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Abstract: In many machine learning applications, measurements are sometimes incomplete or noisy
resulting in missing features. In other cases, and for different reasons, the datasets are originally
small, and therefore, more data samples are required to derive useful supervised or unsupervised
classification methods. Correct handling of incomplete, noisy or small datasets in machine learning
is a fundamental and classic challenge. In this article, we provide a unified review of recently
proposed methods based on signal decomposition for missing features imputation (data completion),
classification of noisy samples and artificial generation of new data samples (data augmentation). We
illustrate the application of these signal decomposition methods in diverse selected practical machine
learning examples including: brain computer interface, epileptic intracranial electroencephalogram
signals classification, face recognition/verification and water networks data analysis. We show that a
signal decomposition approach can provide valuable tools to improve machine learning performance
with low quality datasets.

Keywords: empirical mode decomposition; machine learning; sparse representations; tensor
decomposition; tensor completion

1. Introduction

Machine learning (ML) has been developing without a break since its beginning in the middle
of the 20th century with the introduction of the first computers. ML comprises the design and study
of algorithms that can automatically learn form observations and take optimal decisions or provide
valuable outputs. With recent accelerated improvements in computing power and the availability of
massive datasets, ML methods based on deep neural networks, usually referred as deep learning [1],
gave rise to an Artificial Intelligence (AI) revolution. AI continues changing our daily lives contributing
with extraordinary advances in scientific data analysis and new technological applications [2].

ML algorithms are based on the mathematical modelling of variables and their interaction
mechanisms that can explain the observations (dataset). Complex datasets, such as natural images,
speech or brain signals, usually requires sophisticated ML models to capture the probability
distribution of data. Most sophisticated ML models are built upon feed-forward deep neural networks
having from dozens to hundreds layers leading to a very large set of model parameters. To train
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such big deep learning models requires accessing to extremely large datasets, which are not always
available or they are too expensive to obtain.

Standard training algorithms for modern deep learning models assume that datasets are “infinite”,
i.e., they are large enough to allow successful training of very large models. In practice, and particularly
when an image dataset is not large enough, it is common practice to artificially generate additional
samples by applying a composition of random class-preserving transformations on available data
samples such as crops, translations and rotations, which is widely known as “data augmentation”.

Moreover, available ML algorithms not only assume “infinite” datasets, they were also designed
for perfect input data samples. Nevertheless, in practical applications data samples often suffer from
imperfections, such as missing or noisy features. For example, when recording electroencephalographic
(EEG) signals, corrupted data can be originated from impedance mismatching, electrode disconnection,
body movements, etc [3]. Other practical problems where data samples can be incomplete include:
computer vision systems where objects in the view field can be partially occluded [4]; recommendation
systems built from the information gathered by different users where not all the users have fully
completed their forms [5]; or medical datasets where typically not all tests can be performed on all
patients [6].

In this article, we review recent techniques to alleviate the serious consequences of having different
types of low-quality datasets in ML applications. We demonstrate that, by using decomposition
methods, we can model one-dimensional and multi-dimensional signals, which allow us to artificially
generate class-preserving new signals or make inference on missing/corrupted features.

This article is organized as follows: in Section 1.1, a review of the state-of-the-art approaches for
low-quality datasets in ML is given; in Section 1.2, the mathematical notation used throughout the
paper is introduced; in Section 2, a unified view of signal decomposition methods is presented, which
includes: subspace approximation, Empirical Mode Decomposition (EMD), sparse representations and
tensor decompositions; Section 3 covers practical applications including ML problems in neurosciences,
face detection/classification and analysis of water networks data; finally, the main conclusions and
discussion are presented in Section 4.

1.1. ML with Low Quality Datasets: State-of-the-Art and Recent Progress

In this paper, we focus on the following types of low-quality datasets: (1) small, and (2)
having incomplete or corrupted samples. The following subsections provide an overview of current
approaches and recent progress in artificially generating new training samples (subsection 1.1.1), and
how to deal with incomplete datasets (subsection 1.1.2).

1.1.1. Classical Data Augmentation

Artificial generation of training samples for machine learning has been used for many years,
for example, in the form of virtual examples for training support vector machines in supervised
learning [7,8]. In these papers, training data is augmented so that the learned model will be invariant
to known transformations or perturbations. By using this technique, in [8], it was reported the lowest
test error (0.6%) until that moment in 2002 on the well-known MNIST digit recognition benchmark
task. Since then, data augmentation has been considered essential for the efficient training of neural
networks, specially on images where it is typically performed in an ad-hoc manner by using class
preserving transformations such as random cropping and rotations. Data augmentation is crucial
to achieve nearly all state-of-the-art results, for example, in 2010 a new record on the best test error
on MNIST dataset was reported (0.35%) by using deep neural networks [9]. Data augmentation is
also fundamental to attain very good performance results on discriminative unsupervised feature
learning based on convolutional neural networks [10]. While it is usually easy for domain experts to
specify the involved transformations, for example the cropping and rotations in images, applications
in other domains may require a non trivial choice of transformations. Motivated by this, in [11], the
authors proposed a method for automating data augmentation by learning a generative sequence
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model over user-specified transformation functions using a generative adversarial approach, which
was successfully applied to image and text datasets.

Data augmentation was also applied in machine applications other than image classification,
for example, in music source separation [12]. In that paper, the authors augmented the training
datasets by randomly swapping left/right channels for each instrument, chunking into sequences
for each instrument and mixing them from different songs sources, which demonstrated to boost
the performance of deep neural networks for this task. Other application domains where data
augmentation improved the discriminative power of classifiers include: biometrics [13], fault diagnosis
in industry [14], radio frequency fingerprint identification [15], synthetic aperture radar (SAR) target
recognition [16], and others.

From the theoretical point of view only very recently some understanding of the underlying
theoretical principles involved in data augmentation procedure was provided. In [17], the authors
provide a general model of augmentation as a Markov process and show that, combined with
a k-nearest neighbor (k-NN) rule, is asymptotically equivalent to a kernel classifier. This result
provides novel connections between prior work on invariant kernels, tangent propagation and robust
optimization, giving an illustrative view on how augmentation affect the learning model.

