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Abstract

Activity recognition on mobile device sensor data has been an active research area in mobile and pervasive

computing for several years. While the majority of the proposed techniques are based on supervised learning,

semi-supervised approaches are being considered to reduce the size of the training set required to initialize the

model. These approaches usually apply self-training or active learning to incrementally refine the model, but

their effectiveness seems to be limited to a restricted set of physical activities. We claim that the context which

surrounds the user (e.g., time, location, proximity to transportation routes) combined with common knowledge

about the relationship between context and human activities could be effective in significantly increasing the

set of recognized activities including those that are difficult to discriminate only considering inertial sensors,

and the highly context-dependent ones. In this paper, we propose CAVIAR, a novel hybrid semi-supervised and

knowledge-based system for real-time activity recognition. Our method applies semantic reasoning on context-

data to refine the predictions of an incremental classifier. The recognition model is continuously updated using

active learning. Results on a real dataset obtained from 26 subjects show the effectiveness of our approach in

increasing the recognition rate, extending the number of recognizable activities and, most importantly, reducing

the number of queries triggered by active learning. In order to evaluate the impact of context reasoning, we

also compare CAVIAR with a purely statistical version, considering features computed on context-data as part

of the machine learning process.

Keywords: activity recognition, mobile computing, semi-supervised learning, context-awareness, hybrid

reasoning

1. Introduction

The rapid evolution of sensor technology and mobile computing in the last decades opened the way to a

new generation of intelligent context-aware services relying on the ability to automatically detect our daily

activities [1]. Some of those services have real-time constraints, thus requiring activity recognition methods

capable of balancing accuracy, fast reaction time, and resource efficiency [2]. The majority of activity recognition

algorithms in the literature rely on supervised machine learning to infer the most likely performed activities by

analyzing inertial sensors data [3]. One of the major drawbacks of those solutions is the cost of collecting the

amount of labeled data required to reach a high recognition rate. Moreover, standard classifiers are trained once

with available data, and the recognition model cannot evolve. In order to overcome these issues, semi-supervised

and incremental approaches for activity recognition have been proposed [4]. Those methods only require a small
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amount of training data to initialize the recognition model, while techniques like co-learning, self-learning or

active learning are used to assign labels to the sensor data acquired while the system is deployed [5, 6, 7, 8].

While the majority of semi-supervised methods showed to be effective on classifying a limited set of physical

activities (e.g., walking, running, biking, etc.), their effectiveness on more complex and context-dependent

activities is still unclear. Moreover, discriminating those activities which have similar motion patterns is still

problematic. For instance, activities like walking and taking the stairs, or standing and taking the elevator are

easily confused between them by purely statistical methods based on inertial sensors.

The context which surrounds the user could be valuable information to mitigate these issues [9, 10]. Indeed,

a rich description of the user’s context (e.g., semantic location, weather, traffic condition, speed, etc.) has the

potential to enable the recognition of a wide set of activities which are a) highly dependent on the current

context and b) difficult to recognize only considering inertial sensors. However, semi-supervised approaches rely

on a small set of labeled data that may not be representative of the large number of possible context conditions

in which activities can be performed. For this reason, directly using context-data as additional features in the

machine learning process may not be as effective as expected.

In this paper, we consider this problem and we propose CAVIAR, a Context-aware ActiVe and Incremental

Activity Recognition system which combines semi-supervised learning and semantic context-aware reasoning.

An online machine learning classifier is in charge of inferring from inertial sensor data a candidate probability

distribution over the possible activities. A knowledge-based reasoning engine is then used to exclude the

activities that are highly unlikely considering context-data. The system provides as output the most likely

activity from the resulting context-refined probability distribution.

Following the semi-supervised approach, when CAVIAR is not sufficiently confident about the current activ-

ity despite the context-based refinement, it starts an active learning process, asking the user about the activity

being performed and using the answer to provide a new labeled sample to the incremental classifier.

No public datasets exist with sufficiently rich context information to properly evaluate CAVIAR. Hence, we

conducted a new dataset acquisition campaign involving 26 subjects. Results on this dataset show that context-

refinement is effective in a) improving the recognition rate, b) expanding the set of recognizable activities, and

c) triggering a significantly lower number of queries.

The contributions of our work are the following:

• We propose CAVIAR, a novel activity recognition approach that combines context-aware reasoning with

semi-supervised learning.

• We performed an extensive evaluation of CAVIAR on a real annotated dataset acquired from 26 subjects

while performing 13 different activities. The results show the crucial role of context-data and structured

knowledge in improving semi-supervised activity recognition.

• We show that CAVIAR, by using knowledge-based reasoning on context-data, not only reaches higher

recognition rates but also triggers a significantly lower number of queries for active learning compared to

using context-data as additional features in the machine learning process.

The rest of the paper is organised as follows. Section 2 discusses related work. Section 3 describes the overall

architecture of CAVIAR. Section 4 presents the CAVIAR method in details. Section 5 reports the experimental

results. Section 6 discusses strengths and limitations of CAVIAR. Finally, Section 7 concludes the paper.
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2. Related work

The recognition of physical activities using commonly available mobile devices (e.g., smartphones and smart-

watches) is a widely explored research area [1, 11]. The majority of approaches in the literature rely on supervised

methods to infer activities from inertial sensors data [3, 12, 13, 14, 15]. While these methods allow reaching

high recognition rates, the acquisition of a wide labeled dataset of activities is costly and often unfeasible [16].

