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Abstract 
Market requirements always influence the semiconductor industry. The coexistence of multiple 

standards, which exhibit distinct mobility and data rates, makes that a flexible convergence 

of current wireless standards and services is expected from beyond 3G systems. However, 

this trend needs a strong demand for underlying hardware architectures to achieve 

unprecedented performance, flexibility, low power consumption and time-to-market 

requirements. 

Since forward error correction algorithms demand the most computational cost of the whole 

physical layer system, this thesis employs two forward error correction cases, \literbi 

decoder and double binary circular Turbo decoder, to investigate three potential 

reconuigurable hardware architectures for beyond 3G wireless communication system. 

Firstly, a domain specific reconfigurable Viterbi decoder fabric is introduced, which can 

support multiple Viterbi decoders with different constraint lengths and code rates. In addition, 

it also provides near ASIC performance in terms of power consumption and area. In order to 

further reduce the design and verification cost of this domain specific reconfigurable design, 

Chapter 4 presents another reconfigurable architecture which can be automatically generated 

and programmed by its associated CAD framework. Composed of heterogeneous 

coarse-grained processing units and a 2-D interconnection mesh, this reconfigurable 

architecture demonstrates significant power and area savings as compared with commercial 

FPGAS. RICA, reconfigurable instruction cell array, which is a dynamic reconfigurable 

architecture programmed by ANSI C, has been developed as a feasible solution for future 

wireless and multimedia applications. In Chapter 5, several advanced optimization 

approaches are proposed to efficiently implement the Viterbi decoder on RICA architecture. 

Furthermore, Chapter 6 and Chapter 7 demonstrate the implementation of a more complex 

application, double binary circular Turbo decoder. In Chapter 6, a system model is build to 

investigate the suitable decoding algorithm which can balance the decoding throughput and 

performance degradation. On the other hand, appropriate quantization scheme for the 

decoding implementation is devised based on a bit-true model. Finally, an optimized double 

binary circular Turbo decoder which can provide scalable decoding throughput is 

demonstrated on the RICA architecture. 
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Chapter 1.0 

ntroduction 

1.1 Motivation 

Since the emergence of the second-generation cellular system, wireless communication has 

become one of the most remarkable sectors in the consumer semiconductor industry. The 

number of mobile subscribers has grown over 100-fold in the last decade, and the market 

analysts confidently predict that the current number of global mobile subscriptions will be 

doubled by 2008 [1]. 

Because of the huge commercial opportunity in the wireless communication market, the 

semiconductor manufacturers and telecom operators have struggled for providing customers 

with the most distinctive products which are smaller, cheaper, and have more features than 

current ones. Consequently, this innovation demand has become the major momentum to 

push the semiconductor and telecommunication technologies forward. 
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The basic trends for wireless communication are ubiquity and higher throughput [2]. The 

ubiquity of wireless communications indicates that users can use their mobile devices in 

different environments, like the home, the office, driving, and walking. With extremely high 

throughput, a great number of services, such as audio, video, internet access, etc, can be 

provided on a single portable device. 

Stimulated by the market requirement, at present, various wireless communication standards 

have been deployed and commercialized focusing on different levels of mobility and data 

rate, which is shown in Figure 1 .1. The coexistence of multiple standards makes the 

transition from third-generation (3G) wireless systems to fourth-generation (4G) systems is 

not likely to be as clear as the transition from second-generation (2G) systems to 3G 

With regard to the prediction the 4G wireless network, a flexible convergence of current 

wireless standards and services is expected [3]. This kind of convergence provides the 

opportunity to simultaneously use standards such as GSM, 3G and WLAN from one device. 

Thus, it not only fulfills customers' desire for faster and ubiquitous wireless connection, but 

also maintains the commercial infrastructural investment of the previous wireless 

generations. 

Mobile 	______ 	
.-_;__- 	 802.16e (Vehicular) 	

Mobile Wimax 

Pedestnan
0 802.16d   

(Nomadic) 	' 	 - 	
WiIflX 

Fixed 
(Staonary)  

0.1 	 1.0 	 10 	100-1G 

Peak Data Rate (Mbits/second) 	 Commercial 

- - - - Proposed 

Figure 1.1 4G wireless communication standards [4] 

However, the convergence concept of 4G relies heavily on the semiconductor industry to 

invent a novel and flexible hardware architecture that can be cost-efficient and provide 

acceptable performance [5]. The 4G hardware architecture will require unprecedented digital, 

analog, and software integration. The main obstacles of the hardware design for 4G exhibit 
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in four aspects: 

• Performance: Mobile terminals require very accurate timing on reactive application 

and protocol processing, thus this kind of real-time constraint demands that the physical 

layer architecture must meet the data throughput and quality of service requested by 

different standards. 

• flexibility: The evolution of wireless standards is extremely fast. For instance, IEEE 

standardized eight different versions of wireless LAN applications from 1999 to 2004. 

The mobile terminal has to be flexible enough to accommodate changes in the standards 

or the introduction of new services. 

• Low power consumption: Stringent limit on power consumption is an inherent 

challenge for mobile terminals. Minimizing the power consumption and extending the 

battery lifetime of mobile terminals are a key ultimate aim of every wireless network 

generation. 

• Time-to-market: Because of the evolution of wireless communications and 

semiconductor technologies, the lifespan of mobile terminals has been shrunk and the 

manufacturers are forced to release new products at a short time to keep their 

competitive position in the market. This trend results in very tight time-to-market 

constraints for the hardware design. 

However, the current architectures and design methodologies can hardly satisfy all these four 

requirements. Application specific integrated circuits (ASIC) can provide the best 

implementation for specific applications, typically several order of magnitude better than 

processors. However, ASICs have high non-recurring engineering (NRE) costs, expensive 

design tools, significant manufacturing risk and long periods to bring products to market. 

These limitations obstruct ASICs exhibiting themselves in the mainstream platform for 

future portable and network devices. 

Digital signal processors (DSPs) are the dominant products in the 2G market. DSPs are not 

only strong in control flow applications and frequent branching, but are also optimized to 

support data flow oriented tasks. Unfortunately, with regard to the highly computational 

intensive tasks in 4G even the highest-performance DSPs today cannot deliver the 
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demanded horsepower. 

Field Programmable Gate Arrays (FPGAs) can offer the ASIC-like performance and 

DSP-like flexibility due to their fine-grained bit-level configuration architecture. However, 

FPGAs pay very high silicon area and power consumption penalties for their attractive 

performance and flexibility. Their area and power consumption make them unfeasible for the 

portable devices. 

The limitations of the current architectures motivate us to investigate a novel reconfigurable 

architecture to bridge the performance gap between theory and practice, and also fulfill the 

flexibility, low power consumption and time-to-market requirements of the beyond 3G 

portable devices. 

1.2 Objective 

The objective of this dissertation is to make a contribution to the scenario of hardware 

architectures for beyond 3G portable devices. This dissertation investigates several 

reconfigurable architectures and design methodologies to study the underlying fabrics for 

beyond 3G portable devices. By employing the Viterbi decoder and double binary circular 

Turbo decoder as the study cases, this dissertation demonstrates the efficient solutions for 

the future portable devices. 

1.3 Major contributions 

The major contributions of the dissertation are split into five key aspects: 

• A novel domain specific reconfigurable architecture for the Viterbi decoder is 

demonstrated. It not only supports the decoding process for constraint length from 3 to 

9 and code rate 1/2 and 1/3 convolutional codes, but also offers a maximum 150Mbps 

decoding throughput with little area and power overhead. 

• An automatic design methodology for a domain specific reconfigurable architecture is 
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proposed. This architecture is based on a synthesizable heterogeneous coarse-grained 

array and 2-D mixed interconnection mesh. In addition, the proposed software design 

flow can automatically generate the expected reconfigurable architecture and map 

applications on the proposed architecture. 

• An efficient Viterbi decoder implementation on a reconfigurable instruction cell array 

(RICA) platform is demonstrated. Furthermore, several advanced optimization 

approaches for the Viterbi decoder on the RICA platform are proposed to boost its 

performance. 

• A system model of M-binary circular Turbo codes and its practical application, double 

binary circular Turbo codes is established. The implementation design space on the 

algorithm level has been explored. The selection of suitable decoding algorithms with 

their simplification and optimization are investigated. 

• Suitable parallel decoding schemes and fixed-point representation are investigated in 

order to obtain a high throughput double binary circular Turbo decoder implementation 

on the RICA. Moreover, the advanced optimization approaches for double binary 

circular Turbo decoder implementation are described. 

1.4 Structure of this dissertation 

The structure of this dissertation is presented as follows: 

Chapter 2 contains a description of the literature reviews related to this work including basic 

concepts of wireless communication, channel coding, the representations of convolutional 

codes and the mathematical background of the Viterbi decoding algorithm. In addition, the 

implementation approaches for a Viterbi decoder are described. The details of current 

programmable and reconfigurable Viterbi architectures are also presented and compared. 

A domain specific reconfigurable Viterbi decoder implementation is addressed in Chapter 3. 

The reconfigurable design approaches for the Viterbi decoder are presented. This chapter 

also proposes several power-saving schemes to reduce the power consumption of the whole 

fabric. 
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In Chapter 4, a design methodology which can automatically generate a heterogeneous 

coarse-grained reconfigurable architecture is proposed. By means of CAD tools, the design 

and verification time of a domain specific reconfigurable architecture can be dramatically 

reduced. Moreover, as compared with commercial FPGAs, the proposed architecture shows 

salient advantages in terms of power consumption and area. 

A reconfigurable architecture, RICA, which can be programmed by high-level language, 

such as C and C++, is introduced in Chapter 5. The efficient implementation and 

optimization approaches for the Viterbi decoder are demonstrated on the RICA platform. 

Chapter 6 and Chapter 7 address an efficient double binary circular Turbo decoder design 

from both algorithm level and implementation level. Chapter 6 focuses on investigating 

suitable decoder algorithms. Chapter 7 investigates the suitable implementations approaches, 

such as the parallel decoding scheme and fixed-point representation. 

Finally, the thesis is concluded with the summary in Chapter 8. 
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Chapter 2.40 

Background 

As one of the most successful sectors of the consumer electronics industry, wireless 

communication has become a major driving force behind the evolution of semiconductor 

technology. Beyond 3G wireless conimunication systems will not only offer faster and 

ubiquitous services for customers, but also need to keep the economical success of the 

previous system. In addition, the stringent requirements upon low power consumption, 

non-recurring engineering cost and time-to-market have to be fulfilled. These demands 

induce various challenging problems to the designers of next generation wireless 

communication systems. 

This chapter introduces the background literatures relevant to the work in this thesis. This 

chapter commences with the introduction of basic concepts of wireless communication. In 

Section 2.2 and Section 2.3, channel coding and the representations of convolutional codes 

are elaborated. Section 2.4 gives an overview of the mathematical background of the Viterbi 

decoding algorithm. The implementation approaches for different blocks of a Viterbi decoder 
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is described in Section 2.5. The, details of current programmable/reconfigurable Viterbi 

architectures are presented and compared in Section 2.6. The conclusion can be accessed in 

Section 2.7. 

2.1 Digital Communication System 

A typical digital communication system consists of a transmitter, receiver and the 

transmission media (channel). The transmitter takes digitized data from an information 

source, performs several processing steps, and transmits the signals through a 

communication channel. Because of the reflection, refraction and dispersion, the 

transmission waveform is disturbed by the noise in the wireless communication channel. To 

ensure a reliable quality of service (QoS), the receiver must appropriately process the 

received signal to recover the transmitted data. Figure 2.1 illustrates the basic blocks of a 

typical digital communication system [6]. 

Trarsrniftr 

Noise 

I Reeer] 

Figure 2.1 Digital communication system 

In Figure 2.1, the information source is initially converted to binary digitals. During source 

encoding, these bits are grouped to form digital messages or message symbols. Then, data 

encryption can be used to ensure privacy. In a further step, error correction techniques are 

applied to protect the data against channel noise during transmission. This can be done either 

by forward error correction (FEC) or automatic repeat request (ARQ). Finally, these binary 

bits are modulated to analog signals which are suitable for the transmission channel. On the 

receiver side, corresponding data transformations have to be carried out in reverse order to 

recover the original information. 
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Due to different purposes and transmission environments, the techniques of each block may 

be varied for different standards. The techniques of channel coding and modulation in terms 

of different standards have been tabulated in Table 2.1. 

Table 2.1 Different wireless communication standards 

Modulation FEC 
System Peak 
Throughput 

GSM [7] 
TDMA Convolution codes 

270 Kbps 
GSMK K=5 R =1/2 

Convolution codes 

WCDMA [8] 
CDMA K=9R=1/2,1/3 2 Mbps 

 BPSK/QPSK Turbo codes 
K=4 R=1/3 

Convolution codes 

HSDPA [9] 
CDMA K=9R=1/2,1/3 14.4 Mbps 

QPSK/QAM16 Turbo codes 
K=4 R=1/3 

OFDM Convolution codes 
WLAN [10] FFT size: 64 K=7R=1/2 

54 Mbps 
BPSKJQPSK/QAM16/0AM64  

Convolution codes 
OFDM K=7 R =1/2 

WIMAX [11] FFT size: 128/256/512/1024/2048 Double binary Circular 75 Mbps 
QPSKJQAM16/QAM64 Turbo codes: 

K=4R=1/2 

Convolution codes 
OFDM K=7R=1/2 

Mobile WIMAX FFT size: 512/1024 Double binary Circular 31.68 Mbps 
[121 QPSK/QAM16/QAM64 Turbo codes: 

K=4 R=1/2 

Convolution codes 
OFDM K=7 R =1/2 

DVB-T [13] FF1' size: 2048/4096 Double binary Circular 17.9 Mbps 
QPSK/QAM16/QAM64 - 	 Turbo codes: 

K=4R=1/2 

2.2 Channel coding 

Channel coding aims at protecting data against transmission errors, induced by noise and 



path fading transmission channels. There are two basic channel coding approaches which are 	- 

normally employed. 

Forward Error Correction (FEC) [14], adds redundant information to the data sequence on 

the transmitter side. That redundancy is exploited on the receiver side to detect and correct 

errors. The rate of the remaining errors is a function of the channel characteristics, but the 

sequence is only transmitted once, thus the throughput stays constant. 

It can be seen from Table 2.1 that the convolution encoder and decoder are the common FEC 

blocks for all the current wireless communication standards. According to the computational 

cost estimation and analysis in [15], the convolutional decoder demands the most 

computational complexity among physical layer blocks. Thus, this thesis selected the 

convolutional decoder as an application example to illustrate the reconfigurable architectures 

for beyond 3G wireless communication systems. 

2.3 Convolutional Encoder 

Convolutional codes were developed as an alternative to block codes due to their better error 

correction capability [14]. The error correction capabilities of convolutional codes result 

from the current coded symbols depending on past data values. Unlike the block encoder, 

where the transmitted message is coded in code words with a fixed length, a convolutional 

encoder operates serially on a bit-stream of arbitrary word length. A typical convolutional 

encoder is exhibited in Figure 2.2, where it can be seen that a convolutional encoder consists 

of shift registers and modulo-2 adders. At each time slot, one transmitted bit enters the first 

stage of shift registers. The coded symbols are generated by a modulo-2 adder which uses 

modulo-2 arithmetic to add the current bit with previous bits which are stored in the 

registers. 

For each single input bit, there is a corresponding single output symbol, consisting of two 

output bits. Thus, the volume of the transmitted message is doubled after a convolutional 

encoder. These redundant bits will help the convolutional decoder detect and correct errors 

which occur during the transmission through the wireless communication channel. 
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Symbols 

Yl 

Figure 2.2 Constraint length 3, code rate 1/2 convolutional encoder 

Convolutional codes have their own standard notation. There are three parameters to 

describe the types of convolutional codes, constraint length K, code rate R and generator 

polynomials [14]. 

Constraint length K represents the number of taps of the shift register in the convolutional 

encoder. For example, in Figure 2.2, K is equal to 3, since there are three taps-in the encoder, 

one for current bit and two for previous bits. 

A convolutional encoder with a code rate of R = rn/n, means this encoder can transmit n 

output bits for every m input bits. Figure 2.2 illustrates a code rate R=112 convolutional 

encoder. Although any code rate is possible, 11n systems are most widely used for the sake 

of decoding efficiency. 

Generator polynomials are the mathematical description of the connections between the shift 

register taps and the module-2 adders. The generator polynomials for upper and lower 

connections of the encoder presented in Figure 2.2 can be described as follows: (8  means 

octadic representation) 

G(Y0 )={1 1 1}=7 8  
(2.1) 

G(Y)={1O1}=5 8  

The selection of the generator polynomials also can affect the performance of the 

convolutional coding system. The performance of the convolutional codes is defined as its 
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robustness to channel noises. The characteristic of convolutional codes which describes this 

robustness is called the free distance and is defined as the minimum Hamming distance 

between any two code words in the codes [14]. 

For different values of K and R, there are optimal values for generator polynomials which 

can provide the best performance. These have been experimentally determined in [6] and 

Table 2.2 shows the optimal values for code rate 1/2 and 1/3. This thesis only considered the 

1/2 and 1/3 code rates, however the proposed reconfigurable fabrics can be easily extended 

to support other code rates, such as 1/4 and 115. 

Table 2.2 Generator nolvnomials 

Rate K Generator Polynomials 

1/2 

3 { 78, 58} 

5 {338, 318} 

7 {171 8, 1338} 

9 {7538,5618} 

113 

3 178, 78, 58} 

1378, 338, 2581 
________________ 

{1758,_1458,_1338} 

{7118,_6638,_5578} 

2.3.1 Finite state machine and the trellis representation 

if the contents of the shift registers can be treated as the states of the convolutional encoder, 

the encoder also can be fully described as a finite state machine, which presents the state 

transitions and input/output symbols of a convolutional encoder. The state transition diagram 

of constraint length K=3 and code rate R=112 convolutional encoder with generator 

polynomials { 78, 581 is presented in Figure 2.3. 

In Figure 2.3, the transition paths are drawn by solid lines and dashed lines, which denote 

the paths associated with the input bit 0 and 1, respectively. It can be seen that there are only 

two transitions emanating from each state, corresponding to the two possible input bits, 0 or 

1. For example, if the present encoder state is 01, the only possibilities for the state at the 

next shift are 00 or 10. 
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- Input 1 

{Y0 ,Y,}=1O 

Figure 2.3 State transition diagram for convolutional encoder 

From the state transition diagram, an important representation of convolutional codes, trellis 

diagram, can be obtained. Figure 2.4 shows the trellis diagram which is constructed from the 

state transition diagram, but also explicitly presents the passage of time. The treffis diagram 

depicts the interconnection of a set of stages which is indicated by a different time. The 

values of registers in the encoder are initialized to zero, and the treffis diagram starts from 

the 00 state. The numbers on the path called path states represent actual transmitted symbols 

which are the output of the encoder (Y 1  and Y2). Similarly with the finite state machine 

representation, a solid line corresponds to a 0 input and a dashed line corresponds to a 1 

input. 

  

InputO 

lnput=l 

Time 

I 

0 

T 

2 

I 	 I 	 I 
I 	 I 	 I 
I 	 I 	 I 
I 	 I 	 I 

3 	 4 	 5 

Figure 2.4 Trellis diagram 
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2.4 Viterbi decoding algorithm 

At the receiver side, the channel decoder takes the received sequence D and regenerates an 

estimation of the transmitted codeword sequence E. The Viterbi decoding algorithm [21] is a 

maximum likelihood decoding algorithm based on the concept of the trellis diagram. 

Maximum likelihood decoder produces an output sequence with the maximum likelihood 

function, which is represented by: 

PX(DIE)=MAX!1P(Dk IE k )J 	(2.2) 

where Dk  and  Ek  represent a symbol of the decoder received sequence and the 

transmitted codeword sequence, respectively, and N denotes the size of the sequence. Since 

logarithms are monotonically increasing, the likelihood function also can be estimated in a 

logarithmic domain to facilitate the implementation. 

By means of the Viterbi algorithm, the logarithmic likelihood functions In P(D I E1 ) at 

time t=i are accumulated following the trellis path and half of the current trellis path will be 

discarded based on the comparison of the likelihood function. 

As shown in Figure 2.4, there are only two possible previous states for each trellis state. The 

accumulated logarithmic likelihood function following each possible path can be denoted as: 

In F(Dk<+l I E < ) = In Pl (Dk <  j E <1 ) + lnP(D1 I E) 
(2.3) 

In I' (Dk <+l I E <1+ ) = lnP(Dk<  I E <,) + lnP(D1 I E1) 

The first term on the right side of Equation 2.3 indicates the accumulated logarithmic 

likelihood on each trellis node and the second term denotes the logarithmic likelihood for 

each trellis path, which are also named path metrics and branch metrics, respectively. It can 

be seen from Figure 2.5 that the path with smaller accumulated logarithmic likelihood is 

discarded and the other path is stored as the new state metric. Simultaneously, an indication 

of the survival path (survivor bit) has to be saved in the memory which is used to reconstruct 

transmission symbols. This iterative computation will follow the trellis till the end. 

14 



lnF(Dk<,IEk<J) 
lnP(D1  1E) 

 
p  

ln (Dk+l  IE&<j+i)J 

lnI(Dk<JIEk<,) 

Figure 2.5 Path update following the trellis diagram 

At the end of the trellis, the state with the maximum accumulated likelihood function can be 

obtained. Since each state has only one entering survivor path, tracing the trellis backwards 

can yield a unique path. This path is the maximum likelihood path and the bits retrieved 

during the trace back are the decoded output bits [21]. 

2.5 Viterbi decoder architecture 

This section describes the hardware architecture for the Viterbi decoder in detail. The three 

major components in a Viterbi decoder, branch metric unit (BMU), add-compareselect unit 

(ACSU) and survivor management unit (SMU) are shown in Figure 2.6. 

Branch Metrics I 	 I 	SuMvor Bite 

RecervedSymbols 	I 	I ASCU 	

I 	I SMU I 	Decode Output 
p1 BMU I 

Path Metrics 

Memory banks! 	 I 	I 
Registers 

Figure 2.6 Diagram of Viterbi decoder architecture 

2.5.1 Branch Metric Unit (BMU) 

The BMU module takes charge of calculating branch metrics corresponding to the received 

sequence. According to the representation of the received sequence, there are two types of 

Viterbi decoder: hard decision Viterbi decoder and soft decision Viterbi decoder. 
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2.5.1.1 Hard decision 

In the case of hard decision, each bit in an input symbol is represented by a single estimated 

bit. The calculation of maximum likelihood function In P(D I E) is equal to look for the 

minimum Hamming distance between sequenceD and E [14]. 

2.5.1.2 Soft decision 

When each bit in a symbol in the received sequence is represented by multiple bits, then it is 

referred to as soft decision and the Euclidean distance is calculated. 

In practical implementation, the Eucidean distance can be further simplified, If E1  is the 

expected codeword, D1  are the received soft decision symbol and R is the code rate, the 

Eucidean distance between E. and D, is defined as: 

hR—i 

Euclidean = 	(E7 _
Din  )2 	

(2.4) 
fl.o 

Expanding Equation 2.4, we can get: 

hR-i 

Euclidean = 	((7 )
2 - 
	 + (D$ 

)2) 	
(2.5) 

Since the comparison must be done, only the portions of Equation 2.5 which are different for 

each path need to be considered. Thus, the common terms (E1" 
)2 

 and (D1" 
)2 

 can be 

eliminated. Equation 2.5 can be further reduced to: 

hR—i 

Euclidean = —2 1 (E,"D$) 	 (2.6) 

Moreover, the leading parameter -2 can be removed, thus the minimum value of the 

hR—i 

Eucidean distance occurs when I (EZ"D1' ) is a maximum. Since E1  is either 1 or -1, 

hR—i 

(E1"D1') can be referred to as addition and subtraction operations. 

