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 

Abstract—Radar-based human motion recognition is crucial for 

many applications such as surveillance, search and rescue 

operations, smart homes, and assisted living. Continuous human 

motion recognition in real-living environment is necessary for 

practical deployment, i.e. classification of a sequence of activities 

transitioning one into another, rather than individual activities. In 

this paper, a novel Dynamic Range-Doppler Trajectory (DRDT) 

method based on frequency-modulated continuous-wave (FMCW) 

radar system is proposed to recognize continuous human motions 

with various conditions emulating real-living environment. This 

method can separate continuous motions and process them as 

single events. First, range-Doppler frames consisting of a series of 

range-Doppler maps are obtained from the backscattered signals. 

Next, the DRDT is extracted from these frames to monitor human 

motions in time, range and Doppler domains in real time. Then, a 

peak search method is applied to locate and separate each human 

motion from the DRDT map. Finally, range, Doppler, radar cross-

section (RCS) and dispersion features are extracted and combined 

in a multi-domain fusion approach as inputs to a machine learning 

classifier. This achieves accurate and robust recognition even 

when in various conditions of distance, view angle, direction and 

individual diversity. Extensive experiments have been conducted 

to show its feasibility and superiority by obtaining an average 

accuracy of 91.9% on continuous classification. 

Index Terms—Continuous human motion recognition, DRDT 

method, fusion of multi-domain features, FMCW radar, machine 

learning 

I. INTRODUCTION 

HUMAN motion recognition has attracted great interests for 

different purposes such as surveillance, search and rescue 
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operations, smart home, and senior people care in assisted 

living facilities [1-5]. Various methods for human motion 

recognition have been proposed [6-9]. The employed sensors 

can be categorized into wearable and contactless solutions. 

Wearable sensors such as bracelets and ankle monitors must be 

worn or carried constantly, and thus are inconvenient, may be 

easily broken or forgotten, and have high false alarm rates [10]. 

Given these limitations, contactless detection technologies have 

gained wide research interests. The most common contactless 

sensors include cameras [8], microphones [9] and radar systems. 

Cameras are vulnerable to lighting conditions and blind spots. 

Microphones are sensitive to ambient noise interferes. 

Furthermore, they both infringe privacy issues, especially when 

deployed in private homes. 

Radar-based human motion recognition may complement the 

conventional technologies because of its potential for high 

accuracy, robustness, and privacy preservation [11]. Typically, 

micro-Doppler features are utilized to detect, identify and 

recognize human beings and their motions [12-17]. For 

example, Vandersmissen et al. investigated micro-Doppler 

features from gait to identify five indoor persons with a 

classification error rate of 21.54% [12]. Kim et al. utilized a 

continuous wave (CW) radar to extract Doppler features for 

Support Vector Machine (SVM) classifier to recognize seven 

human motions. The accuracy of the classification results was 

92.8% [13]. Based on the rapid development of low-cost 

frequency-modulated continuous-wave (FMCW), stepped-

frequency continuous wave (SFCW) and ultra wide-band 

(UWB) radar, range and other information are involved [18-26]. 

A multi-dimensional principal component analysis (MPCA) 
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was proposed to combine time, Doppler and range information 

to improve fall detection based on an FMCW radar system [18]. 

An SFCW radar was used to extract phase information 

contained in the complex high resolution range profile (HRRP) 

to derive instantaneous velocity, acceleration and jerk of human 

body for fall detection and monitoring [19]. Radar cross-section 

(RCS) information was also used to distinguish fall and other 

abrupt movements [20]. Bryan et al. applied principal 

component analysis (PCA) in feature extraction to classify eight 

human activities based on UWB radar and achieved a 

recognition accuracy of over 85% [21]. Recently, deep learning 

methods emerged as an effective tool in human motion 

recognition using different radar systems [27-30]. 

However, most studies focused on motion recognition in a 

laboratory environment, whereby the different activities are 

recorded as separate and individual snapshots. Practical 

applications would need to deal with continuous human motion 

recognition in real-living conditions, where the human subject 

monitored can perform activities one after another with 

unknown durations and transitions in between. 

