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Abstract 

Turbo codes can provide a large coding gain through an iteration process as compared with a 

gain achieved by a traditional channel coding method. This has led to the adoption of turbo 

codes as standard in a variety of wireless conimLinication systems, despite their higher 

computational complexity than a traditional decoder like a Viterbi decoder. 

This thesis presents a number of high performance turbo decoder architectures for VLSI 

implementation in terms of area, power, and critical path delay. A Max-Log-MAP 

(MLMAP) algorithm is used to implement the turbo decoder with sliding window (SW) 

method to reduce the latency. Low power and area efficient tLlrho decoder implementation is 

achieved by reducing the memory blocks required by the SW method and to store the branch 

metrics used for computing log-likelihood-ratio (LLR). Reliming and reordering methods are 

applied to the computational units for computing the LLR and the state metrics. 

A novel method is proposed to achieve high speed turbo decoder implementation for high 

throughput without significant area and power overheads. The proposed method addresses 

the inherent critical path delay problem in the state metric computation process by 

normalizing the branch metrics. While increasing the maximum speed of the turbo decoder, 

it also saves area and power of the state metric computation Units. 

A two-step soft-output Viterhi algorithm (TSOVA) based turbo decoder is implemented 

exploiting a novel concept for implementing a traceback algorithm (TBA) to achieve low 

area and low power turbo decoder implementations as compared to the MLMAP turbo 

decoder without any significant BER performance degradation. 

Two recon!igurable application specific tLtrbo decoders are implemented to support variable 

constraint length and binary and double-binary turbo codes for targeting various wireless 

communication systems. The reconfigurable turbo decoder architectures are realized by a 

proposed mapping method applied to the process for computing the state metrics and the 

LLR values. It is found that radix-4 based turbo decoder architecture can be exploited to 

implement the reconfigurable turbo decoder for binary and double-binary turbo codes. 
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Chapter 1 

Introduction 

1.1 Motivation 
Since wireless communication systems evolved from an analogue mode to a digital, there 

have been intensive studies of digital signal processing, leading to development of a number 

of digital signal processing techniques to deliver quality of services (Q0S). It is well known 

that digital signal processing has many advantages over analogue [I]. In the past, voice 

communication was the main purpose of the systems. Nowadays, with the developed 

techniques, wireless communication is regarded as a way of not only voice communication, 

but also delivering various services such as text messaging, web browsing, gaming, 

entertaining multi-media. These services are possible due to the development of high 

performance digital signal processing techniques. 

A number of digital signal processing techniques are required to construct wireless 

communication systems. They are needed to transmit and to receive correct information 

without errors, such as those which happen due to the effect of noise and interference when a 

signal is transmitted over the channel. Among the techniques, the channel encoding and 

decoding processes are one of the processes most necessary to avoid the error in current 

wireless communication. Several channel coding techniques are available for the purpose. In 

general, a decoder in receiver systems performs an exhaustive search process to obtain error 

free information. For that reason, it is regarded as one of the highest computational units in 

base station systems [2]. 

Turbo codes introduced by Berrou el LII. [3] can provide a large coding gain through iterative 

process. Their outstanding bit error rate (BER) performance has been paid a lot of attention 

by many researchers, and their contributions have led turbo codes to be adopted as standard 

for channel coding of various wireless communication systems such as 3GPP, IEEE 802.16, 

DVB-RCS, etc. Since then, turbo codes have been researched and their performance in such 
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systems evaluated [4-10]. The use of turbo codes for achieving better QoS is expected to 

continuously increase. However, some obstacles are needed to be overcome to achieve a 

practical turbo decoder implementation, due to one's intensive computation process and high 

latency occurring by an iteration process, which cause of increasing hardware costs and 

reducing data rates, respectively, in addition, the use of different types of turbo encoding 

schemes in the systems can decrease compatibility and reusability of turbo decoders in the 

receivers. This can be addressed by implementing a turbo decoder that can be configured 

different turbo codes. Thus, these issues were the motivation of this thesis, aiming at the 

development of high performance in terms of area, power, and throughput and dynamically 

recoii figurablc turbo decoder VLSI implementations. 

