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ABSTRACT 16 

Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG 17 
plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, 18 
of a first EEG in adult patients, has a very low sensitivity ranging between 29-55%. Useful EEG 19 
information remains buried within the signals in seizure-free EEG epochs, far beyond the observational 20 
capabilities of any specialised physician in this field. Unlike most of the existing works focusing on 21 
either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor 22 
level brain functional connectivity from interictal EEG data to identify patients with generalised 23 
epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time-24 
frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour 25 
algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another 26 
cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A 27 
high classification accuracy (97%) was achieved for EG vs HC while revealing significant spatio-28 
temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the 29 
classification accuracy was only about 73%, which might be a reflection of the well-described 30 
coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG 31 
data can be used to accurately classify patients with generalised epilepsy from HC and that more 32 
systematic work is required in this direction aiming to produce a clinically useful diagnostic method.  33 
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1 INTRODUCTION 34 

Epilepsy is one of the most common neurological disorders and it can affect people of various 35 
age, gender and ethnic origin. According to the World Health Organization in 2019, there were 36 
worldwide around 50 million people with the condition. Epilepsy is characterised by recurrent seizures 37 
and carries variable degrees of morbidity and mortality depending on the electroclinical characteristics 38 
of the seizures. Some types of epileptic seizures carry the potential to put patients and others at risk of 39 
harm, for example, if they occur during cooking, driving or swimming. Seizure detection and epilepsy 40 
diagnosis have therefore attracted many studies using various measurements. Electroencephalography 41 
(EEG) has become one of the most important approaches to assist the diagnosis of epilepsy. EEG is a 42 
non-invasive and painless technology for measuring brain activity that is also economical, easy to 43 
administer and widely available in most hospitals. When compared with other methods that provide 44 
information about the anatomical structure of the brain, such as MRI and fMRI, EEG offers ultra-high 45 
time resolution (Pievani et al., 2011), which is critical to understand brain function. Synchronous 46 
networks form and dissipate in the range of 100-300ms which is thought to be the meaningful 47 
operational brain temporal scale (Varela et al., 2001).  48 

Empirical interpretation of the EEG is largely based on recognising abnormal frequencies in specific 49 
biological states (e.g. wakefulness versus sleep (Brodbeck et al., 2012; Lioi et al., 2017)), the spatial-50 
temporal and morphological (e.g. sharp waves, spikes etc.) characteristics of paroxysmal (Dash et al., 51 
2018) or persistent discharges (Renzel et al., 2017), reactivity to external stimuli and activation 52 
procedures (like a period of hyperventilation (Watanabe et al., 2018) or intermittent photic stimulation 53 
(Visani et al., 2010)). Despite being useful in many instances, these practical approaches for 54 
interpreting EEGs leave important linear or nonlinear interactions between various brain network 55 
anatomical constituents, buried undetected within the recordings as such interactions are far beyond 56 
the observational capabilities of any specialised physician in this field (Sarrigiannis et al., 2014, 2018; 57 
Blackburn et al., 2018). Another limitation is that previous studies are based on univariate methods, 58 
focusing on single EEG recording channels. Studying brain functional connectivity among multiple 59 
channels (i.e. multivariate methods), by examining the magnitudes of temporal correlations or 60 
coherence with frequency, is increasingly being recognised as an important approach with many 61 
advantages. Various abnormalities in brain functional connectivity have been reported for numerous 62 
brain disorders (Uhlhaas and Singer, 2006; Guevara Erra, Perez Velazquez and Rosenblum, 2017) but 63 
to the best of our knowledge, this has not yet translated in a diagnostic method for clinical use. More 64 
efforts are required to further explore the brain connectivity measures as new biomarkers for the 65 
diagnosis of epilepsy. Different methods were previously introduced to measure brain connectivity, 66 
based on linear or nonlinear association in the time, frequency and time-frequency domains. As the 67 
most widely studied type of brain connectivity, functional connectivity can be presented by magnitude 68 
squared coherence (Sakkalis, 2011; Battaglia and Brovelli, 2019; Tafreshi, Daliri and Ghodousi, 2019), 69 
Minimum Description Length (Sakkalis, 2011; Salman, Grover and Shankar, 2018), phase 70 
synchronisation (Sakkalis et al., 2006), phase-locking value (Lotte et al., 2018; Bedo, Ribary and 71 
Ward, 2020), robust synchronisation (Sakkalis et al., 2006; Delgado-Restituto, Romaine and 72 
Rodríguez-Vázquez, 2019), non-linear correlation coefficient (Wendling et al., 2010), correlation 73 
(Horstmann et al., 2010) and power distributions (Rosch et al., 2017) etc. The prospect to use those 74 
techniques to aid the diagnosis of epilepsy remains unknown. 75 

Fortunately, the large majority of patients with epilepsy experience seizures only infrequently, 76 
although there are exceptions to this rule, for example, the type of seizures characterizing children with 77 
various forms of absence seizures; absences can frequently occur daily and can, in addition, be easily 78 
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precipitated by a brief period of hyperventilation. The EEG recording of a typical absence seizure is 79 
shown in Fig. 1 and can be separated into three states: seizure (ictal), pre-seizure (pre-ictal) and seizure-80 
free (interictal). The difference between a seizure and interictal EEG segment is clearly visible in terms 81 
of the amplitude and morphology of the generalised epileptiform discharges dominating the ictal phase. 82 
Thus, epilepsy diagnosis when one of the patient’s typical seizures is captured can be relatively 83 
straightforward. Nonetheless, as most seizures in adults with epilepsy occur rather infrequently, the 84 
interictal EEG (i.e. recorded while the patient is not experiencing any epileptic seizures) is the most 85 
commonly available data for clinicians attempting to diagnose epilepsy. The interictal epileptiform 86 
discharge (i.e. sharp wave and/or spike) recognised empirically by the reporting EEG physician, is an 87 
expression of the abnormal neuronal and brain network behaviour, a demonstration of cortical 88 
hypersynchrony and hyperexcitability. However, a first EEG in adult patients, subsequently proven to 89 
have epilepsy, has very low sensitivity, ranging between 29-55%, that can go up to 80 to 90% on 90 
repeats of the examination (Pillai and Sperling, 2006). 91 

