and the number of filters, 

from the left (arch-i) to the right (arch-viii), improves the evaluation accuracy. Regarding to 

the convolutional kernel size, the size of 5 outperforms the size of 3. Therefore, the design 

of arch-viii is chosen as our baseline CNN architecture (see Figure 5).
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Table 1. Comparison of leave-one-out accuracies on the ASL benchmark dataset (without 
data augmentation) with different CNN architectures (listed in columns).

CNN arch.

i ii iii iv v vi vii viii
Input (32 x 32 x 1)

C3-8 C5-8 C3-8 C5-8 C3-16 C5-16 C3-32 C5-32
Maxpool

C3-16 C5-16 C3-16 C5-16 C3-32 C5-32 C3-64 C5-64
Maxpool

FC-1024

C3-32 C5-32 C3-64 C5-64 C3-128 C5-128
Maxpool

FC-512 FC-1024 FC-2048
FC-128
FC-24

Softmax
Accuracy(%) 81.8 82.7 82.7 84.2 83.0 84.1 84.7 84.8

6.2. EVALUATION OF THE MULTIVIEW AUGMENTATION AND INFERENCE 
FUSION STRATEGIES

To evaluate the proposed multiview augmentation and inference fusion strategies, we 

compare our methods, including MVA (multiview augmentation) and MVA+IF (multiview 

augmentation and inference fusion) methods, to JA (jittering augmentation) method [20], 

which has been proved to be an effective method and is commonly used in image classifi

cation tasks.

For the MVA and MVA+IF methods, four Naps values 6, 12, 18 and 24 are se

lected, i.e., new views are generated by implementing yaw-pitch-roll rotation on the ex

tracted point cloud around each axis for [±10°], [±10°, ±20°], [±10°, ±20°, ±30°], and 

[±10°, ±20°, ±30°, ±40°], yielding 6, 12, 18, and 24 augmented views for each sample, 

respectively. For the MVA+IF method, multiview augmentations are implemented on both 

the training data and the testing data. Thus, each testing image has multiple vector outputs 

before the IF step. Then these vector outputs are fused to generate only one probability 

distribution. While for the MVA method, we only augment the data in the training phase 

and do not augment the testing data. Therefore, each testing image has only one vector
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output, from which the final prediction can be made. As for the JA method, the same four 

Naps values are used; 6, 12, 18, and 24 augmented samples are generated by randomly 

translating in the range of [-2 , +2] pixels, scaling in the range of [0.9,1.1] ratio, and rotating 

in the range of [-40, +40] degrees.

The comparisons of leave-one-out accuracies on the ASL benchmark dataset are 

shown in Figure 11 (the half-half accuracies are not considered for comparison purpose 

because they are about reaching 100%). All the three augmentation methods have obvious 

accuracy improvements compared with the model without using data augmentation. For the 

JA method, using the Naps of 6 improves the accuracy from 84.7% to 88.9%, but continuing 

to increase Naps from 6 to 24 does not further improve the accuracy. The mean accuracy 

of the four cases (Naps = 6,12,18,24) for MVA is about 88.8%. Although the accuracy of 

MVA method with the Naps of 6 is a little bit lower than that of JA method, the accuracy 

increases when increasing the Naps, which outperforms JA after Naps > 12. The highest 

accuracy of MVA (91.1%) is from the case of Naps = 24, which is 2 percentage points 

higher than JA.

By implementing the multiview inference fusion, more signs are correctly recog

nized. MVA+IF demonstrates the highest accuracy in all the four cases and for the case of 

Naps = 18 it reaches the best performance of 92.7% accuracy among the three methods. 

Then increasing the Naps to 24 does not contribute additional improvement.

Overall, the data augmentation techniques, JA and MVA, demonstrate the effective

ness in improving the model performance, because the augmentation process introduces 

more natural variations to the original dataset to simulate the potential variations in the 

unseen samples, which pushes the CNN model to learn the most discriminative features and 

makes the training more robust. Meanwhile, the MVA method outperforms the JA method. 

It is because the finger spelling signs are highly perspective-dependent, i.e., the appearance 

of a sign varies significantly from different perspectives, and the MVA method can generate
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94.0%

^  92.0%
O

Naps 0 6 12 18 24
■JA 84.7% 88.9% 88.8% 88.7% 88.8%
■MVA 84.7% 88.5% 90.4% 90.9% 91.1%
i MVA+IF 84.7% 89.6% 91.6% 92.7% 92.7%

Figure 11. Comparison of leave-one-out accuracies on the ASL benchmark dataset using 
the methods of JA (jittering augmentation), MVA (multiview augmentation) and MVA+IF 
(multiview augmentation and inference fusion) with different Naps (number of augmenta
tions per sample).

such perspective variations but the JA method can not. Furthermore, the MVA+IF method 

fuses the predictions of multiple perspectives to make a comprehensive inference, which 

results in better accuracy than the MVA method.

6.3. IMPACT OF THE NUMBER OF TOP-K CANDIDATES

To find an appropriate number of top-K candidates (the value of K ) for the multiview 

inference fusion step described in Section 4, another set of experiments are conducted on 

the benchmark dataset. In these experiments, we use different K values, i.e., 3, 5, 7 and

9. Then the leave-one-out evaluation strategy is used and the accuracy evaluated on each 

of the five subjects is listed in Table 2. We can see that the four ‘top-K’ cases surpass the
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‘MVA’ case due to the multiview inference fusion step. However, changing the K value 

from 3 to 9 does not affect the performance much. Therefore, we choose K = 3 that can 

provide enough entries for the fusion process.

Table 2. The leave-one-out accuracy (%) tested on each of the five subjects with different 
numbers of top-K candidates on the ASL benchmark dataset.

Test subject 1 2 3 4 5
MVA 92.74 86.33 94.34 87.73 88.66
MVA+IF, Top-3 93.56 88.51 94.84 91.55 91.69
MVA+IF, Top-5 93.62 88.52 94.78 91.62 91.66
MVA+IF, Top-7 93.64 88.53 94.79 91.61 91.68
MVA+IF, Top-9 93.63 88.53 94.82 91.63 91.71

6.4. PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS 
ON THE ASL BENCHMARK DATASET

In this subsection, we compare our results with state-of-the-art performance on the 

ASL benchmark dataset in terms of accuracy, precision and recall with two evaluation 

strategies (half-half and leave-one-out). The comparison is summarized in Table 6. The 

highest accuracies of half-half and leave-one-out strategies in the literature are 100% [26] 

and 84.3%[8], respectively. For the half-half evaluation, our methods achieve 99.9%, 

which is almost 100% (there are only about 40 samples misclassified out of 32,831 testing 

samples). For the leave-one-out evaluation, our CNN model outperforms the state-of- 

the-art performance even without augmentations. The accuracy is improved by 4% with 

our implementation of the JA method. By using the MVA method, our model achieves 

91% accuracy which is 2% higher than JA. After implementing MVA+IF, the accuracy is 

improved by another 2 percent. The best accuracy, precision and recall of our results are 

92.7%, 93.5% and 92.4%, respectively.
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Table 3. Performance (%) comparison on the ASL benchmark dataset.

Method hh-A hh-P hh-R loo-A loo-P loo-R
Pugeault et al. (2011) [17] - 75 53 49 - -
Keskin et al. (2012) [8] 97.8 - - 84.3 - -
Kuznetsova et al. (2013) [10] 87 - - 57 - -
Zhang et al. (2013) [26] 98.9 - - 73.3 - -
Rioux-Maldague and Giguere (2014) [19] - 99 99 - 79 77
Dong et al. (2015) [5] 90 - - 70 - -
Maquedaetal. (2015) [13] 97.5 - - 83.7 - -
Wangetal. (2015) [23] - - - 75.8 - -
Zhang and Tian (2015) [25] 100 - - 83.8 - -
Ma and Huang (2016) [12] 84 - - - - -
Ameen and Vadera (2017) [2] - - - 80.3 82 80
Nai et al. (2017) [14] - - - 81.1 - -
Our CNN 99.7 99.7 99.7 84.7 85.8 84.8
Our CNN+JA 99.9 99.9 99.9 88.9 90.2 89.0
Our CNN+MVA 99.9 99.9 99.9 90.9 91.6 90.8
Our CNN+MVA+IF 99.9 99.9 99.9 92.7 93.5 92.4

Overall, our CNN model outperforms other methods with the multiview augmen

tation and inference fusion strategies. It is known that the leave-one-out evaluation is a 

harder task than the half-half evaluation, because in the half-half experiment, all the testing 

subjects have already been seen by the CNN model during training; but in the leave-one-out 

experiment, the testing subject has not been seen. Therefore, the leave-one-out performance 

can demonstrate how well the trained model could be generalized to a new subject. Our 

model can reach 93% leave-one-out accuracy, which is a significant improvement compared 

to the previous best benchmark of 84% and is very promising for practical applications.

6.5. PERFORMANCE EVALUATION ON THE NTU DIGIT DATASET

We evaluate the performance of our model on the NTU digit dataset, which also 

achieves the best accuracies compared to other methods. The comparison is listed in 

Table 4. The MVA method has 100% and 99.7% for the half-half and leave-one-out 

accuracies, respectively, which outperforms the results reported in the literatures. The
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MVA+IF method further improve the leave-one-out accuracy to 100%, which means that 

the multiview inference fusion strategy successfully classify the left 0.3% samples that are 

misclassfied using only MVA.

Table 4. Performance (%) comparison on the NTU digit dataset.

Method hh-A loo-A
Renetal. (2011) [18] 93.9 -
Zhang and Tian (2015) [25] 97.5 99.0
Our CNN+MVA 100 99.7
Our CNN+MVA+IF 100 100

6.6. FEATURE VISUALIZATION

Although the CNN model demonstrates superior performance on various applica

tions, such as the sign recognition task, it is usually taken as a black box because of its 

high architectural complexity and tremendous inner parameters, and its hyperparameters 

are tuned by experience or trial-and-error. To have a better understanding of what the 

CNN model has learned and what features are extracted by the convolutional operations, we 

visualize the learned filters and the extracted feature maps of the first convolutional layer 

since they can be projected into 2 dimensional images, which is shown in Figure 12. The 

32 learned filters of the first convolutional layer are presented on the top. It is difficult 

to make some intuitive explanations on these 5 x 5 filters, but by reviewing the feature 

maps obtained from each input using these filters, we can see that some low-level features 

like edges and curves are extracted. For different signs, the filters are able to identify the 

discriminative feature elements. For example, the main difference between signs ‘M ’ and 

‘N ’ is the thumb’s position, which is actually learned by the filters (as shown in the feature 

maps of ‘N ’, the thumb regions are successfully emphasized compared to the feature maps
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of ‘M’). Filters and feature maps of the second and third convolutional layers are not pre

sented here because they involve high dimensional information, thus, cannot be projected 

to images for visualization purpose.

6.7. FAILURE CASE STUDIES

In this subsection, we discuss the signs that are not correctly classified in the leave- 

one-out evaluations on the benchmark dataset. The overall mean F  scores for the 24 signs 

are illustrated in Figure 13. The model has great performance (> 95%) on the signs ‘B’, ‘C  , 

‘D ’, ‘F ’, ‘I ’ , ‘L’, ‘O’, ‘U’, ‘W’ , ‘X’, and ‘Y'  However, for the signs of ‘E ’, ‘K ’, and ‘Q’ , the F  

scores are lower than 85% due to their high subjectwise variations. For example, as shown 

in Figure 13, different subjects perform the sign of ‘K  in different ways, thus it is difficult 

for the model to be generalized to the unseen subject in the leave-one-out evaluations.

The confusion matrices and the most confusing sign pairs of the five subjects are 

shown in Figures 14, 15, 16, 17 and 18, respectively. We can see that, different subjects 

show different performance on different signs in the leave-one-out evaluations. For the 1st 

subject (see Figure 14), there are six confusing pairs severely misclassified, which are ‘K-G’, 

‘N-T , ‘R-K’, ‘R-U’, ‘V-K’, and ‘X-G’. For example, there are 101 ‘V’ misclassified as ‘K ’ 

because of the high similarity between them (i.e., both have the index and middle fingers 

pointing up). For the 2nd subject (see Figure 15), the most confusing pairs are ‘G-H, 

‘V-K’, and ‘T-E’. For the 3rd subject showing the best performance (see Figure 16), most of 

the signs are successfully classified except the most confusing pairs ‘A-T’ and ‘K-L’, where 

there are 99 ‘A’ and 109 ‘K ’ misclassified as ‘T’ and ‘L , respectively. The most confusing 

pairs of the 4th (see Figure 17) and 5th (see Figure 18) subjects are ‘G-H, N -M \ ‘T-N’, 

and ‘E-S, ‘V-K’, ‘Q-P’, respectively.

By reviewing these failure cases, we find that the high similarity between the con

fusing pairs makes it difficult to distinguish them, and the significant subjectwise difference 

for the same sign makes it difficult to learn this kind of unseen variations beforehand.
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Figure 12. Visualization of the 32 (4 rows x  8 columns) learned filters (top) of the first 
convolutional layer, and the top 9 feature maps (the sequence is indexed as shown in A’s 
feature maps) for each of the 24 signs in a trained model on the ASL benchmark dataset.
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Figure 13. Mean F  score of each of the 24 signs in the leave-one-out evaluations on the 
ASL benchmark dataset.

a b c d e f g h i  k l m n o p q r s t  u v w x y
Predicted sign

Figure 14. Confusion matrix and the most confusing pairs of the leave-one-out evaluation
on the ASL benchmark dataset tested on the 1st subject.
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Figure 15. Confusion matrix and the most confusing pairs of the leave-one-out evaluation 
on the ASL benchmark dataset tested on the 2nd subject.

Predicted sign

Figure 16. Confusion matrix and the most confusing pairs of the leave-one-out evaluation
on the ASL benchmark dataset tested on the 3rd subject.
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Figure 17. Confusion matrix and the most confusing pairs of the leave-one-out evaluation 
on the ASL benchmark dataset tested on the 4th subject.

Figure 18. Confusion matrix and the most confusing pairs of the leave-one-out evaluation
on the ASL benchmark dataset tested on the 5th subject.
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To address these failure cases for further improving the performance, some future 

work can be explored: (1) more subjects can be considered to include more signing styles for 

training the model; (2) 3D reconstruction can be implemented to recover more information 

from the depth image than the current 3D point cloud; (3) the hand skeleton information can 

be extracted to obtain some skeleton-based features for classification; (4) the RGB images 

can be included in the model; and (5) the architecture of the CNN model can be explored 

to improve its performance and efficiency.