1.2 An Overview of State-of-Art Turbo Decoder 
Implementations 
Since appearing turbo codes, many researchers have studied turbo codes to understand their 

decoding principles and mechanisms in order to achieve better performance in terms of BER. 

Also, implementing practical turbo decoders for wireless communication systems has been 

paid a lot of attention due to their high complexity and latency as mentioned in the previous 

section. In recent, turbo decoders targeting practical applications have been realized on a 

silicon cliii) [11-14]. 

Two algorithms, Maximum a posterior (MAP) and soft-output Viterbi algorithm (SOyA), 

are available to implement a turbo decoder. The MAP algorithm proposed with turbo codes 

[3] has been simplified by the approximation methods called Log and Max-Log MAP 

algorithms [15]. Also, the sliding window method for the MAP based turbo decoders 

suggested by [16] reduces turbo decoding latency. In addition, two-step SOVA presented in 

[17] improves the implementation complexity of the original SOyA. Since these techniques, 

many works implementing practical turbo decoders have proposed suggesting several 

techniques. Among the techniques, the look-ahead computation [18-20], pipelining [II], and 

parallel processing techniques [2 1-28] are proposed for high data throughput turbo decoders 

based on LMAP and MLMAP with SW methods. Also, in [29-32], low power 
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implementations for turbo decoders have recently been investigated for wireless applications. 

On the other hand, a turbo decoder based on SOVA can provide better throughput than MAP 

based turbo decoder, due to low latency. In addition, less complexity of SOVA than the 

MAP algorithm has been attracted many researchers to implement an efficient SOVA based 

turbo decoder [33-42]. In the literature, low power [35-38] and high rate [33-34, 39-41] 

implementations for SOVA have been proposed. 

Furthermore, recent wireless communication systems have adopted several channel coding 

schemes as a standard. Thus, designing highly compatible and flexible decoders for the 

systems is becoming a crucial issue more and more to save the costs of the systems. This 

issue can be addressed by designing a turbo decoder to be configured for the systems. The 

reconfigurable turbo decoders [43-53] recently have been proposed for supporting various 

wireless communication systems. 

1.3 Contributions 

This thesis contributes to development of high performance and reconfigurable turbo 

decoder architecture targeting mobile and portable applications requiring low power 

consumption and area usage. The architecture is realized by using retiming and reordering 

methods that are used to implement efficient modules for computing the state metrics and the 

log-likelihood-ratio. A turbo decoder for high data rate is implemented using a novel 

technique that addresses the inherent critical path delay problem in order to achieve high 

speed turbo decoder. The turbo decoders are implemented based on Max-Log-MAP 

algorithm. For achieving better area and power saving, in this thesis, a novel structure for 

implementing TSOVA based turbo decoder architecture is introduced and compared with the 

Max-Log-MAP based turbo decoders. Also, based on the improved turbo decoder 

architectures, reconfigurable application specific turbo decoders to support various wireless 

communication systems, saving the costs needed for ASIC implementations, are proposed. 

The thesis starts by investigating turbo decoder at high level to verify the decoding 

functionality through the BER performance evaluation. After completing the verification, a 

conventional turbo decoder based on Max-Log-MAP algorithm has been designed at RTL 
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level for the hardware implementation. Parameters for designing the hardware have been 

chosen based on the results of the high level simulations. 

In the conventional turbo decoder architecture, it has been found that memory blocks can be 

reduced by modifying the input data transaction method. This resulted in saving up to 30 % 

in total area and 18 % in total power. Also, retiming and reordering methods for the state 

metric and LLR value computation process achieved saving 2 1 % in area and 29 % in power. 

The high-speed turbo decoder has been realized by using a novel method that normalizes the 

branch metrics to reduce the critical path delay in the turbo decoder architecture. Simulation 

results show that the method can reduce the critical path delay up to 42 % as compared to the 

critical path delay of the conventional turbo decoder architecture. 

