112 research outputs found

    Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers

    Get PDF
    IntroductionIn the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement.MethodsThis study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA).ResultsBy analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification.DiscussionIn addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well

    Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques

    Get PDF
    BackgroundPresentation of visual stimuli can induce changes in EEG signals that are typically detectable by averaging together data from multiple trials for individual participant analysis as well as for groups or conditions analysis of multiple participants. This study proposes a new method based on the discrete wavelet transform with Huffman coding and machine learning for single-trial analysis of evenal (ERPs) and classification of different visual events in the visual object detection task.MethodsEEG single trials are decomposed with discrete wavelet transform (DWT) up to the level of decomposition using a biorthogonal B-spline wavelet. The coefficients of DWT in each trial are thresholded to discard sparse wavelet coefficients, while the quality of the signal is well maintained. The remaining optimum coefficients in each trial are encoded into bitstreams using Huffman coding, and the codewords are represented as a feature of the ERP signal. The performance of this method is tested with real visual ERPs of sixty-eight subjects.ResultsThe proposed method significantly discards the spontaneous EEG activity, extracts the single-trial visual ERPs, represents the ERP waveform into a compact bitstream as a feature, and achieves promising results in classifying the visual objects with classification performance metrics: accuracies 93.60, sensitivities 93.55, specificities 94.85, precisions 92.50, and area under the curve (AUC) 0.93 using SVM and k-NN machine learning classifiers.ConclusionThe proposed method suggests that the joint use of discrete wavelet transform (DWT) with Huffman coding has the potential to efficiently extract ERPs from background EEG for studying evoked responses in single-trial ERPs and classifying visual stimuli. The proposed approach has O(N) time complexity and could be implemented in real-time systems, such as the brain-computer interface (BCI), where fast detection of mental events is desired to smoothly operate a machine with minds

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity

    Get PDF
    Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, of a first EEG in adult patients, has a very low sensitivity ranging between 29-55%. Useful EEG information remains buried within the signals in seizure-free EEG epochs, far beyond the observational capabilities of any specialised physician in this field. Unlike most of the existing works focusing on either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor level brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A high classification accuracy (97%) was achieved for EG vs HC while revealing significant spatio temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the classification accuracy was only about 73%, which might be a reflection of the well-described coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG data can be used to accurately classify patients with generalised epilepsy from HC and that more systematic work is required in this direction aiming to produce a clinically useful diagnostic method

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Decomposition methods for machine learning with small, incomplete or noisy datasets

    Get PDF
    In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Sole Casals, Jordi. Center for Advanced Intelligence; JapónFil: Marti Puig, Pere. University of Catalonia; EspañaFil: Sun, Zhe. RIKEN; JapónFil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; Japó

    Power Efficient Data Compression Hardware for Wearable and Wireless Biomedical Sensing Devices

    Get PDF
    This thesis aims to verify a possible benefit lossless data compression and reduction techniques can bring to a wearable and wireless biomedical device, which is anticipated to be system power saving. A wireless transceiver is one of the main contributors to the system power of a wireless biomedical sensing device, and reducing the data transmitted by the transceiver with a minimum hardware cost can therefore help to save the power. This thesis is going to investigate the impact of the data compression and reduction on the system power of a wearable and wireless biomedical device and trying to find a proper compression technique that can achieve power saving of the device. The thesis first examines some widely used lossy and lossless data compression and reduction techniques for biomedical data, especially EEG data. Then it introduces a novel lossless biomedical data compression technique designed for this research called Log2 sub-band encoding. The thesis then moves on to the biomedical data compression evaluation of the Log2 sub-band encoding and an existing 2-stage technique consisting of the DPCM and the Huffman encoding. The next part of this thesis explores the signal classification potential of the Log2 sub-band encoding. It was found that some of the signal features extracted as a by-product during the Log2 sub-band encoding process could be used to detect certain signal events like epileptic seizures, with a proper method. The final section of the thesis focuses on the power analysis of the hardware implementation of two compression techniques referred to earlier, as well as the system power analysis. The results show that the Log2 sub-band is comparable and even superior to the 2-stage technique in terms of data compression and power performance. The system power requirement of an EEG signal recorder that has the Log2 sub-band implemented is significantly reduced
    corecore