In order to overcome these issues, a few research works proposed unsupervised learning techniques [17, 18, 19].

These methods aim to find activity patterns from unlabeled data with data mining techniques. However, those

approaches require a large pool of data to discover significant patterns. Moreover, a certain amount of labeled

data is still required to reliably associate each discovered cluster with its corresponding activity class.

In order to combine the strengths of both supervised and unsupervised approaches, semi-supervised learning

methods for activity recognition have been proposed [4, 8, 20, 7]. Those techniques use small labeled training

sets to initialize the model, which is continuously enhanced using unlabeled data. In the literature, the semi-

supervised strategies used for activity recognition are self-learning, co-learning, and active learning. Self-learning

methods exploit the starting training set to classify unlabeled data [7], and the most confident predictions are

used to update the classifier. Co-learning approaches rely on multiple classifiers trained on different views of

the training set, and on a voting mechanism to classify each unlabeled feature vector [21, 20]. Based on their

confidence, the resulting predictions may be used to update the recognition model of each classifier. Differently

from self-learning and co-learning, active learning requires explicit feedback from the users to obtain labels for

the most informative data (i.e., when the classifier is uncertain about the performed activity) [22, 23, 6, 5].

Active learning proved to be particularly effective for semi-supervised activity recognition. However, for the

sake of usability, the number of triggered queries should be as small as possible.

Existing semi-supervised activity recognition methods in mobile computing mainly recognize a restricted

number of physical activities using inertial sensors data [23, 6, 21, 24]. Differently from those methods, we

consider the context which surrounds the user to refine the statistical predictions and to continuously update

the recognition model through active learning. Thanks to this approach, CAVIAR significantly extends the

set of recognizable activities and, at the same time, better discriminates those activities which have similar

movement patterns.

Even if context reasoning for activity recognition has been mainly investigated for smart-home environ-

ments [25] and computer vision based systems [26], its application to mobile computing applications is not

completely new [27]. For instance, in [28] the authors propose a supervised method that considers features

like the current user’s position (e.g., semantic location) and personal attributes (e.g., age, gender, profession).

However, the activities considered in this work are strictly related to semantic places (e.g., their model predicts

praying if the user is in a church, or shopping if the user is in some kind of shop, etc.).

The combination of machine learning and context-aware ontological reasoning for activity recognition was

firstly explored in [10]. In that work, the output of a statistical classifier is refined considering the user’s semantic

location. In [29] rich contextual information is used to improve activity recognition with a multi-layer approach.

Differently from those methods, our system is semi-supervised and it only requires a small set of labeled data

to be initialized. Moreover, CAVIAR takes advantage of context-aware reasoning to continuously update the

activity recognition model with active learning.
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3. CAVIAR system overview

The general architecture of CAVIAR is depicted in Figure 1. The user’s mobile devices continuously collect

Figure 1: Overall architecture of our system

data from different sources. While inertial sensors (e.g., accelerometer, magnetometer, and gyroscope) stream

data about the user’s physical movements, CAVIAR gathers data about the user’s context by combining data

from the devices (e.g., the geographical position) with publicly available web services (e.g., local weather service).

It is important to note that “context” is a very broad term which in the literature is used to define the user’s

situation at different levels of abstractions [30]. In this paper, with context data we mainly indicate the

information about the environment which surrounds the user. Examples of such context data are the user’s

current semantic location, the fact that it is indoor or outdoors, his/her proximity to transportation routes, the

current weather, temperature, and temporal properties like the time of the day, and the day of the week, etc.

Our hybrid semi-supervised and context-aware activity recognition algorithm is divided into three main

steps. First, the stream of raw inertial sensors readings is processed by the Incremental Activity Recog-

nition module. This module first applies pre-processing methods like data filtering, segmentation, and feature

extraction. Then, a semi-supervised classifier associates to each feature vector a probability distribution over

the possible activities. The activity model is initialized during an offline phase with a small labeled training set.

The Incremental Activity Recognition module does not take into account context data. The main

motivation is that semi-supervised methods rely on a rather small set of labeled data, while activities can be

performed in a wide variety of different contexts. While pure data-driven techniques can discriminate different

motion patterns even with a few labeled samples, learning their correlations when they compose an activity

in very different context conditions may be problematic. This is especially true when considering a wide set
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of activities. Nonetheless, common-sense knowledge can be used to model the relationships between activities

and contexts (e.g., it is unlikely that a user is using an elevator while she is in the city park). Hence, in

the second step of our algorithm, the Semantic Refinement module applies knowledge-based reasoning to

context data to exclude from the semi-supervised prediction those activities which are not consistent with the

current context. In particular, raw context data is first pre-processed and translated into high-level facts. An

ontology that models the relationships between activities and contexts is then used to derive from context data

which of the candidate activities are context-consistent. The output of the Semantic Refinement module is

a probability distribution over the context-consistent activities, which we call refined prediction.

The third and last step of CAVIAR consists of using the refined prediction to update the activity model.

In particular, the Prediction Confidence Evaluation module evaluates the system’s confidence on the

refined prediction. If the confidence is below a certain threshold, a query is triggered to the user to obtain the

ground truth about the current activity. This feedback is then used to provide a new labeled data sample to

the activity model.