EEG is one of the most useful diagnostic procedures for epilepsy. It provides evidence for the 92 
diagnosis, classification and management of different types of epilepsy (Smith, 2005; Noachtar and 93 
Rémi, 2009). It should be noted that most of the current research in this topic focus on seizure detection, 94 
in subjects that have epilepsy while relatively limited work is centred on normal in appearance, 95 
interictal EEG epochs in patients where there is independent strong evidence for the electroclinical 96 
diagnosis of epilepsy. Amin et al. (2020) proposed a novel method based on wavelet analysis and 97 
arithmetic coding to achieve efficient classification between epileptic seizure signals and seizure-free 98 
signals, while our paper tended to classify epilepsy patients from healthy people merely using seizure-99 
free EEGs. Similarly, to identify epileptic seizures from EEG signals, Dhiman & Priyanka (2014)  100 
proposed a novel scheme based on discrete wavelet packet transform and Zhu et al. (2014) proposed a 101 
fast weighted horizontal visibility graph constructing algorithm. In studies aiming to diagnose epilepsy, 102 
most papers use data that include ictal EEG recordings, such as (Fani, Azemi and Boashash, 2011; Xie 103 
and Krishnan, 2013; Kaya and Ertuğrul, 2018; Vijay Anand and Shantha Selvakumari, 2019; Akbarian 104 
and Erfanian, 2020), where seizure detection is also involved. However, analysis of interictal seizure-105 
free EEG has gradually attracted more attention recently. For instance, Lopes et al. (2019) suggested 106 
that the interictal EEG supported by many publications can also contribute to epilepsy diagnosis and 107 
they developed a framework to classify focal and generalized epilepsy by extracting Ictogenic Spread 108 
as biomarker from normal EEG. Horstmann et al. (2010) found differences in the functional networks 109 
of seizure-free intervals of patients with focal epilepsy (treated with anti-epileptic drugs) and healthy 110 
controls as measured from EEG/MEG. Besides, the existence of alpha rhythm abnormalities in patients 111 
with epilepsy was explored based on the information obtained from interictal scalp EEG recordings 112 
(Pyrzowski et al., 2015). In the appropriate clinical context, the presence of a generalised interictal 113 

 
Fig. 1. A typical EEG recording before during and after a generalised epileptic seizure (typical absence) recorded 
from the left centrotemporal area. The ictal segment (i.e. seizure)) contains large magnitude epileptic discharges, 
which can be easily distinguished from the seizure-free recording (interictal). 
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epileptiform discharge (IED) further strongly supports the clinical diagnosis of generalised epilepsy 114 
which will be the focus of this work.  115 

The research question of this study is to examine if appropriate analysis of “normal-looking”, i.e. 116 
empirically classified as normal, interictal EEG data can identify adult patients with generalised 117 
epilepsy. This task is unlikely to be solved by direct inspection of EEG recordings due to the lack of 118 
obvious patterns to distinguish patients with epilepsy from age and gender-matched healthy controls. 119 
Achieving this aim could greatly improve the diagnostic sensitivity and specificity of interictal EEG, 120 
reducing diagnostic times and cost while ensuring that epileptic patients can promptly initiate 121 
appropriate treatment. Furthermore, the EEG recording time and repeat EEG recordings can be kept to 122 
a minimum leading to much more efficient use of recourses and increased patient satisfaction. Another 123 
challenge of this study was to determine whether the “normal-looking” interictal EEG recordings of 124 
patients with non-epileptic attacks (the ictal EEG is normal during those episodes) occurring within 125 
the context of a psychogenic disorder, called non-epileptic attack disorder (NEAD) could be 126 
differentiated from equivalent recordings of patients with epilepsy. NEAD is a brain-related disorder 127 
which involves psychogenic non-epileptic seizures (Sheldon and Agrawal, 2019). According to Milán-128 
Tomás et al. (2018), about 20% to 40% of patients diagnosed with epilepsy also have NEAD rendering 129 
differentiation between the two conditions a challenging task for physicians. Furthermore, frequently 130 
NEAD patients receive several anti-epileptic drugs (AED) due to their seizures being 131 
pharmacoresistant as they are psychogenic in nature. As a result misdiagnosis of NEAD may cause 132 
patients serious iatrogenic arrhythmia (Brown et al., 2011). Therefore, a computer-aided classification 133 
between NEAD and epilepsy becomes important but very challenging as the two conditions can co-134 
exist in the same subject and appropriate data labelling is problematic. 135 

Different from most of the existing studies either focus on single EEG channel or EEG data with 136 
seizures, this paper proposes a novel framework to diagnose epilepsy based on interictal seizure-free 137 
EEG data only using a set of estimates of linear and nonlinear brain functional connectivity. A machine 138 

 
Fig. 2. EEG recording from one of the patients of the epileptic cohort showing an interictal epileptiform 
discharge (IED). This demonstrates a clear generalised distribution in keeping with the patient’s diagnosis of 
generalised epilepsy. Of note, the EEG is “normal-looking”,i.e.empirically classified as normal, prior to the 
generalised paroxysmal discharge. “Normal-looking” EEG epochs were the dominant feature on this interictal 
EEG recording, a common occurrence in this group of patients. 
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learning approach is then employed to classify (a) the epilepsy group (EG) vs healthy controls (HC), 139 
and (b) EG vs NEAD, followed by a visualisation of classification results. Although the methods to 140 
calculate the connectivity are not new, the attempt to systematically evaluate their potential on interictal 141 
seizure-free EEG data in time, frequency and time-frequency domains has not been done before, 142 
particularly for the challenging classification of EG vs NEAD.  143 

