Turbo Decoder VLSI Implementations for Multi

Standards Wireless Communication Systems

Jong Hun Han

A thesis submitted for the degree of Doctor of Philosophy
The University of Edinburgh
December 2006

Abstract

Turbo codes can provide a large coding gain through an iteration process as compared with a
gain achieved by a traditional channel coding method. This has led to the adoption of turbo
codes as standard in a variety of wireless communication systems, despite their higher

computational complexity than a traditional decoder like a Viterbi decoder.

This thesis presents a number of high performance turbo decoder architectures for VLSI
implementation in terms of area, power, and critical path delay. A Max-Log-MAP
(MLMAP) algorithm is used to implement the turbo decoder with sliding window (SW)
method to reduce the latency. Low power and area efficient turbo decoder implementation is
achieved by reducing the memory blocks required by the SW method and to store the branch
metrics used for computing log-likelihood-ratio (LLR). Retiming and reordering methods are

applied to the computational units for computing the LLR and the state metrics.

A novel method is proposed to achieve high speed turbo decoder implementation for high
throughput without significant area and power overheads. The proposed method addresses
the inherent critical path delay problem in the state metric computation process by
normalizing the branch metrics. While increasing the maximum speed of the turbo decoder,

it also saves area and power of the state metric computation units.

A two-step soft-output Viterbi algorithm (TSOVA) based turbo decoder is implemented
exploiting a novel concept for implementing a traceback algorithm (TBA) to achieve low
area and low power turbo decoder implementations as compared to the MLMAP turbo

decoder without any significant BER performance degradation.

Two reconfigurable application specific turbo decoders are implemented to support variable
constraint length and binary and double-binary turbo codes for targeting various wireless
communication systems. The reconfigurable turbo decoder architectures are realized by a
proposed mapping method applied to the process for computing the state metrics and the
LLR values. It is found that radix-4 based turbo decoder architecture can be exploited to

implement the reconfigurable turbo decoder for binary and double-binary turbo codes.

ii

Declaration of originality

I hereby declare that the research recoded in this thesis and the thesis itself was composed
and originated entirely by myself in the School of Engineering and Electronics at the

University of Edinburgh.

iii

Acknowledgements

I would like to thank Dr. Ahmet Erdogan and Dr. Tughrul Arslan for their support and

supervising. I also want to thank my lab colleagues for their help throughout my research

work.

Thanks to my parents and my brother for their support.

Thanks to my wife, SY, and SH.

Contents

e C A ON O O L T ALY e e e s b et VR e UL By Do et it e S et S ii

Nl eh s G (al o e WL SRt Ui & N A I e mh e iv

T LTl S vyt s s Rt U Iy L L3 s UL e i B 448 b son AL NS S U Sh weRA e b e E L n v VSR v

T) B oD L e e T L Tr T A L s ot Sy R e X

e ey B o e T Xiv
Acronyms antliADDIEVIAtIONS:. ... i s tvancsmanimidiisdsssisaisivesroisesiasassmsmissvierismasanton XVi

b/ enants) Vo) i) he bR Ko s e Y Rl il i e S N SARRT- 1 e T E L Sl SRl Xviii
Chapter 1 Introduction.......... A RidesuseavEEastussaes it assansosnessubinadsvathasurtdnsensrintiusdamvancas s ns s nra A e 1
T 1V s\ (o) w R E ety O ST P RN ORI Rt o MERT o ORI I v S, et) 1
1.2 An Overview of State-of-Art Turbo Decoder Implementations............cccocvevvreininnes 2
s L1 L] 1) e e B e R e T e 3
Vi U e B U e AR R =i T R Y T e e A e 5

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation

TECRMIGIIES 114050 ssnsensessavnguisasasassassassussssstansiontosusssiaseabenesunsinesovssssusnanesss sinsensssusssussbansasarsissabansosis 8
Pl o hudalal e s sraly ot N e - e e SN P T A S e e bl RS e s 8
D R B endin g B Ay 0 GO0 S . trier) thessots crdns Faatass om ks a R s Tak T m e en ety o ssn 9

2.2 Turbe Encoder SEREIITE. ... itintiatimicharn i arvabossobesionsibissni S oienias 9
2227 Trellis. Btale PIATTAIR= (e b B et ntlee sesoratiat soik s soees Sk o s bbb b 11
2.3 Encodirie DoubletBinary THrbo COdes .., -..sisbiitzbasmmissoncsnssosviisismemsnte sasmssassseesss 12
2.3.1 Encoder Structure for Double-Binary Turbo Codescccccovvvveveeeciiiereecinnenn. 12
A) L0 e B B0 oo ol e et S e B e e IR S it TSR 13
ZWInterleaving Mesthod il rnls i i el a n B s st) 15
2.5 Turbo Decoader STMCIITE .o i 25 soskeiitisduce s s imaitervas sovinseovs s batata Soss ik s e ses s obesens 16
2.6 Maximum a posterior Algorithm for Turbo Decoding Processcccveviciiininennnnn 17
2 Ti8liding Wihdow Method [vt s rn ittt sirass remiies desTrinrikmasivesfr 4,05 20
2.8 Soft-Output Viterbi Algorithm for Turbo Decoding Processccccoeveevveeciiiennnnns 22
2.9 Techniques for Turbo Decoder Implementationsccocooevvieeniiiniiinciiiiiecns 23

2.9.1 Optimum and Sub-Optimum AlgOrithms ..o 24

20 2T Wo-STEp SONANS - s e e are b R ey oot o b 24
AT B AToNa Ly by oaaiVA L3 (0] o byt b B MR BI By L e 8 S e e o1 25
2:94 Metric Wordlength Oplimization. 5. et Ll i i atan e eseiine 25
2.9.5/State Metti o NOTTA] 1ZATIOTY 1w iovse sitsmesis o oss it i tssnmsietasse sy eiuilossorss i rab es 26
D0 IR ATINE VIO ssrrtrss sosesre s oo n et nimtai s Grsawie 738 SR P MRS T AR SFA fo s oo ans 26
2807 Adaptivie Jetaion IVISTHOH. ..o 2l bt tsstaty s ftbhtrns srcson s erriliomast uinziss hemssss)

3 O ioh RARIX ATCHITECHuNe . .. Ll 8 nsilans by tatne i e IO L TN o b 27
2.0\ SOPPING CHITETIAL: oy ussetinssca sio usianestunrsyaiph o sAsNSsalen s owesivossanseusesns shasesmsammms 28
29:10Paralle]l TplemMentation /.. siysiidiv et vraysei e tasiire sha vefarasnssssevrassivatonss 28
UV b o Ve e Eo P e e eles e Lo s b b b s e ol e s 28
Chapter 3 Max-Log-MAP Based Turbo Decoder Hardware Architecture.................... 30
e T 013 00 Lo o) e L R L TS e e 30
3.2 Max-Log-MAP and Sliding Window Method-Based Turbo Decoder Architecture.31
3.2.1 Max-Log-MAP Soft-Input Soft-Output Turbo Decoder Architecture........... 31
SRR [(s BeTery 016112 14 81 KL DN 0T ey et vkt T el P TR SR et A R 34
R Branchalelrcl(Unit;, sovore) O s Siiet B il e VO ot ins iR 34

3.2.2.2 Add Compare Select Normalization Unitcccecciiiiiniiiinininnn 35

3.2.3 Log-Likelihood Ratio Computation Unit.......cccoeeeiveiniinsisineeiniminn i, 38

3i3iH gh Level SIulation RESUIIS Sl ottt veiimumis sigss dasasisssssssrossesssaaiissonss 41
3.3.1 Simulation Specifications and SyStEMScccouiciimmirinsisiesiaioie . 4]
3.3.2 Performance for Varying Block SiZecccooeviiioviiiiniiecieenisse e 42
3323 Hixed-Point Hplementation vt oo s oimes imiribov s sdus e s s 43
3.3.4 Performance with Varying Window Size ... 45
3.3 S BER Performance oM arl SO S s ssess2ans st tans s seot ibns sy doo Saas ke enseban 47

34 Hardware Design and RESIIStextzires vomntasssirss cussassstss iarsdiunsoirsmsis saaiaese orss 49
3.4.1 Turbo Decoder Hardware Design FIOWcccveveiermieieniieecnieeiieessee e e 49
AP HArdware Pes EENVITORTIBIEL. Losytorevaitsfrontl S st s kbR sy v fussed By it el duatind s 5,
3.4 3 B VAlUATIIIE POWEE ity ivats e vussvas stbnrsundssuvbudininsanossisss A aisvussb v eus v s vavvats ahaci 53
A Post-EyNINESTSIRESTIIES voviiairin iaa-teiies fos s vabss b n Lo 1o e S VIR RGO vaT s s e a4 s as 53
e] e e S i e s e e R TRy 57
e e L M ol i o e 58

vi

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture................. 59

Al B G0 o 0D U YD LRt 1 vt s oo e BT s B L o P o e A e A e P 59
4.2 High Speed Turbo Decoder Implementation Method..........ocovvvriiiiiinniiicinns 60
42,1 Critical Path Delay in-Turbo Deeoder:. ..o i mi e di g o 60
429 Branch Metric NorHallZation s s st s o ivbass tirpissiassras sl 61
4.2.3 Variation of State Metrics with BMNcccoiiiiiiniiiininnneenn 62

4.3 High Speed Turbo Decoder Hardware Architecture........cooveeeeniriiienicniecicnnieieens 64
4.3.1 High Speed Turbo Soft-Input Soft-Output Decoder Architecture.................. 64
4.3.2 Metric Computation Unit with Branch Metric Normalization Unit............... 66
4.3.2.1 BranchMetric Normalization Unitcoccosemimiiviummiinmmmeiiss asecn 68

4822 AN EHcienEBIVINU 22 o i saisiiesosssitagssnsshissir e i vaiie sl o 70

4.3.3 Log-Likelihood Ratio Computation Unit...........coeveimininininniinnnnnne, 71

4.4 Low Power and Area Efficient Max-Log MAP Turbo Decoder Hardware

U NBE (el o4 | g o NI o e I e R, IR, L Do N e 72

4.4.1 Low Power and Efficient Max-Log MAP Turbo Soft-Input Soft-Output

PY e COAEr AT C T E G st ineineass et syesumsdasoniunssson S SEsazs srasns shs saR ARV AT AU s TS i e 72

4:4. 2 ‘An Efffctent ECU Implementationss..com. cuemsesmmsisistasiansiiiapidessesats 74

it T i oo ot bl T e o el Rl o e e e e 77

A S e e, AR el T e ey N e e R o TS 85
Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Processccccuus 86
LT T T TR L T et et . o8 e b SRR s et o et G o 86

5.2 Soft-Output Viterbi Algorithm for Turbo Decoding Processcccoeiiviiiieviciinnan 87

5:3 Two=step Soft-Output VAterbllalgomTim . i sasfiis s vataiiseoh arsnsssnsasssmnsnriss sesse 90

ST RSS2 risivsss st s e e s o e S O YA Vi o £ e L P e R At s e 91
5.4.1 Determination of Survivor and Update Depths........cccoivviiiiiniiniiiniciieannns 91

S B R P et o AN e R R Ul S it o o s yr e it st s R i e in SRS EoR W s S s e 94

) S n T T e D T P TR e e L e e I L A o el 98
Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture...... 99

vii

(GUE P G ot (510 16) R O IR NNt e L AR M SIS S el o e DR 99

6.2 Register-Exchange Algorithm Based Two-Step SOVA Decoder ... 100
6.3 Traceback Algorithm Based Two-step SOVA Turbo Decoder Architecture......... 102
6.3.1 Two-Step SOVA Traceback Turbo SISO Architecture..........coccvievniienenns 102
(e e e ey an a0 o b Lo W BLIN 0 ey et Rt e ek o et s o ek B 104
6.3 3 Traceback Process Blhitens o melo s eini st e G e i et saide aavd 106
6.3.4 Path Comparison and Update Process Units........c.ccccoiiiiiiiiiiiinninninnnn 109
6.4 Area-Efficient Traceback Two-Step SOVA Turbo SISO Decoder Architecture... 111
(i e el T TR R SR B el Il e e e O G et 112
6.5.1 REA and TBA Results COMPATiSONSccccteereresaieresnssrassessnnessssnsesssrneossnsssn 112
6.5.2 TSOVATBA Turbo Decoder Hardware Performance Results.................... 114
6.5 3 Comparing With WA . sihicis amesssssvastsnns tptasecsbasnanss dorssragisesaseassrend 121
el Tunten o e o e B P e e e e 122
Chapter 7 Reconfigurable Turbo Decoder ArchiteCture.......cooiiicisniiiinsssisinniissinas 124
70|) i e TGN) (o) 0 P N e e ey W At s R LR e o oy BRRIEs o Sl on St W 124
7.2 Mapping Method for Reconfigurable Turbo Decoder Implementation.................. 126

7.3 Reconfigurable Turbo Decoder Hardware Architecture for Variable Constraint
T R e e L Tl e R e O oy 130
7.3.1 Reconfigurable Turbo Decoder Architecture.........ccooiviiiiiiiiiiciiniiiiinnn. 130
7.3.2 Clock Gating Method for Reconfigurable Turbo Decoderccoceevvnnnnne. 131
7.3.3 Reconfigurable Metric Computation Unitc.ccoceveirinicunsineninienieneieenes 132
7.3.4 Reconfigurable Log-Likelihood Computation Unit......cccccevniiiiiiicnnnnene. 136

7.4 Turbo Decoder Implementation Methods for Binary and Double-Binary Turbo
(&107 (o e DR S I R T e e AR e S e e e e 138
7.4.1 Radix-4 Turbo Decoding Method for Binary Turbo Codes........c.cccccvvnneee. 138
7.4.2 Double-Binary Turbo Codes Decoding Method..........cooiviiiiiniinceancnnn. 140
7.5 Reconfigurable Turbo Decoder Hardware Implementations for BTC and DTC.... 142
7.5.1 Reconfigurable Turbo Decoder Architecture.coevvinieiicviiiniiinciiinns 142
7.5.2 Reconfigurable Metric Computation Unit for Radix-4 BTC and DTC 143
7.5.2.1 R4 BTC and DTC Branch Metric Unitccocvreisnmiesicineenennienens 144
7.5.2.2 R4 BTC and DTC Add Compare Select Normalization Unit 145

viii

7.5.3 R4 BTC and DTC Log-Likelihood Computation Unit.........ccccoiviiciiinnns 148

o i e e LU Y T T e b U 152
7:6.1 Hardware Test Systems for RDASTID i otiteiio i oot s triiarias 156

7.6.2 Hardware Performance ReSUILS........cuveeeemmmecansssssiissreeiaiassmiasssranionsarssavanssnsoss 157

] S TIIIMYI AT Y] s enton s codate it yo o B s by e e s e e e e et i SRS i e St S 161
Chapter 8 CONCIUSIONS ..c.ccviiiimiimiiimsmsarsnsssssssssssessemnssssssivsssassssssssssonssassossssssesssssenssssssesssatss 163
) B a0 Lo R s e < T I T e e SRR 163

S R evic ol eSS R OnICIIES . . st e s ramins e S s = L riansed 163

S R A e VT B oot o s i e U I e 166

S A ENTe R oS atCh D e G OIS i Lt s wes s s hbedne e e e R e ks s a4 167
Appendix A. List of PUDCAtION covvvereniieesieeeretesninsisiisnssnsssstinisssssssssssnsssssissessessnsenses 169
Appendix B. 3GPP Turbo Codes Specifications......coeiiiiiieiinsnninnnsinissnniassnsssiiasns 171
Appendix C. IEEE 802.16 Turbo Codes Specificationsc.ccoconinisiniininsicninsinsinnsnseses 178
| o o Ve U S AL ey o e i Oy o R e ST R T S T - T Y R o I e G 185

ix

List of Figures

Figure 2.1 (a) Convolutional and (b) turbo encoder structures for K=4. ..., 10
Figure 2.2 Turbo encoder structures for (a) K=4 and (b) K=5......ccoveiiiiieiniiiiiiiinns 11
Figure 2.3 A trellis state diagram of a turbo encoder for K=4. ... 12
Figure 2.4 A double-binary encoder structure for K=4. ... 13
Figure 2.5 A circular diagram of circular recursive systematic codes.covuvicniiciniiinnn. 14
Figure 2.6 Examples of block (a) interleaving and (b) deinterleaving.cooccvviinriinnann. 15
Figure 2.7 A block diagram of a turbo decoder structure...........ocoeinniinnninnininiiniiinnn 16
Figure 2.8 The forward and backward process flow of the MAP based turbo decoder. 18
Figure 2.9 An example of the forward and backward state metric computation processes. .. 19
Figure 2.10 Sub-frame by sub-frame turbo decoding process in the SW method.................. 21
Figure 2.11 A graph of sub-block data with sliding window method. ..o 22

Figure 3.1 The Max-Log Map turbo SISO decoder architecture implemented with the SW

R L0 o A e e et S o o T Pt O L 32
Figure 3.2 The metric computation Unit SEUCIUIE.cocvrirrirsensesnsessisesiemitimr st saessesiasaneis 34
Figure:3.3 The branch metric Unit:StrUCLUTE, ... irvausrsuesnrsssneresinssssassnsinasnenssnsastansssessinmssnannessss 35

Figure 3.4 The trellis state transition diagrams of (a) the forward and (b) backward processes.

Figure 3.5 An example of the add-compare-select-normalization structure for computing the

forward state metrieatistate O o d i i et bt s sifba sos sy 37

Figure 3.6 The trellis state transition paths for computing (a) Ly and (b) Ljo.ceeeeeerveviviniinas 38

Fignre3.7 The LLR: computation Unit SIIGIUTE. ... cuse . resmimasses sessagssrensesnsentesatanmsntsmenes siiresses 839

Figure 3.8 The LCU1 structure for constraint length K = 4.......coooieniiiiiinniinisienincans 40

Figure 3.9 A block diagram of a test system for turbo decoder BER evaluation.................... 41

Figure 3.10 BER performance for different size of block interleaver.............cocooiieiiiniiinn, 42
Figure 3.11 BER performance for different fixed-point representations. (a) (4,1), (b) (4,2),

0 (o e e L e B S e S e D 44

Figure 3.12 BER performance comparison for different fixed-point representation. 45

Figure 3.13 BER performance upon varying the window size: (a) K =3, (b) K =4 and

Figure 3.14 BER performance comparison between real and fixed-point values for K=3. ...47
Figure 3.15 BER performance comparison between real and fixed-point values for K=4. ...48

Figure 3.16 BER performance comparison between real and fixed-point values for K=5. ...48

Figure 3.17 The design flow for high level simulation.c....ooviniiiiiiiiiii. 50
Figure 3.18 The design flow for the turbo decoder hardware implementation. 51
Figure 3.19 The test system for the MLMAP turbo decoder architecture...............ooveeiinncs 52
Figure 3.20 (a) Area and (b) power simulation results of the MLMAP turbo decoders for
e e e T e e b L S s P P A R e e et 54
Figure 3.21 (a) Floor planning and (b) placed and routed results of the MLMAP turbo
decoderarchitecture fOr LT ... oo isisionivissasssssssss sostashnin sanians eshasdsvinnais 56

Figure 4.1 The state metric variations of the MLTBD with the BMN method for different V4

Al M 6 S 0 vasrioe s s il e e Lot e es TN e« Vo WErsVeslh Gaton s vt S VAR R Ao Sk o ow e sisas ad 62
Figure 4.2 The state metric variations of the MLTBD with the BMN method for different V4

L s o e e S SR o e o e e bt i 63
Figure 4.3 The HSMLTBD architecture incorporating the BMNU. ..o 65
Figure 4.4 The metric computation SIIUCIUIE.ivervesiemeiressissisesinnisssitsinesissnisnrssesssnonssnens 66
Figure 4.5 The add-compare-select structure without the state metric normalization process.

.. 67
Figure 4.6 The branch metric normalization unit Structure.o, 68
Figure 4.7 The LLR computation unit structure with high pipelining. ... 70
Figure 4.8 The LAMLTBD architecture with the reduced memory. ... 71
Figure 4.9 The soft-input data stream input to the LAMLTBD architecture.coocnenae i3
Figure 4.10 The efficient LLR computation unit Structure.ccoeerviiineiiesiiieiniece 74
Figure 4.11 The four-input compare select unit StruCture.ccoveeeenicieerniseeeseseiacee 73
Figure 4.12 The logics for determining the state metrics conditions input to BMNU. 76

Figure 4.13 (a) Area and (b) power results and comparisons of the turbo decoders for K=3.78
Figure 4.14 (a) Area and (b) power results and comparisons of the turbo decoders for K=4.80
Figure 4.15 (a) Area and (b) power results and comparisons of the turbo decoders for K=5.82

Figure 5.1 A trellis diagram for computing the state metrics, constraint length K=4............ 89
Figure 5.2 A trellis diagram of the survivor and update processes in two-step SOVA for
constraAnt SNt ICE o oo o it it shoesvomto s s spswss Ema s e Ssads sk s sk s a3 90
Figure 5.3 BER results for varying (a) the survivor and (b) update depths for K=3.............. 92
Figure 5.4 BER results for varying (a) the survivor and (b) update depths for K=4.............. 93
Figure 5.5 BER results for varying (a) the survivor and (b) update depths for K=5.............. 94
Figure 5.6 The D6U4 and D8US TSOVA turbo decoder BER results for K=3..................... 95
Figure 5.7 The D6U4 and D8U3 TSOVA turbo decoder BER results for K=4..................... 96
Figure 5.8 The D6U4 and D8US TSOVA turbo decoder BER results for K=5.........ce.ee. 97

Xi

Figure 6.1 REA based TSOVA decoding processor architecture [93] ..o, 100
Figure 6.2 (a) The trellis diagram for the convolutional codes K=3. (b) The register exchange

algorithm based survivor memory unit structure [93].cooovvriiniiiiniiiniiiines 101
Figure 6.3 The TSOVATBA turbo decoder architeCture.ovemrereasusiseriosinsssesessscsesnscnnne 103
Figure 6.4 The metric computation unit structure in the TSOVATBA architecture. 104
Figure 6.5 The add-compare-select-normalization structure in the TSOVATBA turbo

AE O Er ATC NI OIIITO. e ousrersoisssoansssn s onvs S e suaTan s s B Eh e eEE ey SH e RN A AR o R 105
Figure 6.6 The traceback process unit structure for searching the merged state.................. 107
Figure 6.7 The process element SITUCHITE. ..c..vuvieessinresmaresmsitionesiressessisanasistosesocssinrasasssssssasss 108
Figure 6.8 The path comparison and update process unit Structures............coceocovveviininnnn 109
Figure 6.9 The survivor or compete path unit STrucCture.ccoooeeveiciiesinnsciisseniiinnne 110
Figure 6.10 The area efficient TSOVA turbo decoder architectureccocovninnivininineninnn. 111
Figure 6.11 (a) Area and (b) power results and comparisons..........cc.ooinenniniiiinnnin 113
Figure 6.12 (a) Area and (b) power results and comparisons for K=3........ccccooiiinninine 116
Figure 6.13 (a) Area and (b) power results and comparisons for K=4...........ccocovniinnnnen. 118
Figure 6.14 (a) Area and (b) power results and comparisons for K=5. ... 120

Figure 7.1 The trellis diagram for (a) K=5, (b) K=3 based on K=5, and (c¢) K=4 based on

L L L 127
Figure 7.2 The backward process trellis diagram for (a) K=5, (b) K=3 based on K=5, and (c)
&R I e e et P A e S e R oo SR e e 128
Figure 7.3 The reconfigurable turbo decoder architecture.cccooviiiiininiiiiniiiniinnene. 131
Figure 7.4 (a) An example of a clock gating method. (b) The gated clocks applied to the
reconfigurable architeetiure: .. ilifi sttt assssvanss tus vusis 132
Figure 7.5 The reconfigurable metric computation unit structure.........ccoceevieivininiisiiniinnins 133
Figure 7.6 The reconfigurable state metric unit configuration for the forward process and
L e o T e e o o o e s 134
Figure 7.7 The reconfigurable state metric unit configuration for the backward process and
P T e F s P < A TP TR AT T Bt e 8 Ty G T T A R 135
Figure 7.8 The reconfigurable LLR computation unit Structure.coooveviiiiiiininiiicnninn 136
Figure 7.9 The reconfigurable L;q or L computation unit structure.cccooiiiiiinnns 137

Figure 7.10 (a) Radix-2 and (b) radix-4 based trellis diagram for K=4 binary turbo codes. 138
Figure 7.11 The trellis paths for computing (a) Lye and (b) L, based on radix-4 binary

{33 ol S Rt ye Lol oy 2l e RO o WS S ey . e e e s o S M 139
Figure 7.12 The forward process trellis diagram for K=4 double-binary turbo codes. 140
Figure 7.13 The reconfigurable turbo decoder architecture for radix-4 and double-binary

TUTDO COTOE: . i e sov s vt s m b v o ivh s A 8 oo Aty S B SR s SRR b a3 Y 142
Figure 7.14 The reconfigurable metric computation unit structure...........ccocevviniiiiicniiinnns 143

xii

Figure 7.15 The branch metric unit structure for R4 BTC and DTC. ... 144
Figure 7.16 The add-compare-select-normalization block diagram for (a) binary and (b)

double-binary t0rDO COURS:. ..cousrsersansrrsenbinsioisiurmmrivesssysisrsrssasaessssiasesssss s ooa 145
Figure 7.17 The raxid-4 based add-compare-select-normalization structure.oo... 146
Figure 7.18 The radix-4 add-compare-select-normalization structure with 4-input compare

S O T s e e e A BATA Y S et s o2 DR e e U e+ VRSN e A ARTES Gt T e s S d 147
Figure 7.19 The LLR computation unit StruCture.cooveiiiiiiniiiiiiinisicnnsnns 149
Figure 7.20 L, computation unit structure for radix-4 and double-binary turbo codes 150
Figure 7.21 The L;q; computation unit structure with 4-input compare select. 151
Figure 7.22 The area results and COMPALISONS.ovorrsssarsssssscsessensinsmssssssesssasarssasisnessansssss 153
Figure 7.23 The power results and COMPAriSONS.veiuieeriisseseninneiisesstoniesianisse e 154
Figure 7.24 Test systems for the reconfigurable turbo decoder verification.........c...ccooeuee. 156
Figure 7.25 Area results and COMPAriSONS.cccvviereiinienseiimniissesioiiasreisasee s 158
Figure 7.26 Power results and comparisons for binary turbo codes. ..., 159
Figure 7.27 Power results and comparisons for double-binary turbo codesccccoeuiin 160

xiii

List of Tables

Table 3.1 Parameters used for the MLMAP turbo decoder hardware implementation.......... 33
Table 3.2 The MLMAP turbo decoder hardware performance results for constraint lengths

L T s B e M et e e e B o 55
Table 3.3 The MLMAP-based turbo decoder critical path delay for constraint lengths K = 3,

LT Rt SO el e S e i A e N R W 0L o Rl S eI s b 55
Table 3.4 Performance comparison with state-of-art turbo decoder implementations........... 57
Table 4.1 Comparison of the number of adders for CON and with BMNU.ccocoiinnen. 69
Table 4.2 List of schemes for hardware performance evaluation.............ccoccoeviiiiiieninnnnnn 77
Table 4.3 The lists of area results for K=3 turbo decoders.cccocuiiniiniinsnciniiiicinsinnans 79
Table 4.4 The lists of power results for K=3 turbo decoders.cocevurvrieiinmnnniaiesreinseenenns 79
Table 4.5 The lists of area results for K=4 turbo decoders.cocvriiivinniniiiiiiiin 81
Table 4.6 The lists of power results for K=4 turbo decoders. ... 81
Table 4.7 The lists of area results for K=5 turbo decoders.ccceoviiiiiiniennieiiiiiinii e 83
Table 4.8 The lists of power results for K=5 turbo decoders. ... 83
Table 4.9 Performance comparison with state-of-art implementations............ccococveiiiiniinns 84
Table 5.1 The Ey/Ny comparisons at 107 BER. ... umeiseissnsimissinsstisiumessitissirssssassass 98
Table 6.1 Lists of the SMU and TBU area and power reSults.ccoooveeeerineniniecicneneeens 114
fhable 62 Nistsiof thelarearesults=foriRa3mnn . o e e e st s Ui s 117
Table 6.3 Lists of the power 1eSultsiTon Ko3l vt iret bidbiesse it iatesincasisnsssese b asass 117
Table 6.4 Listsiof the arearesults for Kedi. . o maininhnniigieteni il . 119
Table'6 5 Listsiof the power tesults for Ked v viraisnmuai sl e ais s aiatan s 119
Table 6.6 Tistsiofithe area resulfs for Kedu it a kst i et i 121
Table 6.7 Lists of the power tesults TOr K =51 iiiccisrear st esides ssssrestonsnssivasaserassesiinsssnbarsssnse 121
Table 6.8 Area and power comparisons for MLMAP and TSOVATBA based turbo decoder

(el 1= 1D Yttt N e (S K et R TLM . T WIS SeEate, - SutRRe. THC GOl NG R e 122

Xiv

Table 7.1 Lists of turbo codes for the applications [171-172]..ccccviiiiiiiiiiiiiiiiiiiieeninncsinenens 125

IaBle 72 L idtsio R the e a re st R e s SR M N D A e o SR SRR 0 B, i et 153
Table 7.3 Lists of the power comparisons for K=3. ... 154
Table 7.4 Lists of the power comparisons for K=4.........ccccccuivinniiinniiiniinininn.. 155
Table 7.5 Lists of the power comparisons for K=5. ..o i 155
Table 7.6 List.of ateadesults . i s e Bl e s e 158
Table 7.7 List of power results for binary turbo codes..........cccocviiiiiniiiinniin. 159
Table 7.8 List of power results for double-binary turbo codes.cccocvvviriiiiiniiiiiniinnnn. 160

XV

Acronyms and abbreviations

ACS
ACSN
APP
ASIC
BER
BM
BMCU
BMNU
BMU
BPSK
BSM
BTC
BTE
CBG
CONST
CRSC
CS
DAG
DMCU
DMD
DNT
DSM
DTC
DTE
FSM
FMCU
IAG
INT
LCU

Add compare select

Add compare select normalization

A posteriori probability

Application specific integrated circuit
Bit error rate

Brach metric

Backward metric computation unit
Branch metric normalization unit
Branch metric unit

Binary phase shift keying

Backward state metric

Binary turbo codes

Binary turbo encoder

Competing bit generator

Constant

Circular recursive systematic convolutional
Compare select

De-interleaver address generator
Dummy-backward metric computation unit
Demodulation

Deinterleaver

Dummy-backward state metric
Double-binary turbo codes
Double-binary turbo encoder
Forward state metric

Forward metric computation unit
Interleaver address generator
Interleaver

LLR computation unit

XVi

LMAP
LLR
MAP
MAU
MCU
MEM
ML
MLMAP
MOD
MUX
PCU
QoS

R2

R4

REA
REASIC
REASTD
RSC
RTL

SM

SMU
SMCU
SOVA
SW

TBA
TBU

TC

TD

TE

™U
TSOVAREA
TSOVATBA
UPU

Log-MAP

Log likelihood ratio

Maximum a posterior
Mapping unit

Metric computation unit
Memory

Maximum likelihood
Max-Log-MAP

Modulation

Multiplexer

Path comparison unit

Quality of service

Radix-2

Radix-4

Register exchange algorithm
Reconfigurable application specific integrated circuit
Reconfigurable application specific turbo decoder
Recursive systematic convolutional
Register transfer level

State metric

Survivor memory unit

State metric computation unit
Soft-output Viterbi algorithm
Sliding window

Traceback algorithm
Traceback unit

Turbo codes

Turbo decoder

Turbo encoder

Transition metric unit
Two-step SOVA based on REA
Two-step SOVA based on TBA

Update process unit

Xvii

Nomenclature

Systematic bits of double-binary turbo codes
Parity bits of double-binary turbo codes
A systematic bit of binary turbo codes
A parity bit of binary turbo codes
Extrinsic information

Log likelihood ratio

Time

Symbol data of systematic bits

Symbol data of parity bits

Branch metric

Forward state metric

Backward state metric

A vector of received data

A vector of transmitted data

Noise

Xviil

Chapter 1

Introduction

1.1 Motivation

Since wireless communication systems evolved from an analogue mode to a digital, there
have been intensive studies of digital signal processing, leading to development of a number
of digital signal processing techniques to deliver quality of services (QoS). It is well known
that digital signal processing has many advantages over analogue [1]. In the past, voice
communication was the main purpose of the systems. Nowadays, with the developed
techniques, wireless communication is regarded as a way of not only voice communication,
but also delivering various services such as text messaging, web browsing, gaming,
entertaining multi-media. These services are possible due to the development of high

performance digital signal processing techniques.

A number of digital signal processing techniques are required to construct wireless
communication systems. They are needed to transmit and to receive correct information
without errors, such as those which happen due to the effect of noise and interference when a
signal is transmitted over the channel. Among the techniques, the channel encoding and
decoding processes are one of the processes most necessary to avoid the error in current
wireless communication. Several channel coding techniques are available for the purpose. In
general, a decoder in receiver systems performs an exhaustive search process to obtain error
free information. For that reason, it is regarded as one of the highest computational units in

base station systems [2].

Turbo codes introduced by Berrou ef al. [3] can provide a large coding gain through iterative
process. Their outstanding bit error rate (BER) performance has been paid a lot of attention
by many researchers, and their contributions have led turbo codes to be adopted as standard
for channel coding of various wireless communication systems such as 3GPP, IEEE 802.16,

DVB-RCS, ete. Since then, turbo codes have been researched and their performance in such

Chapter 1 Introduction

systems evaluated [4-10]. The use of turbo codes for achieving better QoS is expected to
continuously increase. However, some obstacles are needed to be overcome to achieve a
practical turbo decoder implementation, due to one’s intensive computation process and high
latency occurring by an iteration process, which cause of increasing hardware costs and
reducing data rates, respectively. In addition, the use of different types of turbo encoding
schemes in the systems can decrease compatibility and reusability of turbo decoders in the
receivers. This can be addressed by implementing a turbo decoder that can be configured
different turbo codes. Thus, these issues were the motivation of this thesis, aiming at the
development of high performance in terms of area, power, and throughput and dynamically

reconfigurable turbo decoder VLSI implementations.

1.2 An Overview of State-of-Art Turbo Decoder
Implementations

Since appearing turbo codes, many researchers have studied turbo codes to understand their
decoding principles and mechanisms in order to achieve better performance in terms of BER.
Also, implementing practical turbo decoders for wireless communication systems has been
paid a lot of attention due to their high complexity and latency as mentioned in the previous
section. In recent, turbo decoders targeting practical applications have been realized on a

silicon chip [11-14].

Two algorithms, Maximum a posterior (MAP) and soft-output Viterbi algorithm (SOVA),
are available to implement a turbo decoder. The MAP algorithm proposed with turbo codes
[3] has been simplified by the approximation methods called Log and Max-Log MAP
algorithms [15]. Also, the sliding window method for the MAP based turbo decoders
suggested by [16] reduces turbo decoding latency. In addition, two-step SOVA presented in
[17] improves the implementation complexity of the original SOVA. Since these techniques,
many works implementing practical turbo decoders have proposed suggesting several
techniques. Among the techniques, the look-ahead computation [18-20], pipelining [11], and
parallel processing techniques [21-28] are proposed for high data throughput turbo decoders

based on LMAP and MLMAP with SW methods. Also, in [29-32], low power

(]

Chapter 1 Introduction

implementations for turbo decoders have recently been investigated for wireless applications.
On the other hand, a turbo decoder based on SOVA can provide better throughput than MAP
based turbo decoder, due to low latency. In addition, less complexity of SOVA than the
MAP algorithm has been attracted many researchers to implement an efficient SOVA based

turbo decoder [33-42]. In the literature, low power [35-38] and high rate [33-34, 39-41]

implementations for SOV A have been proposed.

Furthermore, recent wireless communication systems have adopted several channel coding
schemes as a standard. Thus, designing highly compatible and flexible decoders for the
systems is becoming a crucial issue more and more to save the costs of the systems. This
issue can be addressed by designing a turbo decoder to be configured for the systems. The
reconfigurable turbo decoders [43-53] recently have been proposed for supporting various

wireless communication systems.

1.3 Contributions

This thesis contributes to development of high performance and reconfigurable turbo
decoder architecture targeting mobile and portable applications requiring low power
consumption and area usage. The architecture is realized by using retiming and reordering
methods that are used to implement efficient modules for computing the state metrics and the
log-likelihood-ratio. A turbo decoder for high data rate is implemented using a novel
technique that addresses the inherent critical path delay problem in order to achieve high
speed turbo decoder. The turbo decoders are implemented based on Max-Log-MAP
algorithm. For achieving better area and power saving, in this thesis, a novel structure for
implementing TSOV A based turbo decoder architecture is introduced and compared with the
Max-Log-MAP based turbo decoders. Also, based on the improved turbo decoder
architectures, reconfigurable application specific turbo decoders to support various wireless

communication systems, saving the costs needed for ASIC implementations, are proposed.

The thesis starts by investigating turbo decoder at high level to verify the decoding
functionality through the BER performance evaluation. After completing the verification, a

conventional turbo decoder based on Max-Log-MAP algorithm has been designed at RTL

Chapter 1 Introduction

level for the hardware implementation. Parameters for designing the hardware have been

chosen based on the results of the high level simulations.

In the conventional turbo decoder architecture, it has been found that memory blocks can be
reduced by modifying the input data transaction method. This resulted in saving up to 30 %
in total area and 18 % in total power. Also, retiming and reordering methods for the state
metric and LLR value computation process achieved saving 21 % in area and 29 % in power.
The high-speed turbo decoder has been realized by using a novel method that normalizes the
branch metrics to reduce the critical path delay in the turbo decoder architecture. Simulation
results show that the method can reduce the critical path delay up to 42 % as compared to the

critical path delay of the conventional turbo decoder architecture.

After presenting the efficient implementation techniques applied to Max-Log MAP based
turbo decoder implementations, an alternative algorithm, called two-step soft-output Viterbi
algorithm (TSOVA), to implement a turbo decoder has been presented. The TSOVA turbo
decoder architecture has been designed with a novel concept for implementing the traceback
algorithm (TBA). Simulation results of the architecture have shown that the TSOVA turbo
decoder architecture can save 72% in area and 52% in power compared to the MLMAP turbo

decoder architecture.

