
Reconfigurable Architectures for
Beyond 3G Wireless Communication

Systems

Cheng Zhan

A thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh.
August 2007

Abstract
Market requirements always influence the semiconductor industry. The coexistence of multiple

standards, which exhibit distinct mobility and data rates, makes that a flexible convergence

of current wireless standards and services is expected from beyond 3G systems. However,

this trend needs a strong demand for underlying hardware architectures to achieve

unprecedented performance, flexibility, low power consumption and time-to-market

requirements.

Since forward error correction algorithms demand the most computational cost of the whole

physical layer system, this thesis employs two forward error correction cases, \literbi

decoder and double binary circular Turbo decoder, to investigate three potential

reconuigurable hardware architectures for beyond 3G wireless communication system.

Firstly, a domain specific reconfigurable Viterbi decoder fabric is introduced, which can

support multiple Viterbi decoders with different constraint lengths and code rates. In addition,

it also provides near ASIC performance in terms of power consumption and area. In order to

further reduce the design and verification cost of this domain specific reconfigurable design,

Chapter 4 presents another reconfigurable architecture which can be automatically generated

and programmed by its associated CAD framework. Composed of heterogeneous

coarse-grained processing units and a 2-D interconnection mesh, this reconfigurable

architecture demonstrates significant power and area savings as compared with commercial

FPGAS. RICA, reconfigurable instruction cell array, which is a dynamic reconfigurable

architecture programmed by ANSI C, has been developed as a feasible solution for future

wireless and multimedia applications. In Chapter 5, several advanced optimization

approaches are proposed to efficiently implement the Viterbi decoder on RICA architecture.

Furthermore, Chapter 6 and Chapter 7 demonstrate the implementation of a more complex

application, double binary circular Turbo decoder. In Chapter 6, a system model is build to

investigate the suitable decoding algorithm which can balance the decoding throughput and

performance degradation. On the other hand, appropriate quantization scheme for the

decoding implementation is devised based on a bit-true model. Finally, an optimized double

binary circular Turbo decoder which can provide scalable decoding throughput is

demonstrated on the RICA architecture.

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed

and originated entirely by myself in the School of Engineering and Electronics at The

University of Edinburgh, except when otherwise stated.

0

Cheng Zhan

11

Acknowledgments

The work described in this thesis could not have been accomplished without the help and

support of others. Foremost, I would like to thank my research advisor Professor Tughrul

Arslan for his guidance and support during the past three years. The vision, infrastructure,

and resources you provided have been truly extraordinary. I am especially grateful to you,

along with Dr. lain Lindsay, for provide helpful comments on my research works. I would

like to thanks Dr. John S Thompson for helping me to better understand many aspects of

digital communication scenario. I would like to thank Dr. Ahmet T. Erdogan for teaching me

how to use CAD tools, being so patient and helping whenever I had a problem with

hardware design.

I would especially like to thank the following group members: Sami Khawam, Mark

Milward, loannis Nousias, Yi Ying, Mark Muir, Zahid Khan, Shantnu Tiwari, Nazish Aslam.

Thanks Sami for his helpful discussions on the reconfigurable architecture and design

methodology. Thanks also to Mark Milward, loannis Nousias, Yi Ying and Mark Muir for

their CAD tools, much help in preparing my thesis. Thanks Zahid Khan, Shantnu Tiwari and

Nazish Aslam for their suggestions and cooperation on Wimax and DVB-T/H physical layer

implementation.

I would also like to thank the fellow members of the system level integration group, also

known as SLI group: Robert Graham, Evangelos F. Stefatos, David Fung, Zhenyu Liu,

Adeoye Olugbon, Sajid Baloch, Imran Ahmed, Han Wei and Jong Hun Han. Thanks for

their inputs and discussions on the digital circuit and system level designs.

I special appreciate Institute of Integrated Micro and Nano Systems and Spiral Gateway Ltd.

sponsoring my PhD study and giving me a chance to fulfill my life goal.

Finally, I would like to express my deepest appreciation for my Father and Mother. Your

unconditional love and continual encouragement have been a source of strength without

which I would have never gotten to where I am today. I dedicate this work to you with all

my love.

III

Table of Contents

Chapter1: Introduction .. 1

	

1 .1 	Motivation ..1

	

1.2 	Objective ..4

	

1.3 	Major contributions ..4

	

1.4 	Structure of this dissertation... 5

Chapter 2: Background ...7
2.1 	Digital Communication System..8
2.2 	Channel coding...9
2.3 	Convolutional Encoder... 10

2.3.1 	Finite state machine and the trellis representation.. 12
2.4 	Viterbi decoding algorithm... 14
2.5 	Viterbi decoder architecture.. 15

2.5.1 	Branch Metric Unit (BMU).. 15
2.5.1.1 	Hard decision... 16
2.5.1.2 	Soft decision .. 16

2.5.2 	Add-Compare-Select Unit (ACSU).. 17
2.5.2.1 	Butterfly Unit... 17
2.5.2.2 	Normalization.. 18
2.5.2.3 	Parallel and partial parallel ACSU... 19

2.5.3 	Survivor Management Unit (SMU).. 20
2.5.3.1 	REA... 20
2.5.3.2 	TBA ... 20
2.5.3.3 	Sliding window.. 21
2.5.3.4 	Memory arrangement .. 22

2.6 	Programmable/Reconfigurable Viterbi decoder implementation 24
2.6.1 	VLIW DSP ... 24

2.6.1.1 	Viterbi decoder on VL1W DSP.. 24
2.7 	Reconfigurable Viterbi decoder implementation.. 25

2.7.1 	Domain Specific Reconfigurable Viterbi Decoder Implementation............. 26
2.7.2 	Viterbi decoder on generic reconfigurable architectures.............................. 27

2.7.2.1 	Fine-grained Reconfigurable Architecture... 28
2.7.2.2 	Coarse-grained Reconfigurable Architecture... 29

2.8 	Turbo coding... 35
2.8.1 	Turbo encoder... 25
2.8.2 	Turbo decoder... 36

2.9 	Conclusion.. 37

Chapter 3: Reconfigurable Viterbi Decoder Architecture I 38
3.1 	Reconfigurable Viterbi decoder architecture.. 40

3.1.1 	Reconfigurable BMU ... 40
3.1.2 	Reconfigurable ACSU.. 42

3.1.2.1 	Routes for branch metrics.. 43
3.1.2.2 	Routes for path metrics.. 44
3.1.2.3 	Routes for survivor bits ... 44
3.1.2.4 	Low power strategy ... 45

3.1.3 	Reconfigurable SMU.. 46
3.1.3.1 	Reconflgurable RAM .. 46
3.1.3.2 	Reconfigurable trace back logic block... 48

3.1.4 	Decoder output UFO .. 48

Iv

	

3.1.5 	Configuration memory 	 .49

	

3.2 	Performance comparisons...49

	

3.2.1 	Design flow ..49

	

3.2.2 	Power consumption .. 52

	

3.2.3 	Area comparison...53

	

3.2.4 	Comparison with other state-of-the-art works.. 55

	

3.3 	Conclusion ... 56

Chapter 4: Reconfigurable Viterbi Decoder Architecture II58
4.1 	Domain specific reconfigurable architecture overview.. 59

4.1.1 	Processing unit (PU)... 60
4.1.2 Interconnection mesh... 61

4.1.2.1 	C-box architecture ... 61
4.1.2.2 	S-box architecture.. 62

4.2 	Design tool flow... 63
4.2.1 	Array generation... 63
4.2.2 	Array programming.. 64
4.2.3 	Array verification ... 65

4.3 	Viterbi decoder implementation on the proposed array architecture.................... 65
4.3.1 	Processing unit.. 65

4.3.1.1 	Processing core for BMU .. 66
4.3.1.2 	Processing core for ACSU... 66
4.3.1.3 	Processing core for RAM .. 67
4.3.1.4 	Processing core for traceback and LIFO.. 69

4.3.2 	PUs arrangement for the Viterbi decoder domain... 69
4.4 	Performance and comparisons.. 70

4.4.1 	Area comparison... 71
4.4.2 	Power consumption comparison... 72
4.4.3 	Overhead measurement .. 73

4.4.3.1 	Area overhead.. 74
4.4.3.2 	Power overhead ... 74

4.5 	Conclusion.. 76

Chapter 5: Implementation of the Viterbi Decoder on the Reconfigurable
InstructionCells Array Platform .. 77

5.1 RICA architecture and tool flow... 78
5.1.1 	Compiler... 79
5.1.2 	Scheduler.. 79
5.1.3 	Backend simulator.. 79

5.2 Implementation of the Viterbi decoder on RICA.. 79
5.2.1 	Branch metric computation... 80
5.2.2 	Path Metric Computation.. 80
5.2.3 	Traceback Operation... 82

5.3 Performance of Viterbi decoder on RICA.. 83
5.4 Advanced implementation and optimization for the Viterbi decoder................... 84

5.4.1 	SIMD based RICA.. 85
5.4.2 	Custom Function Cells ... 86

5.4.2.1 	Modulo comparison... 86
5.4.2.2 	Traceback instruction cell.. 88

5.4.3 	Software pipelining .. 89
5.5 Performance of the Viterbi decoder on an advanced RICA platform................... 91
5.6 Conclusion.. 93

V

Chapter 6: M-binary Circular Turbo Decoder and its Application 95
6.1 	M-binary Circular Turbo encoder...96

6.1.1 	M-binary recursive systematic convolutional encoder.................................96
6.1.2 	Circular Turbo encoder...97

6.2 	M-binary Circular Turbo decoder...98
6.2.1 	MAY algorithm for M-binary Turbo codes...98

6.2.1.1 	Mathematic model for single MAP decoder..98
6.2.1.2 	Mathematic Model for an iterative Turbo decoder.............................. 100

6.2.2 	Simplifying the MAP algorithm with theMAX* approximations 101
6.2.2.1 	Log-domain MAP ... 102
6.2.2.2 	Log-MAP algorithm .. 103
6.2.2.3 	Constant-log-MAP algorithm .. 103
6.2.2.4 	Linear-log-MAP algorithm.. 103
6.2.2.5 	MAX-Log-MAP Algorithm... 104

6.2.3 	Metric Initialization for Circular Turbo Code... 105
6.3 	Application of M-binary circular Turbo codes... 106

6.3.1 	Double binary circular Turbo encoder.. 107
6.3.2 	Double binary circular decoder architecture... 107
6.3.3 	Decoding performance comparison.. 108

6.3.3.1 	Initialization approaches.. 108
6.3.3.2 	MAP decoder algorithms... 110

6.4 	Conclusion.. 113

Chapter 7: Implementation of Double Binary Circular Turbo Decoder on RICA
Platform. .. 114

7.1 	Implementation bottleneck of a MAP decoder... 115
7.2 	Parallel MAP decoder algorithm .. 117

7.2.1 	Data dependence... 117
7.2.2 	Sliding window MAP decoder .. 118

7.2.2.1 	One-side sliding window... 118
7.2.2.2 	Two-side sliding window... 119
7.2.2.3 	Enhanced two-side sliding window .. 120

7.2.3 	Comparison amongst sliding window schemes.. 121
7.2.3.1 	Computational cost.. 122
7.2.3.2 	Performance comparison... 123

7.3 	Fixed-point MAP decoder .. 126
7.3.1 	Quantization of input signals.. 127
7.3.2 	Quantization of extrinsic information... 128
7.3.3 	Quantization on internal metrics... 128

7.4 	Implementation of a MAP decoder on RICA architecture.................................. 129
7.4.1 	Branch metric computation 129
7.4.2 	Forward and backward metric computations.. 130
7.4.3 	Extrinsic information computation... 133

7.5 	Performance and Results.. 135
7.6 	Conclusion.. 136

Chapter 8: Conclusion and Future Works...138

	

8.1 	Research Summarize ..138

	

8.2 	Specific Findings ... 140

	

8.3 	Directions for further research..141

itppendi .x. .. 143
References .. 146

VT

List offigures

Figure 1.1 4G wireless communication standards 	..2
Figure 2.1 Digital communication system.. 8
Figure 2.2 Constraint length 3, code rate 1/2 convolutional encoder................................... 11
Figure 2.3 State transition diagram for convolutional encoder... 13
Figure2.4 Trellis diagram .. 13
Figure 2.5 Path update following the trellis diagram ... 15
Figure 2.6 Diagram of Viterbi decoder architecture... 15
Figure2.7 Butterfly Unit.. 17
Figure 2.8 Rescaling approach for normalization .. .18
Figure 2.9 TBA with sliding window... 21
Figure 2.10 Operation of sliding window scheme with four memory banks........................ 23
Figure 2.11 Categories of reconfigurable architectures.. 26
Figure 2.12 Fine-grained FPGA architecture.. 28
Figure 2.13 Routing resource of FPGA 29
Figure 2.14 Architecture of MONTIUM.. 30
Figure 2.15 Architecture of MorphoSys... 31
Figure 2.16 Architecture of Silicon Hive processor... 33
Figure 2.17 Architecture of TTA.. 34
Figure 2.18 Classical Turbo encoder.. 35
Figure 2.19 Constraint length 3, code rate 1/2 RSC encoder ... 35
Figure 2.20 Classical Turbo decoder ... 37
Figure 3.1 Block diagram of reconfigurable Viterbi decoder architecture I......................... 40
Figure 3.2 BMU for both code rate 1/2 and 1/3 ... 42
Figure 3.3 Reconfigurable Butterfly Unit 43
Figure3.4 Clock gating.. 46
Figure 3.5 Diagram of reconfigurable RAM.. 47
Figure 3.6 Reconfigurable traceback logic block ... 48
Figure3.7 Diagram of LIFO .. 49
Figure 3.8 Structure of configuration memory... 49
Figure 3.9 Flow chart of the design flow .. 50
Figure 3.10 Distribution of power consumption... 52
Figure 3.11 Normalized power comparison (ASIC = 1) .. 53
Figure 3.12 Distribution of area ... 54
Figure 3.13 Normalized area comparison (ASIC = 1).. 54
Figure 4.1 Heterogeneous coarse-grain domain specific reconfigurable architecture.......... 59
Figure 4.2 Architecture of processing unit ... 60
Figure 4.3 Architecture of C-box.. 62
Figure 4.4 Architecture of switch box .. 63
Figure 4.5 Design flow for domain specific reconfigurable architecture............................. 64
Figure 4.6 Branch metric processing core.. 66
Figure 4.7 ACSU processing core .. 67
Figure 4.8 RAM processing unit .. 68
Figure 4.9 Tradeoff between No. of tracks and No. of RAM PUs 68
Figure 4.10 Arrangement of PUs.. 70
Figure 4.11 Area Comparison of Viterbi decoders on four platforms (ASIC = 1)................ 72
Figure 4.12 Area Comparison of Viterbi decoders on four platforms 73
Figure 4.13 Area distribution of the array architecture... 74
Figure 4.14 Power distribution of the array architecture.. 75
Figure 5.1 Architecture and tool flow of RICA.. 78
Figure 5.2 Loop unrolling for branch metric computation... 80

VII

Figure 5.3 Butterfly structure with its C implementation ... 81
Figure 5.4 Requirement of individual cells for Viterbi decoder ... 84
Figure 5.5 Butterfly units on a SIMD based RICA architecture ... 86
Figure 5.6 Modulo Comparison function for COMP_MUX cell ... 87
Figure 5.7 Custom cell for traceback operation 88
Figure 5.8 Unpipelined Butterfly operation ... 90
Figure 5.9 Pipelined butterfly operation 91
Figure 5.10 Requirements of individual cells for Viterbi decoder .. 93
Figure 6.1 M-binary recursive systematic convolutional encoder .. 97
Figure 6.2 Correct functions of different approximation .. 104
Figure 6.3 Double binary RCS encoder 	.. 107
Figure 6.4 Double binary circular Turbo decoder architecture ... 108
Figure 6.5 PER comparison for different metric initializations .. 109
Figure 6.6 BER comparison for different metric initializations ... 110
Figure 6.7 PER comparison for different MAP algorithms .. 112
Figure 6.8 BER comparison for different MAP algorithms .. 112
Figure 7.1 Pseudo-code description for a MAP decoder .. 116
Figure 7.2 One-side guard window scheme ... 119
Figure 7.3 Two-side guard window scheme ... 120
Figure 7.4 Enhanced two-side sliding window scheme .. 121
Figure 7.5 PER performance on consecutive and sliding window decoder 124
Figure 7.6 BER performance on consecutive and sliding window decoder 124
Figure 7.7 PER performance on different sizes of two-side sliding window scheme 125
Figure 7.8 BER performance on different sizes of two-side sliding window schemes 125
Figure 7.9 PER performance on different number of iterations ... 126
Figure 7.10 BER performance on different number of iterations 126
Figure 7.11 PER performance for different quantization schemes on input signals 128
Figure 7.12 BER performance for different quantization schemes on input signals 128
Figure 7.13 PER performance for different quantization on extrinsic information 129
Figure 7.14 BER performance for different quantization on extrinsic information 129
Figure 7.15 Scheduled branch metric computation on RICA ... 130
Figure 7.16 Butterfly function for forward metric computation ... 131
Figure 7.17 Trellis decomposition .. 131
Figure 7.18 Scheduled forward metric computation on RICA ... 132
Figure 7.19 Scheduled extrinsic information on RICA platform .. 134
Figure 7.20 Timing consumption distribution for the targeted MAP decoder 135

VIII

List of Tables

Table 2.1 Different wireless communication standards..9
Table 2.2 Generator polynomials.. 12
Table 2.3 Minimum word length requirement for path metrics.. 19
Table 3.1 Branch Metric Computation ... 41
Table 3.2 Look-up table for branch metric routing... 43
Table 3.3 Modes of the reconfigurable RAM block... 47
Table 3.4 Power consumption (mW) of different test cases... 51
Table 3.5 Area (im) of different test cases 51
Table 3.6 Comparison with other state-of-the-art works.. 55
Table 4.1 Power consumption (mW) comparison .. 71
Table 4.2 Area (.tm) comparison.. 71
Table 5.1 Survivor bits table from different constraint length.. 82
Table 5.2 Performance of Viterbi decoder on general RICA.. 83
Table 5.3 Performance comparisons for a butterfly unit .. 88
Table 5.4 Comparison of Traceback with/without custom cell... 89
Table 5.5 Performance of Viterbi decoder on advanced RICA .. 92
Table 5.6 Ultimate Viterbi decoder on advanced RICA... 93
Table 7.1 Comparison of operations per decoded bit... 122
Table 7.2 Memory operation and requirement comparison.. 123
Table 7.3 Decoding time comparison... 123
Table 7.4 Proposed MAP decoder on advanced RICA... 135
Table 7.5 Decoding throughput with different No. of sliding windows............................. 136

Lx

Glossary /Acronyms

2G Second Generation

3G Third Generation

3GPP 3rd Generation Partnership Project

4G Fourth Generation

ACSU Add-Compare-Select Unit

ACS Add-Compare-Select

ALU Arithmetic Logic Unit

ARQ Automatic Repeat reQuest

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BMU Branch Metric Unit

BPSK Binary Phase Shift Keying

CAD Computer Aided Design

CLB Configurable Logic Block

DVB-RCS Digital Video Broadcasting - Return Channel Satellite

DVB-T Digital Video Broadcasting - Terrestrial

FEC Forward Error Correction

FER Frame Error Rate

FFT Fast Fourier Transform

FPGA Field Program Gate Array

GPP General Purpose Processor

GCC GNU C Compiler

GSM Global System for Mobile communication

HDL Hardware Description Language

HSDPA High Speed Downlink Packet Access

IC Instruction Cell

IP Intellectual Property

LDPC Low Density Parity-check Code

LIFO Last In First Out

LUT Look Up Table

MAC Multiplier ACcumulator

MAP Maximum A Posterior

PU Process

QoS Quality of Service

RAM Random Access Memory

RC Reconfigurable Cell

REA Register Exchange Algorithm

RICA Reconfigurable Instruction Cells Array

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

RSC Recursive Systematic Convolutional

SIMD Single Instruction Multiple Data

SISO Soft Input Soft Output

SMU Survivor Management Unit

SNR Signal-to-Noise Ratio

SoC System on Chip

SOVA Soft Output Viterbi Algorithm

TBA Trace Back Algorithm

T1'A Transport Triggered Architecture

ULIW Ultra Long Instruction Word

\TLIW Very Long Instruction Word

WCDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperabiity for Microwave Access

WLAN Wireless Local Area Network

XI

Chapter 1.0

ntroduction

1.1 Motivation

Since the emergence of the second-generation cellular system, wireless communication has

become one of the most remarkable sectors in the consumer semiconductor industry. The

number of mobile subscribers has grown over 100-fold in the last decade, and the market

analysts confidently predict that the current number of global mobile subscriptions will be

doubled by 2008 [1].

Because of the huge commercial opportunity in the wireless communication market, the

semiconductor manufacturers and telecom operators have struggled for providing customers

with the most distinctive products which are smaller, cheaper, and have more features than

current ones. Consequently, this innovation demand has become the major momentum to

push the semiconductor and telecommunication technologies forward.

1

The basic trends for wireless communication are ubiquity and higher throughput [2]. The

ubiquity of wireless communications indicates that users can use their mobile devices in

different environments, like the home, the office, driving, and walking. With extremely high

throughput, a great number of services, such as audio, video, internet access, etc, can be

provided on a single portable device.

Stimulated by the market requirement, at present, various wireless communication standards

have been deployed and commercialized focusing on different levels of mobility and data

rate, which is shown in Figure 1 .1. The coexistence of multiple standards makes the

transition from third-generation (3G) wireless systems to fourth-generation (4G) systems is

not likely to be as clear as the transition from second-generation (2G) systems to 3G

With regard to the prediction the 4G wireless network, a flexible convergence of current

wireless standards and services is expected [3]. This kind of convergence provides the

opportunity to simultaneously use standards such as GSM, 3G and WLAN from one device.

Thus, it not only fulfills customers' desire for faster and ubiquitous wireless connection, but

also maintains the commercial infrastructural investment of the previous wireless

generations.

Mobile 	______ 	
.-_;__- 	 802.16e (Vehicular) 	

Mobile Wimax

Pedestnan
0 802.16d

(Nomadic) 	' 	 - 	
WiIflX

Fixed
(Staonary)

0.1 	 1.0 	 10 	100-1G

Peak Data Rate (Mbits/second) 	 Commercial

- - - - Proposed

Figure 1.1 4G wireless communication standards [4]

However, the convergence concept of 4G relies heavily on the semiconductor industry to

invent a novel and flexible hardware architecture that can be cost-efficient and provide

acceptable performance [5]. The 4G hardware architecture will require unprecedented digital,

analog, and software integration. The main obstacles of the hardware design for 4G exhibit

2

in four aspects:

• Performance: Mobile terminals require very accurate timing on reactive application

and protocol processing, thus this kind of real-time constraint demands that the physical

layer architecture must meet the data throughput and quality of service requested by

different standards.

• flexibility: The evolution of wireless standards is extremely fast. For instance, IEEE

standardized eight different versions of wireless LAN applications from 1999 to 2004.

The mobile terminal has to be flexible enough to accommodate changes in the standards

or the introduction of new services.

• Low power consumption: Stringent limit on power consumption is an inherent

challenge for mobile terminals. Minimizing the power consumption and extending the

battery lifetime of mobile terminals are a key ultimate aim of every wireless network

generation.

• Time-to-market: Because of the evolution of wireless communications and

semiconductor technologies, the lifespan of mobile terminals has been shrunk and the

manufacturers are forced to release new products at a short time to keep their

competitive position in the market. This trend results in very tight time-to-market

constraints for the hardware design.

However, the current architectures and design methodologies can hardly satisfy all these four

requirements. Application specific integrated circuits (ASIC) can provide the best

implementation for specific applications, typically several order of magnitude better than

processors. However, ASICs have high non-recurring engineering (NRE) costs, expensive

design tools, significant manufacturing risk and long periods to bring products to market.

These limitations obstruct ASICs exhibiting themselves in the mainstream platform for

future portable and network devices.

Digital signal processors (DSPs) are the dominant products in the 2G market. DSPs are not

only strong in control flow applications and frequent branching, but are also optimized to

support data flow oriented tasks. Unfortunately, with regard to the highly computational

intensive tasks in 4G even the highest-performance DSPs today cannot deliver the

3

demanded horsepower.

Field Programmable Gate Arrays (FPGAs) can offer the ASIC-like performance and

DSP-like flexibility due to their fine-grained bit-level configuration architecture. However,

FPGAs pay very high silicon area and power consumption penalties for their attractive

performance and flexibility. Their area and power consumption make them unfeasible for the

portable devices.

The limitations of the current architectures motivate us to investigate a novel reconfigurable

architecture to bridge the performance gap between theory and practice, and also fulfill the

flexibility, low power consumption and time-to-market requirements of the beyond 3G

portable devices.

1.2 Objective

The objective of this dissertation is to make a contribution to the scenario of hardware

architectures for beyond 3G portable devices. This dissertation investigates several

reconfigurable architectures and design methodologies to study the underlying fabrics for

beyond 3G portable devices. By employing the Viterbi decoder and double binary circular

Turbo decoder as the study cases, this dissertation demonstrates the efficient solutions for

the future portable devices.

1.3 Major contributions

The major contributions of the dissertation are split into five key aspects:

• A novel domain specific reconfigurable architecture for the Viterbi decoder is

demonstrated. It not only supports the decoding process for constraint length from 3 to

9 and code rate 1/2 and 1/3 convolutional codes, but also offers a maximum 150Mbps

decoding throughput with little area and power overhead.

• An automatic design methodology for a domain specific reconfigurable architecture is

4

proposed. This architecture is based on a synthesizable heterogeneous coarse-grained

array and 2-D mixed interconnection mesh. In addition, the proposed software design

flow can automatically generate the expected reconfigurable architecture and map

applications on the proposed architecture.

• An efficient Viterbi decoder implementation on a reconfigurable instruction cell array

(RICA) platform is demonstrated. Furthermore, several advanced optimization

approaches for the Viterbi decoder on the RICA platform are proposed to boost its

performance.

• A system model of M-binary circular Turbo codes and its practical application, double

binary circular Turbo codes is established. The implementation design space on the

algorithm level has been explored. The selection of suitable decoding algorithms with

their simplification and optimization are investigated.

• Suitable parallel decoding schemes and fixed-point representation are investigated in

order to obtain a high throughput double binary circular Turbo decoder implementation

on the RICA. Moreover, the advanced optimization approaches for double binary

circular Turbo decoder implementation are described.

1.4 Structure of this dissertation

The structure of this dissertation is presented as follows:

Chapter 2 contains a description of the literature reviews related to this work including basic

concepts of wireless communication, channel coding, the representations of convolutional

codes and the mathematical background of the Viterbi decoding algorithm. In addition, the

implementation approaches for a Viterbi decoder are described. The details of current

programmable and reconfigurable Viterbi architectures are also presented and compared.

A domain specific reconfigurable Viterbi decoder implementation is addressed in Chapter 3.

The reconfigurable design approaches for the Viterbi decoder are presented. This chapter

also proposes several power-saving schemes to reduce the power consumption of the whole

fabric.

5

In Chapter 4, a design methodology which can automatically generate a heterogeneous

coarse-grained reconfigurable architecture is proposed. By means of CAD tools, the design

and verification time of a domain specific reconfigurable architecture can be dramatically

reduced. Moreover, as compared with commercial FPGAs, the proposed architecture shows

salient advantages in terms of power consumption and area.

A reconfigurable architecture, RICA, which can be programmed by high-level language,

such as C and C++, is introduced in Chapter 5. The efficient implementation and

optimization approaches for the Viterbi decoder are demonstrated on the RICA platform.

Chapter 6 and Chapter 7 address an efficient double binary circular Turbo decoder design

from both algorithm level and implementation level. Chapter 6 focuses on investigating

suitable decoder algorithms. Chapter 7 investigates the suitable implementations approaches,

such as the parallel decoding scheme and fixed-point representation.

Finally, the thesis is concluded with the summary in Chapter 8.

6

Chapter 2.40

Background

As one of the most successful sectors of the consumer electronics industry, wireless

communication has become a major driving force behind the evolution of semiconductor

technology. Beyond 3G wireless conimunication systems will not only offer faster and

ubiquitous services for customers, but also need to keep the economical success of the

previous system. In addition, the stringent requirements upon low power consumption,

non-recurring engineering cost and time-to-market have to be fulfilled. These demands

induce various challenging problems to the designers of next generation wireless

communication systems.

This chapter introduces the background literatures relevant to the work in this thesis. This

chapter commences with the introduction of basic concepts of wireless communication. In

Section 2.2 and Section 2.3, channel coding and the representations of convolutional codes

are elaborated. Section 2.4 gives an overview of the mathematical background of the Viterbi

decoding algorithm. The implementation approaches for different blocks of a Viterbi decoder

7

is described in Section 2.5. The, details of current programmable/reconfigurable Viterbi

architectures are presented and compared in Section 2.6. The conclusion can be accessed in

Section 2.7.

2.1 Digital Communication System

A typical digital communication system consists of a transmitter, receiver and the

transmission media (channel). The transmitter takes digitized data from an information

source, performs several processing steps, and transmits the signals through a

communication channel. Because of the reflection, refraction and dispersion, the

transmission waveform is disturbed by the noise in the wireless communication channel. To

ensure a reliable quality of service (QoS), the receiver must appropriately process the

received signal to recover the transmitted data. Figure 2.1 illustrates the basic blocks of a

typical digital communication system [6].

Trarsrniftr

Noise

I Reeer]

Figure 2.1 Digital communication system

In Figure 2.1, the information source is initially converted to binary digitals. During source

encoding, these bits are grouped to form digital messages or message symbols. Then, data

encryption can be used to ensure privacy. In a further step, error correction techniques are

applied to protect the data against channel noise during transmission. This can be done either

by forward error correction (FEC) or automatic repeat request (ARQ). Finally, these binary

bits are modulated to analog signals which are suitable for the transmission channel. On the

receiver side, corresponding data transformations have to be carried out in reverse order to

recover the original information.

8

Due to different purposes and transmission environments, the techniques of each block may

be varied for different standards. The techniques of channel coding and modulation in terms

of different standards have been tabulated in Table 2.1.