1.1.2. Classical Approaches to ML with Incomplete Data

The classical approach to supervised learning with missing or noisy data is to preprocess the
available data in order to infer missing/corrupted values such that standard ML algorithms can be used
on the corrected dataset [18,19]. This imputation aproach can be based on statistical principles, such as
computing the mean of available samples for missing features or more sophisticated estimators like
the regression imputation, which has the advantage that it can take into consideration the correlations
among various features. Other imputation methods are based on machine learning ideas by estimating
missing entries through the k-nearest neighbor [20], Self Organization Maps (SOM) [21], multilayer or
recurrent neural networks [22,23], and others.

A different approach is to avoid direct imputation of lost inputs and rely on a probabilistic model of
input data, based for example on the Gaussian Mixture Model (GMM) and learning model parameters
through the Expectation Maximization (EM) algorithm and building a Bayesian classification. The
advantage of this approach is that class labels of input data is fully exploited which helps for a
correct imputation of missing entries [19,24]. However, the latter “model-based” approach has the
disadvantage that it requires a good probabilistic data model, which is usually not available, especially
for real-world applications such as those involving natural images.

Recently, some approaches based on the low-rank property of the features data matrix
were investigated and algorithms for data completion were proposed incorporating the label
information [25–27]. Since the rank estimation of a matrix is a computationally expensive task,
usually based on the Singular Value Decomposition (SVD), the obtained algorithms are prohibitive
to solve modern machine learning problems with large datasets. Additionally, as in the case of the
probabilistic generative models, none of these methods considered complex classifications functions.
To overcome this drawback, more recently, a framework based on neural network architectures
such as autoencoders, multilayer perceptrons and Radial Basis Function Networks (RBFNs), was
proposed for handling missing input data by setting a probabilistic model, e.g., a GMM, for every
missing value, which is trained together with the NN weights [28]. This method combined the great
capability of NNs to approximate complex decision functions with the nice formulation of the GMM
to model missing data. However, it inherited the drawbacks of GMMs, e.g., they are not well suited to
higher-dimensional datasets.
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1.2. Mathematical Notation and Definitions

Vectors and matrices are denoted using boldface lower- and upper-case letters, respectively. For
example x ∈ RI and A ∈ RI×J represent a vector and a matrix, respectively. Columns of a matrix
A ∈ RI×J are referred as vectors aj ∈ RI .

A tensor is a multidimensional array generalizing vectors and matrices to higher number of
dimensions. For example, a tensor X ∈ RI×J×K is a 3D array of real numbers whose elements
(i, j, k) are referred to as xijk. The individual dimensions of a tensor are referred to as modes (1st
mode, 2nd mode, and so on). By generalization of matrix multiplication, a tensor can be multiplied
by a matrix in a specific mode, only if their size matches. Given a tensor X ∈ RI1×I2···×IN and
a matrix A ∈ RJ×In , the mode-n product Y = X ×n A ∈ RI1×···×In−1×J×In+1···×IN is defined by:
yi1···in−1 jin+1···iN = ∑In

in=1 xi1···in ···iN ajin , with ik = 1, 2, ..., Ik (k 6= n) and j = 1, 2, ..., J.
The `0-norm ‖x‖0 of a vector x ∈ RN is defined as the number of non-zero entries of the vector.

When the number of non-zero entries is much less than the dimension of the vector, i.e., ‖x‖0 � N,
the vector is sparse.

Given two matrices: A ∈ RI1×J1 and B ∈ RI2×J2 , the Kronecker product is defined as follows:

A⊗ B =


a1,1B a1,2B . . . a1,J1 B
a2,1B a2,2B . . . a2,J1 B

...
...

. . .
...

aI1,1B aI1,2B . . . aI1,J1 B

 . (1)

2. Methods

The idea of extracting valuable information from a dataset by decomposing each of the signals
(data samples) as a sum of simpler components, is a very well established technique originated in
branches of mathematics such as functional analysis and statistics. The general idea behind any
decomposition method is to obtain a compact model that can capture the essential information of a
signal or dataset. This compression capability will allow us, for example, to generate artificial data by
adapting individual components, or recombining them in a different way, and using the decomposition
as a generative model. On the other side, when data is incomplete, we can fit a decomposition model
such that the available information is replicated as much as possible and we can use the model to
estimate the values of missing data points.

The goal of this article is to present a unifying view of several useful decomposition methods and
illustrate about its applications to practical ML problems. In the following, we present a mathematical
formulation of the decomposition methods that will be used through the paper.

2.1. A unified View of Data Decomposition Models for ML

Given a linear subspace U ⊂ RN , every vector data sample (one-dimensional signal) x ∈ U is
decomposed into a sum of I components if it can be written as:

x =
I

∑
i=1

αiφi + r = Φα + r, (2)

where αi ∈ R, the set of vectors {φi ∈ RN} (i = 1, 2, . . . , I) and r ∈ RN are the coefficients, the
generators of the linear subspace U , and the residual or approximation error, respectively. A matrix
notation is also shown in the rightmost part of Equation (2), where Φ ∈ RN×I contains vectors φi as
columns and α ∈ RI is the vector of coefficients. In some classical decomposition methods, vectors
φi are constructed by theoretical principles as it is the case of the discrete Fourier, Cosine or Wavelet
orthogonal bases, just to mention few, where the number of components equal to the space dimension
(I = N), meaning that those bases span the whole space RN .
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Given a dataset composed of J vector samples xj ∈ RN , j = 1, 2, . . . , J, by arranging them as
columns of matrix X ∈ RN×J , we can write the following matrix factorization equation (see Figure 1a):

X ≈ ΦA, (3)

where Φ ∈ RN×R and A ∈ RR×J has entries αi,j. Such a compact representation of datasets can be
accomplished in several ways. For example, by using a subspace of a lower dimension (R < N)
or using a sparse matrix A meaning that each of the signals are approximated using few non-zero
coefficients, compared to the size of the space N. In the following subsections we describes these
possible models.

