72 research outputs found

    Reversed-Trellis Tail-Biting Convolutional Code (RT-TBCC) Decoder Architecture Design for LTE

    Get PDF
    Tail-biting convolutional codes (TBCC) have been extensively applied in communication systems. This method is implemented by replacing the fixed-tail with tail-biting data. This concept is needed to achieve an effective decoding computation. Unfortunately, it makes the decoding computation becomes more complex. Hence, several algorithms have been developed to overcome this issue in which most of them are implemented iteratively with uncertain number of iteration. In this paper, we propose a VLSI architecture to implement our proposed reversed-trellis TBCC (RT-TBCC) algorithm. This algorithm is designed by modifying direct-terminating maximum-likelihood (ML) decoding process to achieve better correction rate. The purpose is to offer an alternative solution for tail-biting convolutional code decoding process with less number of computation compared to the existing solution. The proposed architecture has been evaluated for LTE standard and it significantly reduces the computational time and resources compared to the existing direct-terminating ML decoder. For evaluations on functionality and Bit Error Rate (BER) analysis, several simulations, System-on-Chip (SoC) implementation and synthesis in FPGA are performed

    Low Power Decoding Circuits for Ultra Portable Devices

    Get PDF
    A wide spread of existing and emerging battery driven wireless devices do not necessarily demand high data rates. Rather, ultra low power, portability and low cost are the most desired characteristics. Examples of such applications are wireless sensor networks (WSN), body area networks (BAN), and a variety of medical implants and health-care aids. Being small, cheap and low power for the individual transceiver nodes, let those to be used in abundance in remote places, where access for maintenance or recharging the battery is limited. In such scenarios, the lifetime of the battery, in most cases, determines the lifetime of the individual nodes. Therefore, energy consumption has to be so low that the nodes remain operational for an extended period of time, even up to a few years. It is known that using error correcting codes (ECC) in a wireless link can potentially help to reduce the transmit power considerably. However, the power consumption of the coding-decoding hardware itself is critical in an ultra low power transceiver node. Power and silicon area overhead of coding-decoding circuitry needs to be kept at a minimum in the total energy and cost budget of the transceiver node. In this thesis, low power approaches in decoding circuits in the framework of the mentioned applications and use cases are investigated. The presented work is based on the 65nm CMOS technology and is structured in four parts as follows: In the first part, goals and objectives, background theory and fundamentals of the presented work is introduced. Also, the ECC block in coordination with its surrounding environment, a low power receiver chain, is presented. Designing and implementing an ultra low power and low cost wireless transceiver node introduces challenges that requires special considerations at various levels of abstraction. Similarly, a competitive solution often occurs after a conclusive design space exploration. The proposed decoder circuits in the following parts are designed to be embedded in the low power receiver chain, that is introduced in the first part. Second part, explores analog decoding method and its capabilities to be embedded in a compact and low power transceiver node. Analog decod- ing method has been theoretically introduced over a decade ago that followed with early proof of concept circuits that promised it to be a feasible low power solution. Still, with the increased popularity of low power sensor networks, it has not been clear how an analog decoding approach performs in terms of power, silicon area, data rate and integrity of calculations in recent technologies and for low data rates. Ultra low power budget, small size requirement and more relaxed demands on data rates suggests a decoding circuit with limited complexity. Therefore, the four-state (7,5) codes are considered for hardware implementation. Simulations to chose the critical design factors are presented. Consequently, to evaluate critical specifications of the decoding circuit, three versions of analog decoding circuit with different transistor dimensions fabricated. The measurements results reveal different trade-off possibilities as well as the potentials and limitations of the analog decoding approach for the target applications. Measurements seem to be crucial, since the available computer-aided design (CAD) tools provide limited assistance and precision, given the amount of calculations and parameters that has to be included in the simulations. The largest analog decoding core (AD1) takes 0.104mm2 on silicon and the other two (AD2 and AD3) take 0.035mm2 and 0.015mm2, respectively. Consequently, coding gain in trade-off with silicon area and throughput is presented. The analog decoders operate with 0.8V supply. The achieved coding gain is 2.3 dB at bit error rates (BER)=0.001 and 10 pico-Joules per bit (pJ/b) energy efficiency is reached at 2 Mbps. Third part of this thesis, proposes an alternative low power digital decoding approach for the same codes. The desired compact and low power goal has been pursued by designing an equivalent digital decoding circuit that is fabricated in 65nm CMOS technology and operates in low voltage (near-threshold) region. The architecture of the design is optimized in system and circuit levels to propose a competitive digital alternative. Similarly, critical specifications of the decoder in terms of power, area, data rate (speed) and integrity are reported according to the measurements. The digital implementation with 0.11mm2 area, consumes minimum energy at 0.32V supply which gives 9 pJ/b energy efficiency at 125 kb/s and 2.9 dB coding gain at BER=0.001. The forth and last part, compares the proposed design alternatives based on the fabricated chips and the results attained from the measurements to conclude the most suitable solution for the considered target applications. Advantages and disadvantages of both approaches are discussed. Possible extensions of this work is introduced as future work