Table 2.1 Different wireless communication standards

Modulation FEC
System Peak
Throughput

GSM [7]
TDMA Convolution codes

270 Kbps
GSMK K=5 R =1/2

Convolution codes

WCDMA [8]
CDMA K=9R=1/2,1/3 2 Mbps

 BPSK/QPSK Turbo codes
K=4 R=1/3

Convolution codes

HSDPA [9]
CDMA K=9R=1/2,1/3 14.4 Mbps

QPSK/QAM16 Turbo codes
K=4 R=1/3

OFDM Convolution codes
WLAN [10] FFT size: 64 K=7R=1/2

54 Mbps
BPSKJQPSK/QAM16/0AM64

Convolution codes
OFDM K=7 R =1/2

WIMAX [11] FFT size: 128/256/512/1024/2048 Double binary Circular 75 Mbps
QPSKJQAM16/QAM64 Turbo codes:

K=4R=1/2

Convolution codes
OFDM K=7R=1/2

Mobile WIMAX FFT size: 512/1024 Double binary Circular 31.68 Mbps
[121 QPSK/QAM16/QAM64 Turbo codes:

K=4 R=1/2

Convolution codes
OFDM K=7 R =1/2

DVB-T [13] FF1' size: 2048/4096 Double binary Circular 17.9 Mbps
QPSK/QAM16/QAM64 - 	 Turbo codes:

K=4R=1/2

2.2 Channel coding

Channel coding aims at protecting data against transmission errors, induced by noise and

path fading transmission channels. There are two basic channel coding approaches which are 	-

normally employed.

Forward Error Correction (FEC) [14], adds redundant information to the data sequence on

the transmitter side. That redundancy is exploited on the receiver side to detect and correct

errors. The rate of the remaining errors is a function of the channel characteristics, but the

sequence is only transmitted once, thus the throughput stays constant.

It can be seen from Table 2.1 that the convolution encoder and decoder are the common FEC

blocks for all the current wireless communication standards. According to the computational

cost estimation and analysis in [15], the convolutional decoder demands the most

computational complexity among physical layer blocks. Thus, this thesis selected the

convolutional decoder as an application example to illustrate the reconfigurable architectures

for beyond 3G wireless communication systems.

2.3 Convolutional Encoder

Convolutional codes were developed as an alternative to block codes due to their better error

correction capability [14]. The error correction capabilities of convolutional codes result

from the current coded symbols depending on past data values. Unlike the block encoder,

where the transmitted message is coded in code words with a fixed length, a convolutional

encoder operates serially on a bit-stream of arbitrary word length. A typical convolutional

encoder is exhibited in Figure 2.2, where it can be seen that a convolutional encoder consists

of shift registers and modulo-2 adders. At each time slot, one transmitted bit enters the first

stage of shift registers. The coded symbols are generated by a modulo-2 adder which uses

modulo-2 arithmetic to add the current bit with previous bits which are stored in the

registers.

For each single input bit, there is a corresponding single output symbol, consisting of two

output bits. Thus, the volume of the transmitted message is doubled after a convolutional

encoder. These redundant bits will help the convolutional decoder detect and correct errors

which occur during the transmission through the wireless communication channel.

10

Inform atioa

Yo

Coded
Symbols

Yl

Figure 2.2 Constraint length 3, code rate 1/2 convolutional encoder

Convolutional codes have their own standard notation. There are three parameters to

describe the types of convolutional codes, constraint length K, code rate R and generator

polynomials [14].

Constraint length K represents the number of taps of the shift register in the convolutional

encoder. For example, in Figure 2.2, K is equal to 3, since there are three taps-in the encoder,

one for current bit and two for previous bits.

A convolutional encoder with a code rate of R = rn/n, means this encoder can transmit n

output bits for every m input bits. Figure 2.2 illustrates a code rate R=112 convolutional

encoder. Although any code rate is possible, 11n systems are most widely used for the sake

of decoding efficiency.

Generator polynomials are the mathematical description of the connections between the shift

register taps and the module-2 adders. The generator polynomials for upper and lower

connections of the encoder presented in Figure 2.2 can be described as follows: (8 means

octadic representation)

G(Y0)={1 1 1}=7 8
(2.1)

G(Y)={1O1}=5 8

The selection of the generator polynomials also can affect the performance of the

convolutional coding system. The performance of the convolutional codes is defined as its

11

robustness to channel noises. The characteristic of convolutional codes which describes this

robustness is called the free distance and is defined as the minimum Hamming distance

between any two code words in the codes [14].

For different values of K and R, there are optimal values for generator polynomials which

can provide the best performance. These have been experimentally determined in [6] and

Table 2.2 shows the optimal values for code rate 1/2 and 1/3. This thesis only considered the

1/2 and 1/3 code rates, however the proposed reconfigurable fabrics can be easily extended

to support other code rates, such as 1/4 and 115.

Table 2.2 Generator nolvnomials

Rate K Generator Polynomials

1/2

3 { 78, 58}

5 {338, 318}

7 {171 8, 1338}

9 {7538,5618}

113

3 178, 78, 58}

1378, 338, 2581

{1758,_1458,_1338}

{7118,_6638,_5578}

2.3.1 Finite state machine and the trellis representation

if the contents of the shift registers can be treated as the states of the convolutional encoder,

the encoder also can be fully described as a finite state machine, which presents the state

transitions and input/output symbols of a convolutional encoder. The state transition diagram

of constraint length K=3 and code rate R=112 convolutional encoder with generator

polynomials { 78, 581 is presented in Figure 2.3.

In Figure 2.3, the transition paths are drawn by solid lines and dashed lines, which denote

the paths associated with the input bit 0 and 1, respectively. It can be seen that there are only

two transitions emanating from each state, corresponding to the two possible input bits, 0 or

1. For example, if the present encoder state is 01, the only possibilities for the state at the

next shift are 00 or 10.

12

{Yo Y 1)=OO

{Yo,Y,}=1 1 	-

1 	 {Y0Y,}=OO
--4---- --

Yo,Y 1 }=1O

{Y,Y 1 }=O1

- Input 1

{Y0 ,Y,}=1O

Figure 2.3 State transition diagram for convolutional encoder

From the state transition diagram, an important representation of convolutional codes, trellis

diagram, can be obtained. Figure 2.4 shows the trellis diagram which is constructed from the

state transition diagram, but also explicitly presents the passage of time. The treffis diagram

depicts the interconnection of a set of stages which is indicated by a different time. The

values of registers in the encoder are initialized to zero, and the treffis diagram starts from

the 00 state. The numbers on the path called path states represent actual transmitted symbols

which are the output of the encoder (Y 1 and Y2). Similarly with the finite state machine

representation, a solid line corresponds to a 0 input and a dashed line corresponds to a 1

input.

InputO

lnput=l

Time

I

0

T

2

I 	 I 	 I
I 	 I 	 I
I 	 I 	 I
I 	 I 	 I

3 	 4 	 5

Figure 2.4 Trellis diagram

13

2.4 Viterbi decoding algorithm

At the receiver side, the channel decoder takes the received sequence D and regenerates an

estimation of the transmitted codeword sequence E. The Viterbi decoding algorithm [21] is a

maximum likelihood decoding algorithm based on the concept of the trellis diagram.

Maximum likelihood decoder produces an output sequence with the maximum likelihood

function, which is represented by:

PX(DIE)=MAX!1P(Dk IE k)J 	(2.2)

where Dk and Ek represent a symbol of the decoder received sequence and the

transmitted codeword sequence, respectively, and N denotes the size of the sequence. Since

logarithms are monotonically increasing, the likelihood function also can be estimated in a

logarithmic domain to facilitate the implementation.

By means of the Viterbi algorithm, the logarithmic likelihood functions In P(D I E1) at

time t=i are accumulated following the trellis path and half of the current trellis path will be

discarded based on the comparison of the likelihood function.

As shown in Figure 2.4, there are only two possible previous states for each trellis state. The

accumulated logarithmic likelihood function following each possible path can be denoted as:

In F(Dk<+l I E <) = In Pl (Dk < j E <1) + lnP(D1 I E)
(2.3)

In I' (Dk <+l I E <1+) = lnP(Dk< I E <,) + lnP(D1 I E1)

The first term on the right side of Equation 2.3 indicates the accumulated logarithmic

likelihood on each trellis node and the second term denotes the logarithmic likelihood for

each trellis path, which are also named path metrics and branch metrics, respectively. It can

be seen from Figure 2.5 that the path with smaller accumulated logarithmic likelihood is

discarded and the other path is stored as the new state metric. Simultaneously, an indication

of the survival path (survivor bit) has to be saved in the memory which is used to reconstruct

transmission symbols. This iterative computation will follow the trellis till the end.

14

lnF(Dk<,IEk<J)
lnP(D1 1E)

p

ln (Dk+l IE&<j+i)J

lnI(Dk<JIEk<,)

Figure 2.5 Path update following the trellis diagram

At the end of the trellis, the state with the maximum accumulated likelihood function can be

obtained. Since each state has only one entering survivor path, tracing the trellis backwards

can yield a unique path. This path is the maximum likelihood path and the bits retrieved

during the trace back are the decoded output bits [21].

2.5 Viterbi decoder architecture

This section describes the hardware architecture for the Viterbi decoder in detail. The three

major components in a Viterbi decoder, branch metric unit (BMU), add-compareselect unit

(ACSU) and survivor management unit (SMU) are shown in Figure 2.6.

Branch Metrics I 	 I 	SuMvor Bite

RecervedSymbols 	I 	I ASCU 	

I 	I SMU I 	Decode Output
p1 BMU I

Path Metrics

Memory banks! 	 I 	I
Registers

Figure 2.6 Diagram of Viterbi decoder architecture

2.5.1 Branch Metric Unit (BMU)

The BMU module takes charge of calculating branch metrics corresponding to the received

sequence. According to the representation of the received sequence, there are two types of

Viterbi decoder: hard decision Viterbi decoder and soft decision Viterbi decoder.

Wi

2.5.1.1 Hard decision

In the case of hard decision, each bit in an input symbol is represented by a single estimated

bit. The calculation of maximum likelihood function In P(D I E) is equal to look for the

minimum Hamming distance between sequenceD and E [14].

2.5.1.2 Soft decision

When each bit in a symbol in the received sequence is represented by multiple bits, then it is

referred to as soft decision and the Euclidean distance is calculated.

In practical implementation, the Eucidean distance can be further simplified, If E1 is the

expected codeword, D1 are the received soft decision symbol and R is the code rate, the

Eucidean distance between E. and D, is defined as:

hR—i

Euclidean = 	(E7 _
Din)2 	

(2.4)
fl.o

Expanding Equation 2.4, we can get:

hR-i

Euclidean = 	((7)
2 -
	 + (D$

)2) 	
(2.5)

Since the comparison must be done, only the portions of Equation 2.5 which are different for

each path need to be considered. Thus, the common terms (E1"
)2

 and (D1"
)2

 can be

eliminated. Equation 2.5 can be further reduced to:

hR—i

Euclidean = —2 1 (E,"D$) 	 (2.6)

Moreover, the leading parameter -2 can be removed, thus the minimum value of the

hR—i

Eucidean distance occurs when I (EZ"D1') is a maximum. Since E1 is either 1 or -1,

hR—i

(E1"D1') can be referred to as addition and subtraction operations.

According to previous works [22], soft decision data can provide 2.2 dB performance gain

compared with hard decision data. In this thesis, without specific statement, a soft decision

Viterbi decoder is considered.

16

2.5.2 Add-Compare-Select Unit (ACSU)

ACSU is a recursive computation unit which, taking in the branch metrics, calculates the

path metrics and the survivor bits following the trellis paths. In every trellis stage, the

updated path metrics are stored back to local registers which are served as inputs of ACSU.

in the next recursion whilst survivor bits are wrtten to survivor memory.

Generally, for a constraint length K Viterbi decoder, 2" path metrics have to be updated at

every trellis stage, thus 2" ACS operations are required to perform every recursion. With

the increase of K, the number of ACS operations is exponentially increased. Therefore,

ACSU becomes the most computational intensive unit of a Viterbi decoder and the decoding

throughput is mainly determined by the execution time of ACSU. In the last decade, a lot of

research contributions focus on how to implement ACSU more efficiently and effectively.

2.5.2.1 Butterfly Unit

According to the inherent symmetric property of the generator polynomials of convolutional

codes, two adjacent ACS operations share the same inputs, path metrics and branch metrics.

Therefore, in practical applications, two ACS units are bonded together [23], named

butterfly units, shown in Figure 2.7. By means of this type of combination, the route delay

inside an ACSU can be reduced and it can further also increase the modularity of the design.

BM'
J+I 'm 7o

Pt+I

BM

ACSO
'2m4

BM'
	

ACS 1

d,,

PI

d'

Figure 2.7 Butterfly Unit

17

2.5.2.2 Normalization

During the recursive ACS computation, path metrics will accumulate without bounds.

Implementation without normalization requires large word length for path metrics to avoid

overflow. On the other hand, increasing word length for path metrics leads to increasing

power consumption and area of the whole architecture. In order to limit the word length of

path metrics, normalization block has to be employed to prevent arithmetic overflow. There

are two widely used approaches for Viterbi decoders, rescaling and modulo arithmetic.

2.5.2.2.1 Rescaling approach

Rescaling approach [24] is achieved by subtracting the minimum path metric from all other

path metrics at the end of every ACS recursion, which is illustrated in Figure 2.8. This

approach results in the minimum word length for path metrics. However, 2"-1 comparators

working in a cascaded manner have to be integrated at the end of ACSU to look for the

minimum path metric for each trellis stage. In addition, it can be seen from Figure 2.8 that

all path metrics have to be subtracted by the minimum path metric to rescale them and avoid

the overflow. The computational cost incurred by this approach is relatively huge and

rescaling approach is infeasible for a high throughput Viterbi decoder design.

Minimum Path
Metnc

Normalized Path
Metnc

Normalized Path
Metric

Figure 2.8 Rescaling approach for normalization

2.5.2.2.2 Modulo Arithmetic Approach

Modulo arithmetic was devised in [24], which exploits the fact that the difference of path

metrics is always bounded by a constant value [25]. Modulo arithmetic approach replaces

18

the normal comparator by a modulo comparator and accommodates overflow in such a way

that is does not affect the correctness of the results. Since the path metrics are implicitly

normalized by modulo comparators, this approach can avoid the long comparison chain in

the rescaling approach and the associated hardware overhead is extremely small, yielding a

high throughput \'iterbi decoder implementation.

The penalty for modulo arithmetic is requiring extra bits to represent path metrics as

compared with the rescaling approach. According to [26], the number of bits required to

represent path metrics can be deduced by:

w2[log 2 (2KB+l)]+l 	 (2.7)

where K denotes the constraint length and B is the upper bound for the absolute values of

branch metrics. The minimum word length requirements of modulo arithmetic normalization

scheme for constraint length 3, 5, 7 and 9, code rate 1/2 and 1/3 Viterbi decoder are tabulated

in Table 2.3.

Table 2.3 Minimum word length requirement for path metrics

K 3 5 7 9

R 1/2 1/3 1/2 1/3 1/2 1/3 1/2 113

Word length 7 7 7 8 8 8 8 8

From decoding throughput and computational cost point of view, modulo arithmetic is

superior to rescaling approach and has been widely adopted in the high performance Viterbi

decoder [26] [27] [28] [29].

2.5.2.3 Parallel and partial parallel ACSU

2.5.2.3.1 Parallel architecture

For a constraint length K Viterbi decoder, 2" path metrics have to be updated at every trellis

stage. If a dedicated ACS unit is used for every path metric calculation, this leads to a

parallel \1iterbi decoder architecture. Since 2"' path metrics and a complete vector of

survivor bits are calculated every clock cycle, a high throughput Viterbi decoder is normally

achieved by this architecture [27] [28] [29]. However, the parallel ACSU architecture has to

19

pay area penalty as the price for high throughput.

2.5.23.2 Partial parallel architecture

Partial parallel architecture is also named as in-place computation scheme, which was first

introduced by [30]. Partial parallel architecture partitions the path metrics into several

groups and makes each group share one ACS unit. However, additional memory banks and

address controllers have to add to each group to store and schedule the temporary path

metrics. For low and moderate throughput applications, partial parallel architecture can

achieve high performance and low hardware cost [31] [32] [33]. However, the speed is

limited by the folded ACSU architecture and obstructs its application for the high throughput

Viterbi decoder.

2.53 Survivor Management Unit (SMU)

The SMU has the responsibility to reconstruct the information sequence from the survivor

bits generated by the ACSU. In practice, there are two different algorithms to implement the

survivor management unit, register exchange algorithm (REA) and traceback algorithm

(TBA).

2.5.3.1 REA

In REA, a register must be assigned to each trellis state [34]. The registers record the

survivor bits produced by ACSU along the trellis path from the initial stage to the final stage.

At the end, the decoded output sequence is the one stored in the register which is assigned to

the state with miximum likelihood function. Since REA does not require tracing trellis back,

it is faster than TBA. However, REA incurs huge memory accessing bandwidth, and it is not

suitable for a low power Viterbi decoder, especially for a large constraint length [35].

2.5.3.2 TBA

Unlike REA, TBA starts from an arbitrary state in final trellis stage to rebuild the most

possible transmission path in a reversed way [36]. In TBA, the previous state S 1 is decided

20

by current state S and associated survivor bits dn, which is located in the bit line of survivor

memory indexed by S. The previous state Sn1 is deduced by the following equation.

Sni = {s <<i. d } 	 (2.8)

Since traceback depends on ACSU finishing first, a huge decoding latency is introduced by

TBA. In order to speed up the throughput, sliding window scheme is proposed in [37] to

break the data dependence between ACSU and SMU.

2.53.3 Sliding window

Sliding window scheme is based on the rule that no matter from which state the TBA begins,

after a sufficiently large number of recursive steps, all paths are merged at the same state

[22]. Thus, traceback can start from the middle of a decoding sequence, rather than waiting

till the end, thus the decoding latency can be shrunk.

I 	Decode Block 	I 	 Merge Block 	 Write Block______
D 	 L 	 D

Figure 2.9 TBA with sliding window

TBA with sliding window scheme is illustrated in Figure 2.9. It can be seen that the whole

procedure consists of three major operations: write block, merge block and decode block

which are listed as follows:

Write block: In write block, the survivor bits generated by the ACSU are written to the

survivor memory. Write block is the only memory writing operation and its address pointer

T
I

21

moves forward.

Merge block: In merge block, trellis is traced back based on Equation 2.8. The trace back

operation starts from an arbitrary state. After L recursive processes, the trellis path reaches

the merge state This block reads the survivor vectors from the survivor memory to

find the previous trellis state, but no outputs are generated in merge block. In order to ensure

that the trellis path has arrived at L is at least as long as five times the constraint

length [22].

Decode block: The operation in this block is identical to the merge block except that the

trace back starts from Smerge and the survivor bits produced every clock cycle will output as

decoding sequence. Since the decode block produces the output in a reversed order,

last-in-first-out (LIFO) buffers are exploited at the end to change the order of output

sequence.

In the TBA approach, the decoder processes on a continuous sequence of incoming encoded

data, splitting it into separate windows for operating. However, practically, the transmitted

data is split into frames and regard each frame as an independent block. The disadvantage of

trace back operation from an arbitrary state is that the bit error rate performance is degraded

because the decoder does not know from which state to start the final window operation and

has no extra data to be used as the training data to find the correct state for last window.

There are several termination approaches which are proposed to solve this issue, such as

zero force termination [38] and tail-biting termination [39]. However, this part of discussion

is out of the scope of this thesis. Since the major design methodologies of different

termination approaches are very similar, we select the trace back operation from an arbitrary

state as an example to demonstrate the reconfigurable fabrics in the following chapters.

2.5.3.4 Memory arrangement

As can be seen from Figure 2.9, several memory banks are employed in the sliding window

scheme. The size of memory banks and its read/write clock frequency have to be fulfilled

by:

22

fR.NT_1' 	
(2.9)

f

where JR and fw are read and write frequencies for the memory read and write

regions. NT is the number of read pointers of the read region. In [38], a SMU with L = D

and fR = fw is presented, which is shown in Figure 2.10. It can be seen that four

independent single port memory banks with size of D, are exploited. The operations for

different memory banks are executed in parallel. Once a bank has been decoded, it will

become the write region for the next phase.

Time

	

Bank I 	Bank 2 	Bank 3 	Bank 4

d 	fril7 /14 	4 	 Idle

	

Idle 	 .. 	/1/17 iV'A 	4 	 T(3

T(4)

Write 	- -

	
Merge 	4 	Decisioc 	Idle 	Idle

Figure 2.10 Operation of sliding window scheme with four memory banks

By increasing the number of the read pointers (NT) [26] or the speed of the read pointer

(fR) [27], the total memory size could be reduced. The main point is that there is a tradeoff

between the total memory size, the latency and the design complexity. The study of this

tradeoff is out of the scope of this work, and this part of work can refer to [40]. We chose

SMU architecture presented in [38] to illustrate our reconfigurable design methodology.

However, this methodology proposed in this thesis also can be used by other sliding window

cases.

23

2.6 Programmable/Reconfigurable Viterbi decoder

implementation

ASIC implementation of a Viterbi decoder has been widely studied by previous works.

ASICs are designed to exploit the parallelism of algorithms, also along with optimization in

terms of power, speed and area. However, this inflexible implementation increases the cost

of effort/time and shortens the lifetime of the products. In order to tailor to the dramatically

changed wireless communication scenario, there are several different architectures which

intend to balance the flexibility and hardware efficiency.

2.6.1 VLIW DSP

In the current market, the digital signal processor (DSP) is the dominating device for

wireless communication products. In the contrast to general processor, the architecture of a

DSP processor is usually optimized for a set of well-known applications by means of

incorporating specific hardware components to provide high-performance arithmetical

operation, such as the single-cycle multiply-accumulate (MAC), and high-efficient memory

accessing, such as dedicated memory address generator.

By integrating more than one ALU, a very long instruction word (VL1W) DSP core can

execute several instructions in parallel. A typical example of a VLIW DSP targeted for

wireless communication applications is the Starcore SC140 from Fresscale Inc. [49]. The

data arithmetic logic section of SC140 consists of four identical 32-bit ALUs and the address

generation section contains two address arithmetic units. Thus an SC140 can execute up to

six instructions at a time, four for arithmetic logic section and two for address arithmetic

section.

2.6.1.1 Viterbi decoder on VLIW DSP

To accelerate the Viterbi decoding process, SC140 has designed specific instructions to

provide efficient arithmetical operations, such as ADD2, SUB2 and MJ4X2VIT, and suitable

memory accessing instructions, such as VSL.4F and VSL.4W [50]. With four ALUs, eight

butterflies can be executed in 10 clock cycles. Since the throughput of GSM is in the range

24

of several hundreds of Kbps, the extended instruction set VLIW DSP can perform very well

in 2G infrastructures in terms of flexibility and performance.

However, its instruction fetching and dispatching manner becomes a maj or obstacle to a high

throughput Viterbi decoder. When 3G emerged, purely software implementation on DSP can

hardly fulfill up to 2Mbps system throughput requirement. Both TI [51] and Freescale

launched their latest DSP families with a Viterbi co-processor to provide a high speed Viterbi

decoding process. From their public reports [49] [51], 4Mbps and 4.88Mbps decoding

throughput could be achieved by TI and Freescale DSPs, respectively.

2.7 Reconfigurable Viterbi decoder implementation

Due to the progress of silicon technology which allows more and more components to be

implemented on a single chip, the era of reconfigurable hardware flourishes. Reconfigurable

hardware combines the post-fabrication programmability of processors with a sequential

computation style and the parallel computation style of application specific integrate circuits

(ASIC).

In the case of the Viterbi decoder which is employed by lots of wireless communication

system to overcome the variable deterioration in the reliability of wireless transmission

channels, every system provides a unique service and requires different coding performance

(constraint length and code rate) at different data throughput. Therefore, for beyond 3G

system, it is extremely important to develop a reconfigurable Viterbi decoder which can be

configured at run-time to operate over a range of standards (different constraint lengths and

code rates) and also provide the targeted data throughput.

25

Architecture

DOii.:
Specific 	

Gener c

-.

Homogenouc 	 Heterogenous

Figure 2.11 Categories of reconuigurable architectures

The categories of reconfigurable architectures are shown in Figure 2.11. In terms of the

application domain of the fabric, the reconfigurable architectures can be split into domain

specific reconfigurable architecture and generic reconfigurable architecture. According to the

granularity of the function blocks inside the architecture, generic reconfigurable architecture

can be further divided into fine-grained reconfigurable architecture and coarse-grained

reconfigurable architecture. The previous works about the implementations of Viterbi

decoder on the reconfigurable architecture were summarized as follows.

2.7.1 Domain Specific Reconfigurable Viterbi Decoder

Implementation

By making hardware architectures less generic and specific to the Viterbi decoding domain,

domain specific reconfigurable Viterbi decode leads to a combination of power efficiency,

high throughput, area efficiency and flexibility.

[41] demonstrates reconfigurable architecture which can be configured to any Viterbi

decoder type among K=3-7 and R=1/3-1/2. This design only considers the hard decision

Viterbi decoder and hamming distance is calculated in the BMU. It also employed a full

26

parallel ACSU to speed up the decoding throughput. However, it only exploited one RAM

bank to save the survivor bits resulting in a bottleneck for SMU and the maximum decoding

throughput can only achieve 20Mbps.

A reconfigurable Viterbi decoder based on a partial parallel ACSU architecture is illustrated

in [42]. It can be configured to a Viterbi decoder with K=7-10 and R=112. This fabric

exploits four parallel butterfly units with 5-level pipelining which are scheduled to process

all the treffis states over time. In the end, the fabric was implemented on Xilinx Virtex FPGA

device. 12.625Mbps and 1.578Mbps decoding throughput are achieved in the case of

constraint length 7 and constraint length 10, respectively.

[43] presents a reconfigurable \1iterbi decoder supporting constraint length K= 4-14 and code

rate 1/2 with an adaptive decoding algorithm. Instead of computing and retaining all 2"'

possible paths, only those paths which satisfy certain cost conditions are retained at each

trellis node. The adaptive decoding algorithm leads to various butterfly operations in ACSU.

However the adaptive Viterbi algorithm requires additional decision circuits for each state to

decide whether to retain the state or not, which relied on extra computational cost. As

reported in [43], the decoding throughput only can achieve hundreds of Kbps.

Domain specific reconfigurable Viterbi decoders can achieve attractive performance for each

configuration of Viterbi decoder with different constraint lengths and code rates. However,

its application cannot stretch out the \1iterbi decoding domain.

2.7.2 Viterbi decoder on generic reconfigurable architectures

There is another trend of reconfigurable architecture. Compared with domain specific

architectures, this type of architecture is more generic than domain specific architecture and

it aims to target the wider application domain. However, its performance is degraded as the

cost of its flexibility.

According to the granularity of the function blocks, generic reconfigurable architecture can

be classified into fine-grained reconfigurable architecture which corresponds with bit-level

manipulation of data and coarse-grained reconfigurable architecture which implies word

level operations.

27

2.7.2.1 Fine-grained Reconfigurable Architecture

The field programmable gate array (FPGA) device, which is depicted in Figure 2.12, drops

into the fine-grained reconfigurable category. The operational elements of an FPGA are

CLBs which are dominated by LUTs. A LUT is a 1-bit wide memory array in which the

inputs to the LUT are the address lines and the LUT output corresponds with the 1-bit output

of the memory. Any type of Boolean functions can be formed by a LUT. Commercial

FPGAs, such as [44] and [45], employ 4-bits LUT as the basic element which consists of

16x1 SRAM cells to store the truth-table.

Practically, several LUTs are combined together to form a CLB in order to reduce the

number of routing resources required to connect them. Figure 2.12 shows a typical CLB of

Xilinx Virtex-E family [46], where each CLB contains four LUTs, organized in two similar

slices.

Block 	 CB 	
Coon 	

CLB
Block CLB 	

COnnectIOn 	
L

H Switch Box H 8 H Switch Box

Block I:::1 CLB 	
Connection 	

CLB CLB 	
tIConnecon

SwitchBoo H SwitchBox H J
Do N H

V 04

03

02

20 01 Va

P3

P2

20 21 00

CLB 	
Coon 	

CLB 	 CLBBlock o Block

Figure 2.12 Fine-grained FPGA architecture

Routing resources of the fine-grained architecture account for the majority of the area, delay,

and power dissipation. These routing resources, depicted in Figure 2.13, are used to connect

CLBs to other CLBs and to 110 blocks. The architecture of the routing resources can be

separated into three components: connection tracks, switch blocks, and connection blocks.

28

Connection
Box

ProgrammablE
Switch

witch Box

nnection
Track

Figure 2.13 Routing resource of FPGA

Since FPGAs are flexible at bit level, a very.wide range of applications can be mapped on

FPGA. In terms of the Viterbi decoder, [47] [48] exhibited a Viterbi decoder on an FPGA

device. However, this high flexibility also produces very high power consumption and area

penalty which prohibits the application of FPGAs in the portable wireless communication

domain. -

2.7.2.2 Coarse-grained Reconfigurable Architecture

The definition of coarse-grained reconfigurable architecture is very wide. The architectures

responding to this category are designed by increasing the granularity of their function

blocks, thereby improving the computation efficiency and reducing the amount of

interconnection resources. Unlike the LUTs in FPGA which are exactly the same with each

other, these coarse-grained function blocks can be identical leading to a homogenous

coarse-grained architecture, and also can be disparate resulting in a heterogeneous

coarse-grained architecture.

2.7.2.2.1 MONTIUM

MONTHIM [52], a coarse-grained reconfigurable architecture, is proposed to execute highly.

regular, computational intensive DSP kernels in the Chameleon platform [53] which is a

dynamically reconfigurable System-on-Chip (S0C) platform targeting 3G/4G wireless

communication applications.