In this paper, a novel method is proposed to explore and 

demonstrate its feasibility and performance from snapshot 

motion recognition to continuous motion recognition with 

various conditions from real-living environments. A novel 

Dynamic Range-Doppler Trajectory (DRDT) method is 

introduced to obtain DRDT map from backscattered radar 

signals, which can help monitor human motions in range, 

Doppler and RCS domains in real time. This makes it possible 

to apply a peak search method to initially locate and separate 

the contributions of each individual activity in a continuous 

recording, and then process them as single events. In addition, 

not only the commonly used micro-Doppler features, but also 

time-varying features in radar multi-domains are extracted as 

inputs to machine learning classifiers in a multi-domain 

perspective. This leads to accuracy and robust recognition 

performance even in various conditions of distance, view angle, 

direction and individual diversity. 

The rest of this paper is organized as follows. Section II 

introduces the theory and algorithm of the DRDT method. In 

Section III, the FMCW radar system and experimental setup are 

described. Section IV presents analysis and discussion of the 

recognition results. Section V is the conclusion.  

II. THEORY AND ALGORITHM 

In daily life, falling is among the leading causes of fatal and 

non-fatal injuries, especially for senior people [31]. Therefore, 

 
Fig. 2 Conventional range-Doppler frames. (a)~(f) six range-Doppler frames of falling toward the radar. 
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Fig. 1 Illustration of six typical human motions. (a) Falling (b) Stepping (c) Jumping (d) Squatting (e) Walking (f) Jogging. 

TABLE I 

SIX HUMAN MOTIONS UNDER STUDY 

Motions DESCRIPTION 

Falling Drop forward to the floor under the influence of gravity. 

Stepping Abrupt movement toward radar. 

Jumping Jumping forward with swinging arms and legs. 

Squatting Sitting in a crouching position with knees bent. 

Walking Walking forward at a moderate speed while swinging arms. 

Jogging Running at a gentle pace with fist at the height of chest 
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falling and its similar human activities are selected for 

recognition in this study. These include falling, stepping, 

jumping, squatting, walking and jogging. An illustration of 

these human motions is shown in Fig. 1, and the detailed 

descriptions are given in Table I. In order to recognize these 

human motions in a real-living environment, a novel DRDT, 

dynamic range-Doppler trajectory method is proposed.  

This approach can be divided into five steps summarized here 

and detailed in the next sub-sections. First, by processing the 

backscattered radar signals, a series of range-Doppler maps 

called range-Doppler frames can be obtained with given time 

windows [20] as detailed in section II.A. Section II.B explains 

how the dynamic range-Doppler trajectory is extracted from the 

above frames to describe human motion in time, range, Doppler 

and RCS domains. Section II.C then describes how a single 

motion is identified and separated from a series of continuous 

activities with a peak search method. Section II.D shows how 

the features in multiple domains are extracted based on the 

DRDT map. Finally, section II.E introduces the subspace K-

Nearest Neighbor (KNN) classifier [32] used to obtain the final 

recognition results. 

A. Conventional Range-Doppler Frames  

The received signals can be rearranged in a matrix, whose 

rows represent the slow time and columns contain the received 

signals in fast time. By performing an FFT along the fast time, 

the signals are discretized and the values are stored in an 𝑁 ×
𝑀 matrix 𝑅(𝑛,𝑚). 𝑛 = [1,2, … , 𝑁] indicates the index of slow 

time and 𝑚 = [1,2, … ,𝑀]  indicates the index of the beat 

frequency corresponding to range bins. Then, a range-Doppler 

map can be obtained by performing an FFT along the slow time 

direction with a sliding time window. To obtain time varying 

range-Doppler information, i.e. a continuous sequence of 

range-Doppler frames over time, a single range-Doppler frame 

can be achieved by setting a time window with limited duration: 

      2

1

, ,
L

j nk L

n

F k m R n m e 



   (1) 

where 𝑘 indicates the index of frequency and 𝐿 is the length of 

the time window, which corresponds to 0.2 s time duration of 

each range-Doppler frame.  