7. CONCLUSIONS

In this paper, we propose a novel method of multiview augmentation and inference 

fusion for ASL alphabet recognition from depth images using a Convolutional Neural 

Network (CNN). Multiview augmentation first retrieves the 3D information embedded in 

a depth image, and then generates more data for different perspective views. The result 

has shown that it outperforms the traditional image augmentation methods because it can 

simulate realistic perspective variations that the traditional methods cannot. Inference 

fusion copes with the interclass similarity issues caused by perspective variations and 

finger occlusions. It comprehends information of all individual views, and then outputs the 

final prediction, which has been proved to be effective in further improving the model's 

performance. Our method has been successfully evaluated on two public datasets, the ASL 

benchmark dataset and the NTU digit dataset. The experimental results have demonstrated 

that our method makes significant improvement compared to the previous work, achieving 

recognition accuracies of 100% and 93% in the half-half and the leave-one-out experiments, 

respectively, on the ASL benchmark dataset, and achieving recognition accuracies of 100% 

for both the half-half and the leave-one-out experiments on the NTU digit dataset.
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ABSTRACT

In a human-centered intelligent manufacturing system, sensing and understanding 

of the worker’s activity are the primary tasks. In this paper, we propose a multi-modal 

approach for worker activity recognition using Inertial Measurement Unit (IMU) signals 

obtained from a Myo armband and videos from a visual camera. Specifically, for the IMU 

signals, we design two novel feature transform mechanisms, in both frequency and spatial 

domains, to assemble the captured IMU signals as images, which allow using convolutional 

neural networks to learn the most discriminative features. Along with the above two 

modalities, we propose two other modalities for the video data, at the video frame and 

video clip levels, respectively. Each of the four modalities returns a probability distribution 

on activity prediction. Then, these probability distributions are fused to output the worker 

activity classification result. A worker activity dataset of 6 activities is established, which at 

present contains 6 common activities in assembly tasks, i.e., grab a tool/part, hammer a nail, 

use a power-screwdriver, rest arms, turn a screwdriver, and use a wrench. The developed 

multi-modal approach is evaluated on this dataset and achieves recognition accuracies as 

high as 97% and 100% in the leave-one-out and half-half experiments, respectively. 

Keywords: Worker activity recognition; multi-modal fusion ; deep learning; intelligent 

manufacturing ; human-centered computingg
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1. INTRODUCTION

Industrial big data has been increasingly accessible and affordable, benefiting from 

the availability of low-cost sensors and the development of Internet-of-Things (IoT) tech

nologies [8, 16], which builds up the data foundation for advanced manufacturing. A 

variety of methods and algorithms have been developed to learn valuable information from 

the data, and to make the manufacturing more intelligent [19]. With the recent fast growing 

of Artificial Intelligence (AI) technologies, especially deep learning [15] and reinforcement 

learning [13] methods, AI boosted manufacturing has been increasingly attractive in both 

the scientific research and industrial applications.

In an intelligent manufacturing system involving workers, recognition of the worker’s 

activity is one of the primary tasks. It can be used for quantification and evaluation of the 

worker’s performance, as well as to provide onsite instructions with augmented reality. 

Also, worker activity recognition is crucial for human-robot interaction and collaboration. 

It is essential for developing human-centered intelligent manufacturing systems.

1.1. RELATED WORK

In the computer vision area, image/video-based human activity recognition using 

deep learning methods has been intensively studied in recent years and unprecedented 

progress has been made [3,9]. However, visual-based recognition suffers from the occlusion 

issue, which affects the recognition accuracy. Wearable devices, such as an armband 

embedded with an Inertial Measurement Unit (IMU), directly sense the movement of 

human body, which can provide information on the body status. In addition, there are a lot 

of inexpensive wearable devices in the market, such as Myo armbands [32] and smartphones, 

which are widely used in activity recognition tasks. Wearable devices are directly attached to 

the human body and thus do not have the occlusion issue. Nevertheless, a wearable device 

can only sense the human body activity locally, it is challenging to precisely recognize
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an activity involving multiple body parts. Although multiple devices can be applied to 

simultaneously sense the activity globally, it makes the system cumbersome and brings 

discomfort to the user.

Worker activity recognition in the manufacturing area is still an emerging topic and 

few studies have been made. Stiefmeire et al. [27] utilized ultrasonic and IMU sensors for 

worker activity recognition in a bicycle maintenance scenario using a Hidden Markov Model 

classifier. Later they proposed a string-matching based segmentation and classification 

method using multiple IMU sensors for recognizing worker activity in car manufacturing 

tasks [28, 29]. Koskimaki et al. [14] used a wrist-worn IMU sensor to capture the arm 

movement and a K-Nearest Neighbor model to classify five activities for industrial assembly 

lines. Maekawa et al. [17] proposed an unsupervised measurement method for lead time 

estimation of factory work using signals from a smartwatch with an IMU sensor. Recently, 

deep learning methods have been introduced to recognize worker activity in human-robot 

collaboration studies [21, 34].

In general, the activity recognition task can be broken down into two subtasks: 

feature extraction and subsequent multiclass classification. To extract more discriminative 

features, various methods have been applied to the raw signals in the time or frequency 

domain, e.g., mean, correlation, and Principal Component Analysis [2, 4, 20, 23]. Different 

classifiers have been explored on the features for activity recognition, such as the Support 

Vector Machine [2, 4], Random Forest, K-Nearest Neighbors, Linear Discriminant Anal

ysis [20], and Hidden Markov Model [23]. To effectively learn the most discriminative 

features, Jiang et al. [11] proposed a method based on Convolutional Neural Networks 

(CNN). They assembled the raw IMU signals into an activity image, which enabled the 

CNN model to automatically learn the discriminative features from the activity image for

classification.
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1.2. PROPOSED METHOD

Few attempts have been made for the worker activity recognition in the manufac

turing field, and most of them only use single sensing modality, which cannot guarantee 

robust recognition under various circumstances. In the present research, to comprehensively 

perceive the worker, we choose a Myo armband to acquire the Inertial Measurement Unit 

(IMU) signals and a visual camera to capture the image sequence of the worker’s activity. 

An overview of our method is illustrated in Figure 1. For the IMU signals, we design two 

novel mechanisms, in both the frequency and spatial domains, to assemble the captured 

IMU signals as images. The assembled signal representation allows us to use Convolutional 

Neural Networks to explore the correlation among time-series signals and learn the most 

discriminative features for worker activity recognition. As for the video data, we propose 

two modalities, at the frame and video-clip levels, respectively. Overall, we have four 

modalities in parallel and each of the four modalities can return a probability distribution 

on the activity recognition. Then these probabilities are fused to output the worker activity 

classification result. To evaluate the method, a worker activity dataset containing 6 common 

activities in assembly tasks is established.

The main contributions of our work are as follows:

1. We propose a multi-modal approach for the worker activity recognition in manufac

turing, using both wearable devices and visual cameras.

2. To take advantage of the powerful learning ability of CNN on images, we design 

two novel mechanisms to produce 2D signal representations of the IMU signals from 

wearable devices, in both the frequency and spatial domains.

3. To synthesize more physical-realistic variations in the training dataset, we propose a 

kinematics-based data augmentation method for the wearable sensor data. It generates 

more data by spatial rotation and mirroring, in order to augment variations that cannot 

be achieved using traditional image augmentation methods.
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Figure 1. Overview of our multi-modal approach for worker activity recognition.

The remainder of this paper is organized as follows. Section 2 discusses how we 

build up the worker activity dataset. Section 3 focuses on the novel feature representation 

and data augmentation. Section 4 describes the details of neural network architectures, 

training and testing of the multi-modal activity recognition. The experimental setups and 

results are described in Sections 3 and 6, respectively. Finally, Section 4 provides the 

conclusions of this research.

2. MULTI-MODAL SENSING AND DATA ACQUISITION

To establish our dataset of worker activity, six activities commonly performed in 

assembly tasks are chosen, which are: grab a tool/part (GT), hammer a nail (HN), use a 

power-screwdriver (UP), rest arms (RA), turn a screwdriver (TS), and use a wrench (UW). 

There are 8 subjects recruited to conduct a set of tasks (listed in Table I) containing the 6

activities.
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Table 1. Tasks for collecting worker activity.

No. Tasks Activities
1 Grab 30 tools/parts from the 3 containers GT
2 Hammer 15 nails into the wooden dummy HN
3 Tighten 20 screws using a power-screwdriver UP
4 Rest arms for about 60 seconds RA
5 Tighten 10 nuts using a screwdriver TS
6 Tighten 10 nuts using a wrench UW

As demonstrated in Figure 3(a), the subject is asked to stand in front of the work

bench, wear a Myo armband on his/her right forearm with a fixed orientation (Figure 3(b)), 

and perform the tasks on assembly dummies in a natural way. The Myo armband from 

Thalmic Labs is equipped with IMU sensors for wearable sensor data acquisition. The 

IMU returns three types of signals (3-channel acceleration, 3-channel angular velocity, and 

4-channel orientation) at the sample rate of 50Hz. These 10-channel signals captured on a 

worker are transmitted via Bluetooth to the workstation in real time.

While collecting wearable sensor data from the Myo armband, an overhung camera 

is used to record the assembly tasks simultaneously for monitoring the process. Examples 

of the 6 activities are shown in Figure 3, which are taken from the overhung camera.

3. DATA PREPROCESSING, SIGNAL REPRESENTATION AND DATA
AUGMENTATION

Convolution-based deep learning methods need the input data to be formatted as 

tensors, for example, with a fixed size of h x  w x c for images or with a fixed size of h x w x cx  l 

for image sequences (video clips) where h, w and c are the height, width and the number 

of channels of the image, respectively, and l is the image sequence length. Therefore, some 

preprocessing steps are necessary before the data can be fed into a convolutional neural 

network. In this section we give a detailed description of the pipeline for data preprocessing
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Figure 2. (a) Data collection setup; (b) Wearing orientation of a right-hand.

and the new methods for signal representation. Furthermore, to generate more realistic 

data, we propose a kinematics-based augmentation method which is also presented in this 

section.

3.1. DATA SAMPLING

Although the data (i.e., Myo sensor signals and videos) are collected simultaneously 

for all tasks and each task consists of only one activity, there still might be some unrelated 

activities inside the data, such as preparing activities before hammering nails. To address it, 

the recorded videos are manually annotated to locate the time durations (i.e., the starting and 

ending timestamps), each of which contains only one of the six activities. These durations 

are used to segment the raw data (Myo sensor signals and videos).
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Figure 3. Examples of the 6 activities captured from the overhung camera.

Usually, the duration of an activity instance ranges from a few seconds to more than 

one minute. Thus, sampling is needed to prepare the data samples for recognition. As 

depicted in Figure 4, the 10-channel IMU signals and the video recording are synchronized 

with the timestamps. Then the 50Hz IMU signals are sampled using a temporal sliding 

window with the width of T = 64 timestamps and 75% overlap between two windows. 

Thus, each IMU sample lasts for about 1.3 seconds, which covers at least one activity 

pattern. After sampling the IMU signals, the video recordings are sampled according to the 

time durations of the IMU samples. Then, each video clip has an approximate length of 38

frames.
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Figure 4. Scheme of the signal sampling method.

After sampling, we denote our dataset as D = {D1, ••• , Dn, • • • , DN}

Dn = vnL ynjy n 6 [l , N] (1)

where sn is a sample set of time-series IMU signals, vn is the corresponding video clip 

sample, and yn is the manually labeled ground truth of the activity class. More specifically, 

sn a sequence of discrete-time data over T timestamps, sn = {sn,i, • • • , sn,t, • • • , sn,T}, and 

each element is elaborated as

sn,t [ an,t, an,t, an,t , gn,t, gn,t, gn,t, qn,t, qn,t, qn,t, qn,t]

an,t: acceleration gn,t: gyro qn,t: orientation

t 6 [1, T],

(2)

where a, g, and q are acceleration, angular velocity, and orientation in quaternion, respec

tively.



64

After sampling, the quantitative information of the dataset is listed in Table II. There 

are 11,211 data samples in total. The eight subjects use different amounts of time to finish 

each task, therefore they have different numbers of data samples for each activity.

Table 2. Number of data samples for each activity of different subjects.

Subject No. GT HN UP RA TS UW
1 193 140 364 266 222 442
2 302 408 195 56 274 751
3 198 183 171 251 214 567
4 204 172 188 29 82 344
5 187 204 142 43 213 372
6 216 77 179 47 129 301
7 213 196 203 254 231 576
8 200 184 262 145 148 273

Total 1713 1564 1704 1091 1513 3626

3.2. WEARABLE SENSOR SIGNAL REPRESENTATION

To take advantage of the powerful learning ability of CNNs on images, we propose 

to transfer the time-series IMU sensor signals to the image representation. As shown in 

Figure 5, the frequency feature transform assembles the sensor signals in a special pattern 

such that the hidden correlations among different channels of sensor signals are revealed; 

and the spatial feature transform uncovers the changing history of orientation signals in 

the spatial domain. Both feature transform mechanisms enable a CNN model to learn the 

most discriminative features from images, which are not possible in the original time-series 

sensor signals.

3.2.1. Frequency Feature Transform. Frequency domain analysis is a commonly 

used technique for signal pattern recognition. Rather than directly applying the frequency 

transform to time-series signals, we propose a new way to unveil the hidden correlations 

among sensor signals: 1) The 10-channel signals sn in an IMU sample are stacked row by 

row as an image I^ acked with the size of 10 x 64 (Figure 5(a)); 2) We expand the 10-row
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Figure 5. Illustration of the feature transforms for wearable sensor signals.

image with a shuffling algorithm [11] to form inxpanded (Figure 5(b)) with the size of 42 x 64. 

The idea here is to make every pair of 10 channels have the chance to be row-neighbors in 

the image, then the correlations among different channels can be exposed and be further 

detected by a CNN model; 3) Two-dimensional (2D) Discrete Fourier Transform (DFT) 

is applied to i <nxpanddd to get the representation in the frequency domain to analyze the 

frequency characteristics. Only its logarithmic magnitude is taken to form the image I/req 

(Figure 5(c)); 4) Due to the conjugate symmetry of Fourier Transforms

f l / req (u, v) = l / req ( - u , - v ) ,

I f req (-« , V) = I>"q (u ,-v ) ,
(3)
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where u and v represent the two directions of an image, we can use only a half 

to represent the DFT image to remove the redundancy. This will reduce the architectural 

complexity and the number of training parameters for the CNN model. Here we keep using 

the notation Ifreq to represent the one-half (the first and fourth quadrants) of DFT image 

for simplicity.