29

A MONTIUM tile consisting of five homogeneous 16-bit ALUs resembles a .VL1W-like

architecture, which is depicted in Figure 2.14. A single ALU has four 16-bit inputs. Each

input has a private input register file that can store up to four operands. Input registers can be

written via a flexible interconnection network. Each ALU has two 16-bit outputs, which are

connected to the interconnection network. The ALU is entirely combinatorial and

consequentially there are no pipeline registers within the ALU. In order to fulfill the high

memory bandwidth requirement, 10 local memories (MOl to M10) are placed in parallel in

each tile. The data between ALUs and memories are switched through a crossbar network.

Figure 2.14 Architecture of MONTIUM

Viterbi decoder on MONTIUM

[54] presents implementing a \1iterbi decoder on MONTIUM' architecture. By adding a

compare-select operation to the ALUs of the MONTIUM, 32 butterflies can be processed in

42 clock cycles. Since the path metric values have to be read and written instantaneously,

[54] chose to read the input information from two memories and to write the results back to

two different memories. The functions of the memory pairs are interchanged in the

30

consecutive stages of the trellis. In the end, [54] demonstrates a constraint length 7 and code

rate 1/2 Viterbi decoder with 2.1 Mbps throughput on a MONTIUM architecture with

0.13pm technology.

2.7.2.2.2 MorphoSys

MorphoSys [55] is a reconfigurable DSP architecture targeted on computational intensive

applications, such as wireless communication and image processing. The MorphoSys

architecture, which is shown in Figure 2.15, comprises three main unique components: a

32-bits RISC processor called TinyRISC processor, a homogeneous array of 64 16-bits

Reconfigurable Cells (RCs) connected by a mesh network, and a special data movement unit

called Frame Buffer which can accelerate the data movement between external memory and

RC array.

Figure 2.15 Architecture of MorphoSys

TinyRISC is always in charge of controlling the whole architecture as well as executing the

sequential part of codes for applications. The 8x8 RC array is used to cover word-level,

computation-intensive, intrinsically parallel applications. Each RC consists of functional

units for arithmetic and logic operations, local memory to store the results and implement

look up tables, input and output modules to form the RC array structure and a fine grain

reconfigurable logic block which is a field programmable gate array (FPGA) and used for

31

implementing some customized functions.

The RC array follows the single instruction multiple data (SIMD) model of computation. All

RCs in the same row/column share the same configuration data (context). However, each RC

operates on different data.

Viterbi decoder on MorphoSys

In [56], a Viterbi enhanced MorphoSys is described to resolve the bottleneck in the Viterbi

decoder. The ALU in each RC is modified by adding an add-compare-select and complex

arithmetic units. Every clock cycle, 64 ACS computations can be executed on the 8x8 RC

arrays. The trace back operation is performed in TinyRISC. Viterbi-enhanced MorphoSys is

synthesized using 0.13 pm technology. The array area, not including main and sequential

RISC processors, is 25mm2. With 330MHz clock frequency, a constraint length 7 and code

rate 1/2 Viterbi decoder can achieve 54Mbps.

2.7.2.2.3 Silicon Hive Processor

The configurable parallel-processing architecture designed by Silicon Hive [57] is ultra long

instruction-word (ULIW) architecture, whose instruction words stretch up to 768 bits long.

The foundation of Silicon Hive's ULIW architecture is a logic block called a processing and

storage element (PSE). A PSE is a \TLIW-like data path consisting of several interconnection

networks (IN), one or more function units (FU), distributed register files (RF) and, optionally,

local memory storage (MEM). All resources in a PSE are distributed, leading to lower power

and reduced silicon footprint through locality of reference. The functions of PSE are varied

and are configured at design time to tailor to a specific application domain.

Besides the data path blocks, a sequencer is also incorporated into the architecture. The

sequencer is a simple state machine with a program counter to schedule the instructions in

program memory to PSEs. Silicon Hive also provides its own C compiler, HiveCC, to

translate high level language on its ULIW architecture.

32

Figure 2.16 Architecture of Silicon Hive processor

Viterbi decoder on Silicon Hive processor

In [58], a multi-standard Viterbi decoding processor based on Silicon Hive's infrastructure is

presented. According to [58], this processor consists of four identical PSEs optimized for

add-compare-select (ACS) operations, each of them performing 32 butterflies in parallel,

one PSE to accelerate traceback processing and one generic PSE which handles typical ALU

operations and the synchronization protocols. The processor was fabricated in CMOS 0.13

pm technology resulting in 2.8 mm2. When incorporated in a DVB-T system, the Viterbi

processor was simulated to dissipate 47.7mW at 160MHz and achieve up to 54 Mbps

throughput.

2.7.2.2.4 Transport Triggered Architecture (TTA)

TTA architecture [59] was developed to reduce the data path complexity and the

underutilization of the register file in the VLIW DSP architecture.

Figure 2.17 depicts the principle of TTA architecture. A T1'A processor with 32-bit data path

consists of a set of heterogeneous blocks, such as function units (FUs), register units' (RUs)

and user-defined units (SFUs), which are connected by a crossbar network.

In TT'A, FUs are responsible for performing operations on data. FUs receive data from the

input sockets and when the operation is completed, the result data can be accessed from the

output socket. Each FU contains several trigger and operant registers. The data to be

33

processed can be written to the operant registers in earlier cycles, but the operation is

triggered only when instruction is written to the trigger register.

The instruction fetch unit (IFU) is responsible for fetching instructions from the memory and

the load-store unit (LSU) provides an interface to the memory.

Input x

Output .

Figure 2.17 Architecture of TTA

Viterbi decoder on TTA

In [60], a constraint length K=9 and code rate 1/2, Viterbi decoder has been manually

mapped on tailored 1TA architecture. Besides general FUs, four specific SFUs are integrated

into the TTA architectuie to speed up the Viterbi decoding process.

The branch metric generation SFU gets two branch metrics, which are the negations or

copies of the input branch metrics corresponding to the value of ioop counter. Both the input

operands and outputs are packed into a single 32-bit word.

The ACSU SFU can handle two ACS computations at a time and generate two updated path

metrics which are packed into a 32-bit word. In addition, the ACSU SFU also will take two

32-bit operands, shift them, and insert two new survivor bits. The path metrics re-organizer

SFU takes charge of reordering and repacking two path metrics in a 32-bit word. The

address generation unit SFU generates addresses for loading and storing path metrics. In

practice, the read and write base addresses are passed as initial operands which are saved in

the internal state of the SFU.

34

This tailored T1'A processor is synthesized with 0.11 tm technology and achieves 0.57 Mbps

throughput for a constraint length 9 and code rate 1/2 Viterbi decoder.

2.8 Turbo coding

2.8.1 Turbo encoder

Turbo codes [16], which belong to a set of convolutional codes, provide very high reliability

data transmission at very low signal to noise ratio. A classical Turbo encoder, as introduced

in [16], comprises two recursive systematic convolutional (RSC) component encoders and an

interleaver (INT) as depicted in Figure 2.18.

A Ys

Yip

Y2p
mt

Figure 2.18 Classical Turbo encoder

The RSC encoder is a systematic convolutional encoder with feedback. Such an encoder

with a two taps shift register is depicted in Figure 2.19. For systematic codes, the

information sequence is a part of the codeword, which corresponds to the direct connection

from the input to one of the outputs. For each input bit, the encoder generates two codeword

bits: the systematic bit and the parity bit.

x

Ys

Yp

Figure 2.19 Constraint length 3, code rate 1/2 RSC encoder

Although both encoders work on the same frame of information bits, RSCII access the

information bits in an interleaved order. The coded sequence to be transmitted is consisted of

35

two parity sequences generated by two RSCs, and a systematic sequence which equals X.

As compared with convolutional encoder shown in Figure 2.2, Turbo encoder is a recursive

encoder. Since the performance of any binary codes is dominated by their free distance, the

recursive component encoders can maximize their effective free distance [14]. In addition,

the systematic encoder is somewhat simpler than non-systematic encoder because less

hardware is required. On the other hand, non-systematic codes may be subject to

catastrophic error propagation [14], which is called catastrophic codes that a finite number

of channel errors cause an infinite number of decoding errors [14]. However, systematic

codes are always non-catastrophic.

2.8.2 Turbo decoder

[16] not only proposed a new class of channel codes, but it also presented an efficient way of

decoding them. Figure 2.20 shows the block diagram of a classical Turbo decoder presented

in [16], where INT and DINT represent interleaver and de-interleaver, respectively. As can be

seen, the decoder's main elements are component decoders, interleavers, de-interleavers, and

a de-multiplexing unit. In the decoder, a block of received symbols is dc-multiplexed into

the systematic symbols and the parity symbols. The Turbo decoder is a typical

soft-in-soft-out decoder [18]. Unlike Viterbi decoder, each component decoders use these

soft symbols to calculate soft outputs, for example, DECI consumes the symbols Ys and

Y 1 " produces the soft outputs A1. On the other hand, DEC11 consumes the symbols YS and

1'" and produces the soft output 	In addition, each decoder takes into account a priori

information, which is an interleaved version of the other decoder's soft outputs. Hence,

Turbo decoding process consists of an exchange of information between two decoders which

are connected with a feedback loop to support that exchange in an iterative fashion. After a

sufficient number of iterations, we finally obtain the estimated decoding outputs from

DECH.

36

I

Figure 2.20 Classical Turbo decoder

An in-depth introduction to classical Turbo coding system would be beyond the scope of this

thesis. For this part of information, the reader can refer to the literatures [17] [18] [19] [20].

Nevertheless, a modern set of Turbo codes, M-binary circular Turbo codes will be addressed

in Chapter 6 and Chapter 7, where the details of encoder and decoder architectures for

M-binary circular Turbo codes will be elaborated.

2.9 Conclusion

The basic concepts of wireless communication systems have been introduced in this chapter.

Regarding the channel coding system, the Viterbi decoding algorithm is highly dependent on

the constraint length, code rate and generator polynomials. According to the concept of 4

flexible convergence of current wireless standards, a reconfigurable Viterbi decoder with

varied parameters is a must. Current implementation approaches for different modules, such

as BMU, ACSU and SMU of a Viterbi decoder are elaborated. Furthermore, the concept of

reconfigurable architecture is addressed. Different trends of reconuigurable Viterbi decoder

design methodology and architecture are described and compared.

37

Chapter 3:

Rëconfigurable Viterbi Decoder
Architecture I

Forward error correction (FEC) is a channel coding approach to overcome the variable

deterioration during the wireless transmission, whereby the transmitter adds redundant data

to the messages, and the receiver can detect and correct errors without the need to ask the

transmitter for retransmission. FEC codes, such as Reed-Solomon codes, convolutional

codes, Turbo codes and LDPC codes, have played a crucial role in telecommunication

scenario. Based on various channel conditions and system requirements, different coding

schemes are integrated to different communication standards. For example, in terms of

convolutional codes, GSM [7] specifies constraint length 5 and code rate 1/2 convolutional

codes, otherwise WLAN [10] and WiMAX [11] require constraint length 7 with code rate

1/2 and 1/3, and 3G [8] demands constraint length 9 and code rate 1/2 or 1/3 convolutional

codes.

In the case of convolutional codes, the encoder architecture is very simple, normally

consisting of several XOR gates and shifters. Both software and hardware approaches can

38

fulfill the system requirement. However, the decoder architecture is much more complex

than encoder. In order to provide the decent performance, such as low power consumption

and high throughput, decoder is always implemented by a hardware approach. Moreover, the

post-fabrication reconfigurability is crucial for hardware devices in beyond 3G wireless

communication system. Therefore, there is a need to investigate a flexible decoder

architecture which can support the decoding process of various convolutional codes with

different constraint lengths and code rates.

This chapter presents a reconfigurable fabric for Viterbi decoder which can support the

decoding process for convolutional codes with constraint lengths from 3 to 9 and code rates

1/2 and 1/3. Totally, there are four salient features of the proposed fabric.

As a reconfigurable Viterbi decoder targeting multiple standards, it not only needs to support

different types of convolutional codes, but also has to satisfy the decoding throughput

requirement. The decoding throughput varies from standard to standard. For instance, GSM

supports up to 270kbps, 3G supports up to 2Mbps, DVB supports up to 20Mpbs, and

WiMAX can provide up to 75Mbps. The proposed architecture offers a maximum 150Mpbs

decoding throughput, which can fulfill the requirement of all current standards.

Secondly, reconfigürable RAM blocks are integrated into the architecture. Every RAM block

is built by synthesizable latches and the size of the RAM can be changed depending on the

required application. Compared with custom RAM, the synthesizable reconfigurable RAM

is more flexible and can be easily tailored to a particular application.

Thirdly, several power-saving schemes are incorporated into the architecture. For a particular

application, the unused blocks will be automatically turned off. Thus, dynamic power

consumption of these blocks can be reduced to zero, which results in a significant power

saving on the proposed architecture.

Finally, the proposed architecture can be dynamically configured. Its function is controlled

by 405 configuration bits. By means of loading different configuration bits, a Viterbi

decoder with different parameters can be mapped on the proposed fabric.

39

3.1 Reconfigurable Viterbi decoder architecture

The block diagram of the proposed reconfigurable fabric is shown in Figure 3.1. The

following sections will break down the whole architecture into several blocks and analyze

the design approaches of each block. It can be seen from Figure 3.1 that this fabric consists

of three major blocks: branch metric unit (BMU), add-compare-select unit (ACSU), and

survivor management unit (SMU).

The following chapter is organized as follows: Section 3.1.1 describes the architecture of the

BMU in the proposed reconfigurable Viterbi decoder. ACSU and SMU are addressed in

Section 3.1.2 and Section 3.1.3 respectively. Section 3.1.4 describes the LIFOs which are

employed to reorder the output message. The configuration memory is presented in Section

3.1.5.

Routing network

Decc
inpi

Message
output

Figure 3.1 Block diagram of reconfigurable Viterbi decoder architecture I

3.1.1 Reconfigurable BMU

BMU calculates the branch metrics which represent the distances between received signals

and ideal transmitted signals [6]. According to [6], for a constraint length K, code rate hR

Viterbi decoder, there are 21c1 states at every trellis stage and two branch metrics going into

each state. Thus, totally 2K branch metrics need to be considered. However, among 2K

branch metrics, only 2R unique branch metrics have to be computed at every trellis stage. If x,

y, z denote quantized received symbols, the branch metric computations for code rate 1/2

and 1/3 Viterbi decoder are shown in Table 3.1.

40

Table 3.1 Branch Metric Computation

Code_Rate 1/2 113

Branch Metric
Computation

BM=x+y
BMOOO
BM 1 = x + y - z

BM01 = 	-
BM010 = x - y + z
BM011 = x - 	- z

BM10=-x+y
BM100=-x+y+z
BM101 = -x + y - z

BM11=-x-y
BM110=-x-y+z
BM111 = -x - y - z

It can be seen from Table 3.1 that a half group of branch metrics are antipodal with the

others. For instance, the value of BMOO is opposite to that of BM 11, and BM111 is opposite to

BM. Thus, half of the addition/subtraction operations in BMU can be replaced by

inverters. On the other hand, the proposed BMU must support both code rate 1/2 and 1/3

branch metric computations. A straightforward way is to provide two individual circuits, one

for each code rate. Obviously, it will increase the power and area overhead. However, from

Table 3.1, it can be seen that branch metric computation for code rate 1/2 is a part of code

rate 1/3 branch metric computation. For example, BM 0w = x + y + z = BM00 + z and BM100 =
-x + y + z = BM10 + z. Hence, we can reuse the code rate 1/2 branch metric computation

circuits during code rate 1/3 branch metric computation to decrease the power and area

overhead.

The proposed BMU which can support both code rate 1/2 and 1/3 is shown in Figure 3.2.

The proposed architecture consists of two major blocks. Block A takes charge of branch

metric computation for code rate 1/2. Block B will be active, if code rate 1/3 Viterbi decoder

is required. MUX I, II and III are used to configure the data path and are controlled by the

same configuration bit. For a code rate 1/2 Viterbi decoder, MUX I and II are switched to 0

value input, thus there are no data triggers in block B and the dynamic power consumption

in block B is zero. MUX III will output branch metrics for code rate 1/2. In the case of code

rate 1/3, both blocks A and B are active. MUX I and II will transfer the results of block A as

the inputs to block B. Finally, MUX III selects to output branch metrics for code rate 1/3.

41

in2

mn3

ml

Figure 3.2 BMU for both code rate 1/2 and 1/3

3.1.2 Reconfigurable ACSU

Since our target is a high throughtput Viterbi decoder, a full parallel ACSU architecture with

modulo arithmetic normalization is employed in this design. As described in Chapter 2, each

butterfly unit will consume two path metrics and two branch metrics, whilst output two

updated path metrics and two survivor bits. However, the input and output data path for each

butterfly unit is highly dependent upon the constraint length, code rate and generator

polynomials. Therefore, an efficient and flexible butterfly unit has been proposed for the

reconfigurable fabric, which is shown in Figure 3.3. The following sections will present the

details for each part of the reconfigurable butterfly unit.

42

Path Metrics network 	Branch Metrics
	 Path Metrics network

56bits

Figure 3.3 Reconfigurable Butterfly Unit

3.1.2.1 Routes for branch metrics

The branch metrics for an individual butterfly unit are irregular and decided by generator

polynomials. Due to the symmetric characteristic of generator polynomials [14], two branch

metrics accessed by a butterfly unit are antipodal with each other. For instance, if BM io is

one of the branch metric inputs, BM 11 must be the other. Similarly, if BM,00 is accessed by a

dedicated butterfly unit, BM 011 is also accessed by the same butterfly unit.

Hence, branch metric interface for each butterfly unit can be implemented by a look-up table

(LUT). The number of elements in a LUT is decided by the rate of codes. Since the proposed

core intends to support both 1/2 and 1/3 code rates, content of the LUT is defined in Table

3.2. According to configuration bits (index), suitable branch metric pairs are selected for an

individual butterfly unit.

Table 3.2 Look-up table for branch metric routing

Index LUT outputs
000 BMOOO & BM 111 or BMOO & BM 11

001 BM 1 & BM110 or BM01 & BM 10

010 BM010 & BM 101 or BM 10 & BM01

011 BM 1 00 	 BMoo

100 BM,00 & BM011

101 BM 101 & BM010

110 BM 110 & BM 1

111 BM111 & BMOOO

43

3.1.2.2 Routes for path metrics

In general, a butterfly unit will read two path metrics from local registers and write two

updated path metrics back. However, the addresses of path metric read and writing are

dependent on the constraint length. In the case of constraint length K=3, two path metric

inputs of butterfly unit 1 are produced by butterfly unit 0 and butterfly unit 1, respectively. In

the case of constraint length K=4, two path metric inputs of butterfly unit 1 are produced by

butterfly unit 2 and 3, respectively.

Let us suppose, at time t, path metric inputs of butterfly unit m are B - in0 and B - in1 , and

path metric outputs are B,,, - out0 and B,,, - ou4. After observing the trellis structures for all

different constraint lengths, we can summarize the rule for the path metric routing network,

which is described by Equation 3.1 and Equation 3.2.

{ p
L2 m out0 	if m < 2k-3 t-I

B. - 0 = Bt_l
k2 - out1 therwise 	

(3.1)

2m-2

IBtI
I 2m+1 oUt0 	if m < 2k-3

B_in1 lBt_1 	
(3.2)

I 2m-2'+1
out1 otherwise

As can be seen from Equation 3.1 and Equation 3.2, every path metric input for an

individual butterfly unit has two potential connections which are decided by constraint

length. Thus, two MUX blocks are inserted into each butterfly unit to select associated path

metrics for Viterbi decoders with different constraint lengths.

3.1.2.3 Routes for survivor bits

In addition to two path metrics, a butterfly unit also produces two survivor bits at a time,

which will be stored in survivor memory and used by the SMU to generate the decoding

sequence. Since the maximum constraint length we considered is 9, the largest word length

of survivor memory is 256bits. However, the order of these 256bits is also decided by

constraint length. If assuming surbitm is the mth bit among 256bits, and B,,, - bit0 and

44

B - bi4 are the survivor bits generated by butterfly unit m at time t, the survivor bits

routing network can be defined by Equation 3.3.

IB, _bit0 	if m < 2k-2

surbiç
= 1BI 22 - biç otherwise

Similarly with the rule for path metrics, there are two potential positions for each one

individual bit, and a MUX with two inputs can be used to switch the survivor bits for

different constraint lengths.

3.1.2.4 Low power strategy

Since a full parallel architecture is considered in our design, the ACSU consists of 128

butterfly units. However, for a particular application, not all of them are active. In the case of

constraint length K=7, only 32 butterfly units are used during the decoding process. On the

other hand,, the ACSU is the main logic module of the Viterbi decoder and power

consumption of the ACSU takes the biggest portion in the whole design. Thus, if inactive

butterfly units can be powered off, it can achieve a significant power reduction for the whole

design.

Clock gating [61] is a helpful approach to limit the power consumption of the unused

butterfly units. It can be seen from Figure 3.3 that all data inputs to a butterfly unit are

triggered by flip-flop. In Figure 3.4, an AND gate is used to turn off the clock input of

flip-flop, thus neither inputs, nor outputs, of butterfly units are toggled, and the dynamic

power consumption of the unused butterfly units are down to zero. Since the hardware

overhead is very small, the clock gating is very efficient at limiting the power consumption

of the unused blocks. Compared with the design without clock gating, nearly 50% of power

consumption can be saved in the case of constraint length K=7. The more detailed

comparison results are given in Section 3.2.

45

LJTh
CLK

B

CLK_Gate

Figure 3.4 Clock gating

3.1.3 Reconfigurable SMU

As described in Chapter 2, the SMU is composed of logic section and memory section. Due

to the high throughput and low power consumption requirements of a portal device, sliding

window and trackback based SMU is employed in the reconfigurable fabric.

3.1.3.1 Reconfigurabte RAM

As described in previous sections, the ACSU generates a survivor vector which consists of

21(1 bits at a time which are stored in memory banks of SMU to rebuild the transmitted

message. On the other hand, the size of each memory bank has to be up to five times of the

constraint length K in order to ensure the trellis can reach Smerge. Thus, the memory size

varies depending on the constraint length. Based on upwards aspects, a synthesizable RAM

which can be configured to different memory sizes is developed to provide the required

flexibility.

RAM is usually delivered from the vendors (such as UMC and TSMC) as hard-macro. The

designer receives an HDL simulation model and a layout abstract view which defines the

ports and dimension of the hard-macro from the vendor. However, RAMs provided by

vendors are blocked to designer and they cannot be optimized for a particular design.

Therefore, we developed our own synthesizable RAMs to accommodate to the

reconuigurable architecture.

The proposed synthesizable RAM is described in register transfer level (RTL) by hardware

description language (HDL). HDL program can be transferred to hardware gates and

46

mapped to a specific technology (such as 0.18um) by synthesis tools. The proposed RAM is

depicted in Figure 3.5, where the basic element is a latch. The number of words is 64, which

provides a trace back length up to 64.

Data Out

cik

Figure 3.5 Diagram of reconfigurable RAM

In addition, the proposed RAM is composed of seven sub-banks. The effective bits per word

vary from 4 to 256bits, which is configured by six configuration bits. The modes of the

RAJYvI are tabulated in Table 3.3.

Table 3.3 Modes of the reconfigurable RAM block

Configuration Bits Size of Memory
000000 4x64 bits

000001 8x64 bits

000010 16x64 bits

000100 32x64 bits

001000 64x64 bits

010000 128x64 bits

100000 256x64 bits

The controller inside RAM. can block the data toggles and clock of the unused sub-banks.

Therefore, in a particular application, only the required sub-banks will be active. Although it

incurs a slight area increase, the power consumption can be dramatically reduced as

compared with the design employing a non-reconfigurable RAM for all the applications.

47

3.1.3.2 Reconfigurable trace back logic block

The trace back operation starts from an arbitrary state (merge block) or from a certain state

(decision block). The current state S is a bit line index to the survivor bit d. Based on

Equation 2.8, preYious state can be decided by current state and associated survivor bit,

where a shifter operation is employed. This recursive operation is continued till all outputs

are produced.

However, the size of the shifter is decided by constraint length. Hence, we proposed a

reconfigurable shift register to handle the computation which is described in Equation 2.8.

The proposed shift register, shown in Figure 3.6, consists of eight flip-flops and seven

multiplexers and the length of shift registers can be varied from two to eight. Multiplexers

are used to control the data path of flip-flops whose inputs can be either output from the

previous flip-flop or zero. Seven configuration bits (C o to C6) are exploited to decide the

length of the shift registers according to the constraint length of the targeted Viterbi decoder.

CLK

Figure 3.6 Reconfigurable traceback logic block

3.1.4 Decoder output LIFO

The Viterbi decoder based on TBA naturally produces a decode sequence in a reversed order.

A bit reordering circuit is required to arrange the decoding output to a correct order. In the

proposed architecture, two latch based last-in first-out (LIFO) buffers are exploited to

correct the order of output sequence, which is shown in Figure 3.7. The maximum length of

each LIFO is the same with memory block in SMU, but the stack size is set by six

configuration bits, which indicate the traceback length.

48

Dat Data_out

Figure 3.7 Diagram of UFO

3.1.5 Configuration memory

This memory stores the configurable bits which are used to program the proposed

architecture to a particular application. The total configuration bits of the proposed

reconfigurable Viterbi decoder are 405 bits, shown in Figure 3.8.

Configuration Memory

404 	 1413 	 765 	 0

Figure 3.8 Structure of configuration memory

It can be seen that, the first 6bits (5:0) in configuration memory are used to set the traceback

length. The following 8bits (13:6) are employed to select different constraint length and code

rate. The rest of the bits are employed to configure the routing network for ACSU. Initially,

these configuration bits were stored in the system memory. During the run-time, the

operation system will take charge of downloading different configuration bits into the

configuration memory, thus various Viterbi decoders can be mapped on the proposed

architecture. For example, if the system runs at 100 MHz, since every clock cycle only one

configuration bit loads into the configuration memory, the proposed fabric requires 4.05ps to

reconfigure its function, which allows the core to be configured during the run-time.

3.2 Performance comparisons

3.2.1 Design flow

The basic design flow of the proposed architecture is illustrated in Figure 3.9, which helps in

49

understanding the results presented in this section. The design is firstly defined at the

register transfer level (RTL) by using Verilog hardware description language. The

functionally correct design is then synthesized by Synopsys DesignCompiler to convert the

RTL description into a gate level netlist. The synthesis tool generates a delay file in standard

delay format (SDF) for more accurate timing simulation and also provides the area of the

design. The functionality of the design is again verified at the gate level using Cadence

SimVision. In case of any problems, either the RTL code or/and the synthesis timing

constraints have to be modified. The power consumption for some designs is calculated at

the gate level. The power consumption is estimated by Synopsys DesignPower. It uses a gate

level netlist along with the net switching activity obtained after gate level simulation to

compute the power consumption. The switching activity is generated by defining the whole

design as the toggle region in the testbench. The toggling of each net is recorded in the

switching activity file called SAJF (Switchingactivity interchange format).

Start

4,
RTL level design

RTL level simulation using Sim Vision

NO

AYES

Synthesize using Design Compiler

4,
Gate level simulation with SDF using Sim Vision

NO

ES

4, 	 4,
enerate switching activity file

SAIF 	
Read area information (4,) 	

k

End Annotate switching activity
	 c~ D 4,

ipute power consumption using
DesignPower

C4:)
Figure 3.9 Flow chart of the design flow

50

The proposed reconfigurable Viterbi decoder fabric has been implemented on a UMC

0.18pm CMOS technology library following the presented design flow. For comparative

results, eight fixed Viterbi decoders (constraint length 3, 5, 7 and 9 with code rate 1/2 and

1/3) are also implemented with the same CMOS technology. All designs were synthesized by

Synopsys DesignCompiler at a clock frequency of 125 MHz, which means the core can

generate a decoding throughput up to 125 Mbps.

Table 3.4 Power consumption (mW) of different test cases

ASIC
Architecture with

power saving strategy
Architecture without
power saving strategy

K3R1/2 0.39 2.75 17.35

K3R1/3 0.45 2.91 20.70

K5R1/2 1.13 4.09 17.38

K5R1/3 1.46 4.40 20.13

K7R1/2 4.72 9.14 17.76

K7R1/3 4.99 10.38 21.04

K9R1/2 20.56 28.75 23.50

K9R1/3 26.12 33.31 28.08

Table 3.5 Area (pm2) of different test cases

ASIC
Architecture with

power saving strategy
Architecture without
power saving strategy

K3R1/2 48,817 232,396 229;068

K3R1/3 49,903 237,442 234,132

K5R1/2 226,651 534,664 521,404

K5R1/3 235,794 539,711 526,416

K7R1/2 838,758 1,743,738 1,690,752

K7R1/3 842,584 1,748,785 1,695,763

K9R1/2 5,907,020 6,580,033 6,368,140

K9R1/3 5,984,808 6,588,592 6,375,673

51

3.2.2 Power consumption

The power evaluation was carried out by Synopsys DesignPower at a clock frequency of

10MHz. In order to investigate the power distribution of the core, we implement eight test

cases (constraint length 3, 5, 7, 9 with code rate 1/2 and 1/3) on the proposed fabric. The

distributions of power consumption for different test cases are illustrated in Figure 3.10. It

can be seen that ACSU occupies the biggest portion, around 52.54% averagely. The reason

for this is that 2'' ACS operations are executed in parallel to ensure that the required

decoding throughput can be achieved. In addition, four memory banks in SMU consume

around 25.52% of total power of the whole core leading to the second biggest power thirsty

part. As mentioned in previous sections, the power saving strategies, such as clock gating

and memory distribution, have been employed into these two modules, where the dynamic

power consumption of the unused blocks is reduced to zero for each particular application.

U •U • I•
80e% UU II!

I.' • : i
7017,

60%

50

40%

30%

20%

10%

0%

•RAMI

RAM2

• RAM3

RAM4

• LIFO

Traceback & Decision

BMU

• ACSU

•FSM

K3RI/2 K3RI/3 K5RI/2 K5R113 K7RI/2 K7RI/3 K9RI/2 K9RI/3 Average

Figure 3.10 Distribution of power consumption

The power consumption comparisons among ASIC, reconfigurable architecture with power

saving strategy and without power saving strategy are presented in Figure 3.11. The power

values have been normalized so that the ASIC design has unity power consumption. It can

52

be seen that the proposed fabric consumed around 3.4 times power as compared with ASIC.