According to previous works [22], soft decision data can provide 2.2 dB performance gain 

compared with hard decision data. In this thesis, without specific statement, a soft decision 

Viterbi decoder is considered. 
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2.5.2 Add-Compare-Select Unit (ACSU) 

ACSU is a recursive computation unit which, taking in the branch metrics, calculates the 

path metrics and the survivor bits following the trellis paths. In every trellis stage, the 

updated path metrics are stored back to local registers which are served as inputs of ACSU. 

in the next recursion whilst survivor bits are wrtten to survivor memory. 

Generally, for a constraint length K Viterbi decoder, 2" path metrics have to be updated at 

every trellis stage, thus 2" ACS operations are required to perform every recursion. With 

the increase of K, the number of ACS operations is exponentially increased. Therefore, 

ACSU becomes the most computational intensive unit of a Viterbi decoder and the decoding 

throughput is mainly determined by the execution time of ACSU. In the last decade, a lot of 

research contributions focus on how to implement ACSU more efficiently and effectively. 

2.5.2.1 Butterfly Unit 

According to the inherent symmetric property of the generator polynomials of convolutional 

codes, two adjacent ACS operations share the same inputs, path metrics and branch metrics. 

Therefore, in practical applications, two ACS units are bonded together [23], named 

butterfly units, shown in Figure 2.7. By means of this type of combination, the route delay 

inside an ACSU can be reduced and it can further also increase the modularity of the design. 

BM' 
J+I  'm 7o 

Pt+I  

BM 

ACSO 
'2m4 

BM' 
	

ACS 1 

d,, 

PI 

d' 

Figure 2.7 Butterfly Unit 
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2.5.2.2 Normalization 

During the recursive ACS computation, path metrics will accumulate without bounds. 

Implementation without normalization requires large word length for path metrics to avoid 

overflow. On the other hand, increasing word length for path metrics leads to increasing 

power consumption and area of the whole architecture. In order to limit the word length of 

path metrics, normalization block has to be employed to prevent arithmetic overflow. There 

are two widely used approaches for Viterbi decoders, rescaling and modulo arithmetic. 

2.5.2.2.1 Rescaling approach 

Rescaling approach [24] is achieved by subtracting the minimum path metric from all other 

path metrics at the end of every ACS recursion, which is illustrated in Figure 2.8. This 

approach results in the minimum word length for path metrics. However, 2"-1 comparators 

working in a cascaded manner have to be integrated at the end of ACSU to look for the 

minimum path metric for each trellis stage. In addition, it can be seen from Figure 2.8 that 

all path metrics have to be subtracted by the minimum path metric to rescale them and avoid 

the overflow. The computational cost incurred by this approach is relatively huge and 

rescaling approach is infeasible for a high throughput Viterbi decoder design. 

Minimum Path 
Metnc 

Normalized Path 
Metnc 

Normalized Path 
Metric 

Figure 2.8 Rescaling approach for normalization 

2.5.2.2.2 Modulo Arithmetic Approach 

Modulo arithmetic was devised in [24], which exploits the fact that the difference of path 

metrics is always bounded by a constant value [25]. Modulo arithmetic approach replaces 
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the normal comparator by a modulo comparator and accommodates overflow in such a way 

that is does not affect the correctness of the results. Since the path metrics are implicitly 

normalized by modulo comparators, this approach can avoid the long comparison chain in 

the rescaling approach and the associated hardware overhead is extremely small, yielding a 

high throughput \'iterbi decoder implementation. 

The penalty for modulo arithmetic is requiring extra bits to represent path metrics as 

compared with the rescaling approach. According to [26], the number of bits required to 

represent path metrics can be deduced by: 

w2[log 2 (2KB+l)]+l 	 (2.7) 

where K denotes the constraint length and B is the upper bound for the absolute values of 

branch metrics. The minimum word length requirements of modulo arithmetic normalization 

scheme for constraint length 3, 5, 7 and 9, code rate 1/2 and 1/3 Viterbi decoder are tabulated 

in Table 2.3. 

Table 2.3 Minimum word length requirement for path metrics 

K 3 5 7 9 

R 1/2 1/3 1/2 1/3 1/2 1/3 1/2 113 

Word length 7 7 7 8 8 8 8 8 

From decoding throughput and computational cost point of view, modulo arithmetic is 

superior to rescaling approach and has been widely adopted in the high performance Viterbi 

decoder [26] [27] [28] [29]. 

2.5.2.3 Parallel and partial parallel ACSU 

2.5.2.3.1 Parallel architecture 

For a constraint length K Viterbi decoder, 2" path metrics have to be updated at every trellis 

stage. If a dedicated ACS unit is used for every path metric calculation, this leads to a 

parallel \1iterbi decoder architecture. Since 2"' path metrics and a complete vector of 

survivor bits are calculated every clock cycle, a high throughput Viterbi decoder is normally 

achieved by this architecture [27] [28] [29]. However, the parallel ACSU architecture has to 
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pay area penalty as the price for high throughput. 

2.5.23.2 Partial parallel architecture 

Partial parallel architecture is also named as in-place computation scheme, which was first 

introduced by [30]. Partial parallel architecture partitions the path metrics into several 

groups and makes each group share one ACS unit. However, additional memory banks and 

address controllers have to add to each group to store and schedule the temporary path 

metrics. For low and moderate throughput applications, partial parallel architecture can 

achieve high performance and low hardware cost [31] [32] [33]. However, the speed is 

limited by the folded ACSU architecture and obstructs its application for the high throughput 

Viterbi decoder. 

2.53 Survivor Management Unit (SMU) 

The SMU has the responsibility to reconstruct the information sequence from the survivor 

bits generated by the ACSU. In practice, there are two different algorithms to implement the 

survivor management unit, register exchange algorithm (REA) and traceback algorithm 

(TBA). 

2.5.3.1 REA 

In REA, a register must be assigned to each trellis state [34]. The registers record the 

survivor bits produced by ACSU along the trellis path from the initial stage to the final stage. 

At the end, the decoded output sequence is the one stored in the register which is assigned to 

the state with miximum likelihood function. Since REA does not require tracing trellis back, 

it is faster than TBA. However, REA incurs huge memory accessing bandwidth, and it is not 

suitable for a low power Viterbi decoder, especially for a large constraint length [35]. 

2.5.3.2 TBA 

Unlike REA, TBA starts from an arbitrary state in final trellis stage to rebuild the most 

possible transmission path in a reversed way [36]. In TBA, the previous state S 1  is decided 
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by current state S and associated survivor bits dn, which is located in the bit line of survivor 

memory indexed by S. The previous state Sn1  is deduced by the following equation. 

Sni = {s <<i. d } 	 (2.8) 

Since traceback depends on ACSU finishing first, a huge decoding latency is introduced by 

TBA. In order to speed up the throughput, sliding window scheme is proposed in [37] to 

break the data dependence between ACSU and SMU. 

2.53.3 Sliding window 

Sliding window scheme is based on the rule that no matter from which state the TBA begins, 

after a sufficiently large number of recursive steps, all paths are merged at the same state 

[22]. Thus, traceback can start from the middle of a decoding sequence, rather than waiting 

till the end, thus the decoding latency can be shrunk. 

I 	Decode Block 	I 	 Merge Block 	 Write Block______ 
D 	 L 	 D 

Figure 2.9 TBA with sliding window 

TBA with sliding window scheme is illustrated in Figure 2.9. It can be seen that the whole 

procedure consists of three major operations: write block, merge block and decode block 

which are listed as follows: 

Write block: In write block, the survivor bits generated by the ACSU are written to the 

survivor memory. Write block is the only memory writing operation and its address pointer 

T 
I 
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moves forward. 

Merge block: In merge block, trellis is traced back based on Equation 2.8. The trace back 

operation starts from an arbitrary state. After L recursive processes, the trellis path reaches 

the merge state This block reads the survivor vectors from the survivor memory to 

find the previous trellis state, but no outputs are generated in merge block. In order to ensure 

that the trellis path has arrived at L is at least as long as five times the constraint 

length [22]. 

Decode block: The operation in this block is identical to the merge block except that the 

trace back starts from Smerge and the survivor bits produced every clock cycle will output as 

decoding sequence. Since the decode block produces the output in a reversed order, 

last-in-first-out (LIFO) buffers are exploited at the end to change the order of output 

sequence. 

In the TBA approach, the decoder processes on a continuous sequence of incoming encoded 

data, splitting it into separate windows for operating. However, practically, the transmitted 

data is split into frames and regard each frame as an independent block. The disadvantage of 

trace back operation from an arbitrary state is that the bit error rate performance is degraded 

because the decoder does not know from which state to start the final window operation and 

has no extra data to be used as the training data to find the correct state for last window. 

There are several termination approaches which are proposed to solve this issue, such as 

zero force termination [38] and tail-biting termination [39]. However, this part of discussion 

is out of the scope of this thesis. Since the major design methodologies of different 

termination approaches are very similar, we select the trace back operation from an arbitrary 

state as an example to demonstrate the reconfigurable fabrics in the following chapters. 

2.5.3.4 Memory arrangement 

As can be seen from Figure 2.9, several memory banks are employed in the sliding window 

scheme. The size of memory banks and its read/write clock frequency have to be fulfilled 

by: 
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fR.NT_1' 	
(2.9) 

f 

where JR  and fw  are read and write frequencies for the memory read and write 

regions. NT  is the number of read pointers of the read region. In [38], a SMU with L = D 

and fR = fw  is presented, which is shown in Figure 2.10. It can be seen that four 

independent single port memory banks with size of D, are exploited. The operations for 

different memory banks are executed in parallel. Once a bank has been decoded, it will 

become the write region for the next phase. 

Time 

	

Bank I 	Bank 2 	Bank 3 	Bank 4 

d 	fril7 /14 	4 	 Idle 

	

Idle 	 .. 	/1/17 iV'A 	4 	 T(3 

T(4) 

Write 	- - 

	
Merge 	4 	Decisioc 	Idle 	Idle 

Figure 2.10 Operation of sliding window scheme with four memory banks 

By increasing the number of the read pointers (NT ) [26] or the speed of the read pointer 

(fR) [27], the total memory size could be reduced. The main point is that there is a tradeoff 

between the total memory size, the latency and the design complexity. The study of this 

tradeoff is out of the scope of this work, and this part of work can refer to [40]. We chose 

SMU architecture presented in [38] to illustrate our reconfigurable design methodology. 

However, this methodology proposed in this thesis also can be used by other sliding window 

cases. 
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2.6 Programmable/Reconfigurable Viterbi decoder 

implementation 

ASIC implementation of a Viterbi decoder has been widely studied by previous works. 

ASICs are designed to exploit the parallelism of algorithms, also along with optimization in 

terms of power, speed and area. However, this inflexible implementation increases the cost 

of effort/time and shortens the lifetime of the products. In order to tailor to the dramatically 

changed wireless communication scenario, there are several different architectures which 

intend to balance the flexibility and hardware efficiency. 

2.6.1 VLIW DSP 

In the current market, the digital signal processor (DSP) is the dominating device for 

wireless communication products. In the contrast to general processor, the architecture of a 

DSP processor is usually optimized for a set of well-known applications by means of 

incorporating specific hardware components to provide high-performance arithmetical 

operation, such as the single-cycle multiply-accumulate (MAC), and high-efficient memory 

accessing, such as dedicated memory address generator. 

By integrating more than one ALU, a very long instruction word (VL1W) DSP core can 

execute several instructions in parallel. A typical example of a VLIW DSP targeted for 

wireless communication applications is the Starcore SC140 from Fresscale Inc. [49]. The 

data arithmetic logic section of SC140 consists of four identical 32-bit ALUs and the address 

generation section contains two address arithmetic units. Thus an SC140 can execute up to 

six instructions at a time, four for arithmetic logic section and two for address arithmetic 

section. 

2.6.1.1 Viterbi decoder on VLIW DSP 

To accelerate the Viterbi decoding process, SC140 has designed specific instructions to 

provide efficient arithmetical operations, such as ADD2, SUB2 and MJ4X2VIT, and suitable 

memory accessing instructions, such as VSL.4F and VSL.4W [50]. With four ALUs, eight 

butterflies can be executed in 10 clock cycles. Since the throughput of GSM is in the range 
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of several hundreds of Kbps, the extended instruction set VLIW DSP can perform very well 

in 2G infrastructures in terms of flexibility and performance. 

However, its instruction fetching and dispatching manner becomes a maj or obstacle to a high 

throughput Viterbi decoder. When 3G emerged, purely software implementation on DSP can 

hardly fulfill up to 2Mbps system throughput requirement. Both TI [51] and Freescale 

launched their latest DSP families with a Viterbi co-processor to provide a high speed Viterbi 

decoding process. From their public reports [49] [51], 4Mbps and 4.88Mbps decoding 

throughput could be achieved by TI and Freescale DSPs, respectively. 

2.7 Reconfigurable Viterbi decoder implementation 

Due to the progress of silicon technology which allows more and more components to be 

implemented on a single chip, the era of reconfigurable hardware flourishes. Reconfigurable 

hardware combines the post-fabrication programmability of processors with a sequential 

computation style and the parallel computation style of application specific integrate circuits 

(ASIC). 

In the case of the Viterbi decoder which is employed by lots of wireless communication 

system to overcome the variable deterioration in the reliability of wireless transmission 

channels, every system provides a unique service and requires different coding performance 

(constraint length and code rate) at different data throughput. Therefore, for beyond 3G 

system, it is extremely important to develop a reconfigurable Viterbi decoder which can be 

configured at run-time to operate over a range of standards (different constraint lengths and 

code rates) and also provide the targeted data throughput. 

25 



Architecture 

DOii.: 
Specific 	

Gener c 

-. 

Homogenouc 	 Heterogenous 

Figure 2.11 Categories of reconuigurable architectures 

The categories of reconfigurable architectures are shown in Figure 2.11. In terms of the 

application domain of the fabric, the reconfigurable architectures can be split into domain 

specific reconfigurable architecture and generic reconfigurable architecture. According to the 

granularity of the function blocks inside the architecture, generic reconfigurable architecture 

can be further divided into fine-grained reconfigurable architecture and coarse-grained 

reconfigurable architecture. The previous works about the implementations of Viterbi 

decoder on the reconfigurable architecture were summarized as follows. 

2.7.1 Domain Specific Reconfigurable Viterbi Decoder 

Implementation 

By making hardware architectures less generic and specific to the Viterbi decoding domain, 

domain specific reconfigurable Viterbi decode leads to a combination of power efficiency, 

high throughput, area efficiency and flexibility. 

[41] demonstrates reconfigurable architecture which can be configured to any Viterbi 

decoder type among K=3-7 and R=1/3-1/2. This design only considers the hard decision 

Viterbi decoder and hamming distance is calculated in the BMU. It also employed a full 
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parallel ACSU to speed up the decoding throughput. However, it only exploited one RAM 

bank to save the survivor bits resulting in a bottleneck for SMU and the maximum decoding 

throughput can only achieve 20Mbps. 

A reconfigurable Viterbi decoder based on a partial parallel ACSU architecture is illustrated 

in [42]. It can be configured to a Viterbi decoder with K=7-10 and R=112. This fabric 

exploits four parallel butterfly units with 5-level pipelining which are scheduled to process 

all the treffis states over time. In the end, the fabric was implemented on Xilinx Virtex FPGA 

device. 12.625Mbps and 1.578Mbps decoding throughput are achieved in the case of 

constraint length 7 and constraint length 10, respectively. 

[43] presents a reconfigurable \1iterbi decoder supporting constraint length K= 4-14 and code 

rate 1/2 with an adaptive decoding algorithm. Instead of computing and retaining all 2"' 

possible paths, only those paths which satisfy certain cost conditions are retained at each 

trellis node. The adaptive decoding algorithm leads to various butterfly operations in ACSU. 

However the adaptive Viterbi algorithm requires additional decision circuits for each state to 

decide whether to retain the state or not, which relied on extra computational cost. As 

reported in [43], the decoding throughput only can achieve hundreds of Kbps. 

Domain specific reconfigurable Viterbi decoders can achieve attractive performance for each 

configuration of Viterbi decoder with different constraint lengths and code rates. However, 

its application cannot stretch out the \1iterbi decoding domain. 

2.7.2 Viterbi decoder on generic reconfigurable architectures 

There is another trend of reconfigurable architecture. Compared with domain specific 

architectures, this type of architecture is more generic than domain specific architecture and 

it aims to target the wider application domain. However, its performance is degraded as the 

cost of its flexibility. 

According to the granularity of the function blocks, generic reconfigurable architecture can 

be classified into fine-grained reconfigurable architecture which corresponds with bit-level 

manipulation of data and coarse-grained reconfigurable architecture which implies word 

level operations. 
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2.7.2.1 Fine-grained Reconfigurable Architecture 

The field programmable gate array (FPGA) device, which is depicted in Figure 2.12, drops 

into the fine-grained reconfigurable category. The operational elements of an FPGA are 

CLBs which are dominated by LUTs. A LUT is a 1-bit wide memory array in which the 

inputs to the LUT are the address lines and the LUT output corresponds with the 1-bit output 

of the memory. Any type of Boolean functions can be formed by a LUT. Commercial 

FPGAs, such as [44] and [45], employ 4-bits LUT as the basic element which consists of 

16x1 SRAM cells to store the truth-table. 

Practically, several LUTs are combined together to form a CLB in order to reduce the 

number of routing resources required to connect them. Figure 2.12 shows a typical CLB of 

Xilinx Virtex-E family [46], where each CLB contains four LUTs, organized in two similar 

slices. 
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Figure 2.12 Fine-grained FPGA architecture 

Routing resources of the fine-grained architecture account for the majority of the area, delay, 

and power dissipation. These routing resources, depicted in Figure 2.13, are used to connect 

CLBs to other CLBs and to 110 blocks. The architecture of the routing resources can be 

separated into three components: connection tracks, switch blocks, and connection blocks. 
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Figure 2.13 Routing resource of FPGA 

Since FPGAs are flexible at bit level, a very.wide range of applications can be mapped on 

FPGA. In terms of the Viterbi decoder, [47] [48] exhibited a Viterbi decoder on an FPGA 

device. However, this high flexibility also produces very high power consumption and area 

penalty which prohibits the application of FPGAs in the portable wireless communication 

domain. - 

2.7.2.2 Coarse-grained Reconfigurable Architecture 

The definition of coarse-grained reconfigurable architecture is very wide. The architectures 

responding to this category are designed by increasing the granularity of their function 

blocks, thereby improving the computation efficiency and reducing the amount of 

interconnection resources. Unlike the LUTs in FPGA which are exactly the same with each 

other, these coarse-grained function blocks can be identical leading to a homogenous 

coarse-grained architecture, and also can be disparate resulting in a heterogeneous 

coarse-grained architecture. 

2.7.2.2.1 MONTIUM 

MONTHIM [52], a coarse-grained reconfigurable architecture, is proposed to execute highly. 

regular, computational intensive DSP kernels in the Chameleon platform [53] which is a 

dynamically reconfigurable System-on-Chip (S0C) platform targeting 3G/4G wireless 

communication applications. 
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A MONTIUM tile consisting of five homogeneous 16-bit ALUs resembles a .VL1W-like 

architecture, which is depicted in Figure 2.14. A single ALU has four 16-bit inputs. Each 

input has a private input register file that can store up to four operands. Input registers can be 

written via a flexible interconnection network. Each ALU has two 16-bit outputs, which are 

connected to the interconnection network. The ALU is entirely combinatorial and 

consequentially there are no pipeline registers within the ALU. In order to fulfill the high 

memory bandwidth requirement, 10 local memories (MOl to M10) are placed in parallel in 

each tile. The data between ALUs and memories are switched through a crossbar network. 

Figure 2.14 Architecture of MONTIUM 

Viterbi decoder on MONTIUM 

[54] presents implementing a \1iterbi decoder on MONTIUM' architecture. By adding a 

compare-select operation to the ALUs of the MONTIUM, 32 butterflies can be processed in 

42 clock cycles. Since the path metric values have to be read and written instantaneously, 

[54] chose to read the input information from two memories and to write the results back to 

two different memories. The functions of the memory pairs are interchanged in the 
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consecutive stages of the trellis. In the end, [54] demonstrates a constraint length 7 and code 

rate 1/2 Viterbi decoder with 2.1 Mbps throughput on a MONTIUM architecture with 

0.13pm technology. 

2.7.2.2.2 MorphoSys 

MorphoSys [55] is a reconfigurable DSP architecture targeted on computational intensive 

applications, such as wireless communication and image processing. The MorphoSys 

architecture, which is shown in Figure 2.15, comprises three main unique components: a 

32-bits RISC processor called TinyRISC processor, a homogeneous array of 64 16-bits 

Reconfigurable Cells (RCs) connected by a mesh network, and a special data movement unit 

called Frame Buffer which can accelerate the data movement between external memory and 

RC array. 

Figure 2.15 Architecture of MorphoSys 

TinyRISC is always in charge of controlling the whole architecture as well as executing the 

sequential part of codes for applications. The 8x8 RC array is used to cover word-level, 

computation-intensive, intrinsically parallel applications. Each RC consists of functional 

units for arithmetic and logic operations, local memory to store the results and implement 

look up tables, input and output modules to form the RC array structure and a fine grain 

reconfigurable logic block which is a field programmable gate array (FPGA) and used for 
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implementing some customized functions. 

The RC array follows the single instruction multiple data (SIMD) model of computation. All 

RCs in the same row/column share the same configuration data (context). However, each RC 

operates on different data. 

Viterbi decoder on MorphoSys 

In [56], a Viterbi enhanced MorphoSys is described to resolve the bottleneck in the Viterbi 

decoder. The ALU in each RC is modified by adding an add-compare-select and complex 

arithmetic units. Every clock cycle, 64 ACS computations can be executed on the 8x8 RC 

arrays. The trace back operation is performed in TinyRISC. Viterbi-enhanced MorphoSys is 

synthesized using 0.13 pm technology. The array area, not including main and sequential 

RISC processors, is 25mm2. With 330MHz clock frequency, a constraint length 7 and code 

rate 1/2 Viterbi decoder can achieve 54Mbps. 

2.7.2.2.3 Silicon Hive Processor 

The configurable parallel-processing architecture designed by Silicon Hive [57] is ultra long 

instruction-word (ULIW) architecture, whose instruction words stretch up to 768 bits long. 

The foundation of Silicon Hive's ULIW architecture is a logic block called a processing and 

storage element (PSE). A PSE is a \TLIW-like data path consisting of several interconnection 

networks (IN), one or more function units (FU), distributed register files (RF) and, optionally, 

local memory storage (MEM). All resources in a PSE are distributed, leading to lower power 

and reduced silicon footprint through locality of reference. The functions of PSE are varied 

and are configured at design time to tailor to a specific application domain. 

Besides the data path blocks, a sequencer is also incorporated into the architecture. The 

sequencer is a simple state machine with a program counter to schedule the instructions in 

program memory to PSEs. Silicon Hive also provides its own C compiler, HiveCC, to 

translate high level language on its ULIW architecture. 
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Figure 2.16 Architecture of Silicon Hive processor 

Viterbi decoder on Silicon Hive processor 

In [58], a multi-standard Viterbi decoding processor based on Silicon Hive's infrastructure is 

presented. According to [58], this processor consists of four identical PSEs optimized for 

add-compare-select (ACS) operations, each of them performing 32 butterflies in parallel, 

one PSE to accelerate traceback processing and one generic PSE which handles typical ALU 

operations and the synchronization protocols. The processor was fabricated in CMOS 0.13 

pm technology resulting in 2.8 mm2. When incorporated in a DVB-T system, the Viterbi 

processor was simulated to dissipate 47.7mW at 160MHz and achieve up to 54 Mbps 

throughput. 

2.7.2.2.4 Transport Triggered Architecture (TTA) 

TTA architecture [59] was developed to reduce the data path complexity and the 

underutilization of the register file in the VLIW DSP architecture. 