3.2.2. Spatial Feature Transform. Implementing feature transform in the fre

quency domain unavoidably abandons the spatial information from the signals, which 

motivates us to introduce the second mechanism to exploit the spatial information included 

in the raw signals. Since recovering the spatial trajectory from IMU data is not an easy task, 

here we develop an orientation changing history (och) image to represent the pose-changing 

information of the subject in the spatial domain

I°nCh = %ch(qn) (4)

where T°ch is the spatial feature transform and I°ch is the resulted image. In the spatial 

feature transform described below, only the orientation information qn is considered.

First, a unit vector vref  = [0,0,1] is rotated by qn to generate a direction vector vn,t 

by

vn,t = qn,t * vref (5)

where * denotes the rotation operation defined as

q *  v = [ ( q®[ v x, vy, vz, 0])® q*]l:3 (6)
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where ® is the quaternion multiplication, defined as

qi <g> q2 =

qW q2 + qiqW + qi q2 -  qZq2 

qW q2 + qi qW + q iq 2 -  qfq2 

qW q2 + qiqW + q?q2 -  q i q2 

qWqW -  qiqX -  qiq2 -  qiq2

nr

where qi = [q[,q i, qi, q^ ], q2 = [q£,q2,q2, qW], and if* is the conjugate of qi

(7)

q* = [ -q x, - q y, - q z, qW ]. (8)

Then, the orientation changing history can be represented by a series of orientation vectors 

at different time steps.

voch
n t^ n i vn^ . . . , vn,t], ̂  ^ [1, T] (9)

which is essentially a set of points on the unit sphere surface.

Secondly, these points are projected onto three orthogonal planes (Figure 5(d)). On 

each plane, the points are connected with line segments sequentially to form orientation 

changing curves in an image.

Finally, these three projected images are stacked as a 3-channel image 7"ch which is 

represented in red, green and blue color, respectively (Figure 5(e)). Figure 6 shows some 

examples of image representations in the frequency and spatial domain, from one subject 

on six activities, from which we can observe unique patterns of each activity.
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Figure 6. Examples of IMU image representations by the frequency and spatial feature 
transforms.

3.3. VISUAL SIGNAL REPRESENTATION

Besides the two mechanisms of feature transforms on the IMU sensor signals, 

since the recorded video contains rich visual contexts of the worker’s activity and visual- 

based activity recognition also has shown promising results [3, 9], we introduce two other 

mechanisms to represent the video at two levels.

3.3.1. Frame-Level Visual Representation. At the frame level, the middle frame 

of a video clip is selected as an image representation of an activity, which focuses on the 

worker’s static posture and surrounding environment. The operation is denoted as

I 1/ " " 6 = Tframe(vn) (10)
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3.3.2. Video-Level Visual Representation. At the video-clip level, the video clip 

samples are sampled again to make each video clip have the defined length of frames for a 

CNN model (to be described in Section 4). The operation is

V liP = Tclip (v„) (11)

where Vn is the resulted fixed-length video-clip from the operation of Tclip.

3.4. KINEMATICS-BASED DATA AUGMENTATION

For deep learning, a large amount of labeled data are needed to train a valid model 

with a decent performance of generalization. Nevertheless, it is always time-consuming 

and costly to collect enough data with annotated labels. Data augmentation that synthesizes 

additional data derived from original ones, is a commonly-used technique to resolve the 

data shortage problem. Traditionally, image data augmentation refers to implementing a 

series of image transformation techniques on the original images, which may consist of 

rotating, scaling, shifting, flipping, shearing, etc., to generate more image data. The image 

transformation is able to introduce more variations and still keep the recognizable contents, 

and thus it is applied to generate more data for images and video-clips from the visual signal 

representation. However, the variations introduced by the basic image transformation is not 

physically-realistic in our sensor signal context.

To include more reasonable variations in the training dataset, we propose a kinematics- 

based augmentation method to generate more wearable sensor signal samples, rather than 

implementing image data augmentation on those images resulted from feature transforms. 

More specifically, the kinematics-based augmentation refers to creating variations by spatial 

rotation and mirroring on the four channels of orientation signals.
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Suppose we have a four-channel orientation signal represented as a quaternion qn,t, 

a new orientation q can be generated by rotating qn,t with

I  = % ® qn,t (12)

where % represents a rotation quaternion of an angle 0 about an axis a = [ax, ay, az]. It can 

be calculated by

% = [ax sin (0/2), ay sin (0/2), a z sin (0/2), cos (0/2)]. (13)

Applying mirroring to the original data is to add variations in some situations, for 

example, the armband is worn in different dominant arms for different subjects. First, the 

vector %mirror mirrored from the current direction vector %n,t (Eq. 5) against a certain plane 

can be calculated with

Vn,t — 2'vn,t • nmirror (14)

where n is the normal vector of the given plane.

Then the mirrored quaternion q = [qx,qy,q z, qw], representing the transition be

tween the two vectors vref  and vmlrror, can be obtained by

[qx, ̂ y, ̂ z] = v%ef x vm%ror 

qw = i + v%ef • vm%ror
(15)

where x and • are the cross and dot products, respectively.

For the other six channels of linear acceleration and angular velocity, since their 

measurements are relative to the sensor’s coordinate systems, rotation and mirror operation 

do not affect the values. Some random noises (uniformly distributed in the range of ±5% 

of the original signals) are added to simulate the possible fluctuations.
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4. MULTI-MODAL RECOGNITION

In this section the developed multi-modal approach for worker activity recognition is 

detailed: four deep learning architectures created for different input modalities are presented; 

the cost function for training each modality is introduced; and the inference fusion strategies 

to output the recognition result are described.

4.1. DEEP LEARNING ARCHITECTURES OF FOUR INPUT MODALITIES

After the preprocessing, signal representation generation and data augmentation 

described in Section 3, there are N 1 data samples {X1, • • • , XN}, each of which contains 

four different inputs:

Xn = {if,req, if ,  if™, v f }, n £ [1, N] (16)

where I^ch, Iframe and Vncl!p are the four inputs of frequency feature transform, spatial

orientation changing history (och) feature transform, frame-level visual representation and 

video-level visual representation, respectively.

For the three image inputs, Ifreq, inOch and i frame, 2D convolutional operation [9] is 

applied to extract features layer by layer. The value at position (x, y) in the j th feature map 

of the ith layer is computed by

x yV- • = gij 6 btj +
Pi-1 Qi-1

I E  Ik p=0 q=0
wpq V(x+p)(y+q) 

ijk V(i-1)k (17)

iHere we use the same notation for simplicity but this N is larger than the one in Eq. 1 due to the data 
augmentation.



72

where g(-) denotes a non-linear activation function. bij is the bias for this feature map, k 

is the index of the feature maps in layer (i -  1), w j  is the value at the position (p, q) of 

the kernel connected to the kth feature map, and Pi and Qi are the height and width of the 

two-dimensional kernel, respectively.

For video-clip input Vnc1ip', 3D convolutional operation [9] is applied to deal with the 

additional temporal dimension. The value at position (x, y, z) in the jth  feature map of the 

ith layer is given by

bij + I  Z  Z  Z  wP/kr vfi-ipky+q)(z+r^  (18)
, k p=0 q=0 r=0 /

where Ri is the size of the 3D kernel along the temporal dimension, w j r is the (p, q, r )th 

value of the kernel connected to the kth feature map in the previous layer.

The feature maps obtained from a series of convolutional operations are flattened 

as a feature vector. To solve the classification problem, the vector is further input to a 

multi-layer neural network. The value of the j  th neuron in the ith fully connected layer, 

denoted as vij , is given by

x y z vij g

I
vij = g

K
bij +

(i-i)-

Zk=0
wijk v(i-i)k

i
(19)

where bij is the bias term, k indexes the set of neurons in the (i -  1)th layer connected to 

the current feature vector, wijk is the weight value in the ith layer connecting the j  th neuron 

to the kth neuron in the previous layer.

In details, the proposed CNN models for the four input modalities are described as 

follows:

Ifreq: The architecture of our CNN model for I freq is illustrated in Figure 5. It 

accepts the frequency image as the input, and outputs a probability distribution of the 6 

activities. Ifreq has the size of 42 x 32 x 1 (height, width, depth, respectively) and is
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normalized to the interval [0,1] before being fed into two 5 x 5 convolutional layers for 

feature extraction. Each convolutional layer is down-sampled to a half by implementing 

a 2 x 2 max pooling layer. The classification module accepts the 10 x 8 x 64 feature 

map from the last pooling layer and flattens it as a 5120 feature vector. Then, two fully 

connected layers are used to densify the feature vector to the dimensions of 128 and C 

sequentially, where C is the number of worker activity classes. Finally, this C-dimensional 

score vector S([S1, ..., Sc, ..., SC]) is transformed to output the predicted probabilities with a 

softmax function as follows:

P(yn = c | Xn) =
exp(Sc) 

Zjc=1 exp(Sc)
(20)

where P(yn = c|Xn) is the predicted probability of being class c for sample Xn.

Figure 7. The architecture of our CNN model for Ifreq.

c h and I frame : For these two input modalities, we use transfer learning to solve the 

image classification problem instead of building and training CNN models from scratch. To 

extract image features, we use a VGG network [25] pretrained on the ImageNet dataset [5]. 

For each image input, the feature vector obtained from the fully connected layer FC7 in the 

VGG model is used to represent the image, then a new classifier is designed on top of it to 

output the prediction on activity class.
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Vnclip: The video-clip input Vnclip contains spatial-temporal information. We use 

the C3D model pretrained on the Sports-1M dataset [10, 12, 33]. The C3D network reads 

sequential frames and outputs a fixed-length feature vector every 16 frames. We extract 

activation vectors from the fully connected layer FC6-1, which is then connected to a new 

classifier to predict the worker activity class.

4.2. TRAINING

The process of training a CNN model involves optimization of the network’s param

eters w to minimize the cost function for the training dataset X . We select the commonly 

used regularized cross entropy [6] as the cost function, which is

N C
L(w) = I I  ync log[P(y„ = c | Xn)] + Afe(w) (21)

n=1 c=1

where ync is 0 if the ground truth label of Xn is the cth label, and is 1 otherwise. The l2 

regularization term is appended to the loss function for penalizing large weights, and A is its 

coefficient. The dropout regularization [26] randomly drops units from the neural network 

during training, which is commonly used to avoid the overfitting. It is implemented during 

our training as well.

4.3. INFERENCE FUSION

Just like how human uses five senses to perceive the world, multi-modal approach 

has the opportunity to integrate all the information and make a comprehensive understanding 

of the learning problem. Mathematically, each individual model can return a probability 

distribution on the worker activity prediction, we can design different strategies to fuse the 

inferences from different models:
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4.3.1. Maximum Fusion. This method reports the maximum output within a list 

of predictions.

Smax = max pm (22)

where m is the index of different models and M is the total number of models.

4.3.2. Average Fusion. In this method, we adopt the average to fuse the outputs of 

different modalities, i.e.,
1 M

s t * = M  £  pm (2 3 )
m=1

4.3.3. Weighted Fusion. We introduce the informativity value ym to evaluate the 

prediction confidence of each modality m. ym is calculated with Eq. 24, which is modified 

from the Shannon entropy of a discrete probability distribution to vary in the interval of 

[0,1].

Y =
Zk=jJ?k}°SPk_ 

log K
+ 1 (24)

where m is the index of modalities and k is the index of top-K candidates. pm represents the 

probability of the kth class candidate at the mth model. I m will be close to 0 if all the top-K 

candidates have similar probabilities (i.e., pm « 1 /K ), and 1 if the probability of top-1 class 

candidate is about reaching 1 (i.e., pm « 1).

Then every predicted probability pm of the mth model is weighted by y m of this 

model and the weighted maximum fusion and the weighted average fusion scores are

Smax-w = max ymp m
c me{1,2,...,M} c

(25)

1 M
rraVg-W _  1 \  1

Sc = m Z jm= 1
y mpm (26)

For the above four fusion strategies, the final predicted label is chosen as the one 

that maximizes the fusion score (e.g., for weighted average fusion, c* = argmaxc SC?Vg-w).
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5. EXPERIMENTS AND EVALUATION METRICS

5.1. IMPLEMENTATION DETAILS

The CNN architectures of the four input modalities described in the previous sections 

are constructed using TensorFlow [1] and Keras libraries. They are trained individually 

so that each of them can make its own inference for further decision fusion. The SGD 

optimizer is used in training, with the momentum of 0.9, the learning rate of 0.001 and the 

regularizer coefficient of 1e-5. The batch size for each of the four models is 512, 64, 64 and 

512, respectively, which is limited by the computation memory. The number of training 

epochs is 1000 and 100 for the first modality / / req and the other modalities, respectively. 

We use a workstation with one 12-core Intel Xeon processor, 64GB of RAM and two Nvidia 

Geforce 1080 Ti graphic cards for the training jobs. It takes approximately 30 minutes to 

train each model for a leave-one-out experiment.

5.2. EVALUATION METRIC

Two evaluation policies are conducted, i.e., half-half and leave-one-out policies. In 

the half-half evaluation, after randomly shuffling, one half of the dataset is used for training 

and the other half is kept for testing. In the leave-one-out evaluation, the samples from 7 

out of 8 subjects are used for training, and the samples of the left one subject are reserved 

for testing. We employ several commonly used metrics [6] to evaluate the classification 

performance, which are listed as follows:

1. Accuracy

Accuracy = ^  ~ (27)
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2. Precision and Recall

Precision = 

Recall =

TP
TP + FP 

TP
TP + FN

(28)

3. F1 score

Fi = 2 •
Precision • Recall 
Precision + Recall

(29)

where 1() is an indicator function. For a certain class y , True Positive (TP) is defined as a 

sample of class y  that is correctly classified as y ; False Positive (FP) means a sample from 

a class other than y- is misclassified as y-; False Negative (FN) means a sample from the 

class yi is misclassified as another ‘not yi ’ class. F1 score is the harmonic mean of Precision 

and Recall, which ranges in the interval [0,1].

6. RESULTS AND DISCUSSION

In this section, we first perform evaluations of the data augmentation methods. 

Then, we compare the performance of different fusion methods. After that, we explore 

various modalities and their combinations for an ablation study. The performance of our 

approach on some public dataset is also reported. Then, we conduct visualizations for a 

better understanding of the CNN model. Finally, future research needs are discussed.

6.1. EVALUATION OF THE DATA AUGMENTATION METHODS

To evaluate the effectiveness of our proposed kinematics-based augmentation (KA) 

method, we compare it to the jittering augmentation (JA) method [24], which has been 

proved to be an effective method and is commonly used in CNN-based image classification 

tasks.
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For the KA method, four rotation angles {±n/8, ± n /4} are selected for rotation 

augmentation, i.e., new samples are generated by implementing rotation on the original 

signal samples, and two mirroring planes yz-plane and xz-plane are chosen for mirroring 

augmentation, overall yielding 6 augmented samples for each actual sample. Then the 

amount of the augmented training dataset is 6 times more than the original one. Note that 

the augmentation is applied directly on each original signal sample sn before the feature 

transforms.