2 METHODOLOGY 144 

2.1 Dataset 145 

In this study we have retrospectively selected video EEGs (vEEGs) with occasional generalised 146 
IEDs, providing electrophysiological evidence for the diagnosis of epilepsy. All selected patients were 147 
isolated from the Royal Hallamshire Hospital (Sheffield, UK) Department of Neurophysiology 148 
database with the following inclusion criteria: standard interictal EEG available containing at least one 149 
well defined generalised IED (Fig. 2); age between late teens to 61 years (based on a cohort of HCs 150 
available from previous work to ensure no significant age differences between groups occurred); their 151 
EEGs included periods of wakefulness with eyes open (EO) and eyes closed (EC) epochs; previous 152 
history of at least one witnessed generalised tonic-clonic seizure without any other known type of 153 
seizures. We have also selected a cohort of patients with NEAD where we have captured at least one 154 
typical psychogenic attack on their vEEG recording for which there was no evidence of ictal or IED, 155 
no dynamically evolving ictal EEG patterns and no clear history of other types of seizure. The 156 
following exclusion criteria were also applied: learning difficulties; sleep deprivation the night before 157 
the EEG was recorded; known history of drug addiction; refractory epilepsy; any other known 158 
neurological disorder other than epilepsy or NEAD. Some of the NEAD patients received various 159 
AEDs but there was no convincing evidence on their past medical history (reviewed during their EEG 160 
recording) to suggest epileptic seizures. However admittedly this cannot be entirely excluded for this 161 
group of patients.  162 

A Natus Headbox (Optima Medical, Ltd.) at a sampling rate of 500Hz (analogue bandwidth 0.1–163 
200Hz) and a standard international 10–20 system of electrode placement positions were used for the 164 
recordings for all subjects. The EEG data was recorded from the standard 21 electrodes of the 10-20 165 
system of electrode placement. The investigated EEG data comes from three groups: HCs, EG and 166 
NEAD. 10 HCs (6 females, mean age 37±15y), 15 EG (10 females, mean age 33±12y) and 14 NEAD 167 
cases (10 females, mean age 33±13y) were collected, details of which can be seen in Table S1 of 168 
Supplementary material. It should be noted that EG and NEAD participants were consecutively 169 
selected for the best possible match of age to our healthy control cohort. Additionally, the data for each 170 
participant was divided into two states: eyes open (EO) and eyes closed (EC). For each HC participant 171 
in each eye state, 3 trials were collected and each epoch lasts 12 seconds. For each NEAD and EG 172 
participant in each eye state, 2 trials were collected and each epoch lasts 12 seconds. The total number 173 
of available data for each group is therefore similar to ensure the fairness of training and validation, as 174 
shown in Table S1. All HC participants provided informed consent as part of a project approved by the 175 
Yorkshire and the Humber (Leeds West) Research Ethics Committee (reference number 14/YH/1070). 176 
For the retrospectively selected EEG data for the NEAD and EG cohorts, ethics approval for use of 177 
patients’ EEGs for the development of novel qEEG methodologies was granted both from the 178 
University of Sheffield and the NHS ethics committees (SMBRER207 and 11/YH/0414). 179 

Bipolar and unipolar (i.e. referential) derivations are the two main types of EEG recordings used 180 
in everyday clinical practice. The unipolar montage uses one channel as a source and the other as a 181 
reference that is usually fixed; this is the default mode of recording EEG data in routine clinical 182 
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practice. The bipolar montage is obtained by subtraction of two unipolar derivations. This study used 183 
bipolar derivations to minimise the effects of volume conduction introduced by a common reference 184 
(Fein et al., 1988; Nunez et al., 1997). We have produced 23 bipolar channels calculated by the 21-185 
channel unipolar recordings after excluding the frontopolar electrodes (Fp1 and Fp2) due to their 186 
vicinity to the eyes that results in high levels of eye blink artefacts. 187 

         The EEG epochs were collected with Spike2 (version 9) software where data filtering and 188 
labelling was also undertaken. The filtering method was performed using the below equation 189 

𝒚(𝒌) = 𝒙(𝒌) −
𝟏

𝟐𝒄 ∑ 𝒙(𝒊)
𝒌+𝒄/𝒇𝒔
𝒊=𝒌−𝒄/𝒇𝒔

 (1) 190 

where 𝑥 is the input EEG signal, 𝑦 is the output signal, 𝑘 is a discrete-time point, 𝑓𝑠 is the sample rate 191 
and 𝑐 is a time constant value. The value of 𝑐 is set at 0.2s. The filtering using a time constant results 192 
in a high pass filtering of the signal where the cut-off frequency 𝑓𝑐 is: 193 

                                          𝒇𝒄 =
𝟏

𝟐𝝅𝒄
  (2) 194 

The value of 𝑓𝑐 is equal to 0.79Hz.  195 

All data were selected by a specialised physician in clinical neurophysiology to ensure no 196 
interictal EEG abnormalities were included. Additionally, care was taken to select relatively artefact 197 
free epochs. Furthermore, Fig. 3 shows the proposed framework, including pre-processing, features 198 
extraction, classification and result visualization, details of which are explained below. Sensor level 199 
brain functional connectivity measures, estimated by five methods, were extracted from EEG data as 200 
features for further classification. 201 

Table 1. The properties of the estimated functional connectivity 

Measure Directed Linear Nonlinear Time Frequency Time-Frequency 

Mutual information   ✓ ✓   

Correlation  ✓  ✓   

Coherence ✓ ✓   ✓  

Phase locking value ✓  ✓  ✓  

Wavelet coherence ✓ ✓    ✓ 

 

 

 

Fig. 3. Flow Diagram for EG vs. HC and EG vs. NEAD classification  
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2.2 Data pre-processing 202 

Before estimating functional connectivity, data was pre-processed by the following steps: 203 

1. For the groups of EG (15 subjects) and NEAD (14 subjects), there are 2 epochs for EO and 204 
EC for each subject. For the HC group (10 subjects), there are 3 epochs for EO and EC for each 205 
participant. To increase the number of samples for classification, each dataset (12 seconds) was 206 
segmented into 3 mini-epochs, 4 seconds each. In total, there were 528 labelled samples for 3 groups 207 
(EG:180, NEAD:168 and HC:180),  prepared for feature extraction and classification. As brain 208 
interactions are usually highly dynamic, prolonged EEG segments can obscure this important 209 
characteristic (Durongbhan et al., 2019). 210 