After presenting the efficient implementation techniques applied to Max-Log MAP based 

turbo decoder implementations, an alternative algorithm, called two-step soft-output Viterbi 

algorithm (TSOVA), to implement a turbo decoder has been presented. The TSOVA turbo 

decoder architecture has been designed with a novel concept for implementing the traceback 

algorithm (TBA). Simulation results of the architecture have shown that the TSOVA turbo 

decoder architecture can save 72% in area and 52% in power compared to the MLMAP turbo 

decoder architecture. 

To support multi-standard wireless communication systems, two reconfigurable turbo 

decoder architectures have been presented in this thesis. One of these architectures has been 

designed for supporting different constraint lengths from 3 to 5. For this reconfigurable 

implementation, a mapping method is presented for designing the units for computing the 

state metrics and LLR values. The reconfigurable architecture is implemented with a clock 

gating method to minimize the power overhead as the architecture is configured for different 

constraint lengths. 

The other reconfigurable turbo decoder has been designed for different sorts of turbo codes 

called binary and duo-binary turbo codes. It is found that radix-4 binary and double binary 

turbo decoders can share many hardware resources. The design of the reconligurable 

architecture is based on a radix-4 turbo decoder, and can be configured for binary and double 

binary turbo codes. Its hardware performance has been compared with a convention turbo 
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decoder implementation. The comparison of the performance results shows that the 

reconfigurable architecture can save more energy than the conventional architecture. 

1.4 Thesis Contents 
The thesis consists of nine chapters including this chapter. it is organized as follows. 

Chapter 2 reviews turbo codes and their encoding and decoding techniques. Two kinds of 

turbo codes, binary and duo-binary turbo codes, are described with their encoder structures 

for different constraint length. Maximum a posterior (MAP) and SOVA are introduced, in 

the literature, several techniques are proposed to achieve an efficient turbo decoder 

implementation. This chapter reviews and summarizes the techniques, describing how they 

are used to reduce implementation complexity and hardware costs. 

Chapter 3 presents MLMAP based turbo decoder architecture. The architecture is 

implemented with sliding window (SW) method in order to reduce latency and to save 

hardware costs. The architecture consists of three metric computation units, a log-likelihood-

ratio computation unit, a data scheduling unit, and memory blocks. Implementation methods 

and functions of those units are described in detail. Through high level simulations, before 

estimating hardware performance, BER perlrmance of the turbo decoder based on MAP 

algorithm is evaluated with a variety of parameters to verify the turbo decoding algorithm. 

MAP and MLMAP based turbo decoders are investigated to find the optimal parameters for 

efficient hardware implementation of turbo decoders. Following a design flow, the MLMAP 

turbo decoder is implemented on hardware, and the hardware performance in terms of area 

usage, power consumption, and critical path delay is evaluated. The results obtained in this 

chapter are regarded as conventional turbo decoder results. Thus, these results are used as 

reference and compared with the results obtained with proposed turbo decoders presented in 

later chapters. 

Chapter 4 introduces a novel technique to implement high performance MLMAP based turbo 

decoders. Two main techniques are proposed in this chapter. The first is suggested in order 

to achieve high speed turbo decoder implementations for high throughput by reducing the 
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critical path delay. This is realized by addressing the inherent critical path delay problem 

using a novel branch metric normalization method. The second is for saving area and power 

Of the turbo decoder by reducing memory blocks for controlling SW method and storing the 

branch metrics. Moreover, an efficient unit used for the state metric and the LLR 

computational processes is proposed to save the hardware costs. The turbo decoder hardware 

performance is investigated and compared with the conventional turbo decoder results. 