Note that the system is centralized and the feedback by each user in the active learning phase contributes

to the refinement of the shared activity model.

4. Methodology

In this section, we describe in detail how the different modules of CAVIAR introduced in Section 3 actually

work.

4.1. Incremental activity recognition

The Incremental Activity Recognition module relies on an online semi-supervised classifier to derive

a candidate set of activities performed by the user. The stream of inertial sensor data is continuously pre-

processed and segmented to extract feature vectors. As soon as a feature vector is generated by CAVIAR, it

is provided to the classifier to derive the probability distribution over all the possible activities. Note that the

activity model is first initialized during an offline phase with a small amount of labeled data.

4.1.1. Segmentation, feature extraction and classification

In the following, we describe the pre-processing steps that CAVIAR applies to inertial sensors data. Since a

user may carry multiple mobile devices (e.g., a smartphone and a smartwatch), it is first necessary to temporally

align their raw sensor data streams. In our experimental setup, we considered for each device the data streams

from the accelerometer, magnetometer, and gyroscope. CAVIAR applies to each stream a median filter to

reduce the intrinsic noise of the signal. Then, CAVIAR segments the streams of aligned sensor data. Each

segment is defined as the set of inertial sensor data acquired during a specific time window of n seconds. Each

segment starts the next second with respect to the end of the previous segment, hence segments are contiguous

and non-overlapping.

The length n is the same for all segments, and it should be chosen carefully according to the complexity

of the considered activities to balance the trade-off between accuracy and reaction time. In our experimental

setup, we studied the existing literature to choose a reasonable fixed value for n [31]. Since the target activities

of CAVIAR are both simple (e.g., standing) and complex (e.g., driving) we could not choose a too short window

size. Hence, to guarantee a reasonable trade-off between accuracy and reaction time, CAVIAR uses n = 4.

5



From each segment, CAVIAR extracts a wide set of statistical features that are well-known in the activity

recognition literature [1]. In particular, for each axis of each inertial sensor, we extract: average, variance,

standard deviation, median, mean squared error, kurtosis, symmetry, zero-crossing rate, number of peaks, energy

and difference between maximum and minimum. Finally, for each inertial sensor we compute the Pearson

correlation for each combination of its axes and the magnitude on all of its axes. Hence, given k 3-axis inertial

sensors equipped in the user’s mobile devices, we compute k × 37 features. We also apply standardization to

each feature to further improve the recognition rate [32].

Example 4.1. Consider a user which carries a smartphone and a smartwatch, both equipped with 3-axis ac-

celerometer, gyroscope, and magnetometer. Since the overall number of inertial sensors is 6, CAVIAR would

compute, for each segment, 6× 37 = 222 features.

For each feature vector fv computed from a segment s, the incremental classifier h outputs a probability

distribution over the set of considered activities A = {A1, A2, . . . , Am}:

h(fv) = 〈p1, p2, . . . , pm〉

where 0 ≤ pi ≤ 1 is the probability P (Ai|s) that the segment s was generated by the activity Ai, with
∑m

i pi = 1,

and m = |A|. The probability distribution h(fv) is forwarded to our Semantic Refinement module which

will refine it based on context data.

4.1.2. Activity model bootstrap

A crucial aspect of our semi-supervised framework is the activity model initialization. Indeed, without a

proper bootstrap mechanism, the semi-supervised model would have to discover each activity “on-the-fly”, with

a negative impact on the recognition rate. Hence, we initialize the semi-supervised model by acquiring t seconds

of labeled data for each activity to obtain a balanced labeled dataset. While the value of t should be as small as

possible to minimize the effort in the labeled set collection, this value has a high impact both on the recognition

accuracy and on the number of queries triggered to the users. In our experimental setup, we consider t = 60 (i.e.,

one minute) and hence, considering the length of each segment, CAVIAR initializes the activity model using 15

labeled feature vectors for each activity. Based on our experiments and the range of considered activities, we

believe that this small value should be sufficient in general for CAVIAR to initialize an activity model that can

rapidly evolve thanks to active learning.

4.2. Semantic Refinement

The Semantic Refinement module is in charge of refining the prediction h(fv) obtained by the Incre-

mental Activity Recognition through the analysis of the context which surrounds the user. In order to

achieve this task, this module relies on an ontology that models the relationships between context and ac-

tivities. Intuitively, ontological reasoning is applied to exclude from the statistical prediction those activities

which are unlikely to be performed considering the current context. In the following, we describe in detail our

context-aware semantic reasoning mechanism.

4.2.1. Activity and Context ontology

Our ontology is an extension of the ActivO ontology [10] that defines a wide set of activities, semantic

locations, artifacts (e.g., used by the user or part of the semantic locations), user’s postures, time granularities

(e.g., day of the week, time of the day) and environmental information (e.g., temperature and light conditions).
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Details aboutActivO ’s implementation can be found in [10]. We took advantage of the Protégé tool 1 to extend

ActivO with several new activities, contextual data and their relationships. An example of those entities is

shown in Figure 2. Our ontology considers several sources of context data: user’s semantic place, user’s recent

route, weather conditions, proximity to public transportation stops and routes, surrounding traffic condition,

user’s height variations, user’s speed, surrounding light, environment’s noise level and temporal context (e.g.,

time of the day, day of the week, month, . . . ). Figure 2a shows a portion of those context data modelled in our

ontology, while Figure 2b focuses on the set of considered semantic locations, including the ones classified by

Google Places API 2. It is important to note that we distinguish symbolic locations and their characteristics

from their use. This allows us to better model activities related to symbolic locations.