Figure 2.17 depicts the principle of TTA architecture. A T1'A processor with 32-bit data path 

consists of a set of heterogeneous blocks, such as function units (FUs), register units' (RUs) 

and user-defined units (SFUs), which are connected by a crossbar network. 

In TT'A, FUs are responsible for performing operations on data. FUs receive data from the 

input sockets and when the operation is completed, the result data can be accessed from the 

output socket. Each FU contains several trigger and operant registers. The data to be 
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processed can be written to the operant registers in earlier cycles, but the operation is 

triggered only when instruction is written to the trigger register. 

The instruction fetch unit (IFU) is responsible for fetching instructions from the memory and 

the load-store unit (LSU) provides an interface to the memory. 

Input x 

Output . 

Figure 2.17 Architecture of TTA 

Viterbi decoder on TTA 

In [60], a constraint length K=9 and code rate 1/2, Viterbi decoder has been manually 

mapped on tailored 1TA architecture. Besides general FUs, four specific SFUs are integrated 

into the TTA architectuie to speed up the Viterbi decoding process. 

The branch metric generation SFU gets two branch metrics, which are the negations or 

copies of the input branch metrics corresponding to the value of ioop counter. Both the input 

operands and outputs are packed into a single 32-bit word. 

The ACSU SFU can handle two ACS computations at a time and generate two updated path 

metrics which are packed into a 32-bit word. In addition, the ACSU SFU also will take two 

32-bit operands, shift them, and insert two new survivor bits. The path metrics re-organizer 

SFU takes charge of reordering and repacking two path metrics in a 32-bit word. The 

address generation unit SFU generates addresses for loading and storing path metrics. In 

practice, the read and write base addresses are passed as initial operands which are saved in 

the internal state of the SFU. 
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This tailored T1'A processor is synthesized with 0.11 tm technology and achieves 0.57 Mbps 

throughput for a constraint length 9 and code rate 1/2 Viterbi decoder. 

2.8 Turbo coding 

2.8.1 Turbo encoder 

Turbo codes [16], which belong to a set of convolutional codes, provide very high reliability 

data transmission at very low signal to noise ratio. A classical Turbo encoder, as introduced 

in [16], comprises two recursive systematic convolutional (RSC) component encoders and an 

interleaver (INT) as depicted in Figure 2.18. 

A Ys 
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Figure 2.18 Classical Turbo encoder 

The RSC encoder is a systematic convolutional encoder with feedback. Such an encoder 

with a two taps shift register is depicted in Figure 2.19. For systematic codes, the 

information sequence is a part of the codeword, which corresponds to the direct connection 

from the input to one of the outputs. For each input bit, the encoder generates two codeword 

bits: the systematic bit and the parity bit. 

x 

Ys 

Yp  

Figure 2.19 Constraint length 3, code rate 1/2 RSC encoder 

Although both encoders work on the same frame of information bits, RSCII access the 

information bits in an interleaved order. The coded sequence to be transmitted is consisted of 
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two parity sequences generated by two RSCs, and a systematic sequence which equals X. 

As compared with convolutional encoder shown in Figure 2.2, Turbo encoder is a recursive 

encoder. Since the performance of any binary codes is dominated by their free distance, the 

recursive component encoders can maximize their effective free distance [14]. In addition, 

the systematic encoder is somewhat simpler than non-systematic encoder because less 

hardware is required. On the other hand, non-systematic codes may be subject to 

catastrophic error propagation [14], which is called catastrophic codes that a finite number 

of channel errors cause an infinite number of decoding errors [14]. However, systematic 

codes are always non-catastrophic. 

2.8.2 Turbo decoder 

[16] not only proposed a new class of channel codes, but it also presented an efficient way of 

decoding them. Figure 2.20 shows the block diagram of a classical Turbo decoder presented 

in [16], where INT and DINT represent interleaver and de-interleaver, respectively. As can be 

seen, the decoder's main elements are component decoders, interleavers, de-interleavers, and 

a de-multiplexing unit. In the decoder, a block of received symbols is dc-multiplexed into 

the systematic symbols and the parity symbols. The Turbo decoder is a typical 

soft-in-soft-out decoder [18]. Unlike Viterbi decoder, each component decoders use these 

soft symbols to calculate soft outputs, for example, DECI consumes the symbols Ys  and 

Y 1 " produces the soft outputs A1.  On the other hand, DEC11 consumes the symbols YS  and 

1'" and produces the soft output 	In addition, each decoder takes into account a priori 

information, which is an interleaved version of the other decoder's soft outputs. Hence, 

Turbo decoding process consists of an exchange of information between two decoders which 

are connected with a feedback loop to support that exchange in an iterative fashion. After a 

sufficient number of iterations, we finally obtain the estimated decoding outputs from 

DECH. 
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Figure 2.20 Classical Turbo decoder 

An in-depth introduction to classical Turbo coding system would be beyond the scope of this 

thesis. For this part of information, the reader can refer to the literatures [17] [18] [19] [20]. 

Nevertheless, a modern set of Turbo codes, M-binary circular Turbo codes will be addressed 

in Chapter 6 and Chapter 7, where the details of encoder and decoder architectures for 

M-binary circular Turbo codes will be elaborated. 

2.9 Conclusion 

The basic concepts of wireless communication systems have been introduced in this chapter. 

Regarding the channel coding system, the Viterbi decoding algorithm is highly dependent on 

the constraint length, code rate and generator polynomials. According to the concept of 4 

flexible convergence of current wireless standards, a reconfigurable Viterbi decoder with 

varied parameters is a must. Current implementation approaches for different modules, such 

as BMU, ACSU and SMU of a Viterbi decoder are elaborated. Furthermore, the concept of 

reconfigurable architecture is addressed. Different trends of reconuigurable Viterbi decoder 

design methodology and architecture are described and compared. 
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Chapter 3: 

Rëconfigurable Viterbi Decoder 
Architecture I 

Forward error correction (FEC) is a channel coding approach to overcome the variable 

deterioration during the wireless transmission, whereby the transmitter adds redundant data 

to the messages, and the receiver can detect and correct errors without the need to ask the 

transmitter for retransmission. FEC codes, such as Reed-Solomon codes, convolutional 

codes, Turbo codes and LDPC codes, have played a crucial role in telecommunication 

scenario. Based on various channel conditions and system requirements, different coding 

schemes are integrated to different communication standards. For example, in terms of 

convolutional codes, GSM [7] specifies constraint length 5 and code rate 1/2 convolutional 

codes, otherwise WLAN [10] and WiMAX [11] require constraint length 7 with code rate 

1/2 and 1/3, and 3G [8] demands constraint length 9 and code rate 1/2 or 1/3 convolutional 

codes. 

In the case of convolutional codes, the encoder architecture is very simple, normally 

consisting of several XOR gates and shifters. Both software and hardware approaches can 

38 



fulfill the system requirement. However, the decoder architecture is much more complex 

than encoder. In order to provide the decent performance, such as low power consumption 

and high throughput, decoder is always implemented by a hardware approach. Moreover, the 

post-fabrication reconfigurability is crucial for hardware devices in beyond 3G wireless 

communication system. Therefore, there is a need to investigate a flexible decoder 

architecture which can support the decoding process of various convolutional codes with 

different constraint lengths and code rates. 

This chapter presents a reconfigurable fabric for Viterbi decoder which can support the 

decoding process for convolutional codes with constraint lengths from 3 to 9 and code rates 

1/2 and 1/3. Totally, there are four salient features of the proposed fabric. 

As a reconfigurable Viterbi decoder targeting multiple standards, it not only needs to support 

different types of convolutional codes, but also has to satisfy the decoding throughput 

requirement. The decoding throughput varies from standard to standard. For instance, GSM 

supports up to 270kbps, 3G supports up to 2Mbps, DVB supports up to 20Mpbs, and 

WiMAX can provide up to 75Mbps. The proposed architecture offers a maximum 150Mpbs 

decoding throughput, which can fulfill the requirement of all current standards. 

Secondly, reconfigürable RAM blocks are integrated into the architecture. Every RAM block 

is built by synthesizable latches and the size of the RAM can be changed depending on the 

required application. Compared with custom RAM, the synthesizable reconfigurable RAM 

is more flexible and can be easily tailored to a particular application. 

Thirdly, several power-saving schemes are incorporated into the architecture. For a particular 

application, the unused blocks will be automatically turned off. Thus, dynamic power 

consumption of these blocks can be reduced to zero, which results in a significant power 

saving on the proposed architecture. 

Finally, the proposed architecture can be dynamically configured. Its function is controlled 

by 405 configuration bits. By means of loading different configuration bits, a Viterbi 

decoder with different parameters can be mapped on the proposed fabric. 
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3.1 Reconfigurable Viterbi decoder architecture 

The block diagram of the proposed reconfigurable fabric is shown in Figure 3.1. The 

following sections will break down the whole architecture into several blocks and analyze 

the design approaches of each block. It can be seen from Figure 3.1 that this fabric consists 

of three major blocks: branch metric unit (BMU), add-compare-select unit (ACSU), and 

survivor management unit (SMU). 

The following chapter is organized as follows: Section 3.1.1 describes the architecture of the 

BMU in the proposed reconfigurable Viterbi decoder. ACSU and SMU are addressed in 

Section 3.1.2 and Section 3.1.3 respectively. Section 3.1.4 describes the LIFOs which are 

employed to reorder the output message. The configuration memory is presented in Section 

3.1.5. 

Routing network 

Decc 
inpi 

Message 
output 

Figure 3.1 Block diagram of reconfigurable Viterbi decoder architecture I 

3.1.1 Reconfigurable BMU 

BMU calculates the branch metrics which represent the distances between received signals 

and ideal transmitted signals [6]. According to [6], for a constraint length K, code rate hR 

Viterbi decoder, there are 21c1  states at every trellis stage and two branch metrics going into 

each state. Thus, totally 2K  branch metrics need to be considered. However, among 2K  

branch metrics, only 2R  unique branch metrics have to be computed at every trellis stage. If x, 

y, z denote quantized received symbols, the branch metric computations for code rate 1/2 

and 1/3 Viterbi decoder are shown in Table 3.1. 
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Table 3.1 Branch Metric Computation 

Code_Rate 1/2 113   

Branch Metric 
Computation 

BM=x+y 
BMOOO  
BM 1  = x + y - z 

BM01  = 	- 
BM010  = x - y + z 
BM011  = x - 	- z 

BM10=-x+y 
BM100=-x+y+z 
BM101  = -x + y - z 

BM11=-x-y 
BM110=-x-y+z 
BM111  = -x - y - z 

It can be seen from Table 3.1 that a half group of branch metrics are antipodal with the 

others. For instance, the value of BMOO  is opposite to that of BM 11, and BM111  is opposite to 

BM. Thus, half of the addition/subtraction operations in BMU can be replaced by 

inverters. On the other hand, the proposed BMU must support both code rate 1/2 and 1/3 

branch metric computations. A straightforward way is to provide two individual circuits, one 

for each code rate. Obviously, it will increase the power and area overhead. However, from 

Table 3.1, it can be seen that branch metric computation for code rate 1/2 is a part of code 

rate 1/3 branch metric computation. For example, BM 0w  = x + y + z = BM00  + z and BM100  = 
-x + y + z = BM10  + z. Hence, we can reuse the code rate 1/2 branch metric computation 

circuits during code rate 1/3 branch metric computation to decrease the power and area 

overhead. 

The proposed BMU which can support both code rate 1/2 and 1/3 is shown in Figure 3.2. 

The proposed architecture consists of two major blocks. Block A takes charge of branch 

metric computation for code rate 1/2. Block B will be active, if code rate 1/3 Viterbi decoder 

is required. MUX I, II and III are used to configure the data path and are controlled by the 

same configuration bit. For a code rate 1/2 Viterbi decoder, MUX I and II are switched to 0 

value input, thus there are no data triggers in block B and the dynamic power consumption 

in block B is zero. MUX III will output branch metrics for code rate 1/2. In the case of code 

rate 1/3, both blocks A and B are active. MUX I and II will transfer the results of block A as 

the inputs to block B. Finally, MUX III selects to output branch metrics for code rate 1/3. 
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Figure 3.2 BMU for both code rate 1/2 and 1/3 

3.1.2 Reconfigurable ACSU 

Since our target is a high throughtput Viterbi decoder, a full parallel ACSU architecture with 

modulo arithmetic normalization is employed in this design. As described in Chapter 2, each 

butterfly unit will consume two path metrics and two branch metrics, whilst output two 

updated path metrics and two survivor bits. However, the input and output data path for each 

butterfly unit is highly dependent upon the constraint length, code rate and generator 

polynomials. Therefore, an efficient and flexible butterfly unit has been proposed for the 

reconfigurable fabric, which is shown in Figure 3.3. The following sections will present the 

details for each part of the reconfigurable butterfly unit. 
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Figure 3.3 Reconfigurable Butterfly Unit 

3.1.2.1 Routes for branch metrics 

The branch metrics for an individual butterfly unit are irregular and decided by generator 

polynomials. Due to the symmetric characteristic of generator polynomials [14], two branch 

metrics accessed by a butterfly unit are antipodal with each other. For instance, if BM io  is 

one of the branch metric inputs, BM 11  must be the other. Similarly, if BM,00  is accessed by a 

dedicated butterfly unit, BM 011  is also accessed by the same butterfly unit. 

Hence, branch metric interface for each butterfly unit can be implemented by a look-up table 

(LUT). The number of elements in a LUT is decided by the rate of codes. Since the proposed 

core intends to support both 1/2 and 1/3 code rates, content of the LUT is defined in Table 

3.2. According to configuration bits (index), suitable branch metric pairs are selected for an 

individual butterfly unit. 

Table 3.2 Look-up table for branch metric routing 

Index LUT outputs 
000 BMOOO  & BM 111  or BMOO  & BM 11  

001 BM 1  & BM110  or BM01  & BM 10  

010 BM010  & BM 101  or BM 10  & BM01  

011 BM 1 00 	 BMoo  

100 BM,00  & BM011  

101 BM 101  & BM010  

110 BM 110  & BM 1  

111 BM111  & BMOOO  
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3.1.2.2 Routes for path metrics 

In general, a butterfly unit will read two path metrics from local registers and write two 

updated path metrics back. However, the addresses of path metric read and writing are 

dependent on the constraint length. In the case of constraint length K=3, two path metric 

inputs of butterfly unit 1 are produced by butterfly unit 0 and butterfly unit 1, respectively. In 

the case of constraint length K=4, two path metric inputs of butterfly unit 1 are produced by 

butterfly unit 2 and 3, respectively. 

Let us suppose, at time t, path metric inputs of butterfly unit m are B - in0  and B - in1 , and 

path metric outputs are B,,, - out0  and B,,, - ou4. After observing the trellis structures for all 

different constraint lengths, we can summarize the rule for the path metric routing network, 

which is described by Equation 3.1 and Equation 3.2. 

{ p 
L2 m  out0 	if m < 2k-3 t-I  

B. - 0 = Bt_l 
k2 - out1  therwise 	

(3.1) 

2m-2 

IBtI 
I 2m+1 oUt0 	if m < 2k-3 

B_in1 lBt_1 	
(3.2) 

I 2m-2'+1 
out1  otherwise 

As can be seen from Equation 3.1 and Equation 3.2, every path metric input for an 

individual butterfly unit has two potential connections which are decided by constraint 

length. Thus, two MUX blocks are inserted into each butterfly unit to select associated path 

metrics for Viterbi decoders with different constraint lengths. 

3.1.2.3 Routes for survivor bits 

In addition to two path metrics, a butterfly unit also produces two survivor bits at a time, 

which will be stored in survivor memory and used by the SMU to generate the decoding 

sequence. Since the maximum constraint length we considered is 9, the largest word length 

of survivor memory is 256bits. However, the order of these 256bits is also decided by 

constraint length. If assuming surbitm  is the mth bit among 256bits, and B,,, - bit0  and 
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B - bi4 are the survivor bits generated by butterfly unit m at time t, the survivor bits 

routing network can be defined by Equation 3.3. 

IB, _bit0 	if m < 2k-2 

surbiç 
= 1BI 22 - biç otherwise 

 

Similarly with the rule for path metrics, there are two potential positions for each one 

individual bit, and a MUX with two inputs can be used to switch the survivor bits for 

different constraint lengths. 

3.1.2.4 Low power strategy 

Since a full parallel architecture is considered in our design, the ACSU consists of 128 

butterfly units. However, for a particular application, not all of them are active. In the case of 

constraint length K=7, only 32 butterfly units are used during the decoding process. On the 

other hand,, the ACSU is the main logic module of the Viterbi decoder and power 

consumption of the ACSU takes the biggest portion in the whole design. Thus, if inactive 

butterfly units can be powered off, it can achieve a significant power reduction for the whole 

design. 

Clock gating [61] is a helpful approach to limit the power consumption of the unused 

butterfly units. It can be seen from Figure 3.3 that all data inputs to a butterfly unit are 

triggered by flip-flop. In Figure 3.4, an AND gate is used to turn off the clock input of 

flip-flop, thus neither inputs, nor outputs, of butterfly units are toggled, and the dynamic 

power consumption of the unused butterfly units are down to zero. Since the hardware 

overhead is very small, the clock gating is very efficient at limiting the power consumption 

of the unused blocks. Compared with the design without clock gating, nearly 50% of power 

consumption can be saved in the case of constraint length K=7. The more detailed 

comparison results are given in Section 3.2. 
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Figure 3.4 Clock gating 

3.1.3 Reconfigurable SMU 

As described in Chapter 2, the SMU is composed of logic section and memory section. Due 

to the high throughput and low power consumption requirements of a portal device, sliding 

window and trackback based SMU is employed in the reconfigurable fabric. 

3.1.3.1 Reconfigurabte RAM 

As described in previous sections, the ACSU generates a survivor vector which consists of 

21(1 bits at a time which are stored in memory banks of SMU to rebuild the transmitted 

message. On the other hand, the size of each memory bank has to be up to five times of the 

constraint length K in order to ensure the trellis can reach Smerge. Thus, the memory size 

varies depending on the constraint length. Based on upwards aspects, a synthesizable RAM 

which can be configured to different memory sizes is developed to provide the required 

flexibility. 

RAM is usually delivered from the vendors (such as UMC and TSMC) as hard-macro. The 

designer receives an HDL simulation model and a layout abstract view which defines the 

ports and dimension of the hard-macro from the vendor. However, RAMs provided by 

vendors are blocked to designer and they cannot be optimized for a particular design. 

Therefore, we developed our own synthesizable RAMs to accommodate to the 

reconuigurable architecture. 

The proposed synthesizable RAM is described in register transfer level (RTL) by hardware 

description language (HDL). HDL program can be transferred to hardware gates and 
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mapped to a specific technology (such as 0.18um) by synthesis tools. The proposed RAM is 

depicted in Figure 3.5, where the basic element is a latch. The number of words is 64, which 

provides a trace back length up to 64. 

Data Out 

cik 

Figure 3.5 Diagram of reconfigurable RAM 

In addition, the proposed RAM is composed of seven sub-banks. The effective bits per word 

vary from 4 to 256bits, which is configured by six configuration bits. The modes of the 

RAJYvI are tabulated in Table 3.3. 

Table 3.3 Modes of the reconfigurable RAM block 

Configuration Bits Size of Memory 
000000 4x64 bits 

000001 8x64 bits 

000010 16x64 bits 

000100 32x64 bits 

001000 64x64 bits 

010000 128x64 bits 

100000 256x64 bits 

The controller inside RAM. can block the data toggles and clock of the unused sub-banks. 

Therefore, in a particular application, only the required sub-banks will be active. Although it 

incurs a slight area increase, the power consumption can be dramatically reduced as 

compared with the design employing a non-reconfigurable RAM for all the applications. 
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3.1.3.2 Reconfigurable trace back logic block 

The trace back operation starts from an arbitrary state (merge block) or from a certain state 

(decision block). The current state S is a bit line index to the survivor bit d. Based on 

Equation 2.8, preYious state can be decided by current state and associated survivor bit, 

where a shifter operation is employed. This recursive operation is continued till all outputs 

are produced. 

However, the size of the shifter is decided by constraint length. Hence, we proposed a 

reconfigurable shift register to handle the computation which is described in Equation 2.8. 

The proposed shift register, shown in Figure 3.6, consists of eight flip-flops and seven 

multiplexers and the length of shift registers can be varied from two to eight. Multiplexers 

are used to control the data path of flip-flops whose inputs can be either output from the 

previous flip-flop or zero. Seven configuration bits (C o  to C6) are exploited to decide the 

length of the shift registers according to the constraint length of the targeted Viterbi decoder. 

CLK 

Figure 3.6 Reconfigurable traceback logic block 

3.1.4 Decoder output LIFO 

The Viterbi decoder based on TBA naturally produces a decode sequence in a reversed order. 

A bit reordering circuit is required to arrange the decoding output to a correct order. In the 

proposed architecture, two latch based last-in first-out (LIFO) buffers are exploited to 

correct the order of output sequence, which is shown in Figure 3.7. The maximum length of 

each LIFO is the same with memory block in SMU, but the stack size is set by six 

configuration bits, which indicate the traceback length. 
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Figure 3.7 Diagram of UFO 

3.1.5 Configuration memory 

This memory stores the configurable bits which are used to program the proposed 

architecture to a particular application. The total configuration bits of the proposed 

reconfigurable Viterbi decoder are 405 bits, shown in Figure 3.8. 

Configuration Memory 

404 	 1413 	 765 	 0 

Figure 3.8 Structure of configuration memory 

It can be seen that, the first 6bits (5:0) in configuration memory are used to set the traceback 

length. The following 8bits (13:6) are employed to select different constraint length and code 

rate. The rest of the bits are employed to configure the routing network for ACSU. Initially, 

these configuration bits were stored in the system memory. During the run-time, the 

operation system will take charge of downloading different configuration bits into the 

configuration memory, thus various Viterbi decoders can be mapped on the proposed 

architecture. For example, if the system runs at 100 MHz, since every clock cycle only one 

configuration bit loads into the configuration memory, the proposed fabric requires 4.05ps to 

reconfigure its function, which allows the core to be configured during the run-time. 

3.2 Performance comparisons 

3.2.1 Design flow 

The basic design flow of the proposed architecture is illustrated in Figure 3.9, which helps in 
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understanding the results presented in this section. The design is firstly defined at the 

register transfer level (RTL) by using Verilog hardware description language. The 

functionally correct design is then synthesized by Synopsys DesignCompiler to convert the 

RTL description into a gate level netlist. The synthesis tool generates a delay file in standard 

delay format (SDF) for more accurate timing simulation and also provides the area of the 

design. The functionality of the design is again verified at the gate level using Cadence 

SimVision. In case of any problems, either the RTL code or/and the synthesis timing 

constraints have to be modified. The power consumption for some designs is calculated at 

the gate level. The power consumption is estimated by Synopsys DesignPower. It uses a gate 

level netlist along with the net switching activity obtained after gate level simulation to 

compute the power consumption. The switching activity is generated by defining the whole 

design as the toggle region in the testbench. The toggling of each net is recorded in the 

switching activity file called SAJF (Switchingactivity interchange format). 

Start 

4, 
RTL level design 

RTL level simulation using Sim Vision 

NO 

AYES 

Synthesize using Design Compiler 

4, 
Gate level simulation with SDF using Sim Vision 

NO 

ES 

4, 	 4, 
enerate switching activity file 

SAIF 	
Read area information ( 4,) 	

k 
 

End Annotate switching activity 
	 c~ D 4, 

ipute power consumption using 
DesignPower 

C4:) 
Figure 3.9 Flow chart of the design flow 
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The proposed reconfigurable Viterbi decoder fabric has been implemented on a UMC 

0.18pm CMOS technology library following the presented design flow. For comparative 

results, eight fixed Viterbi decoders (constraint length 3, 5, 7 and 9 with code rate 1/2 and 

1/3) are also implemented with the same CMOS technology. All designs were synthesized by 

Synopsys DesignCompiler at a clock frequency of 125 MHz, which means the core can 

generate a decoding throughput up to 125 Mbps. 