2. Each segment of data was normalised in the range from -1 to 1 for all bipolar channels. This 211 
step was performed mainly for visualisation purposes at the beginning of this work to search for any 212 
possible artefacts and does not affect any of the connectivity measures used in this paper. 213 

3. In this framework, it is tended to extract features in each frequency band. Therefore, each 214 
data segment was filtered to produce six frequency bands: full band (no filtering), Alpha (8-15Hz), 215 
Beta (15-32Hz), Gamma (>32Hz), Delta (<4Hz), Theta (4-8Hz). This operation was performed using 216 
an FIR filter with an order of 600. The frequency ranges of the Delta and full bands were modified to 217 
eliminate the effect of the time constant filtering.  218 

2.3 Functional connectivity estimation 219 

This paper implements 5 different measures in time, frequency and time-frequency domains to 220 
represent the brain functional connectivity between two EEG signals  𝑥𝑖 and  𝑦𝑖. These measures with 221 
their extension are then constructed as classification features. The properties of these measures are 222 
presented in Table 1.  223 

2.3.1 Mutual Information 224 
Mutual Information (MI) measure indicates the mutual dependence of two signals, i.e. how much 225 

information is shared between two signals (Cover and Thomas, 2005). It is based on a probability 226 
function and entropy. The entropy of a signal 𝑋 with a length of 𝑛 is expressed as 227 

                                       𝑯(𝑿) = − ∑ 𝒑(𝒙𝒊) 𝐥𝐨𝐠 𝒑(𝒙𝒊)
𝒏
𝒊=𝟏  (3) 228 

where 𝑝(𝑥𝑖)  is the probability function and values 𝑥𝑖 (𝑖 = 1,2,3, … , 𝑛) represent all possible values of 229 
the signal 𝑋. If the entropy of the signal is high, then the signal contains a lot of different values. For 230 
low entropy, the signal is more organised, for example, more values are repeated in the signal. A joint 231 
probability 𝑝(𝑥𝑖, 𝑦𝑗)  is the probability that 𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗 . The mutual information 𝐼(𝑋; 𝑌) 232 
between two signals 𝑋 and 𝑌 is expressed as 233 

                                             𝑰(𝑿; 𝒀) = ∑ ∑ 𝒑(𝒙𝒊, 𝒚𝒋)𝒎
𝒋=𝟏 𝐥𝐨𝐠𝒏

𝒊=𝟏

𝒑(𝒙𝒊,𝒚𝒋)

𝒑(𝒙𝒊)𝒑(𝒚𝒋)
 (4) 234 

where n and m are the length of the signal X and Y respectively. A total of 256 bins were used to 235 
calculate the value of mutual information.  236 
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2.3.2 Correlation 237 
This well-known measure shows how two signals are correlated with each other corresponding 238 

to a time shift between these two signals. In this study, the cross-correlation used is calculated using 239 
the following formula 240 

                                        𝑹𝒙𝒚[𝐧] =
∑ 𝒙[𝒌]𝒚[𝒌+𝒏]∞

𝒌=−∞

√∑ 𝒙[𝒌]𝟐∞
𝒌=−∞ ∗√∑ 𝒚[𝒌]𝟐∞

𝒌=−∞
 (5) 241 

where 𝑥[𝑘] and 𝑦[𝑘] are discrete signals and 𝑛 is the lag index. Cross-correlation is a measure of the 242 
linear correlation (dependence) between two signals, giving a value between -1 and 1 inclusive, where 243 
1 indicates a total positive correlation, 0 indicates no correlation, and -1 indicates a total negative 244 
correlation. Three features are taken from the cross-correlation, namely the maximum value of 245 
correlation (CorrMax), the mean value of correlation (CorrMean) and the correlation lag at the 246 
maximum value of correlation (CorrLag). It should be noted that the absolute value of the correlation 247 
is taken into account in terms of the maximum value of the correlation. This is due to the fact that two 248 
EEG signals can also be negatively correlated. 249 
2.3.3 Coherence 250 

The coherence in the frequency domain is estimated using magnitude squared coherence (MSC), 251 
expressed as 252 

𝑪𝒙𝒚(𝒇) =
|𝑮𝒙𝒚(𝒇)|

𝟐

𝑮𝒙𝒙(𝒇)𝑮𝒚𝒚(𝒇)
                                                        (6) 253 

where 𝐺𝑋𝑌(𝑓)is the cross-spectral density of signals 𝑋 and 𝑌. 𝐺𝑋𝑋(𝑓) and 𝐺𝑌𝑌(𝑓) are the auto-spectral 254 
density of these signals. The step size of the frequency is 𝑓𝑠/𝑛𝐹𝐹𝑇 = 500/2048 = 0.2441 Hz. Two 255 
features are taken from the MSC: maximum (CohMax) and mean values (CohMean). Although these 256 
features are extracted for six frequency bands, MSC is computed only for signal filtered to the full band 257 
range (2Hz-60Hz). To obtain MSC for different bands, MSC is segmented using the appropriate 258 
frequency ranges for each band and the mean and maximum values of the MSC are taken from these 259 
frequency segments. 260 

2.3.4 Phase Locking Value 261 
The Phase Locking Value (PLV) was first introduced by Lachaux et al. (Lachaux et al., 1999) in 262 

1999. PLV measures the significance of the phase covariance between two signals. It is defined as 263 

                                            𝑷𝑳𝑽(𝐭) =
𝟏

𝑵
|∑ 𝒆𝒊𝜽(𝒕,𝒏)𝑵

𝑵=𝟏 |  (7) 264 

where 𝜃(𝑡, 𝑛) is the difference in the phase of two signals. PLV values are in the range from 0 to 1. If 265 
the phase difference of two signals remains the same, PLV is close to one. A PLV close to zero indicates 266 
that there is no phase synchrony between two signals. 267 