To support multi-standard wireless communication systems, two reconfigurable turbo
decoder architectures have been presented in this thesis. One of these architectures has been
designed for supporting different constraint lengths from 3 to 5. For this reconfigurable
implementation, a mapping method is presented for designing the units for computing the
state metrics and LLR values. The reconfigurable architecture is implemented with a clock
gating method to minimize the power overhead as the architecture is configured for different

constraint lengths.

The other reconfigurable turbo decoder has been designed for different sorts of turbo codes
called binary and duo-binary turbo codes. It is found that radix-4 binary and double binary
turbo decoders can share many hardware resources. The design of the reconfigurable
architecture is based on a radix-4 turbo decoder, and can be configured for binary and double

binary turbo codes. Its hardware performance has been compared with a convention turbo

Chapter 1 Introduction

decoder implementation. The comparison of the performance results shows that the

reconfigurable architecture can save more energy than the conventional architecture.

1.4 Thesis Contents

The thesis consists of nine chapters including this chapter. It is organized as follows.

Chapter 2 reviews turbo codes and their encoding and decoding techniques. Two kinds of
turbo codes, binary and duo-binary turbo codes, are described with their encoder structures
for different constraint length. Maximum a posterior (MAP) and SOVA are introduced. In
the literature, several techniques are proposed to achieve an efficient turbo decoder
implementation. This chapter reviews and summarizes the techniques, describing how they

are used to reduce implementation complexity and hardware costs.

Chapter 3 presents MLMAP based turbo decoder architecture. The architecture is
implemented with sliding window (SW) method in order to reduce latency and to save
hardware costs. The architecture consists of three metric computation units, a log-likelihood-
ratio computation unit, a data scheduling unit, and memory blocks. Implementation methods
and functions of those units are described in detail. Through high level simulations, before
estimating hardware performance, BER performance of the turbo decoder based on MAP
algorithm is evaluated with a variety of parameters to verify the turbo decoding algorithm.
MAP and MLMAP based turbo decoders are investigated to find the optimal parameters for
efficient hardware implementation of turbo decoders. Following a design flow, the MLMAP
turbo decoder is implemented on hardware, and the hardware performance in terms of area
usage, power consumption, and critical path delay is evaluated. The results obtained in this
chapter are regarded as conventional turbo decoder results. Thus, these results are used as
reference and compared with the results obtained with proposed turbo decoders presented in

later chapters.

Chapter 4 introduces a novel technique to implement high performance MLMAP based turbo
decoders. Two main techniques are proposed in this chapter. The first is suggested in order

to achieve high speed turbo decoder implementations for high throughput by reducing the

Chapter 1 Introduction

critical path delay. This is realized by addressing the inherent critical path delay problem
using a novel branch metric normalization method. The second is for saving area and power
of the turbo decoder by reducing memory blocks for controlling SW method and storing the
branch metrics. Moreover, an efficient unit used for the state metric and the LLR
computational processes is proposed to save the hardware costs. The turbo decoder hardware

performance is investigated and compared with the conventional turbo decoder results.

Chapters 5 and 6 present an alternative turbo decoding algorithm called soft-output Viterbi
algorithm (SOVA) and its hardware architecture. Specifically, two-step SOVA (TSOVA) is
implemented to evaluate BER and hardware performance. In this chapter, a novel method for
traceback algorithm (TBA) based TSOVA turbo decoder hardware implementation is
proposed to save area and power. The TBA based TSOVA turbo decoder architecture is
described and compared with the register exchange algorithm (REA) based TSOVA
described in the literature. The results of the TBA based SOVA turbo decoder are compared

with the MLMAP based turbo decoder results in terms of area and power.

Chapter 7 presents a reconfigurable turbo decoder architecture that is implemented based on
MLMAP algorithm with SW method. The architecture is designed to be used with various
wireless communication systems. In this chapter, two different reconfiguration turbo
decoders are proposed. One reconfigurable turbo decoder is designed to support different
constraint lengths from K=3 to 5. For the reconfigurable implementation, a mapping method
for computing state metrics and LLR values is proposed, and a clock gating method is
applied to saving power consumption as the architecture is configured for K=3 and 4.
Another reconfigurable turbo decoder that can be configured for binary and double-binary
turbo codes with fixed constraint length K=4. For this architecture, a radix-4 turbo decoder
for binary turbo codes, showing similarities between turbo decoders for radix-4 binary turbo
codes and double-binary turbo codes, is investigated and implemented. Thus, the radix-4
method is exploited to implement the reconfigurable turbo decoder. The turbo decoders for
radix-4 binary turbo codes and duo-binary turbo codes are implemented in ASIC to compare
the hardware performance with the reconfigurable turbo decoders. The results of the two
reconfigurable turbo decoders are also compared with conventional ASIC turbo decoder

implementations.

Chapter 1 Introduction

Finally, the thesis is concluded in chapter 8, describing what should be researched in the

future.

Chapter 2

Turbo Codes Encoding-Decoding
Algorithms and Implementation
Techniques

2.1 Introduction

Turbo codes introduced in [3] provide a large coding gain close to the Shannon’s limit [54].
Thus a turbo decoder can achieve a very low bit error rate (BER), by performing an iterative
process as shown in [3]. Since then, the principles of turbo encoding and decoding have been
studied intensively in order to improve BER performance. The authors in [56-60] describe
the turbo decoding algorithm in detail. A number of contributions to the development of the
turbo decoder for practical applications has led to the adoption of turbo codes as a standard
in various wireless communication systems, such as wideband code division multiple access
(WCDMA) [61], 3GPP [62], Consultative Committee for Space Data Systems (CCSDS) [63],
IEEE 802.16 [64] (also known as WiMax), and digital video broadcasting returned channel
over satellite (DVB-RCS) [65]. Specifications of turbo codes required by the systems are
given in Appendix B and C.

This chapter introduces turbo encoding and decoding schemes for different constraint lengths.
First, a turbo encoder used to generate binary and non-binary turbo codes is presented, and
an encoder structure described. Then, a decoding algorithm for turbo codes is presented, and
a turbo decoder structure described. Two sorts of turbo codes are widely used in wireless
communication systems. Two algorithms, maximum a posterior (MAP) [3] also known as
BCIJR algorithm [66], and soft output Viterbi algorithm (SOVA) [67], are available for the
turbo decoder implementations. It is well known that while MAP based turbo decoders
provide better BER performance, a turbo decoder based on SOVA can be implemented with
less computational complexity. However, the original turbo decoding algorithms based on

MAP and SOVA are not suitable for establishing an efficient turbo decoder implementation.

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Techniques needed to implement an efficient turbo decoder for practical systems are

reviewed, and the techniques used to improve performance of turbo decoders are described.

Detailed discussion of fundamental turbo encoding and decoding theory is beyond the scope
of this thesis. The explanations and discussion set out in this chapter, and in later sections,
are based on practical implementation, with the aim of understanding the encoding and

decoding principles. Detailed principles of turbo codes can be consulted elsewhere [68-40].

This chapter is organized as follows. Section 2.2 and 2.3 describe binary and non-binary
turbo codes encoding techniques showing the encoder structures. Two kinds of turbo codes,
known as binary and non-binary turbo codes, are explained, including how they are
generated. The interleaving method used in the performance evaluation is described in
section 2.4. Section 2.5 shows a general turbo decoder structure. The MAP based turbo
decoding algorithm is presented in Section 2.6. In section 2.7, SOVA is introduced, and how
it is used for a turbo decoding algorithm described. Techniques for an efficient turbo decoder

implementation are reviewed in section 2.8. Section 2.9 summarizes the chapter.

2.2 Encoding Binary Turbo Codes

2.2.1 Turbo Encoder Structure

The turbo encoder structure is based on the convolutional encoder structure. Figures 2.1 (a)
and (b) illustrate conventional encoder structures for convolutional and turbo codes with
constraint length K=4 and polynomial generators 135 and 155. The encoding process starts

after initializing Dy, Dy, and D,, into zero.

The convolutional encoder of Figure 2.1 (a) generates a code word of two bits, X; and X;, in
a half code rate with constraint length K=4. A convolutional encoder can be implemented

with different constraint length and code rate depending on the application.

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

> X
— X, Biggry
it
Binary =<n>: stream T r
bit =5
strelam I T Y,
LANPA
IR x_‘
w11 D,
&
L— v,
(a) (b)

Figure 2.1 (a) Convolutional and (b) turbo encoder structures for K=4.

The turbo encoder structure illustrated in Figure 2.1 (b) consists of two recursive systematic
convolutional (RSC) encoders and one interleaver (I) with a basic code rate of 1/3. X of the
code word is the same with input binary bits, and is called a systematic bit. Y, and Y, are
parity bits produced by 1st and 2nd RSC encoders, respectively. Code rate of the turbo
encoder can be adjusted by puncturing the code word. Turbo codes generated by the encoder
are called parallel concatenated convolutional codes (PCCC). Serial concatenated
convolutional codes (SCCC) [71] also exist. In this work, turbo codes for BER performance
evaluation are generated by the structure of Figure 2.1 (b). In general, binary turbo codes
terminate with tail bits. The tail bits make the final state into zero, which is crucial to obtain
a proper BER performance in the turbo decoding process [72-74]. The tailing bits for the

simulation are made following the encoding method described in 3GPP [62]. .

Figures 2.2 (a) and (b) illustrate turbo encoder structures for constraint length K=3 and 5, in
which polynomial generators are 7g5g and 23435s. These encoders also generate block code
including the tailing bits, which are generated by the same method used in the encoder of

Figure 2.1 (b).

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

> X

4
»(]3e

TSRO

P
L +

|

(b) ;

e

Figure 2.2 Turbo encoder structures for (a) K=3 and (b) K=5.

2.2.2 Trellis State Diagram

The encoder behaviour can be represented with the help of a trellis state transition diagram
method. A trellis state diagram represents the encoding process in the state transition paths
following the input sequences coming to the encoder. The state transition also gives

information of the output code word.

Figure 2.3 illustrates the trellis state diagram of the turbo encoder shown in Figure 2.1 (b), as
an example. The number of states corresponds to 2% for constraint length K. The state
transition paths represented in different line styles indicate the code word, X and Y, (or Y>)
generated by the RSC encoder, illustrated in Figure 2.1 (b). Each state is represented by the
information accumulated in each of the Ds of the encoder, which are initialized to 0 at the
beginning of every input block. Thus the initial state starts with 0, and then the next state
depends on the input data. This procedure is performed until the end of the block. As already
described, the turbo encoders drive the end state to converge to state 0 using the tail bits.
Therefore, the turbo decoder at a receiver can perform the decoding process with the initial

and final state information available.

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

State [D, D, D]

0 [0 0 0
1 [0 0 1]
9 0.1 0]
3 o1 1)
4 110 0
B Marar]
6 [1 1 0]
T IR
DR sl e+ 10 --mn it

Figure 2.3 A trellis state diagram of a turbo encoder for K=4.

2.3 Encoding Double-Binary Turbo Codes

2.3.1 Encoder Structure for Double-Binary Turbo Codes

The turbo encoder in the previous section accepts binary bit data. Non-binary data can also
be encoded by a turbo encoder that generates non-binary turbo codes [75-76]. It is known
that non-binary turbo codes are suitable for a higher code rate than 1/2, while binary turbo
codes are suitable for lower than 1/2 [77-78]. Thus non-binary turbo codes could be used for
better throughput. This section describes the encoder structure for double-binary turbo codes

(DTC), which are adopted as a standard encoding scheme in IEEE 802.16 [64] and DVB-
RCS [65].

12

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

> A
> B
Double-binary P10, P D4 [1P DD|~
bit stream
R
LA P g
I L > CI
&— D,
ool oo re-{oH
R
Al
¥ i CZ
&— D,

Figure 2.4 A double-binary encoder structure for K=4.

Figure 2.4 illustrates the double-binary turbo encoder (DTE) structure for constraint length
K=4 with the polynomial generators, 135 and 155. As can be seen, two binary bits are used as
source data for the encoder. The two input bits are then encoded as systematic bits, A and B,
and two parity bits, C; and D;. In the same way as the binary turbo encoder, the input bits are
then interleaved to provide the other parity bits, C, and D, with the second RSC encoder.
The code rate of the encoder is 1/3. However, it can be adjusted by puncturing the output
code word. The double-binary encoding scheme used in this thesis refers to the encoder in

[64] and [65].

2.3.2 CRSC Turbo Codes

The DTC are often called circular recursive systematic convolutional (CRSC) turbo codes
[77-79], which are terminated without tail bits, unlike BTC. In general, BTC are generated
with tail bits at the end of the block in order to make the final state same with the initial state.
In contrast to BTC, the initial state of double-binary turbo codes can be any state, and the

final state must be the same as the initial state. Thus, CRSC turbo codes seem to be circular

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Backward

Forward

Figure 2.5 A diagram of circular recursive systematic codes.

as illustrated in Figure 2.5. It is assumed that a block of DTC is started at time 0, and ended
at time k. Since the initial and final states are the same, the DTC can be circulated without
terminating to a particular state. To generate the circular codes, an additional encoding
process (called a training process) is needed. At first, DTE starts with initial state 0, and then
the final state is found when completing the encoding process. DTE starts the encoding
process again with a state that is determined following the final state found in the training
process. For this determination, a look-up table is required, as described in [64] and [65].
After completing this second encoding process, the initial and final states of the DTC

become the same. This process is summarized as follows :
1) Initialize the initial state to 0 (D,=0, D=0, D=0).

2) Encode an input block with the double binary encoder.
3) Find the final state of the input block.

4) Initialize the initial state into a state determined by the final state found in 3)

14

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

5) Encode the same input block again with the double-binary encoder from the newly

determined initial state.

2.4 Interleaving Method

An interleaving method is used to reduce burst errors caused by transmitting data over the
channel. It is already widely used to construct wireless communication systems for achieving
better performance. Interleaving method and size strongly affect the turbo decoder
performance [80-82]. A number of interleaving methods have been suggested in order to

achieve better BER performance.

In this thesis, a block interleaving method [83] is used to evaluate the BER performance of
the turbo decoders. Figure 2.6 illustrates the block interleaving method as an example. In this
case, a square block is employed as the block interleaver. First, the block is filled with a

series of data, after which the addresses of data in the block are switched. Then, the data are

05110 28 0|4]|8|12
.4,3,2,1,0 [4]|5]|6|7 :> 115|913 ..1,12,8,4,0
Write to interleaver 89]10(11) 2|6 110|14]| Read from interleaver
12|13[14|15| Interleaving |3 |7 [11]|15
(a)
0|4]|8[12 o1l 23
..1,12,8,4,0 115(9 (13 ’:> 4|15(6(7 sl Byidy 10
Write to deinterleaver 2|6 |10]14 : ¢ 8 |9 |10]11| Read from de-interleaver
3| 7 |11|15|De-interleaving | 12|13| 14|15

(b)

Figure 2.6 Examples of block (a) interleaving and (b) de-interleaving.

15

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

read out from the interleaver in different order from the input order. De-interleaving is
performed in the same way as the interleaving. The de-interleaved data are filled in with the

original addresses after completing the de-interleaving process.

2.5 Turbo Decoder Structure

Figure 2.7 illustrates a turbo decoder structure which consists of two soft-input soft-output
(SISO) decoders, two interleavers (I1 and I2), and two de-interleavers (D1 and D2), as
introduced in the literature [3]. The turbo decoding process is iteratively performed by two
SISO decoders via I and D. An increase of the number of iteration gives better performance
in terms of BER. The performance improvement is saturated after completing several
numbers of iteration depending on the channel conditions. The input symbols, y, and y,;, and
the extrinsic information, L., are used for the turbo decoding process in the ‘SISO Decoder
1’ that produces log-likelihood ratio, L;, and a priori value, L. Then the input symbols, y;
(via interleaver) and y,», and the extrinsic information, L', (interleaved value of L.,), are
used in the ‘SISO Decoder 2’ that generates L, for the 1st SISO decoder and soft-output
value, L;,»., which is converted into the output for decoding information after being de-

interleaved by D2. These input symbols, y,, 1, and y,», correspond to the code word, X, Y1,

L.ﬂ D1 b3 Le]
Ly
SISO Lo
* Tbecoder 1] 2,7 | siso
Yp1 Decoder 2 » D2 ajl—»output
L!r2
> 12

Y

Figure 2.7 A block diagram of a turbo decoder structure.

16

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

and Y2, generated by the turbo encoder in Figure 2.1. The decoding processes are iteratively
performed in order to achieve a better BER performance. One iteration is finished when the
decoding process of the two SISO decoders is completed. The structure in Figure 2.7 is for

BTC, but it can also be used for DTC with the increased number of input symbol data.

2.6 Maximum a posterior Algorithm for Turbo
Decoding Process

The decoding principle of MAP based turbo decoders is different than traditional decoders
like Viterbi decoders [84]. While Viterbi decoders, in general, find Maximum-Likelihood
(ML) paths to determine the hard-decision during the decoding process, MAP based turbo
decoders compute all state metrics of the forward and backward processes to generate the
hard-decision. These processes start at the beginning and the ending of the block as
illustrated in Figure 2.8. Then, soft-output, called LLR, is calculated from all the state and

branch metrics.

The MAP algorithm suggested in [67] is modified for use in the turbo decoding process. A
turbo decoder based on the MAP algorithm generates soft-output from the received symbol
data. The soft-output contains information on the hard-decision and its reliability value. It is

represented by log-likelihood ratio (LLR) of a posteriori probability (APP) as follows :

2 2715 ko1 Sg)Py (g1) B (5i)

Tk =Ty =1t
> 2 0SSk)y (551)85 (5) (2.1)

Sk Sk-1

=Ly (k=1) = Lyo(k=1)

where L, is the LLR value, yis the branch metric, & is the forward state metric, and fis the
backward state metric at time & and state s. These metrics can be represented in logarithm

form as follows:

P(Spo1o8g) =Iny(sp1,81) =V 2[Loys g g + Loy prptpri + Lot s] 22)

17

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

~N OO0k WN = O

~N OO bk WOWN =2 0O

Figure 2.8 The forward and backward process flow of the MAP based turbo decoder.

a(sp)=Ina(s;)=In Zexp[y(si1,53) +a(sp-1)] (2:3)
Blsy)=1nB(s;) = In Zexp[7(spis6)+ B(sp)] (2.4)
Sk
‘ _ oo for s=0 2 _ | for s=0
a("”)_{o for s #0 ﬁ(SN)_{O for s #0 (25)

where y;; and y,; are the input symbol for systematic bit (z,,) and parity bit (z,14), L. is the
channel reliability value, which is fixed to 2 in this work, and L., is the extrinsic information.

The forward and backward state metric computation process is illustrated in Figure 2.9 for

18

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

}/Uo(k' 1) ﬁo(k) 700(}'{- 1)

(k-1 & - —e f(k+1)
k-1 RGinIn Yee :
oy (k-1) o " TED N k1) _ e Bk
Nl e ,\f":”’
: ; ,<7’ ﬁz(fri-l)
. J’/

by \/ By(k+1)

Bkt1)

7

oy Bi(k+1)

STy B(k+1)

Figure 2.9 An example of the forward and backward state metric computation processes.

constraint length K=4. As can be seen, a forward state metric at time k is computed from two
of the previous state metrics at time k-1 and two branch metrics. A backward state metric at
time k is computed from two backward state metrics at time k+1 and two branch metrics.
These computation processes are performed for all the states at each time, initializing the
forward and backward state metrics by equation (2.5) at the beginning and end of the block.
Then, LLR is calculated from the state and branch metrics obtained by equations (2.2). (2.3),

and (2.4). It can be represented as follows:

Ly (k) =InY ¥ exp(7 (sg1,85) + @1 (531) + By (53)) -
Sk Sk-1 — 2 i (2.6)
Iny, ¥ exp(¥o(sp—1,5%) + @p_1 (Sf_1) + Br (%))

Sk Sk-1

19

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

The hard-decision is determined by whether the result of equation (2.6) is positive or
negative. The extrinsic information for the next decoding process is obtained from the LLR

after subtracting input systematic symbol and extrinsic information as follows:
Loy (k) =Ly (k) = Ly (k) = Lo (k) (2.7)

where L., is used as an input for the next iteration process, as shown in the turbo decoder

structure illustrated in Figure 2.7.

2.7 Sliding Window Method

The MAP based turbo decoder performs the forward and backward processes to generate
LLR, as described in section 2.6. While the forward process starts at the beginning of the
input block, the backward process starts at the end of the block. These processes cause high
latency, because LLR can only be generated after completing the forward and backward
processes. The latency depends on the input block size, which is significantly increased if the

block size is large. This may result in a lowering of throughput.

The SW method introduced in [16] can help to solve the latency problem by dividing the
input block into several sub-blocks (called a “window™). The turbo decoder then performs
the decoding process, sub-block by sub-block, rather than for the whole block. The size of
each sub-block can be uniformly determined, regardless of input block size. The SW method
cannot only reduce the latency, but also reduce hardware costs by reducing the amount of
memory required to store the forward or backward state metrics which cause delay, before
computing LLR. Thus it is necessary to achieve an efficient MAP-based turbo decoder
implementation. In the literature, a number of SW based turbo decoders have been
implemented to reduce power and area [21, 25, 26, 28], and to achieve high throughput [90-

92].

Figure 2.10 shows the backward and forward process flow in the SW method. In this case,
the forward process is not affected by the SW method. The dummy-backward process starts

at the end of the second sub-block. This process produces error-free backward state metrics

20

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Backward Process Dummy Backward Process

sub-block, | subblock, |

Forward Process
Backward Process =~ Dummy Backward Process

< 2

[subblock, | subblock, |

Forward Process
Backward Process Dummy Backward Process

| subblock, | subblock,

Forward Process

Figure 2.10 Sub-frame by sub-frame turbo decoding process in the SW method.

for the backward process of the first sub-block. After completing the dummy-backward
process, the backward state metrics generated from the dummy-backward process are used as
the initial state metrics of the backward process. During that time, the forward process is
performed to generate the forward state metrics, and they are stored in memory until the
backward process starts. Thus, LLR is calculated from the backward state metrics generated
when the backward process starts, and the stored forward state metrics. In the process, the
role of the dummy-backward process is similar to the traceback process in a Viterbi decoder
[139]. While the traceback process finds an error-free state before starting the decoding
process for generating a hard decision, the dummy-backward process generates the initial
state metrics for the backward process, which provides the backward state metrics for LLR

computation process.

The data flow for the turbo decoding process with the SW method is also illustrated as a
graph with time and block axes, in Figure 2.11. The solid line without notations indicates
input data, while the dashed line with f; represents the dummy backward calculation

process; the number identifies the sub-block.

21

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Block

»

= P
sub-block, / ‘\‘ﬁdﬂ 0y
. i
.
- v F;
~ g 3
N ﬁ 3 ot
sub-block, / d 0'3 Lia
|
~ o
N B i ﬁz
sub-block, noa G Lo
\‘ ‘.4'
¥ Al
Y A Ji
sub-block, Nl 1 Lo
S

Figure 2.11 A graph of sub-block data with sliding window method.

> Time

As stated above, the dummy backward process of the dashed line is not for computing LLR.
The backward process for the LLR values is performed on the solid line denoted with /£ and
L. On the solid line, the backward process and LLR computation are executed
simultaneously. The forward process (represented by the dashed-dotted line with «), is done

before executing the backward and LLR computation processes.

2.8 Soft-Output Viterbi Algorithm for Turbo
Decoding Process

SOVA introduced in [67] generates the soft-decision (called soft-output or LLR) rather than
the hard-decision, finding the maximum likelihood (ML) paths during the forward process.

The soft-output is represented by APP, as shown below.

22

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Pu(k) =+1)
1= P(u(k)=+|y)

L, (k)=log =u(k)L(k) (2.8)
where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time k.
In MAP-based turbo decoders, L;(k) is calculated from the branch metrics, and all forward
and backward state metrics. However, u(k) and L(k) in equation (2.8) are independently
obtained from the forward process only, as in a Viterbi decoder. In SOVA, the hard-decision
can be obtained by using traceback or register-exchange algorithms (TBA and REA) as used
for traditional decoders [85-88]. On the other hand, the reliability value is obtained from the
difference between the state metrics after completing the updating process. The reliability

value, A(sg 1), before the updating process is represented as follows :
A(Spi1) =7 (k> Sp) + (S5) = V(g Sk1) — & (5y) (2.9)

where ¥ and & are the branch and forward state metrics, respectively. They can be obtained
from the same equations (2.2) and (2.3) described in the previous section. Therefore this
computation process is the same as the forward process of the MAP algorithm. However, in
SOVA, the reliability value, A(s;.), is obtained from an absolute value of the difference
between the state metrics, as shown in equation (2.9). These values are accumulated and
updated at each state through the survivor and update processes [67] until the final reliability
value for the soft-output is decided. Then, the extrinsic information for the next iteration
process can be calculated using the equation (2.7). Thus, SOVA can be used to the iteration
process for the turbo decoding process, exploiting the soft-output to obtain the extrinsic

information.

2.9 Techniques for Turbo Decoder Implementations

The MAP and SOVA described in Sections 2.6 and 2.7 are not suitable and less efficient to
implement a turbo decoder in practical systems, because of their complexities. Since turbo
codes were introduced, much research has focused on the implementation of the turbo

decoder in order to achieve high performance in terms of area, power, throughput, and so on.

23

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

This section reviews and summarizes techniques used in the literature to implement turbo

decoder hardware based on either MAP or SOVA.

2.9.1 Optimum and Sub-Optimum Algorithms

Equations described in Section 2.6 for the MAP algorithm are not suitable for an efficient
turbo decoder implementation because of the non-linear functions. These functions can
increase computational complexity, which might lead to high area usage and power
consumption in hardware implementations. This problem can be addressed by using
optimum and sub-optimum algorithms suggested in [15]. These algorithms are Log-MAP
(LMAP) and Max-Log-MAP (MLMAP). The equations (2.2), (2.3), and (2.4) include
logarithm and exponential functions which can be simplified by an approximation form

(known as the Jacobi logarithm) represented as follows :

In[exp(x) + exp(y)] = max[x, y] + In[exp(— | x — y |)] (2.10)

where the second term of the right hand side is the correction term that can be implemented
with a simple look-up table [81]. The difference between LMAP and MLMAP algorithms is
determined by the inclusion of this term. While this term is ignored in the MLMAP

algorithm, it is implemented in the LMAP algorithm.

2.9.2 Two-Step SOVA

Two-step SOVA (TSOVA) suggested in the literature [93] was developed to reduce the
computational complexity of the original SOVA described in [67]. TSOVA divides the
decoding process into the survivor and update processes to reduce the complexity. These
processes are executed simultaneously in the original SOVA. The survivor process performs
the same function as the traceback process in a Viterbi decoder [85-86] in order to find a
state for beginning the decoding process to generate the hard-decision. Thus in the TSOVA,
the survivor process finds the ML path for each state to determine the state at which all ML
paths converge. Then, the update process starts from the converged state to update the
reliability values by following the hard-decisions provided by the survivor and competing

paths. The reliability values are updated at the point where the two hard-decisions of the

24

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

survivor and competing paths are different. The update rule described in [67] is used for the
update process. Since the introduction of TSOVA in [67], it has been used not only for turbo

codes [94-96], but also for other applications [97-98].

2.9.3 Quantization Method

A fixed-point method is useful to reduce the hardware complexity. The real value
transmitted over the channel can be represented in an integer value using a fixed-point
representation method to save the resources needed to implement digital signal processors.
However, the fixed-point level can affect both BER performance and hardware costs. This

represents a trade-off between performance and cost.

In the literature [99-104], fixed-point turbo decoders have been investigated through the
BER performance, varying the fixed-point level of soft-input symbol data to find an
appropriate level without significant performance degradation. This fixed-point can be

represented as follows [89]:
Ve =27 y+05] @.11)

where y is the symbol data for the turbo decoder, yz, is the fixed-point representation of the y,
and p is the number of the precision bit in the fixed-point representation. In the equation,
‘LVJ’ means ‘integer part of y°. If the total number of bits is L, the final fixed-point value, y;

is

min(yﬁx& ZL_] Hl)
v = B (2.12)
max(y e, —2°)

Thus the maximum or minimum fixed-point value is determined by the total number of bits.

2.9.4 Metric Wordlength Optimization

A digital signal processor is implemented with a finite wordlength for input, output, and

internal metric representations. Thus it is clear that the size of wordlength directly affects

25

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

hardware costs. An optimized wordlength of the metrics for turbo decoder implementations
without degrading BER performance has been considered in the literature [89, 101-104].
This optimization is associated with the quantization level described in the previous sub
section. According to [15, 105], a total of 4-bits is the most suitable wordlength to represent
soft-input symbol data. When the soft-input representation is determined, the metrics such as
branch metrics, state metrics, and LLR, can be decided by high level simulation for
evaluating turbo decoder performance. Larger wordlength than the 4-bits can be applied for
turbo decoder implementations to achieve better performance, but that leads to increasing
overheads in hardware performance in terms of area and power. Therefore the optimization

should be determined by considering the trade-off between performance and hardware costs.

2.9.5 State Metric Normalization

A turbo decoder performs an iteration process in order to produce better performance. This
process dramatically increases the state metrics during the decoding process. Thus a large
wordlength is needed to avoid overflow of the state metrics in turbo decoders. However, the
large wordlength clearly increases the hardware costs of turbo decoders, as described in the
previous sub section. A Viterbi decoder also suffers from the overflow problem. As a result
of using soft-input symbol data for the turbo decoding process, the increase rate of the state
metrics in turbo decoders is much more rapid than in a Viterbi decoder. Several techniques
to address this problem for Viterbi decoders have been suggested [106]. The state metrics
normalization method, which is similar to the methods described in [11, 105, 107], can be
used to reduce the wordlength of the state metrics, avoiding the overflow and saving the
hardware costs. The normalization method is realized by subtracting a constant value from
the computed state metrics when the state metrics are larger than the constant value. Thus the

use of the state metric normalization can reduce the wordlength and save hardware costs.

2.9.6 Retiming Method

In a turbo decoder, the state metric computation unit has the highest computational
complexity which increases exponentially with the constraint length (K). As a result, the

number of states grows proportional to 2. Also, the state metric computation process,

26

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

known as add-compare-select (ACS), is performed concurrently during the decoding process.
Thus, the critical path delay of a turbo decoder is known to exist in the ACS unit. The
retiming method reduces this delay by changing the order of the state metric computation
process. Similar techniques to reduce the critical path delay are already employed for Viterbi
decoders [108-110]. According to [34], the retiming method can reduce the critical path

delay by 29%, but it leads to 99% and 89% overheads in area and power.

2.9.7 Adaptive Iteration Method

The iteration process of a turbo decoder corrects the errors introduced over the channel to
improve BER performance, but this process can cause high latency and energy. In practical
wireless communication systems, a turbo decoder performs the decoding process frame by
frame. Each of the frames passed to a turbo decoder could have different error rates. Thus all
the frames that have different error probabilities could be corrected by applying a different

number of iterations rather than any fixed number of iterations.

The adaptive iteration method is used to reduce the number of iterations by observing the
errors of each frame indirectly during the decoding process, so reducing latency and energy
consumption. Several adaptive iteration methods have been suggested in the literature [111-
113]. One of the methods is to observe the reliability value of LLR, during the decoding
process. If all the reliability values are larger than the threshold value, the iteration process is

stopped. In this way the adaptive iteration method can save energy and reduce latency.

2.9.8 High Radix Architecture

High radix architecture has been considered for a Viterbi decoder implementation in order to
improve throughput of the decoder [114-117]. Although the high radix method increases
hardware costs and complexities, it can raise throughput without high clock frequency. In
[118], a high radix turbo decoder implementation based on LMAP algorithm was introduced
showing how LLR and extrinsic information for the turbo decoding process are obtained
from the high radix turbo decoder architecture. Several papers [11, 20] show the turbo

decoder implemented with the high radix architecture in order to achieve better throughput.

2

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

2.9.9 Stopping Criteria

A turbo decoder performs an iteration process to achieve better performance in terms of BER.
However, the iteration process causes of high latency and energy consumption. A stopping
criterion is to address the issues by stopping the iteration process, which can prevent
unnecessary computation and decoding delay. Thus, one can improve throughput rate and
save energy consumption of turbo decoders. In [119-121], a method based cross entropy
between the distributions of the estimates at the output of the decoders at each iteration has
been proposed. In recent, several techniques for the stopping criteria [122-126] for an
efficient turbo decoding process have been suggested. In the criteria, the most important
thing is to minimize the additional algorithm used to stop the iteration without degrading the

decoding performance.

2.9.10 Parallel Implementation

A throughput rate is always one of the most important issues in wireless and wired
communication systems. One of the ways for achieving high throughput is to implement a
turbo decoder in a parallel scheme. In [127-129], a parallel scheme for high throughput turbo
decoder implementations has been proposed showing hardware overheads. There are several
issues to implement parallel turbo decoders. They are designing interleavers [130-134] and
parallel architectures [135-136] for parallel processing. Implementing a turbo decoder in
parallel clearly leads to an increase of the hardware costs. Thus, there must be trade-off
between throughput and performance in terms of area usage and power consumption. The
performance overhead led by the parallel scheme should be acceptable in the systems

requiring turbo codes. .

2.10 Summary

This chapter reviewed turbo encoding and decoding principles. Two sorts of turbo codes
were introduced. The MAP based and SOV A based turbo decoding algorithms, and how they

generate soft-output, were described and explained. For practical turbo decoder

28

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

implementations in hardware, the algorithms need to be modified in order to reduce their
computational complexities. Several techniques for the turbo decoder implementations were
described, including their methods for achieving high performance and efficient hardware.

These techniques are utilized to implement a turbo decoder to be presented in later chapters.

29

Chapter 3

Max-Log-MAP Based Turbo Decoder
Hardware Architecture

3.1 Introduction

Many researchers have been paying a lot of attention to the outstanding BER performance of
the turbo decoder. However, the use of the turbo decoder was expected to increase the costs
of receiver systems, as the authors in [3] stated that the turbo decoder’s complexity is twice
that of the Viterbi decoder. In general, a decoding processor is regarded as the most
exhaustive processor in the systems. For this reason, the turbo decoder has been challenged
by a number of researchers to reduce the computational complexity and thus save hardware
costs. Among the many works described in the previous chapter, the development of Log-
MAP (LMAP) and Max-Log-MAP (MLMAP) [15] contributes to a significant reduction in

this complexity, and they are widely applied to turbo decoder implementations.

Another issue in turbo decoder implementations is that the iterative process increases the
data output latency, which can lower the data throughput. The turbo decoder provides the
LLR after computing all the forward and backward state metrics, as described in the previous
chapter. This leads to a large latency, and also requires large amounts of memory to store
either forward or backward state metrics until completing one of the state metric
computation processes. Thus, the latency and memory size are dramatically increased,
depending on the number of iterations and the block size. The sliding window (SW) method
proposed in [25] can address the latency problem. In [137-138], several turbo decoding
algorithms are compared in terms of implementation complexity. The results show that
MLMAP with the SW method is the most suitable algorithm for the turbo decoder

implementation.

This chapter presents MLMAP based turbo decoder architecture with the SW method, which

is similar to the conventional SW based MLMAP turbo decoder architecture. The

30

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

architecture consists of memory blocks for controlling data input and output through the SW
method, metric computation units (MCU) for the branch and state metrics, an LLR
computation unit (LCU) for obtaining LLR and the extrinsic information, and memory
blocks for storing input data and the metrics. This chapter discusses a detailed
implementation method for the units and the design flow for the turbo decoder VLSI
implementations, in order to evaluate their hardware performance in terms of area, power
and critical path delay for the maximum speed. Before implementing the MLMAP turbo
decoder, the turbo decoder is investigated at high level using Matlab™ to verify its
functionality. For the investigation, various conditions and parameters are applied for

evaluating BER performance of the turbo decoder.

The chapter is organised as follows. In Section 3.2, the MLMAP turbo decoder architecture,
as well as the components incorporated into the architecture, is described in detail. Section
3.3 shows the turbo decoder performance results at high level. Hardware simulation results

are discussed in Section 3.4, and Section 3.5 summarizes the chapter.

3.2 Max-Log-MAP and Sliding Window Method-
Based Turbo Decoder Architecture

3.2.1 Max-Log-MAP Soft-Input Soft-Output Turbo Decoder
Architecture

Figure 3.1 illustrates the MLMAP turbo soft-input soft-output (SISO) decoder architecture
implemented with the SW method described in the previous chapter. The architecture
consists of a data scheduling unit (DSU) for managing data input and output following the
SW method, three metric computation units (MCU) for the branch and state metric
computation; an LLR computation unit (LCU) for generating the hard decision and the
extrinsic information, and memory blocks for delaying the soft-input (DS), the branch

metrics (DB), the forward state metrics (DF) and the decoded information (DL). These

31

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

CNT1 CNT2
FETERERL [, e DMCU
s BMU H—=3 SMcU H!
Soft L | |Foo [5 . ' ol
mput 5 ’,' v v Y
= e DS
j}[T LCU
BMCU
e # T DB
> FIFOO | BMU Aﬁ sMcu [:
DF| [DL
e | ; output
bsSU FMCU

Figure 3.1 The Max-Log MAP turbo SISO decoder architecture,
implemented with the SW method.

memory blocks are realised by a last-in first-out (LIFO) memory block. Two counters (CNT
1 and 2) give the DSU and each MCU the count numbers that indicate the beginning and end
of the input and sub-block for the SW process.

As shown in Figure 3.1, the soft-input data is fed into the DSU and then it is distributed to
each of the MCUs through first-in first-out (FIFO) and last-in, last-out (LIFO) blocks, which
have the same depth with a window size of 40. A dummy-backward MCU (DMCU)
computes the backward state metrics to provide the initial state metrics to backward MCU
(BMCU). The forward state metrics are computed in forward MCU (FMCU), which are then
delayed by DF before input to LCU, until the backward state metrics generated by BMCU

32

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

are passed to LCU. LCU calculates LLR from the branch metrics delayed by DB, the
forward state metrics delayed by DF, and the backward state metrics computed by BMCU.
After obtaining LLR, the extrinsic information for the next decoding process is computed by

subtracting the soft-input delayed by DS from the computed LLR.