(a) Linear decomposition

(c) Sparse decomposition (overcomplete)

Dictionary learning

PCA(SVD)

signal

IMF1

IMF2

IMF3

IMF4

IMF5

residual

EMD
(b) Subspace approximation (low-rank factorizaion)

(d) Empirical Mode Decomposition
(EMD)

dataset

(e) Low-rank Tucker model (f) Low-rank CP model (g) Sparse Tucker model

(h) Tucker and CP models as sum of rank-1 tensors

Figure 1. Decomposition models. (a) General linear model: a collection of vector data samples
organized as columns of a matrix dataset X is approximated by the product of matrices Φ and A. (b)
Subspace approximation: all vectors in the dataset are approximated by linear combination of few
vectors (principal components). (c) Sparse coding: each vector in the dataset is approximated by the
linear combination of atoms (columns of a dictionary Φ). In both, (b) and (c), the optimal choice of
matrix Φ can be computed from the dataset itself by means of the SVD and an dictionary learning
algorithm, respectively. (d) EMD: every single signal is decomposed as a sum of characteristic modes.
Tensor decomposition models such as Low-rank Tucker (e), Low-rank CP (f) and Sparse Tucker (g)
can be written as sum of rank-1 tensors (h).

2.2. Subspace Approximation (PCA)

If signals in a dataset can be well approximated within a subspace of lower dimension (R < N), we
can find the optimal basis by applying the celebrated Principal Component Analysis (PCA) algorithm.
This method was originally introduced in statistics by Pearson in 1901 [29], but developed later
independently by Karhunen [30] and Loéve [31]. PCA basis vectors φi and their associated coefficients
are easily computed by means of a Singular Value Decomposition (SVD) of the data covariance
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matrix. Formally, given a set of normalized signals {xj ∈ RN} (zero-mean and unit-variance samples
n = 1, 2, . . . , J), the rank-R PCA decomposition of any signal xj in the set is obtained by Equation (2),
with orthonormal vectors φi corresponding to the first R < N dominant singular vectors of the
data covariance matrix and coefficients are computed by αi,j = xT

j φi. In this case, the obtained
decomposition model is also referred as low-rank matrix factorization as illustrated in Figure 1b.

2.3. Sparse Decomposition (SD)

More recently, in the signal processing field, it was discovered that a better way to capture the
structure of natural images, speech audio an other types of signals is to have available a large collection
of prototype atoms {φi ∈ RN} (i = 1, 2, . . . , I) with I ≥ N and use only few and distinctive coefficients
to represent every signal x in the space. This model is mathematically described by adding an sparsity
constraint ‖α‖0 ≤ K to the model of Equation (2) leading to the following equation:

x ≈ Φα, with ‖αi‖0 ≤ K � N, (4)

This approach is usually referred as “sparse coding” or “sparse representation” of signals and
matrix Φ ∈ RN×I is called a “dictionary” [32,33] (see Figure 1c).

For general overcomplete (I ≥ N) dictionaries, the sparse vector of coefficients can be obtained
by applying some of the available algorithms that were designed to solve the sparse coding problem,
which includes greedy methods such as matching pursuit (MP) [34], orthogonal matching pursuit
(OMP) [35], compressive sampling matching pursuit (CoSaMP) [36], `1 norm minimization methods
such as basis pursuit [37] and many others (see [38] for a review of algorithms).

Some theoretically derived dictionaries, e.g., those based on the Discrete Cosine Transform
(DCT) or Wavelet Transform (WT), are excellent candidates for sparse coding. However, in some
ML applications when large datasets are available, sometimes it is good idea to learn an optimal
dictionary for an specific dataset. To that end, some dictionary learning algorithms are proposed in the
literature [39,40]. Sparse coding has to date a large record of successful applications in signal processing
tasks like compressed sensing [41,42], blind source separation [43], denoising [39], inpainting [44]
and others.

2.4. Empirical Mode Decomposition (EMD)

In the previously introduced methods (PCA and SD), one set of vectors {φi} is used to generate
every signal x in the dataset, meaning that the chosen generators are optimal for a particular dataset.
Other methods have been proposed to find signal specific set of components. This was the case of
the Empirical Mode Decomposition (EMD), which was first described by Huang N. et al in [45] as
a new method to analyze nonlinear and non-stationary signals. EMD is a data-based approach that
decomposes any signal into a sum of so-called Intrinsic Mode Functions (IMF) plus a residual as
illustrated in Figure 1d. Therefore, the original signal is modelled as a linear combination of amplitude
and frequency modulation (AM-FM) functions. Every single function (IMF) is capturing specific
information from a different frequency band present in the signal and is obtained in an iterative sifting
procedure. Other variants have been defined since the introduction of EMD, but they all share the
basic steps presented below. Let us suppose that we want to decompose a signal x(t) by means of
EMD. Then its decomposition will be calculated as follows:

1. Determine the local maxima and minima of the signal x(t).
2. Calculate the upper (lower) envelope by interpolating the local maxima (minima) points. The

interpolation can be carried out in different ways (linear interpolation, spline interpolation, etc.),
which could lead to slightly different results.

3. Calculate the local mean m(t) by averaging the upper and lower envelopes.
4. Calculate the first IMF candidate h1(t) = x(t)−m(t).
5. Checks whether candidate h1(t) meets the criteria to be an IMF:
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• If h1(t) meets the criteria, define the first IMF as c1(t) = h1(t).
• If h1(t) does not meet the criteria, set x(t) = h1(t) and repeat from step 1

The next IMF will be extracted using the same procedure on the signal r1(t) that remains after
subtracting the first IMF from the signal: r1(t) = x(t)− c1(t). The process stops when two consecutive
IMFs are (almost) identical and the empirical mode decomposition of the signal x(t) is written as:

x(t) =
n

∑
i=1

ci(t) + rn(t), (5)

indicating that the original signal x(t) has been decomposed in n IMFs plus a residual signal. This
residual signal captures the trend (or the mean) of the original signal.