However, since the unused blocks are turned off which are conducted by clock gating and

distributed memory approaches, the proposed architecture with power saving can reduce

79.3% power consumption as compared with the architecture without power saving. Since

the power consumption is proportional to the clock frequency, we also can scale the power

numbers presented in Table 3.4 by 125/10 to obtain the power performance of the core when

running at 125 MHz.

50 ------- 	 -

45

40-

35

30

25

20

15

1

K3R112 K3RI/3 K5RII2 K5RI/3 K7R112 K7RI/3 K9RI/2 K9RI/3 Average

• ASIC • Architecture with power saving Architecture without power saving

Figure 3.11 Normalized power comparison (ASIC = I)

3.23 Area comparison

The area distributions occupied by different modules of different test cases on the proposed

reconfigurable fabric are illustrated in Figure 3.12. Similarly, we also provide the average

occupation of each module. As can be seen, memory banks take a big portion of the whole

die area, around 62.43% averagely. It can be note that in small cases, such as K3R1/2 and

K3RI/3, Traceback and Decision module takes the biggest portion of area. With the

increasing of constraint length, the area percentage of this module is dramatically reduced,

because bigger memory size and more butterfly units are employed.

53

17i.I 'lilt' 90 1 1

80 1 1

I I

:
H'ii''_'_r1Ii

BMU
30% H 	 - •FSM

- - 	 -- - 	
- N ACSU

0% M-0.1 , L" I- "
K3RI/2 	MIA 	K5RI/2 	K5R113 	K7R112 	K7R1/3 	I(9R1/2 	K9K111 	Avcrae

Figure 3.12 Distribution of area

The normalized area comparison is shown in Figure 3.13. It can be seen that the overhead of

reconfigurable fabric with a power saving strategy is only 2.2% as compared with the one

without power saving strategy. Due to its attractive reduction in terms of power consumption,

it is worth paying this area overhead. Compared with ASIC, this fabric will pay 2.7 times

area penalty as the price for its flexibility.

5

4.5

4

3.5

3

2.5

1.5

0.5

0

K3RI/2 K3R1/3 K5RI/2 K5RI/3 K7RI/2 K7RI/3 K9RI/2 K9RI/3 Average

• ASIC • Architecture with power saving Architecture without power saving

Figure 3.13 Normalized area comparison (ASIC = 1)

54

3.2.4 Comparison with other state-of-the-art works

The comparison with other state-of-the-art domain specific reconfigurable fabrics in terms of

throughput is tabulated in Table 3.6. To our knowledge, our Viterbi fabric is the only

published reconfigurable implementation which can support 150Mpbs decoding throughput,

and also provide flexibility and low power consumption.

Table 3.6 Comparison with other state-of-the-art works

Platform
Maximum

Throughput
Maximum Decoding

Frequency

 FPGA 20Mpbs 20MHz

 FPGA 1.578Mpbs-12.625Mpbs 101MHz

 FPGA 82.3Kpbs-333.7kpbs 17.2MFLz

Proposed F 	ASIC 0.18pm T 	15OMpbs 150MHz

demonstrated a K=3-7 and R=1/3-1/2 Viterbi decoder which was implemented on the

FPGA device. This design adopted a full-parallel ACSU to speed up the decoding throughput.

However, it only exploited one RAM bank to save the survivor bits leading to a bottleneck

for the SMU and the decoding throughput can only achieve 20 Mpbs on an FPGA device. In

addition, it considers the Viterbi decoder based on hardware decision, the decoding

performance would be worse than the proposed fabric.

exploited a partial parallel ACSU with 5-level pipelining architecture to support K=7-10

and R=1/2 Viterbi decoder. This fabric employed four butterfly units to carry on ACSU

computations for all the applications. This approach can save the die area of the core, but

partial parallel ACSU architecture suffered from stringent timing budget. Although this core

targeted WLAN application, it only can achieve 12.625 Mbps decoding throughput which is

far behind the 54 Mpbs requirement of WLAN.

introduced a reconfigurable Viterbi architecture with an adaptive Viterbi algorithm

which supports constraint length from 4 to 14. However, the adaptive Viterbi algorithm

requires additional hardware for each state and incurs extra computational cost. As reported

in [43], the decoding throughput can only achieve hundreds of Kbps.

55

Some published ASIC designs [62] [63] [64] [651 of Viterbi decoder can achieve higher

throughput than the proposed fabric by means of bit-level pipeline [62] [63] or higher radix

ACS architecture [64] [65]. However, they are constrained to the Viterbi decoder with fixed

constraint length and code rate. Compared with these ASIC implementations, the proposed

architecture not only can support different constraint length and code rate, but also can

provide the demanded throughput for different standards.

The proposed architecture requires more area for its paralleled butterfly units and memory

blocks. However, considering its salient throughput performance, it worth to pay this price.

In addition, for each specific application, the unused blocks can be automatically powered

off, and the power overhead incurred by the parallel architecture has been dramatically

reduced.

3.3 Conclusion

In this chapter, the implementation of a domain specific reconfigurable Viterbi decoder

fabric is addressed. This fabric can be configured to a constraint length from 3 to 9 and code

rate 1/2 or 1/3 Viterbi decoder. It employs a fully parallel ACSU and sliding window

schemes to achieve high throughput. In addition, for each specific application, the unused

modules such as butterfly units in the ACSU and sub-memory blocks in SMU can be

automatically turned off in order to save power consumption.

After the comparison, it can be seen that the proposed fabric can reduce 79.3% power

consumption with only 2.2% area overhead as compared with the architecture without power

saving strategy. However, this fabric pays 3.4 and 2.7 times more power consumption and

area as the price of its flexibility.

Furthermore, our design has compared with other domain specific reconfigurable designs. It

can be seen that our design can provide the best throughput performance. Because of all

these characteristics, our core is very competitive for use in portable wireless

communication scenario.

However, the drawback of this design methodology is obvious. Firstly, since the

reconfigurable interconnection network is manually implemented, the design and

verification cost of this fabric is huge. In addition, the fabric is not easily extended to cope

with additional functions. For example, if this fabric has to support constraint length 10, the

interconnection network needs to be redesigned, which leads to another timing and labor

cost task. In order to overcome these drawbacks, in the following chapter, we will present a

novel reconfigurable architecture and its associated CAD design flow, which can

automatically generate, configure and map Viterbi decoders with different constraint length

and code rate.

57

Chapter 400

Reconfigurable Viterbi Decoder
Architecture II

In the previous chapter, a domain specific reconfigurable Viterbi decoder architecture was

described, which is denoted by reconfigurable architecture I in this chapter. Reconfigurable

architecture I provided a good compromise in terms of flexibility, power consumption and

throughput. As compared with dedicated hardware, the area and power overheads of

reconfigurable architecture I are not far away and it can be efficiently and effectively

integrated into a high performance wireless communication system. However, this type of

reconfigurable architecture is manually implemented, where the significant

design/verification cost and difficulties of redesigning are contrary to the basic principles of

the underlying reconfigurable architecture, which requires quick time-to-market and low

design costs. If a domain specific reconfigurable architecture can be automatically generated

for the targeted computation domain, the inefficient design cost can be reduced. This

potential requirement pushes us to look for a computer-aided design (CAD) flow to

accelerate the generation and verification of a domain specific reconfigurable architecture.

58

In this chapter, we address a design methodology to automatically generate a reconfigurable

architecture which performs a given range of computations. By means of the proposed CAD

tools, the design and verification time of a domain specific reconfigurable architecture can

be lessened. The rest of the contents are divided in five sections. The architecture of the

proposed domain specific reconfigurable fabric is addressed in Section 4.1. Section 4.2

introduces the associated automatic design flow for the proposed domain specific

reconfigurable architecture. Section 4.3 explains the implementation procedure for the

Viterbi decoder on the proposed architecture with associated design flow. Section 4.4

discusses the experimental results and compares them with other platforms. Section 4.5

draws the conclusions.

4.1 Domain specific reconfigurable architecture overview

The proposed architecture is depicted in Figure 4.1. It can be seen that the reconfigurable

fabric on a SoC platform is composed of heterogeneous processing units (PU) and a 2-D

programmable interconnection mesh. Each type of PUs is in charge of one specific operation.

These domain specific reconfigurable fabrics can be provided as synthesizable soft LP

(Intellectual Property) cores to allow the customization of all aspects of the array at design

time. This also permits an easy integration of these fabrics into the SoC platform and

verification at every stage of the design flow.

-JJJJJLIJJjJLLLLLLLIJ,
'

.

we

Ii

p11p 	 M]
Fabric

•

iirI111TrI1TITI'I II. i - Iu

Figure 4.1 Heterogeneous coarse-grain domain specific reconfigurable architecture

59

4.1.1 Processing unit (PU)

PUs are the main computational elements in the proposed array architecture and they

provide the basic operations which are required by the targeted application domain.

Individual PUs can talk to each other via the interconnection mesh to form the required data

path. As a heterogeneous architecture, the proposed reconfigurable fabric consists of PUs

with different granularity, flexibility and functionality. In addition, each PU only performs an

individual computation for a set of applications, which potentially reduces the area and

power consumption as ôompared with a homogenous architecture.

Coarse-grained architecture with path widths greater than one bit can dramatically reduce the

delay, area, power consumption and configuration time as compared with fine-grained

architecture. However, some DSP algorithms do require 1-bit operation, such as the Viterbi

decoder, thus a mixed PU which has either 1-bit or multiple bits port is introduced for the

proposed domain specific reconfigurable architecture.

A diagram of 2-input-2-output PU is illustrated in Figure 4.2. It can be seen from Figure 4.2

that each 110 of the PU has been organized in four directions: north, south, east and west,

where PU can import and export data from four directions. During the configuration period,

CAD software can select one of four directions for each 110 based on the number of PUs and

capacity of the interconnections to optimize the power and timing performance.

Processing Unit

N S E W

N

S
E

w

N

S

E

w

NS EW

Figure 4.2 Architecture of processing unit

In order to accelerate the design time for different domain specific applications, a pool of

PUs can be built. The PU library is capable to provide PUs with different operation, timing,

60

area and power consumption, which makes it possible to generate architecture for the

required functionality and performance in a short time.

4.1.2 Interconnection mesh

Interconnection mesh inside the architecture is utilized to connect PUs together and form

large operational circuits. As depicted in Figure 4.1, a two-dimensional (2-D) island-style

interconnection mesh is employed by the proposed domain specific reconfigurable

architecture.

The conventional fine-grained FPGA [33] [34] exploits 1-bit tracks to form an

interconnection mesh. Coarse-grained mesh [49] [51] [52] [55] [57] [58], on the other hand,

bonds several 1-bit tracks together in a group to save the hardware cost. Although the

coarse-grained mesh is more efficient when groups of signals have the same source and

destination, they are not sufficient to route individual signals. In the proposed

interconnection mesh, both multiple bits and one bit tracks are employed, which can reduce

the number of switches and configuration bits compared to fine-grain 1-bit track FPGAs. In
I'

	

	

addition, in contrast to coarse-grained architecture, this kind of mixture of fine-grained and

coarse-grained mesh can achieve an efficient routing solution for individual signals.

In conventional FPGA, the configuration switches are implemented as pass-transistors,

which provide the connection between two tracks [66]. For the sake of generating a

synthesizable architecture, the configuration switches are implemented by multiplexers and

tn-state buffers in the proposed architecture. However, they would increase area and power

consumption when compared with pass-transistors.

There are two types of interconnection devices in the proposed architecture: connection

boxes (C-boxes) which are used to transfer data between PUs and data tracks, and switch

boxes (S-boxes) which are used to connect data tracks together.

4.1.2.1 C-box architecture

The architecture of C-box is presented in Figure 4.3. The role of C-box is to connect PUs

61

with data tracks inside the interconnection mesh. During the run time, since no more than

one data track from the interconnection mesh will be connected to the input pin of PU, a

multiplexer is utilized for the C-boxes of each input pin to reduce the number of the

configuration bits because the bits are encoded rather than one bit for each switch.

Inpul

Track!

Track2

Track3

Connection Box

Figure 4.3 Architecture of C-box

Otherwise, the output signal from a PU may be desirable to have the ability to connect more

than one data track. To achieve this requirement, a tn-buffer based switcher must be

employed for the output pin.

4.1.2.2 S-box architecture

S-box is used to connect the data tracks together. Unlike C-box, each channel inside the

switch box has to be bi-directional, in order to increase the routabiity of the whole

architecture. The topology of the S-box can be varied, such as Disjoint type [67], Universal'

type [68] and Wilton type [69]. However, the investigation of topologies of the S-box for a

domain-specific reconfigurable architecture is out of the scope of this thesis. The topology

used by the proposed architecture is the Disjoint type, which is widely used by Xilinx FPGA

families.

For a synthesizable S-box, different fabrication technologies would affect the performance

of the whole array architecture in terms of area, power consumption, delay and routability.

The tradeoff among different fabrication technologies has been elaborated in [70]. A 6W

tn-buffer based S-box is recommended in [70], depicted in Figure 4.4, because of its best

tradeoff among all crucial parameters.

62

Switch Box

Figure 4.4 Architecture of switch box

4.2 Design tool flow

In order to accelerate the time-to-market, software tool flow has been developed.to generate,

program and verify the proposed domain specific reconfiguration architecture. The whole

software design flow is shown in Figure 4.5, which is divided into three stages, array.

generation, array programming and array verification. Initially, the prototype [71] of this

software design flow is developed by the author's colleague, Dr. Sami Khawam The author

did further modifications on the original prototype to smooth the interface between different

tools and support complex test cases, such as the Viterbi decoder.

4.2.1 Array generation

Depending on the requirements of the design, such as application domain, flexibility, area

and timing constraints, designers have to identify what kind of PUs are required. Basically,

PUs are defined at RTL level by Verilog HDL.

The Array generation tool will read and analyze the Verilog HDL codes for each PU, and

with respect to preceding constraints, generate the whole array architecture. Except for the

Verilog HDL codes of PUs, the following parameters also have to be provided to the array

generation tool. The resulting array is produced as synthesizable RTL description.

• Number of rows and columns

• Position of each type of PUs

• Number of bit-wide and word-wide tracks

63

Processing Unit
Definition

SU. (R 	.d C.h.)
P..Ht.. .fl)p .1 PU. 	 Array
5.b.,- .f ba-.fld. ..d ...d-
Id fl..k

Circuit
Dcscription (.v)

Behavioral

Simulation

Ii
LA

RTL Level
Description of Array

Programming
Array

RTL

Simulation

Synthesis

Hardware
Compiler

Netlist of Logic
Blocks (.ael)

... !O1011IIO...

Placement &
Routing

Configuration bits
C.eneration

Array architecture
(.arch)

Gage-Level

Simulation

Area/Power
Estimations

Array
Gneration

Array
Configuration

Array
Verification

Figure 4.5 Design how br domain specific reconfigurable architecture

4.2.2 Array programming

The array programming flow is divided into four sub-steps. It starts from the circuit

description, such as Verilog. This file is provided by the designer, which described the

interconnections of the PUs. Secondly, the hardware compiler can transfer the circuit

description into the associated netlist file. The compiler is developed based on the academic

synthesis tool vl2mv [72], where its output netlist format has been modified in order to be

consistent with the place and route tool. The academic FPGA place and route tool, Versatile

Place and Route (VPR) [73], was evolved to automatically place and route applications

described by netlist files on the proposed heterogeneous and coarse-grain array architecture.

After circuits mapping, the modified VPR also can output the configuration bits-stream

which is used to test and verify the function on the array architecture.

4.23 Array verification

The array verification can be achieved in three levels: behavior level, RTL level and gate

level. Before mapping to array architecture, the circuit description can be the first test in the

behavior level to verify and debug the functionality. The RTL level and gate level

verification are similar with ASIC design flow. The configuration bits generated by modified

VPR can be loaded into the test benches for both RTL level and gate level simulation.

Furthermore, based on gate level netlist, power and area estimation of the whole array can be

done.

It should be noted that the verification is achieved by using the existing ASIC tools, unlike

FPGA devices where new tools need to be utilized. Another advantage of the proposed

design flow is that every stage can be integrated into the whole SoC design flow for further

accurate simulation and verification.

4.3 Viterbi decoder implementation on the proposed array

architecture

The section presents how to develop and map domain specific reconfigurable Viterbi

decoders on the proposed array architecture with associated proposed CAD design flow. A

full parallel Viterbi decoder with sliding window algorithm is considered as the test bench,

thus we can do a deep comparison with previous architecture.

4.3.1 Processing unit

The processing core selection for a Viterbi decoder domain can follow the estimation in

Chapter 3. Considering the architecture presented in Figure 3.1, four PUs are developed for

the Viterbi decoder domain.

65

4.3.1.1 	Processing core for BMU

Equations for BM computations have been tabulated in Table 3.1. It can be seen that the

basic components of BM computations are adders and inverters. Therefore, addition and

inversion operations can be extracted to form into an individual processing core (PC) for

branch metric computation which can cover branch metric computations for different code

rate.

The PC for BMU is illustrated in Figure 4.6. Two adders with an inverter are involved in the

BMU PC. One BMU PC can calculate the summation or inversion between two inputs. For

example, in order to calculate four branch metrics for code rate 1/2 Viterbi decoder, three

BMU PCs have to be employed. If assuming X and Y denote two received signals, the first

BMU PC outputs X and —X. Then, the second and third PCs compute the branch metrics,

X+Y, X-Y, —X+Y and —X—Y. Each output pin of BMU PC contains a register which can be

bypassed or not. This allows BMU PUs to form combinatorial or pipelined circuits to

calculate different code rate BMs during one clock cycle.

In)

lilA

C/k

Con
bit

(put pin 0

(put pin I

Figure 4.6 Branch metric processing core

4.3.1.2 	Processing core for ACSU

As described in Chapter 3, the best architecture of ACSU for a high throughput Viterbi

decoder is the parallel architecture with modulo arithmetic normalization. Thus in the

proposed array architecture, the butterfly unit with modulo arithmetic normalization is

selected as a PC for ACSU, which is shown in Figure 4.7. Since each butterfly would output

two word-wise path metrics and two bit-wise survivor bits, mixed type C-boxes with one-bit

66

C/k input

track and 8-bit tracks will be provided to ACSU PUs.

Figure 4.7 ACSU processing core

4.3.1.3 	Processing core for RAM

A sliding window based Viterbi decoder requires four individual RAM banks to store the

survivor bits generated by ACSU. Suitable RAM PUs have to be developed to efficiently

map the sliding window based Viterbi decoder on the array architecture. Since the inputs of

RAM PUs are connected with one-bit tracks, illustrated in Figure 4.8, there is a dilemma to

select the appropriate word length for RAM PC. On one hand, the large word length of RAM

PCs will affect the routability of the whole array architecture, because more tracks have to

be involved in the interconnection mesh. On the other, small word length will increase the

area of the whole array architecture, because more RAM PUs with associated C-boxes and

S-boxes have to be integrated into the array architecture. The tradeoff between number of

tracks and number of RAM PUs has to been investigated.

67

Figure 4.8 RAM processing unit

Constraint length 7 and code rate 1/3 Viterbi decoder is selected as a test bench to investigate

the tradeoffs of different word lengths RAM PCs with respect to required number of tracks

and number of RAM PUs.

35

30

25

20

15

10

5

0

No. of tlBcks 	No. of RAM PUs

• 8bits I I6bits 32bits

Figure 4.9 Tradeoff between No. of tracks and No. of RAM PUs

It can be seen from Figure 4.9 that, with the augment of RAM PC's word length, the

required number of tracks is also increased. On the other hand, increasing the word length of

PC, the required number of RAM PUs is decreased. Regarding preceding analysis, a

memory block with word length I 6bits is employed to a RAM PC to balance the number of

68

tracks and area of the whole array architecture. The number of words of RAM PC is equal to

5K to fulfill the traceback requirement and the RAM PC is built up by latches.

4..1.4 	Processing core for traceback and LIFO

With the knowledge from last chapter, it can be seen that the blocks, such as traceback logic

and LIFOs, only take a small portion of the whole Viterbi decoder (5% in terms of power

consumption and 2% in terms of area). In addition, only one-bit operations are involved in

these blocks. Bearing these two reasons in mind, it is not worth employing individual PU for

each of these blocks. Thus, only one PU for traceback logic block and LIFOs is introduced

to the array architecture and this PU has the same architecture as its counterparts in

reconfigurable architecture I.

4.3.2 PUs arrangement for the Viterbi decoder domain

The arrangement of PUs in the domain specific reconfigurable Viterbi decoder is illustrated

in Figure 4.10. The arrangement is manually achieved according to the tool flow shown in

Figure 4.10. As can be seen, four different types of PUs, BMU PU, ACSU PU, RAM PU and

Traceback & LIFO PU are involved in the array architecture and the same type of PU is

placed in the same column to keep the uniform of the array architecture. The interconnection

mesh consists of the C-boxes and S-boxes, described in previous sections, which support

both one-bit track and eight-bit track. And totally 13 eight-bit tracks and 13 one-bit tracks

are used for the Viterbi decoder application domain.

69

PU
BMU

PU
ACSU

PU
ACSU

PU
ACSU

PU
ACSU

PU
RAM

PU
BMIJ

PU
ACSU

PU
ACSU

PU
ACSU

PU
ACSU

P
RAM

[41 ACSU ACSU ACSU : ACSUJ RAM

PU
BMU

PU
ACSU

PU
ACSU

----- 	-----------------------------------

PU
•ACSU

Pu
BMU

PU
ACSU

PU
ACSU

PU
ACSU

PU
BMU

PU 	-

ACSU
PU

ACSU -

PU
ACSU

PU
BMU

PU
ACSU -

PU
ACSU

PU
ACSU

Pu
BMU

PU
ACSU

PU
ACSU

PU
ACSU

	

PU
	

PU
ACSU
	

RAM

	

rpu
	

PU
ACSU
	

RAM

	

pu 	PU

	

ACSU
	

RAM

	

PU
	

PU

	

ACSU
	

RAM

	

[PU
	

PU

	

ACSU
	

RAM

PU
RAM

RAM-

PU
RAM

PU
RAM

pg

RAM

RAMj

PU
RAM

Figure 4.10 Arrangement of PUs

4.4 Performance and comparisons

Six Viterbi decoders, constrain length from 3 to 7, code rate 1/2 and 1/3 have been mapped

on the proposed reconfigurable array architecture with associated software design flow. The

Viterbi decoders with the same architecture are also mapped on Xilinx Virtex-E (xcvi 000e-8)

FPGA architecture. Comparison results on four different architectures: ASIC, reconfigurable

architecture I, proposed array architecture and FPGA are detailed in Table 4.1. Area and

power figures of the proposed array architecture are analyzed by Synopsys Design Compile

and Design Power, respectively. The features of FPGA are obtained by Xilinx ISE 7.1 tool

kits and Xilinx Xpower. All platforms are targeted on 0.18pm UMC CMOS technology and - -

run at 1.8V and 10MHz. -

70

Table 4.1 Power consumption (mW) comparison

ASIC Architecture Architecture

K3R1/2 0.39 2.75 4.89 9.11

K3R113 0.45 2.91 7.07 11.73

K5R1/2 1.13 4.09 9.93 27.46

K5R1/3 1.46 4.40 15.79 42.58

K7R1/2 4.72 9.14 30.76 150.74

K7R1/3 4.99 10.38 42.65 252.35

2 Table 4.2 Area (pm) companson

ASIC Architecture Architecture FPGA

K3R1/2 48,817 232,396 970,011 2,872,422

K3R1/3 49,903 237,442 1,176,860 3,014,270

K5R112 226,651 534,664 1,886,550 8,714,787

K5R1/3 235,794 539,711 2,367,587 9,610,202

K7R112 838,758 1,743,738 6,164,657 31,694,163

K7R113 842,584 1,748,785 6,525,821 32,013,321

4.4.1 Area comparison

The normalized area comparison is presented in Figure 4.11, where we can easily study the

area gap among different platforms. In order to give an in-depth analysis of the proposed

reconuigurable core, rather than block memories, configurable logic block (CLB) based

distributed memories are exploited in the FPGA implementations, thus the proposed

coarse-grained architecture can be directly compared with fine-grained FPGA architecture.

The detailed area occupied by Xilinx Virtex-E FPGA is based on the estimation of the area

of a LUT plus a register. According to [74], a CLB in Virtex-E FPGA occupied 35462 ,um2 ,

and a CLB is coomposed of four LUTs in Virtex-E family FPGA.

71

70

60

50

40

30

20

10

0

K3RI/2 	K3RI/3 	K5R112 	K5RI/3 	K7RI/2 	K7RI/3 	Average

ASIC • Architecture I Architecture 11 • FPGA

Figure 4.11 Area Comparison of Viterbi decoders on four platforms (ASIC = 1)

It can be seen that the proposed heterogeneous and coarse-grained architecture only cost

28% of the area of fine-grained FPGA averagely. As compared with the reconfigurable

architecture I, heterogeneous and coarse-grained architecture are around 4.1 times bigger,

but it takes an impressive advantage over the reconfigurable architecture I in terms of design

and testing costs. It also can be seen that the area of heterogeneous and coarse-grained

architecture is 12.8 times bigger compared with ASIC and this area overhead is the price

must be paid for the flexibility and programmability.

4.4.2 Power consumption comparison

During the power consumption measurement, we only considered the summation of signals

power and logic power [75] of FPGA, since they measure the power consumed by LUTs and

routing network in the FPGA. From the normalized power comparison, shown in Figure

4.12, it can be seen that the proposed array architecture consumes 66.1 % less power than the

Virtex-E, averagely. This is mainly due to heterogeneous processing units and a mixture of

coarse-grained and fine-grained interconnection mesh being used in our proposed array

architecture. Similarly with reconfigurable architecture I, the data triggers of unused PUs,

72

C-boxes and S-boxes would be kept to zero, thus only leakage power is consumed in the

unused blocks. From Figure 4.12, it also can be seen that the power consumption of the

proposed heterogeneous and coarse-grained architecture is 2.6 times higher than

reconfigurable architecture I. This is mainly incurred by the extra switches in C-boxes and

S-boxes. In contrast to ASIC, proposed array architecture paid 10.5 times power

consumption as the price of its excellent flexibility.

60

50

40

30

20

10

0

U

K3RI/2 	K3RI/3 	K5RI/2 	K5RI/3 	K711I/2 	K7RI/3 	Average

ASIC U Architecture I Architecture II U FPGA

Figure 4.12 Area Comparison of Viterbi decoders on four platforms

4.4.3 Overhead measurement

As compared with ASIC and reconfigurable architecture!, the proposed array architecture

pays addition area and power penalties for its superior flexibility and programmability. Since

C-boxes and S-boxes are the main additional programmable components in the proposed

architecture, in the following section, their contributions to the area and power overheads are

estimated.

73

4.4.3.1 	Area overhead

Figure 4.13 shows the area distribution inside the array architecture. It can be seen that PUs

only occupy 14.5% of the total area averagely. However, C-boxes and S-boxes take a big

portion of the area, 53.2% and 32.3%, respectively. It also can be seen that C-boxes require

more area than S-boxes, since each port of PU connects to data tracks in four different

directions via four C-boxes and the required switches in the C-boxes are obviously more

than those in the S-boxes.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

K3R2 	K3R3 	K5R2 	K5R3 	K7R2 	K7R3 Average

U S-boxes • C-boxes PUs

Figure 4.13 Area distribution of the array architecture

4.4.3.2 	Power overhead

The power overheads of the proposed array architecture are illustrated in Figure 4.14. In the

proposed architecture, the unused blocks can be powered off, thus only leakage power

consumptions are exhibited in these blocks. It can be seen from Figure 4.14 that, PUs

occupy 20.5% of total power consumption. However, interconnection meshes, C-boxes and

S-boxes, consume 51.2% and 28.3% of total power, respectively. The power overhead of the

proposed architecture is mainly produced by the switching activities in the interconnection

mesh.

74

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

K3R112 	K3RI/3 	K5RI/2 	K5RI/3 	K7RI/2 	K7RI/3 	Average

•SboxUCbox Pmcessor

Figure 4.14 Power distribution of the array architecture

The future work would focus on the optimization of interconnection mesh to reduce the area

and power overheads. In the proposed architecture, a switcher is implemented by tn-buffers

which have high drive strength to guarantee that coarse-grain data tracks can be driven.

However, the tn-buffer incurs bigger area and power consumption compared with the pass

transistor which is exploited as switcher in general FPGA. In [76], a mixed interconnection

mesh with tri-buffers and pass transistors is investigated in order to find the best trade-off for

the routing network in an FPGA. In future, this kind of mixed interconnection mesh also can

be employed in the proposed array architecture to lessen the area and power overheads.

The aim of the proposed architecture and its associated CAD tools is to reduce the design

and verification time of a domain specific reconfigurable fabric. It can be seen that the

reconfigurable array architecture can be automatically generated and programmed by the

CAD tools, where the user only needs to define the function for each PU. Compared with the

reconfigurable architecture I, the proposed architecture can achieve significant design and

verification time reduction. It also can be seen that the verification is achieved by using the

existing ASIC tools, unlike FPGA devices where new tools need to be utilized. With the

proposed design flow, every stage of the reconfigurable fabric design can be integrated into

the whole SoC design flow for further accurate simulation and verification. Assuming a

designer without any experience on hardware implementation, with the author's experience,

it is fair to say that implementing the same algorithm on ASIC requiring two months, one

month for the reconfigurable architecture I, probably three weeks on FPGA, and one week

75

on the proposed architecture with the proposed software design flow. Significant reduction

of design time is obtained by the proposed architecture, and the time-to-market also is

improved as compared with ASICs and FPGAs.

4.5 Conclusion

We have presented a novel domain specific reconfigurable architecture and design

methodology based on a synthesizable heterogeneous coarse-grained array and 2-1) mixed

interconnection mesh, which can be provided as a soft-IP core for integration into a SoC

platform. The fabric has demonstrated high flexibility as well as good power performance,

hence, making it satisfy the requirement for future portable devices. By using software

design methodology, this fabric can be automatically generated and programmed to

implement the different versions of domain specific applications. Several Viterbi decoders

with different constraint lengths and code rates have been implemented on the proposed

architecture by the developed software tools. After comparing with commercial FPGAs, the

author demonstrated that power consumption is reduced considerably by 66.1%, and only

cost 28% area of fine-grained FPGA.