The output of LCU consists of nine bits, of which MSB is the hard decision and the rest is
the extrinsic information. The DL converts the reverse ordered output into the right order. In
the following subsections, a detailed structure and implementation method for the

components is described.

Before designing the MLMAP turbo decoder in hardware, parameters for representing the
metrics are determined from high-level simulation results described in the next section.
Table 3.1 summarizes the wordlength for each parameter for MLMAP decoder
implementation. The input symbols and the extrinsic information are represented with four
bits and eight bits, respectively. On the other hand, the branch and state metrics are
represented with eight bits and nine bits, respectively. The 1- and 0-bit LLR values for
computing LLR are represented in 10 bits. All the parameters are represented in 2’s

complement. These parameters are similar to ones used in the literature [15, 104].

Table 3.1 Parameters used for the MLMAP turbo decoder hardware implementation.

Metrics Wordlength
Input Symbols 4-bits
Extrinsic information 8-bits
Branch Metric 8-bits
Forward and Backward State Metrics 9-bits
LLR 1- and 0-bit 10-bits

33

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.2.2 Metric Computation Unit

Figure 3.2 illustrates the MCU structure, which consists of a branch metric unit (BMU) and a
state metric computation unit (SMCU). The MCU structure is used to implement the three
MCUSs incorporated in the MLMAP turbo decoder architecture, as illustrated in Figure 3.1.
They can be implemented in a similar way. In the MCU, BMU computes the branch metrics
(BM) from the soft-input data. SMCU, which consists of a number of parallel add-compare-
select-normalization (ACSN) units, calculates the state metrics (SM) from the BM and
previous SM values. The number of ACSN units incorporated into SMCU is given by 25

for constraint length K.

MCU Recursive SM

SMCU

ACSN 0

ACSN 1

Soft-input —— BMU >
BM ACSN 2

ACSN 2K-1

.

Figure 3.2 The metric computation unit structure.

3.2.2.1 Branch Metric Unit

BMU calculates the branch metrics from the soft-input symbol data (y, and y,) and the
extrinsic information (L.) provided by the previous decoding process, which is initialised to
zero at the first decoding process. In the turbo decoding process, four branch metrics are

needed to compute the state metrics.

34

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

BMU

i i S g o e A A

Figure 3.3 The branch metric unit structure.

Figure 3.3 illustrates the BMU structure, which consists of four adders. The BMU generates
two branch metrics, 7, and i (the subscripts of y represents the code word of systematic
and parity bits generated by a turbo encoder). The two branch metrics are negated to obtain
the rest of the branch metrics, yo and 3, for computing the state metrics. The BMU does not
depend on the constraint length, and can be used in turbo decoder implementations with

different constraint lengths.

3.2.2.2 Add Compare Select Normalization Unit

Most of the MCU area and power is clearly occupied and consumed by the parallel ACSN.
The state metric computation process can be described by the trellis state diagram, as shown
in the previous chapter. Figures 3.4 (a) and (b) show the trellis diagram of the forward and
backward processes for K = 4, as an example. Each of the paths in the figure is represented
in a different line style that corresponds to the code word. By initialising the forward and
backward state metrics following the equation (2.5) in Chapter 2, next state metrics are
calculated from the two branch and two state metrics represented by the transition paths, as

shown in Figure 3.4. This procedure is recursively performed for the input block.

The structure of ACSN used in the turbo decoder implementation is similar to an ACS

structure used in Viterbi decoders [114], except the state metric normalization process. In

35

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

~N O 0k WON =2 O
~N O O s WN = O =

k k+1
(a) (b)

Figure 3.4 The trellis state transition diagrams of (a) the forward and
(b) backward processes.

turbo decoder process, the state metrics could increase more rapidly than in a Viterbi decoder,
due to the use of soft-input symbol data. Therefore; a large wordlength is required for the
state metrics to avoid overflow; however, this may lead to large area and power overheads.
Thus, the state metrics normalization process is necessary for an efficient SMCU
implementation that has no overflow. The normalization process is performed by subtracting
a constant value from all state metrics, after calculating the state metrics in every cycle,

when all the computed state metrics are larger than the constant value [104].

Figure 3.5 illustrates the structure of the ACSN used for calculating the forward state metric
of state 0 at time k, as an example. Two branch metrics generated by BMU, 30(k) and y1(k),
and two state metrics of states 0 and 1, a(k) and a;(k), are inputs of the ACSN. A pair of
branch and state metrics is added using each of the adders (A), and then the results of each
adder are compared to select (CS) the maximum between them. The comparison process is
carried out by using an adder and a multiplexer (MUX). The most significant bit (MSB) of
the adder output is used as a control signal for MUX, which selects the maximum one from
its two inputs. The selected maximum value is used for next state metric computation
process and for computing LLR after completing the naormalization process (N). For the state

metric normalization process, the selected maximum value is compared with a constant value

36

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

ay(k) Yoolk) a (k) 1,00

ACSN

P
~ 4

a(k+1)

Figure 3.5 An example of the add-compare-select-normalization structure for
computing the forward state metric at state 0.

(CONST) to determine whether the maximum value is larger than CONST or not. If the
maximum value is larger than CONST, CONST is subtracted from the maximum value. If
the maximum value is not larger than CONST, the maximum value becomes the state metric,

ap(k+1), without the normalization process.

The ACSN process is concurrently performed during the turbo decoding process, using the
output SM as the input of the ACSN itself recursively. Thus, the whole ACSN process must
be completed in one clock cycle concurrently, due to the recursive SM input to ACSN itself.
In this case, the critical path delay of the MLMAP turbo decoder is determined by the ACSN

[13], which can be approximated as follows:

37

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

dacsn = 3xt, +2x1y, (3L

where 1, is the delay of the adders used in A, C and N processes, and £, is the delay of the
MUX. This ACSN critical path delay, dacsy, determines the maximum speed of the turbo
decoder for achieving maximum throughput. Other modules — such as BMU and LCU,
which are described in the next subsection — can be implemented with pipelining method, to
reduce the path delay. ACSN can also be implemented with pipelining method to reduce the
delay. In this case, however, the pipelining for ACSN does not help to improve the

throughput, since the output is also delayed by the number of pipelined stages of ACSN.

3.2.3 Log-Likelihood Ratio Computation unit

After obtaining the branch metrics and all the forward and backward state metrics, LLR can
be calculated. Before computing the LLR, the computation process of the 1- and 0-bit LLR
values, which are the numerator and the denominator in equation (2.1), respectively, can be
described by the trellis state diagram illustrated in Figures 3.6 (a) and (b). The figures
illustrate the state transition paths denoting the code words in different line styles to

distinguish the computation of 1-bit and 0-bit LLR (Z;, and L) for constraint length K = 4.

00— - == Q=== A 2=
0 e @ 0 e e)
1 1 .*\"'\—: _______ -2
2 2 8- '_l ..
3 3 .“-._‘ ”Jf’l .
4 4= 8. s e
”A‘." / .“..‘-“
5 SEAL L Dby)
6 6 o)
i AR LA — -9
a(k) Pk+1) atk) Blk+1)
(a) (b)

Figure 3.6 The trellis state transition paths for computing (a) Lo and (b) L.

38

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

For instance, Figure 3.6 (b) shows the paths with the code words of 11 and 10, in which the
first digit, 1, implies the systematic bits. Thus, L, values are calculated from the two-branch
metrics (1. %0) and the forward state metric at time &, a(k), and the backward state metric at
time A+1, f(k+1), indicated by the ends of the paths shown in Figure 3.6 (b). In the case of
K =4, 8 I, values are computed, and then the maximum among them is selected to
calculate the LLR. In the same way, the maximum L, value can be obtained using the

diagram shown in Figure 3.6 (a). Thus, the LLR value is obtained by subtraction as follows:

Lh‘ = max[L,,,l!G ...L[r]!:,-] = maX[LM!O '"Lh"ﬂﬁ] for K=4 (32)

Figure 3.7 illustrates the LCU structure for calculating the LLR and extrinsic information. It
consists of a LCUO, a LUCI and adders. The LCU inputs are the 25" numbers of the forward
and backward state metrics for constraint length K, and the four branch metrics. LCUO and
LCU1 compute the Lo and Ly values. Then, L; is obtained by subtracting Lo from L.

After that, the extrinsic information, L., is obtained by subtracting the soft-input from L.

The structure illustrated in Figure 3.8 is commonly used to implement the LCU1 and LCUO

with different input metrics. The structure, given as an example, generates L, for constraint

FSM— > S
BSM—{4+—> LCUT Ly §
BM —H11— }*
E /\ E > L[r
i N |
i > LCUO I
i & ‘r+ E
Soft-input : l() s

Figure 3.7 The LLR computation unit structure.

39

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

Figure 3.8 The LCU1 structure for constraint length K = 4.

length K = 4. In this structure, eight numbers of the forward (ap - ¢4) and backward (5, - f7)
state metrics and two branch metrics (71 - 710) are input to LCU1. The first two adder rows
generate eight L, values, then the maximum among them is determined by repeating the

compare-select (CS) processes. After completing the CS process, L, is finally output from

the LCUI.

The critical path delay of the LCU1 (or LCUO) structure can be given as follows:
dLCU] = 5X[a +3X[ms (33)

where 1, is the delay of the adder and ¢, is the delay of the MUX. As can be seen, dcy; is

larger than the delay of ACSN (dacsy) given by equation (3.1). In contrast to ACSN,

40

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

however, this delay can be reduced by using pipelining method. The number of pipelining
stages varies with the constraint length, K, due to the different number of CS processes

involved.

3.3 High Level Simulation Results

3.3.1 Simulation Specifications and Systems

The turbo decoder simulation model for high level simulation can be represented as follows:
y(k) = x(k) + n(k) (34)

where x(k) is the encoded data for transmission, n(k) is the additive noise, and y(k) is the
received data for the decoding process. Figure 3.9 illustrates a block diagram for the
simulation. The binary source data are generated at random. The turbo encoder encodes the

source data, and then, the encoded data are modulated in the binary phase shift keying

Source o Turbo » Modulator
Bit Stream Encoder d
(k)
é}«— AWGN
y(k)
k _/L\jr Turbo |, De- |,
Error results -« s Decoder | modulator

Figure 3.9 A block diagram of a test system for turbo decoder BER evaluation.

41

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

(BPSK) modulation method. The modulated data are transmitted over the additive white
Gaussian noise (AWGN) channel model. After the received data are demodulated, they are
decoded by the turbo decoder. The decoder output is compared with the source data to

evaluate BER performance.

In the simulation, turbo codes are generated for constraint length K=3, 4, and 5 using the
encoder illustrated in the previous chapter. It is assumed that an additive white Gaussian
noise (AWGN) channel model with mean 0 and variance 1, code rate 1/3, and a block

interleaver of 1024 bits with three tail bits are used.

3.3.2 Performance for Varying Block Size

There are various factors that affect the BER performance of a turbo decoder. One of them is
the block size for the turbo decoding process, which in turn effects the interleaving. When
the block size is large, the distance between two neighboring symbols can be increased by

using the interleaving process. This can help to reduce the burst errors. In contrast, a small

LEt00 E===============

1.LE-01

LE02 ==

BER

1.E-03

T \.lun'l

1.E-04

1.E-05

Figure 3.10. BER performance for different size of block interleaver.

42

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

block size decreases the interleaving effect as a result of the reduced distance, and provides a

lower BER performance than a large block size.

Figure 3.11 shows the BER performance results for different block sizes, 64, 256, and 1024.
The simulation results are based on K=4 MAP based turbo decoder with the parameters and
conditions described in the previous subsection, after completing 8 iterations for each block.
A block interleaving method described in Section 2.4 of Chapter 2 was applied for
performing the simulations. As can be seen, the results show that the increase in block size
improves the turbo decoder BER performance. In next simulations, the 1024 size block

interleaver is used to evaluate BER performance of the turbo decoder.

3.3.3 Fixed-Point Implementation

Following the fixed-point representation method described in the previous chapter, BER
performance of the MLMAP based turbo decoder for constraint length K=4 was investigated
by varying the number of total and precision numbers of the bits. The parameters and
simulation conditions described in Section 3.4.1 were used. Figures 3.11 (a), (b), and (c)
illustrate the BER performance results after completing 8 iterations for (4.1), (4.2), and (4.3),
respectively, in which 4 is the total bit number and 1, 2, and 3 are the precision bit numbers.
In the simulation results, (4.2) provides the best BER performance of the fixed-point
representations. For further investigation, the simulations were repeated with increasing the
total number of bits to 5. Figure 3.12 shows the BER performance results of the 8th iteration
for (4.1), (4.2), (4.3), (5.2), and (5.3). In the results, (5.3) provides the best BER performance
followed by (5.2). However, it can be seen that the performance degradation of (4.2) is not
significant as compared with the performance obtained from the fixed-point implementation
with a total of 5-bits. Therefore, in this work, the soft-input will be represented with the (4.2)

fixed-point representation scheme.

43

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1.E+00 - 1.E+00
LEOl == 1.E-01
LE02 = 1.E-02
o =
w
3 :
1.E-03 LE03 E
1.E-04 z 1E04 £
05 i i
o 0 0.5 1 1.5 2 25 3 LB03 ;
3 = E 0 05
Ew/No
(a)
LE+00

LE0I |

1LE-02

BER

1.E-03

LREL

LSLELLLL B L UL

1.E-04 —&— 4th =
—8—38th =
1.E-05
0 0.5 1

Figure 3.11 BER performance for different fixed-point representations. (a) (4.1), (b)
(4.2), and (c) (4.3).

44

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

LE+00 p======
LEO1 ==

LE-02 ==

BER

1.E-03

1.E-04

URRRELL

1.E-05

Figure 3.12. BER performance comparison for different fixed-point representation.

3.3.4 Performance with Varying Window Size

It is well known that the BER performance of the SW based MLMAP turbo decoders
depends on the window size. If the window size is small, the state metrics computed by the
dummy-backward process could be wrong, which can degrade the performance. If the

window is large enough, there is no performance degradation, but latency could be increased.

The BER performance has been evaluated by varying the window size for different
constraint lengths. The simulation was carried out with the same conditions used in the
previous sub sections. Figures 3.13 (a), (b) and (¢) show the BER performance results when
the window size was varied, after completing eight iterations for constraint length K =3, 4
and 5, respectively. The simulation results were obtained for window sizes from 4 to 20,
with a step of 4, and 40. As can be seen, the performance is almost saturated at the window
size of 12, 16 and 20 for K =3, 4, and 5, respectively. These results show that the window

size for achieving proper BER performance is strongly related to the constraint length.

45

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

LE+00 ==

1.E-01 £

1.E-02

g

1.E-03

1.E-04

1.E-05 .

0 0.5 1 1.5 2 2.5 3

Eb/NO
(a)

LEH00 e === === it

LEOI | LEOl E
LE02 | LE02 E
-4 Eee—rr o I
35 e o I
o0 RN R I, e, SN i T Tl = I
-4
LE-03 E 1LE03 =
B —9=8 E
[F 12 B
1LE04 | 16 LE-04 E
E -2-20 ZZSSSIS%==C E
R e Y L e et e S -
1 E-05 e . et 1.E-05
0 05 1 1.5 2 25 3 0
Ew/No
(b)

Figure 3.13 BER performance upon varying the window size: (a) K = 3,
(b) K=4 and (c) K=5.

In this work, the window size is determined by considering of the minimum block size of 40

specified for turbo codes in 3GPP [62].

46

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.3.5 BER Performance Comparisons

This subsection shows the turbo decoder BER performance results for constraint lengths
K=3, 4, and 5. Two turbo decoders, based on MAP and MLMAP algorithms, have been
implemented in order to investigate the performance difference between the two algorithms.
MAP and MLMAP turbo decoders were simulated with both real and fixed-point values.
Thus, the BER simulation results can reflect the performance gap between the algorithms

and also the representation methods, as well.

Figures 3.14, 3.15, and 3.16 illustrate the BER simulation results for constrain length K=3, 4,
and 5, respectively, after completing 1, 2, 4, and 8 iterations. As in the previous subsections,
the parameters described in Section 3.4.1 were used in these simulations. The results show a
feature of the turbo decoder performance that the performance improves with increasing the
number of iterations. In the figure, the real value MAP and the fixed-point MLMAP based

turbo decoder results are represented in dashed and solid lines, respectively. As expected,

LEHO0 ==

1.E-01 £¥

LE-02 =

o 1.E-03 E===

1.E-04

1.E-05

UL LELRLLLAL LSLAL

1.E-06

Figure 3.14 BER performance comparison between real and fixed-point values for K=3.

47

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1.E-02

BER

1.E-03

1.E-04

T

1.E-05

LBLBLLALLL

1.LE-06

1.E-03

Fixed —#— 2nd- %

BER

:value —&— 4th
1.E-04 E 8th
F S RO 1 S
1.E-05 [Real ¢~ 2nd-
E ovalue ---A--- 4th -
1E-06 Lt
0 0.5 1 ES 2 25 3

Ev/No

Figure 3.16 BER performance comparison between real and fixed-point values for K=5.

48

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

the real value MAP turbo decoder provides better performance than the fixed-point MLMAP
based turbo decoder, due to the approximation. However, as can be seen, there is no
significant performance improvement after completing 4 iterations. The simulation results
show that the fixed-point representation and MLMAP algorithm lose a coding gain of around
0.25, 0.15, and 0.15 in Ey/Ng at a BER of 10" for K=3, 4, and 5, respectively, after

completing 8 iterations.

3.4 Hardware Design and Results

3.4.1 Turbo Decoder Hardware Design Flow

This section shows the design flow utilised in this thesis for the turbo decoder hardware
implementation. Figure 3.17 shows high level simulation flow for verifying turbo decoding
algorithm. It starts by determining the specifications of the turbo encoder and decoder. At
this stage, the algorithm used to implement the turbo decoder is verified by evaluating its
BER performance. This step is important in verifying the functionality of the turbo decoder.
Figure 3.18 illustrates how the turbo decoder hardware is designed, verified, and evaluated in
this thesis. The hardware is designed at a register transfer level (RTL) using the Verilog
hardware description language (HDL). Some of the parameters needed to design optimised
hardware are provided by high-level simulation results. The hardware is then synthesised

using a standard CMOS technology library.

Gate-level netlist generated by the synthesis process are simulated with the timing
information to verify the functionality. After completing the synthesis, the power
consumption of the hardware can be estimated by using the capacitance obtained from the
synthesis and the switching activity generated during the netlist simulation. The physical
synthesis process for generating layout can then be performed with the netlist and the
information generated by the synthesis process. The layout of the hardware is produced
through floor planning, placing and routing processes. After completing the layout
generation, the hardware power can also be estimated in the same way with the gate-level

simulation.

49

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

Encoder & Decoder |
Specifications

High Level
Implementation

!

Simulation

Parameters
for Design

l

RTL designing

Figure 3.17 The design flow for high level simulation.

50

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

Parameters
l Yes
» RTLcoding |g -
Verilog HDL
Data » RTL simulation
<ot ==
Yes
Synthesis b
SDF, netlists
o
Yes
, Y
G-level Simulation Physical Synthesis |
SAIF SDF, netlists
N Post-Layout
Simulation
Yes
Power Evaluation @ No

Yes

Power Evaluation

Figure 3.18 The design flow for the turbo decoder hardware implementation.

51

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.4.2 Hardware Test Environment

A test system for the MLMAP turbo decoder hardware functional verification has been built
using Matlab™ and Verilog HDL. Figure 3.19 illustrates the test system for the verification.
The data fed into the testbench for hardware verification is generated in Matlab™, as used in
the high-level simulation described in Section 3.4. The source bits generated at random are
encoded, and then the symbol data transmitted over the AWGN channel is converted into the
fixed-point representation, so that it can be provided to the testbench. At the same time, the
interleaver and deinterleaver addresses generated by the interleaver and deinterleaver address
generators (IAG/DAG) are also sent to memory in the testbench. The turbo encoders for
constraint lengths K =3, 4 and 5 described in Chapter 2 are used, and the parameters for the

data generation are the same as used in Section 3.4.

The testbench for the MLMAP turbo decoder hardware is designed using Verilog HDL. It
incorporates the memory blocks for the interleaver and deinterleaver with the input data. The
sequences for the turbo decoding process and the number of iterations are controlled and
generated by the testbench, which can be used not only for the RTL-level simulation, but

also the gate-level simulation.

[N
Matlab™ Testbench
IAG/DAG : RTL/Gate-Level
Interleaver/
Deinterleaver
Random| | Turbo S Fixed
:] — Mod. » Demod. [; >
Bit Encoder Point T
Decoder
AWGN
- s

Figure 3.19 The test system for the MLMAP turbo decoder architecture.

52

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.4.3 Evaluating Power

The sources of power consumption in CMOS circuits are switching, short-circuit and leakage
powers [140-141]. The switching power is the power consumed in charging and discharging
the load capacitance; it accounts for most of the total power consumption in the circuits. The

switching power, P,,, can be represented as follows:
o
Pow = X5Crona¥ da S (3.4)

where Vy, is the supply voltage; fis the clock frequency; Cju.q is the load capacitance of the
gate; and a,, is the switching activity factor, which is defined as the average number of gate

transitions (1 = 0 or 0 — 1).

3.4.4 Post-Synthesis Results

As shown in the design flow in Figures 3.17 and 3.18, the MLMAP turbo decoders for
constraint lengths K =3, 4 and 5 were designed at RTL level using Verilog HDL, after
completing the high-level simulations discussed in the previous section. The correct
functionality of the Verilog code at RTL level was tested with Cadence Verilog-XL™, with
the testbench shown in Figure 3.19. Then, the turbo decoder was synthesised using the UMC
0.18um standard CMOS library with Synopsys DesignCompiler™ to obtain gate-level
netlists. These gate-level netlists were simulated with Cadence Verilog-XL™, using the
timing data produced by the synthesis. During the gate-level simulation, the switching
activities of all the circuit nets of the MLMAP turbo decoder hardware were captured to be
used for the power consumption using Synopsys PowerComplier™. These processes were

carried out at a clock frequency of 50 MHz.

Figures 3.20 (a) and (b) illustrate the total and breakdown area and power results of the
MLMAP turbo decoders, respectively, for the constraint lengths K = 3, 4 and 5. In the graphs,
the primary and secondary y axes show results for individual components and the whole

design, respectively. As can be seen, the increase in total area and power is not linear with

53

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1.4 7 1.6
I N BMU [EESMCUCCOLCU —>]

fe - CIMEM & Total : (5
=R I gl E
E 0.8 : 3

~— 5 3 08
§ 0.6 |] é
< - E 8
0 104 &

% 1
0 -0
K3 K4 K5
Schemes
(a)

40 1 70

| Il BMU E@SMCU COLCU _>5 5
| CMEM -8 Total : e
.30 | 150 %
= i 1 E
3 el
= 4 40 ©
B 20 1 —F
= 4 307 o
o = e
o~ & o~
=200
i e

1 10

0 =

K3 K4 K5
Schemes
(b)

Figures 3.20 (a) Area and (b) power simulation results of the
MLMAP turbo decoders for K =3, 4 and 5.

the increase of constraint length, K. This could be explained with the exponential increase of

the number of states given by 27,

The area results show that MEM occupied the most area with 80%, 74% and 64% for K = 3,
4 and 5, respectively. This is followed by SMCU, LCU, and BMU. On the other hand, the
power results show different aspects than the area results. The power consumed by MEM is

equal to or less than the total power of SMCU, LCU, and BMU for K=3, 4, and 5. As K

54

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

Table 3.2 The MLMAP turbo decoder hardware performance results for constraint lengths
K = 3, 4 and 5. The power consumption results are evaluated at a clock frequency of

50MHz.
K3 K4 K5

Area Power Area Power Area Power

(mm?) (mW) (mmz) (mW) (mm”®) (mW)

BMU 0.014 1.21 0.014 1.21 0.014 1.20

SMCU 0.071 5.9 0.137 10.54 0.268 22.46
LCU 0.049 4.32 0.083 7.35 0.180 15.65

MEM 0.553 12.51 0.698 15.66 0.988 22.99
Total 0.689 23.95 0.934 34.78 1.452 62.32

increases, the power of SMCU and LCU starts to dominate the overall power consumption,

due to increased computational complexity.

The critical path delay of each MLMAP turbo decoder architecture was investigated, and the
results are depicted in Table 3.3. In all cases, the critical path delay was in the ACSN unit,
whose structure does not change with different constraint lengths. Although the critical path
delay for K =3 is the shortest, there is no significant difference among the results. It can be
assumed that the differences were led by the different input and output interfaces of the

SMCU for the different constraint lengths.

Table 3.3 The MLMAP-based turbo decoder critical path delay for
constraint lengths K =3, 4 and 5.

K=3 K=4 K=35

Critical path delay 4.49nsec 5.02nsec 4.94nsec

55

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

atinter home 0. Design/System _Level /MAP/MAP_K4/CON/sim_pl/siso_soc.ent —~ Te

ECOREE R

(a)

a0 BE - avp egn
: . J

XELEE=EEE

NEFBUEEE]

7l
o

E;;.

(b)

Figures 3.21 (a) Floor planning and (b) placed and routed results of the MLMAP turbo
decoder architecture for K = 4.

56

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.4.5 Post Layout Results

The gate-level netlists and timing information obtained from the synthesis were used to
generate the layout of the MLMAP turbo decoder by using Cadence SOC Encounter™.
Figures 3.21 (a) and (b) show the floor planning and place routing results, respectively, for
K =4. Table 3.4 shows performance results comparing with state-of-art turbo decoder
implementations. In the table, the area results are core area without including an area of pads
for inputs and outputs. The total number of gates for each turbo decoder is equivalent to the
total number of NAND gates. Each throughput of the turbo decoders is estimated after 8
numbers of iterations. The turbo decoder hardware performance in terms BER has been
justified by comparing its outputs with the high level simulation results. It also shows that
the power consumption results of the turbo decoders are similar to the results shown in Table

32

Table 3.4 Performance comparison with state-of-art turbo decoder implementations.

This work
(11] [13] [12]
K=3 K=4 K=35
Area (mm?) 0.69 0.93 1.45 1.5 14.5 10
No. of gates 59K 80K 124K 150K 410K -

Max. Speed 200MHz | 180MHz | 180MHz | 285MHz | 145MHz | 352MHz

Throughput (Mb/s) 25 22.5 225 - 24 352
Technology 0.18um | 0.18um | 0.18ym | 0.18um | 0.18um | 0.13pm

Note . ; : K3 | pogey | K5

57

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.5 Summary

This chapter presented MLMAP-based turbo decoder hardware architectures with the SW
method for K =3, 4 and 5. In the architecture, the SW method was realised by using LIFO
and FIFO blocks. A detailed structure of the decoding process units incorporated in the
architecture was described and the implementation method and the functionality for the
decoding process were explained. In the simulation results, the turbo decoder performance in
terms of BER was examined in various ways to justify the algorithms and other factors that
affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based
turbo decoders have been compared in terms of BER performance in order to observe the
performance differences between the two turbo decoder implementations. After completing
high level simulations, the MLMAP turbo decoder architectures have been designed using
Verilog HDL and then synthesised using UMC 0.18um standard CMOS technology. The
area, power, and critical path delay results of the MLMAP turbo decoder architecture for
different constraint lengths were estimated, and the total number of gates was obtained after
generating the layout. In this thesis, the hardware results obtained in this chapter are
considered consistent with those of a conventional MLMAP turbo decoder, and so the results

are compared with those of proposed turbo decoders described in later chapters.

58

Chapter 4

High Performance Max-Log-MAP
Turbo Decoder Architecture

4.1 Introduction

This chapter presents high performance MLMAP based turbo decoder architecture in terms
of low power, efficient area and high speed for high throughput. In MLMAP turbo decoder
VLSI implementations, power and area are always one of the most important issues, if they
target portable and mobile equipment operated by a battery. Many works have tried to
achieve low power and area efficient turbo decoder implementations [101-105, 107].
Moreover, another important issue in wireless communication systems is throughput to
support a variety of services requiring high data rate, such as multi-media broadcasting. A
high throughput turbo decoder can be realized by the turbo decoders in a parallel scheme
[106, 142-147]. However, parallel implementations might lead to large area and power
overheads, and would not be suitable to be employed by portable and mobile systems.
Without these overheads, one of the ways to achieve high throughput is to implement a high
speed turbo decoder. The literature, however, considers high speed turbo decoder

implementations less than parallel implementations.

This chapter presents a novel method for achieving high speed turbo decoder
implementations to provide high throughput data rate without significant overheads of
hardware costs. The novel method described in this chapter is to normalize branch metrics
before using in the state metric computation process. It reduces a critical path delay of a
turbo decoder in a unit for computing the state metrics. That results in increasing the
maximum speed of a turbo decoder. Furthermore, area and power for the high throughput
turbo decoder are improved by reducing memory blocks and implementing efficient

computational logics. A detailed structure and implementation method for improving the

59

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

performance is described. The hardware performance results are compared to the

conventional turbo decoder results given in the previous chapter.

This chapter is organized as follows. Section 4.2 describes the method to increase the
MLMAP turbo decoder speed for high throughput. A detailed implementation method and
structure for that are shown in Section 4.3. The architecture for low power and efficient area
is described in Section 4.4. The turbo decoder simulation results are given in Section 4.5.

Section 4.6 summarizes the chapter.

4.2 High Speed Turbo Decoder Implementation
Method

4.2.1 Critical Path Delay in Turbo Decoder

As already stated in the previous chapter, it is well know that the process of computing the
state metrics is the bottleneck for achieving high speed turbo decoder implementation. In
addition, the state metrics grow dramatically and need to be represented by a large
wordlength to prevent overflow. The same problem also exists with more traditional
decoders, such as a Viterbi decoder. Several techniques for preventing the overflow in a
Viterbi decoder were suggested in [106]. These techniques not only reduce the critical path
delay, but also conserve hardware resources. A detailed data path for a Viterbi decoder has
been studied to reduce the critical path delay in add-compare-select (ACS) units [148]. These
methods could be applied to turbo decoder implementations as well. However, the critical
path delay in turbo decoders is much longer than in Viterbi decoders because MAP based
turbo decoders use soft-input information and require the computation of all state metrics for
forward and backward processes. One popular technique to address the overflow problem is
to normalize the state metrics by subtracting a constant value from all state metrics when one
of the computed state metrics is larger than a threshold value [105, 107]. This technique was
also described for Viterbi decoder implementations in [106]. The state metric normalization

process has been applied to the conventional turbo decoder presented in the previous chapter

60

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

for implementing add-compare-select-normalization (ACSN). In this chapter another method

will be introduced for achieving high throughput turbo decoder implementations.

4.2.2 Branch Metric Normalization

A branch metric normalization (BMN) method is proposed to address the inherent critical
path delay problem. The BMN method aims to increase the MLMAP turbo decoder
maximum speed by reducing the critical path delay. The method removes the state metric
normalisation process of ACSN, so only ACS is used for turbo decoder implementations.
This method can be applied not only to turbo decoders, but also Viterbi decoders, if the state
metric computation process incorporates the state metric normalisation process. The rule of

BMN is summarized as follows :

For n=0..N
if all state metrics > V4
k) = w(k) - max [pk), ..., yk)] (4.1)

else if all state metrics < Vy4

na(k) = ¥i(k) - min [0y 7k
else
k) = yalk)

where 1 denotes the total number of branch metrics, y,(k) is the branch metric at time &, 1,(k)
is the normalized branch metric, and Vg is a constant value. The state metrics are used to
determine whether the branch metrics need to be normalized by the maximum or minimum
branch metric. If all state metrics are larger than V,, the maximum branch metric is used for
the normalization. However, if all state metrics are less than Vg, then the minimum branch
metric is used for the normalization. If these conditions are not satisfied, the branch metrics
are passed on to SMCU without normalization. From these conditions, we can see that the
normalized branch metrics are either equal to or less than zero if all state metrics are larger
than V. Similarly, normalized branch metrics are either equal to or greater than zero if all

state metrics are less than V.

61

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.2.3 Variation of State Metrics with BMN

Employing the BMN method does not affect BER performance of MLMAP turbo decoders.
During the simulations, all of the forward and backward state metrics have been observed in
order to investigate their variation. The BMN process relies on a constant value of Vy to

determine when the branch metrics need to be normalized. The simulations were repeated for

2.E+07
min=-64 max=383
Va=200
VERDT: I » =
min=-64 max=287
V=100
o DEH06 = = = RS
=]
=
S
= min=-64 max=208
2 Va=0
6.E+06 [— Eeatill prms SiW-
max=86
3.E+06 T IS e ki i
min=-215 max=0
V4=-200
0.E+00 - ! L Ly
-300 -200 -100 0 100 200 300 400 500

State Metric

Figure 4.1 The state metric variations of the MLMAP turbo decoder with the BMN
method for different V4 values when the initial state metrics are set to -64.

62

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

2.B+07
min=0 max=402
V4a=200
LLE+07 [— 1y = T
min=0
Vq=100
@ 9.EH06 ——
=
5
=)
2 min=-12 max=192
[5)
c Vg=0
FOIREADE —— ————l —E— —— -
min=-114 max=93
V4=-100 W
3.EH6 | = S E e e
min=-208 max=64
V4=-200 |
0.E4+00 Rl e [i 4 [SR VA)y LY
-300 -200 -100 0 100 200 300 400 500

State Metrcs

Figure 4.2 The state metric variations of the MLMAP turbo decoder with the BMN
method for different V4 values when the initial state metrics are set to 0.

different Vg4 ranging from -200 to 200 with a step size of 100. The simulation results are
shown in Figures 4.1 and 4.2, where horizontal and vertical axes represent the state metrics
and the number of times each state metric encountered, respectively. To find the effect of the
minimum state metrics, different initial minimum state metrics of -64 and 0 were used to
obtain the results of Figures 4.1 and 4.2, respectively. The minimum and maximum state

metrics for each Vg4 can also be seen in these figures. The minimum and maximum state

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

metrics change with Vg4 and the main distribution is shifted to the right with increases in V.
The simulation results of Figure 4.1 also show that the minimum state metric values for Vg =
0, 100 and 200 are the same. For practical implementations, the initial state metrics for the
forward and backward processes are a finite value. Thus, the minimum state metric value, -
64, for V4= 0, 100 and 200 can be used as the initial state metric, which means that if Vy is
larger than the initial state metric value, the minimum state metric value is the same as the
initial value. The simulation results show that V4 = -100 leads to a more balanced
distribution of the state metrics where the minimum and maximum state metrics are -113 and
86, respectively. The results of Figure 4.2 are similar to Figure 4.1. However, due to the
initial minimum state metrics of 0, the same minimum state metrics of 0 are observed when
V4 is 100 and 200. As in Figure 4.1, V4=-100 leads to a more balanced distribution of the

state metrics.

[t is interesting to note that the results shown in Figures 4.1 and 4.2 coincide with the results
in [15, 105], which suggested 8-bits for the state metrics if 4-bits were used for input
symbols. Therefore, we can see that the BMN method drives the state metrics to the level
required for the decoding process. However, in practical implementations, 9-bits are used to
represent the state metrics in the ACSN unit to prevent overflows [105]. The same

wordlength was used to implement ACS with BMN in this work.

4.3 High Speed Turbo Decoder Hardware
Architecture

4.3.1 High Speed Turbo Soft-Input Soft-Output Decoder
Architecture

The high speed MLMAP turbo SISO decoder (HSMLTBD) architecture improves the
MLMAP turbo decoder (MLTBD) architecture presented in the previous chapter. The
HSMLTBD architecture uses the BMN method described in the previous section to reduce
the critical path delay in order to achieve high speed turbo decoder implementation for high

throughput. Figure 4.3 illustrates the HSMLTBD architecture. It is configured similarly to

64

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

CNT1 CNT2
FRET X MR _....bmcuU
| BMU || BMNU SMCU |+ !
Soft LIFO0 H : = i e
input A e N — L DI
:E[— i LCU
BMCU
kg T P S S T . DB
i N !
- FIFOO > BMU [BMNU f’ SMCU |-+ Sl
""""""""""""""""""""""""" DF| |DL

Soft
output

rlE——
-1 LIFO1 - BNIU:I—-BMNU » SMCU (-

DCU R .

Figure 4.3 The HSMLTBD architecture incorporating the BMNU.

the MLTBD architecture. One difference is the use of a branch metric normalization unit
(BMNU) between BMU and SMCU in each MCU for the forward (FMCU), backward
(BMCU), and dummy-backward (DMCU) processes. In the architecture, the branch metrics
generated by BMU are passed to SMCU after they are normalized by BMNU. Then, the
normalized branch metrics and the state metrics are sent to SMCU, which consists of a
parallel ACS without the state metric normalization process. Thus, SMCU in the HSMLTBD
architecture is much more simplified than the SMCU incorporated in the MLTBD
architecture. This results in a reduction of the SMCU critical path delay, which can increase

the turbo decoder maximum speed.

As in the previous chapter, the other modules are implemented the same way as in the
MLTBD implementation. However, due to the reduction of the critical path delay of SMCU,

path delays of other modules need to be reduced as well. Thus, the modules implement more

65

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

pipelining stages. The following sections describe in detail the structure and implementation

method of each module.

4.3.2 Metric Computation Unit with Branch Metric Normalization

Unit
Figure 4.4 illustrates the structure of the metric computation unit (MCU). The MCU for the
forward and backward processes consists of a BMU for computing the branch metrics, a
BMNU for normalizing the branch metrics and an SMCU consisting of a parallel ACS. The
soft-input data is first processed by BMU to provide the two branch metrics (BM) needed by
BMNU. Then, BMNU normalizes these branch metrics based on the state metrics (SM)
provided by SMCU. Finally, the four normalized branch metrics (NBM) are input to SMCU

with the Recursive SM to compute the new state metrics.

The BMU incorporated in the MCU uses the BMU illustrated in Figure 3.5. On the other
hand, SMCU consists of a parallel ACS without the state metric normalization process. As
an example, Figure 4.5 illustrates the ACS structure for calculating the forward state metric
of state 0 for constraint length K=4. The ACS performs add (A) and compare select (CS)
processes to calculate the next state metrics. Two NBMs, (k) and 70(k), and two forward

state metrics, ao(k) and ey(k), are the ACS inputs for computing the state metric, ap(k+1).