As for the JA method, to have a fair comparison with the KA method, 6 aug

mented samples are generated by randomly translating in the range of ± 10% of the image 

width/height, scaling in the range of [0.9,1.1] ratio, and rotating in the range of [-5 , +5] 

degrees. In the JA method, the augmentation is applied to each image 7freq and 7£ch after 

the feature transforms.

We also evaluate the performance of the JA+KA method, in which the augmented 

data from the JA and KA methods are integrated. The leave-one-out evaluations of the two 

modalities 7^req and 7"ch on our activity dataset with the different augmentation methods 

are shown in Table 3 (the half-half accuracies are not considered for the comparison purpose 

because they are about reaching 100%). All the three augmentation methods have accuracy 

improvements compared with the models without using data augmentation. For 7freq, the 

JA method improves the accuracy from 88.0% to 88.7%, and the KA method outperforms 

the JA method, whose accuracy is 90.2%. By combining the JA and KA methods, the 

accuracy is slightly further improved to 90.5%. For 7"ch, the accuracy is improved from 

63.6% to 65.0% with the JA method, and is further improved by using the KA method, 

which is 77.3%, 12 percentage points higher than the JA method. However, the JA+KA 

method does not further improve the accuracy and its accuracy 75.3% is lower than the KA

method.
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Table 3. Comparison (%) of accuracy regarding to different data augmentation methods.

Modalities Data Augmentation Methods
None JA KA JA+KA

j f r e q
l n 88.01 88.71 90.18 90.51
j  o c h  
n 63.59 65.01 77.27 75.33

Overall, the data augmentation techniques, JA and KA, demonstrate the effectiveness 

in improving the model performance, because the augmentation process introduces more 

variations to the training dataset to simulate the potential variations in the unseen samples, 

which pushes the deep learning model to learn the most discriminative features and makes 

the training more robust. Meanwhile, the KA method outperforms the JA method. It is 

because rather than introducing variations to the image, like what JA method does, KA 

method directly generates some physically-realistic variations to the original signal sample, 

which is more effective to augment the dataset to be more comprehensive. Although JA+KA 

method improves the performance of j f req slightly compared with KA method, it does not 

for J0ch. Because JA+KA method has a larger amount (i.e., 2 times) of training data and 

J0ch has a more complex architecture than Ifreq, which makes the training less efficient, 

we choose KA method for both of the modalities in the following study as a compromise 

between performance and training efficiency.

6.2. EVALUATION OF DIFFERENT FUSION METHODS

Each of the four input modalities generates a vector output before the fusion step. 

Then, these vector outputs are fused to have only one score vector as the final output. To 

study the effect of the four different fusion methods: 1) maximum fusion, 2) average fusion, 

3) weighted maximum fusion and 4) weighted average fusion, a set of experiments are 

conducted on our activity dataset.



80

Table 4. Comparison (%) of different fusion methods for the leave-one-out experiments.

Fusion Methods Accuracy Precision Recall F Score
Maximum 93.68 92.48 92.50 91.09
Average 9 7 .1 7 9 7 .0 4 9 6 .8 2 9 6 .8 1

Weighted Max. 93.68 92.45 92.49 91.07
Weighted Avg. 96.79 96.38 96.28 96.04

The comparisons of the fusion performance, in terms of accuracy, precision, recall 

and F score, are listed in Table 4. The average fusion method performs better than the 

maximum fusion method for all the metric items. The weighted maximum method has 

the same accuracy as the maximum method but lower precision, recall and F score. The 

weighted average method has lower performance than the average method. The two weighted 

methods do not contribute additional improvement as they did in [31]. Therefore, the average 

method is chosen as the fusion strategy for our following experiments.

6.3. EVALUATION OF DIFFERENT INPUT MODALITIES

A central idea of our approach is that the reasoning based on multiple modalities 

can significantly improve the inference performance based on single modality. To validate 

this idea, we perform a comprehensive ablation study where we progressively increase 

the number of modalities and try different modality combinations. The performance of 

these cases in terms of accuracy, precision, recall and F score with two evaluation policies 

(half-half and leave-one-out) is summarized in Table ??.

To simplify the abbreviation, we use M 1, M 2, M 3 and M 4 to represent the four input 

modalities, Ifreq, I%ch, iji rame and Vnc1ip, respectively. For the single-modal cases, although 

M 1 and M 2 are both based on the IMU signals, M 2 shows lower performance because it 

only uses the 4 orientation channels out of the 10 channels. Also, it demonstrates that the 

frequency feature transform provides more discriminative features for activity recognition.
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M 3 performs better than M 4, which shows that the current pretrained VGG model can 

extract more discriminative features than the C3D model. Overall, M 1 achieves the highest 

performance in the single-modal cases, whose metric items are accuracy (90.2%), precision 

(90.7%), recall (89.5%) and F score (87.6%), respectively.

For the dual-modal cases, all the 6  combinations are evaluated. All the cases have 

better results compared with their related single-modal cases, e.g., M{2,3 } performs better 

than both M 2 and M 3. M{p3} has the highest accuracy as their individual modalities are 

also the highest two for the single-modal cases.

For the triple-modal cases, 4 combinations are tested. The fusion of more modalities 

further improve the performance than the duel-modal cases. M {1,3,4} has the highest 

accuracy as their individual modalities are also the highest three for the single-modal cases.

Finally, a quad-modal case M{p2,3,4} including all the four modalities is experi

mented, which achieves the highest performance. Therefore, we choose the quad-modal 

architecture for our model.

Table 5. Overall performance (%) of the half-half (hh) and leave-one-out (loo) experiments.

Methods Accuracy Precision Recall F Score
hh loo hh loo hh loo hh loo

Previous [30] 97.6 87.4 97.8 89.0 97.5 89.5 97.7 87.6
Mi 99.5 90.2 99.5 90.7 99.6 90.9 99.5 90.3
M 2 93.0 77.3 92.3 77.5 92.5 78.3 92.4 75.0
M 3 100 86.8 100 83.0 100 83.2 100 81.3
M 4 100 80.8 100 79.1 100 77.7 100 74.3

M{  1,2} 99.6 91.1 99.6 91.5 99.6 92.1 99.6 91.4
M {1,3} 100 94.8 100 94.9 100 94.6 100 94.3
M {1,4} 100 92.2 100 93.1 100 91.3 100 90.1
M {2,3} 100 90.3 100 90.9 100 87.8 100 87.0
M {2,4} 100 85.0 100 84.0 100 82.8 100 80.2
M {3,4} 100 89.5 100 86.3 100 86.0 100 84.2

M {1,2,3} 100 95.3 100 95.4 100 95.4 100 95.2
M {1,2,4} 100 93.9 100 93.5 100 94.1 100 93.0
M {1,3,4} 100 95.9 100 95.2 100 94.8 100 94.2
M {2,3,4} 100 92.6 100 90.4 100 90.7 100 89.5

M {1,2,3,4} 1 0 0 9 7 .2 1 0 0 9 7 .0 1 0 0 9 6 .8 1 0 0 9 6 .8
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For the half-half experiments, almost all of the testing samples are correctly rec

ognized. It is higher than the leave-one-out experiments. This is because all the testing 

subjects are seen in the half-half experiment, while the testing subject in the leave-one-out 

experiment is unseen.

6.4. PERFORMANCE COMPARISON ON THE PUBLIC DATASET

To validate the generalization of our method, a commonly-used public dataset for 

human activity recognition, PAMAP2 dataset [22], is also chosen for comparison. This 

dataset has 12 human activities (lying, sitting, standing, walking, running, cycling, Nordic 

walking, ascending stairs, descending stairs, vacuum cleaning, ironing and rope jumping) 

captured by three IMU sensors (worn on the wrist, chest and ankle, respectively), and 

the activities are performed by 9 different subjects. Since the PAMAP2 dataset does not 

include video recordings, we evaluate the performance of our CNN models of the first two 

modalities on it. The performance comparison of several existing deep learning models 

on the PAMAP2 dataset is listed in Table 6. Using the same evaluation protocol, our 

model achieves the best recognition accuracy, 94.2%, compared with other methods in the 

literature.

Table 6. Performance (%) comparison of existing deep models on the PAMAP2 activity 
dataset.

Method Accuracy
Hammerla et al. (2016) [7] 93.70
Murahari et al. (2018) [18] 87.50
Zeng et al. (2018) [37] 89.96
Xi et al. (2018) [35] 93.50
Xu et al. (2019) [36] 93.50
Our model 9 4 .1 6
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6.5. VISUALIZING THE CLASS ACTIVATION MAP OF M 3

Although the CNN model demonstrates superior performance on various applica

tions, such as the image classification task, it is usually taken as a black box because of its 

high architectural complexity and tremendous network parameters, and its hyperparameters 

are tuned by prior experiences or trial-and-error. To have a better understanding of which 

parts of a given image lead a CNN to its final classification decision, we visualize the class 

activation map (CAM), which consists of producing heatmaps of class activation over input 

images.

Figure 8. Examples of Class Activation Map (CAM) Visualization.

A class activation heatmap is a 2D grid of scores associated with a specific output 

class, computed for every location in any input image, indicating how important each 

location is with respect to the class under consideration. A set of CAM examples are shown 

in Figure 12, where the generated heapmaps are overlaid onto the input images. We can see 

that the model is able to focus on the hand and tool regions, where exactly the interaction 

happens.
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6.6. FUTURE RESEARCH NEEDS

At present, we conduct the multi-modal recognition of 6 basic activities. To further 

push the current approach to the practical application, some directions for future work 

are considered, such as recruiting more subjects to learn more working styles, optimizing 

data augmentation techniques to add more variations to the collected data, and exploring 

different methods of signal preprocessing and feature extraction to fully exploit the recorded 

signals. In addition, more fusion methods can be explored and every modality can be further 

improved to reach their optimal performance.

7. CONCLUSION

Worker behavior awareness is crucial towards human-centered intelligent manufac

turing. In this paper, we proposed a multi-modal approach for worker activity recognition. 

Two sensors (wearable device and camera) were adopted to perceive the worker, and four 

modalities were built to recognize the activity independently. Then, inference fusion was 

implemented to achieve an optimal understanding of the worker's behavior.

We designed two novel mechanisms to produce image representations of the IMU 

sensor signals in both the frequency and spatial domains. A kinematics-based data augmen

tation method was developed to generate more physically-realistic variations in the training 

dataset. This performs better than the traditional data augmentation method. A worker 

activity dataset has been established, which currently involves 8 subjects and contains 6 

common activities in assembly tasks (i.e., grab a tool/part, hammer a nail, use a power- 

screwdriver, rest arms, turn a screwdriver and use a wrench). The multi-modal approach is 

evaluated on the dataset and achieves 100% and 97% recognition accuracy in the half-half 

and leave-one-out experiments, respectively. Our approach can be further generalized to 

other sensors, modalities, and working contexts.
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ABSTRACT

Human Activity Recognition (HAR) using wearable devices such as smart watches 

embedded with Inertial Measurement Unit (IMU) sensors has various applications relevant 

to our daily life, such as workout tracking and health monitoring. In this paper, we 

propose a novel attention-based approach to human activity recognition using multiple 

IMU sensors worn at different body locations. Firstly, a sensor-wise feature extraction 

module is designed to extract the most discriminative features from individual sensors with 

Convolutional Neural Networks (CNNs). Secondly, an attention-based fusion mechanism 

is developed to learn the importance of sensors at different body locations and to generate 

an attentive feature representation. Finally, an inter-sensor feature extraction module is 

applied to learn the inter-sensor correlations, which are connected to a classifier to output 

the predicted classes of activities. The proposed approach is evaluated using five public 

datasets and it outperforms state-of-the-art methods on a wide variety of activity categories. 

Keywords: Attention Mechanism; Activity Recognition; Neural Networks; Sensor Fusion; 

Wearable Computing.
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1. INTRODUCTION

Human Activity Recognition (HAR) aims to automatically recognize various human 

activities, such as daily life and sport activities, with algorithms using the input of a 

series of sensor measurements. It has a wide range of applications, such as human- 

computer interaction, robot learning, ubiquitous computing, workout tracking, and health 

monitoring [6, 23, 24, 34]. Although HAR is not a new emerging topic and has been studied 

for decades, it is still an active area of research now because of remaining challenges, such 

as the high complexity of human activities, the large variations among different subjects, 

and the balance between the algorithm complexity and the energy efficiency.

Various sensors have been used for HAR. Considering the wearability, they can be 

categorized as ambient sensors and wearable sensors. Ambient sensors are deployed in the 

environment to sense the subject in a passive manner. For example, optic cameras can be 

used to capture RGB images on human subjects; Depth cameras such as a Microsoft Kinect 

or Lidar (light detection and ranging) sensors can be applied to sense human objects in the 

3D space; Infrared cameras can detect the subject in a dark environment; Pressure sensing 

mats can be used to capture human's standing states; WiFi signals also have been used 

for HAR [19]. Ambient sensing can collect a large amount of data without interfering the 

subject's activity.

Nevertheless, ambient sensors require complex setups and their performance can be 

affected dramatically by occlusion issues, which are the main challenges in implementing 

ambient sensing. Also, it becomes more difficult when capturing a subject's outdoor 

activities. To compensate for these limitations, wearable sensing can be applied. Wearable 

sensor based activity recognition has captured growing attention nowadays because of 

the pervasiveness of mobile devices (e.g., smart phones and smart watches), which are 

embedded with various sensors such as IMU (Inertial Measurement Unit) sensors, heart 

rate sensors, and ECG (Electrocardiogram) sensors. IMU sensors are the most used for
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Figure 1. Overview of the human activity recognition pipeline using IMU signals.

HAR as the sensor directly measure the movements of human body. Usually, an IMU 

has multiple sensors in different modalities, such as an accelerometer, a gyroscope, and a 

magnetometer, to measure the acceleration, angular rate, and magnetic field, respectively.

In this paper, we focus on accurately recognizing human's physical activities with 

multiple IMU sensors considering that IMU signals from different locations could augment 

the perception of human activities. The pipeline of human activity recognition is illustrated 

in Figure 1. IMU sensors are worn at different body locations to sense the activity, from 

which a series of signals are captured and preprocessed to have formatted representations. 

After that, a feature extraction process is implemented to extract high-level features. Then, 

the extracted features are fed into a classifier to generate a probability distribution of activity 

classes. Finally, the activity label can be inferred.