However, there are still some limitations blocking this proposed architecture to be prevailing.

During the proposed design flow, the designers must be familiar with hardware design

language and carefully partition the required applications to look for the suitable PUs. Thus,

the time-to-market time could be still hard to bear. In the following chapter, a superior

dynamic reconfigurable architecture, which can be programmed through a high-level

language, such as C, will be introduced. In addition, an efficient Viterbi decoder design on

this novel architecture also will be described.

76

Chapter 5.40

Implementation of the Viterbi
Decoder on the Reconfigurable
Instruction Cells Array Platform

In Chapter 4, a domain specific reconuigurable architecture with its associated CAD design

flow has been described. The proposed architecture employing heterogeneous coarse-grained

PUs surrounded by hybrid 2-1) interconnection mesh provides an excellent compromise

between FPGA and ASIC in terms of flexibility, area and power consumption. However, this

proposed architecture has to be implemented by HDL which is similar to the implementation

of FPGA. This would require designers to have a deep understanding of the targeted

application domain and efficiently partition the application into several smaller function

modules, which increases the design time and the time-to-market is postponed.

If a reconfigurable architecture can be programmed by high-level language, such as C and

C++, the barriers of implementation can be eliminated and the time-to-market can be further

improved. In this chapter, the reconfigurable instruction cell array (RICA) [77] platform

which is a dynamic reconfigurable architecture programmed by ANSI C, will be introduced.

In addition, Viterbi decoders have been implemented on RICA to test and verify the

77

performance of RICA. Furthermore, several advanced optimization approaches for the

Viterbi decoder on RICA are proposed in this chapter to boost its performance.

This chapter is organized as follows. Section 5.1 will briefly review the RICA architecture

and tool flow. Implementation of the 'Viterbi decoder on a general RICA architecture and its

performance are given in Section 5.2 and Section 5.3, respectively. The detailed description

of the advanced implementation and optimization of Viterbi decoder on RICA is presented in

Section 5.4. The performance of an advanced RICA is presented in Section 5.5. The

comparison with other dynamic reconfigurable architectures is presented in Section 5.6

followed by conclusions in Section 5.7.

5.1 RICA architecture and tool flow

RICA is a dynamic reconfigurable computing architecture. The basic concept, of RICA is .

shown in Figure 5.1, where it can be seen that RICA has a straightforward and processor-like

design-flow. The hardware-modules inside RICA can execute assembly-like instructions,

which are named instruction cells (ICs). ICs in RICA are heterogeneous and each cell is

limited to a small number of operations, such as ADD, CONST, MUL, LOGIC; SHIFT and

REG. Except for the basic instruction cells, RICA also permits tailoring to a specific

application domain by introducing user-defined custom instruction cells to improve the

performance.

C code maps directly to the Instruction cells

El 	PJI 	fl 	. C Code: pm 	((psi + bm) > (ps2 - bm)) 9 pini
Compiled ASM:
R1 	olit= r4 	in_addx 	r3 	in_off -opq

Dat.

MdM 	out= X11 	in_addx 	r3 	jneff 	OPEN _
ADD 	out 	r1l 	inl 	r4 	in2 	ru
RMEM 	out 	r3 	in_addx 	r3 	in off 	OPEN
ADD 	out 	r3 	ini= r3 	in2 	r4
COMP_MUX out=rll imix_inl=ril mux_in2r3 oornp_in]rii
oosp_in2=r3
WHEN 	in= r1l 	in_addx 	r3 	in_off 	OPEN

P ;

ID
LJU

IM
 _

Figure 5.1 Architecture and tool flow of RICA

78

There are several compilation stages that need to be performed for RICA in order to take the

high-level C code and transform it into various output formats for debugging purposes,

software emulation or to create the final binary to be loaded in the hardware. The default

design methodology for the RICA platform involves three main steps, which are briefly

described as follows. More details of RICA tools can be found in [77] [78] [79].

5.1.1 Compiler

This step is performed by a modified GNU C Compiler (GCC), which compiles C/C++ code

and transforms it into assembly format. In addition, GCC is adjusted to take into account

some limitations of the target RICA architecture.

5.1.2 Scheduler

The scheduling process involves taking the assembly code; constructing the control and

dataflow graphs; and breaking the code into steps which maximize resource usage and

throughput.

5.13 Backend simulator

The simulator is a SystemC cycle-accurate model of RICA architecture. It allows design

exploration in terms of core configuration and verification of algorithm code generated to

execute on RICA; assists in debugging; and provides detailed timing, activity and core

utilization figures.

5.2 Implementation of the Viterbi decoder on RICA

As mentioned in previous chapters, there are three major modules in a Viterbi decoder:

BMU, ACSU and SMU. This section will elaborate the implementation issues for each

module on the RICA platform.

79

5.2.1 Branch metric computation

As described in Chapter 3, branch metric computation is a straightforward addition and

subtraction process. However, since one half of branch metrics is the invertion of the other

half, only two branch metrics must be calculated. Branch metric computation can be denoted

as a simple C loop, where loop unrolling can be performed to yield a more balanced use of

RICA resources. An example of loop unrolling for BMU is illustrated in Figure 5.2.

for (k = O;k < FRAME _SIZE/2;k + +)
for (k = O;k < FRAME_SIZE;k + +)

Loop
Unrolling 	

BM,[2*k]= recY0[2*k] +recYj2*kJ ;

BM,[k] = recY0 [k] + recY1 [k]; BM01[2 * k] = recY0 [2* k] - recYj2* kJ;

BM01 [k] = recY[k] - recY1[k]; 	 BM[2' k + 1] = recY[2 * k + 11 + recY[2 * k + 1];

BM01 [2*k+1]= rec},[2*k+1]_ recY1 [2*k+1];

1,

Figure 5.2 Loop unrolling for branch metric computation

The unrolling factor depends on the available hardware resources of the RICA architecture.

It can be seen from Figure 5.2 that a BMU loop with unrolling factor 2 requires twice more

WMEM and RMEM cells to fit the whole loop into a single step as compared with the

original loop.

5.2.2 Path Metric Computation

Since all the path metrics (2K) must be updated at each trellis stage, ACSU consumes most

of the calculation time. According to previous chapters, two new states are connected by the

same sources and branch metrics on the connection path are complementary with each other.

For example, if one branch metric is BMOO the other must be BM 11 . Thus, two ACS

operations for two different path metrics can be paired in a butterfly-like structure to

simplify the metric update procedure.

It can be seen from Figure 5.3 that the simplifications of C implementation are exhibited in

two ways. Firstly, only one branch metric is needed for each butterfly. It is alternately added

and subtracted in each ACS operation. Secondly, the old metric values are the same for both

new ones where address manipulation can be minimized.

80

00 	 oo 	 00 ___(
New State I OldStatel 	'

'S

01 	 pIIIi.

OIdStateII 	 •5'S

'S
'S

New State II

10

PM I = old_buflO] + BMOO;

PM2 = old_but[I] - BMOO;

PM3 = old_buf[O] - BMOO;

PM4 = old_bufLi] + BMOO;

New_buf[O] at (PMI > PM2) ? PM1 : PM2;

New_bufl2] = (PM3 > PM4) ? PM3 : PM4;

Survivor_bitO=(PMI >PM2)?O: I;

Survivor_bit I = (PM3 > PM4) ? 0: 1;

Figure 5.3 Butterfly structure with its C implementation

In addition, during the path metric updating procedure, two memory buffers have to be

adopted, one for the old path metrics and the other for the new path metrics. 'Each buffer

contains 2KI bits, each bit reserved by a path metric. At the end of the metric updating, the

pointer of two buffers must be swapped, so that the recently updated metrics will become the

old path metrics for the next iteration.

Similar to previous reconfigurable architectures, there is a trade-off between throughput and

the number of butterfly units which are processed in parallel. The more butterfly units are in

parallel, the faster throughput can be achieved. However, more instruction cells are required.

The effect of this trade-off will be shown in the following section.

Besides path metrics, two survivor bits which indicate survivor paths outputted by each

butterfly unit have to be stored in the memory. Since RICA is a 32bits processor, one word

of memory (32bits) is shared by 16 butterflies. However, in order to pack 32 sUrvivor bits

into a word, extra SHIFT and LOGIC cells are needed. Eventually ; the survivor bits table in

the memory is shown in Table 5.1.

The Bit Number indicates the bit line of a survivor bit in a 32bits word. It is worth noting

that survivor bits are saved in a reversed manner. Survivor bit 0 is in MSB and survivor bit

31 is in LSB. The Word Number indicates the word line of a survivor bit. If the constraint

length K is less than 7, the Word Number can be ignored, since one word is sufficient to

memorize all survivor bits.

81

Table 5.1 Survivor bits table from different constraint length

Bit Number in survivor bits table
31 30 29 28 27 26 25 24

Word
Number

0 0 1 2 3 4 5 6 7

2K-61 2K-132 2K-131 2K-130 2K-129 2K-128 2K-127 2K-126 2K-125

Bit Number in survivor bits table
23 22 21 20 19 18 17 16

Word
Number

0 8 9 10 11 12 13 14 15

2161 2K-124 2K-123 2K-122 2K-121 2K-120 2K-119 2K-118 2K-117

_______ 	Bit Number in survivor bits table
15 14 13 12 11 10 9 8

Word
0 16 17 18 19 20 21 22 23

Number
2'"-1 2K-116 2K-115 2K-114 2K-113 2K-112 2K-111 2K-110 2K-19

Bit Number in survivor bits table
7 6 5 4 3 2 1 0

0 24 25 26 27 28 29 30 31
Word

Number 2K-1 2K-17 2K-16 2K-15 2K-14 2K-13 2K-12 2K-11

5.23 Traceback Operation

Traceback operation is the major logic function in SMU and requires much less

computational cost than the path metric updating procedure. The main operation of the

traceback operation is to extract the relevant survivor bit from the memory to rebuild the

trellis structure. Based on the survivor bits table presented in Table 5.1, extracting the correct

bit from the survivor bit table is divided into two steps: searching for Word Number and Bit

Number.

For a constraint length K Viterbi decoder, the Word Number is determined by masking off

the bits between four LSBs and MSB, which is defined by Equation 5.1.

Word Number = (trace_state>> 5) &(2_6 - i) 	 (5.1)

82

The Word Number will be added by the pointer of the current table address to indicate a

memory with 32bits survivor bits. For the constrain length K < 7, this part of the

computation can be eliminated, since only one word is required by each trellis stage.

Because the survivor bits in the memory are in an inverse manner, for example, the survivor

bit of state 0 is saved in MSB, the bit address corresponds to 31 - State Number. Based on

the properties of Table 5.1, the calculation for the Bit Number is accomplished by Equation

5.2:

Bit Number = 31—(trace state & OxiF) 	 (5.2)

After finding the correct survivor bit, the old trace_state value is shifted one bit left and the

survivor bit can push into the LSB to form the new trace_state, which is denoted by

Equation 5.3.

trace state = (trace state0 	i sur_bit) 	 (5.3)

The new trace_state is exploited to look for the survivor bit in the next iteration.

5.3 Performance of Viterbi decoder on RICA

To analyze the performance of RICA, three versions of a constraint length 7 and code rate

1/2 Viterbi decoder have been implemented on the RICA platform. In case I, only one

butterfly unit is performed in an ACSU loop. Otherwise, two and four butterfly units are

executed at a time in case II and case III, respectively. The performances of these three cases

are presented in Table 5.2. Case I requires least number of cells, but it provides the slowest

speed. Although case III achieves the highest throughput, it also requires more instruction

cells to perform more butterfly units in a step. This is expected due to more butterfly units

being processed simultaneously, the faster throughput is achieved.

Table 5.2 Performance of Viterbi decoder on general RICA

Throughput (Mbps) No. of Steps No. of cells

Case I 0.89 1943 102
Case II 1.39 1047 126
Case III 2.56 599 182

83

The utilities of each individual cell are presented in Figure 5.4. It can be seen that ADD,

CONST and REG are the most popular instruction cells, because they are widely used by

loop control, address manipulation and branch operations of C program.

No. of individual cells

50

45

40

35

30

25

20

15

10

5

0

U Case I

U Case 11

Case ifi

CP

Figure 5.4 Requirement of individual cells for Viterbi decoder

5.4 Advanced implementation and optimization for the

Viterbi decoder

At present, wireless communication standards expect to provide fast system throughput. For

instance, 3G systems can achieve 2Mbps, DVB-TIH provides round 20Mpbs transmission

speed, and WLAN claims higher throughput, up to 54Mbsp. As a reconfigurable architecture

exploited in the portable communication scenario, RICA must fulfill the throughput

requirement of these high-speed communication standards. In this section, several novel

approaches to accelerate Viterbi decoding on RICA architecture are elaborated.

84

5.4.1 SIMD based RICA

Due to the fact that the required word width for digital communication operations is often

much narrower than 32bits, employing 32bits representing smaller data size not only wastes

the hardware resource, but also decreases the performance and efficiency of the RICA

processor. In terms of the Viterbi decoder, as discussed in Chapter 2, four or five bits

representing the soft input symbols can achieve a similar performance as the floating point

representation in the case of AWGN channel and BPSK [22].

In addition, due to the inherent symmetry properties of digital communication algorithms,

several variables can be aligned together to be processed at the same time. According to

these two phenomena, a Single Instruction Multiple Data (SIMD), based RICA is proposed,

where each instruction cell of the RICA can be split into several narrower word length

operations in order to enhance the productivity of the RICA processor. For instance, a 32bits

ADD cell can be configured to four independent 8bits ADD cells or two independent l6bits

ADD cells, thus with the similar die area, ADD operations can be augmented 2 or 4 times.

This thesis is the first time to propose using the SIMD technique in the RICA architecture in

order to achieve data level parallelism. As compared with the high performance processor

designs described in [80] [81], where SIMD based ALUs are integrated into the processor,

RICA looks at cell based architecture, which exhibits a lower level application.

SIMD based RICA is very efficient at accelerating the processing of ACSU. It can be seen

from Figure 5.5 that the branch metrics and path metrics for, two individual butterfly

operations are packed together, thus two butterfly operations can be executed at a time. As

compared with general RICA architecture, its benefits are obvious. Firstly, half-required'

instruction cells are eliminated and the utilization of instruction cells is improved. In

addition, due to the data packing, the transmission delay incurred by the interconnection

mesh. is reduced and the timing characteristic of RICA is further enhanced.

85

00 (00

01 	 01

10

11

GIDm Vector
Data Operaton

Figure 5.5 Butterfly units on a SIMD based RICA architecture

5.4.2 Custom Function Cells

Since the RICA processor has a very flexible.interface with the instruction cells, the custom

instruction cells can be easily integrated into the architecture to improve the performance for

a specific application domain. In order to tailor the RICA to the high throughput required

scenario, several individual custom instruction cells are proposed to accelerate the Viterbi

decoding procedure.

5.4.2.1 Modulo comparison

In a Viterbi decoder, path metrics are accumulated till the end of frame. The value of each

path metric will increase without limits and incur an arithmetic overflow if it is not

periodically normalized. As illustrated in Chapter 2, normalization can be achieved by

subtracting the minimum path metric in each time cycle. However, the major drawback of

this normalization scheme is the huge clock delay caused by looking for the minimum path

metric and subtracting it from all other path metrics. The other approach is modulo.

arithmetic which is an efficient method of solving system crash caused by path metric

overflow. The ideal of modulo normalization is not to avoid overflow, but instead to

accommodate overflow into a way that is does not affect the correctness of the results. This

is achieved by using two's complement arithmetic with a modified comparator. But this

modulo comparator is not suitable for implementation by software. However, because of the

flexible interface of RICA architecture, modulo comparison function, which is depicted in

86

Figure 5.6, is extended to a COMP_MUX cell. By changing the configuration bits, two

15bits modulo comparators can be realized on the extended COMP_MUX cell. In, addition,

it can be seen from Figure 5.6 that the MSB of each 16bits vector is reserved for the survivor

bit which is the output flag from the modulo comparators. Packing survivor bits with path

metrics can further reduce function cells and data transmission as compared with general

RICA.

31:30 	 15:14 	 0 	 31:30 	 15:14 	 0

• ____

I 	I
Figure 5.6 Modulo Comparison function for COMP_MUX cell

The performance comparison between a software implementation and a custom cell

implementation of a butterfly unit is tabulated in Table 5.3. The comparison between a

general COMP_MUX cell and a custom COMP_MUX cell is also presented in Table 5.3. It

can be seen that, as compared with software implementation, the custom cell-based butterfly

unit can reduce latency by 79.0% and only requires one instruction cell to perform a

butterfly unit. In contrast to general a COMP_MUX cell, a custom COMP_MUX cell has to

pay an extra 16.67% time delay, 44.24% area and 54.68% power consumption as the price of

throughput improvement.

87

Table 5.3 Performance comparisons for a butterfly unit

Latency (ns) Area (urn2) Power (uW) No. of cells

Software Implementation 7.0 N.A. NA
2 SHWF
4 LOGIC

2 COMP_MUX

General COMP_MUX 1.26 2151.73 33.67 N.A

Custom COMP_MUX 1.47 3103.68 52.08 1 1 COMP_MUX

5.4.2.2 Traceback instruction cell

As described in the previous section, traceback logic ought to look for the Word Number and

Bit Number to extract the survivor bit from the survivor bit table. However, this procedure

results in a long combinatorial circuit consisting of logic, shift and bit level manipulation. In

order to speed up the traceback operation, a specific instruction cell is introduced to handle

the loosest computation in the hardware. The proposed architecture of this custom cell for

traceback is depicted in Figure 5.7.

It can be seen that the output of the traceback instruction cell is equivalent to shifting the

trace_state variable one bit up and pack the survivor bit at the LSB. INO and INJ represent

trace_state and a 32bits survivor bit table, respectively. Since the survivor bits in the

survivor bit table are in an inverse manner, the Bit Number corresponds to 31 - INO[4:0].

Moreover, the traceback instruction cell only adopts four LSBs of INO, thus there is no need

to mask off the upper bits via additional LOGIC cells.

INO 	 INI 	 I/InItialization
trace_state = 0;

32 bits 	 32 bits 	 P = survivor memory address for last state

//traceback operation

- 	

for(i=size_frame;i>O;i-.)

	

i 	OUT = (INO << 1) 1 IN1[31- 1N014:01J 	survivor_vector = 	+ (trace_state>> 5) & Oxi);

trace_state = extract (trace_state, survivor_vector);

	

32 bits 	 output_bit[i] = trace_state & Oxi;

	

OUT 	
P = P-2;

)

Figure 5.7 Custom cell for traceback operation

88

The comparison of the traceback operation with and without custom cell is presented in

Table 5.4. Compared with general RICA architecture, the latency of the traceback operation

with the custom cell can achieve a 19.15% reduction. Moreover, a SHIFT cell, ADD cell and

LOGIC cell can be preserved by the adoption of a custom cell.

Table 5.4 Comparison of Traceback with/without custom cell

Latenèy (ns) No. of cells

2SHIFT4ADD
With custom cell 14.35 3 LOGIC 1 RMEM

1 WMEM 9 CONST

4 SHIFT 5 ADD
Without custom cell 17.75 4 LOGIC 1 RMEM

1 WMEM 9 CONST

5.4.3 Software pipelining

When a loop is implemented on the RICA architecture, it would be best to be fitted in a

single operation step to reduce the jump inside a loop. Taking butterfly operation as an

example, the data flow graph of a ioop executing one butterfly operation is shown in Figure

5.8. It can be seen that this step consists of two parts, address generator which generates the

read and write address for the RMEM and WMEM cells and computation logic which

calculates the butterfly operation. The longest-path in this loop is also highlighted in Figure

5.8. According to a 32bits RICA timing model, the longest-path delay of this loop is 24.1 ns.

89

Bod4Not penedJ

Figure 5.8 Unpipelined Butterfly operation

Software pipelining is an approach to reorganize loops by means of inserting registers into

the longest-path. Thus, a combinatorial circuit is split into several portions running at the

same time. Since the address generator and computational logic consume roughly the same

time, the registers can be inserted between these two parts to reduce the latency by half. The

data path of the butterfly operation after software pipelining is depicted in Figure 5.9. Since

these two parts are executed in parallel, the total latency after software pipelining can be

decreased to 13.9 ns, where the pipelined loop can save 42.32% time delay of the original

loop, but additional REG cells need to be paid as the price.

90

BoddpenedJ

Figure 5.9 Pipelined butterfly operation

5.5 Performance of the Viterbi decoder on an advanced.

RICA platform

According to preceding advanced implementation approaches, the constraint length 7 and

code rate 112 Viterbi decoder has been redesigned and optimized on the RICA platform. The

performances of the optimized implementations on three test cases have been tabulated in

Table 5.5. It can be noted that, in terms of throughput, SIMD based RICA with custom

instruction cells can achieve 91%, 74.1% and 59.8% performance gains as compared with

general RICA. In terms of number of execution steps, advanced RICA architecture can

reduce by 40.2%, 31.8% and 27.7% compared with general RICA. In other words, less.

91

configuration latency and power consumption can be accomplished by the advanced RICA

architecture. It also can be seen that the number of required instruction cells is roughly as the

same as general RICA architecture.

Table 5.5 Performance of Viterbi decoder on advanced RICA

Throughput Improve No. of Improve No. of cells Improve
(Mbps) steps

Case I 1.70 91% 1162 40.2% 100 2%
optimized

Case II 2.42 74.1% 714 31.8% 131 4%
optimized

Case III 4.09 59.8% 433 27.7% 185 -1.6%
optimized

The cost of each individual instruction cell is illustrated in Figure 5.10. Apart from LOGIC

and SHIFT cells, other instruction cells are consumed less than those of the general RICA

architecture. The reason is that additional LOGIC and SHIFT cells are employed in packing

and shuffling data for SIMD based RICA architecture.

In order to analyze the maximum throughput for the Viterbi decoder on RICA architecture, a

full parallel Viterbi decoder, where 32 butterfly units are executed in one single operation

step, has been implemented on SIMD based RICA architecture with specific instruction cells.

It can be seen from Table 5.6 that, if a full parallel ACSU is implemented on the RICA, 20.9

Mpbs throughput can be obtained. After three-stage software pipelining, a further 2.7 times

throughput gain can be accomplished. With a throughput up to 56.4 Mpbs, the advanced

RICA architecture can be exploited by current wireless communication devices.

92

No. of individual cells

50

45

40

35

30

25

20

15

10

5

0

CP VCP 4"

I Case I

•CaselOptimized

Case II

Case II Optimized

• Case III

Case ifi Optimized

Figure 5.10 Requirements of individual cells for Viterbi decoder

Table 5.6 Ultimate Viterbi decoder on advanced RICA

Throughput
I Throughput (software

pipelining) No. of Steps
I

No. of cells

Full parallel 20.9 Mbps 56.4 Mpbs 120 349
Viterbi decoder

5.6 Conclusion

This chapter has described the implementation of the Viterbi decoder on a novel dynamic

reconfigurable architecture, RICA. In addition, several advanced optimization approaches

have been proposed to accelerate the throughput of the Viterbi decoding process on the

93

RICA platform. With the proposed approaches, the throughput of Viterbi decoder can be

improved up to 91% as compared with general RICA architecture. Ultimately, 56.4 Mbps

Viterbi decoding throughput can be achieved by employing a full parallel ACSU architecture

with software pipelining optimization scheme. In contrast to other reconfigurable

architectures which are programmed by high-level language, the Viterbi decoder on the

RICA platform exhibits the best throughput performance.

Since RICA can be easily programmed, it can dramatically reduce the time-to-market for

portal products. In the following chapter, a more complicated channel decoding approach,

double binary circular Turbo codes, will be described. In addition, several efficient decoding

schemes will be proposed and an efficient decoder design for double binary circular Turbo

codes will be demonstrated on RICA architecture.

94

Chapter 6: 0

M-binary Circular Turbo Decoder
and its Application

Turbo codes [82] were first introduced to the coding community in 1993 to provide higher

reliability data transmission at very low signal-to-noise ratio (SNR) as compared with

convolutional codes. For the sake of its outstanding performance and competitive

implementation complexity, Turbo codes have been specified in numerous communication

standards, such as satellite communication, third-generation communication system,

DVB-RCS, WIMAX, etc.

In the recent decade, many works have focused on improving Turbo encoder/decoder

algorithms and architectures to achieve better BER/FER performance, reduce computation

complexity, increase throughput and minimize power consumption of the Turbo codes

system. Amongst these works, M-binary circular Turbo codes [84] have stood out and its

particular application, double-binary circular Turbo codes, has been standardized by industry

applications, such as DVB-RSC and IEEE 802.16d.

95

However, the computational cost needed by Turbo decoding process is an order of

magnitude greater than that of \1iterbi decoding [83]. Moreover, M-binary circular Turbo

decoding requires M times more computational cost than classical Turbo decoding. Thus, an

efficient implementation for M-binary circular Turbo decoders is a big challenge for mobile

terminal designers.

For these reasons, the implementation design flow for M-binary circular Turbo decoders is

divided in two steps which are presented in Chapter 6 and Chapter 7 respectively. The first

step will explore the implementation design space on algorithm level. The issues addressed

in this step consist of the mathematical model for the M-binary circular Turbo decoder, the

selection of decoding algorithms, their simplification and optimization, and parallel

decoding approaches which can achieve high decoding throughput. On algorithm level, the

M-binary circular Turbo decoder is investigated by a floating point representation. However,

a fixed-point representation is mandatory for most hardware architectures, such as the RICA

platform. Thus, step two investigates a suitable quantization scheme for M-binary circular

Turbo codes, leading to a bit-true model. In addition, corresponding to this bit-true model, a

high throughput double binary circular Turbo decoder on RICA architecture is demonstrated.

6.1 M-binary Circular Turbo encoder

6.1.1 M-binary recursive systematic convolutional encoder

Inside an M-binary circular Turbo encoder, each recursive systematic convolutional (RSC)

encoder can manage a vector with m bits rather than 1 bit data at a time [84]. From Figure

6.1, it can be seen that m+n bits codeword are generated by an M-binary RSC encoder at a

time, where the first m bits are systematic bits which are a duplication of the input vector,

and the following n bits are parity bits which are employed to recover data from

transmission noises.

96

x,I
x '2
x,.',

Figure 6.1 M-binary recursive systematic convolutional encoder

The M-binary Turbo codes can offer many advantages over classical single binary Turbo

codes, and these advantages have already been elaborated in [85]:

• Increased minimum free distance by introducing 2-D permutation.

• Reduced sensitivity of puncturing as compared with the single-binary Turbo codes.

• Improved performance by reducing the correlation effects between two elementary

decoders.

• Reduced decoder latency because m bits are processed as a symbol.

6.1.2 Circular Thrbo encoder

In a classical Turbo coding system, several tail bits have to be padded to the end of a frame

in order to force the trellis starting and ending at the all-zero state. However, transmission of

extra tail bits would diminish the transmission bandwidth, especially for a frame with small

frame size.

Circular (Tail-biting) encoder [86] is a technique which ensures that, at the end of the

encoding process, the final state is constrained to be identical with the initial state, and the

merged identical state is called circular state. The advantage of circular Turbo codes is

obvious. It can reduce the code rate and increase the system transmission bandwidth.

However, the computational complexities of both encoder and decoder are augmented.

In addition, the studies of algorithms/architectures for an efficient decoder implementation

of M-binary circular Turbo codes are not sufficient in the current literature. These issues

97

motivate us to build a mathematical model for an M-binary circular decoder in order to

investigate different decoding algorithms, their simplification and optimization.

6.2 M-binary Circular Turbo decoder

A typical Turbo decoder, shown in [82], consists of two soft-input soft-output (SISO)

decoders, one operating on the actual order, the other on the interleaved order. The

interleaver and de-interleaver are employed to reorder the sequence during the iterative

process.

There are two prevalent SISO decoding algorithms which are used in Turbo decoder: the

maximum-a-posterior (MAP) algorithm [87] and the soft-output Viterbi algorithm (SOVA)

[88]. Since the SOVA is more complex than the MAP and its approximation algorithms [89],

and also the SOVA algorithm incurs 0.5dB performance degradation as compared with the

MAP and its approximation algorithms [87], this thesis only focuses on investigating the

MAP algorithms for the M-binary circular Turbo decoder.

6.2.1 MAP algorithm for M-binary Turbo codes

6.2.1.1 Mathematic model for single MAP decoder

As depicted in Figure 6.1, the output from an RSC encoder is a (m + n) x N size matrix which

can be represented by:

E01 = (El ,E2 ,E3 ,...,EN) 	 (6.1)

where the codeword at time k is represented by Ek = (X,X,X 3 Xm 1,}T2 V3 yT
Ic " 	k 	k 1 k" k)

m denotes the number of systematic bits, n denotes the number of parity bits and N is the frame

size.

If binary phase-shift keying (BPSK) is assumed, the modulated codewords are presented as:

E'=(El',E2',E3', ... ,EN ') 	 (6.2)

Each component Ek' = 	
11)T is a vector containing m+n elements, where

98

eka
a-1,...,m+n

During the transmission, these codewords are corrupted by channel noises, and the noised

symbols received by decoder are:

D = (Dl ,D2 ,D3 , ... ,DN) 	 (6.3)

where D = (d 1 d 2 d3 	dm+)T is the received symbol at time k. k 	\ k' k' k'"" k

The posteriori probabilities of each possible codeword are indexed by:

P(Xk =x1D)
	

(6.4)

where D is received symbol sequence, and X' represent the 2" different codewords. It can be

seen from Equation 6.4 that at time k, there are 2m posteriori possibilities for each codeword.

According to the MAP algorithm, all these posteriori possibilities must be calculated and the data

pair with the maximum posteriori possibility is selected as the decoder output.