(a) An excerpt of context hierarchy (b) An excerpt of symbolic locations hi-
erarchy

Figure 2: Excerpts of our ontology

Due to the intrinsic open-world assumption of ontological reasoning, we explicitly state the necessary condi-

tions which make activities possible or not possible in a given context. As we will explain later, such constraints

are necessary to enable our context-aware refinement which is based on consistency reasoning. For instance, the

activity TakingStairs (Figure 3a) should take place at a location that may have stairs and the person should

have a non-negative height variation. Another example is the activity MovingByCar (Figure 3b): our ontology

enforces that it should take place in an outdoor location which includes a road or a street and that the car’s

speed should be positive.

1https://protege.stanford.edu/ (Accessed on 2020-02-19)
2https://developers.google.com/places/supported_types (Accessed on 2020-02-19)
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(a) Definition of the activity “taking stairs” (b) Definition of the activity “moving by car”

Figure 3: Examples of activity definitions in our ontology

4.2.2. Translating context data into ontological facts

Context data collected by the mobile devices are automatically mapped to the respective ontological concepts

by a specifically designed middleware. This middleware encodes the rules that are necessary to transform raw

context data into high-level axioms. The majority of context-data can be mapped one-to-one with ontological

entities. For example, the user semantic location obtained from a dedicated service is directly mapped by the

middleware to the respective ontological fact (see Example 4.2).

Considering scalar values, the middleware discretizes them taking into account the entities covered by the on-

tology. For instance, each user’s speed value is mapped to one of the following ontological concepts: NullSpeed,

LowSpeed, MediumSpeed, and HighSpeed. The specific rules that map a scalar value to an ontological concept

are based on ranges of values designed by the knowledge engineer (e.g., speed values greater than 0 km/h and

lower than 8 km/h are mapped to LowSpeed).

4.2.3. Context reasoning and refinement

For each activity candidate A in the statistical prediction h(fv), our system uses ontological reasoning to

determine whether A is consistent or not with the current context. As a first step, CAVIAR adds to the

knowledge base an axiom to represent an instance of Person which identifies the subject wearing the mobile

devices. As a second step, context data collected by the mobile devices are automatically mapped to ontological

concepts as described above and then added as axioms to the knowledge base. As a third and final step, since

we want to test the consistency of activity A with respect to the current context, CAVIAR adds an axiom which

states that the user is performing A.

Example 4.2. Bob is using CAVIAR. When the context reasoning task is triggered, Person(Bob) is added

as a fact. Then, context data gathered by mobile devices is analyzed to expand the set of facts. Suppose that

a Web service provides the information that Bob is in a park and that the speed value obtained by the GPS

sensor is 10 km/h. Those context information are automatically pre-processed to instantiate the following indi-

viduals: Park(place), MediumSpeed(speed). Then, the relationships between Bob and context data are added

as facts: hasCurrentSymbolicLocation(Bob, place), hasCurrentSpeed(Bob, speed). Finally, in order to

test whether the activity Running is context-consistent, CAVIAR adds the axioms Running(currentActivity)

and isPerforming(Bob, currentActivity). The consistency of the set of facts with respect to the domain

knowledge will determine if the running activity is consistent according to the current Bob’s context.
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We define an activity A context-consistent when the axioms created with the observed data as described

above are consistent concerning the domain knowledge. Note that the consistency check involves reasoning that

is automatically performed in the logic used to specify the ontology (the specific language and reasoner used in

CAVIAR are reported in Section 5).

Given the current context C and the marginal probabilities obtained by the semi-supervised classifier h(fv) =

〈p1, p2, . . . , pm〉, the goal of context refinement is to exclude those activities which are not context-consistent

according to C. For each activity class aci such that pi > 0, we compute its consistency according to context

C as explained above. Each activity that is not context-consistent is removed from the probability vector. The

refined vector is finally normalized to preserve the properties of a probability distribution. The output is a

new refined probability vector 〈r1, r2, . . . , rc〉 such that each Ai is a context-consistent activity according to C,

0 ≤ ri ≤ 1 and
∑m

i ri = 1. Note that an activity is usually not context-consistent when ontology’s necessary

constraints discussed in Section 4.2.1 are violated.

Example 4.3. Continuing Example 4.2, suppose that Bob is actually running. According to the Incremen-

tal Activity Recognition classifier, the current probability distribution is 45% cycling, 40% running, 10%

walking and 5% standing. Thanks to a dedicated Web service, it is possible to know that Bob is currently in

a pedestrian area of the park where bicycles are not allowed. According to the ontology, cycling is not context-

consistent since it should not be performed in pedestrian areas. Hence, the resulting context-refined probability

distribution is 73% running, 18% walking and 9% standing.

4.3. Prediction Confidence Evaluation

The Prediction Confidence Evaluation module is in charge of using context-refined predictions to up-

date the activity model with new labeled samples using active learning. Moreover, it also applies an incremental

data balancing technique to further improve the recognition of minority activity classes.