1.1. RELATED WORK

The critical factor attributed to the success of IMU-based activity recognition is 

to seek an effective representation of the time-series IMU signals. The most widely used 

approaches fall into two categories: handcrafted feature design and automatic feature 

learning.

1.1.1. Hand-Crafted Feature Design. It is intuitive to manually pick statistical 

attributes (e.g., means) or quantity distributions (e.g., magnitude histograms) from IMU 

signals [16]. For example, Anguita et al. [2] designed as many as 341 features from 3-axis
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IMU signals while Hammerla et al. [14] preserved the statistical characteristics of IMU data 

using their empirical cumulative distributions. Xu el al. [39] proposed a multi-level feature 

learning framework which consists of the signal-based, components-based and sematic- 

based information for activity recognition. However, handcrafted feature design is mostly 

driven by the domain knowledge, prior experience and experimental validation, thus it is 

possible to neglect some useful features in this manner. In addition, a pre-defined feature 

extraction mechanism trained on a specific scenario might not work well on other scenarios 

with different sets of activities to be recognized. That is, those hand-crafted features in the 

literature might not be transferrable to new application domains, which further makes the 

feature design time-consuming and labor-costly.

1.1.2. Automatic Feature Learning. The drawbacks of handcrafted features moti

vate researchers to explore automatic feature learning [20][17]. Deep Convolutional Neural 

Network (DCNN), as one of the most effective deep learning models, attracts attentions in 

the mobile sensing domain considering it has achieved the superior performance in other 

research fields such as computer vision [21] and speech recognition [25]. To improve the 

accuracy of sensor-based activity recognition, Zeng et al. [43] designed a tri-thread DCNN 

architecture with the three inputs corresponding to the tri-axis accelerometry data, thus the 

inputs are one-dimensional time-series signals. To enhance the ability for feature learning, 

Duffner et al. [9] and Ha et al. [12] took as input the two-dimensional matrix obtained by 

stacking IMU signals. In order for further accuracy improvement, Ravi et al. [30] combined 

features learned from the deep model with complementary information from a set of hand

crafted features. In addition, Lane et al. [22] looked into this problem in a practical way 

and showed the application of deep learning to mobile sensing domain is hardware-efficient 

and can scale up to a large number of inference classes.

In short, the input to the deep network and the architecture of the deep model 

itself are two key factors to the success of automatic feature learning. The input is of 

great significance because a good representation of the IMU signals can make it easier for
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automatic learning. In the previous work, IMU signals are directly fed into the DCNN 

architecture and this simple and raw input may not be a good representation of IMU signals 

because each value of the raw time-series signals is less meaningful if we do not consider 

the statisctic property of the whole signals.

In terms of the design of deep architecture, the aforementioned simple input restricts 

the depth of the deep model, limiting the capability to find discriminative features. For 

instance, the input in [40] is a small 3 x 30 matrix and there are only two convolutional 

layers in the architecture. Additionally, the tri-axis accelerometry signals are convolved 

with one-dimensional kernels in the deep model independently, thus the correlation among 

different signals is not taken into enough consideration.

1.1.3. Self-Attention Mechanisms. Just like humans can allocate different amount 

of attention to different aspects when performing a complex task, self-attention mechanisms 

can model attentions for deep neural networks and have been widely applied in many deep 

learning tasks [8]. The self-attention mechanism is proposed in [36] for machine translation 

tasks, in order to distribute different attention over words in a sentence. From then on, 

attention mechanisms have been increasingly popular in natural language processing (NLP) 

and computer vision fields, where multiple sources with different importance are involved. 

For example, Chen et al. [7] uses spatial and channel-wise attention for image captioning, 

and He et al. [15] applies attention in both the spatial and temporal domains for HAR from 

videos.

1.2. OUR PROPOSAL

A single IMU sensor2 collects data only from a specific body location, which may 

not perform the robust perception under various circumstances, such as when an activity 

involves multiple body parts or the movements are not captured from the location the IMU

2An inertial measurement unit (IMU) can include multiple sensors, such as accelerometers, gyroscopes 
and magnetometers, here we treat an IMU as an integrated ‘sensor’ for simplicity.
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is worn. Intuitively, multiple IMU sensors have been used to integrate the perception 

of individual sensors at different body locations for a better understanding of the overall 

activity.

Traditional methods treat different IMU sensors equally. Few attempts have been 

made to take the importance of different sensors into consideration when developing HAR 

algorithms, which cannot provide the correct ‘attention’ on IMU sensors for different 

activities. In the present research, to achieve a better understanding of how different sensors 

contribute to the recognition tasks, we focus on the automatic importance learning for fusing 

sensors at different body locations.

An overview of our approach is illustrated in Figure 1. IMU signals are captured 

from multiple sensors worn at different body locations. Firstly, the signals are preprocessed 

to generate representations in the frequency domain. Secondly, for a sensor at a certain 

body location, we design a sensor-wise feature extraction module to extract the most dis

criminative features of signals from each individual sensor. Thirdly, an attention-based 

fusion mechanism is developed to learn the importance of sensors at different locations and 

to generate an attentive feature representation. Finally, an inter-sensor feature extraction 

module is applied to learn the feature relationships among sensors at different locations, 

which is connected to a classifier to output the predicted classes of activities. To evaluate 

our method, five publicly available datasets are chosen which contains a wide variety of 

activity categories, such as daily activities (sitting, standing, vacuum cleaning, etc.), sports 

activities (cycling, running, playing basketball etc), and car maintenance activities (opening 

the hood, etc).

The main contributions of this study are as follows:

1. Overall, we propose an attention-based approach for human activity recognition using 

Inertial Measurement Unit (IMU) signals. Multiple IMU sensors are used to perceive 

the activities and the importance of each individual sensor is automatically learned 

to achieve an optimal understanding of the human’s activities.
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Figure 2. Overview of our attention-based approach for human activity recognition.

2. Regarding to the IMU sensor signal representation, we design a simple yet effective 

feature transform method to represent the input signals as images in the frequency 

domain.

3. Regarding to the attention mechanism, we develop a sensor-wise attention module, 

which enables the network to emphasize features from specific sensors depending 

on the signals. For fusion purpose, multi-kernel convolutional neural networks are 

applied to extract the most discriminative sensor-wise and inter-sensor features.

4. Regarding to the experimental validation, our approach outperforms other methods 

on all of the chosen five public datasets.

The remainder of this paper is organized as follows. Section 2 discusses the details 

of our proposed approach. Experimental results on five public datasets are described in 

Section 3, including comparison with the state-of-the-art methods, and the visualization of 

the results. Finally, Section 4 provides the conclusions of this study.
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2. METHODS

In this section, we first present the methods for data preprocessing and representation. 

Then, each module of our model is explained, including the sensor-wise feature extraction 

module, sensor attention mechanism, inter-sensor fusion module, and classification module. 

After that, the training information is detailed.

2.1. SIGNAL PREPROCESSING AND REPRESENTATION

Deep neural networks (DNN) need the input data to be converted as formatted 

tensors, for example, with a fixed size of h x  w x c for image inputs where h, w and c are 

the height, width and the number of channels of the image, respectively. Therefore, some 

preprocessing steps are necessary before the data can be fed into a DNN. In this section we 

give a detailed description of the pipeline for data preprocessing and the methods we use 

for signal representation.

2.1.1. Sampling Procedures. As depicted in Figure 3, the IMU signals from sen

sors at different body locations are synchronized with the timestamps and denoted as signal 

sequences. Then, the signal sequences are sampled using a temporal sliding window with 

the width of T timestamps and Af stride length between two windows. After sampling, 

we denote our dataset as D = {[D1,y j ,  • • • , [Dn,yn], • • • , [DN,yN]} and the nth data is 

represented as

Dn = [dn,d2, ••• , d ^ ••• , dsn], n e {1,••• ,N } (1)

where S is the total number of IMU sensors at different body locations, dn is a sample set of 

discrete time-series IMU signals from the sth sensor, and yn is the manually labeled ground 

truth of the activity class. More specifically, dn a sequence of discrete-time data over T
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timestamps, dn = [dsn1, • •• , dsnt, ••• , dn T}, and each element is elaborated as

ds = ax a  az gx gy gz mx my mzn,t L n,t n,t n,t n,t n,t n,t n,t n,t n,t ’ ], t e {1, , T },
(2)

an,t: acceleration gn,t: gyro m„,(: magnetometer

where a, g, and m are sensor readings of linear acceleration, angular velocity, and magnetic 

field, respectively. In some public datasets, derived information such as gravity-removed 

linear acceleration and orientation in Euler or quaternion form, is also included.

Sensor 1

Figure 3. Scheme of the signal sampling method.

2.1.2. Signal Representation. Analyzing signals in the frequency domain is com

monly used for signal pattern recognition, because it can extract periodic characteristics 

which can be more representative than original signals in the time domain. In our study, 

rather than directly modeling the time-series signals with a DNN, frequency transform is 

applied as follows: 1) As shown in Figure 4, a signal segment dn (Figure 4(b), for simple 

notation, we drop the superscript s that indicates the sth sensor, in the following deriva

tion) is sampled from a signal sequence (Figure 4(a)); 2) A modality-wise normalization 

is applied to dn to normalize the signal to the range of [0,1], generating dn (Figure 4(c)). 

3) After normalization, the IMU signal dn in an IMU segment is represented as an image
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In with the size of C x  T (Figure 4(d)) where C and T denote the numbers of channels 

and time frames, respectively, resulting in S image representations for all sensors; 4) One

dimensional Discrete Fourier Transform (DFT) along the time dimension is applied to In to 

get the representation in the frequency domain for analyzing the frequency characteristics. 

Its logarithmic magnitude is taken to form the image l f FT. Due to the conjugate symmetry 

of Discrete Fourier Transforms

InDFT (k, c) = l f FT (-k, c) , (3)

where k and c represent the two directions (i.e., frequency and signal channel, respectively) 

of an image I,fFT, we can use only a half to represent the DFT image. In the following, 

we keep using the notation I,PFT to represent the one-half of DFT image for simplicity 

(Figure 4(e)).

Signal Sequence

IMU

/„ e R L (d)

(e)
F re q u e n cyTim e

Figure 4. Illustration of the signal representation pipeline for an individual IMU sensor.
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Compared with the previous work [20, 35] for signal representation, our method 

removes the information redundancy, thus reducing the architectural complexity and the 

number of training parameters for the DNN model.

In total, we have S image representations in the frequency domain for each activity 

segment. For example, five sensors are included in the Daily dataset [4], i.e., S = 5. Figure 5 

shows some examples of image representations in the frequency domain, from one subject 

on 19 activities, from which we can observe the unique patterns of each activity.

1. Sitting 2. Standing 3. Lying Back 4. Lying Right
5. Ascending 6. Descending 7.Standing 8. Moving in 9. Parking

Sensor 1 

Sensor 2 

Sensor 3 r.w: 7 i ..-.a=a
Sensor4 ,

Sensor 5

in

10. Treadmill 11. Treadmill 12. Treadmill 13. Stepper
Walk 4km/h Walk 15° Run 8km/h Exercising

X - ■«

14. C ro ss 15. Cycling 16. Cycling _ . .  . 19. Play
Training Horizontally Vertically 17. Rowing 18. Jum ping Basketball

Figure 5. Samples of image representation of different activities from the Daily dataset.

Stairs Stairs in Elevator Elevator Lot Walk

2.2. SENSOR-WISE FEATURE EXTRACTION MODULE

After the above preprocessing step, we have formatted the input ready for DNN. 

There are N training data samples {X\, • • • , XN}, each of which contains S sensor inputs:

Xn = {In1, ••• , I sn, ••• , I sn }, n e[1,  N] (4)

For each of the image inputs in, 2D convolutional operation [10] is applied to extract 

features layer by layer. The convolutional value using a 2D kernal K  at the position (i, j ) in 

the feature map of the lth layer is computed by



100

P-1 Q-1
fL = (F -1  * K )y = Z Z  F+Pji+p,j+pKp,q

p=0 q=0
(5)

where l is the layer index, Kp,q is the value at the position (p, q) of the kernel, and P  and Q 

are the height and width of the two-dimensional kernel K , respectively.

To learn the hidden correlation patterns among multi-channel signals for each in

dividual sensor, we design an intra-sensor feature extraction module. The motivation is to 

use multiple convolution kernels with various sizes to detect features across different signal 

channels. As shown in Figure 6, for the input of the sth sensor, 1 x 3 kernels are used to look 

at the channel-wise feature, 3 x 3 kernels are designed to detect the inter-channel features 

among three channels, and 5 x 5 kernels are used to discover the inter-channel pattern in a 

larger perceptive field. In addition, larger size kernels, such as 7 x 7 and 9 x 9 can be used 

to further look into the signals in a larger field.

After each convolutional layer, a batch normalization layer [18] and an activation 

layer of ReLU (Rectified Linear Unit) are applied. Then, these extracted feature maps are 

concatenated to form an information-richer feature set containing features across different 

signal channels. Finally, the extracted feature maps from each sensor is flattened as a vector 

representation f s, which we call a ‘sensor vector’ in the following derivations.
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2.3. SENSOR ATTENTION MECHANISM

The sensor-wise feature extraction of signals treat every IMU sensor indiscrimi

nately, but sensors at some body locations may be not or less effective to represent a certain 

activity and discriminate it from others. For example, a sensor worn on the ankle may not 

be able to effectively perceive the ‘rowing’ activity. Thus, we propose a sensor attention 

mechanism to learn more attentions on those discriminative sensors in a signal segment. 

This sensor attention is a trainable layer inside a DNN, which pools the most discriminative 

features, as shown in Figure 7.

Attention Vector aso/tmax e [0,1]sxl

Figure 7. Illustration of the sensor attention mechanism.

Given the sensor-wise feature representation of a signal segment F , our attention 

module learns an attention score vector, a, which indicates the feature importance of different 

sensors within the signal segment:

a = Fw,  a e R Sxl, (6)
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where w e RLx1 is the weight. Then, the activation vector a is calculated as

a = tanh(Wa + b), (7)

where W is a weight matrix and b is a bias vector.

After the activation process, we have a set of attention score a. Then, the attention 

score vector is passed through a softmax layer:

asoftmax
exp(as) 

Z t i  exp(as)
(8)

to get asof tmax e [0 ,1]Sx1. Then, the attention-applied feature map F of the data segment 

is computed by

F = F © asoftmax, F e RSxL (9)

where © is the element-wise multiplication operator. Here each sensor (each row in F) has 

its corresponding attention-applied feature vector f .

Overall, the proposed sensor attention mechanism fuses inputs from multiple sensors 

into a single representation by assembling the weighted sensor vectors from individual 

sensors into a 2D feature map, which enables the network to distribute different amount of 

attention over different sensors.