According to Bayes' rule, posteriori probabilities can be approximate represented by its joint

probabilities [90]:

	

P(xk = X1' I D) P(xk = X, A D) 	 (6.5)
i-1.....2'" 	 i-I 2'

Joint probabilities P(xk =
	

A D) can be classically partitioned [90] into three terms.
i 1 2'"

Defining T' is a set of transitions from previous trellis state Sk_l = S ' to current trellis state

Sk = 's which are caused by transmitting M-binary vector Xk, the joint probabilities can be

rewritten as:

P(xk =XAD)= I P(D1> Is)P({Dk A S}lS ')P(S' ADfk)
(s',$)E!j"

(6.6)
= 	,8k+1(5)yk+1(s1s)ak(s)

(s',s

P(Df>k I s) represents the probability that, given the trellis is in state s at time k the future

received vectors will be D(>k . P(s' A Df<k) denotes the trellis is in state s' at time k-i and

the received channel sequence up to this point is DI<k . P({Dk A s} I s ') is the probability

99

that, given the trellis is in states' at time k-i, it moves to s with received vector Dk. They are

also nominated as backward metrics fik (s) , forward metrics ak(s) and branch

metrics Yk (s', s), respectively.

Referring to Bayes' rule again, forward and backward metrics can be recursively deduced by

[91]:

ak(s) = Z yk(s,$)ak.l(s)
ails'

flk-l() = Irk(s,$)flk(s) 	

(6.7)

ails

The main difference between these two recursive computations is that forward metric calculation

processes from beginning to the end of the frame, otherwise backward metrics are calculated

from the end to the beginning.

Moreover, if a memoryless Gaussian channel and BPSK modulation are assumed, branch

metric Tk (s', s) can be denoted by: (The deduction of Equation 6.8 is presented in Appendix A)

ms-n

yk(s,$) = expek .d}P(x k) 	 (6.8)

It can be seen from Equation 6.8 that a branch metric includes two items, the first item is an

exponent of the correlation between received codeword and expected codeword, which indicates

the difference between the received and expected codeword. The other is the a-priori probability

of Xk, which indicates the statistical characteristic of the transmitted M-binary vector acquired

before the current decoding process. In an iterative Turbo decoder, P(xk) will be transferred

between two MAP decoders to improve the reliability of a Turbo decoder.

6.2.1.2 	Mathematic Model for an iterative Turbo decoder

In an iterative decoder, the output from one MAP decoder will be fed to the other as priori

probabilities of xk(P(xk)). During the iterative process, priori probabilities will be more and

more reliable, resulting in a dramatic improvement on BER/FER performance of a Turbo

decoder.

100

The exponent term of Equation 6.8 can be split into two items in tenns of systematic and

parity parts, which is presented as follows:

(m+n

yk(s,$) = expek d}P(xk)

=exp[
e .d}exP 	e d}P(xk)

1-1 	 1-m+1

=exp[e .d}xk (s's).P(xk)

(6.9)

Thus Equation 6.6 can be rewritten in another format:

P(xk = X AD) = 	8 1 (s) Yk +l(S ' ,S) . a,(s)
i—P 	 (s.$)ET!

(6.10)
(m

= exp 	d 1 J P(xk+l) 	fi +1 (s) a(s') Xk+l(S', s)
\1-1 (s',s

It can be seen that the last term of Equation 6.10 is independent upon the channel effect of

current systematic bits and P(xk). Therefore, it was named as extrinsic probabilities, which is

represented as:

PO7Xk =X' ID = 	flk+l(s)ak(s')Xk+l(s',$) 	 (6.11)
ip) 	(s',$)E7j

In an iterative Turbo decoder, extrinsic information of Xk represents the probabilities that are

obtained based on the received sequence and priori probabilities excluding the received

systematic symbols and priori probability of Xk. In an iterative Turbo decoder, extrinsic

probabilities from the current MAP decoder would be provided to the other MAP decoder as

the priori probability for Xk [90].

6.2.2 Simplifying the MAP algorithm with the MAX*

approximations

Although a MAP algorithm for the M-binary Turbo decoder has been deduced in Section

6.2.1, it is too complex to be implemented by hardware or software methods. The

101

approximations which can be employed to simplify the computation of a MAP algorithm

have been addressed in [87] [92] [93] [94], in the case of the classical Turbo decoder.

However, they also can be evolved for an M-binary Turbo decoder.

6.2.2.1 Log-domain MAP

Transferring the computation of MAP algorithm into a logarithmic domain can replace

multiplication by addition and also eliminate exponent operations. In a logarithmic domain,

these probabilities can be denoted by:

L7 (s) = in ak(s) = in 1 exp(L (s', s) + L 1 (si))]
= 	

(L; (s', s) +
a

alls' 	
ils'

L 1 (s) = in flkl (s) = In 	exp(L (s', s) + L (s)) = MAX (L; (s', s) + L (s)) '

alls 	
ails

m+n

L(s',$)=inyk (s',$)=e 	+lnP(xk)

Lxk = X i'l D= ml 	exp(L +1 (s) +L 1 (s',$) +L7(s))J
l-/4)

= MAX (L +1(s) +L(s') +L +i(s',$))
(s',s

L 1 xk = X i'l D= ml 	exp(L +1(s) +L7(s') +

= MAX * (L 1 (s) + L'(s) + L +1 (s',$))
(s',s

(6.12)

where /4X * (A)=lneJ

Since MAX is the major function for log-domain MAP algorithm and also it is not easy

to be directly implemented, thus there are several approximation schemes focus on reducing

the associated implementation complexity of the MAX function. In general, these are

Log-MAP [87], Constant-Log-MAP [92], Linear-Log-MAP [93], MAX-Log-MAP [87] and

Enhanced MAX-Log-MAP [94]. Log-MAP, Constant-Log-MAP and Linear-Log- MAP

approximations aim to convert the MAX * function to an addition of a MAX and a correction

102

function.

6.2.2.2 Log-MAP algorithm

In the Log-MAP algorithm, applying Jacobian logarithm, the MAX function can be

expressed by:

MAX(x,y) = ln(ex + e d')

= max(x, y) + ln(1 + e) 	 (6.13)

= max(x, y) + f (I x - y I)
which is an addition between the maximum of the function's two arguments and a nonlinear

correction function. In practice, this correction function f (I x - y I) might be implemented

in a software method with floating-point functions, and might be implemented by a finite

lookup table in hardware design [95].

	

6.2.2.3 	Constant-log-MAP algorithm

In the Constant-Log-MAP algorithm, MAX is approximated to:

MAX*(x,y)=max(x,y)+{0 if Ix - yl>T
C 	ifIx—yI:r.T 	

(6.14)

Compared with the Log-MAP algorithm, the Constant-Log-MAP algorithm supersedes the

correction function f (I y - x I) by a value equal to 0 or a constant C which depends on the

absolute difference between x and y. It offers an easier way to implement MAX function,

but it will suffer more from the performance loss as compared with the Log-MAP algorithm.

	

6.2.2.4 	Linear-log-MAP algorithm

The Linear-Log-MAP algorithm provides a tradeoff between the Log-MAP algorithm and the

Constant-Log-MAP, which adopts the following linear approximation for a MAX function:

10 	 if x - y> T 	
(6.15) (x,y)= max(xY)+1

(I) if Ix—yl:r.T

Rather than a nonlinear correction function in the Log-MAP algorithm, the Linear-Log-MAP

algorithm exploiting a linear correction function not only reduces the computation

103

complexity, but also compensates for the performance loss. The comparison of three

different correction functions is illustrated in Figure 6.2.

Correct Function Companson
V.

--login p

0. 	 Constant Logrnap(C=0.5 1=1.5)
Linear Logmap(a=.0.5. 1=1.5)

0.

0.

0.

0.

0.

0.

I 	 I 	 I 	 I

0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4

Figure 6.2 Correct functions of different approximation

In the classical binary Turbo MAP decoder,: only two arguments need to be considered'in

MAX' function. However, in the case of M-binary Turbo codes, each MAX' function

contains 2 arguments. In addition, a MAX'function with 2m arguments can be recursively

calculated by MAX' functions with two arguments:

X2.)=MIAXSWrAX*(XI,X2),•••,MIAX*(X2,.I,X2m)) 	(6.16)

6.2.2.5 MAX-Log-MAP Algorithm

On the other hand, MAX-Log-MAP and Enhanced MAX-Log-MAP' approximations eliminate

the correction function and directly compute MAX * by:

	

MAX'(x1,x2, ... x)—MAX(x 1 ,x2 ,...x 1) 	 (6.17)

In the case of classical Turbo codes, the MAX-Log-MAP algorithm can reduce computational

cost by half compared with other approximate MAP algorithms with correction functions,

but it has to pay 0.5dB performance loss as the price [87]'. In addition, Enhanced

Max-Log-MAP algorithm scales the extrinsic information with a constant coefficient smaller

than 1.0, typically around 0.75, to compensate for the performance loss caused by rough

104

approximation of MAX *

6.2.3 Metric Initialization for Circular Turbo Code

It can be seen from Equation 6.7 that both forward and backward metrics are calculated

recursively. The initial values of forward and backward metrics can dramatically affect the

values of following forward and backward metrics and also the Turbo decoding

performance.

In the case of classical Turbo codes, since the tail bits compel trellis starting and 'ending at

the zero-state, forward metrics and backward metrics can be easily initialized as:

a0 (S0 =0)=1

a0 (S0 = s) =0 for all s o 0

IBN (SN O)—1 	
(6.18)

-...

flN(SN—s)-0 forallso0

This kind of initialization emphasizes that both forward and backward metric computations

are expected to start from zero-state.

However, the trellis of circular Turbo codes begins and finishes at a circular state which is

unknown to decoder. Since the initial values might dramatically affect the decoding

performance, a special initial value estimation module has to be introduced to the circular

Turbo decoder.

[96] [97] suggested that the circular state can be obtained by the decoder through starting the

forward and backward some steps ahead of the circular states, called the prologue part. In

practice, a prologue of 32 steps is sufficient to converge to the right circular state. However,

this scheme imposes on extra decoding latency and computational cost contributed by the

forward and backward metrics computations in the prologue part.

Owing to the iterative feature of a Turbo decoder, we proposed two new approaches to

initialize forward metrics and backward metrics. The first approach we call feedback

initialization. The mechanism of feedback initialization is that before the first iteration, all

treffis states will be assumed to be equiprobable, and forward metrics and backward metrics

105

are set to value one:

a0 (S0 = s) = 1

13N(SN =s)=1
(6.19)

During the MAP decoding process, forward and backward metrics are recursively updated

according to Equation 6.7. During the decoding process, some initialization errors can be

rectified. Thus the final forward and backward metrics (aN (SN = s), (S 0 = s)) represent

much more reliable information than initial ones. Since the beginning and ending of the

trellis are merged at the same state, the final forward metrics and backward metrics of

current iteration can be used to initialize the forward and backward metrics at the next

iteration.

In contrast with the prologue approach, more errors are produced by the feedback

initialization approach at the first several iterations. However, with the increasing of the

number of iterations, the performance can be improved further. Most importantly, the

feedback approach eliminates the prologue part in order to reduce the decoding latency and

additional computational cost.

The feedback initialization approach produces more errors at the first several iterations than

the prologue approach because of the arbitrary assumption that all trellis states are

equiprobable at the beginning. Thus, a hybrid initialization approach can be proposed to

remove this drawback. In the hybrid approach, in the first iteration, the initial forward and

backward metrics are acquired from a prologue part. However, during the following iterative

process, the initial values are inherited from previous iterations.

6.3 Application of M-binary circular Turbo codes

Due to the significant advantages of M-binary circular Turbo codes, its special case, double

binary circular Turbo codes, have been standardized in DVB and WiMAX specification as

one of channel coding approaches. The following parts will analyze the tradeoff between

different decoding algorithms and conclude the most suitable decoding algorithm for

hardware implementation.

106

6.3.1 Double binary circular 'ilirbo encoder

When M is equal to 2, at every clock cycle, a vector comprising 2bits is fed into an RSC

encoder which outputs two systematic bits and two parity bits. The encoder structure of

double binary circular Turbo codes standardized in IEEE 802.16 is depicted in Figure 6.3. It

can be seen that the encoder is a parallel concatenation of two identical RSC encoders. The

corresponding encoded word consists of two systematic bits and four parity bits. The

systematic bits are copies of input bits and parity bits correspond to outputs of two RSC

encoders.

A
B

Y 1 (Y2)

W 1 (W 2)

Figure 6.3 Double binary RCS encoder [11]

6.3.2 Double binary circular decoder architecture

The architecture for the double binary Turbo decoder is described in Figure 6.4. It can be

seen that at a time, two systematic bits YS(Ak,Bk) and two parity bits Y,(A!k,BIk) are

fed to MAP decoder I. MAP decoder II will take two interleaved systematic bits and another

two parity bits Y,, (A2k , B2k). The iterative operations are highlighted in red. The extrinsic

information In P (Uk I) from a MAP decoder will be passed to the other MAP decoder

as the priori information. The dashed line indicates the metric initialisation approach where

the final forward and backward metrics of each MAP decoder will be served as the initial

metrics in the next iteration. In the end, the hard decision block will select the data pair with

the maximum posterior probability as the decoder output { A ,Bk }.

107

I A,(S N =s),B(So =s) 	I 	 I A"(S NN 	=s),B(So =s)
..L.,. 	 L_.,

Y, (A t , Bf) 	
MAP 	

Y (A 	
MAP -.

] 1nP(uy) Decoder YP(A,k,BI&) 	Decoder
I 	 YP (A U ,B2k) 	P 	II

In P(uk),, 	
In P(u I __

InP(u), 	 I 	I
i.i
II

I De-interleaver L
d In P (u y) 1, 	 L...f.J

{A.
I Hard decision

Figure 6.4 Double binary circular Turbo decoder architecture

6.3.3 Decoding performance comparison

In the previous section, several candidates' decoding algorithms for M-binary circular Turbo

decoders have been addressed. Since the decoding performance, such as BER and PER, is an

important factor in selecting a suitable implemented algorithm, a system model including.

encoder, decoder and channel model has been built in C to estimate the tradeoffs between

different decoding algorithms. During the comparisons, unless otherwise stated, system

parameters (which are defined by WiMAX specification) selected are as follows:

	

• 288bits per frame 	 .

• Code rate 1/2

• AWGN channel and BPSK modulation

6.33.1 	Initialization approaches

In order to solve the metric initialization conundrum, three initialization approaches

(prologue approach, feedback approach and hybrid approach) are presented in Section 6.2.3..

The PER and BER plots for the three initialization approaches are illustrated in Figure 6.5

and Figure 6.6, respectively. It can be clearly seen that all three initialization approaches can

provide superior decoding performance as compared with the decoder without metrics

initialization.

In addition, after two iterative decoding processes, the prologue approach outperforms the

108

cc
w
II.

w

other twoapproaches. The performance of the hybrid approach is slightly better than that of

the feedback approach in terms of both FER and BER. However, there are no evident

differences among these three approaches after four iterations. Since there is no obvious

FER or BER gain after five or six iterative decoding process, it can be concluded that the

feedback approach can provide the same performance as the prologue and hybrid approaches.

On the other hand, according to Section 6.2.3, the feedback approach claims the least

computational cost among three initialization approaches. In addition, by removing the

prologue procedure, the feedback approach maintains a consistent decoding process, which

can facilitate the hardware implementation. Therefore, the feedback approach is the most

suitable candidate for a high-speed double binary circular Turbo decoder.

ftk,, -,

-9'-Hybñd
-E--Fooack

	

0 	0.5 	I 	1.5 	2 	2.5 	3
EWNO (dB)

- A

22 	2 T 	
E =
	= =

 -- - - - -----------
II 	 I 	 I
I 	 I 	 I 	 I

	

0 	 I r 	ri

_ •_-s__-

I 	 I 	 I

	

0 	 #========
===IZZ= ZZr

- - -----T
I 	 ... 	I

	

0 	
22222222

	

0 	0.5 	1 	1.5 	2 	2.5 	3
E&1'(dB)

ttemtion 4

1..........
I0••

::::':::::::::!:_ :!:_: -2-2:..

222 	 222222222
-1-----$---- - -- I- ----
-1

o = '
5555'55552225525525 EE\E5E55

-I-----I --------
I

0
- 	---E--- Without i,tiahzatia, 	 I

---PioIogue
-2--Hybrid 	 :::::2::::_ ::
-0-FeecS,ack 	 - - - --

-4

0 	0.5 	1 	1.5 	2 	2.5 	3
Eb/N0(dB)

Itnrotk,n A

ID 	

=

10

0' io__I_

 = = = 	.= = = L
= = = = = r 	t
-t -------- ---

0

: : : : : :: : :
- -- - -

0 	 I
0 	0.5 	I 	1.5 	2 	25 	3

Eb/NO (dO)

Figure 6.5 FER comparison for different metric initializations

109

Ir
w
ca

Ir UI
UI

Se,aliee = 2

= = = =R = = = =1= = = =I - ====I-- = = = =1= = =
: : 	 -

10 	=
= = = 	= 	=1= = = 	= rI= = =

to'

::

E

	

Without 	 -

—4--Feedback 	 -

Itembon = 4

-

0 	a 	- aaaaa aaaaaaa

----I- -
-2 	 I 	 I 	 I

EMMMEMOMM

--

0 	 555S

rrrrtrrtrIr_ttrI j_rrrzz

io 	 -
S

io

--=--wIttjtInrnanzal1on 	 J.

66 ---
—4--Hybdd El
—4—Feedback 	 : 	:: : : i::

0.0 	 1 	 1.0
	

0 	0.5 	1 	1.5 	2 	2.5
	

3
EbIF(dB)
	

ELu'P(dB)

cc
w
Co

,0 	
Itetatica=6

- - - - 	 -

I 	I

-

Wilbautbatzaticn -

Prologue

—#--Hybnd

—4--Feedback 	 -

-o 	 Seration-8

- - - - - - -I---------------- - - - -

cc
UI
UI

Prologue

—4--Feedback

U
	

0.0 	 1 	 1.0 	 Z 	 Z.0

Eb4(dB)
	

Eb/F(dB)

Figure 6.6 BER comparison for different metric initializations

6.3.3.2 MAP decoder algorithms

In order to simplify the implementation of a MAP decoder,. five approximate MAP

algorithms have been illustrated in Section 6.2.2. It can be seen from Equation 6.12 to 6.17

that these approximations are tradeoffs between performance and computational cost. Their

FERJBER performances have been investigated in order to find out the best balance point

between performance and computational cost. - -

It can be seen from Figure 6.7 and Figure 6.8 that, although the MAX-Log-MAP requires the

least computational cost for each iterative process by a means of approximating MAX to

maximum operation, it suffers from the worst performance degradation. On the other hand,

the Constant-Log-MAP algorithm approximates correction function to either a constant C or-

a value of zero, which achieves better performance than. MAX-Log-MAP, but still incurs

110

0.2dB performance degradation in terms of FER and (1). 1 dB performance degradation in

terms of BER as compared with Log-MAP Linear-Log-MAP and Enhanced MAX-Log-MAP.

In addition, after four iterations, Log-MAP Linear-Log-MAP and Enhanced MAX-Log-MAP

can achieve the same decoding performance. However, from the computational complexity

point of view, Enhanced MAX-Log-MAP stands out from the three approximations.

On the other hand, the number of iterations is another important parameter that has to be

investigated. With the increasing of the number of iterations, the decoding performance is

improved and the computational cost is augmented indeed. It can be seen from Figure 6.7

and Figure 6.8, while the number of iterations increases from two to four, the performance

improvement caused by the increase of the number of iterations is remarkable. However, the

performance gain between four iterations and six iterations is little. Moreover, eight iterations

perform the same results compared with six iterations, but it demands 33.33% more

computational cost. Thus, it can be concluded that a double binary circular Turbo decoder with

five or six iterations is capable of providing a decent decoding performance.

cc
w Si

U.

ftemllon = 2

----4-.

-I ----------

____L --------------
I 	 I I

----4- - - - - -- - - - - - -------- - I

-- - = = = 	= 	= = = 	I
--ê.--•Maxlogmap

—v--E*ancedMaxIogmap:':::::'::::I -

thntLOgTfl4P -:---------------
-4--- lognap I 	I

U 	0.5 	1 	 1.5 	2 	 2.5 	3
EWND

IInmti. = 4

= 	= = 	 = t = = = E = 	I =

I0 ===e= 6 ~ '= = = = 1 = = = = I = 	1 	 1 	 = = =
- - - - - - - - 4- - - - - 4 _ • -.4 - - - - 4. - - - -

	

- 	 ---------

I 	 I 	\'\I\ 	I
0

-

01 	 ________

--ê--Max1onap 	 -4-----4.----'- 	-

	

o —v--En cedMaxlogmap_ 	 &= -
—4--ConstarltLogrnap 	 E 	-
---- tJnearLogmap 	: . : : : ::::: :

Logmap 	 --------------
10

0 	0.5 	I 	1.5 	2 	25 	5
E&N0(dB)

'if

I
w
Go

I
w
m

w
IL

Cr
w
IL

ftem1kn = B

::

EEEEEEEE.
' ----Er41ancedMaxIogmap

—E—unearLogmap

0 	0.5 	1 	1.5 	2 	2.5 	3
Ebl5(dB)

Balion = B

::

10-1

0 2

Io

Maxgmap 	 - I-------- --- - - -

l0 	—2—ErthartcedMaXIogmap

–4--ConslantLogznap

-- unearLogrnap 	:: :::::::
—4--Logmap

In4

Eblll(dB)

Figure 6.7 FER comparison for different MAP algorithms

I
	

IteratIo = 2
	

Beoation = 4

I
w
CID

I
w
m

10

:4 !!!t1tt1t!4!$IIL
Maxbpw

10: L Logvnap

U 	 U.h 	 1 	 1.0 	 z 	 Zto 	 3

Eb/t(dB)

0 	 Itetatlon=6

= = = 	= = = =1= = = = 	= = 	= = = 	= = =

06

0,2

El

—$—Lnap

0 	0.5 	1 	1.5 	2 	2.5 	3
EWP4(dB)

':. iTflTt1tM*wL
0 5!! ! S S 5515!!! Si!! 9 	9 S Si! 5!!1

04

0

4 -----MaxIogmap i I i\
— '--EraredMaxIognap i =

. 	-—CCI1SIWdLOIT1BP
0 --Uneart.ogmap

LWnap

	

- ------' 	 --__- ------- ----------- -
0 	0.5 	I 	1.5 	2 	2.5 	3

Eb/NO

0 	
- 	IteoaIianS

106

104

0 1

-----Maxiogmap

--EntiancedMaxIogmap –'
Io 	 Constant

—<--LlnearLoojnap

—4
Ifl 	

--Lgmap

U 	 U.S 	 I 	 1.3 	 4 	 1.5 	 3

Eb'P(dB)

Figure 6.8 BER comparison for different MAP algorithms

112

6.4 Conclusion

In this chapter, the fundamental principles of the M-binary circular Turbo coding system have

been described. We described the mathematic model for the M-binary circular Turbo codes

system based on the MAP algorithm. In addition, five approximate MAP algorithms with

optimized computational cost have been evolved from classical Turbo decoder to M-binary

Turbo decoder. Aiming at the circular Turbo codes, since the trellis starting and ending states are

unknown to decoder, two novel metric initialization schemes have been proposed to reduce the

computational cost of the traditional prologue initialization approach.

Furthermore, the double binary circular Turbo codes system has been selected as the test bench

to demonstrate the system performance under different initialization approaches and MAP

algorithms. According to the FER and BER performance, the Enhanced MAX-Log-MAP

algorithm and feedback initialization approach show the best tradeoff between

computational cost and decoding performance. In the following chapter, an efficient

hardware implementation of the double binary circular Turbo decoder based on the Enhanced

MAX-Log-MAP algorithm and feedback initialization approach will be elaborated.

113

Chapter TO0

mplementation of Double Binary
Circular Turbo Decoder on RICA
Platform

Double binary circular Turbo codes have become a part of the WiMAX and DVB-RSC

system, and also are under discussion for use in future communication standards which

demand fast data transmission speed in the range of 10400Mbps and even above. Compared

with the single binary Turbo decoder, the double binary circular Turbo decoder demands

around twice as much computational cost, thus how to implement a double binary circular

Turbo decoder to fulfill the high-throughput, low-power consumption and flexibility

criterion of future communication systems is an attractive topic. Since the RICA architecture

has outstanding performance in terms of flexibility, programmability, throughput and power

consumption, this chapter will continue to focus on RICA architecture.

In Chapter 6 a system model for double binary circular Turbo decoders was built and the

suitable decoder algorithms were analyzed. Based on the findings of Chapter 6, the

Enhanced MAX-Log-MAP algorithm with feedback initialization approach outperforms

other algorithms in terms of performance and computational cost. This chapter will focus on

114

the RICA implementation of the double binary circular Turbo decoder, such as parallel

implementation schemes, quantization schemes, efficient data packing and instruction

scheduling on the RICA platform.

This chapter is organized as follows. Section 7.1 makes reasonable analysis of the

implementation bottleneck of the proposed algorithm. In order to achieve high throughput,

the inherent parallelism of the decoding algorithm has to be explored. Section 7.2 will

present the parallel implementation schemes for the double binary circular decoder and also

propose a novel approach to reducing the computational cost and speed-up the decoding

process. Since directly employing floating-point arithmetic is usually not a proper choice for

practical implementations, transformation from floating-point to fixed-point representation

becomes mandatory. A suitable quantization scheme for the proposed decoding algorithms is

investigated in Section 7.3. The implementation of proposed algorithms with

instruction-level and data-level optimization on RICA architecture is illustrated in Section

7.4. The implementation results and conclusion can be accessed in Section 7.5 and Section

7.6, respectively.

7.1 Implementation bottleneck of a MAP decoder

The pseudo codes for an Enhanced MAX-Log-MAP decoder with feedback initialization are

shown in Figure 7.1. It can be seen that there are four major processing steps of a MAP

decoder: branch metric computation, forward metric computation, backward metric

computation and extrinsic information computation. The bottlenecks of a MAP decoder are

mainly exhibited in two aspects.

According to the estimation and comparison in [89], in the case of 3GPP, a Turbo decoder

with MAX-Log-MAP demands 2.5 times more computational cost than a constraint length

K=7 Viterbi decoder. On the other hand, based on Equation 6.12, it can be seen that a double

binary Turbo decoder might double the computational cost of a single binary Turbo decoder

employed in 3GPP. Thus, the huge computational cost is one of the major obstacles to

achieving an efficient double binary circular Turbo decoder implementation.

115

MAP Decoder:

{ L: length of a frame}

recA(kE{O ... L _1}),recB(kE{O ... L - i}): noised systematic bits

recY(kE{O ... L_1}),recW(kE{O ... L _1}):noised parity bits

A (kE{o- - .L _i}): priori probabilities

a(mE{O ... 7},kE{O ... L}): forward path metrics

a (m E{O.. 7}): initial value for forward path metrics

fi(mE{O ... 7},kE{O...L}): backward path metrics

fi (m{O -- -7}): initial value for backward path metrics

A(kE{O ... L _i}): branch metric

A, (k E{O. -L - i}) : extrinsic probabilities

I/Branch metrics computation

for k=OtoL-1

A(k) = BMU(rec4(k),recB(k),recY(k),recW(k),A,,(k))

end

I/Initialize forward metrics and backward metrics

for m = 0 to 7

a(m,O)= a,,(m),fi(m,L -i)= fl(m)

end

I/Updating forward metrics

for k = 1 to L

for m = 0 to 3

{a(m,k),a(m + 4,k)} = PMU(a(a,k -1),a(b,k -1),a(c,k -1),a(d,k -1),A(k -1))

end

end

I/Updating backward metrics (in a reversed order)

for k = L-1 to 0

for m = 0 to 3

{p(2* m,k),fi(2* m +1,k)}= PMU(fi(a,k +1),fl(b,k +1),fi(c,k + 1),fl(d,k + 1),A(k))

end

end

I/Extrinsic information computation

fork=OtoL-1

A,(k)= softoutput(a(0,k) ,..,a(7,k),fi(o,k +1),..fl(7,k +1),recY(k),recW(k))

end

I/Memorizing the final forward metrics and backward metrics

form=Oto7

a(m,L),,6jj

Figure 7.1 Pseudo-code description for a MAP decoder

116

In addition to computational complexity, a great demand of data transfers is also required by

the targeted decoder. For instance, during the branch metric computation step, 16 branch

metrics are generated and stored in the memory, which will be loaded by forward and

backward metric computations, respectively. At every trellis stage, the updated metrics also

have to be stored in the memory, which are required by metric computations at the next stage

or served as the initial metrics for the next iteration.

Because of the huge computational cost and data transfer operations, an implementation

following the flow presented in Figure 7.1 leads to the unacceptable execution delay. In

order to implement a double binary circular Turbo decoder with a high throughput, one

feasible way is to exploit the inner parallelism of a MAP decoder. The following section will

introduce several prevalent parallel MAP decoder algorithms and also propose a novel

parallel MAP decoder algorithm, which not only demands less computational complexity,

but also achieves higher throughput and better decoding performance as compared with its

counterparts.

7.2 Parallel MAP decoder algorithm

To fulfill significant high throughput required by modern communication standards, the

system requirement can not only be achieved by increasing the clock frequency because of

the technological constraints. Therefore, exploring the algorithm level parallelism is crucial

for an implementation of a high-speed double binary circular Turbo decoder.

7.2.1 Data dependence

From the findings of Chapter 6, the data dependencies between these four steps of a MAP

decoder are presented as follows. The first task of a MAP decoder is to compute branch

metrics according to the received signals. Forward metrics and backward metrics are

obtained by recursive computations. It can be seen from Equation 6.7 that forward

metrics a (s) only depend on previous metrics a 1 (s) and branch metrics Yk (s', s). Since

backward metric are calculated in a reversed order and backward metrics 18k1 (s ') are

117

deduced by backward metrics 13k (s) and branch metrics Yk (s', s). However, there is no data

dependency between forward metrics and backward metrics which means backward metric

computation can be processed before, in parallel to, or after forward metric computation. On

the other hand, extrinsic information can be calculated independently from any other

extrinsic information. However, it depends on forward metric computation and backward

metric computation finishing first.

7.2.2 Sliding window MAP decoder

If a whole frame can be split into several sub-blocks and each sub-block can be decoded

independently, the data dependence inside a MAP decoder can be eliminated and a high

throughput Turbo decoder is realized. This kind of approach is called sliding window which

was originally introduced for a Viterbi decoder [98], and now has been widely adopted by a

Turbo decoder. Based on the truncation employed, there are two types of sliding window

schemes, one-side sliding window and two-side sliding window schemes.