To compute the instantaneous phase of each EEG signal, a Hilbert transform is used. For the 268 
signal 𝑥(𝑡), this transform allows creating an analytic signal 𝑎1(𝑡) as: 269 
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              𝒂𝟏(𝒕) = 𝒙(𝒕) + 𝜸𝒉𝟏(𝒕) (8) 270 

where 𝛾 is an imaginary number and ℎ1(𝑡) is the Hilbert transform of 𝑥(𝑡). The instantaneous phase 271 
is defined as an angle between the real and imaginary part of the analytic signal and is written as 272 

                                                     𝜽𝟏(𝒕) = 𝐚𝐫𝐜𝐭𝐚𝐧 (
𝒉𝟏(𝒕)

𝒙(𝒕)
) (9) 273 

The same method can be applied to the signal 𝑦(𝑡). Lachaux et al. (Lachaux et al., 1999) used 𝑁 trials 274 
to obtain statistically significant values of PLV. This stage is omitted in this project, thus 𝑁 = 1 during 275 
the calculation of the PLV. Additionally, the differences between the instantaneous phases are 276 
computed for all points in time and the differences are summed to obtain the PLV. To normalise the 277 
PLV, the obtained sum is divided by the signal length. The final equation to calculate PLV is then 278 
rewritten as 279 

                                                       𝑷𝑳𝑽 =
𝟏

𝑻
|∑ 𝒆𝒊𝜽(𝒕𝒊)𝑻

𝒊=𝟏 |  (10) 280 

where 𝑇 represents the size of a time window and 𝑡𝑖 is a discrete point in time. 281 

2.3.5 Wavelet Coherence 282 

The wavelet formulation of coherence between two signals, 𝑥 and y, and in the frequency w and 283 
time t domain, can be formulated as (Zhao et al., 2018): 284 

𝑐𝑜ℎ𝑥𝑦
2 (𝑤, 𝑡) =

| 𝑆𝑥𝑦(𝑤, 𝑡)|
2

𝑆𝑥(𝑤, 𝑡) 𝑆𝑦(𝑤, 𝑡)
 285 

                                               𝑺𝒙𝒚(𝒘, 𝒕) = 𝔼(𝑾𝒙(𝒘, 𝒕)𝑾𝒚(𝒘, 𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  (11) 286 

where  𝑆𝑥𝑦(𝑤, 𝑡) is the wavelet cross-spectrum between 𝑥  and y  and 𝑆𝑥(𝑤, 𝑡) ,  𝑆𝑦(𝑤, 𝑡)  are the 287 
corresponding auto-spectrums. Working with two single signals (single realisation) usually requires 288 
using a smoothing operator (see 𝑓(∙) operator in Eq. (12)), and ergodicity properties should be assumed 289 
(Sairamya et al., 2018). 290 

                                              𝒄𝒐𝒉𝒙𝒚
�̂� (𝒘, 𝒕) =

|𝒇(𝑺𝒙𝒚(𝒘,𝒕)) |
𝟐

𝒇(𝑺𝒙(𝒘,𝒕))∙𝒇(𝑺𝒚(𝒘,𝒕)) 
(12) 291 

Two features are extracted from the wavelet coherence: mean value (WCohMean) and maximum 292 
value (WCohMax). As wavelet coherence is in the time-frequency domain, mean and maximum values 293 
are taken from all time points and the relevant frequency ranges. The mother wavelet Morlet was used 294 
for this study. 295 

2.4 Classification using machine learning 296 

Considering the estimated measures of functional connectivity between two signals, with the 23 297 
channels (shown in Table S2 of the supplementary material), used in this study, there are 253 possible 298 
combinations (𝐶2

23) when any 2 bipolar derivations are paired together. These were organised in a 299 
pairwise manner by taking the first bipolar derivation in the list (F8-F4) and pairing it with every other 300 
bipolar derivation according to their order on the list (F8-F4:F7-F3, F8-F4:F4-C4, F8-F4:F3-C3, …). 301 
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The process was repeated for all other channels until the end of the list. However, since each channel 302 
is bipolar in nature, any pair with common electrode locations (such as F8-F4 and F4-C4) is neglected 303 
as this could lead to misleading high false correlation between the pair. The 46 channel pairs that have 304 
this characteristic include F8-F4:F4-C4, F8-F4:F4-FZ, F7-F3:F3-C3, F7-F3:F3-FZ, F4-C4:F4-FZ, F4-305 
C4:T4-C4, F4-C4:C4-CZ, F4-C4:C4-P4, F3-C3:F3-FZ, F3-C3:T3-C3, F3-C3:C3-CZ, F3-C3:C3-P3, 306 
F4-FZ:F3-FZ, F4-FZ:FZ-CZ, F3-FZ:FZ-CZ, FZ-CZ:C4-CZ, FZ-CZ:C3-CZ, FZ-CZ:CZ-PZ, T4-307 
C4:C4-CZ, T4-C4:C4-P4, T4-C4:T4-T6, T3-C3:C3-CZ, T3-C3:C3-P3, T3-C3:T3-T5, C4-CZ:C3-CZ, 308 
C4-CZ:CZ-PZ, C4-CZ:C4-P4, C3-CZ:CZ-PZ, C3-CZ:C3-P3, CZ-PZ:P4-PZ, CZ-PZ:P3-PZ, C4-309 
P4:P4-PZ, C4-P4:P4-O2, C3-P3:P3-PZ, C3-P3:P3-O1, T4-T6:T6-O2, T3-T5:T5-O1, P4-PZ:P3-PZ, 310 
P4-PZ:P4-O2, P3-PZ:P3-O1, T6-O2:P4-O2, T6-O2:O1-O2, T5-O1:P3-O1, T5-O1:O1-O2, P4-O2:O1-311 
O2, P3-O1:O1-O2. A total of 207 channel pairs is therefore analysed in this paper. 312 