B. Proposed Dynamic Range-Doppler Trajectory 

Dynamic range-Doppler trajectory (DRDT) is utilized to 

describe and monitor human motions in range, Doppler and 

RCS domains in real time. This is obtained by extracting key 

information from conventional range-Doppler frames. One 

frame corresponds to one point in a DRDT map. 

𝑃 frames are selected as effective frames to describe an entire 

human motion denoted as 𝐹𝑝(𝑘,𝑚), 𝑝 ∈ [1, 𝑃]. In this paper, 

the value of 𝑃 is set to 6, corresponding to 1.2 s. There is a 

trade-off on the number of frames in order to cover an entire 

 
Fig. 3 Illustration of dynamic range-Doppler trajectory processing: (a) conventional range-Doppler frames, (b) dynamic range-Doppler trajectory of falling and 
stepping. 
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Fig. 5 Diagram of the proposed peak search method. 
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human action while avoiding the inclusion of too many 

uninformative frames. The value of 𝑃 was empirically verified 

through observations of the most common human motions. Fig. 

2 shows an example of six range-Doppler frames for falling. 

Each frame indicates range, Doppler and RCS information of 

human body during falling motion. 

Since the other motions may have high Doppler components 

similar to the case of falling, the baseband signals close to 0 Hz 

are initially removed by an empirical Doppler threshold 

corresponding to a velocity of 0.45 m/s in each range-Doppler 

frame. Next, the top 𝑄 points in energy, i.e. those related to high 

RCS are selected as points of interest denoted as 𝐹𝑝(𝑘𝑝𝑞 , 𝑚𝑝𝑞), 

where 𝑞 = [1,2, … , 𝑄]   indicates the index of the points of 

interest. Then, the weighted average for the points of interest is 

calculated to constitute a dynamic range-Doppler trajectory 

(DRDT) map.  

Fig. 3 shows the process of extracting typical DRDT maps of 

falling and stepping. Every trajectory point in the DRDT map 

represents one dynamic range-Doppler frame. Its coordinates 

are obtained as shown in (2) and (3) in the corresponding frame, 

and its size in Fig. 3 indicates the energy calculated with (4): 

  
2

1

, ,     
Q

pq p pq pq pq pq pq

q

E F k m E E


     (2) 

    
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, ,
Q
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

   (3) 

 
1

1 Q

p pq

q

E E
Q 

    (4) 

where 𝐹𝑝(𝑘𝑝𝑞 , 𝑚𝑝𝑞) is the 𝑞 − 𝑡ℎ point of interest in the 𝑝 −

𝑡ℎ  frame, 𝐸𝑝𝑞 represents its energy, 𝜎𝑝𝑞  is the weighted 

coefficient defined according to 𝐸𝑝𝑞, (𝑘𝑝𝑞 , 𝑚𝑝𝑞) is the Doppler 

and range coordinates of the DRDT, and 𝐸𝑝 is its corresponding 

energy.  

As shown in Fig. 3 (b), the blue circles indicate the trajectory 

of falling, while the red rectangles represent stepping. Their 

sizes represent the energy level relating to the target RCS 

information of each frame. At the beginning of the falling 

motion, the trajectory rises up slowly and smoothly along with 

a decreasing distance and increasing Doppler and energy. Then 

it reaches a sudden high peak. The peak has the maximum 

Doppler for the highest radial velocity, while its energy 

decreases sharply due to the lowest RCS caused by the 

orientation of the body on the floor and being at an angle from 

the center of the radar beam. On the other hand, red rectangles 

represent stepping. It shows a similar trend in range and 

Doppler domain with a lower maximum Doppler and range 

span. However, the RCS of human body does not change much 

during stepping, which is different from falling. 