4.3.1. Active learning

In order to update and improve the activity model, we apply an active learning strategy asking a feedback

from the user about her current activity when there is uncertainty in the context-refined prediction. In particular,

we adopt a state-of-the-art non-parametric method called VAR-UNCERTAINTY [33]. This method is based

on a threshold θ which is dynamically adjusted over time. Initially, this threshold is initialized to θ = 1. Given

a context-refined prediction 〈r1, r2, . . . , rc〉, we denote with r? = maxi ri the probability value of the most likely

activity A?. If r? is below θ, we consider the system uncertain about the current activity performed by the user.

In this case, an active learning process is started by asking the user to provide the ground truth Af about the

current activity. The feedback Af is used to update the activity model with a new labeled data sample. When

Af = A?, it means that the most likely activity was actually the one performed by the user, and hence the

threshold θ is decreased to reduce the number of questions. On the other hand, when Af 6= A?, θ is increased.

More details about the VAR-UNCERTAINTY algorithm can be found in [33]. For the sake of usability, when

querying the user, CAVIAR only presents a few alternatives taken from the most probable activities.

4.3.2. Incremental data balancing

In our everyday life, some activities are performed with a lower frequency than others (e.g., the amount of

time that a subject spends on an elevator is usually less than the time he/she spends walking). Hence, updating

the incremental classifier with new labeled data samples without taking into account this aspect may lead to
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an unbalanced classification model, and subsequently to a poor recognition rate on the “minority” activity

classes. For this reason, our ontology also describes (using OWL2 properties) which activity classes are known

to represent “minority” activities according to common-sense knowledge.

In order to balance the activity model in an incremental fashion, CAVIAR applies a novel online oversampling

strategy based on the SMOTE technique [34]. Given M as the set of “minority” activity classes according to the

ontology, for each A ∈M , CAVIAR stores a fixed-size circular buffer BA that contains β feature vectors having

A as their label. Initially, each buffer BA is filled with β feature vectors randomly extracted from the initial

training set used for the model bootstrap (see Section 4.1.2). When CAVIAR triggers a user query originated

by a feature vector fv receiving Af as an answer with Af in M (i.e., the user is performing a minority activity),

the oversampling strategy creates additional synthetic feature vectors. Each of these vectors is computed by

perturbing fv according to the SMOTE algorithm with a feature vector randomly chosen from BAf . Finally,

each synthetic feature vector is used as a new labeled data sample to update the activity model, and fv is added

to BAf . Clearly, each buffer may contain feature vectors obtained from different users.

The number of synthetic feature vectors generated by SMOTE is a fixed constant that CAVIAR uses to

reinforce minority activity classes in the activity model. In particular, in our experimental setup, we use 4 as a

reinforcement constant, since we consider this value appropriate for balancing activities in the target domain.

The size of the circular buffers (β) is another constant used in this process. While it would be desirable to

generate synthetic labeled data samples considering as many feature vectors as possible, it would be inefficient

in terms of storage. In CAVIAR, the value of this constant is β = 100.

5. Experimental evaluation

In order to evaluate CAVIAR, we implemented a data collection infrastructure to acquire a labeled dataset

consisting of both inertial sensor data and context data. Indeed, to the best of our knowledge, there is no

publicly available dataset of labeled activities that incorporates rich contextual information. In this section,

we describe our experimental setup, the collected dataset, and the results obtained evaluating CAVIAR on the

dataset.

5.1. Experimental setup

In our experimental setup, users carry a smartphone in their pants’ front pocket and a smartwatch on the

dominant hand’s wrist. In our data collection, we adopted a Nexus 5x as smartphone and an LG G Watch

R as smartwatch. Dedicated Android applications run on those devices to continuously collect and transmit

sensor measurements to a Java server, which stores them into a MongoDB database. Both mobile devices

communicate to the server every 3 seconds the readings collected from their accelerometer, gyroscope and

magnetometer sensors.

Context data is acquired by the smartphone application considering built-in sensors as well as publicly

available web services. The considered built-in sensors are: the barometer measuring height variations, the

luminosity sensor, the microphone to obtain the environment’s noise level, and the GPS revealing the user’s

location and speed. The geographical coordinates are sent by the smartphone to the following web services:

• Google’s Places API: the service returns the most likely semantic places at the location where the user

is positioned.
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• OpenWeatherMap 3: the service returns the current local weather conditions (e.g., sunny, cloudy,

rainy), temperature, wind speed, etc.

• Bing’s Traffic API 4: the service returns the nearby traffic situation like road conditions, presence of

road works, presence of car accidents, etc.

• Transitland5: the service returns information about transportation routes and stops close to the user.

The application also collects temporal context like the moment of the day (e.g., morning, afternoon, evening),

the day of the week, the season, etc. Every 5 seconds, context data is transmitted to the server.

Besides data acquisition, mobile applications have user-friendly interfaces that allow users to annotate data

in real-time. Examples of such interfaces are shown in Figure 4. During the acquisition, we asked the users to

(a) Smartphone interface (b) Smartwatch interface

Figure 4: Annotation interfaces

use the smartwatch interface to label their activities to speed up the annotation process and, at the same time,

to make the acquisitions more realistic.

5.2. Dataset description

We acquired a dataset involving 26 volunteers aged between 20 and 28 not involved in this research. They

were instructed on how to use the annotation system but not on how to specifically execute the target activities.