2.5. Tensor Decomposition (TD)

Sometimes input data samples have a multidimensional structure or it is useful to arrange
one-dimensional signals into multidimensional arrays or tensors. For example, EEG signals are
simultaneously recorded with multiple sensors (electrodes) thus, for each subject, a (time × channel)
matrix is recorded. A natural way to construct a tensor for an EEG experiment is to use a third
dimension to index subject, which results in a three dimensional data tensor X ∈ RI1×I2×I3 , where
I1, I2, I3 correspond to numbers of time samples, channels (sensors) and subjects, respectively.

Matrix factorization models, such as PCA in Equation (3), can be generalized to tensors by means
of the Tucker(R1, R2, R3) decomposition [46]. Given a data tensor X ∈ RI1×I2×I3 , it can be decomposed
as:

X = G×1 A1 ×2 A2 ×3 A3 + R, (6)

where ×n is the mode-n tensor-by-matrix product. G ∈ RR1×R2×R3 is the core tensor and An ∈ RIn×Rn

are factor matrices (Figure 1e). As a particular case, when core tensor is diagonal with R = R1 =

R2 = R3 this model is reduced to the CANDECOMP/PARAFAC or CP(R) decomposition model
(see Figure 1f), which has demonstrated to be very useful in a wide range of applications [47,48]. It
is interesting to note that Equation (6) can be also written as a sum of rank-1 tensors as shown in
Figure 1h which, if vectorized, it is then reduced to our general decomposition model of Equation (2)
as follows:

x = ∑
i1,i2,i3

gi1i2i3 φi1i2i3 + r, (7)

where x = vec(X), r = vec(R), gi1i2i3 are coefficients and φi1i2i3 = ai3
3 ⊗ ai2

2 ⊗ ai3
3 with ai

n denoting the
i−column of matrix An.Tucker decomposition can provide data compression under two very different
model assumptions leading to the following cases:

Low-rank Tucker decomposition: when the core tensor is much smaller than the original, i.e.,
Rn � In [47,48] (see Figure 1e)

Sparse Tucker decomposition: when core tensor is of the same size or larger than tensor X but
it is sparse as illustrated in Figure 1g. In this case, by looking at Equation (7), we conclude that the
Sparse Tucker model corresponds to the classical Sparse Coding model of (4) with a dictionary that is
obtained as the Kronecker product of three mode dictionaries, i.e., Φ = A3 ⊗A2 ⊗A1 [49,50]. Mode
dictionaries can be chosen from classical sparsifying transforms such as wavelets, cosine transform
and others or, if enough data is available, they can be learned from a dataset, which usually provides
higher levels of sparsity and compression. A Kronecker dictionary learning algorithm was introduce
in [50] and later a variant with orthogonality constraints was proposed in [51].

2.6. Comparison of Methods for ML with Low-Quality Datasets

In Table 1, we summarize all the methods discussed in this paper and compare them in terms of
their main characteristics, shortcomings, advantages and main applications. A detailed reference to
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the sections of this article where each of the methods is presented and discussed is given. Furthermore,
main bibliographic references are indicated for each of the approaches.
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Table 1. Comparison of methods for Machine Learning (ML) problems with low-quality datasets. Article sections in which these methods are discussed are noted in
the first column and relevant references are included in the last column.

Method Characteristics Shortcomings Advantages Application References

Class preserving transforms
(sec. 1.1.1)

Ad-hoc; mostly images oriented but
some extensions to other types of
data were explored

Limited theory available;
difficult to apply to arbitrary
type datasets

Easy to use; widely available
in deep learning platforms Data augmentation [7–17]

Empirical Mode Decomposition
(EMD) based data generation
(secs. 2.4, 3.1.2, 3.1.3 and 3.2)

Ad-hoc; based on the manipulation
and recombination of Intrinsic Mode
Functions (IMFs);

Lack of theoretical ground
Easy to use; capture dataset
discriminative features;
denoising power

Electroencephalography (EEG)/
invasive EEG (iEEG) data
augmentation and denoising

[45,52–55]

Transform domain based data
generation (sec. 3.1.3)

Ad-hoc; based on the manipulation
and recombination of spectrum
domain components obtained by
Discrete Cosine Transform (DCT),
Wavelets, etc.

Lack of theoretical ground Easy to use; capture dataset
discriminative features iEEG data augmentation [45,52,53,56]

Statistical imputation (sec. 1.1.2)

Preprocessing step in ML; exploit
statistical properties of datasamples;
wide variety of methods, from
simple ones (mean) to more
sophisticated (regression, k-Nearest
Neighbor (kNN), Self Organization
Map (SOM), etc.)

Does not use the class label
information of data samples Computationally efficient ML with incomplete or

corrupted data [18–23]

Probabilistic modelling (sec. 1.1.2)

Gaussian Mixture Model (GMM) as
data model; Bayesian classification;
fitting model and classifiers in
an Expectation-Maximization (EM)
fashion; can be adapted to deep
neural networks

Computationally expensive
Incorporates class label
information of data samples;
elegant theoretical approach

ML with incomplete or
corrupted data [19,24,28]

Low-rank matrix completion
(sec. 1.1.2)

Based on Singular Value
Decomposition (SVD)

Computationally very
expensive; not suitable for
complex boundary functions

Incorporates class label
information of data samples

ML with incomplete or
corrupted data [25–27]

Tensor decomposition (TD) based
imputation (secs. 2.5, 3.1.1 and 3.3)

Preprocessing step in ML; based
on low-rank TDs (e.g., Tucker,
CANDECOMP/PARAFAC (CP),
etc.) or sparse TDs

Does not use the label
information of data samples

Exploits intricate
relationship among modes
in multidimensional data

ML with incomplete or
corrupted data [50,57–62]
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3. Results

This section illustrates the application of the methods discussed above and presents the results
obtained in the following selected case studies: brain signal classification with missing, corrupted
or small datasets (subsection 3.1); classification of noisy faces (subsection 3.2) and analysis of water
network data (subsection 3.3).

3.1. Brain Signal Classification

Brain signal activity can be recorded non-invasively by using, for example, electroencephalograpy
(EEG) or invasively through electrodes located in the brain (iEEG). Decoding brain activity have found
many applications in medicine and has great potential for the next generation of human-machine
communication technologies. In a Brain Computer Interface (BCI) application, a user generates specific
brain activity patterns that can be decoded by a machine learning algorithm. One popular paradigm
in BCI is Motor Imagery (MI), which states that the brain activity generated by a subject imagining
movement of one of their limbs for a few seconds activate areas in the motor cortex, which are similar
to those that are activated with real movements, thus this particular neural activity can be detected by
a machine learning algorithm (classifier).