C. Continuous Motion Recognition 

In real-living environments and conditions, continuous 

motion recognition is a challenging task as accurately locating 

and separating each activity in a long period of time is not trivial. 

One needs to characterize not only each individual activity, but 

also the transitions between them and their duration. Fig. 4 

shows the two continuous motions of a stepping followed by a 

falling in the proposed DRDT map. The black circles indicate 

dynamic range-Doppler trajectory. It is obvious that besides 

stepping (red window) and falling (yellow window) samples, 

there are a lot of transition samples which by themselves do not 

belong to any meaningful motion labels, highlighted by the 

green window in Fig. 4. They are called and labeled as 

transition. A classic approach would be to use a sliding window 

method to extract each time sequence of length P  as a sample 

 
Fig. 6 Features extracted from typical examples of six human motions. (a) Dynamic Doppler frequency 𝐷; (b) Dynamic range change ∆𝑅; (c) Dynamic energy 

change ∆𝐸; (d), (e) Dynamic dispersion of Doppler and range 𝐷𝑖𝑠𝐷,  𝐷𝑖𝑠𝑅. 
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for feature extraction and machine learning. However, a large 

amount of transition samples can be observed with the sliding 

window method, and this may lead to complex calculations and 

instability. The key point of continuous motion recognition is 

to locate meaningful single motions and remove transitions as 

much as possible. 

In this paper, a peak search method based on DRDT is 

proposed to address this problem. Since all the motions of 

interest in the application have high Doppler components, these 

can be characterized by a peak in DRDT maps. Therefore, a 

peak search is applied to locate and extract samples containing 

local maxima, which may correspond to meaningful motion 

labels. Different from the standard peak search method, only 

the trajectory points whose Doppler frequency is larger than 

both its former and later two points, i.e. (𝑘𝑝∗, 𝑚𝑝∗), 𝑘𝑝∗ ≥

𝑘𝑝, 𝑝 ∈ [𝑝∗ − 2, 𝑝∗ + 2], can be selected as local maxima. The 

choice of +/- 2 points is a trade-off between leakage alarm rate 

and false alarm rate, which was adjusted empirically to 

maximize performance.  

Fig. 5 shows the diagram of the proposed peak search method. 

The red asterisks in both Fig. 4 and Fig. 5 indicate local maxima 

extracted by the peak search method. As mentioned in Section 

II.A, each motion is assumed to occupy six frames i.e. a six-

point window in the DRDT map. This means that once the peak 

is identified, the most appropriate six-points window should be 

selected as an effective set of data representing the activity to 

be classified, rather than the transitions. However, due to the 

variability of motions and differences in the signatures even for 

the same motion, the peak may be located at any position in the 

most appropriate window, except for the beginning and the end. 

Therefore, among the six candidate windows, the four with their 

peaks located at the 2nd, 3rd, 4th and 5th position, respectively, 

are selected to be passed to the feature extraction and 

classification stage. As shown in Fig. 5, four candidate 

trajectories of a stepping motion were selected and represented 

by red dashed-lines after the peak was located. Then features 

extracted from these four trajectories were fed into the machine 

learning classifier to obtain their independent recognition result. 

Finally, a vote decision was conducted with these results based 

on the principle of minority obeying majority. In particular, 

only when there are four recognition results for transition, the 

final decision is labelled as transition. Otherwise the motion 

labels are combined with majority voting and the transition is 

disregarded. Furthermore, if there is a situation of a tie between 

two meaningful motion labels, which rarely happens, the 

former meaningful motion is chosen as the final decision.  

D. Feature Extraction  

In feature extraction, a comprehensive fusion of time, range, 

Doppler, RCS and dispersion features is applied. 28 features of 

four types are extracted based on DRDT maps as follows: 

 (1) Dynamic Doppler frequency - 𝐷: This feature consists of 

a time sequence of the Doppler value along the trajectory. It 

represents the time-varying intensity of human motions. 

   pD p k   (5) 

Fig. 6 (a) shows the dynamic Doppler frequency 𝐷 of each 

motion in DRDT maps. Note that as an abrupt motion, falling 

is characterized with a high and rapid Doppler peak, while 

jumping has a stable up and down trend. The dynamic Doppler 

frequency features of jogging are generally higher than the ones 

of walking although they have similar trajectory trends. It is 

difficult to distinguish between stepping and squatting only 

with Doppler features.  