The total number of feature values for this work is based on 9 estimations (PLV, MI, Corrmax, 313 
corrMean, CorrLag, MaxCoh, MeanCoh, MaxWCoh and MeanWCoh) × 6 bands (Full, Delta, Theta, 314 
Alpha, Beta and Gamma) × 207 pairs × 528 samples = 5,901,984. To explore the statistically significant 315 
differences between EG vs HC, and EG vs NEAD, one-way analysis of variance (ANOVA) was 316 
employed to select channels for each band and the estimation was undertaken using p < 0.00001 and p 317 
< 0.05 for two classification tasks respectively. ANOVA tests the null hypothesis, i.e. means of the 318 
tested groups are equal and the p-value indicates the statistical significance. Rejection of the null 319 
hypothesis leads to the conclusion that the two groups are statistically different. The selection of the 320 
threshold p was based on previous studies (Orekhova et al., 2014; Vecchio et al., 2016). 321 

The K-Nearest Neighbour (KNN) algorithm was applied to perform the classification of the 322 
selected features. During the initial development of classification solutions, different machine learning 323 
algorithms were analysed, such as Support Vector Machine (SVM), decision tree and KNN etc. KNN 324 
tended to present performance superiority in this study compared with other methods and was selected 325 
as the main classifier in this paper. During the development of KNN, different values of k were tested. 326 
Initially, k was equal to 1 and was gradually increased to find the optimal one. Finally, k was set to 15 327 
as it showed the best classification accuracy. For higher values of k (17 to 40) the accuracy was not 328 
improving and for a big k (above 40), the accuracy was dropping. Euclidean distance was applied in 329 
the KNN classification because of its better interpretability and performance (Prasath et al., 2017).  330 

The dataset was divided into 10 subsets and then cross-validation was undertaken. For each 331 
iteration of the 10-fold cross-validation, different subsets are used for training and testing. In the first 332 
iteration, the first subset is used for testing and the remaining subsets are used for training. The second 333 
iteration uses the second subset for testing and so on. To obtain the final result, an average of 10 334 
classification accuracies is computed. Each accuracy comes from a single iteration of k-fold cross-335 
validation. The 10-fold cross-validation is performed for 5 times by reshuffling data to gather 5 336 
accuracy results statistically for each classification task. In the 10-fold cross-validation, 475 samples 337 
were used for training and 53 samples were used for testing. To further evaluate the machine learning 338 
algorisms performance, accuracy (Accu), sensitivity (Sens) and specificity (Spec) were calculated, 339 
which are defined as: 340 
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𝑨𝒄𝒄𝒖 =  
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
× 𝟏𝟎𝟎%                                                    (13) 341 

𝑺𝒆𝒏𝒔 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
× 𝟏𝟎𝟎%                                                          (14) 342 

𝑺𝒑𝒆𝒄 =
𝑻𝑵

𝑻𝑵+𝑭𝑷
× 𝟏𝟎𝟎%                                                          (15) 343 

where TP = True Positive, FN = False Negative, TN = True Negative, FP = False Positive. Moreover, 344 
the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) 345 
(Pyrzowski et al., 2015; Lotte et al., 2018) were used to assess the goodness of classification to select 346 
appropriate machine learning methods, k value for KNN and features. Specifically, ROC is constructed 347 
from true positive rate (TPR = sensitivity) in the vertical axis and false positive rate (FPR = 1-348 
specificity) in the horizontal axis (Blinowska et al., 2017). Besides, both ANOVA and multiple 349 
comparisons were performed to statistically compare the results of different brain connectivity 350 
estimations from different bands. 351 

3. RESULTS 352 

The section aims to report the classification results based on a single feature selected from 353 
different connectivity features, bipolar pairs and frequency bands. 354 

 355 

Fig. 4. The box charts of the classification accuracy of HC vs EG against various frequency bands for the 9 
selected measures, where only the top 10 pairs in terms of classification accuracy were considered. Each 
box shows highest, lowest and median accuracy. 
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 356 

3.1 Healthy Controls vs Epilepsy Group 357 

Considering the considerable number of possible channel combinations (207), the one-way 358 
ANOVA for a threshold of p < 0.00001 was used to determine if the difference of each feature between 359 
HC and EG is statistically significant. Only the pairs with metrics that are significantly different 360 
between these two groups were selected for further classification. For example, for mean coherence in 361 
the Beta band, 67 out of 207 pairs showed a significant difference between these two groups. It is 362 
expected that statistically, the selected pairs will provide relatively high classification accuracy using 363 
the machine learning classifiers. As shown in Fig. S1 in Supplementary material, the pairs with a small 364 
p-value present a more distinguishable distribution of features than the ones with a relatively large p-365 
value. However, it should be noted that the p-value cannot fully represent or replace the classification 366 
performance due to two reasons: (1) it focuses more on the mean of each group’s features while 367 
machine learning classifiers pay more attention to the distribution of features, and (2) the cross-368 
validation usually is used to determine the classification accuracy where testing data are not sampled, 369 
while to calculate the p-value all samples are used.   370 

Fig. 4 plots the box charts of the classification accuracy of EG vs HC, against various frequency 371 
bands for the 9 selected measures, where only the top 10 pairs in terms of classification accuracy were 372 
considered. For the Theta band, all measures have similar performance with around 80% accuracy 373 
except CorrMean (<70%). For the Delta band, MI has exceptionally high performance with over 95% 374 
accuracy in EC while other bands have much lower accuracy (<80%). The rest 8 measures have only 375 
70-80% accuracy. The Gamma band has relatively low accuracy across all measures (<80%). For the 376 
Beta band, PLV, CorrMax, CohMean and WCohMean have relatively good performance (>85%) while 377 
others are less than 80%. Overall, the Beta band has the best performance across all measures. The 378 
Alpha band has decent accuracy across all measures (around 80%). In terms of eye state, MI has the 379 
most distinguishable performance between EC and EO. Specifically, for all bands except the Beta band, 380 
the pattern of EC>(EC&EO)>EO can be observed. For other features’ performance seems not to be 381 
significantly affected by the eye condition to an extent while combining EO and EC tends to slightly 382 
decrease the ability to discriminate EG from HC. This observation suggests that MI is more appropriate 383 
to classify these two groups for EC than EO and that the samples with different eye states should not 384 
be mixed.  385 