7.2.2.1 One-side sliding window

In a one-side sliding window scheme [99] [100] [101], either forward metric or backward

metric computation is truncated. Figure 7.2 shows an example where backward metric

computation is truncated. It can be seen from Figure 7.2 that forward metric computation

represented by ©, proceeds continuously across window borders. Otherwise, backward

metric and extrinsic information computation, represented by ©, start at the end of each

window and stop at the beginning. Since backward metric computation is truncated, in order

to ensure that there is no significant performance loss incurred by the truncation, additional

guard windows, represented by © and providing initial metrics for the truncated backward

metric computations, have to be incorporated. Since the extrinsic information computation

only depends on the forward metric computation within the same window finishing first, the

decoding latency can be reduced. In addition, D, © and © of different windows can be

executed simultaneously, thus the throughput can be further improved.

118

Ni

k, k%x
XZ-

i 	k IS

_F ______

4 	 AL4PDe - 	 4 	 S.c,d M4P
4

Figure 7.2 One-side guard window scheme

7.2.2.2 Two-side sliding window

In contrast to a one-side sliding window, a two-side sliding window scheme [102] [103]

introduces much more parallelizability to a MAP decoder. In a two-side sliding window

scheme, which is illustrated in Figure 7.3, both forward and backward metric computations

are truncated, thus the operations within a window are totally independent of those within

other windows. The decoding processes of different windows can be executed in parallel

which results in a distinct reduction on decoding time. The Turbo decoder with the highest

throughput is achieved by this scheme [103]. However, two additional guard windows (@

and ®) which provide initial metrics for forward and backward metric computations must

be added on.

119

/ØN\\

k,

N-I
1

Ile

,
~
'Y_j

k > 	>

>

>
4 	 First MAP Decoder

__ 	
4 	Second MAP Decoder

_

4 	 First iteration 	 T

Figure 7.3 Two-side guard window scheme

7.2.2.3 Enhanced two-side sliding window

In the cases of one-side and two-side sliding window schemes, thanks to guard windows, the

performance loss caused by trellis truncation can be minimized. However, it has to pay

additional computational cost as the price of performance retrieval.

Unlike the Viterbi decoder, the Turbo decoder performs an iterative process. Regarding the

simulation provided in Chapter 6, it can be seen that each MAP decoder must be iteratively

executed at least five or six times to perform a decent decoding performance. Based on this

iterative characteristic of the Turbo decoder, we propose an enhanced two -side sliding

window which removes guard windows and also provides an attractive performance. Figure

7.4 depicts the proposed enhanced two -side sliding window scheme and shows two

consecutive iterative operations. Since there is no guard window in an enhanced two -side

sliding window scheme, initial values for both forward and backward metrics are set to zero

in the first iteration. However, at the end of steps ® and ®, the final forward and backward

- 1

0

120

N-I

9Z

:k *s

0

metrics are stored in memory and will be used by the windows at the second iteration as the

initial forward and backward metrics. For example, the red and blue curves show the

transmission of backward metrics between the first iteration and the second iteration.

The benefits of the proposed sliding window scheme are exhibited in two aspects. Since it

totally removes guard windows, nearly one third of execution time is saved and higher

throughput can be achieved as compared with a two-side sliding window scheme [102] [103].

Secondly, from the hardware implementation point' of view, the power consumption and

silicon area consumed by guard windows are also removed, thus life time and area of

terminal receiver can be further improved.

4—Fis'sS MAP 0000der --- 5. 4—Second MAP Decoder—a. 4—Fst MAP Decoder --- b. 4—Second MAP Decocr-

First Iteration 	 4 	 Second Iteration 	 T

Figure 7.4 Enhanced two-side sliding window scheme

7.2.3 Comparison amongst sliding window schemes

In this section, three sliding window schemes are compared in terms of operational cost,

memory requirement and decoding execution time. In addition, the performance comparison

in terms of FER and BER are also provided.

121

7.2.3.1 	Computational cost

Operational cost

Table 7.1 tabulates the number of operations cost by one-side sliding window, two-side

sliding window and enhanced two-side sliding window schemes to decode one-bit data.

Since the enhanced MAX-LOG-MAP algorithm with feedback initialization approach is

assumed, only ADD/SUB and MAX operations are required by each scheme. From Table 7.1,

it can see that two-side sliding window schemes require more operations than one-side

sliding window because one more guard window is required by each sub-window. However,

the enhanced two-side sliding window totally eliminates guard windows, and it needs the

least number of operations amongst three sliding window schemes.

Table 7.1 Comparison of operations per decoded bit

Algonthms
No. OF OPERATIONS

ADD/SUB MAX

O-smE SLIDING 127 60.5

TWO-SIDE SLIDING 161 76

ENHANCED TWO-SIDE 93 45

Memoiy requirements

The number of memory operations per decoded bit and total memory requirement to decode

a frame with size N is tabulated in Table 7.2. In terms of the number of memory operations,

due to the metric calculations of guard windows, one-side sliding window and two-side

sliding window schemes need more memory accessing as compared with enhanced two-side

sliding window schemes. On the other hand, since the one-side sliding window can exploit a

ping-pong based memory to buffer forward metrics, it requires the minimum size of memory

[101].The enhanced two-side sliding window scheme demands more memory than the other

two schemes, since it has to store the final metrics at the end of each iterative decoding

process.

122

Table 7.2 Memory operation and requirement comparison (W represents the window size, N
represents frame size (N>2W) and K represents the word-length)

Algorithms
No. OF MEMORY

OPERATIONS TOTAL MEMORY REQUIREMENT

L0A.n STORE

ONE-SIDE SLIDING 21 6 (16*W+4*N+16)*K

TWO-SIDE SLIDING 25 6 (12*N+16)*K

ENHANCED TWO-SIDE 17 6 (12*N+16*N/W)*K

C. Decoding execution time

In terms of, decoding execution time, Table 7.3 shows that the two-side sliding window

scheme outperforms the one-side sliding window scheme, because it introduces more

parallelism to the decoding process. As expected, it can be seen that the enhanced two-side

sliding window scheme requires least execution time of the three sliding window schemes.

In addition, since the decoding time depends on window size W, with a smaller window size,

higher decoding throughput can be achieved.

Table 7.3 Decoding time comparison (T1 , T2, T3 and T4 represent the execution time of branch metric,
forward metric, backward metric and extrinsic information computation, respectively, W represents

the window size, N is the frame size and Iter is the number of iterations)

Algorithms TOTAL DECODING TIME

ONE-SIDE SLIDING 2*Iter*((T1 + T2)*W/N + T1 + T2 + T4)

TWO-SIDE SLIDING 2*Iter*(3*Ti + 2*T2 + T3 + T4)*W/2N

ENHANCED TWO-SIDE 2*Iter*(2*Ti + T2 + T3 + T4)*W/2N

7.2.3.2 Performance comparison

A. Sliding windows VS consecutive decoding process

Figure 7.5 and Figure 7.6 show the comparison in terms of FER and BER performance

between the enhanced two-side sliding window scheme and consecutive MAP decoders.

From the performance curves of the enhanced two-side sliding window, it can be seen that

FER/BER performance can be improved by increasing the window size. A better

performance can be achieved by a larger window size. When compared with the consecutive

MAP decoder, in the case of window size 6, the enhanced two-side sliding window scheme

with enhanced MAX-LOG-MAP algorithm is still superior to consecutive decoding with

MAX-LOG-MAP algorithm. When the window size is increased to 24, there is no visible

123

difference between the enhanced two-side sliding window scheme and consecutive decoding

both with enhanced MAX-LOG-MAP algorithm.

a
0

- fr_,_ fi

= T 	 = =

0 =======

	

:r:::: 	::::::::

I0_ ====== == =I== 	=======

r0 	 _

---MA5OGMAp 	 :

- 0-MAX-LOGMAP 	1 2__ \
o —E--E-MAX-LOG-&4APW48

—E-MAX-LOGMAPW-24 	 - EE
—'---E4AAXLOG4AAPW..12 	 ::::::::::
—6--E-MAX.LOG-MAPW..e 	- - 	

--
I 	 US 	 I

I.D 	 U 	 Z5 	 3
EbNO ()

Figure 7.5 FER performance on consecutive and
sliding window decoder

p.. 0.,s 8

o

o

o - MAX-LOG-- -

E -MAX.LOGMAP
EMAXLOG.UAPW_48.:::__

o ----EMAX-LOGMAPW24
E-MAX4_0G-MAPW=12

LI&- EMAX-LOG -MAPW.5 f 	- - - 	- - ,.
0 	05 	I 	1.5 	2 	25 	2

EMNO ()

Figure 7.6 BER performance on consecutive
and sliding window decoder

a

B. Enhanced two-side sliding window VS normal two-side sliding window

Since the enhanced two-side sliding window scheme removes guard windows, the FER/BER

performance comparison between the enhanced two-side sliding window and two-side

sliding window scheme is extremely important, since it has to be proved that removing the

guard window will not incur any performance loss. The comparison consists of two parts,

size of sliding window and number of iterations.

1) Size of sliding window

In sliding window schemes, since truncations introduce performance loss, there is a

limitation on the size of window. According to [104], a rule of thumb for the minimum

length of guard window is 40 in the case of the 3GPP standard. However, there are not any

published works which investigated suitable window size for double binary circular Turbo

codes.

Figure 7.8 and Figure 7.9 show the performances of the double binary circular Turbo

decoder exploiting the enhanced two-side sliding window and the two-side sliding window

with different window size. It can be clearly seen that in the case of window size 6 and 12,

the enhanced two-side sliding window outperforms the two-side sliding window. Only when

sliding window size is increased to 24, the two-side sliding window scheme can obtain a

performance similar to the enhanced two-side sliding window scheme. It also can be seen

124

that the enhanced two-side sliding window scheme has the ability to achieve higher

throughput than the two-side sliding window scheme, because with small sliding window

sizes, such as 6 and 12, the enhanced two-side sliding window scheme still can provide

attractive performance.

n8b" p 8w1s 8 IO

t-side
E,•dtwo.4deW6

10'—e--Naima.deW48
—PmIwo.4d.W.24

NO-W 	::::::::::
—e---- Nm Iwo.si W-6

*0 	 -
o 	05 	1 	1.5 	2 	as 	a

Figure 7.7 FER performance on different sizes
of two-side sliding window scheme

-
	pw 8w. 8 11s'Ia

Z 7 == - - 	=:

0 EyI±
- 	 -4

o 	U., 	 I 	 1.0 	 e 	40 	 U

Figure 7.8 BER performance on different sizes
of two-side sliding window schemes

2) Number of Iterations

As illustrated in Chapter 6, FER and BER performance are also subject to the number of

iterations; with the increase of number of iterations, FER and BER performance can be

significantly improved. However, computational cost and power consumption will also be

augmented. Since in the enhanced two-side sliding window scheme, initial values of each

sliding window are provided by previous iterations rather than by guard windows at current

iteration, the effect of the number of iteration has to be compared with the two-side sliding

window scheme.

We have chosen a window size of 24 as the test bench which is the minimum requirement of

the two-side sliding window scheme. The FER and BER performance are plotted in Figure

7.9 and Figure 7.10, respectively. These plots show that in the case of two and four iterations,

the two-side sliding window scheme outperforms the enhanced two-side sliding window

scheme. However, for a higher number of iterations, the curves of the two schemes converge.

Since a typical system requires at least five or six iterations, it can be concluded that there is

no obvious performance loss when employing the enhanced two-side sliding window

scheme.

125

12

Wa

0 	9 -
22 	 2

- - - - - - - - -\\ \- - - - -

	

Em.dt-.Io.n.4 ------- 	- - -
ed 	

-
- 	 O4 - - - 	- 	- - -

t, 	h.8 	 \ .. 0 	 o-a
 —E—Nam,MtwoathIa=2

--Pm.kj.I.4

N...1
—s--- 	Kd. I-8

0 	 nc 	 I 	 IS 	 2 	40

EM ()

Figure 7.9 FER performance on different
number of iterations

a W fr,,.. Wodoar.iz. - 24

10

to

io 	 E,w,c.dIwDa.a2
'EE

-
10 	

Erw.d 	t. - - - - - - \- 	- -

---,two-.Id.I.2

to 	—v---tmaitwo-0IdeI4
--PamaiIwo-ad.NW=6

'°.''.' 	
::::i:::::__:\

16,

Figure 7.10 BER performance on different
number of iterations

7.3 Fixed-point MAP decoder

In previous works, a floating-point representation was employed to model the MAP decoder.

However, a floating-point representation is not the best choice for practical implementations,

because of its high cost of hardware. Although, a fixed-point implementation is accepted by

all architectures, the finite word length will deteriorate the system performance. Although

some works [105] [106] [107] have been published regarding a suitable fixed-point

implementation of a Turbo decoder, these works are limited to single binary Turbo codes.

To our best knowledge, this is the first work that investigates a suitable quantization for the

double binary circular Turbo decoder with our proposed sliding window scheme.

The notation (q, f) is used to denote a quantization scheme where q represents the total

number of bits and f represents the fractional part. In general, the conversion from

floating-point to fixed-point representation has to consider three major objectives [108]:

• The dynamic range which is managed by the number of integer bits (q - f) has to be

sufficiently large to avoid overflow during the processing.

• In order to achieve appropriate accuracy of the algorithm, enough fractional bits (f)

have to be provided.

• The sum of integer and fractional bits (q) must be minimized. In a hardware

implementation, this will reduce the area and power consumption of the entire design.

As described in the previous section, a MAP decoder reads four received symbols

Yk (A,B,Y,W). Based on these symbols, branch metrics, forward metrics, backward metrics

126

and extrinsic information are calculated. Finally, the extrinsic information is passed to the other

MAP decoder as priori information. Hence, the following variables of a MAP decoder have to be

quantized:

• Input signals

• Internal metrics (branch metrics, forward path metrics and backward path metrics)

• Extrinsic information

7.3.1 Quantization of input signals

The quantization on input signals is crucial to the whole design, because precision of input

signals directly determines the system performance and the quantization of extrinsic

information and internal metrics both are subject to the input signals.

Since an AWGN channel is assumed, the channel noise is distributed with a Gaussian

distribution. More than 99% of the channel noise is covered by the dynamic range of [-3, 31.

Since a large quantization length will increase area and power of the whole decoder and a

small quantization length may incur poor performance, our analysis in this section will be

limited to the word lengths of 3, 4 and 5 bits for input signals. FER and BER performance

for different quantization schemes, where the first, second and third pairs of numbers

represent the quantization schemes for input signals, internal metrics and extrinsic

information, respectively, are shown in Figure 7.11 and Figure 7.12, respectively. For

example, the first row of numbers (3:0, 8:0, 5:0) represents the quantization schemes for

input signals, internal metrics and extrinsic information are (3, 0), (8, 0) and (5, 0),

respectively.

In the case of 3 bits quantization, the best performance is provided by the (3, 1) scheme.

Similarly, for 4 bits quantization, the (4, 2) scheme outperforms the (4, 1) scheme. Moreover,

as the graphs clearly show, there is not much difference between the (3, 1) and (4, 1)

schemes. On the other hand, increasing the word length to 5 bits with the (5, 3) scheme did

not provide much improvement compared to the (4, 2) scheme. As a result of all these, we

can conclude that the best choice is the (4, 2) scheme, as it provides a performance close to

floating point with the minimum word length.

127

2t.t$ pw frw.s. B its. wftlow skm 12

104

5310313
-- --

l01
o 	0.5 	I 	 15 	2 	25 	3

E 	()

Figure 7.11 FER performance for different
quantization schemes on input signals

I. pw frwv*. B *. 	lIze 12

fZ-

= 	0 010

• —*--BIIfl9pVB - ------- - - - -- - - - - - -

10
0 	0.5 	I 	15 	2 	2.5

Ebfll ()

Figure 7.12 BER performance for different
quantization schemes on input signals

7.3.2 Quantization of extrinsic information

Extrinsic information which is transferred between two MAP decoders is also critical to the

hardware implementation. Since 2 bits are used to represent the fractional part for input

signals, the same number of bits for the fractional part could be used for extrinsic

information as well. For extrinsic information, various quantization schemes have been

tested, such as (4, 2), (5, 2), (6, 2) and (7, 2). Their FER and BER performances are plotted

in Figure 7.13 and Figure 7.14, respectively. It can be seen that the performance drops

dramatically if the dynamic range is less than 3 bits. But there is no further improvement on

both FER and BER performances when the dynamic range is larger than 4 bits. For example,

the (6, 2) quantization scheme has a range from -7.75 to 7.75, and -7.75 corresponds to the

probability of 4.3e-4 which is already quite a low probability. Further increasing the

dynamic range of extrinsic information can only take the priori probability closer to 0, and

its effect on the other MAP decoder will be negligible. Hence, quantization scheme (6, 2) is

suitable for representing the extrinsic information.

7.3.3 Quantization on internal metrics

Since branch metrics, forward metrics and backward metrics are subject to input signals and

extrinsic information, as long as quantization schemes for input signals and extrinsic

information have been decided, the minimum bit-width requirement for internal metrics can

be obtained. If (4, 2) and (6, 2) schemes are selected for input signals and extrinsic

128

information, the (9, 2) scheme for the internal metrics can give a decent performance but no

further reduction on internal metrics can be accepted.

28Ma p 	ns. 8 flia. .I, 	.iz. 12
	 2t fl 	 8 	 _- 	. 12

01

42,92*2

42.102.72

--- 1QlapoE8 -----k-----
10 	 I 	 I

a 	ac 	 I 	 IS 	 2 	 28

Eb ()

Figure 7.13 FER performance for different
quantization on extrinsic information

:.

--42.O2.42

o —$-42.2.5:2

—4--42.92.82
—E— 4Z1O 2.72 M: : : ::: 7 :: : :: :

- 	—*--aomp,I

E 	()

Figure 7.14 BER performance for different
quantization on extrinsic information

or
if
	

If

7.4 Implementation of a MAP decoder on RICA

architecture

The detailed implementation issues of a double binary circular Turbo decoder on the

dynamical reconfigurable architecture, RICA, will be presented in this section.

7.4.1 Branch metric computation

The first task of a MAP decoder is calculating the branch metrics from its input values,

which are related to the respective state transition probabilities. According to the findings of

Chapter 6, in the case of double binary Turbo codes, branch metrics can be presented by:

L(s',$)=lnyk(s',$)=e •d +lnP(x)
	

(7.I)

where e and d represent the transmitted and received codeword respectively, and

In P(xk) is a-priori probabilities which is presented in logarithmic domain.

At a time, a MAP decoder reads two systematic symbols and two parity symbols from the

129

input buffer. It can be seen that the first term of Equation 7.1 contains 16 different

combinations. However, due to the symmetrical characteristic, only eight of them need to be

calculated and the other eight values can be obtained by invertion.

Based on the sub-word parallel mechanismon RICA, two branch metric computations can

be packed and calculated together. The scheduled branch metric computation is shown in

Figure 7.15. A, B, Y, W represent systematic symbols and parity symbols, respectively. Each

of them is presented by 8bits. In step 3, the packing function of the LOGIC cell would pack

and extend two 8bits data into one 32bits data. In addition, the priori probabilities have been

already packed and stored in the memory. In step 4, eight 32bits symbols which contain 16

branch metrics are formed by sub-word addition and subtraction operations.

c) Unpacked , I 	 Packed c 	Single 	 Vector
Data 	 I J 	Data U 	Operation M Operation

Figure 7.15 Scheduled branch metric computation on RICA

7.4.2 Forward and backward metric computations

Forward and backward metric recursions are the crucial parts of a MAP decoder. The basic

block of the recursion is the famed butterfly function. A butterfly of forward metrié

130

computation, illustrated in Figure 7.16, produces two new metrics through four ancestral

metrics and four branch metrics.

k-i

ak_I(sa)L... 	
A,(I) 	

_ISak(sm)

ak _ I (5b)T1_
ak(sfl)

ak_I(sC), I

ak_I(sd)

ak (Sm) = MAX (ak_I (Sa) + A_I(J),ak_I (Sb) + A_I(JJ),ak_, (s) + A_ I (JII),ak _ I (sa) +

1k (s0) = MAX (ak _ I (s0) + A_ I (H),ak _ I (Sb) + A_I(J),ak_I (se) + A_ I (!V),ak _ I (5d) +

Figure 7.16 Butterfly function for forward metric computation

The trellis diagram of double binary circular Turbo codes is depicted in Figure 7.17. It can

	

be seen that at each trellis stage, eight forward metrics ak 	have to be calculated and

stored into memory. For an efficient implementation on the RICA platform, the trellis can be

decomposed to two independent parts. The computations from different parts can be packed

in order to reduce the function cells of the RICA platform.

S, 	 Sk 	 S&_i 	 S

MW

Figure 7.17 Trellis decomposition

131

In the case of forward recursion, the computations of ak (s) , a (53), a (54) a (57) are

independent with ak (si), ak (52)' a (55) , a (s6) . Since each forward metric is

represented by 16bits, two butterfly operations from a different trellis block can be packed

together on a sub-word parallel RICA architecture. The scheduled forward metric

computation on RICA is shown in Figure 7.18.

0

0

0

0

JI Packed M Vector
Data 	 Operation

Figure 7.18 Scheduled forward metric computation on RICA

It has to be emphasized that, besides the butterfly unit, a data realignment block is also

demanded to reorder the two forward metrics in a 32bits data. In order to facilitate this kind

of data aligning, the LOGIC cell has been extended to support shuffling the position of the

first 16bits and last 16bits between two 32bits data.

132

On the other hand, since backward metric computation has a similar structure as forward

metric computation, the same packing approach can be adopted in backward recursion to

reduce the demanding function cells on the RICA platform.

7.4.3 Extrinsic information computation

The calculation of the extrinsic information can also be efficiently implemented on the

sub-word parallel RICA platform. According to Chapter 6, in the case of the double binary

Turbo decoder, 4 log domain extrinsic probabilities 1 ,L 101 L 11] have to be

considered 	in 	each 	MAP 	decoder. 	In 	addition, 	distribUtive 	law

MAX (a + c,b + c) = MAX (a,b) + c can be applied to further reduce the computational

cost. In the case of 	computation, we can move the addition of parity symbols after
Jk -

maximum operation, which is denoted by Equation 7.2:

akl (0)+IJk (0)+Y+W

ak_I(2)+flk(DY+W

ak _1 (5)+/ik (2)—Y—W

L=MAX ak..I(7)+flk(3)+Y—W

cekl (1)+,8k (4)+Y+w

ak1 (3)-4-Iik (5)--Y+W

akI (4)+flk (6)-Y-W

ak1 (6)-I-fik (7)+Y—W

(7.2)

MAX(a kl (0)-f-fi, C (0),akI (1)+flk (4))+ Y +W

—MAX MAX(ak_I(7)+/ik(3),ctk_I(6)+/.3k(7))+Y-W

- 	MAX(ak_J(2)+flk(1),ak_I(3)+fik(5))—Y+W

IMAX (a k -1 (5) +j8k (2), ak-1 (4) + 13k (6))— Y -w

Since the computations of four extrinsic information are independent with each other, two of

them can be packed in a 32bits symbol. The scheduled extrinsic, information computation

circuits are shown in Figure 7.19. The packing operations for parity symbols in step 2 are

ignored. .

133

/

0 _
// 	 N

NILE
N

Packed 	 Vector 	ZZ I J 	Data 	 Operation 	
Data Swap

Figure 7.19 Scheduled extrinsic information on RICA platform

134

7.5 Performance and Results

An Enhanced MAX-Log-MAP decoder with feedback initialization has been implemented on

RICA architecture. The performance of each sliding window is tabulated in Table 7.4.

Table 7.4 Proposed MAP decoder on advanced RICA

Throughput I 	No. of Steps No. of cells

One sliding 46.15 Mbps 31 355 window

It can be seen from Table 7.4 that, a window-based double binary circular MAP decoder can

provide 46.15 Mbps throughput per iteration. After pipelining, this throughput can be up to

46.15*2.5 = 115.38 Mbps per iteration. If five iterations are assumed, the output of a double

binary circular Turbo decoder would be 115.38/5 = 23.08 Mbps.

The timing consumption distribution of the implemented MAP decoder is depicted in Figure

7.21. Step D + Step © takes 43.85% of total execution time, otherwise Step © + Step ®

consumes another 46.84%. While Step (ID + Step © requires the same computational cost as

two guide windows of the two-side sliding window scheme, it is fair to conclude that the

enhanced two-side sliding window scheme can reduce execution time by 30.48% as

compared with two-side sliding window scheme on RICA architecture.

Timing consumption distribution

9. 31%

Adoubbb

46. 84 *,,M 4wo
13. 85%

• Step I + Step3 • Step2 + Step4 Othe

Figure 7.20 Timing consumption distribution for the targeted MAP decoder

135

As the decoding throughput depends on the number of sliding windows, Table 7.5 summarizes

the multiple sliding windows double binary circular Turbo decoder based on proposed algorithms,

with five iterative processes. If RICA can provide enough hardware resources, the throughput of

the double binary circular Turbo decoder can achieve 184.64 Mbps with eight sliding windows.

With our best knowledge, this performance can fulfill, the requirement of any current wireless

communication standards.

Table 7.5 Decoding throughput with different No. of sliding windows

Number of sliding
windows 1 2 4 8

Throughput (Mbps) 23.08 46.16 92.32 184.64

In [109], a high throughput double binary circular Turbo decoder was demonstrated on an

application specific instruction set processor (ASIP), Tensilica. By means of integrating a

specific instruction set for double binary Turbo decoder into data path of Tensilica Xtensa

core, [109] showed a maximum throughput of 201.6 Mbps on a 32 ASIPs Tensilica

processor where 16 sliding windows were executed in parallel.

However, [109] did not consider the optimization of implementation at the algorithm level,

where the two-side sliding window algorithm was employed. The proposed double binary

circular Turbo decoder on RICA platform produces 83.17% throughput gain as compared

with the design presented in [109], if the same number of sliding window is exploited.

Because of the lack of the power simulation tool, this thesis can, not provide the accurate

power performance of the RICA architecture. However, due to the distributed cell based

architecture of RICA, it can be assumed that RICA can achieve significant power'

consumption as compared with general processors and DSPs, which makes RICA more

feasible for future portable devices.

7.6 Conclusion

Chapter 6 and Chapter 7 have demonstrated an efficient design for the double binary circular

Turbo decoder on the dynamic reconfigurable architecture, RICA. Rather than working at.

the algorithm level, this chapter investigated efficient implementation approaches' to achieve

a high throughput design for double binary circular Turbo codes..In Section 7.2, a distinct

sliding window scheme was proposed, which not only reduced execution time by 30.48%,

136

window schemes. Since fixed-point representation is mandatory to hardware implementation,

a suitable quantization scheme for the proposed algorithms has been provided by the

heuristic method. In Section 7.4, a high throughput double binary circular Turbo decoder has

been implemented on RICA architecture by means of instruction and data parallelism. In the

end, the throughput of the Turbo decoder can be up to 184.64 Mbps with five iterative

processes.

137

Chapter 8,0

Conclusion and Future Works

8.1 Research Summarize

This thesis investigates three underlying reconfigurable architectures for portable devices

based on two cases, the Viterbi decoder and the double binary circular Turbo decoder.

Chapter 2 provided a review of the existing literature which was relevant to this thesis.

In Chapter 3, a reconfigurable fabric for the Viterbi decoder was introduced. The design of

this architecture was broken down into BMU, ACSU and SMU to support multiple Viterbi

decoders from constraint length 3 to 9 and code rate 1/2 and 1/3. This architecture employed

fully parallel ACSU and four memory blocks based sliding window scheme to achieve the

expected high throughput. Due to the power saving schemes used in the design, for a

specific application, the unused parts of BMU, butterfly units of ACSU and sub-memory

blocks of SMU were automatically powered off, thus the dynamic power consumption of

138

these modules was down to zero. This domain specific reconfigurable fabric reduced power

consumption by 79.3% with only a 2.2% area overhead as compared with the architecture

without power saving strategy. But it paid 3.4 and 2.7 times the power consumption and area

penalties for its flexibility.

In Chapter 4, in order to reduce the design cost and time-to-market, a design methodology

which can automatically generate a domain specific reconfigurable architecture and map

applications on the generated architecture was proposed. By means of associated CAD tools,

the design and verification time of a reconfigurable Viterbi decoder were decreased. Six

Viterbi decoders with different constraint lengths and code rates have been implemented on

the proposed architecture by the developed software tools. In contrast to commercial FPGAs,

the proposed architecture demonstrated 66.1% power consumption and 72% area reduction

as compared with fine-grained FPGA.

Implementation of a Viterbi decoder on the reconfigurable instruction cell array (RICA)

platform, a dynamic reconfigurable architecture programmed by ANSI C, was described in

Chapter 5. In order to boost the performance, several advanced optimization approaches,

such as sub-word parallel, custom function cells and software pipeining, have been

proposed to accelerate the throughput of the Viterbi decoding process on the RICA platform.

With the proposed approaches, the throughput of the Viterbi decoder can be improved up to

91% as compared with the general RICA architecture. Ultimately, a Viterbi decoder with the

throughput of 56.4 Mbps can be achieved by employing a full parallel ACSU architecture

with software pipelining optimization scheme.

Chapter 6 and Chapter 7 demonstrated an efficient double binary circular Turbo decoder

design on the RICA platform. A system model for M-binary circular Turbo codes was built

in Chapter 6. Based on this model, Chapter 6 explored the design space on algorithm level.

According to the FER and BER performance, the Enhanced MAX-Log-MAP algorithm and the

proposed feedback initialization approach exhibited the best tradeoff between computational

cost and decoding performance for double binary circular Turbo codes. Chapter 7

investigated the design space on implementation level and the implementation parameters,

such as size of window inside the sliding window scheme, number of iterations and

fixed-point representation. In the end, a double binary circular Turbo decoder with scalable

throughput (from 23.08 Mbps to 184.64 Mbps) was demonstrated on the RICA platform.