Table 3.4 Power consumption (mW) of different test cases 

ASIC 
Architecture with 

power saving strategy 
Architecture without 
power saving strategy 

K3R1/2 0.39 2.75 17.35 

K3R1/3 0.45 2.91 20.70 

K5R1/2 1.13 4.09 17.38 

K5R1/3 1.46 4.40 20.13 

K7R1/2 4.72 9.14 17.76 

K7R1/3 4.99 10.38 21.04 

K9R1/2 20.56 28.75 23.50 

K9R1/3 26.12 33.31 28.08 

Table 3.5 Area (pm2) of different test cases 

ASIC 
Architecture with 

power saving strategy 
Architecture without 
power saving strategy 

K3R1/2 48,817 232,396 229;068 

K3R1/3 49,903 237,442 234,132 

K5R1/2 226,651 534,664 521,404 

K5R1/3 235,794 539,711 526,416 

K7R1/2 838,758 1,743,738 1,690,752 

K7R1/3 842,584 1,748,785 1,695,763 

K9R1/2 5,907,020 6,580,033 6,368,140 

K9R1/3 5,984,808 6,588,592 6,375,673 
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3.2.2 Power consumption 

The power evaluation was carried out by Synopsys DesignPower at a clock frequency of 

10MHz. In order to investigate the power distribution of the core, we implement eight test 

cases (constraint length 3, 5, 7, 9 with code rate 1/2 and 1/3) on the proposed fabric. The 

distributions of power consumption for different test cases are illustrated in Figure 3.10. It 

can be seen that ACSU occupies the biggest portion, around 52.54% averagely. The reason 

for this is that 2'' ACS operations are executed in parallel to ensure that the required 

decoding throughput can be achieved. In addition, four memory banks in SMU consume 

around 25.52% of total power of the whole core leading to the second biggest power thirsty 

part. As mentioned in previous sections, the power saving strategies, such as clock gating 

and memory distribution, have been employed into these two modules, where the dynamic 

power consumption of the unused blocks is reduced to zero for each particular application. 
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Figure 3.10 Distribution of power consumption 

The power consumption comparisons among ASIC, reconfigurable architecture with power 

saving strategy and without power saving strategy are presented in Figure 3.11. The power 

values have been normalized so that the ASIC design has unity power consumption. It can 
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be seen that the proposed fabric consumed around 3.4 times power as compared with ASIC. 

However, since the unused blocks are turned off which are conducted by clock gating and 

distributed memory approaches, the proposed architecture with power saving can reduce 

79.3% power consumption as compared with the architecture without power saving. Since 

the power consumption is proportional to the clock frequency, we also can scale the power 

numbers presented in Table 3.4 by 125/10 to obtain the power performance of the core when 

running at 125 MHz. 
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Figure 3.11 Normalized power comparison (ASIC = I) 

3.23 Area comparison 

The area distributions occupied by different modules of different test cases on the proposed 

reconfigurable fabric are illustrated in Figure 3.12. Similarly, we also provide the average 

occupation of each module. As can be seen, memory banks take a big portion of the whole 

die area, around 62.43% averagely. It can be note that in small cases, such as K3R1/2 and 

K3RI/3, Traceback and Decision module takes the biggest portion of area. With the 

increasing of constraint length, the area percentage of this module is dramatically reduced, 

because bigger memory size and more butterfly units are employed. 
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Figure 3.12 Distribution of area 

The normalized area comparison is shown in Figure 3.13. It can be seen that the overhead of 

reconfigurable fabric with a power saving strategy is only 2.2% as compared with the one 

without power saving strategy. Due to its attractive reduction in terms of power consumption, 

it is worth paying this area overhead. Compared with ASIC, this fabric will pay 2.7 times 

area penalty as the price for its flexibility. 
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Figure 3.13 Normalized area comparison (ASIC = 1) 
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3.2.4 Comparison with other state-of-the-art works 

The comparison with other state-of-the-art domain specific reconfigurable fabrics in terms of 

throughput is tabulated in Table 3.6. To our knowledge, our Viterbi fabric is the only 

published reconfigurable implementation which can support 150Mpbs decoding throughput, 

and also provide flexibility and low power consumption. 

Table 3.6 Comparison with other state-of-the-art works 

Platform 
Maximum 

Throughput 
Maximum Decoding 

Frequency 

 FPGA 20Mpbs 20MHz 

 FPGA 1.578Mpbs-12.625Mpbs 101MHz 

 FPGA 82.3Kpbs-333.7kpbs 17.2MFLz 

Proposed F 	ASIC 0.18pm T 	15OMpbs 150MHz 

demonstrated a K=3-7 and R=1/3-1/2 Viterbi decoder which was implemented on the 

FPGA device. This design adopted a full-parallel ACSU to speed up the decoding throughput. 

However, it only exploited one RAM bank to save the survivor bits leading to a bottleneck 

for the SMU and the decoding throughput can only achieve 20 Mpbs on an FPGA device. In 

addition, it considers the Viterbi decoder based on hardware decision, the decoding 

performance would be worse than the proposed fabric. 

exploited a partial parallel ACSU with 5-level pipelining architecture to support K=7-10 

and R=1/2 Viterbi decoder. This fabric employed four butterfly units to carry on ACSU 

computations for all the applications. This approach can save the die area of the core, but 

partial parallel ACSU architecture suffered from stringent timing budget. Although this core 

targeted WLAN application, it only can achieve 12.625 Mbps decoding throughput which is 

far behind the 54 Mpbs requirement of WLAN. 

introduced a reconfigurable Viterbi architecture with an adaptive Viterbi algorithm 

which supports constraint length from 4 to 14. However, the adaptive Viterbi algorithm 

requires additional hardware for each state and incurs extra computational cost. As reported 

in [43], the decoding throughput can only achieve hundreds of Kbps. 

55 



Some published ASIC designs [62] [63] [64] [651 of Viterbi decoder can achieve higher 

throughput than the proposed fabric by means of bit-level pipeline [62] [63] or higher radix 

ACS architecture [64] [65]. However, they are constrained to the Viterbi decoder with fixed 

constraint length and code rate. Compared with these ASIC implementations, the proposed 

architecture not only can support different constraint length and code rate, but also can 

provide the demanded throughput for different standards. 

The proposed architecture requires more area for its paralleled butterfly units and memory 

blocks. However, considering its salient throughput performance, it worth to pay this price. 

In addition, for each specific application, the unused blocks can be automatically powered 

off, and the power overhead incurred by the parallel architecture has been dramatically 

reduced. 

3.3 Conclusion 

In this chapter, the implementation of a domain specific reconfigurable Viterbi decoder 

fabric is addressed. This fabric can be configured to a constraint length from 3 to 9 and code 

rate 1/2 or 1/3 Viterbi decoder. It employs a fully parallel ACSU and sliding window 

schemes to achieve high throughput. In addition, for each specific application, the unused 

modules such as butterfly units in the ACSU and sub-memory blocks in SMU can be 

automatically turned off in order to save power consumption. 

After the comparison, it can be seen that the proposed fabric can reduce 79.3% power 

consumption with only 2.2% area overhead as compared with the architecture without power 

saving strategy. However, this fabric pays 3.4 and 2.7 times more power consumption and 

area as the price of its flexibility. 

Furthermore, our design has compared with other domain specific reconfigurable designs. It 

can be seen that our design can provide the best throughput performance. Because of all 

these characteristics, our core is very competitive for use in portable wireless 

communication scenario. 

However, the drawback of this design methodology is obvious. Firstly, since the 

reconfigurable interconnection network is manually implemented, the design and 



verification cost of this fabric is huge. In addition, the fabric is not easily extended to cope 

with additional functions. For example, if this fabric has to support constraint length 10, the 

interconnection network needs to be redesigned, which leads to another timing and labor 

cost task. In order to overcome these drawbacks, in the following chapter, we will present a 

novel reconfigurable architecture and its associated CAD design flow, which can 

automatically generate, configure and map Viterbi decoders with different constraint length 

and code rate. 
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Chapter 400 

Reconfigurable Viterbi Decoder 
Architecture II 

In the previous chapter, a domain specific reconfigurable Viterbi decoder architecture was 

described, which is denoted by reconfigurable architecture I in this chapter. Reconfigurable 

architecture I provided a good compromise in terms of flexibility, power consumption and 

throughput. As compared with dedicated hardware, the area and power overheads of 

reconfigurable architecture I are not far away and it can be efficiently and effectively 

integrated into a high performance wireless communication system. However, this type of 

reconfigurable architecture is manually implemented, where the significant 

design/verification cost and difficulties of redesigning are contrary to the basic principles of 

the underlying reconfigurable architecture, which requires quick time-to-market and low 

design costs. If a domain specific reconfigurable architecture can be automatically generated 

for the targeted computation domain, the inefficient design cost can be reduced. This 

potential requirement pushes us to look for a computer-aided design (CAD) flow to 

accelerate the generation and verification of a domain specific reconfigurable architecture. 
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In this chapter, we address a design methodology to automatically generate a reconfigurable 

architecture which performs a given range of computations. By means of the proposed CAD 

tools, the design and verification time of a domain specific reconfigurable architecture can 

be lessened. The rest of the contents are divided in five sections. The architecture of the 

proposed domain specific reconfigurable fabric is addressed in Section 4.1. Section 4.2 

introduces the associated automatic design flow for the proposed domain specific 

reconfigurable architecture. Section 4.3 explains the implementation procedure for the 

Viterbi decoder on the proposed architecture with associated design flow. Section 4.4 

discusses the experimental results and compares them with other platforms. Section 4.5 

draws the conclusions. 

4.1 Domain specific reconfigurable architecture overview 

The proposed architecture is depicted in Figure 4.1. It can be seen that the reconfigurable 

fabric on a SoC platform is composed of heterogeneous processing units (PU) and a 2-D 

programmable interconnection mesh. Each type of PUs is in charge of one specific operation. 

These domain specific reconfigurable fabrics can be provided as synthesizable soft LP 

(Intellectual Property) cores to allow the customization of all aspects of the array at design 

time. This also permits an easy integration of these fabrics into the SoC platform and 

verification at every stage of the design flow. 
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Figure 4.1 Heterogeneous coarse-grain domain specific reconfigurable architecture 
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4.1.1 Processing unit (PU) 

PUs are the main computational elements in the proposed array architecture and they 

provide the basic operations which are required by the targeted application domain. 

Individual PUs can talk to each other via the interconnection mesh to form the required data 

path. As a heterogeneous architecture, the proposed reconfigurable fabric consists of PUs 

with different granularity, flexibility and functionality. In addition, each PU only performs an 

individual computation for a set of applications, which potentially reduces the area and 

power consumption as ôompared with a homogenous architecture. 

Coarse-grained architecture with path widths greater than one bit can dramatically reduce the 

delay, area, power consumption and configuration time as compared with fine-grained 

architecture. However, some DSP algorithms do require 1-bit operation, such as the Viterbi 

decoder, thus a mixed PU which has either 1-bit or multiple bits port is introduced for the 

proposed domain specific reconfigurable architecture. 

A diagram of 2-input-2-output PU is illustrated in Figure 4.2. It can be seen from Figure 4.2 

that each 110 of the PU has been organized in four directions: north, south, east and west, 

where PU can import and export data from four directions. During the configuration period, 

CAD software can select one of four directions for each 110 based on the number of PUs and 

capacity of the interconnections to optimize the power and timing performance. 

Processing Unit 
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Figure 4.2 Architecture of processing unit 

In order to accelerate the design time for different domain specific applications, a pool of 

PUs can be built. The PU library is capable to provide PUs with different operation, timing, 
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area and power consumption, which makes it possible to generate architecture for the 

required functionality and performance in a short time. 

4.1.2 Interconnection mesh 

Interconnection mesh inside the architecture is utilized to connect PUs together and form 

large operational circuits. As depicted in Figure 4.1, a two-dimensional (2-D) island-style 

interconnection mesh is employed by the proposed domain specific reconfigurable 

architecture. 

The conventional fine-grained FPGA [33] [34] exploits 1-bit tracks to form an 

interconnection mesh. Coarse-grained mesh [49] [51] [52] [55] [57] [58], on the other hand, 

bonds several 1-bit tracks together in a group to save the hardware cost. Although the 

coarse-grained mesh is more efficient when groups of signals have the same source and 

destination, they are not sufficient to route individual signals. In the proposed 

interconnection mesh, both multiple bits and one bit tracks are employed, which can reduce 

the number of switches and configuration bits compared to fine-grain 1-bit track FPGAs. In 
I' 

	

	

addition, in contrast to coarse-grained architecture, this kind of mixture of fine-grained and 

coarse-grained mesh can achieve an efficient routing solution for individual signals. 

In conventional FPGA, the configuration switches are implemented as pass-transistors, 

which provide the connection between two tracks [66]. For the sake of generating a 

synthesizable architecture, the configuration switches are implemented by multiplexers and 

tn-state buffers in the proposed architecture. However, they would increase area and power 

consumption when compared with pass-transistors. 

There are two types of interconnection devices in the proposed architecture: connection 

boxes (C-boxes) which are used to transfer data between PUs and data tracks, and switch 

boxes (S-boxes) which are used to connect data tracks together. 

4.1.2.1 C-box architecture 

The architecture of C-box is presented in Figure 4.3. The role of C-box is to connect PUs 
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with data tracks inside the interconnection mesh. During the run time, since no more than 

one data track from the interconnection mesh will be connected to the input pin of PU, a 

multiplexer is utilized for the C-boxes of each input pin to reduce the number of the 

configuration bits because the bits are encoded rather than one bit for each switch. 

Inpul 

Track! 

Track2 

Track3 

Connection Box 

Figure 4.3 Architecture of C-box 

Otherwise, the output signal from a PU may be desirable to have the ability to connect more 

than one data track. To achieve this requirement, a tn-buffer based switcher must be 

employed for the output pin. 

4.1.2.2 S-box architecture 

S-box is used to connect the data tracks together. Unlike C-box, each channel inside the 

switch box has to be bi-directional, in order to increase the routabiity of the whole 

architecture. The topology of the S-box can be varied, such as Disjoint type [67], Universal' 

type [68] and Wilton type [69]. However, the investigation of topologies of the S-box for a 

domain-specific reconfigurable architecture is out of the scope of this thesis. The topology 

used by the proposed architecture is the Disjoint type, which is widely used by Xilinx FPGA 

families. 

For a synthesizable S-box, different fabrication technologies would affect the performance 

of the whole array architecture in terms of area, power consumption, delay and routability. 

The tradeoff among different fabrication technologies has been elaborated in [70]. A 6W 

tn-buffer based S-box is recommended in [70], depicted in Figure 4.4, because of its best 

tradeoff among all crucial parameters. 
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Switch Box 

Figure 4.4 Architecture of switch box 

4.2 Design tool flow 

In order to accelerate the time-to-market, software tool flow has been developed.to  generate, 

program and verify the proposed domain specific reconfiguration architecture. The whole 

software design flow is shown in Figure 4.5, which is divided into three stages, array. 

generation, array programming and array verification. Initially, the prototype [71] of this 

software design flow is developed by the author's colleague, Dr. Sami Khawam The author 

did further modifications on the original prototype to smooth the interface between different 

tools and support complex test cases, such as the Viterbi decoder. 

4.2.1 Array generation 

Depending on the requirements of the design, such as application domain, flexibility, area 

and timing constraints, designers have to identify what kind of PUs are required. Basically, 

PUs are defined at RTL level by Verilog HDL. 

The Array generation tool will read and analyze the Verilog HDL codes for each PU, and 

with respect to preceding constraints, generate the whole array architecture. Except for the 

Verilog HDL codes of PUs, the following parameters also have to be provided to the array 

generation tool. The resulting array is produced as synthesizable RTL description. 

• Number of rows and columns 

• Position of each type of PUs 

• Number of bit-wide and word-wide tracks 
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Figure 4.5 Design how br domain specific reconfigurable architecture 

4.2.2 Array programming 

The array programming flow is divided into four sub-steps. It starts from the circuit 

description, such as Verilog. This file is provided by the designer, which described the 

interconnections of the PUs. Secondly, the hardware compiler can transfer the circuit 

description into the associated netlist file. The compiler is developed based on the academic 

synthesis tool vl2mv [72], where its output netlist format has been modified in order to be 

consistent with the place and route tool. The academic FPGA place and route tool, Versatile 

Place and Route (VPR) [73], was evolved to automatically place and route applications 

described by netlist files on the proposed heterogeneous and coarse-grain array architecture. 

After circuits mapping, the modified VPR also can output the configuration bits-stream 

which is used to test and verify the function on the array architecture. 



4.23 Array verification 

The array verification can be achieved in three levels: behavior level, RTL level and gate 

level. Before mapping to array architecture, the circuit description can be the first test in the 

behavior level to verify and debug the functionality. The RTL level and gate level 

verification are similar with ASIC design flow. The configuration bits generated by modified 

VPR can be loaded into the test benches for both RTL level and gate level simulation. 

Furthermore, based on gate level netlist, power and area estimation of the whole array can be 

done. 

It should be noted that the verification is achieved by using the existing ASIC tools, unlike 

FPGA devices where new tools need to be utilized. Another advantage of the proposed 

design flow is that every stage can be integrated into the whole SoC design flow for further 

accurate simulation and verification. 

4.3 Viterbi decoder implementation on the proposed array 

architecture 

The section presents how to develop and map domain specific reconfigurable Viterbi 

decoders on the proposed array architecture with associated proposed CAD design flow. A 

full parallel Viterbi decoder with sliding window algorithm is considered as the test bench, 

thus we can do a deep comparison with previous architecture. 

4.3.1 Processing unit 

The processing core selection for a Viterbi decoder domain can follow the estimation in 

Chapter 3. Considering the architecture presented in Figure 3.1, four PUs are developed for 

the Viterbi decoder domain. 
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4.3.1.1 	Processing core for BMU 

Equations for BM computations have been tabulated in Table 3.1. It can be seen that the 

basic components of BM computations are adders and inverters. Therefore, addition and 

inversion operations can be extracted to form into an individual processing core (PC) for 

branch metric computation which can cover branch metric computations for different code 

rate. 

The PC for BMU is illustrated in Figure 4.6. Two adders with an inverter are involved in the 

BMU PC. One BMU PC can calculate the summation or inversion between two inputs. For 

example, in order to calculate four branch metrics for code rate 1/2 Viterbi decoder, three 

BMU PCs have to be employed. If assuming X and Y denote two received signals, the first 

BMU PC outputs X and —X. Then, the second and third PCs compute the branch metrics, 

X+Y, X-Y, —X+Y and —X—Y. Each output pin of BMU PC contains a register which can be 

bypassed or not. This allows BMU PUs to form combinatorial or pipelined circuits to 

calculate different code rate BMs during one clock cycle. 

In) 

lilA  

C/k 

Con 
bit 

(put pin 0 

(put pin I 

Figure 4.6 Branch metric processing core 

4.3.1.2 	Processing core for ACSU 

As described in Chapter 3, the best architecture of ACSU for a high throughput Viterbi 

decoder is the parallel architecture with modulo arithmetic normalization. Thus in the 

proposed array architecture, the butterfly unit with modulo arithmetic normalization is 

selected as a PC for ACSU, which is shown in Figure 4.7. Since each butterfly would output 

two word-wise path metrics and two bit-wise survivor bits, mixed type C-boxes with one-bit 
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C/k input 

track and 8-bit tracks will be provided to ACSU PUs. 

Figure 4.7 ACSU processing core 

4.3.1.3 	Processing core for RAM 

A sliding window based Viterbi decoder requires four individual RAM banks to store the 

survivor bits generated by ACSU. Suitable RAM PUs have to be developed to efficiently 

map the sliding window based Viterbi decoder on the array architecture. Since the inputs of 

RAM PUs are connected with one-bit tracks, illustrated in Figure 4.8, there is a dilemma to 

select the appropriate word length for RAM PC. On one hand, the large word length of RAM 

PCs will affect the routability of the whole array architecture, because more tracks have to 

be involved in the interconnection mesh. On the other, small word length will increase the 

area of the whole array architecture, because more RAM PUs with associated C-boxes and 

S-boxes have to be integrated into the array architecture. The tradeoff between number of 

tracks and number of RAM PUs has to been investigated. 
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Figure 4.8 RAM processing unit 

Constraint length 7 and code rate 1/3 Viterbi decoder is selected as a test bench to investigate 

the tradeoffs of different word lengths RAM PCs with respect to required number of tracks 

and number of RAM PUs. 
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Figure 4.9 Tradeoff between No. of tracks and No. of RAM PUs 

It can be seen from Figure 4.9 that, with the augment of RAM PC's word length, the 

required number of tracks is also increased. On the other hand, increasing the word length of 

PC, the required number of RAM PUs is decreased. Regarding preceding analysis, a 

memory block with word length I 6bits is employed to a RAM PC to balance the number of 
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tracks and area of the whole array architecture. The number of words of RAM PC is equal to 

5K to fulfill the traceback requirement and the RAM PC is built up by latches. 

4..1.4 	Processing core for traceback and LIFO 

With the knowledge from last chapter, it can be seen that the blocks, such as traceback logic 

and LIFOs, only take a small portion of the whole Viterbi decoder (5% in terms of power 

consumption and 2% in terms of area). In addition, only one-bit operations are involved in 

these blocks. Bearing these two reasons in mind, it is not worth employing individual PU for 

each of these blocks. Thus, only one PU for traceback logic block and LIFOs is introduced 

to the array architecture and this PU has the same architecture as its counterparts in 

reconfigurable architecture I. 

4.3.2 PUs arrangement for the Viterbi decoder domain 

The arrangement of PUs in the domain specific reconfigurable Viterbi decoder is illustrated 

in Figure 4.10. The arrangement is manually achieved according to the tool flow shown in 

Figure 4.10. As can be seen, four different types of PUs, BMU PU, ACSU PU, RAM PU and 

Traceback & LIFO PU are involved in the array architecture and the same type of PU is 

placed in the same column to keep the uniform of the array architecture. The interconnection 

mesh consists of the C-boxes and S-boxes, described in previous sections, which support 

both one-bit track and eight-bit track. And totally 13 eight-bit tracks and 13 one-bit tracks 

are used for the Viterbi decoder application domain. 
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Figure 4.10 Arrangement of PUs 

4.4 Performance and comparisons 

Six Viterbi decoders, constrain length from 3 to 7, code rate 1/2 and 1/3 have been mapped 

on the proposed reconfigurable array architecture with associated software design flow. The 

Viterbi decoders with the same architecture are also mapped on Xilinx Virtex-E (xcvi 000e-8) 

FPGA architecture. Comparison results on four different architectures: ASIC, reconfigurable 

architecture I, proposed array architecture and FPGA are detailed in Table 4.1. Area and 

power figures of the proposed array architecture are analyzed by Synopsys Design Compile 

and Design Power, respectively. The features of FPGA are obtained by Xilinx ISE 7.1 tool 

kits and Xilinx Xpower. All platforms are targeted on 0.18pm UMC CMOS technology and - - 

run at 1.8V and 10MHz. - 
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Table 4.1 Power consumption (mW) comparison 

ASIC Architecture Architecture 

K3R1/2 0.39 2.75 4.89 9.11 

K3R113 0.45 2.91 7.07 11.73 

K5R1/2 1.13 4.09 9.93 27.46 

K5R1/3 1.46 4.40 15.79 42.58 

K7R1/2 4.72 9.14 30.76 150.74 

K7R1/3 4.99 10.38 42.65 252.35 

2 Table 4.2 Area (pm ) companson 

ASIC Architecture Architecture FPGA 

K3R1/2 48,817 232,396 970,011 2,872,422 

K3R1/3 49,903 237,442 1,176,860 3,014,270 

K5R112 226,651 534,664 1,886,550 8,714,787 

K5R1/3 235,794 539,711 2,367,587 9,610,202 

K7R112 838,758 1,743,738 6,164,657 31,694,163 

K7R113 842,584 1,748,785 6,525,821 32,013,321 

4.4.1 Area comparison 

The normalized area comparison is presented in Figure 4.11, where we can easily study the 

area gap among different platforms. In order to give an in-depth analysis of the proposed 

reconuigurable core, rather than block memories, configurable logic block (CLB) based 

distributed memories are exploited in the FPGA implementations, thus the proposed 

coarse-grained architecture can be directly compared with fine-grained FPGA architecture. 