Recursive SM

BMU > BMNU > SMCU

Figure 4.4 The metric computation structure.

66

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Therefore, the ACS can generate the state metric with the same wordlength used in ACSN
without the need for the state metric normalization process, while still avoiding overflow

problems. The ACS critical path delay can be represented as follows:
dacs = 2%ty +tm (4.2)

where 1, is the delay of the adder, and 7, is the MUX’s delay. As can be seen, this delay is
less than the delay of ACSN (dacsy) derived in the previous chapter (see equation (3.1)).
Thus, employing the BMNU can simplify SMCU implementation while achieving high

speed turbo decoder implementations.

Moo(k) a k) (k)

ACS

~1(MSB)

a(k+1)

Figure 4.5 The add-compare-select structure without the state metric normalization process.

67

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.3.2.1 Branch Metric Normalization Unit

Figure 4.6 illustrates the BMNU structure employed in the HSMLTBD architecture. The
BMNU inputs are the two branch metrics provided by BMU. These branch metrics are first
converted into absolute values (ABS). The absolute values are compared to select the
maximum of them, max[k)], using the compare-select (CS) unit as used in ACS and ACSN.
Then, the sign of the maximum branch metric is determined by the state metric condition
(STC) input to the sign conversion unit (SCU). The sequence of STC is generated by using

state metrics of ACS, and is described in next sub section how it is obtained from them.

7u(k) #10(k)
__________________ S Lok - b o ST
! ABS ABS E
e I A e e » | BMNU
§ L+ 3 i i
E i i CS g
N Ao |
y max[(k)] —
SCU | e
+max[(k)]

or Zero

Moolk) m](k) f?m(k) 19, (k)

Figure 4.6 The branch metric normalization unit structure.

68

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

After determining the sign of max[)k)], the output of the SCU is used to normalize the
branch metrics by using the four adders. The results of the four adders can be categorized as
all four branch metrics are i) larger than or equal to zero, ii) less than or equal to zero, iii) the

same as the original branch metrics, which means that the branch metrics did not need to be

normalized.

In the BMNU, the data path delay can be represented as follows:
dpmnu = 3Xty + Imt fscu (4.3)

where 1, is the delay of the adder, ¢, is the delay of the MUX; and fscy is the delay of the
SCU, which could be assumed to be same as t,. Clearly, dgyyu is larger than djcs delay. In
this case, the turbo decoder critical path delay is in BMNU. In order to reduce the critical

path delay of BMNU, it can be pipelined as shown in Figure 4.6.

When the conventional MCU and MCU with BMN methods are compared for the number of
adders required to compute branch and state metrics, BMN requires fewer adders as the
constraint length K increases. Table 4.1 summarizes the comparisons for constraint lengths
from (=3 to 5. As can be seen, the number of adders for BMU and BMNU is not affected by
the constraint length. Although the BMN method needs seven additional adders for BMNU,
it uses a less complex SMCU, which leads to a decrease in the overall number of adders as K
increases. In addition to the number of adders, BMNU needs two multiplexors for the

normalization process.

Table 4.1 Comparison of the number of adders for conventional MCU and MCU with

BMN.
Conventional MCU MCU with BMN
K=3 K=4 K=5 K=3 K=4 K=5
BMU 4 4 4 4 4 4
BMNU - - - i 7 7
SMCU 16 32 64 12 24 48
Total 20 36 68 23 35 59

69

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.3.2.2 An Efficient BMNU

This section describes an efficient BMNU implementation method. A conventional method
for obtaining the STC sequence may use the same state number of adders, 2 a5 a
comparator for the determination described in (4.1). However, the sequence can be generated
by simple circuits without using the adders. The previous section showed that V4=-100 led to
well balanced state metrics. The distribution of the state metrics for V4=-128 was also
investigated. As already shown in Figures 4.1 and 4.2, although the distribution range for
V4=-128 was slightly shifted to the left, the wordlength of 9-bits was sufficient to represent

the state metrics.

STCO STCA1 STC2 STC3
G1 G2 G3 G4
|
MSB of SM, , 2nd MSB of SM 4

Figure 4.7 Circuit for generating STC signals for BMNU with K=3.

Figure 4.7 illustrates a simple circuits for generating four STC sequences for constraint
length K=3. The inputs of the AND and OR gates are MSB and the second MSB of the state
metrics generated by SMCU illustrated in Figure 4.4. Using these STC signals in the figure,

the BMN rule shown in (4.1) can be written as follows :

Forn=0..N
e SR O S e EN{STCL 5, STC2) = .k (4.4)

1K) = yu(k) - max[7(k), ..., yu(k)]
else if {STC2,STC3} = ‘10’

nn(k) = %z(k) = min[}’n(k), reey n(k)]

70

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

else
n:(k) = y(k)

Here, the first and second conditions imply that all state metrics are larger or less than Vy=-

128. If these conditions are not satisfied, the branch metrics are passed to the ACS units

without the normalization process.

4.3.3 Log-Likelihood Ratio Computation unit

The basic LCU structure used in the MLMAP turbo decoder architecture is not affected by
employing the BMNU. However, due to the reduced ACS critical path delay, the LCU might

be implemented with more pipelined stages than were used before in the MLMAP turbo

Figure 4.8 The structure of LLR computation unit with high level of pipelining.

71

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

decoder architecture to avoid a path delay longer than the critical path delay. This can be
realised by inserting pipeline registers. Figure 4.8 illustrates an LCU structure for calculating
L, for constraint length K=4. As can be seen, the LCU structure is implemented in 3
pipelined stages to reduce its delay to less than the ACS delay. The additional pipelining
stages could increase area and power due to the inserted registers. To address this problem,

the next section describes a more efficient LCU implementation method.

4.4 Low Power and Area Efficient Max-Log MAP
Turbo Decoder Hardware Architecture

4.4.1 Low Power and Efficient Max-Log MAP Turbo Soft-Input
Soft-Output Decoder Architecture

This section presents a low power and area efficient MLTBD (LAMLTBD) architecture
incorporating the BMNU. The previous chapter showed that the memory blocks had the
largest area in the MLTBD implementations. The LAMLTBD architecture improves the area
usage and power consumption by reducing the size of the memory required to control the
input data for the SW method and to delay the soft-input data passed to the LCU. Moreover,
the LCU is more efficiently implemented by exploiting retiming and a four-input compare

select (4-CS) unit to reduce the data path and hardware resources.

Figure 4.9 illustrates the LAMLTBD architecture. As the figure shows, the data schedule
unit (DSU) of the MLTBD illustrated in the previous chapter is simplified by using only a
single FIFO block. The FIFO block is used to delay the soft-input data before fed into
BMCU, and its depth is the same as the window size, 40. To eliminate the LIFO blocks used
in the DSU of the MLTBD, a triple read and single write memory (TRMEM) block is
employed to store soft-input data. Once the window size is determined, the data addresses
for SW method can be decided for performing the forward, backward, and dummy-backward
processes. Thus, following the SW method with the determined addresses, the three inputs,
“Soft-input 0, 1 and 2,” corresponding to each of TRMEM read ports can be controlled to
pass them to the LAMLTBD architecture. The soft-input data flow is illustrated in Figure

72

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Soft input 0

Soft input 1

—

FIFO

Soft input 2

Soft
output

A
@
=
&=

Figure 4.9 The LAMLTBD architecture with the reduced memory.

4.10, sub-block by sub-block. While the reverse ordered “Sub-block 2” data are passed to
DMCU as “Soft-input 0” to calculate the dummy backward state metrics, the reverse and
right ordered “Sub-block 1 data are input to the FIFO for delaying and the FMCU for
computing the forward state metrics, respectively. The reverse ordered “Sub-block 1" data
are delayed in the FIFO block until the completion of the dummy backward state metric
computation process for the reverse ordered “Sub-block 2.” When the dummy backward
state metric computation is completed, the backward state metrics and the delayed forward
state metrics in DF are passed to LCU to compute the LLR value, as illustrated in Figure 4.3.
The sub-block data addressing can be controlled by TRMEM without significant overhead in

area and power.

For further area savings, the memory for delaying the branch metrics passed to LCU is

replaced by an additional BMU. The DB in Figure 4.3 is used to delay the branch metrics

73

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Sub-block 3
Reverse order

Sub-block 2
Reverse order

— Soft-input 0

Sub-Frame 2
Reverse order

Sub-block 1
Reverse order

— Soft-input 1

Sub-block 2 Sub-block 1 r
d Right order Rightorder | . Soft-input 2
Time

Figure 4.10 The soft-input data stream input to the LAMLTBD architecture.

that are required by LCU to calculate LLR. The LAMLTBD architecture eliminates the DB.
Instead, the branch metrics for computing LLR are generated by an additional BMU (placed
before LCU in Figure 4.3) from the soft-input data delayed by the DS. The soft-input data is
also used for obtaining the extrinsic information by subtracting it from LLR. The added
BMU is the same as other BMUs used in MCU. Thus, the replacement of DL with an

additional BMU contributes to further area savings.

4.4.2 An Efficient LCU implementation

The previous section showed that the BMN method can reduce the turbo decoder critical
path delay. However, this reduction may lead to high level of pipelining in LCU
implementations for making the LCU critical path delay shorter than the ACS critical path
delay. In general, high level of pipelining increases area and power due to an excessive use
of the registers incorporated. To address this problem, this section describes an
implementation method for reducing the number of pipelining stages in LCU for an efficient

implementation in terms of area and power.

Figure 4.11 illustrates the new LCU structure for constraint length K=4, whose output
sequence is the same as the LCU output illustrated in Figure 4.8. The new LCU is

implemented with retiming method and a four-input compare select unit (CS). In the LCU

74

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Figure 4.11 The efficient LLR computation unit structure.

structure shown in Figure 4.8, the first CS process is performed after completing the
additions of two state and one branch metrics. However, the new LCU performs the first CS
after finishing the addition of the forward and backward state metrics. The first CS and the
addition of the branch metric to the results of the addition of the two state metrics are
executed simultaneously. This is possible because the same branch metrics are added to the
first and second state metrics’ addition results, as shown in Figure 4.10. Thus, in the new
LCU, the first CS compares two state metric addition results, and then selects one of them
after adding the branch metric during the comparison process. The four selected values are
then input to a four-input CS to determine the maximum among them which corresponds to

L!’ri-

Figure 4.12 illustrates the four-input CS structure that consists of six adders for the
comparison process, and a unit for selecting the maximum input. It is designed to minimise
its critical path delay. As can be seen, the 4-CS delay is given by the delay of an adder and

the four-input selector. The four-input selector is processed as follows :

73

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

1577 {50,31,52} = 31000 (45)
Lfrl = A
else if {sqg,S1,82} = 3’100
Li'rl =B
else if {sp,S3,84} = 3’110
Lipw = C
else
Lirl =D

While the LCU in Figure 4.8 needs four pipelined stages, the new LCU is realized with only
two pipelined stages. However, the number of adders in the new LCU is increased by

employing the 4-CS. The next section shows area and power comparison results of the LCU

implementations.
A B c D
104+ 10+ 104 104 4-Input CS

il
b
Ay
-
\
\
-
2\
X
NU)
5
n
LK
3J
O
c
—
w
@
@
(9]
—
o
-y
e T
0| =
N
L
X
N
=
AY

max (A, B, C, D)

Figure 4.12 The four-input compare select unit structure.

76

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.5 Results

The HSMLTBD and LAMLTBD architectures were designed at RTL using Verilog HDL.
These designs were verified by the same test systems used in the previous chapter. After
completing the hardware verification, they were synthesized using the 0.18ym UMC
standard CMOS library with Synopsys DesignCompilerTM. The netlists were simulated using
Cadence Verilog-XL™ with the timing constraints obtained from the synthesis to generate
the switching activities of all the circuit nets. Then, the power consumption of both
architectures was evaluated using Synopsys PowerCompiler™. A clock frequency of 5S0MHz

was used in the hardware performance evaluation process.

Table 4.2 List of schemes for hardware performance evaluation.

List of Schemes Descriptions
CON Conventional
HSTD HSMLTBD
LATDI LAMLTBD with efficient LCU
LATD2 LAMLTBD with efficient LCU and BMNU

After investigating various turbo decoder schemes in order to decide on an optimized
configuration for the turbo decoder hardware implementation, three different schemes for
constraint lengths from K=3 to K=5 have been implemented to evaluate their hardware
performance in terms of area, power and critical path delay for maximum speed. These
schemes are listed in Table 4.2. CON, called conventional, is the MLTBD implemented in
the previous chapter. HSTD is the HSMLTBD illustrated in Figure 4.3 for high speed turbo
decoder implementations. LATD1 and LATD2 are based on the LAMLTBD architecture
illustrated in Figure 4.9 for low power and area efficient turbo decoder implementations. The
difference between LATD1 and LATD2 is in their BMNU implementations. The circuit
illustrated in Figure 4.7 for BMNU has been incorporated in LATD2, while LATDI has

been implemented with a conventional BMNU shown in Figure 4.6.

77

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Figures 4.13-15 and Tables 4.3-8 show the hardware performance evaluation results for K=3,
4 and 5, respectively. The overall area and power of HSTD was increased by around 7%, 7%
and 5% and 10%, 8% and 0% for each constraint length, respectively, when compared to
CON. On the other hand, LATD1 and LATD2 can save up to 30% in area and 19% in power
as compared to CON. These results show that the BMNU leads to an increase in hardware

costs in HSTD. Despite including the BMNU, eliminating the memory blocks for the SW

0.8
; CJBMU [BMNU EE SMCU
EmLCU wmMEM —¥ Total
06 | 108
N’E‘ _.}
5 04 F 1 06 =
£ E:
=
o
0.2 G
=
=
[——1
0 A 02
LATDI LATD2
Schemes
(a)
7 30
el I BMU [0 BMNU EE SMCU |
EmLCU WMMEM —% Total -
g | —1 20 z
s £
9
£ g
2 gt =
£ g
“ 02
4 |
0 0
Schemes
(b)

Figure 4.13 (a) Area and (b) power comparisons for K=3.

78

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

method and the efficient LCU and BMNU implementations can save the area and power of

LATDI1 and LATD2.

Figures 4.13 (a) and (b) illustrate the area and power results for K=3, respectively. In these
figures, the primary and secondary Y-axes indicate the results of each component and total

area or power, respectively. These results are summarized in Tables 4.3 and 4.4. The area

Table 4.3 List of area results for K=3 turbo decoders.

K=3
CON HSTD LATDI LATD2
Area Save Area Save Area Save Area Save
mm?) | %) | mm®) | %) | (mm) | (%) | (mm®) | (%)
BMU | 0.014 = 0.014 0 0.019 | -33.13 | 0.019 | -33.13
BMNU | - - 0.051 E 0.051 - 0.033 =
SMCU | 0.071 2 0.060 | 15.96 | 0.060 | 15.96 | 0.060 | 15.96
LCU | 0.049 & 0.053 | -8.88 | 0.048 | 1.70 | 0.048 | 1.70
MEM | 0.553 - 0.558 | -0.94 | 0.314 | 43.18 | 0.314 | 43.18
Total | 0.689 2 0.738 | -7.14 | 0.493 | 28.33 | 0.475 | 30.95

Table 4.4 List of power results for K=3 turbo decoders.

K=3
CON HSTD LATDI LATD2
Power | Save | Power | Save | Power | Save | Power | Save
(MmW) | (%) | mW) | (%) | mW) | (%) | @mW) | ()
BMU 15211 - 1:22 -0.66 1.66 | -37.48 | 1.66 | -37.48
BMNU - - 3.44 - 3.48 - 2.56 -
SMCU 38 - 4.33 26.59 446 | 2427 | 441 25.18
LCU 4.32 - 4.10 2.97 3.86 8.76 3.45 18.51
MEM | 12.51 - 13.42 | -6.45 7.59 39.79 7.54 | 40.18
Total | 23.95 - 26.52 | -10.74 | 21.07 | 12.01 19.63 | 18.04

79

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

and power increase of BMN in LATD1 and LATD2 is due to the additional BMU needed to
replace the memory blocks for generating the branch metrics used to compute LLR in LCU.
Clearly, the SMCU of HSTD, LATD1 and LATD?2 is reduced by up to 16% in area and 26%
in power by eliminating the state metric normalization process. The efficient LCU

incorporated in LATDI1 and LATD2 saves area and power. A significant change in area and

1]
] C_IBMU EOBMNU EESMCU |
0.8 i I LCU MEEMEM —% Total
<z 06 |
< 04
02
o Le=
CON HSTD LATDI
Schemes
(a)
25
[JBMU [EIBMNU EESMCU 1 W
a0 -1 I [.CU I MEM —%—Total
o 30 =
g
% 15 B
= 2z
= o
= I A
20} e
<
&
5
0
Schemes
(b)

Figure 4.14 (a) Area and (b) power comparisons for K=4.

80

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

power is indeed seen in the MEM of LATD1 and LATD2. The reduced memory needed to

control data input following the SW method saves the total area and power dominantly.

The area and power results for K=4 are illustrated in Figures 4.14 (a) and (b), and are
summarized in Tables 4.5 and 4.6. The BMU results are almost the same as the results of

K=3. In the results, the LCU of HSTD is increased by 23% in area, which is due to the

Table 4.5 List of area results for K=4 turbo decoders.

K=4
CON HSTD LATDI LATD2
Area Save Area Save Area Save Area Save
(mm’) | %) | (mm) | (%) | @mm’) | () | (mm)]| (%)
BMU | 0.014 - 0.014 0 0.019 | -33.13 | 0.019 | -33.13
BMNU - - 0.072 - 0.072 - 0.035 -
SMCU | 0.137 - 0.110 | 19.56 | 0.110 | 19.52 | 0.110 | 19.52
LCU | 0.083 - 0.102 | -23.03 | 0.089 | -7.03 | 0.089 | -7.03
MEM | 0.698 - 0.703 | -0.74 | 0.459 | 34.22 | 0459 | 34.22
Total | 0.934 - 1.004 | -7.51 | 0.751 | 19.52 | 0.714 | 23.47

Table 4.6 List of power results for K=4 turbo decoders.

K=4
CON HSTD LATDI LATD2
Power | Save | Power | Save | Power | Save | Power | Save
(mW) | (%) | (mW) | %) | mW) | %) | mW) | (%)
BMU 1.21 - 121 0.08 1.66 | -36.78 | 1.66 | -36.61
BMNU - - 4.36 - 4.51 - 297 -
SMCU | 10.54 - Hic i) 26.27 8.1 23.17 830 | 21.26
LCU 7.35 - 7.74 -5.29 6.94 5.58 6.72 8.52
MEM | 15.66 - 16.73 | -6.79 | 10.63 | 32.14 | 10.22 | 34.76
Total | 34.78 - 37.83 | -8.76 | 31.85 8.42 29.68 | 14.64

81

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

highly pipelined implementation, compared to CON. On the other hand, the efficient LCU
area of LATD1 and LATD?2 is slightly increased compared to CON. Moreover, the efficient

LCU can save 8% in power despite the area increase. Similar to the K=3 results, it is clear

1.4
CIJBMU [BMNU EH SMCU |
T2k - B MEM —%—Total |
1
208 |
g
T ool g
E 0.6 [E
=1
04 | E
0.2 :
| T 3
=== “’ij e
0
HSTD
Schemes
(a)
35 71 80
i CIBMU [0 BMNU EESMCU
30 | ESLCU = MEM —% Total 70
25 | % B
— 50 £
Z 20 =
£ {40 2
215 | e
(o5 1 30 g
10 . 20 3
5 E 10
o L 0
Schemes
(b)

Figure 4.15 (a) Area and (b) power comparisons for K=5.

82

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

from the results in Tables 4.5 and 4.6 that area and power savings of MEM dominantly

contribute to reduce the total area and power.

Finally, Figures 4.15 (a) and (b) and Tables 4.7 and 4.8 illustrate and summarize the area and
power results of K=5 turbo decoder hardware implementations. Inserting BMNU saves 21%

in area and 31% in power of the SMCU of HSTD, LATDI and LATD2. Moreover, the

Table 4.7 List of area results for K=5 turbo decoders.

K=5
CON HSTD LATDI1 LATD2
Area Save Area Save Area Save Area Save
(mm’) | (%) | (mm’) | %) | (mm)]| (%) | mm’) | (%)
BMU | 0.014 - 0.014 0 0:01:9¢| =381 S @019 | =331
BMNU - - 0.115 - 0.115 - 0.035 -
SMCU | 0.268 - 0.211 218 0.211 21.3 0.211 21.3
LCU | 0.180 - 0.197 -9.6 0.176 2.0 0.176 2.0
MEM | 0.988 - 0.993 -0.5 0.749 | 24.1 0.749 | 24.1
Total | 1.452 - 1.532 -5.5 1.272 12.3 1.192 17.9

Table 4.8 List of power results for K=5 turbo decoders.

K=5
CON HSTD LATDI LATD2

Power | Save | Power | Save | Power | Save | Power Save
mW) | (%) [mW)]| (%) | (mW) | (%) | (mW) | (%)
BMU 1.20 - 1.20 -0.3 1.65 | -37.17 | 1.65 -37.0

BMNU - - 6.65 - 6.93 - 2.83 -
SMCU | 22.46 - 13.326 (% 317 16.09 | 28.34 | 15.91 2911
LCU | 15.65 - 15.19 2.9 14.45 | 7.66 13.78 11.9
MEM | 22.99 - 2392 | -4.0 16.77 | 27.07 | 15.76 31.4
Total | 62.32 - 62.30 0.0 5591 | 10.28 | 49.94 19.8

83

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

efficient BMNU implementation of LATD2 saves 69% and 59% in area and power,
respectively, compared to LATDI. Also, the efficient LCU of LATD1 and LATD2 reduces
2% and 11% in area and power, respectively. With the area and power savings of MEM,

LATD2 has achieved 17% and 19% savings in total area and power, respectively.

One of the crucial results in this chapter is the critical path delay, which is compared with the
results in Table 3.3 in Chapter 3. The proposed BMNU addresses the inherent critical path
delay problem to achieve the high speed turbo decoder implementation. Thus, the critical
path delay of each scheme was measured. Table 4.9 lists the results comparing with the
conventional architecture (CON) obtained in the previous chapter and state-of-art turbo
decoders. In the table, total number of gates is equivalent to the number of NAND gates. As
is apparent, HSTD reduces the critical path delay for K=3, 4 and 5 by 32%, 42% and 41%,
respectively, compared with the delays of CON. This leads to the increase of the maximum
speed of HSTD and LATD2. All the delays measured are in SMCU of the architectures.
Thus, HSTD can be used to provide higher throughput than the conventional architecture.

Also, the critical path delay results of LATD1 and LATD2 are the same with HSTD.

Table 4.9 Performance comparison with state-of-art implementations.

CON HSTD | LATD2 [11] [13] [12]
Area(mm?®) 0.934 1.004 0.714 e 14.5 10
No. of gates 59K 80K 124K 150K 410K -
Power(mW) 34 37 29 3307 1450" 2464
Max. Speed 180MHz | 300MHz | 300MHz | 285MHz | 145MHz | 352MHz
Throughput (Mb/s) 225 37 37 - 24 352

Technology 0.18um | 0.18um | 0.18um | 0.18um | 0.18um | 0.13um

=, =. =, =3 K=4 =
Note K=4 K=4 K=4 K=3 Radix-4 K=5

+ Power consumption at the maximum clock speed.

84

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.6 Summary

This chapter presented a high performance MLTBD architecture based on a novel scheme in
order to save area and power, and to improve the critical path delay. To achieve low power
and area efficient MLTBD implementations, the memory blocks needed for the SW method
were reduced by using a triple read port based memory. This helped to reduce both total
power consumption and area usage. The triple read port memory was designed in this thesis
for the hardware simulation using without synthesizing. Also, more efficient LCU and
BMNU implementations contributed to save power and area. The BMN method addressed
the inherent critical path delay problem to achieve high speed turbo decoders for high
throughput. The next two chapters present an alternative turbo decoder algorithm, which is
called soft-output Viterbi algorithm (SOVA), and architecture, and introduce a novel

architecture for the turbo decoder implementations.

85

Chapter 5

Soft-Output Viterbi Algorithm Based
Turbo Decoding Process

5.1 Introduction

In previous chapters, the MAP based turbo decoders have been investigated at algorithmic
and architectural levels. This chapter presents an alternative turbo decoding algorithm, called
a soft-output Viterbi algorithm (SOVA), which was introduced by Hagenauer and Hoeher
[67]. SOVA was suggested before turbo codes appeared, which were developed to provide
outer-decoder soft-output (also known as soft-decision or LLR) in order to achieve better
performance. With increased understanding of the principle of the iterative turbo decoding
process, it was found that the extrinsic information for the iterative decoding process could
be obtained from the soft-output of SOVA in a way that used a MAP based turbo decoding
algorithm [59, 150—151]. Since then, there were some attempts to implement a turbo decoder
based on SOVA. However, the decoding complexity of the SOVA was very high, making it
difficult to apply to practical applications. To address the complexity problem, a two-step
SOVA (TSOVA) was suggested, which divided the decoding process into the survivor and
update processes [93, 152]. Since the introduction of TSOVA, the TSOVA based turbo

decoders have been widely researched for achieving better performance [33-34, 98, 152-161].

This chapter describes SOVA and TSOVA based turbo decoders, investigating their BER
performance for different constraint lengths, K=3, 4, and 5. In a TSOVA based turbo
decoder, the survivor and update depths strongly affect BER performance. They also impact
the hardware costs required to design the TSOVA based turbo decoder hardware in an
optimised implementation. In the literature [98, 153-156], different depths of the survivor
and update processes are suggested for TSOVA turbo decoder implementations. Thus, this

chapter discusses BER performance relative to varying TSOVA survivor and update depths,

86

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

and then, two different depths are chosen for evaluating overall BER performance with

TSOVA turbo decoders.

The chapter is organised as follows. Section 5.2 describes the original SOVA and how it is
used in turbo decoder implementations. A two-step SOVA that reduces SOVA complexity is
presented in Section 5.3. Section 5.4 shows the simulation results of the two-step SOVA-
based turbo decoders, giving BER performance with optimised survivor and update depths.

Section 5.5 summarizes the chapter.

5.2 Soft-Output Viterbi Algorithm for Turbo
Decoding Process

The basic decoding principle of SOVA is not different than the conventional Viterbi
decoding process [84, 139]. While a Viterbi decoder provides a hard-decision in a bit
sequence, a SOVA-based decoder outputs a soft-decision including the hard-decision and its
reliability value. The SOVA decoder output is exploited to obtain the extrinsic information
needed in the turbo decoding process. While the LLR value of MAP-based turbo decoders is
calculated from all the metrics generated during the forward and backward processes, the
soft-output of the SOVA-based turbo decoders is obtained by multiplying the hard-decision
of the survivor path with the reliability value of the LLR. Both of these values (hard-decision
and reliability value) are generated independently during the decoding process. The extrinsic
information is passed to the next decoding process in an iterative process and can be
obtained from the soft-output after subtracting the systematic symbol and the extrinsic
information from it as described in Section 2.6 of Chapter 2. Thus, this allows SOVA to

perform the turbo decoding process.

According to [67], SOVA generates a soft-output rather than a hard-decision, finding the
maximum likelihood (ML) paths in the forward process. The soft-output is represented by a

posterior probability (APP) as LLR as shown below.

i Puk)=+1y) _
Ly, (k) = log T u(k)L(k) (5.1)

87

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time £.
In MAP based turbo decoders, L,(k) is calculated from the branch metrics, and all forward
and backward state metrics. However, u(k) and L(k) in equation (5.1) are independently

obtained from only the forward process, as in a Viterbi decoder.

The turbo decoder structure illustrated in Figure 2.7 in Chapter 2 can also be used for the
SOV A-based turbo decoding process. In order to describe the obtaining of L;(k) for SOVA
decoders, let’s note that y,(k) and y,(k) are input symbols of the systematic and parity bits at

time k. respectively. Then, the branch metric, bm(k), is
bm (k) = —;—(Lcyf(k)us + Loy, (K, + Lo (k)uy) (5.2)

where L. is the channel reliability value, but is fixed to 2 in this work, u, and u, are
associated with the code word of the systematic and the parity bits, respectively, and L.(k) is
the extrinsic information, which is provided by previous decoding process and initialised at

zero for the first decoding process.

The state metric computation process is illustrated using a trellis diagram in Figure 5.1. The
trellis diagram shows the forward process, representing the transition paths in different line
styles with code words. As an example in Figure 5.1, the transition paths for obtaining the
state metrics of state 0 at time & and k+1 are represented with a bold-style line. In the figure,
bmgo(k) and smg(k) are the branch metric of code word 00 and the state metric of state 0 at
time k, respectively. The difference of two paths converged to one state is the reliability
value, A(k), at time k. Specifically, with the branch metrics computed by the equation (5.2), a

state metric of each state, sm, can be represented as follows:
sm (k +1) = max[bm (s, 55,,) + smg(k), bm (s sp,,) + sm (k)] (5.3)

where sm,(k) is the state metric at the state s and the time k, bm(sy, si.;) is the branch metric
of the state transition sy to sx;;. The ML path corresponding to the decision bit at each state is
determined from the maximum state metric obtained by comparing the two state metrics.
Then, the absolute value of the two state metric differences, A, is used as the reliability value

of the soft-output as follows:

88

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

b (k-1) smo(k) brno(k)
k-1) & = &
sm(k-1) ‘~\Ao(k'1_)$--" G Ao(ff)i...—-
o e]
Sm|(k-1) "_“bmn(kf.t.-)— _‘;r. " .\bm“(k)/ = Sm'(k-[-l)

»® 51,(k+1)

= ol P -

sm(k-1) 877 o smy(kt1)
. i

Y

smy(k+1)
s (k+1)

e smg(k+1)

Figure 5.1 A trellis diagram for computing the state metrics for constraint length K=4.

Atk +1) =]5 B (g, Spay) + 5 (k) = bm (sg,5p41) — sm g (k) (5.4)

These values are accumulated and updated at each state through the survivor and update
processes until deciding the final reliability value for the soft-output. In these processes, the

update rule is:

Forj=0to U (5.5)
if u,(f) # u(j) then L(j) = min(L(j), A,(k))
else L(7) = L()).

where U is the depth of update process, u,(j) and u.(j) are the hard-decisions of the survivor
and competing paths, L(f) is the reliability value of LLR, and A,(k) is the reliability value for
state s at time k. Therefore, LLR is finally represented by the multiplication of u,(7) and L(j).

89

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

5.3 Two-step Soft-Output Viterbi algorithm

As already stated, the two-step SOVA (TSOVA) suggested in the literature [93] was
developed to reduce the computational complexity of the original SOVA. TSOVA divides
the decoding process into the survivor and update processes, which are executed
simultaneously in the original SOVA. The survivor process performs the same function as
the traceback process in a Viterbi decoder, that is, to find an appropriate state for starting the
decoding process to generate the hard-decision. Figure 5.2 illustrates a trellis state diagram
for the TSOVA decoding process for constraint length K=4 as an example. The survivor
process finds the ML paths from time k to &-D (D is the depth of the survivor process) to
determine the state at which all ML paths are converged. The update process updates the
reliability values starting from the converged state by following the hard-decisions provided
by the survivor and competing paths. In Figure 5.2, the two paths are shown with different
line styles corresponding to the hard-decisions, 0 and 1. The reliability values are updated
where the two paths are represented in different line styles, which mean that the hard-
decisions of the survivor and competing paths are different. The update rule given in

equation (5.5) is used for the update process.

Nk WN = O

Update process Survivor process

Figure 5.2 A trellis diagram of the survivor and update processes in two-step SOVA for

constraint length K=4.

90

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

5.4 Results

TSOVA turbo decoder BER performance has been evaluated for constraint lengths K=3, 4,
and 5. Turbo codes for performance evaluation were generated by the encoders illustrated in
Figures 2.1 and 2.2 of Chapter 2. In this simulation, additive white Gaussian channel
(AWGN), binary phase shift keying (BPSK) modulation, 1/3 code rate, and 1024-size block
interleaver are assumed. The received data is represented in a fixed-point format with 4-bits

total and 2-bits precision as described in Chapter 2 for evaluating the MAP based turbo

decoder performance.

At first, BER performance was investigated varying the survivor and update depths of the
TSOVA turbo decoders, to determine the optimised depths for each constraint length. Then,
the BER performance of the turbo decoders was evaluated with the optimal survivor and
update depths. Optimizing the depths is crucial not only to achieve better performance, but
also to save area usage and power consumption in hardware implementation. The depths

determined in this chapter will be applied to the TSOVA hardware implementations in the

next chapter.

5.4.1 Determination of Survivor and Update Depths

Many papers [152-156] have discussed the survivor and update depths and how they affect
TSOVA decoder performance. As already described in the previous section, the decoding
process of TSOVA is divided into the survivor and update processes. The survivor process is
the same as the traceback process in a Viterbi decoder, and is performed before the decoding
process to generate a hard-decision. Thus, the depth of the survivor process primarily affects
BER performance. It is well known that the traceback length in Viterbi decoder
implementations must be at least 5 times of the constraint length, K. If the length is large
enough, there is no performance degradation. However, a proper depth of the survivor
process needs to be determined in order to achieve BER performance with optimal hardware
performance. The same rule used to determine the traceback length of a Viterbi decoder
could be applied to determine the survivor depth of the TSOVA decoder as well. The BER
simulation results described in [66] show that the optimised survivor and update depths for

convolutional codes are approximately K x 6 and K x 3, respectively. On the other hand, in

91

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

LE+00 =

LEO1 |

1LE02

BER

LE03 E

LB ==

1.E-05

6 7 8 9 10

LE+00 F=

LE0l |=

1.E-02

BER

LE03 =

LE-04 E

1.E-05 ‘ :
0 1 2 3

4 5 6 7 8

Update Depth

(b)

Figure 5.3 BER results for varying (a) the survivor and (b) update depths for K=3.

the literature [33], the depths of the survivor and update processes for turbo codes are

suggested to be approximately K (=3) x 6 and K (=3) x 8§, respectively.

In this sub section, the BER performance of the TSOVA turbo decoder for constraint lengths

K=3, 4, and 5 has been evaluated by varying the survivor and update depths for E,/No=2dB.

A total of 5M bits of source data were used to obtain the simulation results. Figures 5.3 to

5.5 illustrate the simulation results for constraint lengths K=3, 4, and 5, respectively, after

completing 1, 2, 4, and 8§ iterations. The improvement in BER performance was almost

92

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

lE+H0 pe====s==s=================%=

LEQL B

LE-02 E

BER

LE03 |

FE+00) ==

P
[R

1.LE-01

TTTIm T T TT

1.LE-02

URBALEL

BER

1.E-03

1.LE-04

T T T 771

L.E-05 . . . 5 .

Update depth

(b)

Figure 5.4 BER results for varying (a) the survivor and (b) update depths for K=4.

saturated after 4 iterations. In these simulations, while the performance for different survivor
depths is evaluated, the update depths are fixed to Kx5 for each constraint length. On the
contrary, during the investigation of the performance for varying the update depths, the
survivor depths are fixed to Kx8 for each constraint length. The simulation results show that
BER performance is almost saturated at near Kx6 for the survivor depth and at near Kx4 for

the update depth. These results are similar to the results described in [93].

93

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

1B+00 prez==r=srssssssssese==rrrs

voreng g

LEO1 ==

1LE-02 |

BER

1E-03 E

1E-04 E

LE-05 L)) L | |

1E+00 F=========== === c====3

A 4th —®—8th |-

1LE01 [
1E02 Es====
o =
o1}
&= B
1LE-03 E=
1.E-04
1.E-05
0 1 2 3 4 3 6 7 8
Update Depth
(b)

Figure 5.5 BER results for varying (a) the survivor and (b) update depths for K=5.

5.4.2 BER Performance Results

This subsection shows the TSOVA turbo decoder BER performance results for constraint
lengths K=3, 4, and 5 with fixed survivor and update depths. The survivor and update depths
were determined based on the results obtained in the previous subsection. The survivor and

update depths used for the evaluation were:

D=Kx6andU=05xD+K — D6U4 (5.6)

94

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

D=Kx8andU=0.5xD+K — D8US5 (5.7)

Figures 5.6, 5.7 and 5.8 illustrate the BER performance results for K=3, 4, and 5,
respectively, after completing 1, 2, 4, and 8 iterations. In these figures, the BER performance
of the TSOVA turbo decoder with D6U4 is represented by solid lines, while the dotted lines
represent the results with D8U4. As can be seen, the TSOVA turbo decoder for K=4
improved the performance by approximately 1.0dB compared to the turbo decoders for K=3
at a BER of 10", On the other hand, the performance of K=5 TSOVA decoders was not

much improved as compared with the K=4 TSOVA turbo decoder results.

Figure 5.6 shows the BER performance results obtained from the depths defined in equation

(5.6) and (5.7). In the case of K=3, the TSOVA turbo decoders have been implemented with

I.E+OO = = ,;:,,,:i::_:;_:_Et_::?::;;:;;:;::,::

1.E-01

1.E-02

1.E-03

BER

1.E-04

1.E-05

T T TTTI
UL e

1.E-06

(=)
=
n
W
)
(3]
n
w

Figure 5.6 The D6U4 and D8US5 TSOVA turbo decoder BER results for K=3.

95

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

St e e] o e e

BER

1.E-04

T LhHIlIl

LE-05 |~ O Indic=ssocseroeser s Tl =En s
E-8D5U . p..gqy (SEEZEZZZE223
i e, e oA ey © Rt
LEA08, st i
0 0.5 1 1.5 2 25 3

Figure 5.7 The D6U4 and D8US5 TSOVA turbo decoder BER results for K=4.

the survivor depths of 18 and 24, and the update depths of 12 and 15. There was no

significant difference in BER performance between these trials.

Figure 5.7 illustrates the BER performance results of the TSOVA turbo decoders for K=4.
The TSOVA turbo decoders have been implemented with the survivor depths of 24 and 32,
and the update depths of 16 and 20, respectively. It can be shown that after 8 iterations,
D8US provides about 0.2dB improvement at BER of 10 compared to D6U4.