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Configurable and Scalable High Throughput Turbo Decoder Architecture for Multiple 4GWireless Standards

    Get PDF
    In this paper, we propose a novel multi-code turbo decoder architecture for 4G wireless systems. To support various 4G standards, a configurable multi-mode MAP (maximum a posteriori) decoder is designed for both binary and duo-binary turbo codes with small resource overhead (less than 10%) compared to the single-mode architecture. To achieve high data rates in 4G, we present a parallel turbo decoder architecture with scalable parallelism tailored to the given throughput requirements. High-level parallelism is achieved by employing contention-free interleavers. Multi-banked memory structure and routing network among memories and MAP decoders are designed to operate at full speed with parallel interleavers. We designed a very low-complexity recursive on-line address generator supporting multiple interleaving patterns, which avoids the interleaver address memory. Design trade-offs in terms of area and power efficiency are explored to find the optimal architectures. A 711 Mbps data rate is feasible with 32 Radix-4 MAP decoders running at 200 MHz clock rate.Texas Instruments Incorporate

    Comparison between Different Channel Coding Techniques for IEEE 802.11be within Factory Automation Scenarios

    Get PDF
    This paper presents improvements in the physical layer reliability of the IEEE 802.11be standard. Most wireless system proposals do not fulfill the stringent requirements of Factory Automation use cases. The harsh propagation features of industrial environments usually require time retransmission techniques to guarantee link reliability. At the same time, retransmissions compromise latency. IEEE 802.11be, the upcoming WLAN standard, is being considered for Factory Automation (FA) communications. 802.11be addresses specifically latency and reliability difficulties, typical in the previous 802.11 standards. This paper evaluates different channel coding techniques potentially applicable in IEEE 802.11be. The methods suggested here are the following: WLAN LDPC, WLAN Convolutional Codes (CC), New Radio (NR) Polar, and Long Term Evolution (LTE)-based Turbo Codes. The tests consider an IEEE 802.11be prototype under the Additive White Gaussian Noise (AWGN) channel and industrial channel models. The results suggest that the best performing codes in factory automation cases are the WLAN LDPCs and New Radio Polar Codes.This work was supported in part by the Basque Government under Grant IT1234-19, in part by the PREDOC under Grant PRE2019_099407, and in part by the Spanish Government through project PHANTOM (MCIU/AEI/FEDER, UE) under Grant RTI2018-099162-B-I00

    Double binary turbo codes analysis and decoder implementation

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 60-61.Classical Turbo Code presented in 1993 by Berrau et al. received great attention due to its near Shannon Limit decoding performance. Double Binary Circular Turbo Code is an improvement on Classical Turbo Code and widely used in today’s communication standards, such as IEEE 802.16 (WIMAX) and DVBRSC. Compared to Classical Turbo Codes, DB-CTC has better error-correcting capability but more computational complexity for the decoder scheme. In this work, various methods, offered to decrease the computational complexity and memory requirements of DB-CTC decoder in the literature, are analyzed to find the optimum solution for the FPGA implementation of the decoder. IEEE 802.16 standard is taken into account for all simulations presented in this work and different simulations are performed according to the specifications given in the standard. An efficient DB-CTC decoder is implemented on an FPGA board and compared with other implementations in the literature.Yılmaz, ÖzlemM.S

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF

    Energy-efficient design and implementation of turbo codes for wireless sensor network

    No full text
    The objective of this thesis is to apply near Shannon limit Error-Correcting Codes (ECCs), particularly the turbo-like codes, to energy-constrained wireless devices, for the purpose of extending their lifetime. Conventionally, sophisticated ECCs are applied to applications, such as mobile telephone networks or satellite television networks, to facilitate long range and high throughput wireless communication. For low power applications, such as Wireless Sensor Networks (WSNs), these ECCs were considered due to their high decoder complexities. In particular, the energy efficiency of the sensor nodes in WSNs is one of the most important factors in their design. The processing energy consumption required by high complexity ECCs decoders is a significant drawback, which impacts upon the overall energy consumption of the system. However, as Integrated Circuit (IC) processing technology is scaled down, the processing energy consumed by hardware resources reduces exponentially. As a result, near Shannon limit ECCs have recently begun to be considered for use in WSNs to reduce the transmission energy consumption [1,2]. However, to ensure that the transmission energy consumption reduction granted by the employed ECC makes a positive improvement on the overall energy efficiency of the system, the processing energy consumption must still be carefully considered.The main subject of this thesis is to optimise the design of turbo codes at both an algorithmic and a hardware implementation level for WSN scenarios. The communication requirements of the target WSN applications, such as communication distance, channel throughput, network scale, transmission frequency, network topology, etc, are investigated. Those requirements are important factors for designing a channel coding system. Especially when energy resources are limited, the trade-off between the requirements placed on different parameters must be carefully considered, in order to minimise the overall energy consumption. Moreover, based on this investigation, the advantages of employing near Shannon limit ECCs in WSNs are discussed. Low complexity and energy-efficient hardware implementations of the ECC decoders are essential for the target applications

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF
    corecore