2.4. INTER-SENSOR FUSION MODULE

As shown in Figure 1, after the attention mechanism is applied, each row of the 

feature map comes from each individual sensor. The attentive feature map has the size of 

S x  L (number o f  sensors x  dimension o f  each sensor vector). To discover the hidden 

correlations among different sensors. An inter-sensor fusion module is developed. This 

module essentially follows the same architecture as presented in Section 2.2. By using the 

2D convolution, the correlation among sensors can be learned.
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2.5. CLASSIFICATION MODULE

As shown in Figure 1, a classification module is designed after the inter-sensor 

fusion module. First, the feature map obtained from the inter-sensor fusion module are 

flattened as a feature vector. To solve the classification problem, the vector is further input 

to a multi-layer neural network. The value of the j th neuron in the ith fully connected layer, 

denoted as vij , is given by

vij = g
K

bij +
(i-i)-

E
k=0

-1
wijk v(i-1)k (10)

where bij is the bias term, k indexes the set of neurons in the (i -  1)th layer connected to 

the current feature vector, wijk is the weight value in the ith layer connecting the j  th neuron 

to the kth neuron in the previous layer.

The last fully connected layer is used to densify the feature vector to the dimensions 

of M , where M is the number of activity classes. Then this M -dimensional score vector 

?([s1,...,sm,...,sM]) is transformed to output the predicted probabilities with a softmax 

function as follows:

P( yn = m | Xn) = exp(sm) 

Ej=1 exp(sj )
(11)

where P(yn = m|Xn) is the predicted probability of being class m for sample Xn.

2.6. TRAINING

The process of training a DNN model involves optimization of the network’s param

eters 0 to minimize the cost function for the training dataset X . We select the commonly 

used regularized cross entropy [10] as the cost function for the classifier, which is

N M
L(0) = E E  ynm log[P(yn = m | Xn)] + Ak(0)

n=1 m=1
(12)
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where ynm is 0 if the ground truth label of Xn is the mth label, and is 1 otherwise. The 12 

regularization term is appended to the loss function for penalizing large weights, and A is 

its coefficient.

3. EXPERIMENTS

In this section, we first describe the selected public datasets and evaluation metrics. 

Then, we perform evaluation of our proposed approach using these datasets, and compare 

with the state-of-the-arts. After that, we conduct visualizations for a better understanding 

of the learned attention. Finally, future research needs are discussed.

3.1. DATASETS

As summarized in Table 1, we selected five publicly available datasets for the 

method validation. These datasets are collected in various contexts by different research 

groups, including different sensor positions on the human body, different sampling rates, 

and different numbers of subjects. In addition, the five datasets include activities with 

different levels of classification difficulties, for example, the relatively more discriminative 

activities [33] such as walking, sitting, and complex activities in special scenarios such as 

the manipulative gestures performed in a car maintenance workshop [41]. Figure 8 shows 

the senor locations on a human body for the five datasets. By leveraging these five different 

datasets, we are able to test the effectiveness and robustness of our approach.

3.1.1. Daily and Sports Activity Dataset. This dataset is composed by IMU data 

of 19 daily and sports activities ((1) sitting, (2) standing, (3-4) lying on the back and on 

the right side, (5-6) ascending and descending stairs, (7) standing in an elevator still, (8) 

moving around in an elevator, (9) walking in a parking lot, (10-11) walking on a treadmill 

with a speed of 4 km/h (in flat and 15 deg inclined positions), (12) running on a treadmill 

with a speed of 8 km/h, (13) exercising on a stepper, (14) exercising on a cross trainer,
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(15-16) cycling on an exercise bike in horizontal and vertical positions, (17) rowing, (18) 

jumping, (19) playing basketball.), captured by five IMU devices (worn on the torso, right 

arm, left arm, right leg, and left leg, respectively), and the activities are performed by 8 

different subjects [4].

Table 1. Information of the five public datasets.

D a ta se ts # S e n s o r s  M o d a lit ie s N u m b e r  o f  

C h a n n e ls
R a te
(H z )

N u m b e r  o f  

A c tiv it ie s

N u m b e r  o f  

S u b je c ts

D a ily  [4] 5 A ,  G ,  M 9 2 5 19 8
S k o d a  [4 1 ] 10 A 3 9 8 10 1

P A M A P 2  [3 1 ] 3 A ,  G ,  M 9 1 0 0 12 9
S e n so r s  [3 3 ] 5 A , A , G , M 12 5 0 7 10
D a p h n e t  [3] 3 A 3 6 4 2 10

N o te :  A ,  A ,  G ,  M  r e p r e se n t th e  m o d a lit ie s  o f  a c c e le r a t io n , g r a v ity -r e m o v e d  a c c e le r a t io n , 
a n g u la r  v e lo c ity , an d  m a g n e t ic  f ie ld , r e sp e c t iv e ly .

Daily Skoda Daphnet

Figure 8. Worn locations of the five datasets.

3.1.2. Skoda Dataset. This dataset contains 10 manipulative activities performed 

in a car maintenance scenario by a single subject (e.g., the user blocks an opened hood with 

a stick, and the user grabs the steering wheel and turns it). The dataset has signal recordings 

from both the left and right arms but they are not synchronized for validation. Therefore, 

in this study, we focus on signals from 10 sensors worn on the subject’s right arm [41].
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3.1.3. PAMAP2 Dataset. This dataset has 12 human activities ((1) lying, (2) sit

ting, (3) standing, (4) walking, (5) running, (6) cycling, (7)Nordic walking, (8) ascending 

stairs, (9) descending stairs, (10) vacuum cleaning, (11) ironing and rope jumping) captured 

by three IMU sensors (worn on the wrist, chest and ankle, respectively), and the activities 

are performed by 9 different subjects [31].

3.1.4. Sensors Activity Dataset. This dataset includes 7 human activities ((1) 

biking, (2) downstairs, (3) jogging, (4) sitting, (5) standing, (6) upstairs, and (7) walking) 

captured by five IMU sensors (one in the the right jeans pocket, one in the left jeans pocket, 

one on the belt position towards the right leg using a belt clip, one on the right upper arm, 

one on the right wrist), and the activities are performed by 10 different subjects [33].

3.1.5. Daphnet Freezing of Gait Dataset. This dataset contains 3 wearable wire

less acceleration sensors at the hip and leg of Parkinson's disease patients that experience 

freeze of gait (FoG) during walk tasks. This dataset has two classes, FoG and ‘no freeze’, 

captured by three sensors (worn at the ankle (shank), on the thigh just above the knee, and 

on the hip, respectively), and the activities are collected from 10 different patients [3].

3.2. EVALUATION METRICS

Regarding to evaluation metric, the leave-one-out evaluation policy is conducted. 

In the leave-one-out evaluation, the samples from Nsubject -  1 out of Nsubject subjects are 

used for training, and the samples of the left one subject are reserved for testing. We employ 

several commonly used metrics [10] to evaluate the classification performance:

1. Accuracy

Accuracy = ^  ~ ^  (13)
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2. Precision and Recall

Precision = 

Recall =

TP
TP + FP 

TP
TP + FN

3. F1 score

Fi = 2 •
Precision • Recall 
Precision + Recall

(14)

(15)

3.3. IMPLEMENTATION DETAILS

The DNN architectures are constructed using TensorFlow and Keras libraries. The 

SGD optimizer is used in training, with the momentum of 0.9, the learning rate of 0.001 

and the regularizer coefficient of 1e-5. We use a workstation with one 12-core Intel Xeon 

processor, 64GB of RAM and two Nvidia Geforce 1080 Ti graphic cards for the training 

jobs.

3.4. EVALUATION OF DIFFERENT SIGNAL REPRESENTATION METHODS

To evaluate how the design of signal representation affects the model performance, 

comparisons have been made among methods using images of (1) raw signals (IRS), (2) 

Discrete Cosine Transform (IDCT), and (3) Discrete Fourier Transform (IDFT). Table 2 

shows the performance of activity recognition with various designs of input images.

The proposed signal representation method IDFT achieves the highest recognition 

performance. The performance decreases when we use the image of raw signals IRS directly 

or replace the Discrete Fourier Transform with the Discrete Cosine Transform (IDCT). 

Therefore, IDFT is selected for the signal representation. Another reason for choosing DFT
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Table 2. Performance (%) comparison of different signal representation methods on the 
Daily dataset.

M e th o d s In p u t S iz e A c c u r a c y P r e c is io n R e c a ll F  S c o r e
I R S C  x  T 6 7 .5 7 6 4 .5 0 6 7 .5 7 6 1 .7 8

I RS ( D C T ) I DCT C  x  T 9 0 .3 6 9 1 .8 5 9 0 .3 6 8 9 .4 4

I RS ( D F T ) I D FT  
---------- >

C  x  ( T /2 ) 9 0 .3 7 9 1 .8 6 9 0 .3 7 8 9 .8 2

N o te :  I R S , I DCT an d  I D F T  r e p r e se n t im a g e  r e p r e se n ta tio n s  o f  ra w  s ig n a ls ,  
D C T  an d  D F T , r e sp e c t iv e ly . C  an d  L  d e n o te  th e  n u m b er  o f  s ig n a l c h a n n e ls  

an d  th e  n u m b e r  o f  t im e  fr a m e s  in  a s ig n a l s e g m e n t , r e sp e c t iv e ly .

over DCT is that DFT is symmetric, and only half the image size after remove its symmetric 

part, which will reduce the complexity of the DNN model and has a better computational 

efficiency. It saves 50% of the first-layer computation over a DCT.

3.5. EVALUATION OF THE LENGTH OF THE SIGNAL SEGMENT

When sampling the signals (the sampling procedure is discussed in Section 2.1), as 

shown in Figure 3, there are two parameters to choose, the length of the segment (T) and 

the stride (Af), which determine how much information the model can digest at each time, 

and how much shared overlap between two segments, respectively. Here the question is 

what should be the optimal length and stride for sampling to identify an activity. Table 3 

presents the performance comparison of different settings of length and stride evaluated on 

the validation dataset.

The accuracy decreases when increasing the segment length, because longer length 

could have multiple repeated patterns in each segment, which makes it harder for the DNN 

model to learn the most discriminative features. Also, longer segment length leads to less 

segments, i.e., less training data, which affects the training effect. In terms of stride, short
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Table 3. Performance (%) comparison of different settings of segment length and stride on 
the Daily dataset.

Length stride Accuracy Precision Recall F Score
32 8 92.39 93.62 92.39 91.55
32 16 92.37 93.74 92.37 91.91
32 24 90.07 91.31 90.07 89.06
64 16 90.37 91.86 90.37 89.82
64 32 86.63 88.47 86.63 85.24
96 24 89.11 90.87 89.11 88.23
125 —* 85.43 87.83 85.43 84.11
*Since the sequence length of the Daily dataset is 125, the 
stride value is absent in the last row.

strides can have better performance. This is because the model tends to look into the data 

more precisely with a shorter stride. Therefore, we choose the parameter setting, T = 32 

and At = 8, for the following experiments.

3.6. EVALUATION OF THE EFFECTIVENESS OF THE FUSION MECHANISM

In terms of data fusion, as shown in Figure 1, the information flows are fused at two 

places: fusion of multi-channel data of a specific sensor in the sensor-wise feature extraction 

module (Sections 2.2) and fusion of multi-sensor data in the inter-sensor feature extraction 

module (Section 2.4). The fusion mechanism is realized using convolutional operations with 

different receptive fields, i.e., 2D kernels of different sizes. When a 2D kernel moves over 

an area, the hovered information is fused with the summation of point-wise multiplications. 

Here to validate the effectiveness of the fusion mechanism, we compare it with a method 

using 1D convolutions which does not include fusion functionalities. The results are listed 

in Table 4. We can see that, the performance drops dramatically after ignoring the fusion, 

which demonstrates the the designed fusion mechanism plays a vital role in identifying an 

activity.
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Table 4. Performance (%) evaluation of the effectiveness of the fusion mechanism.

Method Accuracy Precision Recall F Score
Without Fusion Mechanism* 62.95 63.99 62.95 58.73
With Fusion Mechanism 92.37 93.74 92.37 91.91

* 1D convolutions along each row of the feature maps to ignore the fusion 
mechanism.

3.7. EVALUATION OF DIFFERENT FUSION METHODS

In this experiment, we compare our attention-based fusion method with two other 

fusion methods (early fusion and late fusion), whose architectures are presented in Figure 9.

Early fusion fuses information in the input phase. As shown in Figure 9(a), all the 

S inputs are stacked to generate a single input with the size of C x (T/2) x S. Then, the 

integrated input is fed into a DNN model.

Late fusion fuses information in the inference phase. As shown in Figure 9(b), all 

the S sensor inputs are learned by different DNN models individually. Then, their inferred 

output probabilities are fused to generate a final output.

Inputs

Early Fusion

DNN■ _ ■
C x (7/2) x 5

Output
Probabilities

C  x (7/2) (a)

Inputs
—-  DNN 
—-  DNN
— DNN

— DNN

Output
Probabilities

Fused
Outputs

(b)

Figure 9. Architectures of different fusion methods.

The performance comparison of different fusion methods is listed in Table 5. For 

early fusion, the inputs are integrated before feature extraction modules of the DNN model, 

which lacks individual understanding of signal from each sensor. Later fusion relies on
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individual sensor to learn the features and achieves higher performance, but it doesn’t have 

the ability to look into the deep correlations among different sensors as attention fusion 

does. Overall, the attention fusion achieves the best results.

Table 5. Performance (%) comparison of different fusion methods.

Method Accuracy Precision Recall F Score
Early Fusion 89.62 90.63 89.62 88.86
Late Fusion 91.57 92.30 91.57 90.43

Attention Fusion 92.37 93.74 92.37 91.91

3.8. COMPARISON WITH THE STATE-OF-THE-ART METHODS

In this subsection, we compare our results with the state-of-the-art performance on 

the five public datasets. The comparison is summarized in Table 6. We also evaluate our 

model without the attention mechanism, in which the sensor attention module is removed. 

Overall, our proposed model achieves higher accuracy than the other methods, which is 

attributed to two factors: a more effective signal representation method exposing the hidden 

patterns and an attention-based sensor fusion model extracting the most discriminative 

features.

Figure 10 shows the normalized confusion matrix of the Daily dataset. We can 

see that most of the activities are successfully classified. Failures occur in classifying 

the confusing groups: e.g., (1) sitting, lying on the back, and lying on the right side; (2) 

standing, standing in the elevator, and moving in the elevator; (3) treadmill walking in flat 

position and treadmill walking in 15 deg inclined position. By reviewing the failure cases, 

we find that the high similarity within the confusing groups makes it difficult to distinguish 

them from others, and the significant subject-wise difference for the same activity makes it 

difficult to learn this kind of unseen variations beforehand.
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Table 6. Performance (%) comparison of existing models on the five public datasets. ‘- ’ 
denotes that the value is not reported in the paper.