3.1.1. BCI with Missing/Corrupted Measurements

In BCI applications, noisy or missing data can arise. This can occur due to the lack of connection
between wireless EEG headset and the computer, or because artifacts appear due to muscle movements,
eye movements or electromagnetic interference, among others. Since EEG measurements can be
organized as multidimensional datasets, in [57] a tensor completion approach was proposed, which
consists in fitting a tensor decomposition model to the available clean measurements and then infer
the noisy or missing parts based on those models (see Figure 2a). The advantage of using tensor
methods, compared to classical interpolation algorithms, lies in the ability of these models to handle
multidimensional information, in other words, they can capture the intricate relationship among
entries in a multidimensional signal. For example, to infer a missing entry in an EEG data tensor, these
methods can efficiently exploit the available information in other channels, time samples and trials.

unavailable entry

(c)

Ch
an
ne
l

Time

Tria
l

Detection of 
Missing / corrupted samples Mask generation Tensor completion

Classifier
training

Noisy entries Missing entries Entries to be estimated

3DPB-TC
BCPF
CP-WOPT

Interpolation
Perfect data

HaLRTC

50
60
70
80
90

Missing entries (%) Missing channels (%)

50
60
70
80
90

1 5 10 15 20 1 5 10 15 20

BCI Classification Performance (%) BCI Classification Performance (%)(b)

unavailable entry

(a)

Figure 2. Training a BCI classifier (LDA) with noisy/missing EEG measurements. (a) Preprocessing
steps: first, the positions in which the data is missed/corrupted are identified; then, a mask is created to
ignore values in those positions; and finally, the tensor model reconstructs the missing data. (b) Results
with randomly missing entries. (c) Results with random missing channels. (Figure adapted from [57]).

Several tensor decomposition models and tensor completion algorithms were compared on a
freely available dataset (http://mon.uvic.cat/data-signal-processing/software/) in [57], which are
based on the CP model of the whole tensor, such as the CP Weighted Optimization (CP-WOPT) [58],

http://mon.uvic.cat/data-signal-processing/software/
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the High accuracy Low Rank Tensor Completion (HaLRTC) [59] and the Bayesian CP factorization
(BCPF) for tensor completion [60]; and one method that uses the Sparse Tucker decomposition of
every 6× 6× 6 tensor patch (subtensors), the 3D Patch-based Tensor Completion (3DPB-TC) [50]. In
the latter case, a Kronecker dictionary was first learned from a clean EEG training dataset. For the
experiments with incomplete measurements, two different patterns of missing data were considered:
random missing entries, and random missing channels, as shown in Figure 2b,c, respectively. The
latter case, represent a realistic situation in which some electrodes are simultaneously disconnected
during a complete trial.

The performance of the tensor completion algorithms was compared, together with a simple
interpolation strategy as shown in Figure 2b,c. The classification accuracy of imagined movement in a
BCI experiment, using a Linear Discriminant Analysis (LDA) classifier, was evaluated in the perfect
case (no missing data) and with each one of the recovered missing data through the tensor completion
algorithms. Experimental results demonstrated that all tensor completion algorithms were able to
recover missing samples increasing the classification performance compared to a simple interpolation
approach, because tensor methods are able to exploit the multidimensional correlation of data. As
expected, the random missing samples was easier to reconstruct using the neighbour points, while the
random missing channels was more difficult because the amount information was missed in the same
neighbourhood (the same channel, in that case). Therefore, as experimentally demonstrated, tensor
completion algorithms could be used in real BCI data to avoid discarding noisy frames or frames with
missing data, and instead recover the missing data using that technique.

3.1.2. Efficient Data Augmentation for BCI

Small datasets are common in many EEG applications. This is especially the case when developing
systems for automatically detect some brain disease or brain injuries. Basically, because sometimes
it is not easy or just impossible to have enough patients from which to record EEG or iEEG signals.
MI-BCI systems for neurorehabilitation require a calibration step before being used. This is due to
the fact that the system needs a classifier which is particular for each subject and session because, for
example, the location of the electrodes in each session will never be exactly the same. The Common
Spatial Pattern (CSP) algorithm [63] is habitually used to extract features. This calibration step implies
recording several MI frames which will be used to extract the CSP filters and train the classifier. Each
frame is composed by the EEG recordings of a particular trial.

Since the quality of the classifier can be greatly improved by using a large number of frames
from each type of MI [63], it is habitual to record 100 or more frames, in total. Taking into account
that the MI paradigm can last about 10 seconds per frame, approximately a minimum of 16 minutes
will be employed in the recording session. Over that, the time needed to set up the EEG montage has
to be added.

A way to shorten the calibration time is by reducing the number of registered frames but
generating artificial ones to keep high the total number of frames. While available data augmentation
techniques are proved to be efficient to boost the training of neural networks and support vector
machines, they where developed mainly for image datasets, where natural transformations are croping
and rotations, for example. These type of transforms have no sense for EEG data and new methods for
data augmentation need to be developed. Methods based on signal decomposition and recombination
of its main components are a natural way to solve that issue. In [52], the authors developed, for the first
time, a method to generate artificial frames based on an EMD decomposition/combination strategy.
Starting from a real frame collection, a new artificial frame of a specific class is built as described in
Figure 3, comprising the following steps:

1. Randomly select N frames from the set of frames belonging to the selected class.
2. Decompose, using EMD, each one of the N frames, generating a set of IMFs per channel and

frame.
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3. Then, select the first IMF from the first selected frame (one per channel and keeping the same
position for each channel), the second IMF from the second selected frame, and successively until
the Nth frame, which contributes with its Nth IMF.