(2) Dynamic range change - ∆𝑅 : Range information is 

crucial for human motion recognition. Fusion of range and time 

is considered with a time sequence of range coordinates. 

Furthermore, for situations of different detection distances, it is 

adjusted as a time sequence of relative range change. This 

TABLE III 

BRIEF PHYSICAL DESCRIPTION OF THE VOLUNTEERS 

Volunteers Gender Age (yr) Weight (kg) Height (m) BMI (kg/m2) 

1 M 23 85 1.75 27.76 

2 M 28 78 1.80 24.07 

3 M 24 72 1.79 22.47 

4 M 25 70 1.77 22.34 

5 M 23 68 1.80 20.99 

6 F 24 50 1.58 20.03 

7 F 23 55 1.62 20.96 

8 F 25 64 1.68 22.68 

Total M/F (5/3) 24.4±1.7 67.8±11.4 1.72±0.09 22.66±2.41 
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Fig. 7 Block diagram of the FMCW radar system. 

TABLE II 

KEY PARAMETERS OF THE FMCW RADAR SYSTEM 

Center frequency 5.8GHz 

Transmitted bandwidth 320MHz 

Sampling frequency 44.1KHz 

Frequency ramp repetition period 10ms 

Average transmitted power 8dBm 

 

 
Fig. 8 Experimental Setup. 
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feature describes the relative range change during human 

motion, and to some degree, indicates motion velocity and 

range span. 

   1 ,   [1, 1]i iR i m m i P       (6) 

As shown in Fig. 6 (b), all motions in the figure are 

performed moving towards the radar because of positive values 

of ∆𝑅. In addition, a rapid increase of range can be found during 

the falling.  Walking and jogging both have a stable increase in 

range and the latter has a faster velocity. In this figure, stepping 

can be distinguished from squatting for its larger range span and 

peak in the middle of the trajectory.  

(3) Dynamic energy change - ∆𝐸 : Considering effects of 

distance, this feature is based on the time-dependent energy 

change. It indicates the time-varying RCS, which is important 

to discriminate motions that are similar in range and Doppler 

e.g. falling and jumping or fast stepping. 

   1 ,   [1, 1]i iE i E E i P       (7) 

Fig. 6 (c) describes dynamic energy change ∆𝐸 of six typical 

motions. As falling happens, its energy increases at first when 

the body approaches the radar. Then, it drops rapidly to the 

minimum due to the orientation of the body deviating from the 

center of the radar beam. On the other hand, during jumping, 

the take-off part contributes to a high positive dynamic energy 

change at first. Then the following half-squat landing leads to a 

negative energy change. The last straightening up causes a 

positive change again. Other motions always have a positive 

energy change for approaching the radar, but there is a negative 

one in squatting as the human subject leaves the center of the 

radar beam.  

(4) Dynamic dispersion of range & Doppler - 𝐷𝑖𝑠𝐷 , 𝐷𝑖𝑠𝑅: 

These features are obtained from the standard deviation (STD) 

of range and Doppler coordinates for the points of interest. Two 

time sequences of range and Doppler STD reflect features of 

limb movement. A large STD corresponds to a large amplitude 

limb movement. 
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Fig. 10 Confusion matrix of single motion recognition. 
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TABLE IV 
ILLUSTRATION AND DESCRIPTION OF EXPERIMENTS IN VARIOUS CONDITIONS 

Variations Illustration Description 

Distance 

 

Volunteers perform each motion at the 

different distance of d (d=2 ~ 4m) 

View angle 

 

Volunteers perform each motion at the 

different view angle of  0 ,15 ,30    

Direction 

 

Volunteers perform each motion with the 

different direction (towards and backwards 

radar) 