The detailed area occupied by Xilinx Virtex-E FPGA is based on the estimation of the area 

of a LUT plus a register. According to [74], a CLB in Virtex-E FPGA occupied 35462 ,um2 , 

and a CLB is coomposed of four LUTs in Virtex-E family FPGA. 

71 



70 

60 

50 

40 

30 

20 

10 

0 

--- 

K3RI/2 	K3RI/3 	K5R112 	K5RI/3 	K7RI/2 	K7RI/3 	Average 

ASIC • Architecture I Architecture 11 • FPGA 

Figure 4.11 Area Comparison of Viterbi decoders on four platforms (ASIC = 1) 

It can be seen that the proposed heterogeneous and coarse-grained architecture only cost 

28% of the area of fine-grained FPGA averagely. As compared with the reconfigurable 

architecture I, heterogeneous and coarse-grained architecture are around 4.1 times bigger, 

but it takes an impressive advantage over the reconfigurable architecture I in terms of design 

and testing costs. It also can be seen that the area of heterogeneous and coarse-grained 

architecture is 12.8 times bigger compared with ASIC and this area overhead is the price 

must be paid for the flexibility and programmability. 

4.4.2 Power consumption comparison 

During the power consumption measurement, we only considered the summation of signals 

power and logic power [75] of FPGA, since they measure the power consumed by LUTs and 

routing network in the FPGA. From the normalized power comparison, shown in Figure 

4.12, it can be seen that the proposed array architecture consumes 66.1 % less power than the 

Virtex-E, averagely. This is mainly due to heterogeneous processing units and a mixture of 

coarse-grained and fine-grained interconnection mesh being used in our proposed array 

architecture. Similarly with reconfigurable architecture I, the data triggers of unused PUs, 
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C-boxes and S-boxes would be kept to zero, thus only leakage power is consumed in the 

unused blocks. From Figure 4.12, it also can be seen that the power consumption of the 

proposed heterogeneous and coarse-grained architecture is 2.6 times higher than 

reconfigurable architecture I. This is mainly incurred by the extra switches in C-boxes and 

S-boxes. In contrast to ASIC, proposed array architecture paid 10.5 times power 

consumption as the price of its excellent flexibility. 

60 

50 

40 

30 

20 

10 

0 

U 

K3RI/2 	K3RI/3 	K5RI/2 	K5RI/3 	K711I/2 	K7RI/3 	Average 

ASIC U Architecture I Architecture II U FPGA 

Figure 4.12 Area Comparison of Viterbi decoders on four platforms 

4.4.3 Overhead measurement 

As compared with ASIC and reconfigurable architecture!, the proposed array architecture 

pays addition area and power penalties for its superior flexibility and programmability. Since 

C-boxes and S-boxes are the main additional programmable components in the proposed 

architecture, in the following section, their contributions to the area and power overheads are 

estimated. 
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4.4.3.1 	Area overhead 

Figure 4.13 shows the area distribution inside the array architecture. It can be seen that PUs 

only occupy 14.5% of the total area averagely. However, C-boxes and S-boxes take a big 

portion of the area, 53.2% and 32.3%, respectively. It also can be seen that C-boxes require 

more area than S-boxes, since each port of PU connects to data tracks in four different 

directions via four C-boxes and the required switches in the C-boxes are obviously more 

than those in the S-boxes. 
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Figure 4.13 Area distribution of the array architecture 

4.4.3.2 	Power overhead 

The power overheads of the proposed array architecture are illustrated in Figure 4.14. In the 

proposed architecture, the unused blocks can be powered off, thus only leakage power 

consumptions are exhibited in these blocks. It can be seen from Figure 4.14 that, PUs 

occupy 20.5% of total power consumption. However, interconnection meshes, C-boxes and 

S-boxes, consume 51.2% and 28.3% of total power, respectively. The power overhead of the 

proposed architecture is mainly produced by the switching activities in the interconnection 

mesh. 
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Figure 4.14 Power distribution of the array architecture 

The future work would focus on the optimization of interconnection mesh to reduce the area 

and power overheads. In the proposed architecture, a switcher is implemented by tn-buffers 

which have high drive strength to guarantee that coarse-grain data tracks can be driven. 

However, the tn-buffer incurs bigger area and power consumption compared with the pass 

transistor which is exploited as switcher in general FPGA. In [76], a mixed interconnection 

mesh with tri-buffers and pass transistors is investigated in order to find the best trade-off for 

the routing network in an FPGA. In future, this kind of mixed interconnection mesh also can 

be employed in the proposed array architecture to lessen the area and power overheads. 

The aim of the proposed architecture and its associated CAD tools is to reduce the design 

and verification time of a domain specific reconfigurable fabric. It can be seen that the 

reconfigurable array architecture can be automatically generated and programmed by the 

CAD tools, where the user only needs to define the function for each PU. Compared with the 

reconfigurable architecture I, the proposed architecture can achieve significant design and 

verification time reduction. It also can be seen that the verification is achieved by using the 

existing ASIC tools, unlike FPGA devices where new tools need to be utilized. With the 

proposed design flow, every stage of the reconfigurable fabric design can be integrated into 

the whole SoC design flow for further accurate simulation and verification. Assuming a 

designer without any experience on hardware implementation, with the author's experience, 

it is fair to say that implementing the same algorithm on ASIC requiring two months, one 

month for the reconfigurable architecture I, probably three weeks on FPGA, and one week 
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on the proposed architecture with the proposed software design flow. Significant reduction 

of design time is obtained by the proposed architecture, and the time-to-market also is 

improved as compared with ASICs and FPGAs. 

4.5 Conclusion 

We have presented a novel domain specific reconfigurable architecture and design 

methodology based on a synthesizable heterogeneous coarse-grained array and 2-1) mixed 

interconnection mesh, which can be provided as a soft-IP core for integration into a SoC 

platform. The fabric has demonstrated high flexibility as well as good power performance, 

hence, making it satisfy the requirement for future portable devices. By using software 

design methodology, this fabric can be automatically generated and programmed to 

implement the different versions of domain specific applications. Several Viterbi decoders 

with different constraint lengths and code rates have been implemented on the proposed 

architecture by the developed software tools. After comparing with commercial FPGAs, the 

author demonstrated that power consumption is reduced considerably by 66.1%, and only 

cost 28% area of fine-grained FPGA. 

However, there are still some limitations blocking this proposed architecture to be prevailing. 

During the proposed design flow, the designers must be familiar with hardware design 

language and carefully partition the required applications to look for the suitable PUs. Thus, 

the time-to-market time could be still hard to bear. In the following chapter, a superior 

dynamic reconfigurable architecture, which can be programmed through a high-level 

language, such as C, will be introduced. In addition, an efficient Viterbi decoder design on 

this novel architecture also will be described. 
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Chapter 5.40 

Implementation of the Viterbi 
Decoder on the Reconfigurable 
Instruction Cells Array Platform 

In Chapter 4, a domain specific reconuigurable architecture with its associated CAD design 

flow has been described. The proposed architecture employing heterogeneous coarse-grained 

PUs surrounded by hybrid 2-1) interconnection mesh provides an excellent compromise 

between FPGA and ASIC in terms of flexibility, area and power consumption. However, this 

proposed architecture has to be implemented by HDL which is similar to the implementation 

of FPGA. This would require designers to have a deep understanding of the targeted 

application domain and efficiently partition the application into several smaller function 

modules, which increases the design time and the time-to-market is postponed. 

If a reconfigurable architecture can be programmed by high-level language, such as C and 

C++, the barriers of implementation can be eliminated and the time-to-market can be further 

improved. In this chapter, the reconfigurable instruction cell array (RICA) [77] platform 

which is a dynamic reconfigurable architecture programmed by ANSI C, will be introduced. 

In addition, Viterbi decoders have been implemented on RICA to test and verify the 
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performance of RICA. Furthermore, several advanced optimization approaches for the 

Viterbi decoder on RICA are proposed in this chapter to boost its performance. 

This chapter is organized as follows. Section 5.1 will briefly review the RICA architecture 

and tool flow. Implementation of the 'Viterbi decoder on a general RICA architecture and its 

performance are given in Section 5.2 and Section 5.3, respectively. The detailed description 

of the advanced implementation and optimization of Viterbi decoder on RICA is presented in 

Section 5.4. The performance of an advanced RICA is presented in Section 5.5. The 

comparison with other dynamic reconfigurable architectures is presented in Section 5.6 

followed by conclusions in Section 5.7. 

5.1 RICA architecture and tool flow 

RICA is a dynamic reconfigurable computing architecture. The basic concept, of RICA is .  

shown in Figure 5.1, where it can be seen that RICA has a straightforward and processor-like 

design-flow. The hardware-modules inside RICA can execute assembly-like instructions, 

which are named instruction cells (ICs). ICs in RICA are heterogeneous and each cell is 

limited to a small number of operations, such as ADD, CONST, MUL, LOGIC; SHIFT and 

REG. Except for the basic instruction cells, RICA also permits tailoring to a specific 

application domain by introducing user-defined custom instruction cells to improve the 

performance. 

C code maps directly to the Instruction cells 

El 	PJI 	fl 	. C Code: pm 	((psi + bm) > (ps2 - bm)) 9 pini 
Compiled ASM: 
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Figure 5.1 Architecture and tool flow of RICA 
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There are several compilation stages that need to be performed for RICA in order to take the 

high-level C code and transform it into various output formats for debugging purposes, 

software emulation or to create the final binary to be loaded in the hardware. The default 

design methodology for the RICA platform involves three main steps, which are briefly 

described as follows. More details of RICA tools can be found in [77] [78] [79]. 

5.1.1 Compiler 

This step is performed by a modified GNU C Compiler (GCC), which compiles C/C++ code 

and transforms it into assembly format. In addition, GCC is adjusted to take into account 

some limitations of the target RICA architecture. 

5.1.2 Scheduler 

The scheduling process involves taking the assembly code; constructing the control and 

dataflow graphs; and breaking the code into steps which maximize resource usage and 

throughput. 

5.13 Backend simulator 

The simulator is a SystemC cycle-accurate model of RICA architecture. It allows design 

exploration in terms of core configuration and verification of algorithm code generated to 

execute on RICA; assists in debugging; and provides detailed timing, activity and core 

utilization figures. 

5.2 Implementation of the Viterbi decoder on RICA 

As mentioned in previous chapters, there are three major modules in a Viterbi decoder: 

BMU, ACSU and SMU. This section will elaborate the implementation issues for each 

module on the RICA platform. 
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5.2.1 Branch metric computation 

As described in Chapter 3, branch metric computation is a straightforward addition and 

subtraction process. However, since one half of branch metrics is the invertion of the other 

half, only two branch metrics must be calculated. Branch metric computation can be denoted 

as a simple C loop, where loop unrolling can be performed to yield a more balanced use of 

RICA resources. An example of loop unrolling for BMU is illustrated in Figure 5.2. 

for (k = O;k < FRAME _SIZE/2;k + +) 
for (k = O;k < FRAME_SIZE;k + +) 

Loop  
Unrolling 	

BM,[2*k]= recY0[2*k] +recYj2*kJ ;  

BM,[k] = recY0 [k] + recY1 [k]; BM01[2 * k] = recY0 [2* k] - recYj2* kJ; 

BM01 [k] = recY[k] - recY1[k]; 	 BM[2' k + 1] = recY[2 * k + 11 + recY[2 * k + 1]; 

BM01 [2*k+1]= rec},[2*k+1]_ recY1 [2*k+1]; 

1, 

Figure 5.2 Loop unrolling for branch metric computation 

The unrolling factor depends on the available hardware resources of the RICA architecture. 

It can be seen from Figure 5.2 that a BMU loop with unrolling factor 2 requires twice more 

WMEM and RMEM cells to fit the whole loop into a single step as compared with the 

original loop. 

5.2.2 Path Metric Computation 

Since all the path metrics (2K)  must be updated at each trellis stage, ACSU consumes most 

of the calculation time. According to previous chapters, two new states are connected by the 

same sources and branch metrics on the connection path are complementary with each other. 

For example, if one branch metric is BMOO  the other must be BM 11 . Thus, two ACS 

operations for two different path metrics can be paired in a butterfly-like structure to 

simplify the metric update procedure. 

It can be seen from Figure 5.3 that the simplifications of C implementation are exhibited in 

two ways. Firstly, only one branch metric is needed for each butterfly. It is alternately added 

and subtracted in each ACS operation. Secondly, the old metric values are the same for both 

new ones where address manipulation can be minimized. 
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Figure 5.3 Butterfly structure with its C implementation 

In addition, during the path metric updating procedure, two memory buffers have to be 

adopted, one for the old path metrics and the other for the new path metrics. 'Each buffer 

contains 2KI  bits, each bit reserved by a path metric. At the end of the metric updating, the 

pointer of two buffers must be swapped, so that the recently updated metrics will become the 

old path metrics for the next iteration. 

Similar to previous reconfigurable architectures, there is a trade-off between throughput and 

the number of butterfly units which are processed in parallel. The more butterfly units are in 

parallel, the faster throughput can be achieved. However, more instruction cells are required. 

The effect of this trade-off will be shown in the following section. 

Besides path metrics, two survivor bits which indicate survivor paths outputted by each 

butterfly unit have to be stored in the memory. Since RICA is a 32bits processor, one word 

of memory (32bits) is shared by 16 butterflies. However, in order to pack 32 sUrvivor bits 

into a word, extra SHIFT and LOGIC cells are needed. Eventually ;  the survivor bits table in 

the memory is shown in Table 5.1. 

The Bit Number indicates the bit line of a survivor bit in a 32bits word. It is worth noting 

that survivor bits are saved in a reversed manner. Survivor bit 0 is in MSB and survivor bit 

31 is in LSB. The Word Number indicates the word line of a survivor bit. If the constraint 

length K is less than 7, the Word Number can be ignored, since one word is sufficient to 

memorize all survivor bits. 
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Table 5.1 Survivor bits table from different constraint length 

Bit Number in survivor bits table  
31 30 29 28 27 26 25 24 

Word 
Number 

0 0 1 2 3 4 5 6 7 

2K-61 2K-132 2K-131 2K-130 2K-129 2K-128 2K-127 2K-126 2K-125 

Bit Number in survivor bits table  
23 22 21 20 19 18 17 16 

Word 
Number 

0 8 9 10 11 12 13 14 15 

2161 2K-124 2K-123 2K-122 2K-121 2K-120 2K-119 2K-118 2K-117 

_______ 	Bit Number in survivor bits table  
15 14 13 12 11 10 9 8 

Word 
0 16 17 18 19 20 21 22 23 

Number  
2'"-1 2K-116 2K-115 2K-114 2K-113 2K-112 2K-111 2K-110 2K-19 

Bit Number in survivor bits table  
7 6 5 4 3 2 1 0 

0 24 25 26 27 28 29 30 31 
Word 

Number  2K-1 2K-17 2K-16 2K-15 2K-14 2K-13 2K-12 2K-11 

5.23 Traceback Operation 

Traceback operation is the major logic function in SMU and requires much less 

computational cost than the path metric updating procedure. The main operation of the 

traceback operation is to extract the relevant survivor bit from the memory to rebuild the 

trellis structure. Based on the survivor bits table presented in Table 5.1, extracting the correct 

bit from the survivor bit table is divided into two steps: searching for Word Number and Bit 

Number. 

For a constraint length K Viterbi decoder, the Word Number is determined by masking off 

the bits between four LSBs and MSB, which is defined by Equation 5.1. 

Word Number = (trace_state>> 5) &(2_6 - i) 	 (5.1) 
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The Word Number will be added by the pointer of the current table address to indicate a 

memory with 32bits survivor bits. For the constrain length K < 7, this part of the 

computation can be eliminated, since only one word is required by each trellis stage. 

Because the survivor bits in the memory are in an inverse manner, for example, the survivor 

bit of state 0 is saved in MSB, the bit address corresponds to 31 - State Number. Based on 

the properties of Table 5.1, the calculation for the Bit Number is accomplished by Equation 

5.2: 

Bit Number = 31—(trace state & OxiF) 	 (5.2) 

After finding the correct survivor bit, the old trace_state value is shifted one bit left and the 

survivor bit can push into the LSB to form the new trace_state, which is denoted by 

Equation 5.3. 

trace state = (trace state0 	i sur_bit) 	 (5.3) 

The new trace_state is exploited to look for the survivor bit in the next iteration. 

5.3 Performance of Viterbi decoder on RICA 

To analyze the performance of RICA, three versions of a constraint length 7 and code rate 

1/2 Viterbi decoder have been implemented on the RICA platform. In case I, only one 

butterfly unit is performed in an ACSU loop. Otherwise, two and four butterfly units are 

executed at a time in case II and case III, respectively. The performances of these three cases 

are presented in Table 5.2. Case I requires least number of cells, but it provides the slowest 

speed. Although case III achieves the highest throughput, it also requires more instruction 

cells to perform more butterfly units in a step. This is expected due to more butterfly units 

being processed simultaneously, the faster throughput is achieved. 

Table 5.2 Performance of Viterbi decoder on general RICA 

Throughput (Mbps) No. of Steps No. of cells 

Case I 0.89 1943 102 
Case II 1.39 1047 126 
Case III 2.56 599 182 
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The utilities of each individual cell are presented in Figure 5.4. It can be seen that ADD, 

CONST and REG are the most popular instruction cells, because they are widely used by 

loop control, address manipulation and branch operations of C program. 
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Figure 5.4 Requirement of individual cells for Viterbi decoder 

5.4 Advanced implementation and optimization for the 

Viterbi decoder 

At present, wireless communication standards expect to provide fast system throughput. For 

instance, 3G systems can achieve 2Mbps, DVB-TIH provides round 20Mpbs transmission 

speed, and WLAN claims higher throughput, up to 54Mbsp. As a reconfigurable architecture 

exploited in the portable communication scenario, RICA must fulfill the throughput 

requirement of these high-speed communication standards. In this section, several novel 

approaches to accelerate Viterbi decoding on RICA architecture are elaborated. 
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5.4.1 SIMD based RICA 

Due to the fact that the required word width for digital communication operations is often 

much narrower than 32bits, employing 32bits representing smaller data size not only wastes 

the hardware resource, but also decreases the performance and efficiency of the RICA 

processor. In terms of the Viterbi decoder, as discussed in Chapter 2, four or five bits 

representing the soft input symbols can achieve a similar performance as the floating point 

representation in the case of AWGN channel and BPSK [22]. 

In addition, due to the inherent symmetry properties of digital communication algorithms, 

several variables can be aligned together to be processed at the same time. According to 

these two phenomena, a Single Instruction Multiple Data (SIMD), based RICA is proposed, 

where each instruction cell of the RICA can be split into several narrower word length 

operations in order to enhance the productivity of the RICA processor. For instance, a 32bits 

ADD cell can be configured to four independent 8bits ADD cells or two independent l6bits 

ADD cells, thus with the similar die area, ADD operations can be augmented 2 or 4 times. 

This thesis is the first time to propose using the SIMD technique in the RICA architecture in 

order to achieve data level parallelism. As compared with the high performance processor 

designs described in [80] [81], where SIMD based ALUs are integrated into the processor, 

RICA looks at cell based architecture, which exhibits a lower level application. 

SIMD based RICA is very efficient at accelerating the processing of ACSU. It can be seen 

from Figure 5.5 that the branch metrics and path metrics for, two individual butterfly 

operations are packed together, thus two butterfly operations can be executed at a time. As 

compared with general RICA architecture, its benefits are obvious. Firstly, half-required' 

instruction cells are eliminated and the utilization of instruction cells is improved. In 

addition, due to the data packing, the transmission delay incurred by the interconnection 

mesh. is reduced and the timing characteristic of RICA is further enhanced. 
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Figure 5.5 Butterfly units on a SIMD based RICA architecture 

5.4.2 Custom Function Cells 

Since the RICA processor has a very flexible.interface with the instruction cells, the custom 

instruction cells can be easily integrated into the architecture to improve the performance for 

a specific application domain. In order to tailor the RICA to the high throughput required 

scenario, several individual custom instruction cells are proposed to accelerate the Viterbi 

decoding procedure. 

5.4.2.1 Modulo comparison 

In a Viterbi decoder, path metrics are accumulated till the end of frame. The value of each 

path metric will increase without limits and incur an arithmetic overflow if it is not 

periodically normalized. As illustrated in Chapter 2, normalization can be achieved by 

subtracting the minimum path metric in each time cycle. However, the major drawback of 

this normalization scheme is the huge clock delay caused by looking for the minimum path 

metric and subtracting it from all other path metrics. The other approach is modulo. 

arithmetic which is an efficient method of solving system crash caused by path metric 

overflow. The ideal of modulo normalization is not to avoid overflow, but instead to 

accommodate overflow into a way that is does not affect the correctness of the results. This 

is achieved by using two's complement arithmetic with a modified comparator. But this 

modulo comparator is not suitable for implementation by software. However, because of the 

flexible interface of RICA architecture, modulo comparison function, which is depicted in 
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Figure 5.6, is extended to a COMP_MUX cell. By changing the configuration bits, two 

15bits modulo comparators can be realized on the extended COMP_MUX cell. In, addition, 

it can be seen from Figure 5.6 that the MSB of each 16bits vector is reserved for the survivor 

bit which is the output flag from the modulo comparators. Packing survivor bits with path 

metrics can further reduce function cells and data transmission as compared with general 

RICA. 

31:30 	 15:14 	 0 	 31:30 	 15:14 	 0 

• ____ 

I 	I 
Figure 5.6 Modulo Comparison function for COMP_MUX cell 

The performance comparison between a software implementation and a custom cell 

implementation of a butterfly unit is tabulated in Table 5.3. The comparison between a 

general COMP_MUX cell and a custom COMP_MUX cell is also presented in Table 5.3. It 

can be seen that, as compared with software implementation, the custom cell-based butterfly 

unit can reduce latency by 79.0% and only requires one instruction cell to perform a 

butterfly unit. In contrast to general a COMP_MUX cell, a custom COMP_MUX cell has to 

pay an extra 16.67% time delay, 44.24% area and 54.68% power consumption as the price of 

throughput improvement. 
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Table 5.3 Performance comparisons for a butterfly unit 

Latency (ns) Area (urn2) Power (uW) No. of cells 

Software Implementation 7.0 N.A. NA 
2 SHWF 
4 LOGIC 

2 COMP_MUX 

General COMP_MUX 1.26 2151.73 33.67 N.A 

Custom COMP_MUX 1.47 3103.68 52.08 1  1 COMP_MUX 

5.4.2.2 Traceback instruction cell 

As described in the previous section, traceback logic ought to look for the Word Number and 

Bit Number to extract the survivor bit from the survivor bit table. However, this procedure 

results in a long combinatorial circuit consisting of logic, shift and bit level manipulation. In 

order to speed up the traceback operation, a specific instruction cell is introduced to handle 

the loosest computation in the hardware. The proposed architecture of this custom cell for 

traceback is depicted in Figure 5.7. 

It can be seen that the output of the traceback instruction cell is equivalent to shifting the 

trace_state variable one bit up and pack the survivor bit at the LSB. INO and INJ represent 

trace_state and a 32bits survivor bit table, respectively. Since the survivor bits in the 

survivor bit table are in an inverse manner, the Bit Number corresponds to 31 - INO[4:0]. 