The activities acquired in this dataset are the following: walking, running, standing, lying, sitting, stairs up,

stairs down, elevator up, elevator down, cycling, moving by car, sitting on transport, standing on transport and

brushing teeth.

Those activities have been acquired in different contexts, which include working at the office, going around

in the city (Milan), driving, using public transportation, cycling, and staying at home. Overall, we recorded

almost 9 hours of labeled and context-rich sensor data (∼ 350 activity instances).

3https://openweathermap.org/ (Accessed on 2020-02-19)
4https://docs.microsoft.com/en-us/bingmaps/rest-services/traffic/ (Accessed on 2020-02-19)
5https://transit.land/ (Accessed on 2020-02-19)
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Table 1 summarizes how many minutes of data we acquired for each activity. Note that the dataset is

unbalanced, since, as predictable, activities like taking the elevator and brushing teeth have been executed for a

significantly shorter time than others, like walking. Nevertheless, this imbalance reflects a realistic duration of

activities, thus allowing us to better evaluate the prediction capability of CAVIAR.

Activity Minutes

Standing 52
Sitting 56
Lying 40

Walking 96
Running 24
Cycling 24

Brushing teeth 16
Stairs up 16

Stairs down 16
Elevator up 8

Elevator down 16
Sitting on transport 60

Standing on transport 60
Moving by car 40

Overall 524

Table 1: Number of minutes acquired for each activity

5.3. Results

In the following, we present the results of CAVIAR considering the dataset described above. We use Online

Random Forest [35] as classifier, since it is the incremental version of the well-known Random Forest machine

learning algorithm, which proved to be one of the most effective classifiers for activity recognition [36]. We

take advantage of the Java implementation proposed in [37]. HermiT [38] in combination with the Java OWL

API [39] is our OWL2 ontological reasoner.

Since there is no system in the literature to directly compare with, we implemented two variants of CAVIAR.

The former is called Without context, since it only considers inertial sensor data to recognize activities. In par-

ticular, it combines the Incremental Activity Recognition module (see Section 4.1) and the Prediction

Confidence Evaluation module (see Section 4.3.1) without applying our context-refinement. Note that

Without Context can be considered as a baseline, since it is a standard approach for activity recognition [1].

The latter variant of CAVIAR is called Context as features. This method, instead of using semantic refine-

ment, incorporates context data directly in the feature vectors generated by the feature extraction mechanism

presented in Section 4.1.1. In particular, this method extracts a) statistical features (average, variance, differ-

ence between max and min) from numeric context data like speed or height variations, and b) binary features

for symbolic context data (i.e., semantic place, weather condition, proximity to transportation routes, etc.).

We used a leave-one-subject-out cross-validation approach to evaluate and compare CAVIAR with these two

variants in terms of recognition rate and the number of subject questions. At each fold, we apply CAVIAR to 25

subjects to collaboratively update the activity model, which is initialized considering 1 minute of labeled data

samples for each activity. The data of the remaining subject is used to compute the recognition rate, and the

number of questions asked to the subject. In a real application of CAVIAR, users independently perform their

activities and concurrently interact with the system. In order to simulate the interleaving of feature vectors

coming from different users, the data samples obtained from the 25 subjects are randomly interleaved when

given to the classifier.

Table 2 shows the results (in terms of overall F1 score). The results clearly show that context data has a
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Without Context
Activity Context as features CAVIAR

Elevator up 0.0 0.09 0.70
Elevator down 0.31 0.65 0.83
Moving by car 0.76 0.80 0.87
Brushing teeth 0.77 0.83 0.83

Running 0.98 0.97 0.98
Sitting 0.94 0.96 0.97

Going upstairs 0.38 0.45 0.77
Going downstairs 0.58 0.81 0.90

Cycling 0.96 0.96 0.93
Standing 0.85 0.95 0.96
Walking 0.84 0.89 0.95

Sitting transport 0.35 0.62 0.78
Standing transport 0.41 0.97 0.90

Avg F1 0.62 0.77 0.88

Table 2: Recognition rate (F-1 score) of CAVIAR compared with alternative approaches

significant impact on the overall recognition rate. Moreover, context data also allows our method to consider

a wider set of activities compared to standard methods which only consider inertial sensors (e.g., Without

Context). Indeed, activities that are characterized by similar inertial patterns but that are typically executed

in very different context conditions can be easily discriminated by CAVIAR. For example, it is evident that

activities like going upstairs/downstairs and sitting/standing on transport (which are more difficult to recognize

only considering motion patterns) highly benefit from context data. The positive impact of context in reducing

confusion between activities is also notable in the confusion matrices reported in Figure 5. From the confusion
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Figure 5: Comparison of confusion matrices. ac1 = Elevator Up, ac2 = Elevator Down, ac3 = Moving by Car, ac4 = Brushing
Teeth, ac5 = Running, ac6 = Sitting, ac7 = Going upstairs, ac8 = Going Downstairs, ac9 = Cycling, ac10 = Standing, ac11 =
Walking, ac12 = Sitting Transport, ac13 = Standing Transport.

matrix in Figure 5b we see, for example, that our approach allows the classifier to recognize the elevator up

activity, while the statistical methods confuse that activity with standing since they have very similar motion

patterns.