Individual 

 

Different volunteers perform each motion in 

above situations 

 

d

α 

d

d

 
Fig. 9 Classification accuracy with different number of points from a range-

Doppler frame. 
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Fig. 6 (d) and (e) show the dynamic dispersion of Doppler 

and range, respectively. There exists spontaneous swinging arm 

during falling, which contributes to large 𝐷𝑖𝑠𝐷 and  𝐷𝑖𝑠𝑅 . It is 

the same in jumping. In addition, the 𝐷𝑖𝑠𝐷  of jogging is higher 

than walking while the contrary occurs in the case of 𝐷𝑖𝑠𝑅 

caused by the difference between putting fists on the chest and 

swinging arms.  

E. Machine Learning 

In statistics and machine learning, ensemble methods use 

multiple learning algorithms to obtain better classification 

performance [33]. Unlike a statistical ensemble in statistical 

mechanics, which is usually infinite, a machine learning 

ensemble refers only to a concrete finite set of alternative 

models, but typically allows for much more flexible structure to 

exist among those alternatives. After comparing each ensemble 

classifier, subspace KNN is adopted to analyze the above 

features based on the Classification Learner Tool in MATLAB 

R2016b. 

III. EXPERIMENTAL SETUP 

The block diagram of the FMCW radar system used in this 

study is illustrated in Fig. 7 [34]. A pair of 2×2 patch antenna 

arrays are used to transmit and receive C-band signals. The 

waveform generator generates a linear chirp signal around 5.8 

GHz, which is fed to the power divider with a baseband 

synchronization signal locked to the sawtooth oscillator control 

signal. The coherence of the system is achieved by 

simultaneously sampling the beat signal from the receiver 

output and the synchronization signal from the waveform 

generator. A data acquisition interface is employed to digitize 

the baseband output through the audio card of a laptop, 

facilitating real-time signal processing in the laptop. The key 

parameters of the radar system are listed in Table II.  

The experimental setup is illustrated in Fig. 8. The radar 

system was set at a height of 1 m. Six typical human motions 

were selected in this study, as illustrated in Fig. 1 and detailed 

in Table I. Eight volunteers, including five males and three 

females, were enrolled in this study. Table III gives a brief 

physical description of the volunteers. Their ages ranged from 

23 to 28 years and weights ranged from 50 to 85 kgs, with 

height from 1.58 to 1.80 m.  

In the first scenario, the volunteers performed single human 

motion in indoor environment under the line-of-sight condition. 

However, practical human motion recognition in real-living 

environment may face additional challenges such as variations 

in distance, view angle, movement direction and individual 

characteristics. To evaluate their effects on the proposed 

method, eight volunteers performed six motions towards the 

radar at 2~3 m with the view angle of 0° as a reference group. 

Then, experiments with different conditions were recorded as 

validation groups. Detailed illustrations and descriptions are 

provided in Table IV. In each condition, eight volunteers 

performed each motion for five times to obtain a total of 240 

measurements.  

In the second scenario, unlike separate and individual 

snapshots, the volunteers performed any two of the 

aforementioned motions continuously, one after the other, to 

evaluate motion recognition performance of the proposed 

method. For this purpose, 10 combinations were selected to 

cover as many practical situations as possible, including: 

walking  falling, stepping  falling, jogging  falling, 

jumping  falling, walking  jumping, walking  stepping, 

jogging  squatting, stepping  squatting, jumping  

stepping, jumping  squatting. Each combination was 

performed 15 times with 2 volunteers. 

IV. RESULTS 

To evaluate the feasibility and performance of the proposed 

method in human motion recognition, two tests were performed, 

i.e., single motion recognition and continuous motion 

recognition. In Section IV.A, the results for single motion 

recognition are analysed to demonstrate human motion 

recognition performance of the DRDT method with different 

distances, view angles, directions and individuals. In Section 

IV.B, recognition results demonstrate the good performance of 

the proposed DRDT method for continuous motion recognition. 