Moreover, the traceback instruction cell only adopts four LSBs of INO, thus there is no need 

to mask off the upper bits via additional LOGIC cells. 

INO 	 INI 	 I/InItialization 
trace_state = 0; 

32 bits 	 32 bits 	 P = survivor memory address for last state 

//traceback operation 

- 	

for(i=size_frame;i>O;i-.) 

	

i 	OUT = (INO << 1) 1 IN1[31- 1N014:01J 	survivor_vector = 	+ (trace_state>> 5) & Oxi); 

trace_state = extract (trace_state, survivor_vector); 

	

32 bits 	 output_bit[i] = trace_state & Oxi; 

	

OUT 	
P = P-2; 

) 

Figure 5.7 Custom cell for traceback operation 
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The comparison of the traceback operation with and without custom cell is presented in 

Table 5.4. Compared with general RICA architecture, the latency of the traceback operation 

with the custom cell can achieve a 19.15% reduction. Moreover, a SHIFT cell, ADD cell and 

LOGIC cell can be preserved by the adoption of a custom cell. 

Table 5.4 Comparison of Traceback with/without custom cell 

Latenèy (ns) No. of cells 

2SHIFT4ADD 
With custom cell 14.35 3 LOGIC 1 RMEM 

1 WMEM 9 CONST 

4 SHIFT 5 ADD 
Without custom cell 17.75 4 LOGIC 1 RMEM 

1 WMEM 9 CONST 

5.4.3 Software pipelining 

When a loop is implemented on the RICA architecture, it would be best to be fitted in a 

single operation step to reduce the jump inside a loop. Taking butterfly operation as an 

example, the data flow graph of a ioop executing one butterfly operation is shown in Figure 

5.8. It can be seen that this step consists of two parts, address generator which generates the 

read and write address for the RMEM and WMEM cells and computation logic which 

calculates the butterfly operation. The longest-path in this loop is also highlighted in Figure 

5.8. According to a 32bits RICA timing model, the longest-path delay of this loop is 24.1 ns. 

89 



Bod4Not penedJ 

Figure 5.8 Unpipelined Butterfly operation 

Software pipelining is an approach to reorganize loops by means of inserting registers into 

the longest-path. Thus, a combinatorial circuit is split into several portions running at the 

same time. Since the address generator and computational logic consume roughly the same 

time, the registers can be inserted between these two parts to reduce the latency by half. The 

data path of the butterfly operation after software pipelining is depicted in Figure 5.9. Since 

these two parts are executed in parallel, the total latency after software pipelining can be 

decreased to 13.9 ns, where the pipelined loop can save 42.32% time delay of the original 

loop, but additional REG cells need to be paid as the price. 
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Figure 5.9 Pipelined butterfly operation 

5.5 Performance of the Viterbi decoder on an advanced. 

RICA platform 

According to preceding advanced implementation approaches, the constraint length 7 and 

code rate 112 Viterbi decoder has been redesigned and optimized on the RICA platform. The 

performances of the optimized implementations on three test cases have been tabulated in 

Table 5.5. It can be noted that, in terms of throughput, SIMD based RICA with custom 

instruction cells can achieve 91%, 74.1% and 59.8% performance gains as compared with 

general RICA. In terms of number of execution steps, advanced RICA architecture can 

reduce by 40.2%, 31.8% and 27.7% compared with general RICA. In other words, less. 
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configuration latency and power consumption can be accomplished by the advanced RICA 

architecture. It also can be seen that the number of required instruction cells is roughly as the 

same as general RICA architecture. 

Table 5.5 Performance of Viterbi decoder on advanced RICA 

Throughput Improve No. of Improve No. of cells Improve 
(Mbps)  steps  

Case I 1.70 91% 1162 40.2% 100 2% 
optimized 

Case II 2.42 74.1% 714 31.8% 131 4% 
optimized 

Case III 4.09 59.8% 433 27.7% 185 -1.6% 
optimized 

The cost of each individual instruction cell is illustrated in Figure 5.10. Apart from LOGIC 

and SHIFT cells, other instruction cells are consumed less than those of the general RICA 

architecture. The reason is that additional LOGIC and SHIFT cells are employed in packing 

and shuffling data for SIMD based RICA architecture. 

In order to analyze the maximum throughput for the Viterbi decoder on RICA architecture, a 

full parallel Viterbi decoder, where 32 butterfly units are executed in one single operation 

step, has been implemented on SIMD based RICA architecture with specific instruction cells. 

It can be seen from Table 5.6 that, if a full parallel ACSU is implemented on the RICA, 20.9 

Mpbs throughput can be obtained. After three-stage software pipelining, a further 2.7 times 

throughput gain can be accomplished. With a throughput up to 56.4 Mpbs, the advanced 

RICA architecture can be exploited by current wireless communication devices. 
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Figure 5.10 Requirements of individual cells for Viterbi decoder 

Table 5.6 Ultimate Viterbi decoder on advanced RICA 

Throughput 
I  Throughput (software 

pipelining) No. of Steps 
I 

No. of cells 

Full parallel 20.9 Mbps 56.4 Mpbs 120 349 
Viterbi decoder 

5.6 Conclusion 

This chapter has described the implementation of the Viterbi decoder on a novel dynamic 

reconfigurable architecture, RICA. In addition, several advanced optimization approaches 

have been proposed to accelerate the throughput of the Viterbi decoding process on the 
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RICA platform. With the proposed approaches, the throughput of Viterbi decoder can be 

improved up to 91% as compared with general RICA architecture. Ultimately, 56.4 Mbps 

Viterbi decoding throughput can be achieved by employing a full parallel ACSU architecture 

with software pipelining optimization scheme. In contrast to other reconfigurable 

architectures which are programmed by high-level language, the Viterbi decoder on the 

RICA platform exhibits the best throughput performance. 

Since RICA can be easily programmed, it can dramatically reduce the time-to-market for 

portal products. In the following chapter, a more complicated channel decoding approach, 

double binary circular Turbo codes, will be described. In addition, several efficient decoding 

schemes will be proposed and an efficient decoder design for double binary circular Turbo 

codes will be demonstrated on RICA architecture. 
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Chapter 6: 0 

M-binary Circular Turbo Decoder 
and its Application 

Turbo codes [82] were first introduced to the coding community in 1993 to provide higher 

reliability data transmission at very low signal-to-noise ratio (SNR) as compared with 

convolutional codes. For the sake of its outstanding performance and competitive 

implementation complexity, Turbo codes have been specified in numerous communication 

standards, such as satellite communication, third-generation communication system, 

DVB-RCS, WIMAX, etc. 

In the recent decade, many works have focused on improving Turbo encoder/decoder 

algorithms and architectures to achieve better BER/FER performance, reduce computation 

complexity, increase throughput and minimize power consumption of the Turbo codes 

system. Amongst these works, M-binary circular Turbo codes [84] have stood out and its 

particular application, double-binary circular Turbo codes, has been standardized by industry 

applications, such as DVB-RSC and IEEE 802.16d. 
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However, the computational cost needed by Turbo decoding process is an order of 

magnitude greater than that of \1iterbi decoding [83]. Moreover, M-binary circular Turbo 

decoding requires M times more computational cost than classical Turbo decoding. Thus, an 

efficient implementation for M-binary circular Turbo decoders is a big challenge for mobile 

terminal designers. 

For these reasons, the implementation design flow for M-binary circular Turbo decoders is 

divided in two steps which are presented in Chapter 6 and Chapter 7 respectively. The first 

step will explore the implementation design space on algorithm level. The issues addressed 

in this step consist of the mathematical model for the M-binary circular Turbo decoder, the 

selection of decoding algorithms, their simplification and optimization, and parallel 

decoding approaches which can achieve high decoding throughput. On algorithm level, the 

M-binary circular Turbo decoder is investigated by a floating point representation. However, 

a fixed-point representation is mandatory for most hardware architectures, such as the RICA 

platform. Thus, step two investigates a suitable quantization scheme for M-binary circular 

Turbo codes, leading to a bit-true model. In addition, corresponding to this bit-true model, a 

high throughput double binary circular Turbo decoder on RICA architecture is demonstrated. 

6.1 M-binary Circular Turbo encoder 

6.1.1 M-binary recursive systematic convolutional encoder 

Inside an M-binary circular Turbo encoder, each recursive systematic convolutional (RSC) 

encoder can manage a vector with m bits rather than 1 bit data at a time [84]. From Figure 

6.1, it can be seen that m+n bits codeword are generated by an M-binary RSC encoder at a 

time, where the first m bits are systematic bits which are a duplication of the input vector, 

and the following n bits are parity bits which are employed to recover data from 

transmission noises. 
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Figure 6.1 M-binary recursive systematic convolutional encoder 

The M-binary Turbo codes can offer many advantages over classical single binary Turbo 

codes, and these advantages have already been elaborated in [85]: 

• Increased minimum free distance by introducing 2-D permutation. 

• Reduced sensitivity of puncturing as compared with the single-binary Turbo codes. 

• Improved performance by reducing the correlation effects between two elementary 

decoders. 

• Reduced decoder latency because m bits are processed as a symbol. 

6.1.2 Circular Thrbo encoder 

In a classical Turbo coding system, several tail bits have to be padded to the end of a frame 

in order to force the trellis starting and ending at the all-zero state. However, transmission of 

extra tail bits would diminish the transmission bandwidth, especially for a frame with small 

frame size. 

Circular (Tail-biting) encoder [86] is a technique which ensures that, at the end of the 

encoding process, the final state is constrained to be identical with the initial state, and the 

merged identical state is called circular state. The advantage of circular Turbo codes is 

obvious. It can reduce the code rate and increase the system transmission bandwidth. 

However, the computational complexities of both encoder and decoder are augmented. 

In addition, the studies of algorithms/architectures for an efficient decoder implementation 

of M-binary circular Turbo codes are not sufficient in the current literature. These issues 
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motivate us to build a mathematical model for an M-binary circular decoder in order to 

investigate different decoding algorithms, their simplification and optimization. 

6.2 M-binary Circular Turbo decoder 

A typical Turbo decoder, shown in [82], consists of two soft-input soft-output (SISO) 

decoders, one operating on the actual order, the other on the interleaved order. The 

interleaver and de-interleaver are employed to reorder the sequence during the iterative 

process. 

There are two prevalent SISO decoding algorithms which are used in Turbo decoder: the 

maximum-a-posterior (MAP) algorithm [87] and the soft-output Viterbi algorithm (SOVA) 

[88]. Since the SOVA is more complex than the MAP and its approximation algorithms [89], 

and also the SOVA algorithm incurs 0.5dB performance degradation as compared with the 

MAP and its approximation algorithms [87], this thesis only focuses on investigating the 

MAP algorithms for the M-binary circular Turbo decoder. 

6.2.1 MAP algorithm for M-binary Turbo codes 

6.2.1.1 Mathematic model for single MAP decoder 

As depicted in Figure 6.1, the output from an RSC encoder is a (m + n) x N size matrix which 

can be represented by: 

E01  = (El ,E2 ,E3 ,...,EN ) 	 (6.1) 

where the codeword at time k is represented by Ek = (X,X,X 3  Xm 1,}T2 V3 yT 
Ic " 	k 	k 1 k" k) 

m denotes the number of systematic bits, n denotes the number of parity bits and N is the frame 

size. 

If binary phase-shift keying (BPSK) is assumed, the modulated codewords are presented as: 

E'=(El',E2',E3', ... ,EN ') 	 (6.2) 

Each component Ek' = 	
11)T is a vector containing m+n elements, where 
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eka  
a-1,...,m+n 

During the transmission, these codewords are corrupted by channel noises, and the noised 

symbols received by decoder are: 

D = (Dl ,D2 ,D3 , ... ,DN ) 	 (6.3) 

where D = (d 1  d 2  d3 	dm+)T  is the received symbol at time k. k 	\ k' k' k'"" k 

The posteriori probabilities of each possible codeword are indexed by: 

P(Xk =x1D) 
	

(6.4) 

where D is received symbol sequence, and X' represent the 2" different codewords. It can be 

seen from Equation 6.4 that at time k, there are 2m  posteriori possibilities for each codeword. 

According to the MAP algorithm, all these posteriori possibilities must be calculated and the data 

pair with the maximum posteriori possibility is selected as the decoder output. 

According to Bayes' rule, posteriori probabilities can be approximate represented by its joint 

probabilities [90]: 

	

P(xk = X1' I D) P(xk = X, A D) 	 (6.5) 
i-1.....2'" 	 i-I ..... 2' 

Joint probabilities P(xk = 
	

A D) can be classically partitioned [90] into three terms. 
i 1 2'"  

Defining T' is a set of transitions from previous trellis state Sk_l = S '  to current trellis state 

Sk = 's which are caused by transmitting M-binary vector Xk,  the joint probabilities can be 

rewritten as: 

P(xk  =XAD)= I P(D1>  Is)P({Dk  A S}lS ')P(S' ADfk) 
(s',$)E!j" 

(6.6) 
= 	,8k+1(5)yk+1(s1s)ak(s) 

(s',s 

P(Df>k  I s) represents the probability that, given the trellis is in state s at time k the future 

received vectors will be D(>k . P(s' A Df<k ) denotes the trellis is in state s' at time k-i and 

the received channel sequence up to this point is DI<k . P({Dk  A s} I s ') is the probability 
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that, given the trellis is in states' at time k-i, it moves to s with received vector Dk.  They are 

also nominated as backward metrics fik (s) , forward metrics ak(s)  and branch 

metrics Yk (s', s), respectively. 

Referring to Bayes' rule again, forward and backward metrics can be recursively deduced by 

[91]: 

ak(s) = Z yk(s,$)ak.l(s) 
ails' 

flk-l() = Irk(s,$)flk(s) 	

(6.7) 

ails 

The main difference between these two recursive computations is that forward metric calculation 

processes from beginning to the end of the frame, otherwise backward metrics are calculated 

from the end to the beginning. 

Moreover, if a memoryless Gaussian channel and BPSK modulation are assumed, branch 

metric Tk  (s', s) can be denoted by: (The deduction of Equation 6.8 is presented in Appendix A) 

ms-n 

yk(s,$) = expek .d}P(x k ) 	 (6.8) 

It can be seen from Equation 6.8 that a branch metric includes two items, the first item is an 

exponent of the correlation between received codeword and expected codeword, which indicates 

the difference between the received and expected codeword. The other is the a-priori probability 

of Xk,  which indicates the statistical characteristic of the transmitted M-binary vector acquired 

before the current decoding process. In an iterative Turbo decoder, P(xk ) will be transferred 

between two MAP decoders to improve the reliability of a Turbo decoder. 

6.2.1.2 	Mathematic Model for an iterative Turbo decoder 

In an iterative decoder, the output from one MAP decoder will be fed to the other as priori 

probabilities of xk(P(xk)). During the iterative process, priori probabilities will be more and 

more reliable, resulting in a dramatic improvement on BER/FER performance of a Turbo 

decoder. 
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The exponent term of Equation 6.8 can be split into two items in tenns of systematic and 

parity parts, which is presented as follows: 

(m+n 

yk(s,$) = expek d}P(xk ) 

=exp[
e .d}exP 	e d}P(xk ) 

1-1 	 1-m+1 

=exp[e .d}xk (s's).P(xk ) 

(6.9) 

Thus Equation 6.6 can be rewritten in another format: 

P(xk = X AD) = 	8 1 (s) Yk +l(S ' ,S) . a,(s) 
i—P 	 (s.$)ET! 

(6.10) 
(m 

= exp 	d 1 J P(xk+l ) 	fi +1 (s) a(s') Xk+l(S',  s) 
\1-1 (s',s 

It can be seen that the last term of Equation 6.10 is independent upon the channel effect of 

current systematic bits and P(xk). Therefore, it was named as extrinsic probabilities, which is 

represented as: 

PO7Xk =X' ID = 	flk+l(s)ak(s')Xk+l(s',$) 	 (6.11) 
ip 	) 	(s',$)E7j 

In an iterative Turbo decoder, extrinsic information of Xk represents the probabilities that are 

obtained based on the received sequence and priori probabilities excluding the received 

systematic symbols and priori probability of Xk.  In an iterative Turbo decoder, extrinsic 

probabilities from the current MAP decoder would be provided to the other MAP decoder as 

the priori probability for Xk [90]. 

6.2.2 Simplifying the MAP algorithm with the MAX* 

approximations 

Although a MAP algorithm for the M-binary Turbo decoder has been deduced in Section 

6.2.1, it is too complex to be implemented by hardware or software methods. The 
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approximations which can be employed to simplify the computation of a MAP algorithm 

have been addressed in [87] [92] [93] [94], in the case of the classical Turbo decoder. 

However, they also can be evolved for an M-binary Turbo decoder. 

6.2.2.1 Log-domain MAP 

Transferring the computation of MAP algorithm into a logarithmic domain can replace 

multiplication by addition and also eliminate exponent operations. In a logarithmic domain, 

these probabilities can be denoted by: 

L7 (s) = in ak(s) = in 1 exp(L (s', s) + L 1  (si))] 
= 	

(L; (s', s) + 
a 

alls' 	
ils' 

 

L 1  (s) = in flkl  (s) = In 	exp(L (s', s) + L (s)) = MAX (L; (s', s) + L (s)) ' 

alls 	
ails 

m+n 

L(s',$)=inyk (s',$)=e 	+lnP(xk ) 

Lxk = X i'l D= ml 	exp(L +1 (s) +L 1 (s',$) +L7(s))J 
l-/4 	) 

= MAX (L +1(s) +L(s') +L +i(s',$)) 
(s',s 

L 1 xk  = X i'l D= ml 	exp(L +1(s) +L7(s') + 

= MAX *  (L 1 (s) + L'(s) + L +1 (s',$)) 
(s',s 

(6.12) 

where /4X * (A)=lneJ 

Since MAX is the major function for log-domain MAP algorithm and also it is not easy 

to be directly implemented, thus there are several approximation schemes focus on reducing 

the associated implementation complexity of the MAX function. In general, these are 

Log-MAP [87], Constant-Log-MAP [92], Linear-Log-MAP [93], MAX-Log-MAP [87] and 

Enhanced MAX-Log-MAP [94]. Log-MAP, Constant-Log-MAP and Linear-Log- MAP 

approximations aim to convert the MAX * function to an addition of a MAX and a correction 
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function. 

6.2.2.2 Log-MAP algorithm 

In the Log-MAP algorithm, applying Jacobian logarithm, the MAX function can be 

expressed by: 

MAX(x,y) = ln(ex + e d') 

= max(x, y) + ln(1 + e) 	 (6.13) 

= max(x, y) + f (I x - y I) 
which is an addition between the maximum of the function's two arguments and a nonlinear 

correction function. In practice, this correction function f (I x - y I) might be implemented 

in a software method with floating-point functions, and might be implemented by a finite 

lookup table in hardware design [95]. 

	

6.2.2.3 	Constant-log-MAP algorithm 

In the Constant-Log-MAP algorithm, MAX is approximated to: 

MAX*(x,y)=max(x,y)+{0 if Ix - yl>T 
C 	ifIx—yI:r.T 	

(6.14) 

Compared with the Log-MAP algorithm, the Constant-Log-MAP algorithm supersedes the 

correction function f (I y - x I) by a value equal to 0 or a constant C which depends on the 

absolute difference between x and y. It offers an easier way to implement MAX function, 

but it will suffer more from the performance loss as compared with the Log-MAP algorithm. 

	

6.2.2.4 	Linear-log-MAP algorithm 

The Linear-Log-MAP algorithm provides a tradeoff between the Log-MAP algorithm and the 

Constant-Log-MAP, which adopts the following linear approximation for a MAX function: 

10 	 if x - y> T 	
(6.15) (x,y)= max(xY)+1 

(I 	) if  Ix—yl:r.T 

Rather than a nonlinear correction function in the Log-MAP algorithm, the Linear-Log-MAP 

algorithm exploiting a linear correction function not only reduces the computation 
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complexity, but also compensates for the performance loss. The comparison of three 

different correction functions is illustrated in Figure 6.2. 

Correct Function Companson 
V. 

--login p 

0. 	 Constant Logrnap(C=0.5 1=1.5) 
Linear Logmap(a=.0.5. 1=1.5) 
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0. 

0. 

0. 

0. 

I 	 I 	 I 	 I 
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Figure 6.2 Correct functions of different approximation 

In the classical binary Turbo MAP decoder,: only two arguments need to be considered'in 

MAX' function. However, in the case of M-binary Turbo codes, each MAX' function 

contains 2  arguments. In addition, a MAX'function with 2m  arguments can be recursively 

calculated by MAX' functions with two arguments: 

X2.  )=MIAXSWrAX*(XI,X2),•••,MIAX*(X2,.I,X2m)) 	(6.16) 

6.2.2.5 MAX-Log-MAP Algorithm 

On the other hand, MAX-Log-MAP and Enhanced MAX-Log-MAP' approximations eliminate 

the correction function and directly compute MAX * by: 

	

MAX'(x1,x2, ... x)—MAX(x 1 ,x2 ,...x 1 ) 	 (6.17) 

In the case of classical Turbo codes, the MAX-Log-MAP algorithm can reduce computational 

cost by half compared with other approximate MAP algorithms with correction functions, 

but it has to pay 0.5dB performance loss as the price [87]'. In addition, Enhanced 

Max-Log-MAP algorithm scales the extrinsic information with a constant coefficient smaller 

than 1.0, typically around 0.75, to compensate for the performance loss caused by rough 
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approximation of MAX * 

6.2.3 Metric Initialization for Circular Turbo Code 

It can be seen from Equation 6.7 that both forward and backward metrics are calculated 

recursively. The initial values of forward and backward metrics can dramatically affect the 

values of following forward and backward metrics and also the Turbo decoding 

performance. 

In the case of classical Turbo codes, since the tail bits compel trellis starting and 'ending at 

the zero-state, forward metrics and backward metrics can be easily initialized as: 

a0 (S0  =0)=1 

a0 (S0  = s) =0 for all s o 0 

IBN (SN  O)—1 	
(6.18) 

-...  

flN(SN—s)-0 forallso0 

This kind of initialization emphasizes that both forward and backward metric computations 

are expected to start from zero-state. 

However, the trellis of circular Turbo codes begins and finishes at a circular state which is 

unknown to decoder. Since the initial values might dramatically affect the decoding 

performance, a special initial value estimation module has to be introduced to the circular 

Turbo decoder. 

[96] [97] suggested that the circular state can be obtained by the decoder through starting the 

forward and backward some steps ahead of the circular states, called the prologue part. In 

practice, a prologue of 32 steps is sufficient to converge to the right circular state. However, 

this scheme imposes on extra decoding latency and computational cost contributed by the 

forward and backward metrics computations in the prologue part. 

Owing to the iterative feature of a Turbo decoder, we proposed two new approaches to 

initialize forward metrics and backward metrics. The first approach we call feedback 

initialization. The mechanism of feedback initialization is that before the first iteration, all 

treffis states will be assumed to be equiprobable, and forward metrics and backward metrics 
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are set to value one: 

a0 (S0  = s) = 1 

13N(SN =s)=1 
(6.19) 

During the MAP decoding process, forward and backward metrics are recursively updated 

according to Equation 6.7. During the decoding process, some initialization errors can be 

rectified. Thus the final forward and backward metrics (aN  (SN  = s), (S 0  = s)) represent 

much more reliable information than initial ones. Since the beginning and ending of the 

trellis are merged at the same state, the final forward metrics and backward metrics of 

current iteration can be used to initialize the forward and backward metrics at the next 

iteration. 

In contrast with the prologue approach, more errors are produced by the feedback 

initialization approach at the first several iterations. However, with the increasing of the 

number of iterations, the performance can be improved further. Most importantly, the 

feedback approach eliminates the prologue part in order to reduce the decoding latency and 

additional computational cost. 