The BER performance of the TSOVA turbo decoder for K=5 is illustrated in Figure 5.8. In
this case, the survivor depths of 30 and 40, and the update depths of 20 and 25 were used to
evaluate the TSOVA turbo decoder performance. There was no significant difference in the

BER performance between these trials.

96

Chapter 5 Sofi-Output Viterbi Algorithm Based Turbo Decoding Process

LE+00 =

1.E-01 =

LE-02 =

e :
o 1.E-03 [
(=)

1.E-04

EEEEEL

1.E-05

T T T

1.E-06

Figure 5.8 The S6U4 and S8US TSOVA turbo decoder BER results for K=5.

The performance results of the TSOVA turbo decoders have been compared with the
performance of the MLMAP turbo decoders described in Chapter 3. Table 5.1 summarizes
the comparisons between the two turbo decoders. Among the results, the largest difference
was found between the turbo decoders for K=5. However, the overall results show that turbo
decoders based on the two algorithms can provide similar performance. According to [139],
MLMAP and TSOVA turbo decoders show almost same BER performance. The results
listed in Table 5.1 supports this observation.

97

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

Table 5.1 Ey/Np comparisons at 10 BER. .

MLMAP TSOVA with S8US5
K=3 2.4 2.5
K=4 1.6 1.5
=6 1.4 1.7

5.5 Summary

This chapter described the SOVA and TSOVA algorithms that are alternatively used for the
turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced.
The survivor and update depths of the TSOVA turbo decoders were investigated to
determine an optimised depth. The simulation results have shown that the BER performance
was almost saturated when the survivor and update depths were Kx6 and Kx4, respectively.
The TSOVA turbo decoders provided slightly better performance with larger survivor and
update depths. Based on these results, the TSOVA turbo decoders for K=3, 4, and 5 were
simulated to evaluate their BER performance. Furthermore, the performance results were
compared with the results of the MLMAP based turbo decoders at a BER of 10™. The
comparisons showed that the TSOVA turbo decoder can produce BER performance close to
the performance of the MLMAP turbo decoder without significant performance degradations.

In the next chapter, a novel TSOVA based turbo decoder architecture will be presented.

98

Chapter 6

Two-Step Soft-Output Viterbi
Algorithm Turbo Decoder Architecture

6.1 Introduction

In the previous chapter, the two-step SOVA (TSOVA) turbo decoder BER performance has
been evaluated and the optimal survivor and update depths investigated. This chapter
presents TSOVA turbo decoder architecture with a novel implementation method for
implementing the survivor and update processes, designed according to the results obtained

by the high level simulations of Chapter 5.

As described in the previous chapter, since TSOVA reduced the computational complexity
of the original SOVA, it has been widely used not only for turbo decoder implementations,
but also for other applications such as magnetic recoding, etc. [34, 157]. Two algorithms
known as register exchange and traceback algorithms (REA and TBA) [85-88] are available
to implement the SOVA turbo decoder. These algorithms are already widely used in Viterbi
decoder implementations. It is well known that REA can provide high throughput and that
TBA is suitable for low power implementations. However, if constraint length, K, is long,
REA is not suitable due to the number of registers dramatically increased with K. In general,
turbo encoders use constraint lengths up to K=5, as discussed in Chapter 2. Thus, the REA is
widely used in TSOVA based turbo decoder implementations [160-162]. However, although
TSOVA reduced the computational complexity of the original SOVA, the registers
incorporated in REA based TSOVA (TSOVAREA) turbo decoders might increase hardware

costs.

To improve the REA based TSOVA turbo decoders, this chapter uses TBA to implement the
TSOVA (TSOVATBA) turbo decoder. TBA is implemented with a novel implementation
method to save the hardware costs by reducing the number of registers required. Also, the

novel method addresses the latency problem known to be a problem of TBA based decoders.

99

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

The chapter gives detailed descriptions of TSOVATBA turbo decoder implementations, and
shows the performance results compared to the TSOVAREA and MLMAP based turbo

decoders.

This chapter is organized as follows. Section 6.2 reviews the TSOVAREA decoder based on
the presentation of past literature [93]. Section 6.3 describes the proposed TSOVATBA
decoder architecture and its modules. An efficient area architecture is introduced in Section
6.4. Hardware performance results are given in Section 6.5. Section 6.6 summarizes the

chapter.

6.2 Register-Exchange Algorithm Based Two-Step
SOV A Decoder

This section reviews the TSOVAREA decoder architecture [93] before presenting the
proposed TSOVATBA decoder architecture. The TSOVATBA architecture is modified from
the TSOVAREA architecture. The two architectures have many similarities. However, the

main components for the decoding process of each architecture are designed in a different

]J(-D
dec,, i
5, J SMU
- e &y I
Hard deciding PCU kDU
i —_——
Path Comparison Unit | Symbol
> Delay >
l l l l l Relevance bits
Ay . Lypaas
T e Delay Update Unit i
Likelihood

Figure 6.1 REA based TSOVA decoding processor architecture [93]

100

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

way. Thus, it is necessary to explain the TSOVAREA architecture and part of the

architecture compared to the TSOVATBA architecture in the next section.

Figure 6.1 illustrates the TSOVAREA decoder architecture for the survivor and update
processes. The architecture consists of a survivor memory unit (SMU) for generating the
hard-decision and the merged state, a path comparison unit (PCU) for comparing the
survivor and update paths, an update unit (UPU) for updating and generating the reliability
values, and memory blocks for delaying the decision bits and the reliability values. The
decision bits (dec,;) and reliability values (A4';;) generated by the transition metric unit
(TMU) are input to SMU and Delays, in which one of the Delays is for the decision bits, and
the other is for the reliability values. SMU generates the hard-decision, and finds the merged
state (s..p) to determine the initial state in PCU. The merged state is also used to select one of
the reliability values stored in the Delay. The hard-decision (/i.p) is passed to PCU to

compare with the hard-decision generated by the competing path. The compared results

0 dec,
pet
—
1 dec, g
1 —»
1 —>
2 dec, >
1 —
1 —>
3 dec, >
1 2 D
(a) (b)

Figure 6.2 (a) The trellis diagram for the convolutional codes K=3. (b) The register
exchange algorithm based survivor memory unit structure [93].

101

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

obtained by PCU are input to UPU for the updating process. The updating process is
performed following the updating rule described by equation (5.5) of Chapter 5.

In the architecture illustrated in Figure 6.1, SMU and PCU are implemented based on the
REA. Figure 6.2 illustrates the REA-based SMU structure for generating hard-decision for a
trellis diagram with a constraint length K=3 [93]. This structure can also be used to
implement PCU. The structure is comprised of an array of process elements (PE) for
exchanging the hard-decisions in every clock cycle. The output of the PE is determined by
the input decision bits (dec) sent from TMU. As can be seen in Figure 6.2, the initial inputs
of the first column PEs are the same with the code words of the trellis diagram. The number
of columns is the same with the survivor depth. All outputs of the last column PEs are the

same and represent the hard-decision.

6.3 Traceback Algorithm Based Two-step SOVA
Turbo Decoder Architecture

This section presents the proposed TSOVATBA turbo SISO decoder architecture. The
architecture is described in comparison with the TSOVAREA decoder architecture described
in the previous section, and the components incorporated in the architecture are described in

detail with an explanation of their functions in the decoding process.

6.3.1 Two-Step SOVA Traceback Turbo SISO Architecture

TSOVATBA turbo decoder architecture is proposed to improve hardware performance in
terms of area and power as compared to TSOVAREA and MLMAP turbo decoders. TBA is
widely employed in Viterbi decoder implementations due to its advantage of low power
consumption as compared to REA-based decoders. In general, the registers for REA cause
large area usage and power consumption. Despite low power and area, less attention has
been paid to TBA for implementing TSOVA turbo decoders because TBA is regarded as

high-latency, which lowers the throughput. The architecture introduced in this section

102

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

Traceback Process Update Process
Metric Computation e s ey EE= R T e e s ;
Process ; e 5
.......................... ! *S:.H.A'-u i
i I;__J TBU -t PCU |
Soft :
input _'"" BMU =+ SMCU LS e B BT [Yoy |
S T ol . 7
H MEM . S|UP T
Loge 1 1‘ '
R UPU
+
> Delay - {) >

Figure 6.3 TSOVATBA turbo decoder architecture.

does not increase the latency as compared to TSOVAREA decoder, while retaining the low

power advantage of TBA.

Figure 6.3 illustrates the TSOVATBA turbo SISO decoder architecture to be implemented in
this work. This architecture consists of three main processes, which are metric computations,
traceback and update processes. In the metric computation process, the soft-input is
computed by branch and state metric computation units (BMU and SMCU) to generate the
decision bits, dy.74, and the reliability values, Lg.7y, from all the states at time k. dy.7, and Lq.
7.k» are passed to the traceback unit (TBU) and memory (MEM) blocks, respectively. TBU
finds the merged state, S, s.p, and one of the reliability values stored in MEM is selected with
Sp-p- The merged state is then sent to the path comparison unit (PCU) that provides the path
comparison results to the update process unit (UPU) to output the soft-output. Thus, the role
of the traceback and update processes in the architecture is the same as the survivor and
update processes in TSOVA decoder introduced in [93]. The extrinsic information for the
next decoding process is obtained after subtracting the delayed soft-input from the soft-

output.

103

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

In the architecture, the memory blocks (MEM and Delay) are realised by using a first-in
first-out (FIFO) memory block. MEM consists of parallel FIFO blocks. The number of FIFO
blocks is 25! for constraint length K, and the depth of the FIFO is the same as the survivor
depth. The Delay is realized by a FIFO, the depth of which is the same as the total depth of

the survivor and update processes.

6.3.2 Metric Computation Unit

The metric computation unit (MCU) in the TSOVATBA turbo decoder architecture is
similar to the MCU in the MLMAP turbo decoder architecture, shown in Chapter 3. While
the MLMAP turbo decoder architecture requires three MCUs, the TSOVATBA turbo
decoder architecture needs only one MCU, corresponding to the MCU for the forward
process in the MLMAP-based turbo decoding process. Figure 6.4 illustrates the MCU
structure incorporated in the TSOVATBA architecture. It consists of a branch metric unit
(BMU) for generating the branch metrics, and a state metric computation unit (SMCU),
which is realised by a number of parallel add-compare-select-normalization (ACSN) units.
The BMU in this architecture is the same with the BMU illustrated in Figure 3.5 of Chapter
3. However, the output sequence of the ACSN differs from the output of the ACSN used in
the MLMAP turbo decoder architecture. While the ACSN for the MAP based turbo decoding
process produces only the state metrics, the ACSN illustrated in Figure 6.4 for the

TSOVATBA turbo decoding process generates the decision bit (DB), the reliability value

42 Recursive SM ,

Soft '

Input —'—> BMU B SMCU —'—v DB
: it RV

Figure 6.4 The metric computation unit structure in the TSOVATBA architecture.

104

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

(RV), and the state metric (SM), which is recursively input to the ACSN itself. DB and RV
are passed to TBU and MEM, respectively.

2% numbers of parallel ACSN recursively compute the state metrics from the BM and the
recursive SM to produce the DB and RV. Figure 6.5 illustrates the ACSN structure used in
the TSOVATBA turbo decoder architecture. This ACSN structure generates the state metric,
smo(k+1), of state 0 at time k+1. For obtaining smq(k+1), two branch (bmog(k), bm(k)) and
two state metrics (smg(k), and sm(k)) at time & are input to the ACSN. First, the first two
adders (A) compute two new state metrics, which then are compared in order to select (CS)

the maximum state metric. In the CS process, a subtractor, which is represented with an

smy(k) bmg(k) sm, (k)

smy(k+1)

Figure 6.5 The add-compare-select-normalization structure in the TSOVATBA turbo
decoder architecture.

105

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

adder in Figure 6.5, is used for the comparing process. The most significant bit (MSB) of the
subtractor output is input to the multiplexer (MUX) to select the maximum state metric, and
is associated with the decision bit (dy) passed to the survivor process. The reliability value
(Lox) sent to MEM is the absolute value of the subtractor output. In this process, 8-bits
wordlength was enough to represent the absolute value, which is obtained from simply

discarding the second MSB of the absolute value before passing to MEM.

In the turbo decoding process, the state metrics increase rapidly due to the use of soft-input
symbol data and extrinsic information. This requires a large wordlength to represent the state
metrics. To reduce the size of the wordlength without overflowing, the state metrics
normalization process (N) is necessary as illustrated in Figure 6.5. This process is performed

when the maximum state metric is larger than a constant (CONST), as described in [105].

6.3.3 Traceback Process Unit

The survivor process is performed to determine the merged state, from which the selected
reliability value is passed to the update process. While the merged state is searched by the
traceback process unit (TBU), the reliability values generated by SMCU are stored in MEM
before selecting one of the reliability values using the merged state. The TBU is one of the
main units in the TSOVATBA turbo decoder architecture. It uses the decision bits generated
by SMCU to determine the merged state by tracing in backward as shown in Figure 5.2 of
Chapter 5. Thus, the role of TBU is the same as the SMU of the TSOVAREA turbo decoder
described in the previous section, but the TBU operates in a different way to find the merged

state.

Figure 6.6 illustrates a novel TBU structure proposed in this thesis. In this structure, a
process element (PE) is placed on each state as the trellis state diagram for constraint length
K=4. Thus, the TBU consists of 2% numbers of PE row and D numbers of PE columns. The
structure shown in Figure 6.6 appears to be similar to the structure of the SMU introduced in
[93] for the TSOVAREA decoder implementation. However, there are some significant

differences in the implementation methods described below.

106

Chapter 6 Two-Step Softi-Output Viterbi Algorithm Turbo Decoder Architecture

Traceback Process Unit

Figure 6.6 The traceback process unit structure for searching the merged state.

First of all, PEs incorporated in TBU are implemented with only four gates and have no
registers, as shown in Figure 6.7. As illustrated in Figure 6.6, each of the PEs are connected
by identical wired connections with the transition paths of the trellis diagram illustrated in
Figure 5.2. On the other hand, PEs used for the SMU contain a register for exchanging the
hard-decision. Thus, while the inputs of the first column PEs of the SMU are initialized with
the code words corresponding to the hard-decisions, all first column PE inputs in TBU are
initialized to ‘1’ to make all state in the first column survivor states. Here ‘1’ denotes a
survivor path such that only one of the 16 outputs at the last column of PEs becomes “1” after
completing the survivor process. However, all outputs of the SMU are the same, representing

the hard-decision. Hence, the SMU needs an accumulator for state information in order to

107

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

RE

Input —__] :I)—:D__,_

slo|

A

Output

d

Figure 6.7 The process element structure.

determine the merged state, while the hard-decision and merged state in the TBU can be
represented by using one of the outputs of the PEs in the last column without a memory for

storing the state information.

Furthermore, in the SMU, the same decision bits generated by TMU are input to each of the
PEs in the same row in every clock cycle. However, as shown in Figure 6.6, the decision bit
input to all the PEs of the TBU are different, and are controlled by shift registers. The
decision bits in the TBU are used for determining which of PE outputs is *1* or ‘0°, in which
‘1’ indicates a survivor path of a state. If the input sequences of PE are ‘0, the outputs of PE
become ‘0’ no matter what the input decision bit is. The survivor paths are finally merged to
one PE at time k-D, which is the merged state, S, xp. During the decoding process, the TBU
provides only the merged state to the PCU without the sequences of the hard-decision, while

the SMU generates the hard-decision and merged states for the update process.

In our TBU, a potential issue could be a critical path delay occurring due to the wired
connections between the PEs. Whereas, in REA-based SMU, a critical path delay is no
problem at all. The critical path delay due to the wired connections may be a cause of speed
reduction of the turbo decoder to achieve maximum throughput. In general, it is well-known
that the critical path delay of a turbo decoder is in ACSN [13]. Critical paths of the TBU and
the ACSN in Figure 6.5 are investigated to determine which path affects the determination of

the maximum speed of TSOVATBA turbo decoder implementation.

108

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

6.3.4 Path Comparison and Update Process Units

The update process is performed to generate the soft-output, including the hard-decision and
the reliability value and the extrinsic information for the next decoding process. Figure 6.8
illustrates the path comparison and update process units (PCU and UPU) for performing the
update process. PCU generates the comparison sequences of the survivor and competing
paths, which are passed to REU to perform the updating process following the update rule in
(5.5). The inputs of PCU are the decision bits, the merged state information, and the selected
reliability value. The decision bits and the merged state are sent from TBU. The selected

reliability value is one of the outputs delayed by the memory block.

Competing Path Unit]

Survivor Path Unit

Figure 6.8 The path comparison and update process unit structures

Figure 6.8 illustrates the UPU structure, in which the PCU consists of a competing path unit
(CPU) and a survivor path unit (SPU). While the inputs of TBU are initialized to “1°, the
inputs of the CPU and SPU are initialized by the merged state, which indicates the initial

state to start the survivor and update processes. The CPU and SPU generate the comparison

109

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

Ugploru g p) Ugn(0rigp,) T ()

Figure 6.9 The structure of CPU and SPU.

bits. These are then processed by the update processors (UP), which are realized based on the

update rule given by equation (5.5) in Chapter 5.

Figure 6.9 illustrates the structure of CPU and SPU, which is almost the same with the
structure of TBU, shown in Figure 6.6. The number of the column PEs is the same as the
update length, U. While the inputs of all first column PEs in TBU are initialized to ‘1°, the
inputs of only one PE in PCU are initialized to “1°. The initial inputs of CPU and SPU are
determined by the merged state obtained by the TBU. During the update process, only one
output path of each of the column PEs becomes ‘1°, and the rest of their outputs are ‘0’.
From this output sequence, hard-decisions (u,4and u.;) of the survivor and competing paths
can be generated by a hard-decision generator (HDG), and then they are compared to
determine whether the reliability value needed to be updated or not following the rule in

(5.5). The XORs shown in Figure 6.8 generate the comparison results (c;) that are input to

110

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

the UPU. As shown in Figure 6.8, the UPU is implemented with pipelined stages, in which

the stage number is also the same as the update depth, U.

6.4 Area-Efficient Traceback Two-Step SOVA Turbo
SISO Decoder Architecture

Figure 6.10 illustrates the area-efficient TSOVATBA turbo SISO decoder architecture. In
this architecture, the MEM in the architecture illustrated in Figure 6.3 is replaced with an
additional MCU incorporating BMU and SMCU, which is similar to the technique suggested
in [152]. In addition, the Delay block for delaying the soft-input is divided into two blocks.
The MEM area depends on the survivor depth and the constraint length. On the other hand,
the area of MCU replacing MEM depends only on the constraint length. The separated
Delay0 has the same depth as the survivor depth. The total depth of Delay0 and Delay! is

Traceback Process Update Process

Metric Computation N e e et e e 5,
Process ; i :

lSm_k—,')

5 ’»— TBU Ciete PCU
§ IdL-D

Soft

input —+ BMU — SMCU

Uy pp.v

M " BMw

L.’r
| b »
ACSN s B
Delayed [
soft input i Lyeten
------------------------- UPU
i
r L,
Delay0 ——* Delay1 - CJ X

Figure 6.10 The area efficient TSOVA turbo decoder architecture

111

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

almost same as the depth of the Delay of the architecture illustrated in Figure 6.3. The two

architectures described in Figure 6.3 and 6.10 are compared for area usage and power.

6.5 Results

The TBA based TSOVA turbo SISO decoders have been designed at RTL using Verilog
HDL. After completing RTL simulations with Cadence Verilog-XL™, they were
synthesized with Synopsys DesignCompiler™ using the UMC 0.18um standard CMOS
technology. The gate-level netlists obtained from the synthesis were simulated with Cadence
Verilog-XL™. Power consumption of the TSOVATBA decoders was evaluated by Synopsys
PowerCompiler™ with the switching activities obtained during the gate-level netlists
simulation. The test systems used in the simulation were the same with those used in
Chapters 3 and 4 for the MLMAP turbo decoder simulation. The block size and other
parameters, such as code rates, fixed-point representation for soft-input, etc., were also the

same.

6.5.1 REA and TBA Results Comparisons

In TSOVA based turbo decoder implementations, as already stated in previous sections, one
of the main processes is the survivor process, which can be implemented with REA or TBA.
REA has been popularly employed for TSOVA decoder implementations using the method
described in Section 6.2. The main differences between TSOVAREA and TSOVATBA
decoders are in the modules that perform the survivor and update processes, while MCU can
be commonly used in both decoder implementations. Thus, by comparing the SMU
incorporated in TSOVAREA with the TBU used in TSOVATBA, we can forecast how much
difference exists between the hardware performances of these decoders. For this comparison,
REA based SMU following the structure described in [93] has been implemented and
compared with the area usage and power consumption of the proposed TBU illustrated in
Figure 6.5. Note that in this comparison SMU and TBU have been compared without the

inclusion of memory blocks for storing the reliability values. Two different survivor depths,

112

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

Kx6 and Kx8, for constraint lengths K=3, 4, and 5, were considered for these performance

0.25
[OSMUl OTBUI ESMU2 ETBU2
02 | S
EL 08
é E
g 0.1
0.05 |
0
K3 K4 K5
Constraint length
(a)
20
 OSMU1 ETBUI ESMU2 MTBU2
15 E ——

Power(mW)
S
|
|
|

wh

K3 K4 K5

Constraint length
(b)

Figure 6.11 (a) Area and (b) power comparisons.

comparisons. The update depths were fixed to (0.5xthe survivor depth + K). The depths were

determined based on the decoder performance results obtained in the previous chapter.

Figures 6.11 (a) and (b) illustrate the area and power results of the SMU and TBU for K=3, 4,
and 5. In these figures, SMU1 and TBU1 imply the survivor depth Kx6 and the update depth
Kx4, while SMU2 and TBU2 imply the survivor depth Kx8 and the update depth Kx5. Table

113

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

6.1 summarizes the results. It is clear from the results that the area and power depends

Table 6.1 List of the SMU and TBU area and power results.

D=Kx6, U=Kx4 D=Kx8, U=Kx5
SMU1 | TBUI SE“/:’f SMU2 | TBU2 S(;’f
s Area(mm’) | 0.022 | 0.0103 | 53.7 0.029 | 0.013 53.9
Power (mW) | 1.85 0.96 47.8 2.48 1.41 42.9
N Area(mm?) | 0.059 | 0.027 | 53.9 | 0.078 | 0.036 | 54.1
" Power (mW) | 5.02 o 45.8 6.69 3.67 45.1
Area (mm?) | 0.147 | 0.067 | 54.1 0.196 | 0.089 | 54.2
= Power (mW) | 12.45 | 6.85 44.9 16.51 8.71 47.2

strongly on the constraint length, as well as the survivor and update depths. The results also
show that TBU can save 54% in area and 47% in power as compared to SMU. The area and
power savings of TBU were almost same with different constraint lengths, survivor and
update depths. While SMU is implemented with a number of registers used for REA, TBA
used in TBU requires only wired connections which contribute to much of the area and

power savings of TBA compared to REA.

6.5.2 TSOVATBA Turbo Decoder Hardware Performance Results

Two TSOVATBA based turbo decoders have been implemented for the evaluation of their
hardware performance. The two decoders are illustrated in Figures 6.3 and 6.9, and are
called the TSOVATBA turbo decoder (TBTD) and the area efficient TSOVATBA turbo
decoder (AETD), respectively.

First, the latency was investigated, which affects the throughput performance. The iterative
process in a turbo decoder results in a large latency that reduces the throughput. In general,

the latency of a MAP based turbo decoder with sliding window (SW) method is known to be

114

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

4 times the window size in the first half iteration [16]. On the other hand, the latency of
TSOVATBA can be defined as the total depth of the survivor and update processes. If it is
assumed that the survivor depth is the same as the window size, the latency of the
TSOVATBA becomes less than half of the MAP based turbo decoder latency. It must also
be noted that TSOVATBA and TSOVAREA have the same latency. The latency of the
TSOVATBA turbo decoders could be given as follows:

Latency = (D + U + P) x a clock period (6.1)

where D is the survivor depth, U is the update depth, and P is the number of pipeline stages
in the TSOVATBA turbo decoder implementation. P depends on the design of the decoder
and is typically much less than U. As can be seen, even though D is the same as the window
size in the MAP based turbo decoders, the latency of the TSOVATBA turbo decoders is less
than that of the MAP based turbo decoders.

The area usage and power consumption results for TBTD and AETD are illustrated in
Figures 6.12-6.14, and summarized in Table 6.2-6.7 for constraint lengths K=3, 4, and 5. In
the figures, the primary and secondary Y-axes indicate the breakdown component and total
results, respectively. As before, two different survivor and update depths are considered in
the implementation of the decoders. The results show that the overall area of AETD for K=3
and 4 is saved by up to 26% as compared with TBTD area results. On the contrary, the
overall power of AETD for K=3 and 4 increased by up to 27% as compared to TBTD.
However, for K=5, AETD saves up to 36% in area and 6% in power. From these results, it is
clear that the replacement of the memory for the reliability values with an additional MCU
can achieve significant savings in overall area, while increasing the overall power
consumption for K=3 and 4 due to high switching activities led by the replaced MCU. On the
other hand, the memory size for the reliability values is increased proportional to the number
of states, 25", Thus, for K=5, the results show that the dramatically increased memory
blocks consume more power than the computational logics of MCU. The results for each

constraint length are discussed below.

Figures 6.12 (a) and (b) illustrates the area and power results for TBTD and AETD,
respectively, for K=3. The results are summarized in Tables 6.2 and 6.3. AETD D6U4 and
D8US save 8% and 18% in area, respectively, as compared to TBTD D6U4 and D8US. The

115

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

replacement of the memory block for storing the reliability values leads significantly to area

0.2 0.3
| CIBMU [EmSMCU EmTBU [@EEEPCU -
Emm UPU mE MEM —— Total }0.25
; —
— 0.2 §
(]
E 0.15 &
Inis
= o1 B
=
0.05
0
TBTDD6U4 AETDD6U4 TBTDD8U5 AETDDSUS
Schemes
(a)
6 16

[CBMU [@EmSMCU EmEE TBU
5 [mEmUPU s MEM - Total

112

Power(mW)
(==}
Total Power(mW)

TBTDD6U4 AETDD6U4 TBTDD8U5S AETDD8US

Schemes

(b)

Figure 6.12 (a) Area and (b) power comparisons for K=3.

reduction. In AETD, the area of BMU and SMCU is increased to two times that of the BMU
and MCU of TBTD. This is because the BMU and SMCU area results of AETD include the
area of the added MCU for generating the reliability values for the UPU. This results in the

116

Chapter 6 Two-Step Sofi-Output Viterbi Algorithm Turbo Decoder Architecture

power increase of AETD, despite of the area reduction. Thus, it is clear that although the

Table 6.2 List of area results for K=3

D6U4 D8US
TBTD AETD Save TBTD AETD Save
(mm?) (mm?) (%) (mm?) (mm?) (%)
BMU 0.004 0.008 -100 0.004 0.008 -100
SMCU 0.025 0.052 -105.6 0.025 0.052 -105.6
TBU 0.010 0.010 0 0.013 0.013 0
PCU 0.010 0.010 0 0.013 0.013 0
UPU 0.032 0.031 2.8 0.038 0.038 0
MEM 0.100 0.054 46.0 0.141 0.066 8§32
Total 0.183 0.168 8.5 0.236 0.192 18.6
Table 6.3 List of power results for K=3
D6eU4 D8US5
TBTD AETD Save TBTD AETD Save
(mW) (mW) (o) (mW) (mW) (%)
BMU 0.36 0.75 -106.8 0.37 0.74 -100
SMCU 1.93 4.14 -114.0 1.96 4.13 -109.9
TBU 0.96 1.09 -12.6 1.41 1.49 -5.0
PCU 1.00 1.21 -20.6 1.46 1.56 -7.0
UPU 1.98 243 -22.9 2.58 291 -12.8
MEM 3.43 2.66 222 3.67 2.85 222
Total 9.69 12.31 -27.0 11.47 13.7 -19.3

computational logic area is less than the memory area, it can consume more power due to a

high switching activity led by the metric computation process.

117

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

Figures 6.13 (a) and (b) and Tables 6.4 and 6.5 illustrate and summarize the area and power

results of TBTD and AETD for K=4. Similar to the results for K=3, AETD saves up to 26%

0.4
| CJBMU [SMCU = TBU]
- EEEUPU e MEM —- Total :
03 1 105 2
k- 0.4 ‘g
= - ()]
\—({ 02 1 ‘E
2 p—
< {103 &
§ o
0.1] =
102
0 1 0.1
TBTDD6U4 AETDD6U4 TBTDD8U5 AETDD8US
Schemes
(a)
14 5 30
- CIBMU [SMCU @ TBU 1
12 | mmmUPU s MEM —#—Total 125
L g0k <
= g ./I/.—. 12 E
= o | =
g 8k — g o
k=1 - R
L (=)
=G o~
- 10 8
4 [5)
=
il 5
: |
i
0 — J 0
TBTDD6U4 AETDD6U4 TBTDD8U5 AETDD8US
Schemes
(b)

Figure 6.13 (a) Area and (b) power comparisons for K=4.

in area by eliminating the memory for the reliability values. The power of AETD is slightly

increased by 9% as compared to TBTD. This power increase rate is smaller than the increase

118

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

seen for K=3. The number of states for K=4 is doubled compared to K=3. This leads to an

increase of computational complexity and memory size. Thus, it is clear from the results for

Table 6.4 List of area results for K=4,

D6U4 D8US
TBTD AETD Save TBTD AETD Save
(mm’) | (mm) | o) | (mm) | mmd) | (%)
BMU 0.004 0.008 -100 0.004 0.008 -100
SMCU 0.049 0.099 -101.39 0.049 0.099 -101.39
TBU 0.027 0.027 0 0.036 0.036 0
PCU 0.027 0.027 0 0.034 0.034 0
UPU 0.039 0.039 0 0.048 0.048 0.31
MEM 0.226 0.073 67.70 0.255 0.090 64.67
Total 0.374 0.275 26.46 0.427 0.316 25.94
Table 6.5 List of power results for K=4
D6U4 D8US
TBTD AETD Save TBTD AETD Save
(mW) (mW) (%) (mW) (mW) (%)
BMU 0.37 0.74 -101.61 0.37 0.75 -101.34
SMCU 3.79 7.74 -104.05 3.74 7:53 -101.30
TBU 2.71 2:71 0.18 3.67 3.70 -0.89
PCU 2.89 2.86 0.89 3.78 3.76 0.29
UPU 2.83 2.89 -1.93 3.31 3.43 -3.68
MEM 5.81 3.26 43.94 6.80 3.64 46.45
Total 18.43 20.23 -9.73 22.82 22.83 -0.05

K=4 that the increased memory for the reliability values contributes to the total power as

well as the total area as compared to the results for K=3 decoder results. This difference is

even greater in the results for K=5.

119

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

The area and power results for K=5 are illustrate in Figures 6.14 (a) and (b), and summarized

in Tables 6.6 and 6.7. The results for K=5 show different aspects than the results for K=3

20 50
FCBMU @ SMCU @z TBU @mmPCU]
| EE UPU s MEM - Total 1

400
Ve I : E
= I 300 =
: e e
S e
i 20 =3
S 17 3
i o
51 B

r 10

oL 0
TBTDD6U4 AETDD6U4 TBTDDS8US AETDDSUS
Schemes
(a)
0.8 1
-_1BMU [T 1
- @ UPU e MEM —-Tota
4 0.8

(=
[
2
i)

Area(mmz)
(==
=N

Total Area(m

&
o

TBTDD6U4 AETDD6U4 TBTDDS8US AETDD8US

Schemes
(b)

Figure 6.14 (a) Area and (b) power comparisons for K=5.

and 4. In the TSOVATBA turbo decoder architecture, the memory size for the reliability

values is higher than that of K=3 and K=4 results. Thus, AETD can achieve savings in both

120

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

area and power as compared to TBTD. The area of the memory is much more reduced

compared to K=3 and 4, which also leads to the overall power reduction of AETD.

Table 6.6 List of area results for K=5

DeU4 D8US5
TBTD AETD Save TBTD AETD Save
(mm®) | (mm’) (%) | (mm’) | mm) | (%)
BMU 0.004 0.008 -100 0.004 0.008 -100
SMCU 0.096 0.195 -102.1 0.096 0.195 -102.1
TBU 0.067 0.067 - 0.089 0.089 -
PCU 0.068 0.068 - 0.084 0.084 -
UPU 0.048 0.048 0.3 0.059 0.059 0.2
MEM 0.396 0.084 78.6 0.519 0.106 79.4
Total 0.682 0.473 30.6 0.855 0.544 36.2
Table 6.7 List of power results for K=5.
D6U4 D8US
TBTD AETD Save TBTD AETD Save
(mW) (mW) (%) (mW) (mW) (%0)
BMU 0.36 0.74 -106.0 0.36 0.73 -104.7
SMCU 8.10 14.48 -78.6 7.99 14.29 -78.7
TBU 6.85 6.29 8.1 8.71 8.19 5.9
PCU AL 5.64 122 7.16 7.08 1.0
UPU 3.38 3.05 9.8 4.22 3.69 12.6
MEM 11.88 4.50 62.0 13.28 5.08 61.7
Total 36.30 34.72 4.3 41.74 39.1 6.3

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

6.5.3 Comparing with MLTBD

The TSOVATBA turbo decoder results shown in the previous sub section are compared with
the conventional MLTBD turbo decoder performance results obtained in Chapter 3. In the
literature, an REA based SOVA or TSOVA turbo decoder does not reduce the computational
complexity or improve hardware performance as compared to a MLTBD turbo decoder. This
chapter shows that the proposed TBA based TSOVA turbo decoder can save more area and
power than the REA based TSOVA turbo decoder. Thus, this section shows performance
comparison between the TSOVATBA and the MLTBD turbo decoders for ditferent
constraint lengths, K=3, 4, and 5. Table 6.8 lists the area and power comparison results
between the MLTBD, the TBTD, and the AETD. The TBTD and AETD results were
obtained from the survivor and update depths of D8US5. From the results, the TBTD and
AETD for K=3 can save up to 65% and 72% in area and 52% and 42% in power as
compared to the MLTBD for K=3, respectively. For K=4 and 5, the area and power savings
of the TBTD and AETD are slightly less than for K=3, but the area and power savings still
reach up to 66% and 34% for K=4 and 62% and 37% for K=5, respectively.

Table 6.8 Area and power comparisons for the MLMAP and TSOVATBA based turbo
decoder schemes.

MLTBD | TBTD S(;:)e AETD S(;‘/:)e

s | Area (mm?) | 0.689 | 0236 | 657 | 0192 | 721
Power (mW) 23.9 11.4 52.3 13 42.6

oy | Aren mm?) | 093 | 0427 | 540 | 0316 | 66.0
Power (mW) 34.78 22.82 34.3 22.83 34.3

(s | Area (mm?) | 1452 | 0855 | 41.1 0.544 | 62.5
Power (mW) 62.3 41.7 33.0 39.1 37.2

122

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

6.6 Summary

This chapter presented a TSOVA turbo decoder based on TBA. The decoder architecture
was described in comparison with the TSOVAREA architecture suggested in the literature.
The hardware simulation results have shown that the TSOVATBA turbo decoder
implementations can save more area and power than TSOVAREA turbo decoders. The
savings are due to eliminating the registers required by the survivor and update processes of
the TSOVAREA turbo decoders. The TSOVATBA turbo decoders were also compared with
the MLMAP turbo decoders in terms of area and power. The results of this comparison
showed that the TSOVATBA turbo decoders can reduce area and power more so than the
MLMAP turbo decoders. Thus, the TSOVATBA turbo decoders could be more suitable for
mobile and portable wireless communication systems requiring low power consumption and
area usage without significant BER performance degradation, as shown in the previous
chapter. In the next two chapters, reconfigurable application specific turbo decoder
architectures targeting multi standard wireless communication systems are presented. The
chapters present a turbo decoder that can be reconfigured for different constraint lengths and

different type of turbo codes.

Chapter 7

Reconfigurable Turbo Decoder
Architecture

7.1 Introduction

Wireless communication systems are constructed with a number of digital signal processing
techniques. One trend for future wireless communication systems is that of converging to
one system, which is compatible and flexible for different standardized systems [162-165].
In order to make the systems compatible and flexible, digital signal processors incorporated

in these systems must be recontfigurable and reusable for different standards.

In wireless communication systems, the adoption of different encoding techniques has led to
the development of a reconfigurable channel decoder, like the reconfigurable Viterbi decoder
[166-168]. After the emergence of turbo codes, a dual mode decoder, which can be
reconfigured as Viterbi and turbo decoders, has been proposed [13, 169-170] for supporting
convolutional and turbo codes. However, a reconfigurable turbo decoder is considered less in
the literature, and the demand of the reconfigurable turbo decoder is continuously expected
to be increased in the future by requiring the compatibility and reusability with a very low
BER. Table 7.1 summarizes the turbo code specifications for different applications [171-
172]. As can be seen, the encoding schemes and parameters of turbo codes vary with the
individual applications. Thus, this chapter presents a reconfigurable application specific
integration circuit (REASIC) turbo decoder architecture that is designed to support turbo

codes generated by different constraint lengths.

The reconfigurable application specific turbo decoder (REASTD) architecture presented in
this chapter, which can be configured dynamically, is designed based on the K=5 MLMAP
turbo decoder proposed in Chapter 4. This architecture can be reconfigured for K=3 and 4
with a proposed mapping method, which is used for implementing the state metric and LLR

value computation units. The proposed mapping method involves minimized area overhead

124

Chapter 7 Reconfigurable Turbo Decoder Architecture

Table 7.1 List of turbo codes for different applications [171-172].