A. Single Motion Recognition 

First, volunteers performed the six motions towards the radar 

at the distance of 2~3 m with the view angle of 0° as a basic 

experiment (walking and jogging were performed in a range 

scope of 2~4 m). To confirm the optimal value of 𝑄, the number 

of points to be extracted from each range-Doppler frame and 

 
Fig. 11 Classification accuracy in different scenarios. 
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Fig. 12 Boxplot of recognition accuracy in individual diversity study. (a) 

Recognition accuracy in different conditions; (b) Legend of boxplot 
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the classification results with different selections of 𝑄  are 

compared. As shown in Fig. 9, when 𝑄  is set as 150, 

classification of all the six motions achieved the highest 

accuracy rate of 94.2%.  

Fig. 10 shows the corresponding confusion matrix. It is 

shown that the proposed solution achieved a high classification 

accuracy for all human motions considered. In particular, 

falling and jogging obtained the highest level of classification 

accuracy of 97.5%. On the other hand, squatting had the lowest 

accuracy of 92.5%, as 7.5% of them were misclassified as 

stepping. This is conceivable - squatting forward with a high 

amplitude is similar to a slow stepping.  

To evaluate the robustness of the proposed method at 

different target distances, 240 measurements with the same 

eight volunteers and the same experiment setup but at 3 ~ 4 m 

were conducted. This provided a validation dataset to test the 

existing model trained by 2 ~ 3 m data (walking and jogging 

were performed in a range scope of 2~4m). As shown in Fig. 

11, an average validation accuracy rate of 95.8% was achieved 

because the adopted dynamic range change feature R can 

decrease the influence of detection distance.  

In addition, robustness for different view angles was also 

evaluated using 480 measurements at the degree of 15° and 30° 

to test the above model at 0°. As shown in Fig. 11, at a view 

angle of 15°, the classification accuracy rate was 95.8%, which 

is similar to the line of sight case. However, only 86.7% of 

motions were recognized correctly at 30° as the target got too 

close to the edge of the main beam, resulting in a loss of useful 

information.  

Regarding experiments with different directions, it is obvious 

to distinguish between backward motions and forward ones 

owing to the dynamic range change and Doppler features. 

Among 240 samples of backward motions, the DRDT method 

also achieved a high recognition accuracy of 95.4% with the 

ten-fold CV procedure. 

The effect of individual diversity on the proposed DRDT 

method is also investigated. Indeed, classifying human motions 

of unknown people based on trained data from known people is 

a realistic and practical situation. A leave-out technique is 

chosen to test the performance for the eight volunteers. The 

samples from seven individuals were used to train the algorithm 

and then it was tested on the person that was left out. In each 

different condition considered, each test with the eighth subject 

was repeated for 35 times to get a robust evaluation. Test results 

are shown as typical boxplot in Fig. 12. The boxplot indicates 

the distribution of the test accuracy rates in each condition. The 

upper and lower boundary of the blue box represents the third 

and first quartile of all the accuracy rates, which are denoted by 

𝑄  and 𝑄 , respectively. This means half of the test accuracy 

rates are located in the blue box. The size of the box, indicated 

by  𝑄𝑅, corresponds to its robustness. The red line in the box 

means the median value, which is denoted by 𝑄 . Points with 

values higher than (𝑄 + 1  ×  𝑄𝑅) or lower than (𝑄 − 1  ×
 𝑄𝑅) are identified as outliers and marked by red crosses. As 

shown in Fig. 12, the test accuracy in each condition was 

distributed in a relatively small box (<6.67%), which means a 

small discrepancy for different individuals. In the experiment at 

 
Fig. 13 Typical examples of two continuous motions in DRDT map: (a) jogging  squatting, (b) walking  jumping. 
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Fig. 14 Confusion matrix of two continuous motion recognition. 
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30°, although there was a large gap between the minimum test 

accuracy of 70.0% and the maximum of 91.7%, most of them 

were distributed around the median accuracy of 81.7%. These 

results demonstrated the robust performance of the proposed 

DRDT method for different individuals. 