A p p r o a c h D a ily S k o d a P A M A P 2 S e n so r s D a p h n e t

Z h a n g  e t  a l. ( 2 0 1 5 )  [4 4 ] 9 0 .6 0 - - - -
H a m m e r la  e t al. ( 2 0 1 6 )  [1 3 ] - - 9 3 .7 0 - 7 6 .0 0
O r d o n e z  e t  a l. ( 2 0 1 6 )  [2 9 ] - 9 5 .8 0 - - -

G u an  e t  al. ( 2 0 1 7 )  [1 1 ] - 9 2 .4 0 8 5 .4 0 - -

X i  e t  a l. ( 2 0 1 8 )  [3 7 ] - - 9 3 .5 0 - -

M u ra h a ri an d  P lo tz  ( 2 0 1 8 )  [2 8 ] - 9 1 .3 0 8 7 .5 0 - -

Z e n g  e t  a l. ( 2 0 1 8 )  [4 2 ] - 9 3 .8 1 8 9 .9 6 - 8 3 .7 3
C a o  e t  a l. ( 2 0 1 8 )  [5] 7 8 .4 8 - - - -
M o y a  R u e d a  e t al. ( 2 0 1 8 )  [2 7 ] - - - 9 3 .6 8 -

M o h a m m a d  e t a l. ( 2 0 1 8 )  [2 6 ] - 9 1 .2 0 - - -

S h a k y a e t a l .  ( 2 0 1 8 )  [3 2 ] - - - 9 9 .1 6 -
X u  e t al. ( 2 0 1 9 )  [3 8 ] - - 9 3 .5 0 - -
O u r m o d e l w ith o u t  a tten tio n  
O u r  m o d e l  w it h  a t t e n t io n

8 8 .5 5
9 2 .3 7

9 4 .1 6
9 5 .8 4

9 3 .1 4
9 4 .8 5

9 7 .3 6
9 9 .2 7

8 9 .8 1
9 1 .0 2

Sitting 

Standing - 

Lying Back - 

Lying Right - 

Ascending Stairs - 

Descending Stairs - 

Standing in Elevator - 

Moving in Elevator - 

Parking Lot Walk - 

Treadmill 4km/h Walk - 

Treadmill 15° Walk - 

Treadmill 8km/h Run - 

Stepper Exercising - 

Cross Training - 

Cycling Horizontally - 

Cycling Vertically - 

Rowing - 

Jumping - 

Playing Basketball -

Predicted label

Figure 10. Normalized confusion matrix of the Daily dataset.
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3.9. VISUALIZATION OF THE LEARNED SENSOR ATTENTION

In this section, we analyze and visualize the learned attention, i.e., attention weights, 

of sensors at different body locations. The attention vector asof tmax (Eq. 8) is extracted 

from a well-trained model and each element of this vector is represented as a heatmap. A 

few examples of the sensor attention trained on the Daily dataset are shown in Figure 11, 

where ‘hotter’ colors represent larger values while ‘colder’ colors represent smaller ones 

on the blue-red heatmaps. We can see that different activities shows different attention 

distributions. For example, the ‘rowing’ activity has larger attention weights for sensors 

worn on the arms, because the motion intensities of the arms are larger than other body parts. 

While for activities such as ‘running’, ‘jumping’, and ‘playing basketball’, the attention is 

more evenly distributed across different sensors, because these activities involve the whole 

body. This visualization shows that our model is able to focus on the critical body parts 

based on their importance when identifying activities.

Standing Lying on 
Right Side

Ascending
Stairs

Treadmill 
8km/h Run

Figure 11. Examples of the importances of sensor at different body locations.
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3.10. VISUALIZING THE CLASS ACTIVATION MAP

To have a more intuitive understanding of which regions of an input image are 

more discriminative to activate our model to its final inference, we visualize the class 

activation map (CAM), which is a 2D grid of scores associated with a specific output class, 

computed for every region in an input image, indicating the importance of each region in 

regard to the class under consideration. A set of CAM examples are shown in Figure 12, 

where the generated heatmaps are overlaid onto the input images. We can see that the 

model automatically learns the most discriminative regions in an input image and different 

activities use different regions (i.e., different signal channels and frequency characteristics) 

in identifying their categories.

1. Sitting

Sensor 1 

Sensor 2 

Sensor 3 

Sensor 4 

Sensor 5

2. Standing 3. Lying Back 4. Lying Right
5. Ascending 

Stairs
6. Descending 7.Standing 8. Moving in 

Stairs in Elevator Elevator
9. Parking 
Lot W alk

10. Treadmill 11. Treadmill 12. Treadmill 13. Stepper 14. Cro ss 15. Cycling 16. Cycling 17 r  i 18 , i 19. Playing
4km/h W alk 15° W alk 8km/h Run Exercising Training Horizontally Vertically . owing . umping Basketball

Figure 12. Examples of Class Activation Map (CAM) Visualization.

4. CONCLUSIONS

In this paper, we propose a novel approach of attention-based sensor fusion for Hu

man Activity Recognition (HAR) using Inertial Measurement Unit (IMU) signals obtained 

from multiple sensors worn at different body locations. For signal representation, a simple 

yet effective pipeline for feature transform is designed to represent the input signals of
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each sensor as images in the frequency domain. Having the formatted images as inputs, 

a sensor-wise feature extraction module is developed to extract the most discriminative 

features of signals from individual sensors with Convolutional Neural Networks (CNNs), 

and to generate a vector representation for each sensor. Then, a sensor attention mechanism 

is developed to learn the importance of sensors at different body locations and to create an 

attentive feature representation. After that, an inter-sensor feature extraction module is ap

plied to learn the inter-sensor correlations, which are connected to a classifier to output the 

predicted classes of activities. This attention-based model is able to learn the importance 

of sensors at different body locations, yielding a more comprehensive understanding of the 

human activity. The proposed approach is evaluated on five publicly available datasets and 

it demonstrates superior performance than the state-of-the-art methods.
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ABSTRACT

In a human-centered intelligent manufacturing system, every element is to assist the 

operator in achieving the optimal operational performance. The primary task of developing 

such a human-centered system is to accurately understand human behavior. In this paper, 

we propose a fog computing framework for assembly operation recognition, which brings 

computing power close to the data source in order to achieve real-time recognition. For 

data collection, the operator’s activity is captured using visual cameras from different 

perspectives. For operation recognition, instead of directly building and training a deep 

learning model from scratch, which needs a huge amount of data, transfer learning is applied 

to transfer the learning abilities to our application. A worker assembly operation dataset 

is established, which at present contains 10 sequential operations in an assembly task of 

installing a desktop CNC machine. The developed transfer learning model is evaluated on 

this dataset and achieves a recognition accuracy of 95% in the testing experiments. 

Keywords: Intelligent Manufacturing; Smart Manufacturing; Fog Computing; Artificial 

Intelligence; Operation Recognition
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1. INTRODUCTION

Artificial intelligence technologies have been providing more and more possibili

ties, such as cyber-physical manufacturing [11] and industrial digital twin techniques [7] to 

traditional manufacturing industries. A human-centered intelligent manufacturing system 

emphasizes human on the factory floor, i.e., every element in the system is to assist the 

operator in achieving the optimal operational results [18]. To develop such human-centered 

systems, the primary task is to accurately understand human behavior. However, recogniz

ing human activity on the factory floor is challenging because it involves some complex 

behaviors, such as operations in an assembly task, which may contain fine-grained hand 

movements and is difficult to model and analyze.

A variety of methods have been developed to understand human behavior. Convolu

tional neural networks (CNN) were used to recognize complex hand gestures with captured 

images [16, 19]. Hu et al. [8] used sEMG (surface electromyography) sensing signals 

for hand pose recognition. In the manufacturing area, research work has been performed 

including the follows. Al-Amin et al. developed a sensor data based worker activity recogni

tion model using depth images for workforce management [1]. Haslgrubler et al. conducted 

human activity recognition with multi-sensor fusion in harsh environments for industrial as

sistance systems [5]. Azadi et al. analyzed the feasibility of unsupervised industrial activity 

recognition based on a frequent micro action [3]. Tao et al. [17, 20] proposed a multi-modal 

approach based on CNN for recognizing 6 worker activities to augment the perception of 

each individual modality and have a more comprehensive understanding. Recently, deep 

learning methods have been increasingly popular for various applications [10]. However, 

it needs a large amount of data to train a deep learning model, which is time-consuming 

and costly to collect. For a small dataset, transfer learning has been demonstrated to be an 

effective and efficient approach to transfer learning abilities from pre-trained source models 

to target models [14].
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In this paper, we aim to develop a real-time application for assembly operation 

recognition using image frames obtained from a visual camera by leveraging artificial 

intelligence approaches. To achieve real-time recognition, fog computing technique is 

introduced, which is an emerging technique that brings computing power close to data 

sources. It can reduce the latency and cost of delivering data to a remote cloud server [2,12].

The remainder of this paper is organized as follows. Section 2 explains the proposed 

methodology, including the framework design, how we define the assembly task, data 

preparation, and the deep learning approach. The experimental setups and results are 

described in Sections 3. Finally, Section 4 provides the conclusion and future work.

2. METHODOLOGY

2.1. THE PROPOSED FOG COMPUTING FRAMEWORK

Considering that Internet of Things (IoT) devices do not have enough computing 

power while cloud solutions are not flexible and may cause latency and privacy issues, 

we develop a framework of fog computing which runs on a local network on the factory 

floor. An overview of our framework is illustrated in Figure 1. In the sensing layer, we 

use multiple cameras to capture the operator's activity at the assembly site. Each camera is 

connected to a small single-board computer Raspberry Pi, where a video streaming service 

is served. Thus, image frames captured from each camera is published via a certain network 

port. In the fog layer, workstations with more computing power are connected to the same 

local network, through which the streaming images can be accessed. Artificial intelligence 

computations, such as those for training deep learning models, are implemented in this 

layer.
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Figure 1. Overview of our fog computing framework.

2.2. ASSEMBLY TASK

In this study, we choose a task of assembling a desktop CNC carving machine. The 

goal of this task is to finish the product assembly with the provided parts, sub-assemblies 

and tools following installing instructions. This task contains 10 sequential operations, 

which are: assemble motor module (O1), position spindle mount (O2), install lead screw

(O3), fix spindle mount (O4), insert spindle motor (O5), install controller box (O6), connect 

motor cable (O7), insert power cable (O8), install part (O9), and turn on switch (O10). 

These 10 operations are illustrated in Figure 2. An image of the final product of the CNC 

carving machine is shown at the bottom of this figure.
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01: Assemble 02: Position 03: install 04: Fix
motor module spindle mount lead screw spindle mount

06: Install 
controller box

07: Connect 08: Insert 09: Install part O10:Turn
motor cable power cable on switch

Final product

Figure 2. Illustration of the assembly task containing 10 operations from O1 to O10.

2.3. SENSING AND DATA COLLECTION

As discussed in Section 2.1, multiple cameras can be used to capture the operator’s 

activity from different perspectives. At present, as shown in Figure 3, two cameras (a 

top camera and a side camera) of Logitech C920 are used in this system, with an image 

resolution of 1920 x 1080 and a frame rate of 30 fps. During data collection, the subject is 

asked to stand in front of the workbench, and perform the tasks with hands in the working 

area in a natural way. The image data are collected during the operations and the task 

videos are saved to the disk. Screenshots of the 10 operations are shown in Figure 4, which
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are taken from the top camera. For annotation purposes, each frame of a video has its 

frame index on the upper-left corner, and its corresponding timestamp is saved separately 

in another file.

Figure 3. Illustration of the data collection setup.

Figure 4. Examples of the 10 assembly operations.

2.4. DATA PREPROCESSING

In the current study, we choose images captured from the top camera to recognize 

the operation of the worker because it can cover all the worker activities and the product 

states. The frames are extracted from the recorded videos. Firstly, a region of interest (ROI) 

is cropped from an original frame to remove the uninformative areas. Since the pre-trained
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models we use are trained on the ImageNet dataset where each color channel was normalized 

separately, we implement the same preprocessing transforms as the pre-trained model on 

our collected data, i.e., normalize the means and standard deviations.

2.5. TRANSFER LEARNING AND CUSTOMIZED CLASSIFIER

Transfer learning can transfer the learned knowledge from a source domain to a 

target domain, which has been applied in many fields. The general architecture of the 

transfer learning model is illustrated in Figure 5. Usually, the source dataset contains a 

large amount of annotated data, with which a deep learning model is trained. For example, 

a CNN model has a stack of convolutional layers to extract the most discriminative features 

layer after layer, and a stack of dense layers is used to bridge the extracted features and the 

source labels. After the source model is trained, a portion of its architecture along with the 

trained weights is frozen and transferred to a target domain.

Figure 5. The architecture of our transfer learning model.
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Input Layer Hidden Layers

Figure 6. Illustration of the classifier architecture.

For the target model, a new classifier, usually a stack of dense layers, is needed to 

adapt the source model to the target labels. As shown in Figure 6, the input layer here 

is essentially the output layer of the transferred model, and the output layer here is set 

according to the target labels. Then, the hidden layers between them need to be designed in 

order to have optimal performance.

3. EXPERIMENTAL STUDY

3.1. DATASET ANALYSIS

To validate the proposed approach, we establish an assembly operation dataset, 

which has 10 classes of operations as discussed in Section 2.2. The subject is asked to 

repeat the same assembly task for 10 times. There are 10 videos recorded overall. Since 

the subject uses a different amount of time to finish each operation, it has a different time 

duration (number of frames) for each operation. The quantitative information of the dataset 

is shown in Figure 7. On average, operation O1 takes the longest time to finish while 

operation O10 takes the shortest time.
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Operations

Figure 7. Averaged number of frames for each operation in the dataset.

3.2. EVALUATION METRICS

The dataset is divided into training, validation, and testing sets for experimental 

evaluation. The 9th repetition is chosen for validation to measure the model’s performance 

during training, using which the hyperparameters are tuned. The last repetition is selected 

for performance testing to demonstrate how the trained model can generalize on unseen 

data. We choose several commonly used metrics [4] to evaluate the model performance, 

which are as follows:

1. Accuracy

Accuracy = Z N i(y i = yi)
N

2. Precision and Recall

Precision = 

Recall =

TP
TP + FP 

TP
TP + FN

(1)

(2)

3. F\ score
Precision • Recall 
Precision + Recall

(3)
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where 1(-) is an indicator function in Equation 3. For a certain class y , True Positive (TP) 

is defined as a sample of class y  that is correctly classified as y ; True Negative (TN) means 

a sample from a class other than y  is correctly classified as ‘not y ’; False Positive (FP) 

means a sample from a class other than y  is misclassified as yi; False Negative (FN) means 

a sample from the class y, is misclassified as a ‘not y,’ class. F1 score is the harmonic mean 

of Precision and Recall, which ranges in the interval [0,1].