In general, the fact that CAVIAR outperforms the Context as features approach shows the value of context

reasoning with common knowledge with respect to using raw context data in a statistical approach.
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On the negative side, we observe that the recognition rate of CAVIAR on the cycling activity is lower than

the ones obtained by the other approaches. Indeed, as Figure 5 shows, this activity is often confused by CAVIAR

with moving by car. This is due to the fact that the available context data that characterizes those activities is

similar (e.g., they are both performed outdoor in the city traffic, with variable speed, etc.).

Besides the recognition rate, a crucial evaluation parameter is the number of questions triggered by the

system, since it has a significant impact on usability. As Figure 6 shows, CAVIAR generates a significantly

lower number of questions (6%) compared to Without context (22%) and Context as features (16%).

Figure 6: Percentage of triggered queries of CAVIAR compared with alternative approaches

Indeed, our semantic refinement technique exploits the ontology to remove unlikely activities from the

prediction, thus significantly increasing the confidence of the remaining activities. Results indicate that CAVIAR

should provide a much better user experience by limiting the number of times a user is interrupted with a

question.

In order to evaluate how the recognition rate and the number of triggered questions evolve over time, we

used the method proposed in [40]. First, we initialize the model as described above, considering 1 minute

of samples for each activity. Then, we classify each data sample of the dataset (considering all 26 subjects)

using the current recognition model and, depending on the prediction’s confidence, we update the model. The

classification’s output (i.e., the resulting most likely activity), and the corresponding ground truth are collected

in sliding windows of 800 samples with an overlap of 75% to periodically compute the overall F-1 score, and the

percentage of triggered questions. Samples coming from different users are randomly interleaved. Figure 7 shows

the evolution of the F-1 score and the number of questions of CAVIAR compared to the other two considered

approaches. Compared to Without Context and Context as features, CAVIAR quickly reaches high recognition

rates, and a significantly lower number of questions.

In order to further show the impact of context reasoning on activity recognition, we also evaluated our

system considering different sets of activities. Figure 8 shows how our system performs on a restricted set of

simple physical activities that are considered in the majority of related works. We observe that those activities

are poorly characterized by the context which surrounds the user, while their movement patterns can be easily

discriminated by purely statistical models.

Indeed, the results show that the recognition rate and the number of questions reached by CAVIAR are

similar to the ones obtained by the Without Context approach. It also strikes out that Context as features

method has a slower learning improvement, due to the fact that additional context features add complexity to

the semi-supervised activity model.
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(a) F1 score (b) percentage of questions

Figure 7: Evolution of the recognition model over time. Considered activities: Running, Sitting, Cycling, Standing, Walking,
Elevator up, Elevator down, Going Upstairs, Going Downstairs, Brushing Teeth, Moving by car, Sitting transport, Standing
transport

(a) F1 score (b) percentage of questions

Figure 8: Evolution of the recognition model over time. Considered activities: Running, Sitting, Cycling, Standing, Walking

Finally, we also considered an “intermediate” set of activities. That set includes more context-dependent

activities, like moving by car, brushing teeth, elevator and stairs. The results are shown in Figure 9.

(a) F1 score (b) percentage of questions

Figure 9: Evolution of the recognition model over time. Considered activities: Running, Sitting, Cycling, Standing, Walking,
Elevator, Stairs, Brushing Teeth, Moving by car

From the plots, it emerges that context-data has a high impact both on the recognition rate and on the

number of questions. Indeed, Without context struggles to reach the performance of context-based solutions.
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Moreover, CAVIAR reaches high recognition rates and a low number of questions very quickly with respect

to Context as features. This confirms that context-data allows CAVIAR to expand the set of recognizable

activities.

Note that, for all the considered set of activities, CAVIAR maintains the same performance trend while the

one of Context as features degrades when the complexity of the considered activities increases. Overall, the

experimental results suggest that CAVIAR is more scalable with respect to the set of considered activities, and

more effective in reducing the number of triggered questions.

5.4. Reaction time

In order to understand if CAVIAR could be practically deployed with current technology for real-time

activity recognition, we measured statistics about its reaction time defined as the time required to obtain the

predicted activity given a segment of sensor readings.

The most likely deployment is cloud-based with a hypothetical CaaS (CAVIAR as a Service) running most

of the server-side modules described in our architecture, except for segmentation and feature extraction that

may be running on the smartphone. In our experiment, we use a OnePlus 6 smartphone connected to a 4G

network and a Linux-based machine with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz) and 16GB of RAM as

back-end server. The reaction time is computed considering the computation time (both client- and server-side)

and the network communication delay. The boxplot in Figure 10a shows that the overall average reaction time

of CAVIAR is only 250ms, with a small variance. We observed that network communication introduces, on

average, a delay of 38ms, while the task that required the highest computational effort is ontological reasoning,

which took on average 150ms. As for all cloud services, network latency may have an impact on quality of

service, but for real-time services like this one, edge computing may offer a solution.

We also investigated the feasibility, in terms of reaction time, of running the whole CAVIAR framework on

the mobile device of the user as a local incremental classifier. We performed this experiment by porting all the

Java modules on the Android platform, and running a set of time performance tests on a portion of the dataset.