Applications Turbo code | Termination | Polynomials Rates
CCDSD Blié‘fs"y’ Tail bits | 23,33,25,37 | 1/6, 1/4, 1/3. 1/2
UMTS, CDMA2000 | P2 Tailbits | 13, 15, 17 14, 13, 112
DVB-RCS D"“b[fj“ary’ Circular 13, 15 1/3 up to 6/7
DYESRCT | I Rl 13, 15 1/2, 3/4
M4 B[i;irsy’ None 23,35 1/2
Skyplex D"”b];ji“a"y’ Circular 3, 15 4/5, 6/7
IEEE802.16, WiMax Do“b]zji“ary’ Circular 13, 15 1/2 up to 7/8

for the reconfigurable implementation. In order to achieve low power reconfigurable turbo
decoder implementation, a clock gating method is employed in the memory blocks for
storing the state metrics, and the units for computing the state metrics and the LLR values.
With the help of simulation results, the hardware performance of the reconfigurable turbo

decoder is compared with the ASIC turbo decoder implementations.

In addition, as shown in Table 7.1, there are two types of turbo codes adopted as a standard
in wireless communication systems. They are binary and double-binary turbo codes (BTC
and DTC). As shown in Chapter 2, BTC and DTC are generated by different encoding
schemes. Thus, the reconfigurable turbo decoder for supporting the two turbo codes is

desirable for compatible and flexible systems.

This chapter also proposes a reconfigurable application specific turbo decoder (RDASTD)
architecture that can be configured for BTC and DTC with a fixed constraint length K=4. For
supporting both turbo codes, BTC and DTC, the RDASTD needs different design strategies
due to the different number of inputs and outputs required by BTC and DTC. A radix-4 (R4)
BTC turbo decoding process [14, 20] is investigated; and it is found that the decoding

125

Chapter 7 Reconfigurable Turbo Decoder Architecture

process can be exploited to implement the RDASTD. The high radix method is already
employed by Viterbi decoder implementations in order to achieve high throughput [114-117].

The high radix method can also be used to increase turbo decoder throughput.

When the turbo decoding process for DTC is compared to the R4 process, it shows that many
hardware resources can be shared for decoding both turbo codes. The complexity of a R4
based turbo decoder is clearly higher than a general radix-2 (R2) turbo decoder. However,
the overhead led by the R4 method might be traded off with the compatibility and flexibility
of wireless systems. Detailed simulation results are provided to compare with the

performance of the ASIC turbo decoder implementations.

This chapter is organized as follows. Section 7.2 describes the mapping method for the
reconfigurable implementations. The REASIC turbo decoder architecture and the
incorporated components are illustrated in Section 7.3. Section 7.4 shows the R4 and DTC
decoding methods used to implement the RDASTD. The detailed architecture and structure
of each component are explained in Section 7.5. Simulation results in terms of area and

power compared with ASIC turbo decoders are given in Section 7.6. Section 7.7 summarizes

the chapter.

7.2 Mapping Method for Reconfigurable Turbo
Decoder Implementation

The reconfigurable turbo decoder, presented in this chapter, is designed based on the
MLMAP decoder architecture for constraint length K=5. The units for computing the state
metrics and LLR are the main components in the reconfigurable turbo decoder
implementations. They might be reconfigured for constraint lengths from K=3 to 5. A
mapping method in this work is to reallocate the forward and backward state metrics based
on constraint length K=5. This method can be described with the trellis state diagram for

K=5 turbo codes.

Figures 7.1 and 7.2 illustrate the trellis diagrams of the forward and backward processes for

K=35, respectively. There are 16 states given by 2% for constraint length K=5. The arrow

126

Chapter 7 Reconfigurable Turbo Decoder Architecture

k ket 1 k k+1 ke k+1
(2) (b) (©)

Figure 7.1 The forward process trellis diagrams for (a) K=5, (b) K=3 based on K=5, and
(c) K=4 based on K=5.

indicates the process direction in different line styles corresponding to a systematic bit of the
code words. Figures 7.1 (a) and 7.2 (a) are the trellis diagrams for K=5. Figures (b) and (c)
show the state transitions in a bold line as required by the configurations for K=3 and 4

based on the K=5 trellis state diagram.

In the case of fixed constraint length turbo decoder implementations, the number of state
metrics does not change. However, the reconfigurable turbo decoder is designed for
reallocating the output state metrics before computing the new state metrics based on K=5
turbo decoder. For instance, when the constraint length is set to K=3, four states of the 16
states are needed for the turbo decoding process, as illustrated with the bold lines in Figures
7.1 (b) and 7.2 (b) for the forward and backward processes. Then, the output state metrics

for each process are reordered as follows.

127

Chapter 7 Reconfigurable Turbo Decoder Architecture

0 0
1 1
2 2
3 3
4 of 4
5 & 5
6 & 6
7 9 7
8 ¢ 8 &
9 9 o
10 10 &
11 11
12 & 12 d
13 ¢ 13
14 14 &
15 & 15 &
k k+1 k k+1 k k+1
(a) (b) (¢)

Figure 7.2 The backward process trellis diagram for (a) K=5, (b) K=3 based on K=5, and
(c) K=4 based on K=5.

ao(kt1) > ap(k+1)., en(kt+l) — aq(k+1), (7.1)

ag(k+1) = an(k+1), an(kr1) = as(kt1),

Others — 0

In a similar way, the state metrics for the backward process is represented as follows:
Po(k+1) = fo(ktl), Silkt1) = Bilktl), (7.2)

Polk+1) = [a(kt+l), Blkt]l) = Bo(k+l),

128

Chapter 7 Reconfigurable Turbo Decoder Architecture

Others — 0

While the state metrics of states 8 and 9 are input to state metrics 2 and 3 for the forward
state metric computation, the state metrics are input to the state metrics 8 and 9 for the

backward state metric computation. Four state metrics are only passed to LCU in order to

calculate LLR.

On the other hand, of the 16 state metrics, the mapping method for K=4 reallocates eight

state metrics. The mapping can be represented for the forward and backward processes as

follows:

Mapping forward state metrics for K=4:
ao(k+1) > ap(kt1), au(kt+l) = eq(k+1), (7.3)
as(k+1) = an(k+1), aulhtl) = as(k+1),
ag(k+1) > ay(ktl), oo(k+l) = as(k+1),
ao(k+1) = ag(k+1), eni(k+1) = an(k+1),
Others — 0
Mapping backward state metrics for K=4:
Sok+1) = Bkt+l), Silkt+1) = Bi(k+1), (7.4)
Polkt1) = So(k+1), Pa(ket]) — Sa(k+1),
Balket1) = Sy(kt1), Bs(kt1) = So(kt]),
Po(kt1) = Bio(kt1), Silkt1l) = fulkt]),

Others — 0

129

Chapter 7 Reconfigurable Turbo Decoder Architecture

Following the mapping methods described above, the output state metrics are

computed after reordering their state numbers when the REASTD is configured for

K=3 and 4.

7.3 Reconfigurable Turbo Decoder Hardware
Architecture for Variable Constraint Lengths

This section presents the reconfigurable application specific turbo decoder (REASTD)
architecture for supporting variable constraint length. A detailed structure of the units
incorporated in the architecture is described. To save on power consumption of the REASTD
hardware, gated clock is used to implement a reconfigurable state metric computation unit

(RESMCU) and a reconfigurable LLR computation unit (RELCU).

7.3.1 Reconfigurable Turbo Decoder Architecture

The REASTD architecture is illustrated in Figure 7.3. The incorporated components are
almost same with the MLMAP architecture presented in Chapter 3. The REASTD is
implemented based on K=5 to support K=3 and 4 as well. It consists of three reconfigurable
metric computation units for the forward (FREMCU), backward (BREMCU), and dummy-
backward state metrics (DREMCU), a reconfigurable LLR computation unit (RELCU) to
calculate LLR for K=3, 4, and 5, the memory blocks for a data scheduling unit (DSU) and
delaying for the soft-input and the forward state metrics. The reconfigurable units can be
configured for the mode (M), and operate with a gated clock (GC) to save on power
consumption. In addition, the memory block, DF, for storing the forward state metrics is
designed with 16 parallel LIFO blocks with GC. The 16 parallel LIFOs are for K=5, but 4 or
8 of them are used if K=3 or 4. The unused LIFO blocks are deactivated by the GC.

130

Chapter 7 Reconfigurable Turbo Decoder Architecture

CNTA CNT2
DREMCU
Soft ; :
: . RE- RE- |
ey BMUMBMNU[TS] smcu [TTMAY
Soft R e X
input1 _l e e
:E GC M
FIFO ? BREMCU
[5 re | o re 1
HEMU™ BMNU o sveu A
-1
GC M
S 5 re- | O Rre. Tl
input2 E’BMU*BMNU I_; sSMCU ~MAU i

Figure 7.3 The reconfigurable turbo decoder architecture.

7.3.2 Clock Gating Method for Reconfigurable Turbo Decoder

It is well known that a clock gating method [140-141] is very useful for saving on power
consumption. Figures 7.4 (a) and (b) illustrate an example of the use of the GC, and the GCs
applied to the REASTD implementation, respectively. As shown in Figure 7.4 (a), a system
clock is input to a register through an AND gate. If the register does not need to be activated,

the ‘Enable’ input of the AND gate is set to 0" and hence the system clock is blocked.

Figure 7.4 (b) illustrates how the gated clocks are generated for the REASTD. Three gated
clocks (GCy, GC;, and GC,;) are used in the REASTD architecture. The mode (M)

Chapter 7 Reconfigurable Turbo Decoder Architecture

Clock

MI[O] } o

Date ey —
e D

M[1]
lock
J—l_ﬂ_c_?c_ Gate clock
Enable — M[2] —
(a) (b)

Figure 7.4 (a) Clock gating method. (b) The gated clocks applied to the reconfigurable
architecture.

corresponding to the Enable in Figure 7.4 (a) is determined by the constraint length and
represented in 3-bits. Thus, when K is 3, the least significant bit of M, M [0], is ‘1’ that
enables GCy. When K is 4, M [1:0] enables GCy and GC;. When K is 5, all GC signals are

enabled.

7.3.3 Reconfigurable Metric Computation Unit

The reconfigurable metric computation unit (REMCU) consists of a BMU, a reconfigurable
branch metric normalization unit (REBMNU), a reconfigurable state metric computation unit
(RESMCU), and a mapping unit (MAU), as illustrated in Figure 7.5. It is used to compute
the forward and backward state metrics. The soft-input data is fed into BMU to generate the
branch metrics (BM). The BM is normalized by REBMNU with the state metrics (SM)
providing by MAU. The normalized branch metrics (NBM) and the Recursive SM are
passed to RESMCU for computing the next state metrics. The REBMNU is almost the same
as the BMNU introduced in Chapter 4. The difference is that the number of SM inputs for

determining the normalizing condition is controlled by the configuration of the constraint

132

Chapter 7 Reconfigurable Turbo Decoder Architecture

{ REMCU ; :
i Recursive SM ;
Softiinput ! BMU o » RESMCU —{ MAU > sM
: BM NBM g
M : Mode M GG, GC; GG,

GC : Gated clock

Figure 7.5 The reconfigurable metric computation unit structure.

length. For example, if REBMNU is configured for K=3, REBMNU accepts only four SM

values.

RESMCU that is implemented based on K=5 consists of 16 ACSs in parallel and a MAU.
The ACS structure is the same as the one used in Chapter 4. It operates with the mode (M)

and three gated-clocks (GCo, GC;, GC;) associated with the constraint length.

Figures 7.6 and 7.7 illustrate the configurations of RESMCU and MAU for computing the
forward and backward SM, respectively. These figures are given as an example when they
are configured for K=3. As described in the previous subsection, when K=3, GC, is enabled
only, while the other two gated-clocks are blocked. In this case, four of the 16 ACS units are
activated with GCy, as illustrated in Figure 7.6. Thus, when K=3, the rest of the ACS units
do not operate and their inputs are set to zero. In the figure, the unused ACSs are represented
in grey coloured blocks. As can be seen, ACS 0, 1, 8, and 9 are activated by GC, and M [0].
Outputs of the four ACSs are reordered as ray, roq, ras, and res by MAU before recursively
being input to the four ACS 0, 1, 8 and 9 of the RESMCU. The reordering method that is

described in the previous section follows.

133

Chapter 7 Reconfigurable Turbo Decoder Architecture

VL

RESMCU

Figure 7.6 The reconfigurable state metric unit configuration for the forward process and
K=3.

Figure 7.7 illustrates the configuration for the backward process that is performed in a
similar way with the process illustrated in Figure 7.6. As before, GCy and M [0] are used to
operate the four ACSs, 0, 1, 2, and 3. The rest of the ACSs are deactivated. Outputs of the
four ACSs are reordered as rf, /3, rfk, and r/% through the MAU. This backward SM
reordering method is described in Section 7.2. The dummy-backward process is performed

in the same way with the backward process.

134

Chapter 7 Reconfigurable Turbo Decoder Architecture

| Aofs = ACSO [r----- > 1h
A pGsT e
Ab a2
AAaoss by

e e e

RESMCU

Figure 7.7 The reconfigurable state metric unit configuration for the backward process
and K=3.

The configurations of the RESMCU for the constraint length K=4 can also be represented by
using the method illustrated in Figure 7.6 and 7.7 with the mapping method described in

section 7.2.

135

Chapter 7 Reconfigurable Turbo Decoder Architecture

7.3.4 Reconfigurable Log-Likelihood Computation Unit

A reconfigurable log-likelihood computation unit (RELCU) is also designed based on the
constraint length K=5 to support the constraint length K=3 and 4, as well. A gated-clock
method is applied to the RELCU implementation to save power consumption as in the
RESMCU implementation. The RELCU structure is illustrated in Figure 7.8, which consists
of two mapping units (MAU) and two main components, LCUI and LCUQ, to generate I-
and 0- bit LLR values, L;, and L;o. The extrinsic information is obtained from the
differences of L;, and L;q after subtracting the soft-input. The forward and backward state
metrics (FSM and BSM) and the branch metrics (BM) are input to RELCU, and then, they
are distributed by MAU following the mode (M) that is associated with the constraint length.
The three gated-clocks, GCy, GC;, and GC,, are input to each of the LCUO and LCUI

depending on M to save on the power consumption.

FSM £ ? RELCU
BSM {1+ imau|| Lcut [in :
om AL s ;
[s e
: 0 1 2 e
el T £ |
§ s MAU|| Lcuo F |
e |
i M GC,GC, GC, L+
Soft __ ';//\ : , Extrinsic
input . _/ ./ Information

Figure 7.8 The reconfigurable LLR computation unit structure.

Chapter 7 Reconfigurable Turbo Decoder Architecture

MAU | 4cs

Figure 7.9 The reconfigurable L or L, computation unit structure.

As an example, Figure 7.9 illustrates a structure that can be used for LCUO or LCUI with
MAU. The figure is shown when it is configured for K=3. The process for computing the 1-
or 0-bit LLR value is no different from that described in Chapters 3 and 4. In the structure,
the four process elements (PE) are activated by the three gated-clocks. Each PE computes 4
1- or 0-bit LLR values from the input FSM, BSM, and BM, and then the LLR values are
compared by 4-input compare-select (4-CS) to determine the maximum value, as represented

by max[Ljop...Lios] in PEL. The outputs of the four PEs are compared again to select the

137

Chapter 7 Reconfigurable Turbo Decoder Architecture

final LLR value. However, when the LCU is configured for K=3, only PE1 is activated and
its results are output through the 4-CS as the final value Lo, as shown in Figure 7.9, in

which the grey coloured PEs are deactivated.

7.4 Turbo Decoder Implementation Methods for
Binary and Double-Binary Turbo Codes

7.4.1 Radix-4 Turbo Decoding Method for Binary Turbo Codes

Radix-4 and higher radix decoders for convolutional codes were developed in order to
achieve high throughput at the expense of increased implementation complexity [114]. An
R4 turbo decoder VLSI implementation for BTC is described in [118]. Similarly, as with the
decoder for convolutional codes, R4 turbo decoder processes the input data at times & and
k+1 concurrently. Figures 7.10 (a) and (b) illustrate R2 and R4 trellis diagrams for BTC with

a constraint length K=4. In Figure 7.10 (b), four transition paths converge into one state,

(b)

Figure 7.10 (a) Radix-2 and (b) radix-4 based trellis diagram for K=4 binary turbo codes.

Chapter 7 Reconfigurable Turbo Decoder Architecture

represented in different line styles, which indicate two systematic bits of the code words at
times & and k+1. Thus, a state metric for each state is obtained from the four branch metrics
calculated from the soft-input data at times k and k+1, and the four state metrics. Therefore,
the number of the state metrics for forward and backward processes is reduced to half of the
number of the state metrics computed by the R2 turbo decoder implementations, which are
the MLMAP turbo decoders described in previous chapters. However, two LLRs and
extrinsic information must be obtained from the half number of the state metrics and the
branch metrics generated at times k and k+1. The two LLRs are concurrently calculated as

follows:

Ly, (k) = max[Ly, (k, k +1), Ly (k, k +1)] —max[Ly,.g(k, k + 1), Ljg1 (k. k + 1] (7.5)

Ly, (k+1)=max[Ly (k. k+1), Loy (k, k +1)]—max[Lo (k,k +1), Lirg (k. k +1)](7.6)

where Li1, Lyogs Lios, and Ly are obtained from the state and branch metrics of the

00— I =g
0e ® 0 e .
i e 1o = .
2 20 \‘-a-._ L.
LN
3 o—_] ><: 3.8 LA
4 e—_| 4 .__/--/"" ™ K "‘*._.
5 :>_ ? 5e¢) N\.-e
ok g T e
7 \. 7 @ ifi— o i BN
k k+1 k k+1
(a) (b)

Figure 7.11 The trellis paths for computing (a) Ljg and (b) L, based on radix-4 binary
turbo codes for K=4.

Chapter 7 Reconfigurable Turbo Decoder Architecture

transition paths represented by the systematic bits of the code words, 11, 00, 01, and 10,
respectively. Figures 7.11 (a) and (b) are given as an example to obtain L and L;.;;, which
are the maximum values of the LLRs calculated from the eight transition paths, respectively.
The other two LLRs can be obtained using the same method. Then, the final LLR values in
equations (7.5) and (7.6) can be obtained. The extrinsic information at times k£ and k+1 can
be provided to the next decoder by subtracting the systematic input symbol and the extrinsic

information of each time from the LLR values obtained from equations (7.5) and (7.6).

7.4.2 Double-Binary Turbo Codes Decoding Method

As described in Chapter 2, the DTC is generated from a double-binary input data stream.
Many papers have researched the turbo decoder implementations for BTC. However, the
turbo decoders for DTC are relatively less considered in the literature from the hardware
implementation point of view. Thus, in this work the DTC turbo decoding algorithm has
been investigated. This investigation showed that the algorithm needs a different strategy

from the BTC turbo decoding algorithm.

Basically, the same components are used to implement BTC and DTC turbo decoders.
However, due to using different techniques in the encoding process, the initial and final state

metrics for the forward and backward processes need to be treated differently in the

N o wWwN = O

Figure 7.12 The forward process trellis diagram for K=4 double-binary turbo codes.

140

Chapter 7 Reconfigurable Turbo Decoder Architecture

implementations, which require modifying the design of the state metric computation unit

(SMCU).

The decoding algorithm for DTC has similarities, as shown in the trellis diagrams in Figure
7.12. Thus, calculating the branch and state metrics for the DTC decoding process is almost
the same as that of the R4 BTC decoding process. However, while the initial state metrics for
forward and backward processes for BTC are already known at the decoder side, due to
using CRSC by its encoder, as described in Chapter 2, they may be determined and updated
for DTC during the decoding process. For these processes, the initial state metrics for the

forward and backward processes are initialized to zero at the first iteration as follows:
@(s9)=0, B(sy)=0 for all states (7.7)

Then, the final state metrics for the forward process and the backward process, @ (sy_;)

and ﬁ(so), are updated to the initial state metrics in the next decoding process. This

happens at every iteration for updating the new initial state metrics. Therefore, the final state

metrics need to be accumulated until the next decoding process starts for the updating.

Then, two LLRs are computed using the same method described in (7.5) and (7.6). In

addition, two extrinsic information data can be obtained as follows:

L =Lik)-Ly¢ -L (7.8)
LB (=15 () - L.yf - LY (7.9)

where 4 and B are the systematic bits as shown in Figure 2.4 in Chapter 2. Therefore, each
set of extrinsic information, Lf?_ and sz, corresponds to the input systematic symbols. This

process is the same with the method used in the R4B turbo decoding process described in the

previous subsection.

As can be seen, a R4 BTC turbo decoder structure can be exploited to implement the

RDASIC turbo decoder that supports BTC and DTC.

141

Chapter 7 Reconfigurable Turbo Decoder Architecture

7.5 Reconfigurable Turbo Decoder Hardware
Implementations for BTC and DTC

7.5.1 Reconfigurable Turbo Decoder Architecture

In this section, the RDASTD architecture for R4B and DTC is described based on the
architecture described in Figure 4.1 of Chapter 4. Figure 7.13 illustrates the reconfigurable
architecture that consists of three R4 BTC and DTC metric computation units for forward
(FRDMCU), backward (BRDMCU), and dummy-backward processes (DRDMCU), an R4
BTC and DTC LLR computation unit (RDLCU), memory blocks for data scheduling (DSU)
and delaying the soft-input (DS), the forward state metrics (DF), and the soft-output (DL).
These memory blocks can be realized by FIFO and LIFO blocks. The depth of the LIFO and

CNT1 CNT2
e o o DROMEH
h 4 v :' _Lt ‘E
o | RDBMU [H—{ MAU |» RDSMCU | !
um— H L g S
input ' =™ i y
= M

i| roLCU

DSU R |-> """""""""""" y M
t>{ RDBMU |—>| MAU (| RDSMCU |- ==
""""""""""""""""""""" {[DF| !
e e ot e M— L]
: i E
t>{ RDBMU (—{ MAU [+ RDSMCU (—-

T 7 rroMcU

1

Figure 7.13 The reconfigurable turbo decoder architecture for radix-4 and double-binary
turbo codes.

142

Chapter 7 Reconfigurable Turbo Decoder Architecture

FIFO is related to the window size. In this architecture, the window size is determined by the
minimum block size of 3GPP for BTC and IEEE 802.16 for DTC. Thus, the memory block
size can be configured following the input mode (M) for BTC and DTC. The computational
logic components, RDMCU and RDLCU, are designed for supporting the R4 BTC and DTC
decoding process. The delay for the branch metrics input to RDLCU is replaced by an
additional R4 BTC and DTC BMU (RDBMU) for saving area. All the components are
configured by the mode (M), either for R4 BTC or DTC. Detailed implementation methods

of each component are described in the following sections.

7.5.2 Reconfigurable Metric Computation Unit for Radix-4 BTC
and DTC

Figure 7.14 illustrates the R4 BTC and DTC MCU (RDMCU) structure that consists of a
reconfigurable R4 BTC and DTC branch metric unit (RDBMU) and a R4 BTC and DTC
state metric computation unit (RDSMCU) that incorporates a mapping unit (MAU) and a
parallel R4 BTC and DTC add-compare-select-normalization (RDACSN). The mode (M)
input to RDMCU determines the algorithm (BTC or DTC) to be implemented. Before
starting the decoding process, each component is configured for the selected mode. Then,
MAU distributes the branch metrics (BM) obtained by RDBMU and the state metrics

generated by RDSMCU in the previous process to calculate the new SMs.

Recursive SM

Soft-input —» RDBMU > MAU — RDSMCU

,
a
i
]
i
'
|
i
i
i
'
i
'
i
'
'
i
'
T
'
i
i
]
'
'
A
N

T o ;

M

Figure 7.14 The reconfigurable metric computation unit structure.

Chapter 7 Reconfigurable Turbo Decoder Architecture

7.5.2.1 R4 BTC and DTC Branch Metric Unit

Figure 7.15 illustrates the RDBMU structure used to implement the RDASTD architecture
with R4 BTC and DTC. This figure is given as an example for R4 BTC. As can be seen, due
to the high radix decoding process, the implementation complexity is clearly higher than the
BMN implemented in previous chapters. While the BMU used in the previous MLTBD
architectures generates the two branch metrics of the required four branch metrics, the
RDBMU provides the eight branch metrics of the required 16 branch metrics from the six
inputs as illustrated in Figure 7.15. The other eight metrics can simply be obtained by
negating the outputs of RDBMU. Generally, the branch metric computation process does not
significantly affect the overall turbo decoder performance in terms of area usage and power
consumption. However, it was found that different weighting for the soft-input data and

extrinsic information is needed for R4 BTC and DTC in order to achieve better BER

Ya JI;I L, Yo Vi €2
PR AT AT x o Nt S
ST e weight, T I M
p Y x . A PSS
M Mo i No
+ +1 - +¥. ? +§% & =
A o Nio1 Moo Yo Hoto Y1001 Vooo

Figure 7.15 The branch metric unit structure for R4 BTC and DTC.

144

Chapter 7 Reconfigurable Turbo Decoder Architecture

performance. Therefore, the weighting relies on the encoding style and it is implemented

with shift registers.

7.5.2.2 R4 BTC and DTC Add Compare Select Normalization Unit

In common turbo decoder implementations, an ACSN unit is regarded as one of the key
components. Here, the ACSN for RDSMCU is separately described by whether it is for
either R4 BTC or DTC. As an example, Figures 7.16 (a) and (b) show a block diagram of
ACSN for R4 BTC and DTC, respectively. In Figure 7.16 (a), BM, SM, and dummy state
metric (DSM) generated by DRDMCU shown in Figure 7.14 are input to ACSN. While SM
is input recursively to ACSN through a multiplexer (MUX), the input recursive SM is
updated in DSM at the beginning of every sub frame during the decoding process following

the number of the counters (CNT1 and CNT2).

On the other hand, the ACSN illustrated in Figure 7.16 (b) requires an accumulator (ACM).
All the functions and the data input sequence of Figure 7.16 (b) are the same as with Figure

7.16 (a). However, as already described in Section 7.4, while the initial state metrics for BTC

BM DSM BM DSM
CNT1 o CNT1
MUX T — MUX 4
CNT2 I CNT2
+SM 1SM :
ACM
ACSN ACSN 1
v Y
SM SM
(a) (b)

Figure 7.16 The add-compare-select-normalization block diagram for (a) binary and (b)
double-binary turbo codes.

145

Chapter 7 Reconfigurable Turbo Decoder Architecture

Ty Yoooo @ N a o o o

new a,

Figure 7.17 The raxid-4 based add-compare-select-normalization structure.

are known at the decoder side, the initial state metrics for DTC must be found for every
iterative process after being initialized with zero for the first iteration. The initial state
metrics are then updated when the next iteration is started. The updating takes place once in
every frame. Therefore, the ACM is for storing the state metrics used for the initial state

metrics in the next iteration process.

Figure 7.17 is a conventional ACSN structure, which can be used for R4 BTC and DTC.
This structure is given as an example for calculating a state metric of state 0 for R4 BTC.
The input branch and state metrics must be altered as they are for DTC. These inputs are
controlled by MAU in Figure 7.14. Four branch (36000, %1100, Yi011» 70111) and state (o, o, o,
o) metrics are added by using four adders and, then, the results of each adder is repeatedly

compared for selecting the maximum state metric. The selected maximum state metric is

146

Chapter 7 Reconfigurable Turbo Decoder Architecture

normalized by subtracting a constant (CONST) value to prevent overflows, as the state
metric is larger than the constant. Finally, ‘new a° is generated and is recursively input to

the ACSN itself.

It is well known that ACSN is the bottleneck in a high-speed turbo decoder and the critical
path delay of a turbo decoder is in ACSN as was discussed in Chapter 3. The critical path

delay, d, of the structure illustrated in Figure 7.17 can be given as follows:
d=4xt, +3xt, (7.10)

where ¢, is the adder delay and ¢, is the multiplexer delay. In order to achieve a high-speed

turbo decoder, the delay must be reduced. The retiming method used in [154] may be

Hon o K

@ Foono & Nio

4-input CS

Vo vy ;

¢ [
! 4-input S 4 |
s Sg _,:"

new a,

Figure 7.18 The radix-4 add-compare-select-normalization structure with 4-input compare
select unit.

147

Chapter 7 Reconfigurable Turbo Decoder Architecture

applied to the ACSN to reduce the delay. However, this method is not suitable for
implementing the ACSN for R4 BTC and DTC due to large overheads in area usage and

power consumption led by the method.

Figure 7.18 illustrates another ACSN structure for improving the critical path delay. Instead
of the three CS stages in Figure 7.17, a 4-input CS introduced in Chapter 4 is employed in
Figure 7.18. As can be seen, the four sets of results corresponding to the outputs of the first
adder set are compared with each other at the same time by using six adders. Then, the six
most significant bits (MSB), sss5, generated by the six adders, are used to select the

maximum state metric as described in Chapter 4. Thus, the delay of the ACSN in Figure 7.18

is
d=3xty +ty +t, (7.11)

where ;. is the delay of 4-input selector, which may be a little longer than ¢,. With the 4-
input CS, it is shown that the ACSN delay in (7.11) is roughly reduced by the delay of one
adder and one MUX. However, the use of 4-input CS increases the number of adders that
may lead to area and power overhead. The hardware performance between the two ACSN

implementations is evaluated and compared in later sections.

7.5.3 R4 BTC and DTC Log-Likelihood Computation Unit

All of the branch metrics and the forward and backward state metrics generated by each
RDMCU are used to calculate the LLR values. Figure 7.19 illustrates a block diagram of R4
BTC and DTC LLR computation unit (RDLCU) that consists of a mapping unit (MAP) for
the distribution of the input branch metrics (BM), forward and backward state metrics (FSM
and BSM), four sub LLR computation units (LLR0O, 01, 10, and 11), and two LLR
computation units (Sub-LCUO and 1). The purpose of the mapping unit (MAU) is the same
as that of the MAU shown in Figure 7.14. MAU reallocates the input BM, FSM, and BSM
for computing LLR based on the selected operation mode (R4 BTC or DTC). After
completing the distribution of all branch and state metrics, LLR0O0, 01, 10, and 11, calculate
Lioo, Lirors Lo, and Ly, following the method described in Section 7.4. These values are

used to obtain two LLR values by Sub-LCUOQ and Sub-LCU1 based on the methods in (7.6)

148

Chapter 7 Reconfigurable Turbo Decoder Architecture

. L
LLROO |2
SRR R T 7] Ly, ;
BM =,' | » LLRO1 > Sub-LCUO —>
1 1 b —| -
FSM —— MAP [— L
BSM —> ; 3
| T 5 A Bl % >l Sub-LCU1 —»
: ! > 01 i
M “““““ | 5
Mo LR —
. e

Figure 7.19 The LLR computation unit structure.

and (7.6). At the same time, the extrinsic information for the next iterative decoding process
is also computed from the LLR values obtained by Sub-LCUO0 and Sub-LCU]1. The outputs
of the RDLCU are represented by 9-bits, in which the most significant bit (MSB) represents
the LLR and the other 8-bits represent extrinsic information. The MSB is the decoded bit

information of the turbo decoder.

In Figure 7.11 (b), the trellis state diagram associated with computing L;,;; for R4 BTC was
given as an example, in which eight transition paths exist. Figure 7.20 illustrates a
conventional structure of the LLR11 for computing L;.;;. Similarly, this structure can also be
used to implement the sub-LCUO00, 01, and 10 with different combinations of the input
branch and state metrics. As shown in Figure 7.20, there are eight pairs of branch and state
metrics corresponding to eight transition paths and forward/backward states. Note that the
subscript of o and /% indicates state 0 of forward and backward state metrics. In addition,
the subscript of jpe00 denotes branch metric of 0000 code word generated by the encoder. In
this case, after adding three input metrics, the L;; is determined by selecting the maximum

value by using seven CS units. In this structure, the critical path delay is

149

Chapter 7 Reconfigurable Turbo Decoder Architecture

o B a B, a By O a p a B a B & f;

Mo i Yoo Noto

cs ics

T
6"' -’;
w
(@]
w

L.’rl I

Figure 7.20 L |, computation unit structure for radix-4 and double-binary turbo codes.

d =5 t, +3xit, (7.12)

We can see that this delay, d, is longer than ACSN in (7.10). To reduce this critical path
delay, the structure can be pipelined by inserting a set of registers. This cannot only reduce
the critical path delay but also decrease the glitches. However, excessive pipelining may also

lead to increased area usage and power consumption due to the insertion of registers.

Figure 7.21 illustrates an improved structure of Figure 7.20. When we look at the input
branch metrics, we can see that the actual number of branch metrics is only four to calculate
L ;. This is the same for computing L 4;, L 5, and L 4 whether it is for BTC or DTC. This
allows comparisons to be made before adding all the three metrics. Therefore, after adding
forward and backward state metrics, the results are compared to select the maximum value

and, at the same time, branch metrics are summed with the two state metrics. The four

150

Chapter 7 Reconfigurable Turbo Decoder Architecture

4-input CS

!

Lfrl 1

Figure 7.21 The L ;; computation unit structure with 4-input compare select.

outputs generated from the first stage comparisons are then used to compute the final output.
Here, the 4-input CS as shown in Figure 7.18 is used to select the maximum LLR as the final

output. The critical path delay of the structure in Figure 7.21 can be given as below:
= Bk ol b (7.12)

Clearly, this delay is the same with (7.10). Therefore, the structure provides an efficient
implementation for reducing the critical path delay without needing to employ pipelining.
The structures of Figures 7.20 and 7.21 have been implemented and their performance
compared in terms of area usage, power consumption, and delay, which are discussed in the

next section.

151

Chapter 7 Reconfigurable Turbo Decoder Architecture

7.6 Results

The reconfigurable ML-MAP turbo decoder has been designed at RTL using Verilog HDL
and synthesized with the Synopsys DesignCompiler™ using the UMC 0.18um standard
CMOS cell library. RTL and gate level simulations were performed using Cadence Verilog-
XL™. The switching activities generated from all circuit nets were obtained during the gate
level simulation after eight numbers of iterations. The reconfigurable turbo decoder power
consumption was evaluated with Synopsys DesignPower ™ with the switching activity
information generated by the gate-level simulation. These simulation processes were carried

out at a clock frequency of 50MHz.

At first, Figure 7.22 illustrates the area results of the REASTD compared with the ASIC
turbo decoder implementation results for each constraint length K=3, 4, and 5, which were
given in Chapter 4. The primary and secondary axes in the graph indicate breakdown
components and total area results. In the figure, K3A implies the K=3 MLMAP turbo
decoder implemented as an ASIC. The comparisons of the area results are also depicted in
Table 7.2. As expected, the area of the REASTD designed based on K=5 is larger than K=3
and K=4 ASIC implementations. Area overheads of the REASTD were 173% and 79% for
K=3 and K=4 ASIC implementations, respectively. On the other hand, the area overhead
compared to K=5 ASIC implementation was just 6%. When the results of each component of
the REASTD are compared with the results of K5A, it is clear that the total area overhead is
led by the reconfigurable components such as BMNU, SMCU, and LCU. The BMN does not

include the reconfigurable feature, so its area remains unchanged.

The REASTD power results need to be analysed in a different way. The REASTD power
was evaluated after it was configured for each constraint length K=3, 4, and 5. In this power
evaluation, two cases were considered for the REASTD. One is the case of without the gated
clock; the other is the case of with the gated clock. In the former case, the REASTD can be
configured for each constraint length, but it operates without the gated clock. Although a
clock signal is input to all the components, zero sequences are set to inputs of the unused
components so that glitching can be reduced. Thus, the power results obtained from the two

cases provide information about the effectiveness of the gated clock.

152

Chapter 7 Reconfigurable Turbo Decoder Architecture

1 16
[CIBMN [BMNU EE SMCU _
| B MEM % Total —> 14
el AT

(=]
o0
Total Area (mm2

K3A K4A K5A REASTD

Schemes

Figure 7.22 The area results and comparisons.

Table 7.2 List of area results.

K3A K4A KSA REASTD

Area Area Area Area b 5515 L
(mm?) (mm?) (mm?) (mm?) Save Save Save
(%0) (%) (%)

BMU 0.019 0.019 0.019 0.019 0 0 0
BMNU | 0.051 0.072 0.115 0.115 -126.4 -59.3 -0.3
SMU 0.060 0.110 0.211 0.220 -265.5 -99.3 -4.4
LCU 0.048 0.089 0.176 0.223 -361.5 -149.4 -26.1
MEM 0.314 0.459 0.749 0.771 -145.2 -67.8 -2.8
Total 0.493 0.751 1.272 1.350 -173.3 -79.5 -6.0

Figure 7.23 illustrates the power results of the REASTD with and without the gated clock,

after being configured for each constraint length. The primary and secondary y-axes indicate

Chapter 7 Reconfigurable Turbo Decoder Architecture

25 70
CJBMN [BMNU @ SMCU —>
51 Em [LR EEMEM —%— Total |
L S0
- =
%:Z 15 | =
E ; 1 30 E
a? 10 | Tg
0 &
3T
oL -10

K3A K3WO K3GC K4A K4WO K4GC K5A REASTD

Schemes

Figure 7.23 The power results and comparisons.

Table 7.3 List of power comparisons for K=3.

K3A K3WO K3GC

Power Power Save Power Save

(mW) | (mW) (%) (mW) (%)

BMU 1.6 1.65 0.9 1.6 0.9
BMNU 3.4 4.964 -42.3 4.96 -42.3
SMCU 4.4 6.328 -41.6 4.88 -9.3
LCU 3.8 7.4 -91.5 5.12 -32.5
MEM 7:5 14.097 -85.7 8.37 -10.3
Total 21.0 34.439 -63.4 25.00 -18.6

the breakdown component and total power results. In the figure, K3WO and K3GC imply
that REASTD is configured for K=3 ‘without gated clock’ and ‘with gated clock’,

respectively.

154

Chapter 7 Reconfigurable Turbo Decoder Architecture

Table 7.4 List of power comparisons for K=4.

K4A K4WO K4GC
Power Power Save Power Save
@W) | mW) | (%) | mW) | (%)
BMU 1.6 1.63 1.9 1.63 1.9
BMNU 4.5 5.33 -18.2 5.33 -18.2
SMCU 8.1 9.75 -20.4 8.79 -8.5
LCU 6.9 10 -44.0 8.48 -22.1
MEM 10.6 14.83 -39.5 11.03 -3.7
Total 31.8 41.56 -30.5 35.27 -10.7

Table 7.5 List of power comparisons for K=5.