 
(a)                                                                                            (b) 

Fig. 5. The top 10 bipolar pairs based on the percentage of appearance of top 3 classification performance 
between HC and EG for different connectivity measures and bands; (a) EO; (b) EC 
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To investigate which bipolar pairs consistently produced high classification accuracy, Fig. 5 plots 386 
the top 10 bipolar pairs based on the percentage of appearance of top 3 classification performance for 387 
different connectivity measures and bands. It can be observed that the top 3 pairs (F4C4-FZCZ, CZPZ-388 
C4P4, F3C3-FZCZ) are identical for EO and EC. More detailed results using CohMean in the Beta 389 
band during the EC state are shown in Fig. 6. Besides, Fig. 7 represented the areas in a head map 390 
corresponding to the highest classification accuracy and the discrimination ability of identified features 391 
were evaluated by ROC and AUC.  392 

 
Fig. 6. The heatmap for the HC vs EG classification performance based on CohMean in Beta band for the EC 
state. 

  

     
(a)                                                                                            (b) 

Fig. 7. (a) The locations of 6 channel pairs corresponding to the highest classification accuracy (>90%) for the 
HC vs EG based on CohMean in the Beta band in the EC state (Red area is better than Yellow area); (b) The 
ROC and AUC of the 6 pairs. 
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          To reveal the overall performance against different frequency bands, Fig. S2 in Supplementary 393 
material shows the top accuracy using the bipolar pair F4C4-FZCZ for different features and frequency 394 
bands. The result was achieved by averaging 5 trials. The best classification result (97.22%) was 395 
achieved using CohMean in the Beta band during the EC state for the bipolar pair F4C4-FZCZ. It can 396 
be observed that overall the Beta band has the best performance for EO, EC, and EO & EC, while the 397 
Gamma band has the worst performance consistently, which confirms the observations in Fig. 4. 398 
Besides, the evaluation of other machine learning methods and K selection refer to KNN supported by 399 
ROC and AUC, shown in Fig. S4 and Fig. S5 in Supplementary material. To further understand how 400 
the selected features contribute to the classification, Fig. 8 plots the clustering of mean coherence in 401 
the Beta band of F4C4-FZCZ, F3C3-FzCz, CzPz-C4P4 and C3Cz-P3Pz in the EC state, all of which 402 
have high classification accuracy (>90%). It can be observed that, for the HC subjects, the value of 403 
coherence is much higher than that of the EG subjects. Besides, it is also observed that the distribution 404 
of these features in EG is more concentrated, which may explain the classification sensitivity is always 405 
high, almost 100%, but with relatively low specificity. The machine learning has also been 406 
implemented using two features. The accuracy increases slightly, but there are still some HC samples 407 
misclassified as EG. The results are as shown in Fig. S6 in Supplementary material. 408 

3.2 Epilepsy Group vs NEAD 409 

     
                                         (a)                                                                                 (b) 

Fig. 8. The distribution of mean coherence values in the Beta band of 4 channel pairs corresponding to the 
highest classification accuracy (>90%) for HC vs EG in the EC state. 
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Fig. 9 plots the box charts of the classification accuracy of NEAD vs EG against different 410 
frequency bands using 9 distinct estimations. It can be observed that the overall accuracy is much lower 411 
than that of HC vs EG (about 20% less). Overall, the Gamma band produced a better performance (65-412 
70%) than other 5 bands for all features. Especially for PLV, the Gamma band produces significantly 413 
higher accuracy which was witnessed by ANOVA and multiple comparisons (p<0.001).  414 

Fig. 9. The box charts of the classification accuracy of NEAD and EG against various frequency bands for the 
9 selected measures, where only the top 10 pairs in terms of classification accuracy were considered. Each box 
shows highest, lowest and median accuracy. 
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Results (see Fig. S3) show that the best classification result (74.44%) was achieved using MI in 415 
the Delta band during the EO state for the bipolar pair T4T6-P4PZ. The second-best accuracy (74.24%) 416 
was achieved using PLV in the Gamma band during the EO state for the bipolar pair T3C3-CZPZ. 417 
Overall, the Gamma band has the best performance across all features and eye states. To further explore 418 
how the highest classification was produced, Fig. 11 presents the scatter plot of MI in the Delta band 419 
for T4T6-P4PZ and C4Cz-C3P3. The means of those two bipolar pairs for the EG is slightly lower 420 
than those of NEAD. ANOVA suggests that the means of both features for the two groups are 421 
significantly different (p<0.05). 422 

 
Fig. 10. The heatmap for the NEAD vs EG classification performance based on MI in Delta band for the EO 
state. 

Figure 11 The distribution of MI values in Delta band of two channel pairs corresponding highest 
classification accuracy (>70%) for the NEAD vs EG for the EO state 
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4 DISCUSSIONS 423 

This paper proposes a multivariate approach to investigate the potential of leveraging the 424 
association between two channels (i.e. EEG sensor level functional connectivity) to classify different 425 
groups. It should be noted that most of the state-of-the-art for this topic use the features extracted from 426 
single channels. Durongbhan et al. (2019) proposed a univariate method that uses the response of five 427 
frequency bands of each channel for classification. Similarly, a typical univariate method, power 428 
spectral density (PSD), was also applied to EEG recordings and it was found that theta (4-9 Hz) PSD 429 
ratio can contribute to evaluating the influence of neurofeedback training for epilepsy patients (Zhao 430 
et al., 2009). Wan et al. (2019) suggested that alpha rhythm (8-12 Hz) PSD observed in EEG over 431 
human posterior cortex differs in distinct groups. Therefore, the univariate approach was applied to our 432 
database to critically compare the proposed and the existing method.    433 