The boxplot in Figure 10b shows that CAVIAR takes on average one second and a half to infer the most likely

activity from each segment. As expected, the critical task in terms of computing time is ontological reasoning,

which took on average 1300ms. Since we considered a segment size of 4 seconds, even this on-device deployment

seems to be feasible in terms of reaction time, especially considering the expected evolution of mobile hardware

capabilities.
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Figure 10: CAVIAR reaction time
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6. Discussion

6.1. Context-data as features in machine learning versus knowledge-based context reasoning

Our results show the positive impact of context in semi-supervised activity recognition, but they also show

that the recognition rate of CAVIAR with respect to the one achieved by a pure machine learning approach

using context as features is only 11% higher in terms of overall F1 score. While we believe that this improvement

will further increase when considering a larger set of context-dependent activities, the other advantages of our

knowledge-based method are: a) the reduced number of queries needed to reach that high recognition rate, and

b) a significantly faster learning curve. These aspects improve usability in a real application scenario.

We also believe that our approach is more flexible in terms of the availability of context data. Since context

sources may not always be available, using context as features may lead to missing values in the feature vectors

used to update the classifier, which in turn may negatively affect the recognition rate. The flexibility of CAVIAR

seems also superior when additional types of context become available while the system is deployed. In the

case of using context as features, the model requires re-training from scratch with new labeled data. In our

method, considering new context data simply means extending the ontology. Moreover, the ontology can also

be periodically revised and improved independently from the classifier.

6.2. Knowledge-engineering effort

The knowledge-engineering effort required to design a comprehensive ontology is in general can be very

demanding. Indeed, this is a task usually performed by a team of domain experts and knowledge engineers.

However, the problem is mitigated by re-using existing ontologies. For instance, in this work we extended the

ontology presented in [10].

Moreover, the inevitable incompleteness of manual ontology design, due to the diversity and complexity

of context situations and human activities, may be mitigated by exploiting the information acquired through

active learning to continuously refine the ontology [41].

6.3. Resource efficiency

While the focus of our contribution is on the potential impact of context reasoning and not on the many

engineering aspects that should be addressed in a real deployment, we acknowledge that continuous context

acquisition in CAVIAR may have non-negligible costs, especially in terms of energy consumption. Indeed, our

system architecture considers mobile devices that generate data streams from several sources (e.g., inertial

sensors, GPS, web services).

Resource efficiency is still an open research problem in activity recognition [1]. In addition to the rapid

evolution of battery technology that may mitigate this issue, there are research proposals for energy-saving

techniques that significantly reduce the amount of data produced by sensors, with a small negative impact on

the recognition rate [42, 43].

Even considering deployment models in which the main processing modules are running on the mobiles,

there are studies that propose specifically designed lightweight machine learning frameworks [44]. Similarly,

lightweight semantic models can be adopted to improve Semantic Refinement [45]. As future work we

plan to experiment with the rich variety of resource-aware approaches in the literature to make CAVIAR more

practical. In particular, we will investigate the well-known trade-off between resource efficiency and overall

accuracy.
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7. Conclusion and future work

In this paper, we proposed CAVIAR, a novel real-time activity recognition framework combining context

reasoning and semi-supervised learning. CAVIAR relies on ontological reasoning over context data and activities

to refine the machine learning predictions, and on active learning to incrementally refine the statistical activity

model. Our results, based on a real dataset, show that the refinement of activity predictions due to context

reasoning leads to an overall improvement of more than 25% over a baseline that does not take into account

context data. We also compared CAVIAR with a pure machine learning approach considering the same context

data in the form of additional features. CAVIAR still reaches higher recognition rates and, more importantly,

it also triggers a significantly lower number of queries for active learning.

A limitation of our approach is the rigid formalism for knowledge representation and reasoning that cannot

take into account the intrinsic uncertainty and incompleteness of common knowledge and sensor technology.

Hence, in future work we plan to evaluate alternative probabilistic formalisms. Another interesting extension

may be to consider as context the sequence of recently performed activities. This may be achieved by introducing

a form of temporal reasoning.

Finally, CAVIAR could be extended by creating a personalized activity model for each user. Indeed, different

subjects may have different physical characteristics and habits and personalization may lead to a significant

improvement in the recognition of certain activities. This extension not only requires studying how to personalize

the machine learning model, but also how to learn user-dependent correlations between context and activities.
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[27] Ö. Yürür, C. H. Liu, Z. Sheng, V. C. Leung, W. Moreno, K. K. Leung, Context-awareness for mobile

sensing: A survey and future directions, IEEE Communications Surveys & Tutorials 18 (1) (2016) 68–93.

[28] I. Natal, L. Correia, A. C. Garcia, L. Fernandes, Efficient out-of-home activity recognition by complement-

ing gps data with semantic information, First Monday 24 (11) (2019). doi:10.5210/fm.v24i11.9971.

URL https://firstmonday.org/ojs/index.php/fm/article/view/9971

[29] S. Saguna, A. Zaslavsky, D. Chakraborty, Complex activity recognition using context-driven activity theory

and activity signatures, ACM Transactions on Computer-Human Interaction (TOCHI) 20 (6) (2013) 32.

[30] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of

context modelling and reasoning techniques, Pervasive and Mobile Computing 6 (2) (2010) 161–180.

[31] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, I. Rojas, Window size impact in human activity recogni-

tion, Sensors 14 (4) (2014) 6474–6499.

[32] I. Guyon, A. Elisseeff, An introduction to feature extraction, in: Feature extraction, Springer, 2006, pp.

1–25.
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