139

8.2 Specific Findings

This thesis has investigated several reconflgurable architectures targeting for beyond 3G portable

devices. The architecture presented in Chapter 3 provided the best performance in terms of low

consumption, area and throughput, and it also can be easily integrated with other IN and a RISC

processor resulting in an efficient and effective platform for beyond 3G portable devices.

However, its tremendous design and verification cost limit its further applications.

A reconfigurable architecture composed of heterogeneous coarse-grained processing units and

a 2-D programmable interconnection mesh was proposed in Chapter 4. As compared with

generic fine-grained FPGA, this architecture demonstrated 66.1% power consumption and

28% area reduction. Most importantly, the associated CAD design flow can automatically

generate a reconfigurable architecture, and map applications on the targeted architecture,

thus the time-to-market and non-recurring engineering cost are lessened. The design

methodology presented in Chapter 4 exhibits an attractive potential value for beyond 3G

portable devices.

A reconfigurable and extendible architecture, RICA, was introduced in Chapter 5. The hardware

modules inside the RICA consist of heterogeneous coarse-grained instruction cells (ICs)

which can execute assembly-like instructions. The RICA exhibited better programmability

than the previous two architectures, since the associated tools can take the high-level C

codes and transform them into the final binary to be loaded into the hardware. As compared

with the previous two architectures, the RICA must pay a performance penalty for its

programmability. In the case of the Viterbi decoder, the maximum throughput so far is 56.4

Mbps. In addition, the custom defined ICs can be easily extended on the base architecture,

which eliminated the need for RISC+IP-based architecture. The approach simplified the

whole system architecture and provided the opportunities to remove the bottleneck of

software implementation.

Chapters 6 and 7 demonstrated a top-down design approach to implement a considerable

complex decoding algorithm, double binary circular Turbo decoder on RICA platform. By

means of building a system model for double binary circular Turbo codes, the tradeoffs

between computational cost and decoding performance for different decoding algorithms

have been comprehensively studied. Enhanced MAX-Log-MAP algorithm, feedback

140

initialization approach and enhanced two-side sliding window stood out from their

competitors. Since fixed-point representation is a must for RICA implementation, the

suitable quantization schemes for input signals, internal metrics and extrinsic information

were investigated based on a bit-true fixed-point model. The findings from both algorithm

and implementation level lead to a high performance implementation on the RICA platform.

8.3 Directions for further research

The domain specffic reconfigurable architecture presented in Chapter 3 can be treated as a

reconfigurable I? core. A platform targeting 4G portable devices can be an integration of an

RISC and several reconfigurable IP cores, where each reconfigurable IP core tackles one

computational intensive task, such as Viterbi decoder, Turbo decoder and FFT. Future research

work will focus on a suitable connection network for this kind of platform which must provide

seamless data transmission between reconfigurable IPs and the conirnunication between

reconfigurable IPs and the RISC.

As presented in Chapter 4, the routing network of the proposed architecture occupied 85.5%

total area and consumed 79.5% total power. Future work will focus on the optimization of

the interconnection mesh to reduce the area and power overheads. In future, a mixed

interconnection mesh with tn-buffers and pass transistors can be employed in the proposed

array architecture to lessen the area and power overheads. In order to reduce the

time-to-markt, a library of PUs for different applications, such as FFT, FIR, Viterbi decoder

and Turbo decoder can be established. According to different system requirements, the CAD

tools can select the suitable PUs from the library to balance the power consumption, area

and throughput.

It can be seen from Chapter 5 and Chapter 7 that the RICA platform with advanced optimization

approaches can significantly improve the performance. In the case of the Viterbi decoder, as

compared with general RICA architecture, the throughput of the Viterbi decoder can be

improved by up to 91% by means of the advanced optimization approaches. However, these

advanced optimization approaches, such as sub-word parallel, custom function cells and

software pipelining are manually implemented. In the future, the function of the compiler,

needs to be enhanced, which can automatically optimize the applications to achieve the

expected outcomes. On the other hand, the current backend simulation tool only can provide

141

executable time of a targeted application. In order to obtain a comprehensive estimation of

RICA core, the backend simulation tool needs to be extended to ana1yz.-, power consumption

and area for the targeted application. Thus, at system level design stage, the designer can

more efficiently partition the software and hardware sections.

142

Appendix A

Branch Metric Computation for M-binary circular Turbo decoder

Branch transition probability, also called branch metric, can be denoted by:

7k (s', s) = P({Dk A s} I s) 	 (A.1)

Referred to Bayes' rule, the definition of branch metric can be rewritten as:

Yk (s', s) = P({Dk A s} I s)

= P(Dk I {s' A s}) P(s I s) 	 (A.2)

=P(Dk IEk ')P(xk)

where P(xk) = PXk

=
is a-priori probability of vector Xk which can be known

i-1,...,2.)

before a MAP decoder.

If assuming the transmission channel is a memoryless Gaussian channel and BPSK modulation is

adopted, we can rewrite the first term in (A.2) as:

m+n

P(Dk IEk')=UP(d Ie)

1 U~ exp
(a

E

L2
k _aei --- (d'

1

	(_ 20,
E

 exp ---m'(d _ae)2
21

	

()
m+n 	 J

E
= 	 exp

(_
20r2 (VrS~0r)'"

where e and d are the individual bits of the transmitted and received codewords Ek '

and Dk , respectively. Eb is the transmitted energy per bit, cr2 is the noise variance and a is

the fading amplitude.

In order to reduce the computation complexity, the common portions of (A.3) are eliminated.

Thus, (A.3) can be rewritten as:

143

m+n

P(Dk IEk')exPe .dJ 	 (A.4)

Replacing (A.2) by (A.4), the branch metric will be deduced by:

(-+n

= exped}P(x k) 	 (A.5)

144

Appendix B

Publications from this work

• Cheng Zhan; Arsian, T.; Erdogan, A.T.; MacDougall, S.; "An Efficient Decoder

Scheme for Double Binary Circular Turbo Codes", 2006 IEEE International

Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006

Proceedings. Volume 4, 2006 Page(s):IV-229 - IV-232

• Cheng Zhan; Khawam, S.; Arslan, T.; Lindsay, I.; "Architecture and design

methodology for synthesizable reconfigurable array targeting wireless

system-on-chip applications", IEEE International SOC Conference, 2005.

Proceedings. 25-28 Sept. 2005 Page(s):93 —94

Cheng Zhan; Khawam, S.; Arslan, T.; Lindsay, L.; "Efficient implementation of

trace-back unit in a reconfigurable Viterbi decoder fabric", ISCAS 2005. IEEE

International Symposium on Circuits and Systems, 2005, 23-26 May 2005

Page(s): 1048 - 1050 Vol. 2

• Cheng Zhan; Arslan, T.; Khawam, S.; Lindsay, I.; "A domain specific

reconfigurable Viterbi fabric for system-oil-chip applications", Proceedings of the

ASP -DA C 2005. Asia and South Pacific Design Automation Conference, 2005.

Volume 2, 18-21 Jan. 2005 Page(s):916 - 919 Vol. 2

• çheng Zhan; Khawam, S.; Arslan, T.; "Domain specific reconfigurable fabric

targeting Viterbi algorithm", IEEE International Conference on Field

Programmable Technology, 2004. Proceedings. 2004 Page(s):363 - 366

145

References

Neuvo, Y.; "Cellular phones as embedded systems", 2004 IEEE International

Solid-State Circuits Conference, 2004, 15-19 Feb. 2004 Page(s):32 - 37 Vol.1

Minoru Etoh, Next Generation Mobile Systems: 3G & Beyond, June 2005

Rahim Tafazolli, Technologies for the Wireless Future: Wireless World Research Forum

(WI4RF), Volume 2, June 2006

WiMAX Overview and Freescale Solutions for Basestation Design, Freescale

Technology Forum, Orlando, 2005

Cedric Paillard, "Make sure you're ready for 4G", Semiconductor Insights, Jun 21, 2006,

Available from: http://www.commsdesign.com/showArticle.jhtml?articlelD= 189600052

J.GProakis, Digital Communicatin. McGraw-Hill, Inc. 4th edition, 2000

ETSI, GSM Technical Specification 05.01, v.8.4.0, ETSI, 1999

3GPP Technical Specification, "Physical Layer General Description", 3GPP document

No. 3GPP TS 25.201 V5.0.0 2001-12

3GPP Technical Specification, "High Speed Downlink Packet Access: Physical Layer

Aspects", 3GPP document No. 3GPP TR 25.858 V5.0.0, 2002-03

IEEE Standard, "Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) specifications", IEEE Std 802.11a, 1999

IEEE Standard, "Air Interface for Fixed Broadband Wireless Access Systems", IEEE

Std 802.16 2004

IEEE Standard, "Air Interface for Fixed and Mobile Broadband Wireless Access

Systems", IEEE Std 802.16e 2005

European Standard, "Digital Video Broadcasting (DVB), Framing structure, channel

coding and modulation for digital terrestrial television", ETSI EN 300 744 V1.5.1

Bernard Sklar, Digital Communications: Fundamentals and Applications, Prentice Hall

PTR, 2nd edition, 2001

Nikolaos S. Voros and Konstantinos Masselos, System Level Design of Reconfigurable

Systems-on-Chip, Springer, 1st edition, 2005

Berrou, C.; Glavieux, A.; Thitimajshima, P.; "Near Shannon limit error-correcting

coding and decoding: Turbo-codes", IEEE International Conference on

Communications, 1993. ICC 93. Geneva Volume 2, 23-26 May 1993 Page(s): 1064 -

1070 vol.2
S.A.Barbulescu and S.S.Pietrobon, "TUTBO CODES: a tutorial on a new class of

powerful error correcting coding schemes, Part I: Code Structures and Interleaver

Design," Journal of Electrical and Electronics Engineering, Australia, 19(3): 129-142,

September 1999

S.A.Barbulescu and S.S.Pietrobon, "TURBO CODES: a tutorial on a new class of

powerful error correcting coding schemes, Part II: Decoder Design and Performance,"

146

Journal of Electrical and Electronics Engineering, Australia, 19(3): 143-152, September

1999
Berrou, C.; Glavieux, A.; "Near optimum error correcting coding and decoding:

turbo-codes," IEEE Transactions on Communications, Volume 44, Issue 10, Oct.

1996 Page(s):1261 - 1271

Benedetto, S.; Montorsi, G; "Unveiling turbo codes: some results on parallel

concatenated coding schemes, "IEEE Transactions on Information Theory, Volume 42,

Issue 2, March 1996 Page(s):409 - 428

A.J Viterbi, "Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm," IEEE Transactions on Information Theory, vol. 1T-13, pp.260-269,

April 1967

Heller, J.; Jacobs, I.; "Viterbi Decoding for Satellite and Space Communication", IEEE

Transactions on Communications, Volume 19, Issue 5, Part 1, Oct 1971

Page(s):835 - 848

Sparso, J.; Jorgensen, H.N.; Paaske, E.; Pedersen, S.; Rubner-Petersen, T.; "An

area-efficient topology for VLSI implementation of Viterbi decoders and other

shuffle-exchange type structures", IEEE Journal of Solid-State Circuits, Volume

26, Issue 2, Feb. 1991 Page(s):90 - 97

Shung, C.B.; Siegel, P.H.; Ungerboeck, G; Thapai H.K.; "VLSI architectures for

metric normalization in the Viterbi algorithm", IEEE International Conference on

Communications, 1990, 16-19 April 1990 Page(s):1723 - 1728 vol.4

Hekstra, A.P.; "An alternative to metric rescaling in Viterbi decoders", IEEE

Transactions on Communications, Volume 37, Issue 11, Nov. 1989 Page(s): 1220 - 1222

Black, P.J.; Meng, T.H.; "A 140-Mb/s, 32-state, radix-4 Viterbi decoder", IEEE Journal

of Solid-State Circuits, Volume 27, Issue 12, Dec. 1992 Page(s): 1877 - 1885

Yun-Nan Chang; Suzuki, H.; Parhi, K.K.; "A 2-Mb/s 256-state 10-mW rate-1/3 Viterbi

decoder", IEEE Journal of Solid-State Circuits, Volume 35, Issue 6, June 2000

Page(s):826 - 834

Kang, I.; Wilson, A.N., Jr; "Low-power Viterbi decoder for CDMA mobile terminals",

IEEE Journal of Solid-State Circuits, Volume 33, Issue 3, March 1998 Page(s):473 -

482
Y.-N. Chang, H. Suzuki, and K. K.Parhi, "A 2-mb/s 256-state 10-mw rate 1/3 Viterbi

decoder," IEEE Journal Of Solid-State Circuits, vol. 35, p. 826 to.834, June 2000.

Biver, M.; Kaeslin, H.; Tommasini, C.; "In-place updating of path metrics in Viterbi

decoders", IEEE Journal of Solid-State Circuits, Volume 24, Issue 4, Aug. 1989

Page(s):1158 - 1160
Chien-Ming Wu, Ming-Der Shieh, Chien-Hsing Wu, Ming-Hwa Sheu; "VLSI

architecture of extended in-place path metric update for Viterbi decoders", IEEE

International Symposium on Circuits and Systems, Volume 4, 6-9 May 2001

Page(s):206 - 209 vol. 4

Chien-Ming Wu; Ming-Der Shieh; Chien-Hsing Wu; Ming-Hwa Sheu; "An efficient

approach for in-place scheduling of path metric update in Viterbi decoders", IEEE

147

International Symposium on Circuits and Systems, Volume 3, 28-3 1 May 2000

Page(s):61 - 64 vol.3

Ming-Der Shieh; Ming-Hwa Sheu; Chien-Ming Wu; Wann-Shyang Ju; "Efficient

management of in-place path metric update and its implementation for Viterbi

decoders", IEEE International Symposium on Circuits and Systems, Volume 4, 31

May-3 June 1998 Page(s):449 - 452 vol.4

E. Yeo, S. Augsburger, Wm.R.Davis, and B. Nikolic, "Implementation of high

throughput soft output vitèrbi decoders," in IEEE Internation Conference on Acoustics,
Speech, and Signal Processing, 2000,ICASSP'00, p. 3378 to 3381, June 2000.

Gang, Y; Erdogan, A.T.; Arsian, T.; "An Efficient Pre-Traceback Architecture for the

Viterbi Decoder Targeting Wireless Communication Applications", IEEE Transactions

on Circuits and Systems I, Volume 53, Issue 9, Sept. 2006 Page(s): 1918— 1927

Truong, T.K.; Shih, M.-T.; Reed, I.S.; Satorius, E.H.; "A VLSI design for a trace-back

Viterbi decoder", IEEE Transactions on Communications, Volume 40, Issue 3, March

1992 Page(s):616 - 624

Rader, C.; "Memory Management in a Viterbi Decoder", IEEE Transactions on

Communications, Volume 29, Issue 9, Sep 1981 Page(s): 1399 - 1401

Bustamante, H.A.; Kang, I.; Nguyen, C.; Peile, R.E.; "Stanford Telecom VLSI design of

a convolutional decoder", IEEE Military Communications Conference, 1989, 15-18 Oct.

1989 Page(s):171 - 178 vol.1

Feygin, U; Gulak, P.; "Architectural tradeoffs for survivor sequence memory

management in Viterbi decoders", IEEE Transactions on Communications, Volume

41, Issue 3, March 1993 Page(s):425 - 429

Ma, H.; Wolf, J.; "On Tail Biting Convolutional Codes," IEEE Transactions on

Communications, Volume 34, Issue 2, Feb 1986 Page(s): 104 - 111

Zhu, Y.; Benaissa, M.; "Reconfigurable Viterbi decoding using a new ACS pipelining

technique", IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, 2003, 24-26 June 2003 Page(s):360 - 368

Chadha, K.; Cavallaro, J.R.; "A reconfigurable Viterbi decoder architecture",

Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Volume 1, 4-7

Nov. 2001 Page(s):66 - 71 vol.1

Tessier, R.; Swaminathan, S.; Ramaswamy, R.; Goeckel, D.; Burleson, W., "A

reconfigurable, power-efficient adaptive Viterbi decoder", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Volume 13, Issue 4, April 2005 Page(s):484

—488

Xilinx FPGA, http://www.xilinx.com/products/silicon_solutions/fpgas/

Altera FPGA, http://www.altera.com/products/devices/dev-index.jsp

Xilinx Virtex-E family document, http://www.xilinx.com/products/siliconsolutions/

fpgas/virtex/virtex_e_em/index.htm

Angarita, F.; Perez-Pascual, A.; Sansaloni, T.; Valls, J.; "Efficient mapping on FPGA of

a Viterbi decoder for wireless LANs", IEEE Workshop on Signal Processing Systems

Design and Implementation, 2-4 Nov. 2005 Page(s):710 - 715

148

Man Guo; Ahmad, M.O.; Swamy, M.N.S.; Chunyan Wang; "FPGA design and

implementation of a low-power systolic array-based adaptive Viterbi decoder", IEEE

Transactions on Circuits and Systems I: Regular Papers, Volume 52, Issue 2, Feb.

2005 Page(s):350 - 365

MSC8 lxx StarCore-Based DSPs, http://www.freescale.com/webapp/sps/site/taxonomy.

jsp?nodeld=0127950E5F8594

Freescale, "How to Implement a Viterbi Decoder on the StarCore SC140", Application

note, 2000

TI DSP platform, http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?farnily=

dsp§ionld=2&tabld=25&familyld=44

Paul M. Heysters, Gerard J. M. Smit, Egbert Molenkamp, "A Flexible and

Energy-Efficient Coarse-Grained Reconfigurable Architecture for Mobile Systems",

The Journal of Supercomputing 26(3): 283-308, 2003

Gerard J. M. Smit, Ties Bos, Paul J. M. Havinga, Sape J. Mullender, Jaap Smit,

"Chameleon -Reconfigurability in Hand-Held Multimedia Computers", HUC 340-342,

1999

Gerard K. Rauwerda; Gerard J. M. Smit, Werner Brugger, "Implementing an Adaptive

Viterbi Algorithm in Coarse-Grained Reconfigurable Hardware", ERSA 62-70 2005

Singh, H.; Ming-Hau Lee; Guangming Lu; Kurdahi, F.J.; Bagherzadeh, N.; Chaves

Filho, E.M.; "MorphoSys: an integrated reconfigurable system for data-parallel and

computation-intensive applications", IEEE Transactions on Computers, Volume 49,

Issue 5, May 2000 Page(s):465 - 481

Kamalizad, A.; Plettner, R.; Chengzhi Pan; Bagherzadeh, N.; "Fast parallel soft Viterbi

decoder mapping on a reconfigurable DSP platform", IEEE International SOC

Conference, 2004. Proceedings. 12-15 Sept. 2004 Page(s):3 —6

T.R. Halihil, "Silicon Hive Breaks Out", Microprocessor Report December 2003,

available at www.siliconhive.com

Marc Quax and Ingoif Held, "Multi-Standard Embedded Processor for Viterbi

Decoding", GSPx TV to Mobile May 17-18, 2005

H. Corporaal and M. Arnold, "Using transport triggered architecture for embedded

processor design," Integrated Computer-Aided Engineering, vol. 5, no. 1, pp. 19-38,

1998.

Salmela, P.; Jarvinen, T.; Sipila, T.; Takala, J.; "256-state rate 1/2 Viterbi decoder on

ITA processor", 16th IEEE International Conference on Application-Specific Systems,

Architecture Processors, 2005. ASAP 2005. 23-25 July 2005 Page(s):370 - 375

J.M.Rabaey and M. Pedram, Low power design methodologies, Kiuwer, 1996

Parhi, K.K.; "An improved pipelined MSB-first add-compare select unit structure for

Viterbi decoders," IEEE Transactions on Circuits and Systems I: Regular Papers,

Volume 51, Issue 3, March 2004 Page(s):504 - 511

V. S. Gierenz, O.Weiss, T. G. Noll, I. Carew, J. Ashley, and R. Karabed, "A 550 Mb/s

radix-4 bit-level pipelined 16-state 0.25-urn CMOS Viterbi decoder," in Proc. IEEE hit.

Conf. Application-Specific Systems, Architectures, and Processors, 2000, pp. 195-201.

149

A. Yeung and J. Rabaey, "A 210 Mb/s radix-4 bit-level Viterbi decoder," Proc. IEEE mt.

Solid-State Circuits ConI., Feb. 1995, pp. 88-89.

P. J. Black and T. H.-Y. Meng, "A 1-Gb/s, four-state, sliding block Viterbi decoder,"

IEEE J. Solid-State Circuits, vol. 32, pp. 797-805, June 1997.

Xilinx Inc., "XC4000E and XC4000X Series Field-Programmable Gate Arrays," Data

Sheet, 1997.

Rose, J.; Brown, S.; "Flexibility of interconnection structures for field-programmable

gate arrays", IEEE Journal of Solid-State Circuits, Volume 26, Issue 3, Page(s):277 -

282.Mar 1991

Chang Y.-W.; Wong. D.; and Wong. C., "Universal switch modules for FPGA design",

ACM Transactions on Design Automation of Electronic Systems, vol. 1, pp. 80-101,

January 1996.

Wilton S. J. E., Architectures and Algorithms for Field-Programmable Gate Arrayswith

Embedded Memory. PhD thesis, University of Toronto, 1997.

Khawam, S.; Arsian, T.; Westall, F.; "Synthesizable reconfigurable array targeting

distributed arithmetic for system-on-chip applications", 18th International Parallel and

Distributed Processing Symposium, 2004. Proceedings. 26-30 April 2004 Page(s): 150

Khawam, S, "Domain-specific and Reconfigurable Instruction Cells based

Architectures for Low-Power SoC", PhD thesis, University of Edinburgh, 2006

Cheng S. T., "Compiling Veriog into Automata",Tech. Rep. UCB/ERL M94/37,

Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1994.

V.Betz, J.Rose and A.Marquardt, "Architecture and CAD for Deep-Submicron FPGAs",

Kiuwer Academic Publisher, 1999. ISBN 0-7923-8460-1

Ho, C.H.; Leong, P.H.W.; Luk, W.; Wilton, S.E.J.; Lopez-Buedo, S., "Virtual Embedded

Blocks: A Methodology for Evaluating Embedded Elements in FPGAs", 14th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, 2006. FCCM

'06, April 2006 Page(s):35 - 44

Xilinx Inc, "FPGA Xpower tutorial". Available from: http://toolbox.xilinx.com/docsan

/xiinxs/help/xpower/xpower.htm

M. Sheng and J. Rose, "Mixing buffers and pass transistors in FPGA routing

architectures". ACMJSIGDA International. Symposium on FPGAS, 2001.

S. Khawam, I. Nousias, M.Milward, Y.Ying, T.Arslan, "Reconfigurable Instruction Cell

Array", UK Patent Office, UK Patent Application Number 0508589.9, April 2005

Ying Yi, loannis Nousias, Mark Milward, Sami Khawam, Tughrul Arslan, lain Lindsay,

"System-level Scheduling on Instruction Cell Based Reconfigurable Systems", 2006

Design Automation and Test in Europe Conference (DATE06), Volume 1, pp. 1-6, 6-10

March 2006, Munich, Germany.

Nousias, I.; Arslan, T., "Wormhole Routing with Virtual Channels using Adaptive Rate

Control for Network-on-Chip (NoC)", First NASA/ESA Conference on Adaptive

Hardware and Systems2006 (AHS-2006), pp. 420- 423, 15-18 June 2006, Istanbul,

Turkey.

Sam Fuller, "Motorola's AltiVecTM Technology", White paper, Freescale Semiconductor,

150

Inc.
MMXI'M Technology, Intel, available from http://www.intel.com/design/intarch/nimx -
mmx.htm

Berrou, C.; Glavieux, A.; Thitimajshima, P.; "Near Shannon limit error-correcting

coding and decoding: Turbo-codes", IEEE International Conference on

Communications, 1993. ICC 93. Geneva Volume 2, 23-26 May 1993 Page(s): 1064 -
1070 vol.2

Wu, P.H.-Y., "On the complexity of turbo decoding algorithms", Vehicular Technology

Conference, 2001. VTC 2001 Spring. IEEE VTS 531d Volume 2, 6-9 May 2001
Page(s): 1439 - 1443 vol.2

Douillard, C.; Berrou, C.;"Turbo codes with rate-mJ(m+1) constituent convolutional

codes", IEEE Transactions on Communications, Volume 53, Issue 10, Oct. 2005
Page(s):1630 - 1638

Berrou, C.; Jezequel, M.; Douillard, C.; Kerouedan, S.;"The advantages of non-binary

turbo codes", IEEE Information Theory Workshop, 2001. Proceedings. 2001 2-7 Sept.
2001 Page(s):61 —63

Weiss, C.; Bettstetter, C.; Riedel, S.; Costello, D.J., Jr; "Turbo decoding with tail-biting

trellises", International Symposium on Signals, Systems, and Electronics, 1998. ISSSE

98. 1998 29 Sept.-2 Oct. 1998 Page(s):343 - 348

Robertson, P.; Villebrun, E.; Hoeher, P.; "A comparison of optimal and sub-optimal

MAP decoding algorithms operating in the log domain", IEEE International Conference

on Communications, 1995. Volume 2, 18-22 June 1995 Page(s): 1009 - 1013 vol.2

Hagenauer, J.; Hoeher, P.; "A Viterbi algorithm with soft-decision outputs and its

applications", IEEE Global Telecommunications Conference, 1989, and Exhibition.

'Communications Technology for the 1990s and Beyond'. GLOBECOM '89. 27-30 Nov.
1989 Page(s):1680 - 1686 vol.3

Vogt, J.; Koors, K.; Finger, A.; Fettweis, G;" Comparison of different turbo decoder

realizations for IMT-2000," Global Telecommunications. Conference, 1999.

GLOBECOM '99 Volume 5, 1999 Page(s):2704 - 2708 vol.5

Woodard, J.P.; Hanzo, L., "Comparative study of turbo decoding techniques: an

overview", IEEE Transactions on Vehicular Technology, Volume 49, Issue 6, Nov.

2000 Page(s):2208 - 2233

William E. Ryan, "A Turbo Code Tutorial", New Mexico State University, Las Cruces,

NM 88003.

Classon, B., Blankenship. K., and Desai, V., "Turbo decoding with the

constant-log-MAP algorithm," in Proc. Second International Symposium on Turbo

Codes and Related Topics, pp. 467-470, Sept. 2000.

Jung-Fu Cheng; Ottosson, T.; "Linearly approximated log-MAP algorithms for turbo

decoding" IEEE 51st Vehicular Technology Conference Proceedings, 2000. VTC

2000-Spring Tokyo. 2000 Volume 3, 15-18 May 2000 Page(s):2252 - 2256 vol.3

Vogt, J.; Finger, A.; "Improving the max-log-MAP turbo decoder", Electronics Letters,

Volume 36, Issue 23, 9 Nov. 2000 Page(s):1937 - 1939

151

Montorsi, U; Benedetto, S.;"Design of fixed-point iterative decoders for concatenated

codes with interleavers", IEEE Journal on Selected Areas in Communications, Volume

19, Issue 5, May 2001 Page(s):871 - 882

C. Douillard, M. Jezéquel, C. Berrou, N. Brengarth, J. Tousch and N. Pham, "The Turbo

code Standard for DVB-RCS," 2nd International Symposium on Turbo Codes &

Related Topics, Brest, France, Sept. 2000, pp. 535 - 538.

Guidelines for the Implementation and Usage of the DVB Interaction Channel for

Satellite Distribution Systems (draft TR 101 790 V1.3.1) ,http://www.dvb.org/

technology!

Viterbi, A.J.; "An intuitive justification and a simplified implementation of the MAP

decoder for convolutional codes", IEEE Journal on Selected Areas in Communications,

Volume 16, Issue 2, Feb. 1998 Page(s):260 - 264

Masera, (1; Piccinini, G; Roch, M.R.; Zamboni, M.; "VLSI architectures for turbo

codes" IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Sept. 1999

Page(s):369 - 379

Chien-Ming Wu; Ming-Der Shieh; Chien-Hsing Wu; "Memory arrangements in

turbo decoders using sliding-window BCJR algorithm" IEEE International Symposium

on Circuits and Systems, 26-29 May 2002 Page(s): V-557 - V-560 vol.5

Chien-Ming Wu; Ming-Der Shieh; Chien-Hsing Wu; Yrn-Tsung Hwang; Jun-Hong

Chen;"VLSI architectural design tradeoffs for sliding-window log-MAP decoders"

IEEE Transactions on Very Large Scale Integration (VLSi) Systems, April 2005

Page(s):439 - 447

Worm, A.; Lamm, H.; Wehn, N.;"VLSI architectures for high-speed MAP

decoders" Fourteenth International Conference on VLSI Design, 3-7 Jan. 2001

Page(s):446 - 453

Worm, A.; Lamm, H.; Wehn, N.; "Design of low-power high-speed maximum a

priori decoder architectures" Proceedings of Design, Automation and Test in Europe,

13-16 March 2001 Page(s):258 - 265

Han, J.H.; Erdogan, A.T.; Arslan, T.; "High speed max-log-MAP turbo SISO

decoder implementation using branch metric normalization" IEEE Computer Society

Annual Symposium on VLSI, 11-12 May 2005 Page(s): 173 - 178

Montorsi, U; Benedetto, S.; "Design of fixed-point iterative decoders for

concatenated codes with interleavers", IEEE Journal on Selected Areas in

Communications, Volume 19, Issue 5, May 2001 Page(s):871 - 882

Michel, H.; Wehn, N.; "Turbo-decoder quantization for UMTS", IEEE

Communications Letters, Volume 5, Issue 2, Feb 2001 Page(s):55 - 57

Gibong Jeong; Dan Hsia; "Optimal quantization for soft-decision turbo decoder",

IEEE VTC 50th 1999.

Yates. R. Fixed-point arithmetic: An introduction. Digital Sound Labs, March 2001.

Available from http:/!personal.bellsouth.net/lig/y!a/yatesc/fp.pdf

Muller, 0.; Baghdadi, A.; Jezequel, M.; "ASIP-Based Multiprocessor SoC Design

for Simple and Double Binary Turbo Decoding", Design, Automation and Test in

152

Europe, 2006. DATE '06. Proceedings Volume 1, 6-10 March 2006 Page(s): 1 - 6

153