K5A REASTD

Power Power Save

(mW) (mW) (%)

BMU 1.6 1.66 -0.8

BMNU 6.9 6.87 0.8
SMCU 16.0 18.95 -17.7
LCU 14.4 17.69 -22.3
MEM 16.7 17.05 -1.7
Total 55.9 62.24 -11.3

In the figure, the ASIC implementation power results are the results given in Chapter 4.
Tables 7.3, 7.4 and 7.5 summarize the comparisons of the power results for constraint length
K=3, 4, and 5, respectively. It is clear from the results that the clock gating method is very
effective for conserving the power consumption of the REASTD when it is configured for
K=3 and 4. While the power overheads of K3WO and K4WO were 63% and 30%, as
compared to the ASIC turbo decoders, the power overheads using the clock gating method
were 18% for K=3 and 10% for K=4. When the REASTD power for K=5 is compared with

K54, it is clear that the logics required for the reconfigurability resulted in an 11% increase

155

Chapter 7 Reconfigurable Turbo Decoder Architecture

in power. As in the area results, most of the power overheads were led by the reconfigurable
components, BMNU, SMCU, and LCU. Among them, the LCU power overhead dominantly

affected the overall power overhead.

7.6.1 Hardware Test Systems for RDASTD

A test environment has been built for verifying and evaluating the reconfigurable turbo
decoder at the RTL and gate levels. For this, two test systems for BTC and DTC were
created. Figure 7.24 illustrates a block diagram of the test systems. The systems consist of
two main blocks, one is for generating turbo codes and transmitting them to the decoder over
the AWGN channel, and the other one is for performing and testing the turbo decoding
process with the transmitted data. As can be seen, BTC and DTC codes were generated in a
Matlab™ environment, and then, they were passed to the testbench after converting into a
fixed-point representation. Additionally, the interleaver and deinterleaver addresses

generated by the interleaver and deinterleaver address generator (IAG & DAG) were sent to

- ™
3GPP Matlab™ Testbench
RTL/]
|IEEE 802.16 1 Gate-Level
IAG/DAG
Interleaver/
Deinterleaver
Binary _
Duo-Binary —* ETurtLo > Mod. () Demod. | ';'X.Ed »
Data ncoder oint
R4DTD
AWGN J
T

Figure 7.24 Test systems for the reconfigurable turbo decoder verification.

the testbench. The interleaver and deinterleaver addresses for binary and double-binary turbo
codes were generated following the method described in 3GPP and IEEE 802.16. The
testbench consists of memory blocks for accumulating all the transmitted data, interleaver
and deinterleaver addresses, and control units for controlling data transactions between turbo

decoders. From the tests, the latency of the turbo decoders was obtained as follows:

156

Chapter 7 Reconfigurable Turbo Decoder Architecture

Latency = clock period x (window size x 4 + 3) (7.13)

where 3 corresponds to the number of clock cycles due to the pipeline stages.

7.6.2 Hardware Performance Results

The RDASTD also designed using Verilog HDL has been synthesized with the Synopsys
DesignCompiler ™ using the UMC 0.18 um standard CMOS cell library. RTL and gate-level
simulations of the turbo decoder hardware were performed using Cadence Verilog-XL™
with the test systems shown in Figure 7.24. After completing the gate-level simulation,
power consumption was evaluated using the Synopsys PowerCompiler™ with the switching
activities generated from all the circuit nets during the gate-level simulation. All the

simulations were carried out at a clock frequency of 50MHz.

The RDASTD implementation has been investigated with various schemes in order to find
an optimized hardware implementation. In addition, R4 BTC and DTC MLMAP turbo
decoders have been implemented as ASIC in order to compare the hardware performance
with the RDASTD. Figure 7.25 and Table 7.6 illustrate and summarize the area results for
the different turbo decoder schemes. In the figure and table, CON is the conventional turbo
decoder for constraint length K=4 BTC implemented in Chapter 3. R4A and DTA are turbo
decoders for R4 BTC and DTC, respectively, implemented in this chapter. RDASTD implies
the reconfigurable turbo decoder which is able to support R4 BTC and DTC. It is clear that
the area of RDASTD is the largest among the schemes due to the additional logics for the
reconfigurability. Area overhead of RDASTD was 40%, 21%, and 5% compared to CON,
R4A, and DTA, respectively. In addition, the area of R4A is 15% more than the area of CON
due to the increased complexity. As can be seen, most of the area increase was led by the
increased computational complexity in the units for computing the branch and state metrics
(BMU and SMCU), and LLR value (LCU). The R4 based turbo decoder requires a much
more complex computation process, which results in the significant area increase of the
computational logics. However, the area of memory blocks is less in R4A and DTA, and is
slightly higher in RDASTD when compared to CON. This is because of the reduction of the
memory blocks for storing the forward state metrics before they are fed to the LLR

computation unit for calculating LLR. Although the computational complexity is increased

157

Chapter 7 Reconfigurable Turbo Decoder Architecture

1.28¢
I COBMU @EXSMCU EEILCU
| | EEEMEM —%— Total
g
£ 5
~§ 0.6 f
é 0.4 [g
=
02 |
.
CON R4A DTA RDASTD
Schemes
Figure 7.25 Area results and comparisons.
Table 7.6 List of area results
CON R4A DTA RDASTD
Area | Area =SNG Area | Save | Area S?ve S;ave Snave,
(mmz) (mmz) i) (mmz) (%) (mmz) (40} (%))
CON CON | R4D | DTA
BMU | 0.014 | 0.067 |-354.1| 0.067 - 0.070 | -377.0| -5.0 -5.0
SMCU | 0.137 | 0.283 [-105.8| 0.347 - 0.370 | -169.4 | -30.8 | -6.5
LCU | 0.083 | 0.151 | -81.7 | 0.152 - 0.165 | -97.6 | -8.7 -8.5
MEM | 0.698 | 0.577 | 17.2 | 0.678 - 0.703 | -0.7 | -21.7 | -3.6
Total | 0.934 | 1.079 | -15.5 | 1.245 - 1.309 | -40.2 | -21.2 | -5.1

by implementation based on R4, the size of the memory required for storing the forward
state metrics can be reduced by almost half of the memory required by CON. In other words,
if a turbo decoder is implemented based on radix-8, the memory size will be reduced by
almost a quarter of the CON memory. In this case, however, the increased computational

complexity would dramatically increase the overall area and power as well.

158

Chapter 7 Reconfigurable Turbo Decoder Architecture

40 80
I CJBMU [CEOSMCU B LCU !
- Il MEM —¢ Total
30 | 60 —~
=
Bl E
g - o
5 20 f 40 2
= - a
& =
o
- 1 =
10 20
0 0
R4A RDASTD
Schemes

Figure 7.26 Power results and comparisons for binary turbo codes.

Table 7.7 List of power results for binary turbo codes

CON R4A RDASTD

Power | Power S(;:; Power SE;:;: S(?/:f

@) | @™ | “eon | O Soon | Raa
BMU 1.21 6.18 -407.9 6.59 -441.1 -6.5
SMCU 10.54 22.89 -117.1 28.69 | -172.1 -25.3
LCU 7.35 16.36 -122.5 16.79 | -128.4 -2.6
MEM 15.66 16.28 -3.96 18.15 -15.8 -11.4
Total 34.78 61.73 -77.50 70.23 | -101.9 -13.7

The power consumption results need to be compared differently than the area results because
two different data for BTC and DTC are fed into the turbo decoders. Furthermore, the block
sizes of BTC and DTC are not the same. Due to these considerations, RDASTD has been

compared with BTC and DTC separately.

159

Chapter 7 Reconfigurable Turbo Decoder Architecture

40 1 80
| CJBMU [@mSMCU B LCU |
| B MEM = Total 1

30 i —
I =
-~ e E
= o
B 20 =
= o
£ E
i =

10 [

0 1
DTA RDASTD
Schemes

Figure 7.27 Power results and comparisons for double-binary turbo codes

Table 7.8 List of power results for double-binary turbo codes.

DTA RDASTD

Power Save Power Save

(mW) (o) (mW) (%)

BMU 5.01 - 5.08 -1.4
SMCU 22.38 - 26.65 -19.0
LCU 13.27 - 14.86 -11.9
MEM 16.27 - 16.95 -4.1
Total 56.93 - 63.55 -11.6

The power consumption results of the turbo decoders after completing eight iterations for
BTC are given in Figure 7.26, where the primary and secondary Y-axis denotes the
breakdown and overall power consumption of the turbo decoders. Table 7.7 lists the power

results where CON and R4A are the ASIC turbo decoders for BTC and R4 BTC,

160

Chapter 7 Reconfigurable Turbo Decoder Architecture

respectively. In the results, RDASTD is configured for BTC. The power results of the turbo
decoders are obtained after simulations with the same data sets and number of iterations. A
clock frequency of 50MHz is used. Total power consumption of R4A and RDASTD
increased by 77% and 101% as compared with CON. On the other hand, the power overhead
of RDASTD was only 13% as compared to R4A. From the results, it can be seen that the
power overheads are due to the high complexity of the computational logics implemented
based on R4. In R4A the power is five times the power of BMU and double the power of
SMCU and LCU as compared to CON. Conversely, the power of MEM is not significantly
increased. As in the area results, this is because the R4 based decoder implementations

reduce the depth of the memory required to store the forward state metrics.

For better comparisons among the different turbo decoders, the total energy of the decoder
might be considered because the time needed to complete eight iterations involves different
CON and R4 based turbo decoders. R4 and RDASTD generate two LLR values, and take
only half of the time required by CON to complete the decoding process. Thus, the results
reveal that the total energy obtained by multiplying time by the power of the R4 and
RDASTD is almost the same or less than the energy consumed by CON.

Figure 7.27 illustrates the power results of DTA and RDASTD configured for DTC. In this
case, the power consumption results have been obtained from the same size of input blocks
and decoding time for both the decoders, DTA and RDASTD. Table 7.8 summarizes the
power results. Overall, the power overhead of RDASTD was 11% as compared to DTA. As
can be seen, the results show that the power increase was mainly led by the reconfigurable
logics incorporated in SMCU and LCU. The power increase in BMU and MEM of RDASTD
was less significant than SMCU and LCU.

7.7 Summary

This chapter presented a reconfigurable turbo decoder architecture for supporting different
constraint lengths, K=3, 4, and 5, turbo codes. For designing the reconfigurable architecture,

a mapping method has been introduced for efficient implementation. The reconfigurable

161

Chapter 7 Reconfigurable Turbo Decoder Architecture

architecture has been implemented based on the constraint length K=5. To save on the power
consumption, the clock gating method has been applied to the implementation. The power
results have shown that the clock gating method is very effective for saving on the power
consumption of the reconfigurable architecture. The power overhead of the reconfigurable
turbo decoder was around 18%, 10%, and 11% respectively, when compared with K=3, 4,
and 5 turbo decoder ASIC implementations. Meanwhile, the reconfigurable turbo decoder
increased just 6% in area as compared to the K=5 turbo decoder AISC implementation. This
chapter also presented a reconfigurable turbo decoder architecture for constraint length K=4
BTC and DTC. Before designing the RDASTD, the radix-4 based turbo decoder for BTC has
been investigated. This investigation has revealed that the radix-4 BTC and DTC turbo
decoders had many similarities in their functions and implementation methods. The
RDASTD, which exploited the radix-4 method for its hardware implementation, has been
compared with the performance of ASIC turbo decoder implementations. For the comparison,
the radix-4 BTC and DTC turbo decoders have been implemented as ASIC in this chapter.
The simulation results have shown that the area overhead of the RDASTD was 40%. The
power of the RDASTD has been analysed in two modes, BTC and DTC. When the
RDASTD was set to the BTC mode, the power overhead was 101%. However, the total
energy required to complete the turbo decoding process was less than the conventional turbo

decoders.

162

Chapter 8

Conclusions

8.1 Introduction

This chapter concludes the thesis. Section 2 reviews each chapter specifying the results
obtained. In Section 3, the achievements of the thesis are listed. Finally, Section 4 gives

possible directions for future work related to this thesis work.

8.2 Review of Thesis Contents

Chapter 2 has described the turbo encoding and decoding principles for binary and double-
binary turbo codes, describing their encoder and decoder structures. This chapter explained
turbo decoding algorithms based up on MAP and SOVA, showing a turbo decoder structure
for an iterative process. For a practical turbo decoder implementation, the complexity of the
algorithms should be reduced. Techniques for efficient turbo decoder hardware
implementations were reviewed and summarized. Some of the techniques were used in this
thesis to reduce the turbo decoder computational complexity and to improve hardware

performance in terms of area, power, and speed for throughput.

Chapter 3 has presented the MLMAP based turbo decoder hardware architectures with SW
method for K=3, 4, and 5. In the architecture, the SW method was realised by using LIFO
and FIFO blocks. A detailed structure of the decoding process units incorporated in the
architecture was described and the implementation method and the functionality for the
decoding process were explained. In the simulation results, the turbo decoder performance in
terms of BER was examined in various ways to justify the algorithms and other factors that
affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based

turbo decoders have been compared in terms of BER performance in order to observe the

163

Chapter 8 Conclusions

performance differences between the two turbo decoder implementations. The comparisons
showed that the MLMAP based turbo decoder can provide a BER performance without
significant degradation. After showing the design flow, the MLMAP turbo decoder
architectures have been designed using Verilog HDL and then synthesized using the UMC
0.18um standard CMOS technology. Area, power, and critical path delay results of the
MLTRBD architecture for constraint lengths K=3, 4, and 5 were estimated. Also, the total
number of gates of the architectures was obtained after generating their layouts. These
hardware performance results were used to compare the improved turbo decoders introduced

in later chapters.

Chapter 4 has proposed a high performance MLMAP turbo decoder architecture
implemented base on a novel scheme in order to save area and power, and to reduce the
critical path delay for high speed implementation. For achieving low power and area
efficient MLMAP turbo decoder implementations, the memory blocks needed for the SW
method were reduced by using a triple read port-based memory. Simulation results show that
the memory reduction can achieve 30% reduction in area and 20% in power. In addition,
efficient implementations of LCU and BMNU contributed to power and area savings. The
BMN method addressed the inherent critical path delay problem to achieve high speed
MLMAP turbo decoder for high throughput. Using this method, the critical path delay was

reduced by up to 42%, as compared with the delay of the conventional turbo decoder.

Chapter 5 has described the SOVA and TSOVA algorithms that are alternatively used for the
turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced
to evaluate the BER performance. Before the evaluation, the optimized survivor and update
depths of the TSOVA turbo decoders were investigated. The simulation results have shown
that the BER performance was almost saturated when the survivor and update depths were
Kx6 and Kx4, respectively. Based on these results, the TSOVA turbo decoders for K=3, 4,
and 5 have been simulated to evaluate their BER performance. The performance results were
compared with the results of the MLMAP based turbo decoder. These comparisons showed
that the TSOVA turbo decoder can produce a BER performance close to the MLMAP turbo

decoder without significant performance degradations.

164

Chapter 8 Conclusions

Chapter 6 has proposed a novel TSOVA turbo decoder based on TBA. This novel turbo
decoder architecture was described and compared with the TSOVAREA architecture
suggested in the literature. The hardware simulation results have shown that the
TSOVATBA based turbo decoder implementations can save more area and power than the
TSOVAREA based turbo decoders. In addition, the hardware performance was compared
with the MLMAP based turbo decoder hardware. It was also shown that the TSOVATBA
can save up to 72% in area and 52% in power compared to the MLMAP turbo decoder.
These results indicate that the TSOVATBA turbo decoder is suitable to apply to mobile and
portable wireless communication systems requiring low power consumption and area usage,

without significant BER performance degradation.

Chapter 7 has presented a reconfigurable turbo decoder architecture for supporting different
constraint lengths, K=3, 4, and 5, turbo codes. To improve the efficiency of the
implementation, a novel mapping method was employed in the design of the reconfigurable
architecture. The reconfigurable architecture has been implemented based on the constraint
length K=5. To reduce the power consumption as the architecture is configured for constraint
lengths less than K=5, the clock gating method has been applied to the implementation. The
power results have shown that the clock gating method is very effective in reducing the
power consumption of the reconfigurable architecture. The power overhead of the
reconfigurable turbo decoder was around 18%, 10%, and 11% as compared with K=3, 4, and
5 turbo decoder ASIC implementations, respectively. Meanwhile, the reconfigurable turbo
decoder area increased just by 6% as compared to K=5 turbo decoder AISC implementation.
On this other hand, this chapter has presented another reconfigurable turbo decoder
architecture which can be configured for BTC and DTC with K=4. Before designing the
reconfigurable turbo decoder hardware, radix-4 based turbo decoder for BTC has been
investigated. This revealed that the radix-4 based BTC and the DTC turbo decoders had
many similarities in their functions and implementation methods. Therefore, the
reconfigurable turbo decoder exploited the radix-4 for its hardware implementation. For
comparison, radix-4 based BTC and DTC turbo decoders have also been implemented as an
ASIC each. The simulation results have shown that the area overhead of the reconfigurable
turbo decoder was 40%. The power of the reconfigurable has been analysed in two modes,
BTC and DTC. When the reconfigurable turbo decoder was set to the BTC mode, the power

overhead was 101%. However, the total energy required to complete the turbo decoding

165

Chapter 8 Conclusions

process was less than the conventional turbo decoders, due to reducing the time required for

the decoding process.

8.3 List of Achievements

This section specifies the achievements of this thesis.

® A novel technique for high speed turbo decoder implementation in order to achieve
high throughput is proposed. The technique normalizes the branch metrics to reduce
the inherent critical path delay in the state metric computation process. It achieves

42% reduction in critical path delay.

@ A low power and area efficient turbo decoder is developed by reducing the memory
block size required by sliding window method. This results in savings up to 30% in

area and 20 % in power.

® A novel concept of SOVA turbo decoder implementation is presented. The new
SOVA turbo decoder is based on TBA, which significantly reduces the power and
area as compared with a conventional REA based SOVA turbo decoder

implementation.

® Two reconfigurable turbo decoder implementations are presented to support multi
standard wireless communication systems. The first turbo decoder is designed to be
configured for different constraint lengths K=3, 4, and 5. This reconfigurable turbo
decoder is implemented with a clock gating method in order to save power when it
is configured for constant lengths less than K=5. The second reconfigurable turbo
decoder supports binary and double-binary turbo codes is designed. To make it

reconfigurable, the turbo decoder exploits a radix-4 binary turbo decoding method.

166

Chapter 8 Conclusions

8.4 Future Research Directions

Wireless communication systems are evolving to provide better performance such as BER
and throughput. The use of turbo codes in these systems is expected to be continuously
increasing and hence the performance of these systems will be strongly affected by the turbo
decoder they employ. Some of the issues related to turbo decoders are suggested below for

future work.

High throughput is one of the important issues for current and future wireless
communication systems. Due to their iterative process, the turbo decoders could be an
obstacle to achieving high throughput. A parallel turbo decoder scheme is one of the
solutions to address this problem. Several papers have suggested some parallel turbo decoder
schemes in order to achieve high throughput. However, this will lead to large hardware
overhead in terms of area and power. This could be an obstacle to employing the parallel
turbo decoders for mobile applications. In the literature, there is little work on efficient
implementation of parallel turbo decoder architectures. Thus, in order to achieve an efficient

high throughput turbo decoder, the hardware implementation methods must be researched.

In the turbo decoding process, interleaving and de-interleaving require large memory blocks.
Moreover, the addresses for the interleaving and de-interleaving also need to be stored in a
large memory size. The memory size can be reduced by implementing an efficient address
generator for interleaving and de-interleaving. In wireless communication systems, the
address can be generated easily and efficiently if the input block size is known. However, if
a parallel turbo decoder scheme is used, the multiple output of the turbo decoder can conflict
with writing the output to the interleaver memory. Thus, the technique to avoid the data
collision during the writing process should be studied. Another difficulty is that usually
different interleaving methods between the wireless communication systems are employed to

implement the address generator.

Less attention has been paid to a SOVA based turbo decoder when compared to a MAP
based turbo decoder. The method proposed in this thesis has contributed to saving the
hardware costs, as compared to the MLMAP based turbo decoder, without significant
degradation in BER performance. Thus, the use of the SOVA based turbo decoder can

contribute to reduce the costs of the receiver systems requiring high performance and

167

Chapter 8 Conclusions

throughput. Also, a SOV A decoder for double-binary turbo codes is hardly considered in the
literature. Therefore, a study of the SOVA turbo decoder architecture should be carried out

for supporting different types of turbo codes.

168

Appendix A. List of Publication

(%]

J. H. Han, A.T. Erdogan, and T. Arslan, “Exploiting Radix-4 Method in Max-Log-MAP
Turbo Decoder Implementation for Duo-Binary Turbo Codes,” submitted to IEEE

International Symposium on Circuits and Systems, 27-30 May, 2007.

J. H. Han, AT. Erdogan, and T. Arslan, “A Power and Area Efficient Maximum
Lilkelihood Detector Implementation for High Throughput MIMO Systems,” in /EFE
VLSI Design Conference, 6 — 10 Jan., 2007.

J. H. Han, A.T. Erdogan, and T. Arslan, “Traceback Algorithm based Two-Step SOVA
Turbo Soft-Input Soft-Output Decoder VLSI Architecture,” submitted to IEEE

Transactions on VLSI systems.

J. H. Han, A.T. Erdogan, and T. Arslan, “Normalization of Branch Metrics for High
Speed Turbo Decoder Implementation,” submitted to /EEE Transactions on Circuits and

Systems 1.

J. H. Han, A.T. Erdogan, and T. Arslan, “An Efficient Reconfigurable Max-Log-MAP
Turbo SISO Decoder for Multi-Standards Wireless Communication Systems,* submitted

to IEEE Transactions on VLSI systems.

R. Zhang, J. H. Han, A.T. Erdogan, and T. Arslan, “Low Power CORDIC IP Core
Implementation,” in /EEE International Conference on Acoustics, Speech, and Signal

Processing, pp. 111-956 — 111-959, 21 — 24 May 2006.

T. Takahashi, A.T. Erdogan, T. Arslan, and J. H. Han, “Low Power Layered Space-
Time Channel Detector for MIMO Systems,” in [EEE Computer Society Annual
Symposium on VLSI, 2 — 3 March, 2006.

169

Appendix A. List of Publication

8.

i

J. H. Han, A.T. Erdogan, and T. Arslan, “A Low Power Pipelined Maximum Likelihood
Detector for 4x4 QPSK MIMO Wireless Communication Systems,” in JEEE Computer
Society Annual Symposium on VLSI, 2 — 3 March, 2006.

J. H. Han, A. Erdogan, and T. Arslan, “Implementation of an Efficient Two-Step SOVA
Turbo Decoder for Wireless Communication Systems,” in [EEE Global

Telecommunications Conference, pp. 2429 — 2433, 28 Nov. — 2 Dec., 2005.

. J. H. Han, A. Erdogan, and T. Arslan, “Power and Area Efficient Turbo Decoder

Implementation for Mobile Wireless Systems,” in [EEE 2005 Workshop on Signal
Processing Systems, pp. 705 — 709, 2 —4 Nov., 2005.

J. H. Han, A. Erdogan, and T. Arslan, “A Power Efficient Reconfigurable Max-Log-
MAP Turbo Decoder for Wireless Communication Systems,” in IEEE System on Chip
Conference, pp. 247-250, 25 — 28 Sep., 2005.

. 4. H. Han, A. Erdogan, and T. Arslan, “High Speed Max-Log-MAP Turbo SISO

Decoder Implementation Using Branch Metric Normalization,” in IEEE Computer
Society Annual Symposium on VLSI, pp. 173-178, 11 —12 May, 2005.

170

Appendix B. 3GPP Turbo Codes Specifications

B.1 Turbo coder

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two
8-state constituent encoders and one Turbo code internal interleaver. The coding rate of

Turbo coder is 1/3. The structure of Turbo coder is illustrated in Figure B.1.

The transfer function of the 8-state constituent code for PCCC is:

G(D)=[l L
g (D) |

where

g(D)=1+D*+ D,
gD)=1+D+D’.
The initial value of the shift registers of the 8-state constituent encoders shall be all zeros

when starting to encode the input bits.
Output from the Turbo coder is

X1a Z1s Z'1s X35 225 225 e es XKy 2 2K
where x1, x5, ..., xx are the bits input to the Turbo coder i.e. both first 8-state constituent
encoder and Turbo code internal interleaver, and K is the number of bits, and z;, z5. ..., zx
and z'|, z%, ..., Z'x are the bits output from first and second 8-state constituent encoders,

respectively.

The bits output from Turbo code internal interleaver are denoted by x'y, x'3, ..., x'x, and these

bits are to be input to the second 8-state constituent encoder.

171

Appendix B. 3GPP Turbo Codes Specifications

Xk \

o
Lo

1st constituent encoder

Zk
= e
Xk
Input ————+——= > D il D [D

Input Output
Turbo code

i i er :
iGN S iTioc 2nd constituent encoder ;
Output Zg

Figure B.1 Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only)

B.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after

all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch
of figure B.1 in lower position) while the second constituent encoder is disabled. The last
three tail bits shall be used to terminate the second constituent encoder (lower switch of

Figure B.1 in lower position) while the first constituent encoder is disabled.
The transmitted bits for trellis termination shall then be:

e - { { T 1]
XK+1s ZKF1s XK+25 ZK+2s XK+3s ZK+3s X Kotls 2 K15 X K25 Z K425 X K435 Z K3

172

Appendix B. 3GPP Turbo Codes Specifications

B.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix with
padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output

from the rectangular matrix with pruning. The bits input to the Turbo code internal
interleaver are denoted by x,,X,,X;,...,X;, where K is the integer number of the bits and
takes one value of 40 < K < 5114. The relation between the bits input to the Turbo code
internal interleaver and the bits input to the channel coding is defined by x, =0,, and K =

K.

The following subclause specific symbols are used in following sections :

K Number of bits input to Turbo code internal interleaver
R Number of rows of rectangular matrix

C Number of columns of rectangular matrix

j2) Prime number

v Primitive root

(.s'(j))ﬁ[(ll,_”_p_2 | Base sequence for intra-row permutation
qi Minimum prime integers

¥ Permuted prime integers

<T([)>:e{n.1.-»-. Rt} Inter-row permutation pattern

(Ui (j)),e s Intra-row permutation pattern of i-th row

i Index of row number of rectangular matrix
J Index of column number of rectangularmatrix

k Index of bit sequence

B.3.1 Bits-input to rectangular matrix with padding

The bit sequence x,,x,.X;,...,X; input to the Turbo code internal interleaver is written into

the rectangular matrix as follows.

173

Appendix B. 3GPP Turbo Codes Specifications

(1) Determine the number of rows of the rectangular matrix, R, such that:

5,if (40 < K <159)
R=4 10,if ((160 < K <200)o0r (481 < K <530)) .
20, if (K = any other value)

The rows of rectangular matrix are numbered 0, 1, ..., R - 1 from top to bottom.

(2) Determine the prime number to be used in the intra-permutation, p, and the number of

columns of rectangular matrix, C, such that:

if (481 < K < 530) then
p=353and C=p.

else
Find minimum prime number p from table 2 such that
K <Rx(p+1),
and determine C such that
p-1 if K<Rx(p-1)

C=3 p if Rx(p—=1)<K<Rxp.
p+l if Rxp<K

end if
The columns of rectangular matrix are numbered 0, 1, ..., C - 1 from left to right.
Table B.1 List of prime number p and associated primitive root v.

P v P v p v p v p v
7 3 47 5 101 2 157 5 223 3
11 2 53 2 103 5 163 2 227 2
13 2 59 2 107 2 167 5 229 6
17 3 61 2 109 6 173 2 233 3
19 2 67 2 113 3 179 2 239 i
23 5 71 7 127 3 181 2 241 Th
29 2 73 5 131 2 191 19 251 6
31 3 79 3 187 3 193 5 257 3
37 2 83 2 139 2 197 2
41 6 89 3 149 2 188 3
43 3 97 5 151 6 211 2

174

Appendix B. 3GPP Turbo Codes Specifications

(3) Write the input bit sequence X,,X,,X;,...,X; into the R x C rectangular matrix row by

row starting with bit y; in column 0 of row 0:

N Y2 Y3 v Yo
Yc+n Yic+2) Yc+3) e Yoo

Yur-nc+) Yr-Dc+2) YR-DC+3) VR

where y, = x; for £ = 1, 2, ..., K and if RxC>K, the dummy bits are padded such that

vy =0orl for k=K + 1, K+ 2, ..., RxC. These dummy bits are pruned away from the

output of the rectangular matrix after intra-row and inter-row permutations.

B.3.2 Intra-row and inter-row permutations

After the bits-input to the Rx C rectangular matrix, the intra-row and inter-row permutations
for the RxC rectangular matrix are performed stepwise by using the following algorithm

with steps (1) — (6):

(1) Select a primitive root v from Table B.1 in previous subsection, which is indicated on the

right side of the prime number p.

(2) Construct the base sequence (s(;)) iefo1sp2) TOT intra-row permutation as:

s()=(xs(j-Dmodp, j=1,2,...,(p-2),and 5(0)= L.

(3) Assign go = 1 to be the first prime integer in the sequence (q,.) and determine

iefo,1,,R1)°

the prime integer g; in the sequence (q,) to be a least prime integer such that

ief0.1,-- R-1}
ged(g,p-1)=1, ¢,>6,and g; > g1y foreach i =1, 2, ..., R— 1. Here g.c.d. is greatest

common divisor.

175

Appendix B. 3GPP Turbo Codes Specifications

(4) Permute the sequence (g,) to make the sequence (r,) such that

ief01,, 1} icfo,1:+,R-1}

rri=qn i=0,1, .., R-1,

where <T(")>:e{o.z,~-, e} is the inter-row permutation pattern defined as the one of the four

kind of patterns, which are shown in Table B.2, depending on the number of input bits K.

Table B.2 Inter-row permutation patterns for Turbo code internal interleaver

Number of input bits Ner;fb - Inter-row permutation patterns
K s <7(0), T(1), ..., (R-1)>
(40<K<159) 5 <4,3,2,1,0>
(160<K<200) or (481<K<530) 10 <9,8,7,6,5,4,3,2,1,0>
(2281 <K <2480) or 20 <19,9,14,4,0,2,5,7, 12, 18, 16, 13,
(3161 <K<3210) 17, 15,.3, 1, 6, 11,8, 10>

K = any other value 20

<19,9,14,4,0,2,5,7,12, 18, 10, 8,
13,17, 3,1, 16, 6, 15, 11>

(5) Perform the 7-th (i = 0, 1, ..., R - 1) intra-row permutation as:

if (C = p) then
U (j)=s((jxr)mod(p—-1)), 7=0,1,...,(p~-2),and U(p - 1)=0,
where U(j) is the original bit position of j-th permuted bit of /-th row.
end if
if (C=p+ 1) then
U;(j)=s((jxr)mod(p—1)), j=0,1,....,(p-2). U{p-1)=0,and U(p)=p,
where U(y) is the original bit position of j-th permuted bit of i-th row, and
if (K= RxC) then
Exchange Up (p) with Uy 1(0).
end if
end if
if (C=p-1)then

176

Appendix B. 3GPP Turbo Codes Specifications

U, (/) =s((jxr)mod(p-1))-1, j=0,1,...,(p-2),
where Uj(j) is the original bit position of j-th permuted bit of i-th row.
end if

(6) Perform the inter-row permutation for the rectangular matrix based on the pattern

(T(i»ﬁe{o.l,“-‘.'?fl} i

where 71(7) is the original row position of the /-th permuted row.

B.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are

denoted by 'y :

Yo Yy Yer o Ye-nr+
Vi Vi) Yers2 ---Yc-nre

Yopr - uYaR Y'ar v Vesr

The output of the Turbo code internal interleaver is the bit sequence read out column by
column from the intra-row and inter-row permuted R x C rectangular matrix starting with bit
V' in row 0 of column 0 and ending with bit }'cg in row R - 1 of column C - 1. The output is
pruned by deleting dummy bits that were padded to the input of the rectangular matrix before
intra-row and inter row permutations, i.e. bits ', that corresponds to bits y; with £ > K are
removed from the output. The bits output from Turbo code internal interleaver are denoted
by x'1, x'5, ..., x'x, where x'; corresponds to the bit y'; with smallest index & after pruning, x',
to the bit)y with second smallest index k after pruning, and so on. The number of bits output

from Turbo code internal interleaver is K and the total number of pruned bits is:

Rx C-K.

L7

Appendix C. IEEE 802.16 Turbo Codes Specifications

C.1 CTC encoder

The Convolutional Turbo Code (CTC) defined in this subclause is designed to enable
support of hybrid ARQ (HARQ). HARQ implementation is optional. The CTC encoder,
including its constituent encoder, is depicted in Figure C.1. It uses a double binary Circular
Recursive Systematic Convolutional code. The bits of the data to be encoded are alternately
fed to 4 and B, starting with the MSB of the first byte being fed to 4. The encoder is fed by
blocks of k bits or N couples (k= 2*N bits). For all the frame sizes, & is a multiple of 8§ and ¥
is a multiple of 4. Further, N shall be limited to: 8 < N/4 <1024

The polynomials defining the connections are described in octal and symbol notations as

follows:

- For the feedback branch: 0xB, equivalently 1 + D + D’ (in symbolic notation)
- For the ¥ parity bit: 0xD, equivalently | + D’ +D?
- For the W parity bit: 0x9, equivalently 1 + D

First, the encoder (after initialization by the circulation state Scl) is fed the sequence in the
natural order (position 1) with the incremental address i = 0 .. N—1. This first encoding is
called C) encoding. Then the encoder (after initialization by the circulation state Sc2) is fed
by the interleaved sequence (switch in position 2) with incremental address j = 0, ... N-I.
This second encoding is called C; encoding. The order in which the encoded bit shall be fed

into the subpacket generation block is:

An Bs Y.’l YZ’ Wh W.'!:
Ao, By ..., An.t, By, Yoo Yiaooooo Yiner, Yoo, Yorr oo, Yoner, Wio, Wity oo, Winer, Wao, Waty oo, Wanes

178

Appendix C. IEEE 802.16 Turbo Codes Specifications

—
vy v

L oTC]K;(.‘Unhlilll\.‘l] ey I] W

Interleaver

encoder ran

Y.

W,

[

Systematic part

rvyeyY

Parity part

LA

Constituent encoder 5

Figure C.1 CTC encoder

Note that the interleaver shall not be used when using CTC.

The encoding block size shall depend on the number of subchannels allocated and the
modulation specified for the current transmission. Concatenation of a number of subchannels
shall be performed in order to make larger blocks of coding where it is possible, with the
limitation of not passing the largest block under the same coding rate (the block defined by
64-QAM modulation). Table C.1 specifies the concatenation of subchannels for different

allocations and modulations. The concatenation rule shall not be used when using H-ARQ.

For any modulation and FEC rate, given an allocation of » subchannels, the following

parameters are defined:

J parameter dependent on the modulation and FEC rate
number of allocated subchannels
k = floor(n/f)

m = nmodj

=

179

Appendix C. [EEE 802.16 Turbo Codes Specifications

Table C.1 shows the rules used for subchannel concatenation :

Table C.1 Subchannel concatenation rule for CTC

Number of subchannels Subchannels concatenated
ey | block of n subchannels
nd
p=T | block of 4 subchannels

| block of 3 subchannels

> f {k-1) blocks of j subchannels
I block of Ly subchannels
I block of Ly subchannels

Where:
Ly = ceill(m+5)/2)
Ly = MToor((m+712)

If (Lpy Tf'\\t'IL,r,_w 7l
LbI=Lhl + 1; Lh2=Lh2 —1:

Table C.2 Encoding subchannel concatenation for different rates in CTC

Modulation and rate i
QPSK 1/2 1o
QPSK 3/4 0

16-QAM 112

J
v

16-QAM 3/4 3
64-QAM 172 3
64-QAM 23 2
64-QAM 34 2
64-QAM 5.6 2

180

Appendix C. IEEE 802.16 Turbo Codes Specifications

Table C.3 Optimal CTC channel coding per modulation

Data Encoded ik
Modulation | block size | data block s N Py Py Py Py
(bytes) size (bytes)
PSK 0 2 1/2 24 5 0 i 0l
QPSK 12 24 12 48 13 24 0 24
(JPSK I8 i 1/2 72 11 6 { i
QPSK 24 48 112 96 7 48 2 72
QPSK A 60 1/2 120 13 60 0 H{)
QPSK an 72 1.2 144 17 74 72 2
PSK 48 U6 1/Z 192 1 06 48 144
QPSK 34 108 1/2 216 13 108 (0 108
QPSK i) 120 1/2 240 13 120 00 180
(QPSK 4 12 34 36 I I8 0 I8
QPSK 18 24 34 72 I 3] 0
QPSK 27 36 34 LO8 11 54 36 2
QPSK 3 48 34 144 17 74 72 2
QPSK 45 60 34 180 11 i)) 0
QPSK 34 72 34 216 13 108 0 1018
16-0ANM 12 24 172 48 13 24 0 24
I 6-0AM 24 48 12 96 7 4R 24 72
1 6-0ANM A 1 1/2 144 17 74 72 2
[6-0)AM 48 06 1/2 192 I 06 48 144
16-0)ANM i) 120 1/2 240 13 120 60 1810
16-0AM 18 24 34 72 I G 0 i
16-0AM 20 48 3/4 144 17 74 72 2
| 6-00AN 34 108 34 216 13 18 0 108
64-0AM I8 24 1/2 72 11 &] 0
6d-0AM 3 72 1/2 144 17 74 72 2
64-0AM 34 108 172 216 13 108 0 108
(-0 AN 24 36 213 06 7 48 24 72
6d-1)AM 48 72 2/3 192 I 06 48 144
6d-0AM 27 Y 34 [0S I 54 36 2

181

Appendix C. IEEE 802,16 Turbo Codes Specifications

Table C.3 Optimal CTC channel coding per modulation (continued)

Data Encoded Code
Modulation | block size data block i N Py Py P; Py
L B TR rate
(bytes) size (bytes)
(- AM M 72 34 216 13 |08] 108
G4-0ANM a0 36 RIS 120 |3 &0 0 60
G- AN i) 72 3t 240 13 120 () 180

Table C.3 gives the block sizes, code rates, channel efficiency, and code parameters for the
different modulation and coding schemes. As 64-QAM is optional, the codes for this
modulation shall only be implemented if the modulation is implemented. Table C.4 shows

code parameters for HARQ.