The feedback initialization approach produces more errors at the first several iterations than 

the prologue approach because of the arbitrary assumption that all trellis states are 

equiprobable at the beginning. Thus, a hybrid initialization approach can be proposed to 

remove this drawback. In the hybrid approach, in the first iteration, the initial forward and 

backward metrics are acquired from a prologue part. However, during the following iterative 

process, the initial values are inherited from previous iterations. 

6.3 Application of M-binary circular Turbo codes 

Due to the significant advantages of M-binary circular Turbo codes, its special case, double 

binary circular Turbo codes, have been standardized in DVB and WiMAX specification as 

one of channel coding approaches. The following parts will analyze the tradeoff between 

different decoding algorithms and conclude the most suitable decoding algorithm for 

hardware implementation. 
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6.3.1 Double binary circular 'ilirbo encoder 

When M is equal to 2, at every clock cycle, a vector comprising 2bits is fed into an RSC 

encoder which outputs two systematic bits and two parity bits. The encoder structure of 

double binary circular Turbo codes standardized in IEEE 802.16 is depicted in Figure 6.3. It 

can be seen that the encoder is a parallel concatenation of two identical RSC encoders. The 

corresponding encoded word consists of two systematic bits and four parity bits. The 

systematic bits are copies of input bits and parity bits correspond to outputs of two RSC 

encoders. 

A 
B 

Y 1 (Y2 ) 

W 1 (W 2) 

Figure 6.3 Double binary RCS encoder [11] 

6.3.2 Double binary circular decoder architecture 

The architecture for the double binary Turbo decoder is described in Figure 6.4. It can be 

seen that at a time, two systematic bits YS(Ak,Bk)  and two parity bits Y,(A!k,BIk)  are 

fed to MAP decoder I. MAP decoder II will take two interleaved systematic bits and another 

two parity bits Y,, (A2k  , B2k ). The iterative operations are highlighted in red. The extrinsic 

information In P (Uk I ) from a MAP decoder will be passed to the other MAP decoder 

as the priori information. The dashed line indicates the metric initialisation approach where 

the final forward and backward metrics of each MAP decoder will be served as the initial 

metrics in the next iteration. In the end, the hard decision block will select the data pair with 

the maximum posterior probability as the decoder output { A ,Bk }. 
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Figure 6.4 Double binary circular Turbo decoder architecture 

6.3.3 Decoding performance comparison 

In the previous section, several candidates' decoding algorithms for M-binary circular Turbo 

decoders have been addressed. Since the decoding performance, such as BER and PER, is an 

important factor in selecting a suitable implemented algorithm, a system model including. 

encoder, decoder and channel model has been built in C to estimate the tradeoffs between 

different decoding algorithms. During the comparisons, unless otherwise stated, system 

parameters (which are defined by WiMAX specification) selected are as follows: 

	

• 288bits per frame 	 . 

• Code rate 1/2 

• AWGN channel and BPSK modulation 

6.33.1 	Initialization approaches 

In order to solve the metric initialization conundrum, three initialization approaches 

(prologue approach, feedback approach and hybrid approach) are presented in Section 6.2.3.. 

The PER and BER plots for the three initialization approaches are illustrated in Figure 6.5 

and Figure 6.6, respectively. It can be clearly seen that all three initialization approaches can 

provide superior decoding performance as compared with the decoder without metrics 

initialization. 

In addition, after two iterative decoding processes, the prologue approach outperforms the 
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II. 

w 

other twoapproaches. The performance of the hybrid approach is slightly better than that of 

the feedback approach in terms of both FER and BER. However, there are no evident 

differences among these three approaches after four iterations. Since there is no obvious 

FER or BER gain after five or six iterative decoding process, it can be concluded that the 

feedback approach can provide the same performance as the prologue and hybrid approaches. 

On the other hand, according to Section 6.2.3, the feedback approach claims the least 

computational cost among three initialization approaches. In addition, by removing the 

prologue procedure, the feedback approach maintains a consistent decoding process, which 

can facilitate the hardware implementation. Therefore, the feedback approach is the most 

suitable candidate for a high-speed double binary circular Turbo decoder. 
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6.3.3.2 MAP decoder algorithms 

In order to simplify the implementation of a MAP decoder,. five approximate MAP 

algorithms have been illustrated in Section 6.2.2. It can be seen from Equation 6.12 to 6.17 

that these approximations are tradeoffs between performance and computational cost. Their 

FERJBER performances have been investigated in order to find out the best balance point 

between performance and computational cost. - - 

It can be seen from Figure 6.7 and Figure 6.8 that, although the MAX-Log-MAP requires the 

least computational cost for each iterative process by a means of approximating MAX to 

maximum operation, it suffers from the worst performance degradation. On the other hand, 

the Constant-Log-MAP algorithm approximates correction function to either a constant C or-

a value of zero, which achieves better performance than. MAX-Log-MAP, but still incurs 
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0.2dB performance degradation in terms of FER and (1). 1 dB performance degradation in 

terms of BER as compared with Log-MAP Linear-Log-MAP and Enhanced MAX-Log-MAP. 

In addition, after four iterations, Log-MAP Linear-Log-MAP and Enhanced MAX-Log-MAP 

can achieve the same decoding performance. However, from the computational complexity 

point of view, Enhanced MAX-Log-MAP stands out from the three approximations. 

On the other hand, the number of iterations is another important parameter that has to be 

investigated. With the increasing of the number of iterations, the decoding performance is 

improved and the computational cost is augmented indeed. It can be seen from Figure 6.7 

and Figure 6.8, while the number of iterations increases from two to four, the performance 

improvement caused by the increase of the number of iterations is remarkable. However, the 

performance gain between four iterations and six iterations is little. Moreover, eight iterations 

perform the same results compared with six iterations, but it demands 33.33% more 

computational cost. Thus, it can be concluded that a double binary circular Turbo decoder with 

five or six iterations is capable of providing a decent decoding performance. 
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6.4 Conclusion 

In this chapter, the fundamental principles of the M-binary circular Turbo coding system have 

been described. We described the mathematic model for the M-binary circular Turbo codes 

system based on the MAP algorithm. In addition, five approximate MAP algorithms with 

optimized computational cost have been evolved from classical Turbo decoder to M-binary 

Turbo decoder. Aiming at the circular Turbo codes, since the trellis starting and ending states are 

unknown to decoder, two novel metric initialization schemes have been proposed to reduce the 

computational cost of the traditional prologue initialization approach. 

Furthermore, the double binary circular Turbo codes system has been selected as the test bench 

to demonstrate the system performance under different initialization approaches and MAP 

algorithms. According to the FER and BER performance, the Enhanced MAX-Log-MAP 

algorithm and feedback initialization approach show the best tradeoff between 

computational cost and decoding performance. In the following chapter, an efficient 

hardware implementation of the double binary circular Turbo decoder based on the Enhanced 

MAX-Log-MAP algorithm and feedback initialization approach will be elaborated. 
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Chapter TO0 

mplementation of Double Binary 
Circular Turbo Decoder on RICA 
Platform 

Double binary circular Turbo codes have become a part of the WiMAX and DVB-RSC 

system, and also are under discussion for use in future communication standards which 

demand fast data transmission speed in the range of 10400Mbps and even above. Compared 

with the single binary Turbo decoder, the double binary circular Turbo decoder demands 

around twice as much computational cost, thus how to implement a double binary circular 

Turbo decoder to fulfill the high-throughput, low-power consumption and flexibility 

criterion of future communication systems is an attractive topic. Since the RICA architecture 

has outstanding performance in terms of flexibility, programmability, throughput and power 

consumption, this chapter will continue to focus on RICA architecture. 

In Chapter 6 a system model for double binary circular Turbo decoders was built and the 

suitable decoder algorithms were analyzed. Based on the findings of Chapter 6, the 

Enhanced MAX-Log-MAP algorithm with feedback initialization approach outperforms 

other algorithms in terms of performance and computational cost. This chapter will focus on 
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the RICA implementation of the double binary circular Turbo decoder, such as parallel 

implementation schemes, quantization schemes, efficient data packing and instruction 

scheduling on the RICA platform. 

This chapter is organized as follows. Section 7.1 makes reasonable analysis of the 

implementation bottleneck of the proposed algorithm. In order to achieve high throughput, 

the inherent parallelism of the decoding algorithm has to be explored. Section 7.2 will 

present the parallel implementation schemes for the double binary circular decoder and also 

propose a novel approach to reducing the computational cost and speed-up the decoding 

process. Since directly employing floating-point arithmetic is usually not a proper choice for 

practical implementations, transformation from floating-point to fixed-point representation 

becomes mandatory. A suitable quantization scheme for the proposed decoding algorithms is 

investigated in Section 7.3. The implementation of proposed algorithms with 

instruction-level and data-level optimization on RICA architecture is illustrated in Section 

7.4. The implementation results and conclusion can be accessed in Section 7.5 and Section 

7.6, respectively. 

7.1 Implementation bottleneck of a MAP decoder 

The pseudo codes for an Enhanced MAX-Log-MAP decoder with feedback initialization are 

shown in Figure 7.1. It can be seen that there are four major processing steps of a MAP 

decoder: branch metric computation, forward metric computation, backward metric 

computation and extrinsic information computation. The bottlenecks of a MAP decoder are 

mainly exhibited in two aspects. 

According to the estimation and comparison in [89], in the case of 3GPP, a Turbo decoder 

with MAX-Log-MAP demands 2.5 times more computational cost than a constraint length 

K=7 Viterbi decoder. On the other hand, based on Equation 6.12, it can be seen that a double 

binary Turbo decoder might double the computational cost of a single binary Turbo decoder 

employed in 3GPP. Thus, the huge computational cost is one of the major obstacles to 

achieving an efficient double binary circular Turbo decoder implementation. 
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MAP Decoder: 

{ L: length of a frame} 

recA(kE{O ... L _1}),recB(kE{O ... L - i}): noised systematic bits 

recY(kE{O ... L_1}),recW(kE{O ... L _1}):noised parity bits 

A (kE{o- - .L _i}): priori probabilities 

a(mE{O ... 7},kE{O ... L}): forward path metrics 

a (m E{O.. 7}): initial value for forward path metrics 

fi(mE{O ... 7},kE{O...L}): backward path metrics 

fi (m{O -- -7}): initial value for backward path metrics 

A(kE{O ... L _i}): branch metric 

A, (k E{O. -L - i}) : extrinsic probabilities 

I/Branch metrics computation 

for k=OtoL-1 

A(k) = BMU(rec4(k),recB(k),recY(k),recW(k),A,,(k)) 

end 

I/Initialize forward metrics and backward metrics 

for m = 0 to 7 

a(m,O)= a,,(m),fi(m,L -i)= fl(m) 

end 

I/Updating forward metrics 

for k = 1 to L 

for m = 0 to 3 

{a(m,k),a(m + 4,k)} = PMU(a(a,k -1),a(b,k -1),a(c,k -1),a(d,k -1),A(k -1)) 

end 

end 

I/Updating backward metrics (in a reversed order) 

for k = L-1 to 0 

for m = 0 to 3 

{p(2* m,k),fi(2* m  +1,k)}= PMU(fi(a,k +1),fl(b,k +1),fi(c,k + 1),fl(d,k + 1),A(k)) 

end 

end 

I/Extrinsic information computation 

fork=OtoL-1 

A,(k)= softoutput(a(0,k) ,..,a(7,k),fi(o,k +1),..fl(7,k +1),recY(k),recW(k)) 

end 

I/Memorizing the final forward metrics and backward metrics 

form=Oto7 

a(m,L),,6jj  

Figure 7.1 Pseudo-code description for a MAP decoder 
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In addition to computational complexity, a great demand of data transfers is also required by 

the targeted decoder. For instance, during the branch metric computation step, 16 branch 

metrics are generated and stored in the memory, which will be loaded by forward and 

backward metric computations, respectively. At every trellis stage, the updated metrics also 

have to be stored in the memory, which are required by metric computations at the next stage 

or served as the initial metrics for the next iteration. 

Because of the huge computational cost and data transfer operations, an implementation 

following the flow presented in Figure 7.1 leads to the unacceptable execution delay. In 

order to implement a double binary circular Turbo decoder with a high throughput, one 

feasible way is to exploit the inner parallelism of a MAP decoder. The following section will 

introduce several prevalent parallel MAP decoder algorithms and also propose a novel 

parallel MAP decoder algorithm, which not only demands less computational complexity, 

but also achieves higher throughput and better decoding performance as compared with its 

counterparts. 

7.2 Parallel MAP decoder algorithm 

To fulfill significant high throughput required by modern communication standards, the 

system requirement can not only be achieved by increasing the clock frequency because of 

the technological constraints. Therefore, exploring the algorithm level parallelism is crucial 

for an implementation of a high-speed double binary circular Turbo decoder. 

7.2.1 Data dependence 

From the findings of Chapter 6, the data dependencies between these four steps of a MAP 

decoder are presented as follows. The first task of a MAP decoder is to compute branch 

metrics according to the received signals. Forward metrics and backward metrics are 

obtained by recursive computations. It can be seen from Equation 6.7 that forward 

metrics a (s) only depend on previous metrics a 1  (s) and branch metrics Yk (s', s). Since 

backward metric are calculated in a reversed order and backward metrics 18k1  (s ' ) are 
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deduced by backward metrics 13k  (s) and branch metrics Yk  (s', s). However, there is no data 

dependency between forward metrics and backward metrics which means backward metric 

computation can be processed before, in parallel to, or after forward metric computation. On 

the other hand, extrinsic information can be calculated independently from any other 

extrinsic information. However, it depends on forward metric computation and backward 

metric computation finishing first. 

7.2.2 Sliding window MAP decoder 

If a whole frame can be split into several sub-blocks and each sub-block can be decoded 

independently, the data dependence inside a MAP decoder can be eliminated and a high 

throughput Turbo decoder is realized. This kind of approach is called sliding window which 

was originally introduced for a Viterbi decoder [98], and now has been widely adopted by a 

Turbo decoder. Based on the truncation employed, there are two types of sliding window 

schemes, one-side sliding window and two-side sliding window schemes. 

7.2.2.1 One-side sliding window 

In a one-side sliding window scheme [99] [100] [101], either forward metric or backward 

metric computation is truncated. Figure 7.2 shows an example where backward metric 

computation is truncated. It can be seen from Figure 7.2 that forward metric computation 

represented by ©, proceeds continuously across window borders. Otherwise, backward 

metric and extrinsic information computation, represented by ©, start at the end of each 

window and stop at the beginning. Since backward metric computation is truncated, in order 

to ensure that there is no significant performance loss incurred by the truncation, additional 

guard windows, represented by © and providing initial metrics for the truncated backward 

metric computations, have to be incorporated. Since the extrinsic information computation 

only depends on the forward metric computation within the same window finishing first, the 

decoding latency can be reduced. In addition, D, © and © of different windows can be 

executed simultaneously, thus the throughput can be further improved. 
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Figure 7.2 One-side guard window scheme 

7.2.2.2 Two-side sliding window 

In contrast to a one-side sliding window, a two-side sliding window scheme [102] [103] 

introduces much more parallelizability to a MAP decoder. In a two-side sliding window 

scheme, which is illustrated in Figure 7.3, both forward and backward metric computations 

are truncated, thus the operations within a window are totally independent of those within 

other windows. The decoding processes of different windows can be executed in parallel 

which results in a distinct reduction on decoding time. The Turbo decoder with the highest 

throughput is achieved by this scheme [103]. However, two additional guard windows (@ 

and ®) which provide initial metrics for forward and backward metric computations must 

be added on. 
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7.2.2.3 Enhanced two-side sliding window 

In the cases of one-side and two-side sliding window schemes, thanks to guard windows, the 

performance loss caused by trellis truncation can be minimized. However, it has to pay 

additional computational cost as the price of performance retrieval. 

Unlike the Viterbi decoder, the Turbo decoder performs an iterative process. Regarding the 

simulation provided in Chapter 6, it can be seen that each MAP decoder must be iteratively 

executed at least five or six times to perform a decent decoding performance. Based on this 

iterative characteristic of the Turbo decoder, we propose an enhanced two -side sliding 

window which removes guard windows and also provides an attractive performance. Figure 

7.4 depicts the proposed enhanced two -side sliding window scheme and shows two 

consecutive iterative operations. Since there is no guard window in an enhanced two -side 

sliding window scheme, initial values for both forward and backward metrics are set to zero 

in the first iteration. However, at the end of steps ® and ®, the final forward and backward 
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metrics are stored in memory and will be used by the windows at the second iteration as the 

initial forward and backward metrics. For example, the red and blue curves show the 

transmission of backward metrics between the first iteration and the second iteration. 

The benefits of the proposed sliding window scheme are exhibited in two aspects. Since it 

totally removes guard windows, nearly one third of execution time is saved and higher 

throughput can be achieved as compared with a two-side sliding window scheme [102] [103]. 

Secondly, from the hardware implementation point' of view, the power consumption and 

silicon area consumed by guard windows are also removed, thus life time and area of 

terminal receiver can be further improved. 

4—Fis'sS MAP 0000der --- 5. 4—Second MAP Decoder—a. 4—Fst MAP Decoder --- b. 4—Second MAP Decocr- 

First Iteration 	 4 	 Second Iteration 	 T 

Figure 7.4 Enhanced two-side sliding window scheme 

7.2.3 Comparison amongst sliding window schemes 

In this section, three sliding window schemes are compared in terms of operational cost, 

memory requirement and decoding execution time. In addition, the performance comparison 

in terms of FER and BER are also provided. 
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7.2.3.1 	Computational cost 

Operational cost 

Table 7.1 tabulates the number of operations cost by one-side sliding window, two-side 

sliding window and enhanced two-side sliding window schemes to decode one-bit data. 

Since the enhanced MAX-LOG-MAP algorithm with feedback initialization approach is 

assumed, only ADD/SUB and MAX operations are required by each scheme. From Table 7.1, 

it can see that two-side sliding window schemes require more operations than one-side 

sliding window because one more guard window is required by each sub-window. However, 

the enhanced two-side sliding window totally eliminates guard windows, and it needs the 

least number of operations amongst three sliding window schemes. 

Table 7.1 Comparison of operations per decoded bit 

Algonthms 
No. OF OPERATIONS 

ADD/SUB MAX 

O-smE SLIDING 127 60.5 

TWO-SIDE SLIDING 161 76 

ENHANCED TWO-SIDE 93 45 

Memoiy requirements 

The number of memory operations per decoded bit and total memory requirement to decode 

a frame with size N is tabulated in Table 7.2. In terms of the number of memory operations, 

due to the metric calculations of guard windows, one-side sliding window and two-side 

sliding window schemes need more memory accessing as compared with enhanced two-side 

sliding window schemes. On the other hand, since the one-side sliding window can exploit a 

ping-pong based memory to buffer forward metrics, it requires the minimum size of memory 

[101].The enhanced two-side sliding window scheme demands more memory than the other 

two schemes, since it has to store the final metrics at the end of each iterative decoding 

process. 
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Table 7.2 Memory operation and requirement comparison (W represents the window size, N 
represents frame size (N>2W) and K represents the word-length) 

Algorithms 
No. OF MEMORY 

OPERATIONS TOTAL MEMORY REQUIREMENT 

L0A.n STORE 

ONE-SIDE SLIDING 21 6 (16*W+4*N+16)*K 

TWO-SIDE SLIDING 25 6 (12*N+16)*K 

ENHANCED TWO-SIDE 17 6 (12*N+16*N/W)*K 

C. Decoding execution time 

In terms of, decoding execution time, Table 7.3 shows that the two-side sliding window 

scheme outperforms the one-side sliding window scheme, because it introduces more 

parallelism to the decoding process. As expected, it can be seen that the enhanced two-side 

sliding window scheme requires least execution time of the three sliding window schemes. 

In addition, since the decoding time depends on window size W, with a smaller window size, 

higher decoding throughput can be achieved. 

Table 7.3 Decoding time comparison (T1 , T2, T3  and T4  represent the execution time of branch metric, 
forward metric, backward metric and extrinsic information computation, respectively, W represents 

the window size, N is the frame size and Iter is the number of iterations) 

Algorithms TOTAL DECODING TIME 

ONE-SIDE SLIDING 2*Iter*( (T1  + T2  )*W/N + T1  + T2  + T4) 

TWO-SIDE SLIDING 2*Iter*(3*Ti  + 2*T2  + T3  + T4)*W/2N 

ENHANCED TWO-SIDE 2*Iter*(2*Ti  + T2  + T3  + T4)*W/2N 

7.2.3.2 Performance comparison 

A. Sliding windows VS consecutive decoding process 

Figure 7.5 and Figure 7.6 show the comparison in terms of FER and BER performance 

between the enhanced two-side sliding window scheme and consecutive MAP decoders. 

From the performance curves of the enhanced two-side sliding window, it can be seen that 

FER/BER performance can be improved by increasing the window size. A better 

performance can be achieved by a larger window size. When compared with the consecutive 

MAP decoder, in the case of window size 6, the enhanced two-side sliding window scheme 

with enhanced MAX-LOG-MAP algorithm is still superior to consecutive decoding with 

MAX-LOG-MAP algorithm. When the window size is increased to 24, there is no visible 
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difference between the enhanced two-side sliding window scheme and consecutive decoding 

both with enhanced MAX-LOG-MAP algorithm. 
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B. Enhanced two-side sliding window VS normal two-side sliding window 

Since the enhanced two-side sliding window scheme removes guard windows, the FER/BER 

performance comparison between the enhanced two-side sliding window and two-side 

sliding window scheme is extremely important, since it has to be proved that removing the 

guard window will not incur any performance loss. The comparison consists of two parts, 

size of sliding window and number of iterations. 

1) Size of sliding window 

In sliding window schemes, since truncations introduce performance loss, there is a 

limitation on the size of window. According to [104], a rule of thumb for the minimum 

length of guard window is 40 in the case of the 3GPP standard. However, there are not any 

published works which investigated suitable window size for double binary circular Turbo 

codes. 

Figure 7.8 and Figure 7.9 show the performances of the double binary circular Turbo 

decoder exploiting the enhanced two-side sliding window and the two-side sliding window 

with different window size. It can be clearly seen that in the case of window size 6 and 12, 

the enhanced two-side sliding window outperforms the two-side sliding window. Only when 

sliding window size is increased to 24, the two-side sliding window scheme can obtain a 

performance similar to the enhanced two-side sliding window scheme. It also can be seen 
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that the enhanced two-side sliding window scheme has the ability to achieve higher 

throughput than the two-side sliding window scheme, because with small sliding window 

sizes, such as 6 and 12, the enhanced two-side sliding window scheme still can provide 

attractive performance. 
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Figure 7.8 BER performance on different sizes 
of two-side sliding window schemes 

2) Number of Iterations 

As illustrated in Chapter 6, FER and BER performance are also subject to the number of 

iterations; with the increase of number of iterations, FER and BER performance can be 

significantly improved. However, computational cost and power consumption will also be 

augmented. Since in the enhanced two-side sliding window scheme, initial values of each 

sliding window are provided by previous iterations rather than by guard windows at current 

iteration, the effect of the number of iteration has to be compared with the two-side sliding 

window scheme. 

We have chosen a window size of 24 as the test bench which is the minimum requirement of 

the two-side sliding window scheme. The FER and BER performance are plotted in Figure 

7.9 and Figure 7.10, respectively. These plots show that in the case of two and four iterations, 

the two-side sliding window scheme outperforms the enhanced two-side sliding window 

scheme. However, for a higher number of iterations, the curves of the two schemes converge. 

Since a typical system requires at least five or six iterations, it can be concluded that there is 

no obvious performance loss when employing the enhanced two-side sliding window 

scheme. 