4. Add up all the IMFs corresponding to the same channel to build each new EEG channel of the
new artificial frame.

EEG(1)  =  IMF1(1)  +  IMF2(1)  +  IMF3(1)  +               +  res(1)  

EEG(2)  =  IMF1(2)  +  IMF2(2)  +  IMF3(2)  +               +  res(2)  

EEG(3)  =  IMF1(3)  +  IMF2(3)  +  IMF3(3)  +               +  res(3)  

EEG(N)  =  IMF1(N)  +  IMF2(N)  +  IMF3(N)  +               +  res(N)  

IMF1(1)
IMF2(2)
IMF3(3)
IMF4(4)

res(N)

+

(a)

(b)

artificial EEG

Figure 3. EEG data augmentation: (a) For each new EEG signal to be generated, N available EEG
signals are randomly selected and their EMDs are computed. (b) To generate an artificial EEG signal,
IMFs from different signals are combined.

Using this method, authors in [52] were able to diminish the amount of acquired data for the
calibration step in a BCI scenario while maintaining the performance. Specifically, they replaced
original frames with artificial frames and tested the behaviour of the classifier derived from the data.
Depending on the percentage of artificial frames in the data, they concluded that up to 50% of the
original frames could be replaced without affecting the classifier’s performance as it is presented in
Table 2. The performance of each classifier was validated trough the median absolute deviation (MAD)
method to detect outliers [64], and the dispersion ratio R was calculated as

R = |(x− x̃)/MAD|, (8)

where, for a set of measures, x̃ is the median value and x is the measure to be tested. In the experiments,
the error rate of the classifier was tested. Usually, if R < 3 the measure x is not considered to be an
outlier, i.e., this classifier had a similar behaviour even if a specific percentage of real frames was
replaced by artificial frames. We can see in Table 2 that four subjects (S01, S04, S05 and S07) have a value
of R < 2.0 for both left and right sides (motor imagery of left and right arm movement, respectively),
and only one subject, S02, had a value of R > 3.0 for the right side movement imagination.
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Table 2. Dispersion ratio R computed in seven subjects (S01-S07) with Equation (8) for right (R) and
left (L) classes at different levels of used artificial frames (AF). Results with R > 3 are highlighted in
red and with 2 < R < 3 in orange.

S01 S02 S03 S04 S05 S06 S07
AF(%) R L R L R L R L R L R L R L

2.5 0.12 0.67 0.22 0.64 0.58 1.27 0.32 0.31 0.32 0.27 0.33 0.64 0.34 0.69
5.0 0.05 1.03 0.82 0.56 1.11 1.02 0.46 0.45 0.18 0.35 0.47 0.83 0.01 0.63
7.5 0.29 0.88 1.03 0.07 1.06 1.51 0.51 0.51 0.00 0.02 1.17 1.49 0.46 0.62
10.0 0.37 1.13 0.99 0.11 1.19 1.75 0.80 0.46 0.38 0.08 1.04 1.66 0.49 0.84
12.5 0.24 0.94 1.42 0.04 1.89 1.86 1.00 0.44 0.46 0.27 0.87 1.52 0.40 0.85
25.0 0.09 1.44 2.79 0.44 2.13 1.94 1.28 0.61 0.96 0.78 0.71 2.09 0.51 1.28
37.5 0.11 1.55 3.12 0.41 1.97 2.01 1.20 0.69 1.07 1.18 0.57 2.66 0.73 1.92
50.0 0.15 1.45 2.86 1.00 2.18 2.68 1.27 1.06 1.42 1.23 0.62 2.76 0.73 1.86

Another application based on the same idea, but for deep neural network classifiers purposes,
was proposed in [53]. Here, the authors also used a BCI scenario to exemplify how the EMD
decomposition/recombination technique could be useful to create enough artificial data to train
a deep learning structure while avoiding overfitting. This is a very important application when
dealing with small datasets. If the classifier has many parameters, which is what happens in a deep
learning structure, the system can easily suffers from overfitting. The only way to reduce it is by
simplifying the classifier, hence, for example changing the deep learning structure for a more traditional
machine learning structure with few parameters, or increasing the amount of data. When data is
difficult to acquire or impossible for any reason (economical, practical, availability, etc.), the EMD
decomposition/recombination technique can be used to generate artificial data. This is what was
explored in [53]. In this work, a convolutional neural network and a wavelet neural network were
proposed to classify BCI data. To be able to train deep learning structures with few data, the method
described above was used as a data augmentation strategy. The authors showed experimentally that
the artificial EEG frames were useful to improve the training of neural networks.

3.1.3. Epileptic Focal Detection with Limited Data

Epilepsy is a general term for a condition that causes repetitive seizures caused by excessive
activity of neurons in the cerebrum, and such excessive activity is detected on EEG tests. Focal epilepsy,
in which a part of the brain becomes abnormally excited and causes seizures, may be reduced or
cured by removing the abnormally excited part of the brain (epileptogenic zone). Identification of the
epileptogenic area requires intracranial electroencephalography (iEEG), in which electrodes are placed
intracranially and measured, as well as brain imaging evaluation such as MRI.

The identification of the epileptogenic zone requires a long-term iEEG recording. Besides, the
number of clinical experts (epileptologist) is limited. Therefore, the automated identification of the
brain area of seizure onset of focal epilepsy (a.k.a automated focal identification) using interictal
(non-seizure) iEEG signals is in strong demand. However, clinical iEEG data usually stay in each
medical facility and cannot be in public, so that the amount of data available for training a machine
learning model is also limited. This situation brings the necessity of appropriate processing for a
small dataset.

A possible and straightforward way to cope with this problem is data augmentation. Two types
of approaches to the iEEG data augmentation have been proposed recently. The first method is to
augment data in the signal domain [54]. The second method is the data augmentation in the feature
domain [56]. Both methods work efficiently in identifying focal locations from interictal iEEG.