Table C.4 Optimal CTC channel coding per modulation when supporting H-ARQ

Data

block size N Po P P2 P3

(bvtes)
fs 24 3 {l { 1l
12 48 13 24 0 24
I8 72 I 0 () f
24 96 7 48 P 12
36 144 17 74 72 2
48 192 Ll 96 48 144
6l 240 13 120 (el 180
120 480 13 240 120 360
240 il |3 480 240 720
36l 1440 17 720 360 sS40
480 1920 17 960 480 1440
(a0 2440 17 1200 G | 800

182

Appendix C. IEEE 802.16 Turbo Codes Specifications

C.2 CTC interleaver

The interleaver requires the parameters P, and P;, shown in Table C.4.
The two-step interleaver shall be performed by:

Step 1: Switch alternate couples
forj =0..N — 1
if (Jmoaz==0) let (B.4) = (4,B) (i.e., switch the couple)

Step 2: Pqj)
The function P(j) provides the interleaved address i of the consider couple ;.

forj=0..N -1
switch jineds
case 0: i = (Py.J + Dinoaw
case l:i=(Py.j + 1+ N2+ Pilmoaw
case 2:i = (Py.j + 1+ Pa)moav

case3:i=(Po-j +1+N/2+P3)modN

C.3 Determination of CTC circulation states

The state of the encoder is denoted S (0 < S < 7) with § the value read binary (left to right)
out of the constituent encoder memory. The circulation states Sc1 and Sc2 are determined by

the following operations:

1) Initialize the encoder with state 0. Encode the sequence in the natural order for the
determination of Scl or in the interleaved order for determination of Sc2. In both

cases the final state of the encoder is SOy_;;

2) According to the length V of the sequence, use Table C.5 to find Scl or Sc2.

183

Appendix C. IEEE 802.16 Turbo Codes Specifications

Table C.5 Circulation state lookup table (Sc)

Sy
Ninuil

0 1 2 3 4 -] 7

| 0 6 4 2 7 I 3
2 0 3 7 4 5 O I

3 0 5 5 0 2 7 -

4] 4 I 3 o 2 3

3 0 2 3 7 I 3 6
& 0 7 0 3 4 2

184

References

[1] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley and Sons,1999.

[2] L. Yuan, L. Hyunseok, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K.
Flautner, “SODA: A Low-power Architecture For Software Radio,” in International
Symposium on Computer Architecture, pp. 89 — 101, June 2006.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” in [EEE International Conference on
Communications, vol. 2, pp. 1064-1070, May 1993

[4] P. Cherriman, T. Keller, and L. Hanzo, “Constant-rate turbo-coded orthogonal frequency
division multiplex videophony over UMTS,” in [EEE Global Telecommunications
Conference, vol. 5, pp. 2848 — 2852, Nov. 1998.

[5] A. Gueguen, and D. Castelain, “Performance of frame oriented turbo codes on UMTS
channel with various termination schemes,” in [EEE Vehicular Technology Conference,
vol. 3, pp. 1550 — 1554, Sep. 1999.

[6] Z. Jinyun, L. Ling, and T. Poon, “Turbo coded HSDPA systems with transmit diversity
over frequency selective fading channels,” in [EEE International Symposium on
Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 90 — 94, Sep. 2002.

[7] M. C. Valenti, “Inserting turbo code technology into the DVB satellite broadcasting
system,” in Military Communications Conference, vol. 2, pp. 650 — 654, Oct. 2000.

[8] A. Bartolazzi, G. Cardarilli, A. Del Re, D. Giancristofaro, and M. Re, “Implementation
of DVB-RCS turbo decoder for satellite on-board processing,” in [EEE International
Conference on Circuits and Systems for Communications, pp. 142 — 145, June 2002.

[9] L. N. Lee, A. R. Hammons Jr., S. Feng-Wen, and M. Eroz, “Application and
standardization of turbo codes in third-generation high-speed wireless data services,”
IEEE Transactions on Vehicular Technology, vol. 49, pp. 2198 — 2207, Nov. 2000.

[10] F. Berens, A. Worm, H. Michel, and N. Wehn, “Implementation aspects of turbo-
decoders for future radio applications,” in IEEE Vehicular Technology Conference, vol.
5, pp- 2601 — 2605, Sep. 1999.

[11] L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, “285-MHz pipelined MAP decoder in
0.18-/spl mu/m CMOS,” [EEE J. of Solid-State Circuits, vol. 40, pp. 1718 — 1725, Aug.
2005.

[12] P. Urard, L. Paumier, M. Viollet, E. Lantreibecq, H. Michel, S. Muroor, B. Coates, B.
Gupta, “A generic 350 Mb/s turbo-codec based on a 16-states SISO decoder,” IEEE Int.
Solid-State Circuits Conf. Digest of Technical Papers, pp. 424 — 536, Feb. 2004.

[13] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, Z. Gongyu, L. M.
Davis, G. Woodward, C. Nicol, and Y. Ran-Hong “A unified turbo/Viterbi channel

185

References

decoder for 3GPP mobile wireless in 0.18-/spl mu/m CMOS,” IEEE J. of Solid-State
Circuits, vol. 37, no. 11, pp. 1555 - 1564, Nov. 2002.

[14] C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, C. Nicol, “Integrated circuits for channel coding in 3G cellular mobile wireless
systems,” IEEE Communications Magazine, vol. 41, no. 8, pp. 150 — 159, Aug. 2003.

[15] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain,” in [EEE International
Conference on Communications, vol. 2, pp. 1009-1013, June 1995.

[16] H. Dawid, and H. Meyer, “Real-time algorithms and VLSI architectures for soft output
MAP convolutional decoding,” in IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, vol. 1, pp. 193-197, Sep. 1995.

[17] O. Joeressen, M. Vaupel, and H. Meyr, “High-speed VLSI architectures for soft-output
Viterbi decoding,” in IEEE International Conference on Application Specific Array
Processors, pp. 373 — 384, Aug. 1992.

[18] T. Miyauchi, K. Yamamoto, and T. Yokokawa, “High-performance programmable
SISO decoder VLSI implementation for decoding turbo codes,” in Proc. IEEE Global

Telecommunications Conf., vol. 1, 2001, pp. 305-309.

[19] M. El-Assal and M. Bayoumi, “A high-speed architecture for MAP decoder,” in Proc.
IEEE Signal Processing Systems (SiPS): Design and Implementation, pp. 69-74, Oct.
2002.

[20] M. Bickerstaff, L. Davis, C. Thomas, D. Garret, and C. Nicol, “A 24 Mb/s radix-4
logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 150-151, 2003.

[21] Z. Wang, Z. Chi, and K. Parhi, “Area-efficient high-speed decodingschemes for turbo
decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6, pp. 902—
912, Dec. 2002.

[22] J. Hsu and C. Wang, “A parallel decoding scheme for turbo codes,” in Proc. IEEE Int.
Conf. Circuits and Systems, vol. 4, 1998, pp. 445-448.

[23] B. Bougard, A. Ciulietti, L. V. d. Perre, and F. Catthoor, “A class ofpower efficient
VLSI architectures for high speed turbo-decoding,” in Proc. IEEE Global
Telecommunication Conf., vol. 1, 2002, pp. 553-549.

[24] B. Bougard et al., “A scalable 8.7 nJ/bit 75.6 Mb/s parallel concatenatedconvolutional
(turbo-) codec,” in [EEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
2003, pp. 152—-153.

[25] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecturewith optimized
memory size and power consumption,” in Proc. IEEEWorkshop on Signal Processing
Systems (SiPS2000), 2000, pp. 265-274.

[26] A. Worm, H. Lamm, and N. Wehn,, “Design of low-power high-speed maximum a
priori decoder architectures,” in Proc. Design, Automation and Test in Eur. Conf.
Exhibition, Apr. 2001, pp. 258-265.

186

References

[27] M. M. Mansour and N. R. Shanbhag, “Design methodology for highspeed iterative
decoder architectures,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, vol. 3, 2002, pp. 3085-3088.

[28] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APP decoders,”
IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 11, no. 4, pp. 627650,
Aug. 2003.

[29] D. Garrett, B. Xu, and C. Nicol, “Energy efficient turbo decoding for 3G mobile,” in
Proc. IEEE Int. Symp. Low Power Electronics Design (ISLPED’01), 2001, pp. 328-333.

[30] O. Leung, C. Yue, C. Tsui, and R. Cheng, “Reducing power consumption of turbo code
decoder using adaptive iteration with variable supply voltage,” in Proc. IEEE Int. Symp.
Low Power Electronics Design (ISLPED'99), 1999, pp. 36—41.

[31] P. H. Wu and S. M. Pisuk, “Implementation of a low complexity, low power, integer-
based turbo decoder,” in Proc. Global Telecommunications Conf., vol. 2, 2001, pp.
946-951.

[32] S. Lee, N. Shanbhag, and A. Singer, “Low-power turbo equalizer architecture,” Proc.
IEEE Signal Processing Systems (SiPS): Design and Implementation, pp. 33-38, Oct.
2002.

[33] W. Zhongfeng and K. K. Parhi, “High performance, high throughput turbo/SOVA
decoder design,” [EEE Trans. on Communications, vol. 51, no. 4, pp. 570 —579, April
2003.

[34] Y. Engling; S. A. Augsburger, and W. R. Davis, and B. A. Nikolic, “A 500-Mb/s soft-
output Viterbi decoder,” IEEE J. of Solid-State Circuits, vol. 38, no. 7, pp. 1234 —
1241, July 2003.

[35] M. El-Assal, and M. Bayoumi, “Low power SOVA architecture using bi-directional
scheme,” in Proc. IEEE Int. Symp. on Circuits and Systems, vol. 1, 26-29 May 2002 pp.
[-277 - 1-280.

[36] D. Garrett, and M. Stan, “A 2.5 Mb/s, 23 mW SOVA traceback chip for turbo decoding

applications,” in Proc. IEEE Int. Symp. on Circuits and systems, vol. 4, 6-9 May 2001,
pp. 61-64.

[37] W. Wang, T. Chi-Ying, and R. S. Cheng, “A low power VLSI architecture of SOVA-
based turbo-code decoder using scarce state transition scheme,” in Proc. IEEE Int.
Symp. on Circuits and Systems, vol. 1, 28-31 May 2000, pp. 283 — 286.

[38] D. Garrett and M. Stan, “Low power architecture of the soft-output Viterbi algorithm,”
in Proc. IEEE Int. Symp. Low Power Electronics Design, 1998, pp. 262-267.

[39] E. Yeo, and S. A. Augsburger, W. R. Davis, and B. Nikolic, “Implementation of high
throughput soft output Viterbi decoders,” in [EEE Workshop on Signal Processing
Systems, 16-18 Oct. 2002, pp. 146 — 151.

[40] A. Ghrayeb, and W. E. Ryan, “Performance of high rate turbo codes employing the
soft-output Viterbi algorithm (SOVA),” in Asilomar Conf. on Signals, Systems, and
Computers, vol. 2, 24-27 Oct. 1999, pp. 1665 — 1669.

187

References

[41] W. Zhongfeng, H. Suzuki, and K. K. Parhi, “Efficient approaches to improving
performance of VLSI SOVA-based turbo decoders,” in Proc. IEEE Int. Symp. on
Circuits and Systems, vol. 1, 28-31 May 2000, pp. 287 —290.

[42] W. Duanyi, and H. Kobayashi, “High-performance SOVA decoding for turbo codes
over cdma2000 mobile radio,” in Proc. Military Communications Conference MILCOM
2000, vol. 1, 22-25 Oct. 2000, pp. 189 — 193.

[43] A.La Rosa, L. Lavagno, and C. Passerone, “Implementation of a UMTS turbo decoder
on a dynamically reconfigurable platform,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 1, pp. 100 — 106, Jan. 2005.

[44] C. Chaikalis, and J. M. Noras, “Implementation of an improved reconfigurable
SOVA/log-MAP turbo decoder” in Proc. Int. Conf on 3GPP3G Mobile
Communication Technologies, 8-10 May 2002, pp. 146 — 150.

[45] 1. Ahmed, and T. Arslan, “A Reconfigurable Viterbi Traceback for Implemenation on
Turbo Decoding Array,” in Proc. IEEE Int. SOC Conf., Sept. 2006, pp. 107 — 108.

[46] 1. Ahmed, T. Arslan, S. Baloch, I. Underwood, R. Woodburn, “Domain Specific
Reconfigurable Architecture of Turbo Decoder Optimized for Short Distance Wireless
Communication,” in Proc. IEEE Int. Parallel and Distributed Processing Symp., 4-8
April 2005, pp. 166b - 166b.

[47] C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, and C. Nicol, “Integrated circuits for channel coding in 3G cellular mobile
wireless systems,” J[EEE Communications Magazine, vol. 41, no. 8, pp. 150 — 159, Aug.
2003.

[48] S. Lingyan, T. Horigome, and B. V. K. V. Kumar, “A high-throughput, field
programmable gate array implementation of soft output Viterbi algorithm for magnetic
recording,” IEEE Trans. on Magnetics, vol. 40, no. 4, pp. 3081 - 3083, July 2004.

[49] L. Cheng-Hung, L. Fan-Min, S. Xin-Yu Shi, and W. An-Yeu, “A Triple-Mode
MAP/VA IP Design for Advanced Wireless Communication Systems,” Asian Solid-
State Circuits Conf., Nov. 2005, pp. 221 — 224,

[50] L. Fan-Min, S. Pei-Ling, and W. An-Yeu, “Unified convolutional/turbo decoder
architecture design based on triple-mode MAP/VA kernel,” in Proc. IEEE Asia-Pacific
Conf. on Circuits and Systems, vol. 2, 6-9 Dec. 2004, pp. 1073 — 1076.

[51] H. Kai, L. Fan-Min, S. Pei-Ling, an W. An-Yeu, “VLSI design of dual-mode
Viterbi/turbo decoder for 3GPP.” in Proc. Int. Symp. on Circuits and Systems, vol.
2, 23-26 May 2004, pp. 11 - 773-776.

[52] C. Pen-Hsin, Kai-Huang, H. Nai-Hsuan, W. An-Yeu, “Dual-mode convolutional/
SOVA based turbo code decoder VLSI design for wireless communication systems,” in
Proc. IEEE Int. SOC Conf., 17-20 Sept. 2003, pp. 369 — 372.

[53] J. R. Cavallaro, and M. Vaya, “Viturbo: a reconfigurable architecture for Viterbi and
turbo decodingAcoustics, " in Proc. IEEE Int. Conf. on Speech, and Signal Processing,
vol. 2, 6-10 April 2003, pp. IT - 497-500.

[54] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System
Technical Journal, Vol. 27, pp. 379—423, 623-656, July, October, 1948. By

188

References

[55] J. Hagenauer, “The Turbo principle : Tutorial Introduction and State of the Art,”” in
Symposium on Turbo-Codes, pp. 1-11, Sep. 1997.

[56] C. Berrou, and A. Glavieux, “Near optimum error correcting coding and decoding:
turbo-codes.” IEEE Transactions on Communications, vol. 44, pp. 1261 — 1271, Oct.
1996.

[57] A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes,” IEEE Journal on Selected Areas in Communications,
vol. 16, pp. 260 — 264, Feb. 1998.

[58] J. P. Woodard, and L. Hanzo, “Comparative study of turbo decoding techniques: an
Overview,” IEEE Transactions on Vehicular Technology, vol. 49, pp. 2208 — 2233,
Nov. 2000.

[59] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429 - 445,
Mar. 1996.

[60] “Guest Editorial the turbo principle: from theory to practice,” [EEE Journal on
Selected Areas in Communications, vol.19, May 2001.

[61] Japan’s Proposal for Candidate Radio Transmission Technology on IMT-2000: W-
CDMA. Japan Ass. of Radio Industries and Business (ARIB),
http://www.arib.or.jp/IMT-2000/proponent

[62] 3GPP TS 25.212, Multiplexing and channel coding (FDD), v.4.6.0, pp. 16-21, Sep.
2005.

[63] Consultative committee for space data systems (CCSDS), Telemetry Channel Coding,
Blue Book 101.0-B-4, pp. 305-309, 1999,

[64] IEEE 802.16-2004, Air Interface for Fixed Broadband Wireless Access Systems, pp.
594-599.

[65] ETSI EN 390-790, Digital Video Broadcasting (DVB), Interaction channel for satellite
distribution systems, v.2.4.1, pp. 23-26, Sep. 2005.

[66] L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Transaction Information Theory, 1T-20, pp. 248-
287, Mar. 1974.

[67] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its
applications,” in IEEE Global Telecommunications Conference, vol. 3, pp. 1680 — 1686,
Nov. 1989.

[68] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding, Turbo Equalisation, and Space-
Time Coding for Transmission Over Fading Channels, John Wiley and Sons Ltd., 2005.

[69] M. Bossert, Channel Coding for Telecommunications, John Wiley and Sons Ltd., 1999.
[70] J. G. Proakis, Digital Communications, McGraw-Hill, 2001.

[71] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial Concatenation of
Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,” The JPL
TDA Progress Report, pp. 42-126, Aug. 1996.

189

References

[72] W. J. Blackert, E. K. Hall, and S. G. Wilson, “Turbo code termination and interleaver
conditions,” Electronics Letters, vol. 31, pp. 2082 - 2084, Nov. 1995.

[73] L. Lang, and R. S. Cheng, “On the tail effect of SOVA-based decoding for turbo
codes,” in IEEE Global Telecommunications Conference, vol. 2, pp. 644 - 648, Nov.
1997.

[74] C. Weiss, C. Bettstetter, S. Riedel, and D. J. Costello Jr., “Turbo decoding with tail-
biting trellises,” in International Symposium on Signals, Systems, and Electronics, pp.
343 — 348, Sep. 1998.

[75] C. Berrou, and M. Jezequel, “Non-binary convolutional codes for turbo coding,”
Electronics Letters, vol. 35, pp. 39 — 40, Jan. 1999.

[76] C. Douillard, and C. Berrou, “Turbo codes with rate-m/(m+1) constituent convolutional
codes,” IEEE Transactions on Communications, vol. 53, pp. 1630 — 1638, Oct. 2005.

[77] C. Berrou, “The ten-year-old turbo codes are entering into service,” IEEE
Communications Magazine, vol. 41, pp. 110 - 116, Aug. 2003.

[78] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan, “The advantages of non-
binary turbo codes,” in IEEE Information Theory Workshop, pp. 61 — 63, Sep. 2001,

[79] C. Berrou, C. Douillard, and M. Jezequel, “Designing turbo codes for low error rates,”
in IEE Colloguium, pp. 6-7, Nov. 1999.

[80] S. Benedetto, and G. Montorsi, “Performance evaluation of turbo-codes,” Electronics
Letters, vol. 31, pp. 163 — 165, Feb. 1995.

[81] S. Benedetto, and G. Montorsi, “Design of parallel concatenated convolutional codes,”
IEEE Transactions on Communications, vol. 44, pp. 591 — 600, May 1996.

[82] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Analysis, design, and iterative
decoding of double serially concatenated codes with interleavers,” IEEE Journal on
Selected Areas in Communications, vol. 16, pp. 231 — 244, Feb. 1998.

[83] J. G. Proakis, Digital Communications, McGraw-Hill, 2001.

[84] P. Gulak, and E. Shwedyk, “Viterbi decoder VLSI Structures for Viterbi Receivers:
Part [--General Theory and Applications,” [EEE Journal on Selected Areas in
Communications, vol. 4, pp. 142 - 154, Jan. 1986.

[85] G. Feygin, and P. Gulak, “Architectural tradeoffs for survivor sequence memory
management in Viterbi decoders,” I[EEE Transactions on Communications, vol. 41, pp.
425 — 429, March 1993,

[86] G. Feygin, P. Chow, P. G. Gulak,. J. Chappel, G. Goodes, O. Hall, A. Sayes, S. Singh,
M. B. Smith, and S. Wilton, “A VLSI implementation of a cascade Viterbi decoder with
traceback,” in JEEE International Symposium on Circuits and Systems, vol. 3, pp. 1945
— 1948, May 1993

[87] C. Shiunn-Jang, and H. Li-Da, “A VLSI architecture of SMU for strongly connected
Viterbi decoder,” in /EEE Asia-Pacific Conference on Circuits and Systems, pp. 200 —
205, Dec. 1994,

[88] C. Yun-Nan, H. Suzuki, and K. K. Parhi, “A 2-Mb/s 256-state 10-mW rate-1/3 Viterbi
decoder,” I[EEE Journal of Solid-State Circuits, vol. 35, pp. 826 — 834, June 2000.

190

References

[89] G. Montorsi, and S. Benedetto, “Design of fixed-point Iterative Decoders for
Concatenated Codes with Interleavers,” IEEE Journal on Selected Areas in
Communication, vol. 19, pp. 871-882, May 2001.

[90] W. Chien-Ming, S. Ming-Der, W. Chien-Hsing H. Yin-Tsung, and C. Jun-Hong,
“VLSI architectural design tradeoffs for sliding-window log-MAP decoders,” [EEE
Transactions on Very Large Scale Integration Systems, vol. 13, pp. 439 — 447, April
2005.

[91] N. Engin, “A turbo decoder architecture with scalable parallelism,” in IEEE Workshop
on Signal Processing Systems, pp. 298 — 303, Oct. 2004

[92] E. Boutillon, W. I. Gross, and, P. G. Gulak, “VLSI architectures for the MAP
algorithm,” IEEE Transactions on Communications, vol. 51, pp. 175 — 185, Feb. 2003.

[93] O. Joeressen, M. Vaupel, and H. Meyr, “High-speed VLSI architectures for soft-output
Viterbi decoding,” in IEEE International Conference on Application Specific Array
Processors, pp. 373 — 384, Aug. 1992,

[94] Z. Wang, and K. K. Parhi, “High performance, high throughput turbo/SOVA decoder
design,” IEEE Transactions on Commun., vol. 51, no. 4, pp. 570 — 579, April 2003.

[95] Y. N. Chang, “Design of soft-output Viterbi decoders with hybrid trace-back
processing,” in Proc. Int. IEEE Symp. Circuits and Systems, vol. 2, May 2003, pp. 1I-
69 - 11-72.

[96] C. Berrou, P. Combelles, P. Penard, and B. Talibart, “An IC for turbo-codes encoding
and decoding,” in Digest of Tech. Papers IEEE Int. Solid-State Circuits Conf., Feb.
1995, pp. 90 -91

[97] C. Ghrayeb, and X. Huang, “Improvements in SOV A-based decoding for turbo-coded
storage channels,” IEEE Trans. on Magnetics, vol. 41, no. 12, pp. 4435 — 4442, Dec.
2005.

[98] M. El-Assal, and M. Bayoumi, “Low power SOVA architecture using bi-directional
scheme,” in Proc. Int. IEEE Symp. Circuits and Systems, vol. 1, May 2002. pp. 1-277 -
1-280.

[99] W. Yufei, and B. D. Woerner, “The influence of quantization and fixed point arithmetic
upon the BER performance of turbo codes,” in IEEE Vehicular Technology Conference,
vol. 2, pp. 1683 — 1687, May 1999.

[100] H. Michel, A. Worm, and N. Wehn, “Influence of quantization on the bit-error
performance of turbo-decoders,” in [EEE Vehicular Technology Conference, vol.
I, pp. 581 - 585, May 2000.

[101] T. K. Blankenship, and B. Classon, “Fixed-point performance of low-complexity turbo
decoding algorithms,” in IEEE Vehicular Technology Conference, vol. 2, pp. 483 —
1487, May 2001.

[102] J. Gibong, and H. Dan, “Optimal quantization for soft-decision turbo decoder,” in
IEEE Vehicular Technology Conference, vol. 3, pp. 1620 - 1624, Sep. 1999.

[l03] H. Michel, and N. Wehn, “Turbo-decoder quantization for UMTS,” IEEE
Communications Letters, vol. pp. 55— 57, Feb. 2001.

191

References

[104] L. Xizhong, M. Zhigang, and C. Yanmin, “Quantization issues in turbo decoding
Communications,” in International Conference on Communications, Circuits and

Systems, vol. 1, pp. 35 — 39, May 2005.

[105] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of TURBO
decoder design for wireless applications,” in IEEE Workshop on Signal Processing
Systems, pp. 503-512, Oct. 1999.

[106] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures for
metric normalization in the Viterbi algorithm,” in IEEE Conference Communication,
pp. 1723 — 1728, April 1990.

[107] L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, “Area-efficient high-throughput VLSI
architecture for MAP-based turbo equalizer,” in [EEE Workshop on Signal Processing
Systems, pp. 87 —92, Aug. 2003.

[108] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of scalable power and area
efficient high-throughput Viterbi decoders.” IEEE Journal Solid-State Circuits, vol.
37,n0. 7, pp. 941 — 948, July 2002.

[109] T. Gemmeke, V. S. Gierenz, and T. G. Noll, “Scalable, power and area efficient high
throughput Viterbi decoder implementations,” in Proceedings European Solid-State
Circuits Conference, pp. 474 — 477, Sep. 2001.

[110] P. J. Black, and T. H. Meng, “A 1-Gb/s, four-state, sliding block Viterbi decoder,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 797 — 805, June 1997.

[111] O. Y. Leung, T. Chi-Ying, and R. S. Cheng, “Reducing power consumption of turbo-
code decoder using adaptive iteration with wvariable supply voltage,” IEEE
Transactions on VLSI Systems, vol. 9, no. 1, pp. 34-41, Feb. 2001.

[112] W. Zhongfeng, and K. K. Parhi, “On-line extraction of soft decoding information and
applications in VLSI turbo decoding,” IEEE Transactions on Circuits and Systems I1:
Analog and Digital Signal Processing, vol. 49, no. 12, pp. 760-769, Dec. 2002.

[113] G. Jian, Z. Yi, Y. Dacheng, and L. Zhen, “Adaptive Iterative Turbo Decoding
Algorithm,” in JEEE Vehicular Technology Conference, vol. 3, pp. 1472-1476, 2006.

[114] P. J. Black, and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi decoder,” IEEE
Journal of Solid-State Circuits, vol. 27, pp. 1877 — 1885, Dec. 1992.

[115] A. K. Yeung, and J. M. Rabaey, “A 210 Mb/s radix-4 bit-level pipelined Viterbi
decoder,” in [EEE International Solid-State Circuits Conference, pp. 88 - 89, Feb.
1995.

[116] V. S. Gierenz, O. Weiss, T. G. Noll, I. Carew, J. Ashley, and R. Karabed, “A 550 Mb/s
radix-4 bit-level pipelined 16-state 0.25-pm CMOS Viterbi decoder,” in IEEE
International Conference on Application-Specific Systems, Architectures, and
Processors, pp. 342 — 345, Feb. 1999.

[117] T. Conway, “Implementation of high speed Viterbi detectors,” Electronics Letters, vol.
35, pp. 2089 — 2090, Nov. 1999.

192

References

[118] C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, C. Nicol, “Integrated circuits for channel coding in 3G cellular mobile
wireless systems,” IEEE Commun. Mag., vol. 41, no. 8, pp. 150-159, Aug. 2003.

[119] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar. 1996.

[120] M. Moher, “Decoding via cross entropy minimization,” in Proc. IEEEGlobecom Conf.,
Houston, TX, Dec. 1993, pp. 809-813.

[I2ITR. Y. Shao, S. Lin, and P. C. Marc, “Two Simple Stopping Criteria for Turbo
Decoding,” IEEE Trans. on Communications, vol. 7, no. 8, 1999

[122] M. Rovini, and A. Martinez, “Efficient stopping rule for turbo decoders,” Electronics
Letters, vol. 42, no. 4, pp. 235 — 236, 2006.

[123] L. Lei, W. Qin, and Y. L. Cheng, "A Novel Stopping Criterion for Turbo Decoding
Innovative Computing,” in Int. Conf. Information and Control, Aug. 2006, pp. 201 —
205.

[124] S. Byoung-Sup, J. Dae-Ho, L. Soon-Ja, and K. Hwan-Yong, “A new stopping criterion
for turbo codes,” in Int. Conf. Advanced Communication Technology, Feb. 2006, pp. 5.

[125] M. Zheng, F. Pingzhi, and H. M. Wai, “An effective stopping scheme for reduced-
complexity iterative decoding of short-frame turbo codes,” in Proc. Int. Conf
Communications, Circuits and Systems, May 2005, pp. 28 — 30.

[126] K. Gracie, S. Crozier, and P. Guinand, “Performance of an MLSE-based early
stopping technique for turbo codes,” in IEEE Vehicular Technology Conference, Sept.
2004, pp. 2287 — 2291.

[127] W. Zhongfeng, T. Yiyan, and W. Yuke, “Low hardware complexity parallel turbo
decoder architecture,” in Proc. Int. Symp. Circuits and Systems, May 2003, pp. 1I-53 -
11-56.

[128] P. Ciao, G. Colavolpe, and L. Fanucci, “A parallel VLSI architecture for 1-Gb/s, 2048-
b, rate-1/2 turbo Gallager code decoder,” in Euromicro Symp. on Digital System
Design, 31 Aug.-3 Sept. 2004, pp. 174 — 181.

[129] M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APPdecoders,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 2, pp. 627-650, Apr. 2003.

[130] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI
architecture for low-latency MAP turbo decoders,” in IEEE Trans. On Very Large
Scale Integration (VLSI) Systems, vol. 13, no. 4, pp. 427 —438, 2005.

[131] L. Dinoi, and S. Benedetto, “Variable-size interleaver design for parallel turbo decoder
architectures,” [EEE Trans. on Communications, vol. 53, no. 11, pp. 1833 — 1840,
2005.

[132] L. Dinoi, A. Tarable, and S. Benedetto, “A permutation decomposition based
algorithm for the design of prunable interleavers for parallel turbo decoder
architectures,” in JEEE Int. Conf. Communications, June 2006, pp. 1148 — 1153.

[133] A. Tarable, and S. Benedetto, “Mapping interleaving laws to parallel turbo decoder
architectures,” IEEE Communications Letters, vol. 8, no. 3, pp. 162 — 164, 2004,

193

References

[134] A. Giulietti, L. van der Perre, and M. Strum, “Parallel turbo coding interleavers:
avoiding collisions in accesses to storage elements,” IEEE Commun. Lett., vol. 38, no.
2, pp. 232234, Feb. 2002.

[135] A. Worm, H. Lamm, and N. Wehn, “VLSI architectures for high-speed MAP
decoders,” in Proc. 14th Int. Conf. VLSI Design, Jan. 2001, pp. 446—453.

[136] W. Zhongfeng, C. Zhipei, and K. K. Parhi, “Area-efficient high-speeddecoding
schemes for turbo decoders,” IEEE Trans. Very Large Scalelntegr. (VLSI) Syst., vol.
10, no. 6, pp. 902-912, Dec. 2002.

[137] J. Vogt, K. Koors, A. Finger, and G. Fettweis, “Comparison of different turbo decoder
realizations for IMT-2000,” in IEEE Global Telecommunications Conference, vol.
5, pp. 2704 — 2708, Dec. 1999.

[138] P. H. Wu, “On the complexity of turbo decoding algorithms,” in [EEE Vehicular
Technology Conference, vol. 2, pp. 1439 - 1443, May 2001.

[139] R. Cypher, and C. B. Shung, “Generalized trace back techniques for survivor memory
management in the Viterbi algorithm,” in [EEE Global Telecommunications
Conference, vol. 2, pp. 1318 — 1322, Dec. 1990.

[140] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS design, Kluwer, 1995.
[141] J. M. Rabaey and M. Pedram, Low power design methodologies, Kluwer, 1996.

[142] L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, “A low-power VLSI architecture for
turbo decoding,” in [EEE International Symposium on Low Power Electronics and
Design, pp. 366 — 371, Aug. 2003.

[143] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural
strategies for low-power VLSI turbo decoders,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 10, pp. 279 — 285, June 2002.

[144] D. Garrett, X. Bing, and C. Nicol, “Energy efficient turbo decoding for 3G mobile,” in
IEEE International Symposium on Low Power Electronics and Design, pp. 328 — 333,
Aug. 2001.

[145] O. Y. Leung, T. Chi-Ying, and R. S. Cheng, “Reducing power consumption of turbo-
code decoder using adaptive iteration with variable supply voltage,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 9, pp. 34 —41, Feb. 2001.

[146] M. Elassal, and M. Bayoumi, “A low power turbo decoder architecture,” in JEEE
Workshop on Signal Processing Systems, pp. 105 — 110, Aug. 2003.

[147] W. Zhongfeng, C. Zhipei and K. K. Parhi, “Area-efficient high speed decoding
schemes for turbo/MAP decoders,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 4, pp. 2633 - 2636, May 2001.

[148] K. K. Parhi, “An Improved Pipelined MSB-First Add-Compare-Select Unit Structure
for Viterbi Decoders,” IEEE Trans. On Circuits and Systems-1:Reg. Papers, vol. 51,
no. 3, pp. 504-511, Mar. 2004.

[149] J. Hagenauer, and L. Papke, “Decoding turbo-codes with the soft output Viterbi
algorithm (SOVA),” in IEEE International Symposium on Information Theory, pp. 164,
June 1994,

194

References

[150] M. P. C. Fossorier, F. Burkert, L. Shu, and J. Hagenauer, “On the equivalence between
SOVA and max-log-MAP decodings,” IEEE Communications Letters, vol. 2, pp. 137
— 139, May 1998.

[151] G. Colavolpe, G. Ferrari, and R. Raheli, “Extrinsic information in turbo decoding: a
unified view,” in IEEE Global Telecommunications Conference, vol. la, pp. 505 — 509,

1999.

[152] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft-output Viterbi
decoder architecture,” in IEEE International Conference on Communications, vol.
2, pp. 737 — 740, May 1993.

[153] L. Papke, P. Robertson, and E. Villebrun, “Improved decoding with the SOVA in a
parallel concatenated (Turbo-code) scheme,” in J[EEE International Conference on
Communications, vol. 1, pp. 102 — 106, June 1996.

[154] L. Lang, and R. S. Cheng, “Improvements in SOVA-based decoding for turbo codes,”
in IEEE International Conference on Communications, vol, 3, pp. 1473 — 1478, June

1997.

[155] W. Duanyi, and H. Kobayashi, “High-performance SOVA decoding for turbo codes
over ¢cdma2000 mobile radio,” in Military Communications Conference, vol. 1, pp.
189 — 193, Oct. 2000.

[156] Y. Fahmy, H. A. G. Abdel Kader, and M. M. 8. El-Soudani, “On the use of SOVA for
iterative decoding,” in Mediterranean Electrotechnical Conference, pp. 168 — 172,
May 2002.

[157] S. Lingyan, T. Horigome, and B. V. K. V. Kumar, “A high-throughput, field
programmable gate array implementation of soft output Viterbi algorithm for magnetic
recording,” IEEE Transactions on Magnetics, vol. 40, pp. 3081 — 3083, July 2004.

[158] D. Garrett, and M. Stan, “Low power architecture of the soft-output Viterbi
algorithm,” in [EEE International Symposium on Low Power Electronics and Design,
pp. 262 — 267, Aug. 1998.

[159] K. W. Tae, B. S. Jae, K. S. Geun, and J. E. Kyeong, “Reduction of computational
complexity in two-step SOVA decoder for turbo code,” in [EEE Global
Telecommunications Conference, vol. 3, pp. 1887 — 1891, Nov. 2000.

[160] D. Garrett, and M. A. Stan, “2.5 Mb/s, 23 mW SOVA traceback chip for turbo
decoding applications,” in IEEE International Symposium on Circuits and Systems, vol.

4, pp. 61 — 64, May 2001.

[161] C. Berrou, P. Combelles, P. Penard, and B. Talibart, “An IC for turbo-codes encoding
and decoding,” in IEEE International Solid-State Circuits Conference, pp. 90 — 91,
Feb. 1995.

[162] J. Glossner, D. Iancu, L. Jin, E. Hokenek, and M. Moudgill, “A software-defined
communications baseband design,” IEEE Communications Magazine, vol. 41, pp. 120
— 128, Jan. 2003.

[163] M. Barnard, and S. McLaughlin, “Reconfigurable terminals for mobile communication
systems,” Journal of Electronics & Communication Engineering, vol. 12, pp. 281 —
292, Dec. 2000.

195

References

[164] W. H. W. Tuttlebee, “Software-defined radio: facets of a developing technology,”
IEEE Personal Communications, vol. 6, pp. 38 — 44, April 1999.

[165] M. Mehta, N. Drew, G. Vardoulias, N. Greco, and C. Niedermeier, “Reconfigurable
terminals: an overview of architectural solutions,” IEEE Communications Magazine,
vol. 39, pp. 82 — 89, Aug. 2001.

[166] T. C. Reiner, and M. J. Lindsey, “VLSI development of a reconfigurable multi-user
Viterbi decoder,” in IEEE Military Communications Conference, vol. 1, pp. 244 — 248,
Sep. 1990.

[167] P. H. Kelly, and P. M. Chau, “A flexible constraint length, foldable Viterbi decoder,”
in IEEE Global Telecommunications Conference, vol. 1, pp. 631 —635, Nov. 1993.

[168] K. Chadha, and J. R. Cavallaro, “A reconfigurable Viterbi decoder architecture,” in
Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 66 — 71, Nov.
2001.

[169] I. R. Cavallaro, and M. Vaya, “Viturbo: a reconfigurable architecture for Viterbi and
turbo decoding,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 2, pp. 497-500, April 2003.

[170] P. H. Chen, H. Kai, H. Nai-Hsuan, and W. An-Yeu, “Dual-mode convolutional/SOVA
based turbo code decoder VLSI design for wireless communication systems,” in [EEE
International Systems-on-Chip Conference, pp. 369 — 372, Sep. 2003.

[171] C. Berrou, R. Pyndiah, P. Adde, C. Douillard, and R. Le Bidan, “An overview of turbo
codes and their applications,” in The European Conference on Wireless Technology,
pp. 1 =9, Oct. 2005.

[172] C. Berrou, “The ten-year-old turbo codes are entering into service,” IEEE
Communications Magazine, vol. 41, pp. 110 — 116, Aug. 2003.

196