125 



12 

Wa 

0 	9 - 
22 	 2 

- - - - - - - - -\\ \- - - - - 

	

Em.dt-.Io.n.4 ------- 	- - - 
ed 	

- 
- 	 O4 - - - 	- 	- - - 

t, 	h.8 	 \ .. 0 	 o-a 
 —E—Nam,MtwoathIa=2 

--Pm.kj.I.4 

N...1  
—s--- 	Kd. I-8 

0 	 nc 	 I 	 IS 	 2 	40 

EM () 

Figure 7.9 FER performance on different 
number of iterations 

a W fr,,.. Wodoar.iz. - 24 

10 

to 

io 	 E,w,c.dIwDa.a2  
'EE 

-  
10 	

Erw.d 	t. - - - - - - \- 	- - 

---,two-.Id.I.2 

to 	—v---tmaitwo-0IdeI4 
--PamaiIwo-ad.NW=6 

'°.''.' 	
::::i:::::__:\ 

16,  

Figure 7.10 BER performance on different 
number of iterations 

7.3 Fixed-point MAP decoder 

In previous works, a floating-point representation was employed to model the MAP decoder. 

However, a floating-point representation is not the best choice for practical implementations, 

because of its high cost of hardware. Although, a fixed-point implementation is accepted by 

all architectures, the finite word length will deteriorate the system performance. Although 

some works [105] [106] [107] have been published regarding a suitable fixed-point 

implementation of a Turbo decoder, these works are limited to single binary Turbo codes. 

To our best knowledge, this is the first work that investigates a suitable quantization for the 

double binary circular Turbo decoder with our proposed sliding window scheme. 

The notation (q, f) is used to denote a quantization scheme where q represents the total 

number of bits and f represents the fractional part. In general, the conversion from 

floating-point to fixed-point representation has to consider three major objectives [108]: 

• The dynamic range which is managed by the number of integer bits (q - f) has to be 

sufficiently large to avoid overflow during the processing. 

• In order to achieve appropriate accuracy of the algorithm, enough fractional bits (f) 

have to be provided. 

• The sum of integer and fractional bits (q) must be minimized. In a hardware 

implementation, this will reduce the area and power consumption of the entire design. 

As described in the previous section, a MAP decoder reads four received symbols 

Yk (A,B,Y,W). Based on these symbols, branch metrics, forward metrics, backward metrics 
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and extrinsic information are calculated. Finally, the extrinsic information is passed to the other 

MAP decoder as priori information. Hence, the following variables of a MAP decoder have to be 

quantized: 

• Input signals 

• Internal metrics (branch metrics, forward path metrics and backward path metrics) 

• Extrinsic information 

7.3.1 Quantization of input signals 

The quantization on input signals is crucial to the whole design, because precision of input 

signals directly determines the system performance and the quantization of extrinsic 

information and internal metrics both are subject to the input signals. 

Since an AWGN channel is assumed, the channel noise is distributed with a Gaussian 

distribution. More than 99% of the channel noise is covered by the dynamic range of [-3, 31. 

Since a large quantization length will increase area and power of the whole decoder and a 

small quantization length may incur poor performance, our analysis in this section will be 

limited to the word lengths of 3, 4 and 5 bits for input signals. FER and BER performance 

for different quantization schemes, where the first, second and third pairs of numbers 

represent the quantization schemes for input signals, internal metrics and extrinsic 

information, respectively, are shown in Figure 7.11 and Figure 7.12, respectively. For 

example, the first row of numbers (3:0, 8:0, 5:0) represents the quantization schemes for 

input signals, internal metrics and extrinsic information are (3, 0), (8, 0) and (5, 0), 

respectively. 

In the case of 3 bits quantization, the best performance is provided by the (3, 1) scheme. 

Similarly, for 4 bits quantization, the (4, 2) scheme outperforms the (4, 1) scheme. Moreover, 

as the graphs clearly show, there is not much difference between the (3, 1) and (4, 1) 

schemes. On the other hand, increasing the word length to 5 bits with the (5, 3) scheme did 

not provide much improvement compared to the (4, 2) scheme. As a result of all these, we 

can conclude that the best choice is the (4, 2) scheme, as it provides a performance close to 

floating point with the minimum word length. 
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7.3.2 Quantization of extrinsic information 

Extrinsic information which is transferred between two MAP decoders is also critical to the 

hardware implementation. Since 2 bits are used to represent the fractional part for input 

signals, the same number of bits for the fractional part could be used for extrinsic 

information as well. For extrinsic information, various quantization schemes have been 

tested, such as (4, 2), (5, 2), (6, 2) and (7, 2). Their FER and BER performances are plotted 

in Figure 7.13 and Figure 7.14, respectively. It can be seen that the performance drops 

dramatically if the dynamic range is less than 3 bits. But there is no further improvement on 

both FER and BER performances when the dynamic range is larger than 4 bits. For example, 

the (6, 2) quantization scheme has a range from -7.75 to 7.75, and -7.75 corresponds to the 

probability of 4.3e-4 which is already quite a low probability. Further increasing the 

dynamic range of extrinsic information can only take the priori probability closer to 0, and 

its effect on the other MAP decoder will be negligible. Hence, quantization scheme (6, 2) is 

suitable for representing the extrinsic information. 

7.3.3 Quantization on internal metrics 

Since branch metrics, forward metrics and backward metrics are subject to input signals and 

extrinsic information, as long as quantization schemes for input signals and extrinsic 

information have been decided, the minimum bit-width requirement for internal metrics can 

be obtained. If (4, 2) and (6, 2) schemes are selected for input signals and extrinsic 
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information, the (9, 2) scheme for the internal metrics can give a decent performance but no 

further reduction on internal metrics can be accepted. 
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7.4 Implementation of a MAP decoder on RICA 

architecture 

The detailed implementation issues of a double binary circular Turbo decoder on the 

dynamical reconfigurable architecture, RICA, will be presented in this section. 

7.4.1 Branch metric computation 

The first task of a MAP decoder is calculating the branch metrics from its input values, 

which are related to the respective state transition probabilities. According to the findings of 

Chapter 6, in the case of double binary Turbo codes, branch metrics can be presented by: 

L(s',$)=lnyk(s',$)=e •d +lnP(x) 
	

(7.I) 

where e and d represent the transmitted and received codeword respectively, and 

In P(xk ) is a-priori probabilities which is presented in logarithmic domain. 

At a time, a MAP decoder reads two systematic symbols and two parity symbols from the 
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input buffer. It can be seen that the first term of Equation 7.1 contains 16 different 

combinations. However, due to the symmetrical characteristic, only eight of them need to be 

calculated and the other eight values can be obtained by invertion. 

Based on the sub-word parallel mechanismon RICA, two branch metric computations can 

be packed and calculated together. The scheduled branch metric computation is shown in 

Figure 7.15. A, B, Y, W represent systematic symbols and parity symbols, respectively. Each 

of them is presented by 8bits. In step 3, the packing function of the LOGIC cell would pack 

and extend two 8bits data into one 32bits data. In addition, the priori probabilities have been 

already packed and stored in the memory. In step 4, eight 32bits symbols which contain 16 

branch metrics are formed by sub-word addition and subtraction operations. 

c 	) Unpacked , I 	 Packed c 	Single 	 Vector 
Data 	 I J 	Data U 	Operation M Operation 

Figure 7.15 Scheduled branch metric computation on RICA 

7.4.2 Forward and backward metric computations 

Forward and backward metric recursions are the crucial parts of a MAP decoder. The basic 

block of the recursion is the famed butterfly function. A butterfly of forward metrié 
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computation, illustrated in Figure 7.16, produces two new metrics through four ancestral 

metrics and four branch metrics. 

k-i 

ak_I(sa)L... 	
A,(I) 	

_ISak(sm) 

ak _ I (5b)T1_ 
ak(sfl ) 

ak_I(sC ), I  

ak_I(sd) 

ak (Sm) = MAX (ak_I (Sa ) + A_I(J),ak_I (Sb) + A_I(JJ),ak_, (s ) + A_ I (JII),ak _ I  (sa ) + 

1k (s0 ) = MAX (ak _ I (s0 ) + A_ I (H),ak _ I  (Sb) + A_I(J),ak_I (se)  + A_ I (!V),ak _ I  ( 5d ) + 

Figure 7.16 Butterfly function for forward metric computation 

The trellis diagram of double binary circular Turbo codes is depicted in Figure 7.17. It can 

	

be seen that at each trellis stage, eight forward metrics ak 	have to be calculated and 

stored into memory. For an efficient implementation on the RICA platform, the trellis can be 

decomposed to two independent parts. The computations from different parts can be packed 

in order to reduce the function cells of the RICA platform. 

S, 	 Sk 	 S&_i 	 S 

MW 

Figure 7.17 Trellis decomposition 
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In the case of forward recursion, the computations of ak ( s  ) , a (53 ), a (54 ) a (57 ) are 

independent with ak  (si),  ak (52)' a (55 ) , a (s6 ) . Since each forward metric is 

represented by 16bits, two butterfly operations from a different trellis block can be packed 

together on a sub-word parallel RICA architecture. The scheduled forward metric 

computation on RICA is shown in Figure 7.18. 

0 

0 

0 

0 

JI Packed M Vector 
Data 	 Operation 

Figure 7.18 Scheduled forward metric computation on RICA 

It has to be emphasized that, besides the butterfly unit, a data realignment block is also 

demanded to reorder the two forward metrics in a 32bits data. In order to facilitate this kind 

of data aligning, the LOGIC cell has been extended to support shuffling the position of the 

first 16bits and last 16bits between two 32bits data. 
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On the other hand, since backward metric computation has a similar structure as forward 

metric computation, the same packing approach can be adopted in backward recursion to 

reduce the demanding function cells on the RICA platform. 

7.4.3 Extrinsic information computation 

The calculation of the extrinsic information can also be efficiently implemented on the 

sub-word parallel RICA platform. According to Chapter 6, in the case of the double binary 

Turbo decoder, 4 log domain extrinsic probabilities 1 ,L 101 L 11 ] have to be 

considered 	in 	each 	MAP 	decoder. 	In 	addition, 	distribUtive 	law 

MAX (a + c,b + c) = MAX (a,b) + c can be applied to further reduce the computational 

cost. In the case of 	computation, we can move the addition of parity symbols after 
Jk - 

maximum operation, which is denoted by Equation 7.2: 

akl (0)+IJk (0)+Y+W 

ak_I(2)+flk(DY+W 

ak _1 (5)+/ik (2)—Y—W 

L=MAX ak..I(7)+flk(3)+Y—W 

cekl (1)+,8k (4)+Y+w 

ak1 (3)-4-Iik (5)--Y+W 

akI (4)+flk (6)-Y-W 

ak1 (6)-I-fik (7)+Y—W 

(7.2) 

MAX(a kl (0)-f-fi, C (0),akI (1)+flk (4))+ Y +W 

—MAX MAX(ak_I(7)+/ik(3),ctk_I(6)+/.3k(7))+Y-W 

- 	MAX(ak_J(2)+flk(1),ak_I(3)+fik(5))—Y+W 

IMAX (a k -1  (5) +j8k  (2), ak-1  (4) + 13k (6))— Y -w 

Since the computations of four extrinsic information are independent with each other, two of 

them can be packed in a 32bits symbol. The scheduled extrinsic, information computation 

circuits are shown in Figure 7.19. The packing operations for parity symbols in step 2 are 

ignored. . 
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Figure 7.19 Scheduled extrinsic information on RICA platform 
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7.5 Performance and Results 

An Enhanced MAX-Log-MAP decoder with feedback initialization has been implemented on 

RICA architecture. The performance of each sliding window is tabulated in Table 7.4. 

Table 7.4 Proposed MAP decoder on advanced RICA 

Throughput I 	No. of Steps No. of cells 

One sliding 46.15 Mbps 31 355 window 

It can be seen from Table 7.4 that, a window-based double binary circular MAP decoder can 

provide 46.15 Mbps throughput per iteration. After pipelining, this throughput can be up to 

46.15*2.5 = 115.38 Mbps per iteration. If five iterations are assumed, the output of a double 

binary circular Turbo decoder would be 115.38/5 = 23.08 Mbps. 

The timing consumption distribution of the implemented MAP decoder is depicted in Figure 

7.21. Step D + Step © takes 43.85% of total execution time, otherwise Step © + Step ® 

consumes another 46.84%. While Step (ID + Step © requires the same computational cost as 

two guide windows of the two-side sliding window scheme, it is fair to conclude that the 

enhanced two-side sliding window scheme can reduce execution time by 30.48% as 

compared with two-side sliding window scheme on RICA architecture. 

Timing consumption distribution 

9. 31% 

Adoubbb 

46. 84 *,,M 4wo 
13. 85% 

• Step I + Step3 • Step2 + Step4 Othe 

Figure 7.20 Timing consumption distribution for the targeted MAP decoder 
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As the decoding throughput depends on the number of sliding windows, Table 7.5 summarizes 

the multiple sliding windows double binary circular Turbo decoder based on proposed algorithms, 

with five iterative processes. If RICA can provide enough hardware resources, the throughput of 

the double binary circular Turbo decoder can achieve 184.64 Mbps with eight sliding windows. 

With our best knowledge, this performance can fulfill, the requirement of any current wireless 

communication standards. 

Table 7.5 Decoding throughput with different No. of sliding windows 

Number of sliding 
windows 1 2 4 8 

Throughput (Mbps) 23.08 46.16 92.32 184.64 

In [109], a high throughput double binary circular Turbo decoder was demonstrated on an 

application specific instruction set processor (ASIP), Tensilica. By means of integrating a 

specific instruction set for double binary Turbo decoder into data path of Tensilica Xtensa 

core, [109] showed a maximum throughput of 201.6 Mbps on a 32 ASIPs Tensilica 

processor where 16 sliding windows were executed in parallel. 

However, [109] did not consider the optimization of implementation at the algorithm level, 

where the two-side sliding window algorithm was employed. The proposed double binary 

circular Turbo decoder on RICA platform produces 83.17% throughput gain as compared 

with the design presented in [109], if the same number of sliding window is exploited. 

Because of the lack of the power simulation tool, this thesis can, not provide the accurate 

power performance of the RICA architecture. However, due to the distributed cell based 

architecture of RICA, it can be assumed that RICA can achieve significant power' 

consumption as compared with general processors and DSPs, which makes RICA more 

feasible for future portable devices. 

7.6 Conclusion 

Chapter 6 and Chapter 7 have demonstrated an efficient design for the double binary circular 

Turbo decoder on the dynamic reconfigurable architecture, RICA. Rather than working at. 

the algorithm level, this chapter investigated efficient implementation approaches' to achieve 

a high throughput design for double binary circular Turbo codes..In Section 7.2, a distinct 

sliding window scheme was proposed, which not only reduced execution time by 30.48%, 
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window schemes. Since fixed-point representation is mandatory to hardware implementation, 

a suitable quantization scheme for the proposed algorithms has been provided by the 

heuristic method. In Section 7.4, a high throughput double binary circular Turbo decoder has 

been implemented on RICA architecture by means of instruction and data parallelism. In the 

end, the throughput of the Turbo decoder can be up to 184.64 Mbps with five iterative 

processes. 
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Chapter 8,0 

Conclusion and Future Works 

8.1 Research Summarize 

This thesis investigates three underlying reconfigurable architectures for portable devices 

based on two cases, the Viterbi decoder and the double binary circular Turbo decoder. 

Chapter 2 provided a review of the existing literature which was relevant to this thesis. 

In Chapter 3, a reconfigurable fabric for the Viterbi decoder was introduced. The design of 

this architecture was broken down into BMU, ACSU and SMU to support multiple Viterbi 

decoders from constraint length 3 to 9 and code rate 1/2 and 1/3. This architecture employed 

fully parallel ACSU and four memory blocks based sliding window scheme to achieve the 

expected high throughput. Due to the power saving schemes used in the design, for a 

specific application, the unused parts of BMU, butterfly units of ACSU and sub-memory 

blocks of SMU were automatically powered off, thus the dynamic power consumption of 
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these modules was down to zero. This domain specific reconfigurable fabric reduced power 

consumption by 79.3% with only a 2.2% area overhead as compared with the architecture 

without power saving strategy. But it paid 3.4 and 2.7 times the power consumption and area 

penalties for its flexibility. 

In Chapter 4, in order to reduce the design cost and time-to-market, a design methodology 

which can automatically generate a domain specific reconfigurable architecture and map 

applications on the generated architecture was proposed. By means of associated CAD tools, 

the design and verification time of a reconfigurable Viterbi decoder were decreased. Six 

Viterbi decoders with different constraint lengths and code rates have been implemented on 

the proposed architecture by the developed software tools. In contrast to commercial FPGAs, 

the proposed architecture demonstrated 66.1% power consumption and 72% area reduction 

as compared with fine-grained FPGA. 

Implementation of a Viterbi decoder on the reconfigurable instruction cell array (RICA) 

platform, a dynamic reconfigurable architecture programmed by ANSI C, was described in 

Chapter 5. In order to boost the performance, several advanced optimization approaches, 

such as sub-word parallel, custom function cells and software pipeining, have been 

proposed to accelerate the throughput of the Viterbi decoding process on the RICA platform. 

With the proposed approaches, the throughput of the Viterbi decoder can be improved up to 

91% as compared with the general RICA architecture. Ultimately, a Viterbi decoder with the 

throughput of 56.4 Mbps can be achieved by employing a full parallel ACSU architecture 

with software pipelining optimization scheme. 

Chapter 6 and Chapter 7 demonstrated an efficient double binary circular Turbo decoder 

design on the RICA platform. A system model for M-binary circular Turbo codes was built 

in Chapter 6. Based on this model, Chapter 6 explored the design space on algorithm level. 

According to the FER and BER performance, the Enhanced MAX-Log-MAP algorithm and the 

proposed feedback initialization approach exhibited the best tradeoff between computational 

cost and decoding performance for double binary circular Turbo codes. Chapter 7 

investigated the design space on implementation level and the implementation parameters, 

such as size of window inside the sliding window scheme, number of iterations and 

fixed-point representation. In the end, a double binary circular Turbo decoder with scalable 

throughput (from 23.08 Mbps to 184.64 Mbps) was demonstrated on the RICA platform. 
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8.2 Specific Findings 

This thesis has investigated several reconflgurable architectures targeting for beyond 3G portable 

devices. The architecture presented in Chapter 3 provided the best performance in terms of low 

consumption, area and throughput, and it also can be easily integrated with other IN and a RISC 

processor resulting in an efficient and effective platform for beyond 3G portable devices. 

However, its tremendous design and verification cost limit its further applications. 

A reconfigurable architecture composed of heterogeneous coarse-grained processing units and 

a 2-D programmable interconnection mesh was proposed in Chapter 4. As compared with 

generic fine-grained FPGA, this architecture demonstrated 66.1% power consumption and 

28% area reduction. Most importantly, the associated CAD design flow can automatically 

generate a reconfigurable architecture, and map applications on the targeted architecture, 

thus the time-to-market and non-recurring engineering cost are lessened. The design 

methodology presented in Chapter 4 exhibits an attractive potential value for beyond 3G 

portable devices. 

A reconfigurable and extendible architecture, RICA, was introduced in Chapter 5. The hardware 

modules inside the RICA consist of heterogeneous coarse-grained instruction cells (ICs) 

which can execute assembly-like instructions. The RICA exhibited better programmability 

than the previous two architectures, since the associated tools can take the high-level C 

codes and transform them into the final binary to be loaded into the hardware. As compared 

with the previous two architectures, the RICA must pay a performance penalty for its 

programmability. In the case of the Viterbi decoder, the maximum throughput so far is 56.4 

Mbps. In addition, the custom defined ICs can be easily extended on the base architecture, 

which eliminated the need for RISC+IP-based architecture. The approach simplified the 

whole system architecture and provided the opportunities to remove the bottleneck of 

software implementation. 

Chapters 6 and 7 demonstrated a top-down design approach to implement a considerable 

complex decoding algorithm, double binary circular Turbo decoder on RICA platform. By 

means of building a system model for double binary circular Turbo codes, the tradeoffs 

between computational cost and decoding performance for different decoding algorithms 

have been comprehensively studied. Enhanced MAX-Log-MAP algorithm, feedback 
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initialization approach and enhanced two-side sliding window stood out from their 

competitors. Since fixed-point representation is a must for RICA implementation, the 

suitable quantization schemes for input signals, internal metrics and extrinsic information 

were investigated based on a bit-true fixed-point model. The findings from both algorithm 

and implementation level lead to a high performance implementation on the RICA platform. 

8.3 Directions for further research 

The domain specffic reconfigurable architecture presented in Chapter 3 can be treated as a 

reconfigurable I? core. A platform targeting 4G portable devices can be an integration of an 

RISC and several reconfigurable IP cores, where each reconfigurable IP core tackles one 

computational intensive task, such as Viterbi decoder, Turbo decoder and FFT. Future research 

work will focus on a suitable connection network for this kind of platform which must provide 

seamless data transmission between reconfigurable IPs and the conirnunication between 

reconfigurable IPs and the RISC. 

As presented in Chapter 4, the routing network of the proposed architecture occupied 85.5% 

total area and consumed 79.5% total power. Future work will focus on the optimization of 

the interconnection mesh to reduce the area and power overheads. In future, a mixed 

interconnection mesh with tn-buffers and pass transistors can be employed in the proposed 

array architecture to lessen the area and power overheads. In order to reduce the 

time-to-markt, a library of PUs for different applications, such as FFT, FIR, Viterbi decoder 

and Turbo decoder can be established. According to different system requirements, the CAD 

tools can select the suitable PUs from the library to balance the power consumption, area 

and throughput. 

It can be seen from Chapter 5 and Chapter 7 that the RICA platform with advanced optimization 

approaches can significantly improve the performance. In the case of the Viterbi decoder, as 

compared with general RICA architecture, the throughput of the Viterbi decoder can be 

improved by up to 91% by means of the advanced optimization approaches. However, these 

advanced optimization approaches, such as sub-word parallel, custom function cells and 

software pipelining are manually implemented. In the future, the function of the compiler, 

needs to be enhanced, which can automatically optimize the applications to achieve the 

expected outcomes. On the other hand, the current backend simulation tool only can provide 
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executable time of a targeted application. In order to obtain a comprehensive estimation of 

RICA core, the backend simulation tool needs to be extended to ana1yz.-, power consumption 

and area for the targeted application. Thus, at system level design stage, the designer can 

more efficiently partition the software and hardware sections. 
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Appendix A 

Branch Metric Computation for M-binary circular Turbo decoder 

Branch transition probability, also called branch metric, can be denoted by: 

7k (s', s) = P({Dk  A s} I s) 	 (A.1) 

Referred to Bayes' rule, the definition of branch metric can be rewritten as: 

Yk (s', s) = P({Dk  A s} I s) 

= P(Dk I {s' A s}) P(s I s) 	 (A.2) 

=P(Dk  IEk ')P(xk ) 

where P(xk ) = PXk 

=
is a-priori probability of vector Xk  which can be known 

i-1,...,2. ) 

before a MAP decoder. 

If assuming the transmission channel is a memoryless Gaussian channel and BPSK modulation is 

adopted, we can rewrite the first term in (A.2) as: 

m+n 

P(Dk IEk')=UP(d Ie) 

1  U~ exp 
(a

E

L2 
k _aei ---  (d' 

1 

	( _ 20, 
E 

 exp ---m'(d _ae)2
21 

	

()
m+n  	 J 

E 
= 	 exp

(_
20r2  (VrS~0r)'"   

where e and d are the individual bits of the transmitted and received codewords Ek '  

and Dk , respectively.  Eb  is the transmitted energy per bit, cr2  is the noise variance and a is 

the fading amplitude. 

In order to reduce the computation complexity, the common portions of (A.3) are eliminated. 

Thus, (A.3) can be rewritten as: 
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m+n 

P(Dk  IEk')exPe .dJ 	 (A.4) 

Replacing (A.2) by (A.4), the branch metric will be deduced by: 

(-+n 

= exped}P(x k ) 	 (A.5) 
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