Chapters 5 and 6 present an alternative turbo decoding algorithm called soft-output Viterbi 

algorithm (SOVA) and its hardware architecture. Specifically, two-step SOVA (TSOVA) is 

implemented to evaluate BER and hardware performance. In this chapter, a novel method for 

traceback algorithm (TBA) based TSOVA turbo decoder hardware implementation is 

proposed to save area and power. The TBA based TSOVA turbo decoder architecture is 

described and compared with the register exchange algorithm (REA) based TSOVA 

described in thc literature. The results of the TBA based SOVA turbo decoder are compared 

with the MLMAP based turbo decoder results in terms of area and power. 

Chapter 7 presents a reconfigurable turbo decoder architecture that is implemented based on 

MLMAP algorithm with SW method. The architecture is designed to be used with various 

wireless communication systems. In this chapter, two different reconfiguration turbo 

decoders are proposed. One reconfigurable turbo decoder is designed to support diflèrent 

constraint lengths from K=3 to 5. For the reconfigurable implementation, a mapping method 

for computing state metrics and LLR values is proposed, and a clock gating method is 

applied to saving power consumption as the architecture is configured for K=3 and 4. 

Another reconfigurable turbo decoder that can be configured for binary and double-binary 

turbo codes with fixed constraint length K4. For this architecture, a radix-4 turbo decoder 

for binary turbo codes, showing similarities between turbo decoders for radix-4 binary turbo 

codes and double-binary turbo codes, is investigated and implemented. Thus, the radix-4 

method is exploited to implement the recontigurable turbo decoder. The turbo decoders for 

radix-4 binary turbo codes and duo-binary turbo codes are implemented in ASIC to compare 

the hardware performance with the reconfigurable turbo decoders. The results of the two 

reconfigurable turbo decoders are also compared with conventional ASIC turbo decoder 

implementations. 
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Finally, the thesis is concluded in chapter 8, describing what should be researched in the 

future. 



Chapter 2 

Turbo Codes Encoding-Decoding 
Algorithms and Implementation 
Techniques 

2.1 Introduction 

Turbo codes introduced in [3] provide a large coding gain close to the Shannon's limit [54], 

Thus a turbo decoder can achieve a very low bit error rate (BER), by performing an iterative 

process as shown in [3]. Since then, the principles of turbo encoding and decoding have been 

studied intensively in order to improve BER performance. The authors in [56-60] describe 

the turbo decoding algorithm in detail. A number of contributions to the development of the 

turbo decoder for practical applications has led to the adoption of turbo codes as a standard 

in various wireless communication systems, such as widehand code division multiple access 

(WCDMA) [61], 3GPP [62], Consultative Committee for Space Data Systems (CCSDS) [63], 

IEEE 802.16 [64] (also known as WiMax), and digital video broadcasting returned channel 

over satellite (DVB-RCS) [65]. Specifications of turbo codes required by the systems are 

given in Appendix B and C. 

This chapter introduces turbo encoding and decoding schemes for different constraint lengths. 

First, a turbo encoder used to generate binary and non-binary turbo codes is presented, and 

an encoder structure described. Then, a decoding algorithm for turbo codes is presented, and 

a turbo decoder structure described. Two sorts of turbo codes are widely used in wireless 

communication systems. Two algorithms, maxiimim a posterior (MAP) [3] also known as 

BCJR algorithm [66], and soft output Viterbi algorithm (SOVA) [67], are available for the 

turbo decoder implementations. It is well known that while MAP based turbo decoders 

provide better BER performance, a turbo decoder based on SOVA can be implemented with 

less computational complexity. However, the original turbo decoding algorithms based on 

MAP and SOVA are not suitable for establishing an efficient turbo decoder implementation. 
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Techniques needed to implement an efficient turbo decoder for practical systems are 

reviewed, and the techniques used to improve performance of turbo decoders are described. 

Detailed discussion of fundamental turbo encoding and decoding theory is beyond the scope 

of this thesis. The explanations and discussion set OLIt in this chapter, and in later sections, 

are based on practical implementation, with the aim of understanding the encoding and 

decoding principles. Detailed principles of turbo codes can be consulted elsewhere [68-40]. 