The spatial distributions of the frequency response of each channel are shown in Fig. S7-11 of 434 
Supplementary material, where the subjects are divided into 5 groups: EG with medication, EG without 435 
medication, NEAD with medication, NEAD without medication, HC. Fig. 12 shows the detailed spatial 436 

 
Fig. 12. The spatial distribution of classification accuracy using the univariate method, where the same colormap 
scale is used.  
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distribution of classification accuracy using the univariate method, where four classification methods 437 
were tested. It is observed that Naïve Bayes has a relatively good performance. Table 2 shows the 438 
comparison of the best classification result between the univariate approach (Naïve Bayes was used 439 
for classification) and the proposed multivariate approach for the same data. For HC vs EG, the 440 
proposed method based on multivariate analysis produced higher classification accuracy in comparison 441 
to the classic univariate method, particularly for EC, there is 15% improvement. It should be noted that 442 
the band with the best performance is different. For NEAD vs EG, the proposed method performs 443 
slightly better than the univariate approach for both EO and EC states.  444 

5 CONCLUSIONS 445 

In this work, we implement a framework comprising various sensor level functional brain 446 
connectivity features, on EEG epochs classified as normal on empirical inspection of interictal traces 447 
from a cohort of patients with generalised epilepsy. Despite no interictal abnormalities like IEDs - the 448 
empirical diagnostic hallmark of epilepsy - were included in this work, our framework achieved a very 449 
high classification accuracy between HC and EG cohorts, which outperforms the state-of-the-art  single 450 
channel findings. Based on results from scalp EEG sensors, an accuracy of 97% was found for the 451 
functional connectivity estimates between the parasagittal frontal and midline regions for EC state and 452 
involved the beta frequency band. Unintuitively, as epilepsy in the ictal phase is typically characterised 453 
by the transient occurrence of abnormal, excessive or synchronous neuronal brain activity (Fisher et 454 
al., 2014), our interictal findings show lower levels of synchronisation in this frontal region, in the beta 455 
band, in the Epilepsy patients in comparison to the findings from healthy controls (Fig. 8). This 456 
interictal deficit in the Beta band synchronisation in patients with generalised epilepsy was previously 457 
shown in a cohort of juvenile myoclonic epilepsy. This in part involved the frontal and parietal brain 458 
areas (Clemens et al., 2013) that also consistently produced high classification accuracy in our work. 459 
However, our results have to be interpreted with caution as previous univariate EEG data analysis 460 
showed some spectral density differences in various phenotypes of generalised epilepsy syndromes 461 
(Clemens et al., 2012), namely patients with absence seizures versus juvenile myoclonic epilepsy and 462 
epilepsy with generalised tonic-clonic seizures in isolation. The importance of this type of brain 463 
network connectivity approach was also shown from another angle in a study where decoupling of 464 
functional and structural connectivity, based on fMRI and tractography estimates was demonstrated 465 
for a cohort of patients with idiopathic generalised epilepsy in comparison to age-matched healthy 466 
controls (Zhang et al., 2011). More work is required in well-characterised large cohorts of patients with 467 
different forms of generalised and focal epilepsies, ideally in drug naïve studies although clinical 468 
decisions render this latter requirement difficult to achieve. 469 

Table 2. The comparison of the highest classification using a single feature between the univariate approach 
and the proposed approach 

 
Univariate approach The proposed approach 

EO EC EO EC 

HC vs EG 
89.60% 
(Delta) 

82.80% 
(Delta) 

94.75% 
(Beta) 

97.22% 
(Beta) 

NEAD vs EG 
72.20% 
(Theta) 

70.20% 
(Delta) 

74.44% 
(Delta) 

74.24% 
(Gamma) 
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Our findings demonstrate that seizure-free EEG recordings contain invisible information that can 470 
be revealed with appropriate methodology to identify patients with generalised epilepsy. The low 471 
sensitivity of a single EEG, at most at 55% (Pillai and Sperling, 2006), has been a long-standing 472 
diagnostic problem in clinical neurophysiology and translates to a high financial cost (several EEGs 473 
are frequently required to record IEDs) can result in time delay to treatment initiation and can also 474 
produce high levels of anxiety to patients, carers and relatives. Our work demonstrates that significant  475 
coherence data are confounded by power and phase effects, outside the observational capabilities of 476 
reporting physicians, can be successfully used to reveal spatiotemporal deficits in brain network 477 
organisation and behaviours that could be translated in clinical useful diagnostic tools. EEG epochs 478 
during periods of EO and EC differ significantly, reflecting the dynamic brain network changes 479 
between the two conditions. The discrepancy in the classification accuracy between EO and EC for 480 
HC vs the EG, based on MI, a technique able to capture nonlinear connectivity, demonstrates that 481 
advantages of different methods might have to be implemented in conjunction in future work for the 482 
development of a robust diagnostic framework. The results of the classification accuracy between EG 483 
and NEAD also demonstrates that there cannot be a one size fits all approach as the findings differ 484 
significantly when compared to the EG vs HC results. Specifically, the highest classification accuracies 485 
were achieved for synchronisation estimates within different frequency ranges (delta for EO and 486 
gamma for EC), involving different brain areas -the parietal and temporal regions - while additionally 487 
they were based on the two nonlinear methods (MI and PLV) implemented in this work. The roughly 488 
20% lower classification accuracy (about 73%) between EG and NEAD is very reassuring, as not 489 
infrequently NEAD patients can also be experiencing epileptic seizures (Milán-Tomás et al., 2018). 490 
This potential coexistence of the two conditions blurs the boundaries of “gold standard” labelling 491 
between the two, in keeping with the lower classification accuracy found in this work. Several EG and 492 
NEAD patients included in this work were receiving various AEDs which could influence the EEG 493 
recordings, extensively described in previous work (Höller, Helmstaedter and Lehnertz, 2018). 494 
However, 9 of our patients (5 from EG and 4 from NEAD) were on no medication. Therefore, it is 495 
highly unlikely that the remarkable classification accuracy of this study, particularly between HC and 496 
EG, was due to the effect of medication on EEG.  497 
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