The data augmentation in the signal domain applies orthogonal transforms such as the discrete
Fourier transform, the discrete cosine transform (DCT), and the discrete wavelet transform (DFT)
to the raw iEEG signal, and then the transform coefficients are shuffled across multiple epochs (or
segments). Zhao et al. constructed an efficient and sophisticated method for the data augmentation
based on the DCT [54] and applied to the Bern-Barcelona dataset [65], which is a well-known dataset
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consisting of epileptic iEEG signal at focal and non-focal locations. The steps to increase the number of
samples are summarized as follows:

1. Randomly choose seven iEEG signals from the dataset and apply the DCT to obtain the spectrum.
2. Segment the spectrum into the seven physiological frequency bands (Delta: 0–4 Hz, Theta: 4–8

Hz, Alpha: 8–13 Hz, Beta: 13–30 Hz, Gamma: 30–80 Hz, Ripple: 80–150 Hz, and Fast Ripple:
150–Nyquist Hz), extract one frequency band of each of the decompositions, from lowest to
highest frequencies, and merge the seven extracted components (frequency bands) to create a
new artificial spectrum. For example, we can extract the delta, the theta, the alpha, the gamma,
the ripple, and the fast ripple from the first, the second, the third, the fourth, the fifth, the sixth,
and the seventh signal, respectively.

3. Apply the inverse DCT to the artificial spectrum in the frequency domain to obtain an artificial
signal in the time-domain.

This is illustrated in Figure 4. The above procedure should be applied to focal and non-focal
signals separately. Since this approach to the data augmentation increases the number of samples in
the signal-domain, it may be suitable for deep learning-based techniques. In the work [54], the authors
successfully applied this data augmentation for a convolutional neural network to identify the focal
signals. The data augmentation strategy demonstrated to be useful: using 20% of available real data
plus artificial data, the classifier was able to improve its accuracy results to 83.91%, compared to 81.52%
obtained using only real data.

…

DCT

inverse DCT

Time domain
Spectrum domain

Time domain

EEG Signals
(a) (b)

(c)

delta

theta

alpha

beta

gamma

ripple

f. ripple

Figure 4. An artificial signal generation with the DCT. (a) Seven intracranial iEEG signals at either focal
or non-focal area. (b) DCT coefficients in the spectrum-domain. The spectra are segmented into seven
physiological sub-bands, and the sub-band components extracted from each spectrum are merged to
create an artificial spectrum. (c) The inverse DCT leads to the resulting artificial signal.

The other approach to data augmentation is a method in the feature-domain. Most of the
classification methods for epileptic EEG signals typically extract features from the raw signals. In
general, a conventional yet effective classifier, such as an SVM, requires fewer samples than a deep
neural network. Thus, increasing the number of samples in the feature-domain is a strategy to balance
positive and negative samples. In the case of epileptic iEEG data, positive (focal) samples are much
fewer than negative samples, and this imbalance data can deteriorate the performance of classification
accuracy. Akter et al. [56] successfully applied data augmentation based on an adaptive synthetic
oversampling approach (ADASYN) [66] to balance an in-hospital dataset of epileptic interictal iEEG
signals to identify the seizure onset zones automatically.
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3.2. Classification of Noisy Faces

Working with noisy data is a challenge and generates many problems when developing
classification systems. Denoising algorithms have to be applied before deriving the classifier and /or
when using it. This can be the case in image processing, in which noise can corrupt the image. In an
image recognition or verification system, noise could make the task difficult inducing more errors.
This is why robust to noise systems are needed. To this end, several strategies can be implemented, for
example using classical filters such as a Gaussian [67], bilateral [68], arithmetic [69], median [70] or
Wiener filters [71]. However, all of these filters are good in some situations or type of noise, but not
good enough in others.

To overcome that issue, a denoising technique based on an empirical mode decomposition with
Green’s functions was proposed in [55]. The system uses the capability of the bi-dimensional EMD
decomposition to capture (almost all of) the noise in the first IMFs. Therefore, the noisy images are
decomposed using a bi-dimensional EMD algorithm, then the first modes are eliminated and the
rest of the modes are summed up together to recover the remaining image, almost without noise. In
this specific work, the bi-dimensional EMD algorithm was the Green’s function in tension BEMD
(GiT-BEMD) which uses Green’s functions to interpolate the surface of the images [72].

The method used in [55] is depicted in Figure 5, in which we can see that the image is decomposed
by means of the GiT-BEMD algorithm, the first IMF is discarded, the image is later reconstructed
without the contribution of the noise and used to feed a classifier.

+ + + +=

Noisy
image
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Image
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Figure 5. (a) The new proposed approach to eliminate the noise and improve the classification accuracy
is based on the GiT-BEMD decomposition. The high frequency IMFs are discarded and the (noiseless)
image is reconstructed by summing up the rest of the modes. This is the image that will feed the
classifier. (b) Comparison of classification results using a Support Vector Machine (SVM) and K-Nearest
Neighbor (kNN) classifiers applied to noisy, filtered faces (Gaussian, Mean, Median) and GiT-BEMD
processed faces.

Experiments were carried out using several type of noise (Gaussian, Uniform, Laplacian and
Speckle) and at several levels (SNR from 20dB to −6dB). The classification accuracy was compared
to the ones obtained with classical filters (the ones named before). Classical filters were able to keep
good performance when SNR > 3dB, but they started to fail in much noisy scenarios, corresponding
to 3dB > SNR > −6dB. The proposed method was able to maintain the same level of performance in
all the ranges, from almost noise-free images (SNR = 20dB) to highly noisy images (SNR = −6dB).
Similar results occurred in the verification case, in which the Equal Error Rate (EER) were reported to
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evaluate the results. Independently of the type of classifier used (SVM or k-NN), GiT-BEMD method
obtained the lowest EER.

Finally, it is interesting to note that the method is efficient for any type of noise and under high
levels of it, and is transparent to the user, hence simple to apply. There are no parameters to tune
because the GiT-BEMD algorithm is data-driven, and the IMFs of the images are obtained automatically.
Bidimensional EMD algorithms, and specially GiT-BEMD algorithm, are able to decompose images in
several IMFs, capturing the noise in the first IMF, which allows for training a classification system that
is robust to noisy scenarios.

3.3. Scada Data Completion in Water Networks

In industrial applications, usually having a Supervisory Control And Data Acquisition (SCADA)
system collecting data, is habitual to have missing values due to several problems (sensor failures,
communication loss, etc.). In this scenario, tensor completion algorithms can be used to reconstruct
missing data providing a better alternative compared to classical interpolation methods. Because of the
cyclic behaviour of data consumption, a tensor structure can be defined considering time scales (days
and weeks). The redundancy present into the data is exploited by the tensor completion algorithms,
allowing to recover missing data with greater accuracy outperforming classical interpolation or filtering
methods.