3.3. IMPLEMENTATION DETAILS

The transfer learning model described in Section 2.5 is built using the open source 

machine learning framework PyTorch [13]. During training, we choose a batch size of 

64, a learning rate of 0.001, and a dropout rate of 0.5. Transformations such as random 

rotating, scaling, and cropping are applied to the training set to include more variations in 

the training phase, which will help the network learn the most discriminative features and 

generalize to unseen data. A workstation with one 12 core Intel Xeon processor, 64GB of 

RAM and one Nvidia Geforce 1080 Ti graphic card is used for the network training.

3.4. EVALUATION OF DIFFERENT PRE-TRAINED MODELS

There are different pre-trained models with different architectures trained on pub

lic datasets, such as ImageNet, for different source tasks. We select three of them, i.e., 

VGG [15], ResNet [6] and DenseNet [9], in our experiments for comparison. The perfor

mance of these three pre-trained models in terms of accuracy, precision, recall and F1 score 

is listed in Table 1. Compared with a ResNet model, a VGG model has higher performance 

for all four evaluation metrics. A DenseNet model has the highest performance among the 

three, achieving an accuracy of 95%. Therefore, we choose the pre-trained model DenseNet 

in the following study.
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Table 1. Performance (%) comparison of different pre-trained models.

Pre-trained Model Accuracy Precision Recall F1 Score
VGG 93.5 92.2 92.0 91.0

ResNet 92.5 90.2 87.6 88.0
DenseNet 94.7 92.8 92.1 92.1

3.5. IMPACT OF CLASSIFIER DESIGN

After loading a pre-trained model with partially frozen weights, a new classifier 

is needed to adapt the source model to the target task. It is infeasible to evaluate all 

possible classifier designs due to the numerous parameters, such as number of hidden layers 

between the input and output layers, number of neurons for each hidden layer, and dropout 

rate during training. To explore the optimal design of hidden layers for the classifier, we 

compare the performance of four designs using different numbers of layers and neurons: 

1). [512 -  256 -  128] (three hidden layers are included and their neuron numbers are 512, 

256, and 128, respectively); 2). [512 -  256]; 3). [512]; and 4). [-] (no hidden layer is 

included, and the input layer is fully connected to the output layer). As shown in Table 2, 

the four classifier designs are listed and their performances in terms of accuracy, precision, 

recall and F1 score are compared. It can be seen that, a simpler classifier design, from 

the top to the bottom, can have better performance and less training time. The 4th design 

has the highest performance, which reaches 94.7%, 92.8%, 92.1% and 92.1% in accuracy, 

precision, recall and F1 score, respectively. Therefore, we choose the 4th design for our 

customized classifier.

Table 2. Results (%) of different classifier designs.

Hidden Layer Accuracy Precision Recall F1 Score
[512 -  256 -  128] 92.7 90.9 86.3 87.6

[512 -  256] 93.6 90.2 90.9 89.8
[512] 92.9 92.0 89.4 89.7
[-] 94.7 92.8 92.1 92.1
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3.6. REAL-TIME RECOGNITION

A real-time application of operation recognition is developed to validate the trained 

model. A screenshot of this application is shown in Figure 8. The video is captured via 

network transmitting as depicted in Figure 1 or from a saved video file. Inference on each 

image frame is implemented using the trained model. The prediction of each individual 

frame is returned and useful information is presented on the interface for users. To make 

the predictions more stable, a state machine is implemented and a logic for state changing is 

applied, i.e., if a certain number of consecutive frames are recognized as the next operation, 

then the current state is updated to the next operation. In addition, the assembly progress 

can be evaluated quantitatively by accumulating the number of frames for each operation. 

Such information can be used to provide instructive feedback to the operator in a real

time manner. For example, if a certain operation takes more time to finish than average, 

instructions of the current operation can be provided to the operator to help improve the 

working efficiency.

Information
Stream; a ataae l/a u bject_U try_10 /2 0 1 91019 - 2 2 1837—viewO.ovi 
Worker ID; 1 J ,
Jo b Time: 2019/10/19-22; 18:37

Video Stream

Operation 8/10 
INSERT POWER CABLE

Instruction
Projector: ON 
Laser: OFF

Al-Assisted W orkforce Assessm ent

Figure 8. Real-time recognition on the testing subject.
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3.7. FAILURE CASES

The confusion matrix of the experiment on the testing set is shown in Figure 9. We 

can see that, most of the frames are along the diagonal and correctly recognized. However, 

some frames are misclassified and appear as confusing pairs, e.g., O3-O4 and O7-O8. The 

are 146 frames of O3 misclassified as O4, and 416 frames of O8 misclassified as O7. By 

reviewing the misclassified frames, as illustrated in Figure 10, we find the reason for the low 

performance is the high visual similarity shared within each pair makes it confusing and 

difficult to distinguish between them. Operations O3 and O4 can be very similar because 

the parts installed at these two steps are adjacent. Operations O7 and O8 share strong 

similarities because both of them involves cable handling and inserting operation, which 

makes it challenging for data-driven algorithms to learn the difference.

Co

0)
Cl

O

~ oc
o

CD

01 - 5381 1 3 0 0 0 0 0 0 0

02 - 15 272 17 0 0 0 0 0 0 0

03 - 0 9 1469 146 n 0 0 0 0 0

04- 0 0 39 1073 19 0 0 0 0 0

05 - 1 0 5 9 1116 0 0 0 0 0

06- 0 0 0 0 21 4038 1 0 0 0

07 - 0 0 1 0 0 27 1638 65 3 0

08 - 0 0 0 0 0 50 416 1117 72 2

09 - 0 0 0 0 0 4 3 4 1212 20

oio- 0 0 0 0 9 9 0 0 0 157

01 02 03 04 05 06 07 
Predicted Operation

08 09 oio

Figure 9. Confusion matrix of the experiment on the testing set.
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Figure 10. Failure cases from confusing pairs O3-O4 and O7-O8.

4. CONCLUSION AND FUTURE WORK

In this paper, we develop a real-time fog computing application for assembly opera

tion recognition in human-centered intelligent manufacturing using image frames obtained 

from a visual camera. An assembly operation task is formulated and a dataset is established, 

which contains 10 sequential operations. Transfer learning is utilized and the developed 

model is evaluated on the dataset and achieves a 95% recognition accuracy.

This is an on-going project and some directions for future study are considered, 

such as recruiting more subjects for data collection to enrich the current dataset, utilizing 

more cameras to capture the operator's activity from more perspectives, and including 

more modalities in the current model for information fusion. In addition, instead of 

using an image-based recognition method, the recording videos can be directly utilized 

to create a video-based operation recognition model using deep learning methods such as 

3D convolutional neural networks.
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SECTION

2. SUMMARY AND CONCLUSIONS

This dissertation study focused on developing systems and approaches to achieve 

an effective and efficient understanding of the worker’s behavior on the factory floor, which 

provided the foundation for worker-centered intelligent manufacturing.

A novel worker-centered training & assistant system for intelligent manufacturing 

was proposed. This system had the self-awareness of the worker’s state and could provide 

active guidance to the worker as needed. Compared to traditional approaches, the proposed 

system started with the worker’s experience, considers more of the worker’s learning effect, 

and had more interactions with the worker. The worker’s state was perceived with multi

modal sensing and deep learning methods, and was used to analyze and determine the 

potential guiding demands. Then active instructions with augmented reality were provided 

to suit the worker’s needs. The case studies showed the feasibility and promise of applying 

the proposed system for training and assisting frontline workers. Also, the proposed self

aware and active-guiding training & assistant system constructed a framework for further 

studies in worker-centered intelligent manufacturing.

A novel method of multiview augmentation and inference fusion for hand gesture 

recognition from depth images using a Convolutional Neural Network (CNN) was proposed. 

Multiview augmentation first retrieved the 3D information embedded in a depth image, 

and then generated more data for different perspective views. The result showed that it 

outperformed the traditional image augmentation methods because it could simulate realistic 

perspective variations that the traditional methods could not. Inference fusion coped with 

the interclass similarity issues caused by perspective variations and finger occlusions. It 

comprehended information of all individual views, and then outputted the final prediction,
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which was proved to be effective in further improving the model’s performance. The 

method was successfully evaluated on two public datasets, the ASL benchmark dataset 

and the NTU digit dataset. The experimental results demonstrated that the method made 

significant improvement compared to the previous work, achieving recognition accuracies 

of 100% and 93% in the half-half and the leave-one-out experiments, respectively, on the 

ASL benchmark dataset, and achieving recognition accuracies of 100% for both the half-half 

and the leave-one-out experiments on the NTU digit dataset.

A novel multi-modal approach for worker activity recognition was proposed. Two 

sensors (wearable device and camera) were adopted to perceive the worker, and four modal

ities were built to recognize the activity independently. Then, inference fusion was imple

mented to achieve an optimal understanding of the worker’s behavior. Two novel mecha

nisms were designed to produce image representations of the IMU sensor signals in both 

the frequency and spatial domains. A kinematics-based data augmentation method was 

developed to generate more physically-realistic variations in the training dataset. This per

formed better than the traditional data augmentation method. A worker activity dataset was 

established, which had 8 subjects and contained 6 common activities in assembly tasks (i.e., 

grab a tool/part, hammer a nail, use a power-screwdriver, rest arms, turn a screwdriver and 

use a wrench). The multi-modal approach was evaluated on the dataset and achieved 100% 

and 97% recognition accuracy in the half-half and leave-one-out experiments, respectively.

A novel approach of attention-based sensor fusion was proposed for Human Activity 

Recognition (HAR) using Inertial Measurement Unit (IMU) signals obtained from multiple 

sensors worn at different body locations. For signal representation, a simple yet effective 

pipeline for feature transform was designed to represent the input signals of each sensor as 

images in the frequency domain. Having the formatted images as inputs, a sensor-wise fea

ture extraction module was developed to extract the most discriminative features of signals 

from individual sensors with Convolutional Neural Networks (CNNs), and to generate a 

vector representation for each sensor. Then, a sensor attention mechanism was developed to
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learn the importance of sensors at different body locations and to create an attentive feature 

representation. After that, an inter-sensor feature extraction module was applied to learn 

the inter-sensor correlations, which were connected to a classifier to output the predicted 

classes of activities. This attention-based model was able to learn the importance of sensors 

at different body locations, yielding a more comprehensive understanding of the human 

activity. The proposed approach was evaluated on five publicly available datasets and it 

demonstrated superior performance than the state-of-the-art methods.

A real-time fog computing application was developed for assembly operation recog

nition in human-centered intelligent manufacturing using image frames obtained from a 

visual camera. An assembly operation task was formulated and a dataset was established, 

which contained 10 sequential operations. Transfer learning was utilized and the developed 

model was evaluated on the dataset and achieved a 95% recognition accuracy.
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3. RECOMMENDATIONS FOR FUTURE WORK

Worker behavior understanding on the factory floor remains challenging due to 

1) the complexity and uncertainty of worker activity, the complexity of multi-source and 

heterogeneous sensing and modeling, and the complexity for human-object interaction 

understanding. To further improve the current dissertation study, this chapter describes 

some recommendations for future work.

3.1. DATA

Data are crucial for achieving good performance in deep learning tasks. Although 

there are lots of public datasets of human activity available for different purposes, few 

attempts have been made for the worker behavior understanding in manufacturing fields. 

Therefore, efforts can be focused on the manufacturing domain and some comprehensive 

datasets can be developed in terms of tools, parts, and worker activity in videos.

3.1.1. Developing an Image Dataset for Tool Recognition. Tools in the working 

scenarios can be treated as “standard” objects because for a specific type of tools, such 

as the hammers, they all have similar appearances. In this work, a tool dataset covering 

a wide range of tools available on the market can be created. Firstly, the categorization 

method of tools can be studied. Then, images belonging to these categories can be collected 

from the Internet and saved locally under a predefined file structure. After that, annotation 

information can be added to each image, such as bounding boxes denoting where the tools 

are. Finally, experiments of tool recognition can be implemented using some benchmark 

methods.

3.1.2. Developing a Data Synthesis Pipeline for Part Recognition. Compared 

with “tools”, “parts” are less “standard” and more product-specific because their appear

ances can be totally different for different products. Therefore, it is not possible to collect
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image data for them as how we do for collecting the tool dataset. In this work, efforts can 

be focused on generating the images in a synthetic manner. Firstly, 3D models of the parts 

can be prepared. Then, a pipeline for the synthetic dataset generation with the help of some 

open source software can be developed. Finally, experiments of part recognition can be 

implemented using some benchmark methods.

3.1.3. Developing a Video Dataset for Operational Activity Recognition in the 

Wild. Understanding human activities in videos is still challenging due to the complexity 

of activities and the variation randomness of videos. In this work, a video dataset of some 

common worker activities can be established. Firstly, the categorization method of worker 

activities can be created. Then, videos belonging to these categories can be collected 

from the Internet and saved locally under a predefined file structure. After that, annotation 

information can be added to each video, such as the starting frame and the ending frame 

of a certain activity. Finally, experiments of activity recognition can be implemented using 

some benchmark methods.

3.2. DEVELOPMENT OF INTERACTION-AWARE APPROACHES

A deep learning model could achieve good performance by digesting the appearance 

of a scene, and return correct answers. However, sometime the black box model may not 

work; even it returns the correct answer, it uses the unrelated information as the cues. The 

black box model cannot provide a “deep” understanding of the contents, such as where 

the hands are and what the interactions are. The understanding of a deep model is still 

superficial. It motivates us to propose a model which can have more understandings, and 

the research should aim to push the model to learn more meaningful contents and make the 

deep learning model more explainable, rather than a black box.

To have a better understanding of input image, different modules can be designed, 

including a hand detection & tracking module, an object detection module, and an interaction 

module. The first module can detect the hands appeared in the scene and track their
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trajectories, which is informative for understand the hand spatial movements. The second 

module can detect objects, i.e., tools and parts, in the scene. The third module is designed to 

recognize the relation between hands and objects, such as what object the hand is holding. 

Then, knowledge from the three modules can be fused to infer the final understanding of 

the input image, e.g., a hand is tightening a bolt to a part with a wrench.
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