B. Continuous Motion Recognition  

In this part, continuous human motion recognition based on 

the DRDT method is evaluated. One third of data was selected 

as a training group. Then, the peak search method was applied 

to extract samples of interest from the remaining data to test the 

training model. 

Fig. 13 shows typical examples of two continuous motions 

in the DRDT map. As shown in Fig. 13 (a), three local maxima 

i.e. peaks marked as red asterisks were found during the 

measurement. The samples containing the first two peaks were 

recognized as jogging, while the remaining was squatting. 

Jogging is characterized with high and rhythmic Doppler, 

steady velocity and large dispersion in both range and Doppler. 

The DRDT of squatting is similar to that of stepping but with a 

lower Doppler peak, weaker RCS and smaller range span. Fig. 

13 (b) describes one combination of walking  jumping. The 

samples containing the first three peaks were classified as 

walking. Compared with jogging in Fig. 13 (a), walking had a 

lower Doppler and velocity. The fourth peak represented the 

transition between walking and the following jumping, which 

was indicated by the last peak. Note that there were more labels 

obtained for walking and jogging in one measurement, which is 

reasonable as walking and jogging are usually performed 

continuously for a relatively long duration in practical 

situations.  

Fig. 14 shows the confusion matrix of all the test results. The 

average recognition accuracy was 91.9%. In addition, transition 

instances could also be recognized with an accuracy of 89.1%. 

Furthermore, the number of labels, i.e. extracted peaks, of 

falling, stepping, jumping and squatting was consistent with the 

ground truth. This indicated that the proposed peak search 

method can accurately extract samples of interest during these 

motions and reduce a large amount of calculation at the same 

time.  

Furthermore, the performance of the proposed DRDT 

method in a more complex situation close to a completely 

uncontrolled environment was also investigated. The volunteer 

performed a series of motions in front of the radar at random 

distances with arbitrary view angles in all directions. An 

example corresponding DRDT map is shown in Fig. 15. As 

mentioned in Section II.C, the most appropriate windows were 

decided after a majority vote and marked in different colors 

according to the recognition results. From the figure, all 

motions of the volunteer can be monitored. At first, the 

volunteer walked toward the radar as indicated by the red circles. 

After a short pause, blue circles indicated that the subject began 

to jump towards the radar. Between these two motions, there 

was also a transition marked in green. Then, the subject turned 

back and took a step backward. The following motion can be 

recognized as squatting. Finally, the subject turned back, faced 

radar again and fell down towards the radar. 

V. CONCLUSION 

Going further than typically studied single human activity 

recognition in a laboratory environment, this paper proposed a 

novel DRDT method for continuous human motion recognition 

in conditions emulating real-living environments, where the 

people monitored can perform activities one after the other with 

unknown duration and with transitions in between. With a peak 

search method, continuous human motions can be located and 

accurately separated during a long-time monitoring with little 

calculation. In addition, besides micro-Doppler, multi-domain 

information including time, range, Doppler, RCS and 

dispersion was utilized in feature extraction. Experiments in 

varying conditions achieved robust recognition accuracies 

reaching about 95%. The performance degraded with view 

angle at about 30°, which is reasonable as the target got too 

close to the edge of the radar bandwidth. Recognition of 

continuous motions also achieved a good performance with an 

average accuracy of 91.9% which enabled free-motion 

recognition in a real-living environment.  

As this is a preliminary investigation in continuous human 

motion recognition, there is a large scope of further work in the 

 
Fig. 15 Illustration and DRDT map of free-move motions. 
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future. First, data from senior human subjects will be obtained 

to expand the database. Algorithm will be also improved to use 

fewer empirical parameters and enable recognition of motions 

with small Doppler. In addition, a more realistic environment 

with clutters such as animals or multi human targets should be 

considered as a great challenge for indoor human motion 

recognition. Furthermore, the feasibility of a real-time human 

motion recognition system will be explored. 
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