Drinking water network distribution enterprises usually have a SCADA system which manages
the information collected by flow-meters, manometers, level sensors, valves, pumps, etc. By accessing
to this centralized dataset, they are able to manage and optimize the operation of the water network.

One of the major problems involved in managing long term SCADA data is to deal with the loss
of bursts of data due to sensor failures, sensor re-calibrations, or communication failures that take time
to be repaired and therefore cause the loss of entire bursts of data. Completing the data lost in bursts
remains a difficult task, and most data completion methods that work fairly well when data are lost
more or less evenly distributed over time, collapse in that situation.

Water network data completion was investigated in [61,62]. For this application, authors used
data coming from the drinking water network distribution enterprise named Aigües de Vic S.A.
(AVSA) which is the responsible for the water supply of the city of Vic, in Catalonia, where the
heterogeneous data from the SCADA system are stored every 5 minutes in Structured Query Language
(SQL) databases. To explore how tensor completion methods would behave in this scenario, a block
of 77 consecutive weeks of data was selected. Then, some parts of the data were deleted to simulate
missing burst. The Mean Square Error (MSE) per sample was used as a measure to check the accuracy
of the reconstructed data

In [61], besides of taking advantage of the classical methods, an additional improvement was
achieved by performing a tensorization of the data and applying tensor decomposition to recover
missing data. This tensorization operation is illustrated in Figure 6.

In [62], a new approach was developed that improved the performance of the previous method
by performing two concatenated tensor decompositions. The new approach has several steps. The first
step, consisted of applying a smoothing process to the signal to avoid oscillations between adjacent
discrete values eventually produced around the point of quantification. The second step consisted of
using a very rough imputation method (linear interpolation). After this operation, no empty values
were present. Then tensorization that places the original burst positions precisely in the central
positions, the burst centered tensorization, was performed (Figure 6a). The tensor obtained was used
to make a low-rank tensor model to capture the background trend of the missing burst. The data of
the low-rank model in the burst positions obtained was offset corrected and burst-centred again in
a new tensor which was used to find a most refined model by employing more modes in a second
tensor approximation. The samples x̂i occupying the positions of the burst were retrieved, offset
corrected and became the output of the algorithm. The concatenated decompositions that optimize
the results independently of the length of the burst to recover were the Tuker(4,6,1) followed by the
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Tuker(4,7,7) when using the Tucker model, and the CP(1) followed by the CP(15) when using the
CANDECOMP/PARAFAC model. Table 3 shows a comparison between the best classical algorithm
tested, the one based on the combination of forward and backward predictors, the singleDecomp [61]
and the doubleDecomp [62] algorithms. TK (Tucker) and CP (CANDECOMP/PARAFAC) indicate the
decomposition model used by the algorithms. The comparison is carried out considering two tensor
dimensions and two lengths of lost bursts.
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Figure 6. Data tensorization of a 3 week tensor with 200 samples of lost data bursts. In (a) the green line
shows the original data, and the red line shows the lost burst. The soft blue window shows the data
introduced in burst-centered tensor, which forces the burst to be in the center of the window. Panels (b)
shows how the continuous flow of data in the soft blue window is fragmented to be allocated in the
tensor as shown in panel (c).

Table 3. Algorithms’ performance in terms of the MSE per sample.

Method Weeks MSE/Sample
Burst Length = 100 Burst Length = 200

Forward & Backward Predictors - 1.11 2.23
SingleDecomp—CP 3 0.87 1.78
SingleDecomp—CP 7 0.80 1.58
SingleDecomp—TK 3 0.80 1.43
SingleDecomp—TK 7 0.71 1.28
DoubleDecomp—CP 3 0.55 1.05
DoubleDecomp—CP 7 0.52 1.02
DoubleDecomp—TK 3 0.55 1.04
DoubleDecomp—TK 7 0.50 0.97
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4. Conclusions and Discussion

Machine learning methods were typically designed by assuming that training data is perfect
and of infinite size. However, in real life, machine learning practitioners need to deal with imperfect
training data or datasets of limited size. To alleviate the problem of incomplete/corrupted datasets or
to increase the size of a training dataset, it is necessary to use powerful data models that can capture
the essential features of the dataset. In this article, a unifying introduction to signal decomposition
methods is presented, which are available in different flavors but sharing a common property: every
signal in a dataset (sample) can be written as a linear combination of elementary, simpler components.

The main idea behind the reviewed decomposition models is that they are able to be learned
from a limited or low-quality dataset. Once the right model for the dataset of interest is learned
from the available samples, one can use it for different tasks: (1) to complete missing entries in data
samples, (2) to compensate distortions or eliminate noise in data samples, and (3) to artificially create
class-preserving new data samples.

We have demonstrated that low-rank, sparse coding and EMD decomposition methods are
excellent candidates for models that can capture essential information of a dataset. All these methods
can be applied to vector as well as to tensor datasets. However, some issues remain and there is space
for improvement in future research. For example:

• The decomposition methods reviewed in this work for imputation of missing/corrupted values
do not exploit the class label information in a supervised learning scenario. A possible further
improvement of current methods is to incorporate label information into the decomposition
models. We believe that missing data values could be better recovered if the class label of the
corresponding data sample is known.

• EMD based data augmentation was developed in an ad-hoc fashion. We believe that more
theoretical insights could be explored allowing future improvements, for example, by re-designing
the way that IMFs are calculated in order to produce class-preserving artificial samples.

This review article illustrates the application of a variety decomposition methods to vector and
tensor datasets in a wide range of technological areas including: classification of brain signals (EEG
and iEEG), identification of face images and analysis of water network data. While this represents a
non-exhaustive review of existing methods and applications of machine learning with low-quality
datasets, we believe that it can be a useful reference for machine learning practitioners who are
normally faced with incomplete, noisy or small datasets, and can inspire new methods to address
these fundamental problems.
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