This chapter is organized as follows. Section 2.2 and 2.3 describe binary and non-binary 

turbo codes encoding techniques showing the encoder structures. Two kinds of turbo codes, 

known as binary and non-binary turbo codes, are explained, including how they are 

generated. The interleaving method used in the performance evaluation is described in 

section 2.4. Section 2.5 shows a general turbo decoder structure. The MAP based turbo 

decoding algorithm is presented in Section 2.6. In section 2.7, SOVA is introduced, and how 

it is used for a turbo decoding algorithm described. Techniques for an efficient turbo decoder 

implementation are reviewed in section 2.8. Section 2.9 summarizes the chapter. 

2.2 Encoding Binary Turbo Codes 

2.2.1 Turbo Encoder Structure 

The turbo encoder structure is based on the convolutional encoder structure. Figures 2.1 (a) 

and (b) illustrate conventional encoder structures for convolutional and turbo codes with 

constraint length K=4 and polynomial generators I 3 s  and I 5. The encoding process starts 

after initializing D 0 , D 1 , and D2 , into zero. 

The convolutional encoder of Figure 2.1 (a) generates a code word of two bits, X 1  and X2, in 

a half code rate with constraint length K=4. A convolutional encoder can be implemented 

with different constraint length and code rate depending on the application. 
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Figure 2.1 (a) Convolutional and (b) turbo encoder structures for K=4. 

The turbo encoder structure illustrated in Figure 2.1 (b) consists of two recursive systematic 

convolutional (RSC) encoders and one interleaver (1) with a basic code rate of 1/3. X of the 

code word is the same with input binary bits, and is called a systematic bit. Y 1  and Y2  are 

parity bits produced by 1st and 2nd RSC encoders. respectively. Code rate of the turbo 

encoder can be adjusted by puncturing the code word. Turbo codes generated by the encoder 

are called parallel concatenated convolutional codes (PCCC). Serial concatenated 

convolutional codes (SCCC) [71] also exist. In this work, turbo codes for BER performance 

evaluation are generated by the structure of Figure 2.1 (b). In general, binary turbo codes 

terminate with tail bits. The tail bits make the final state into zero, which is crucial to obtain 

a proper BER performance in the turbo decoding process [72-74]. The tailing bits for the 

simulation are made following the encoding method described in 3GPP [62]. 

Figures 2.2 (a) and (b) illustrate turbo encoder structures for constraint length K=3 and 5, in 

which polynomial generators are 7 F,5 g  and 2335. These encoders also generate block code 

including the tailing bits, which are generated by the same method used in the encoder of 

Figure 2.1 (b). 
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Figure 2.2 Turbo encoder structures for (a) 1(=3 and (h) K=5. 

2.2.2 Trellis State Diagram 

The encoder behaviour can be represented with the help of a trellis state transition diagram 

method. A trellis state diagram represents the encoding process in the state transition paths 

following the input sequences coming to the encoder. The state transition also gives 

information of the output code word. 

Figure 2.3 illustrates the trellis state diagram of the turbo encoder shown in Figure 2.1 (b), as 

an example. The number of states corresponds to 2t  for constraint length K. The state 

transition paths represented in different line styles indicate the code word, X and Y 1  (or Y2) 

generated by the RSC encoder, illustrated in Figure 2.1 (h). Each state is represented by the 

information accumulated in each of the Ds of the encoder, which are initialized to 0 at the 

beginning of every input block. Thus the initial state starts with 0, and then the next state 

depends on the input data. This procedure is performed until the end of the block. As already 

described, the turbo encoders drive the end state to converge to state 0 using the tail bits. 

Therefore. the turbo decoder at a receiver can perform the decoding process with the initial 

and final state information available. 
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Figure 2.3 A trellis state diagram of a turbo encoder for K=4. 

2.3 Encoding Double-Binary Turbo Codes 

2.3.1 Encoder Structure for Double-Binary Turbo Codes 

The turbo encoder in the previous section accepts binary bit data. Non-binary data can also 

be encoded by a turbo encoder that generates non-binary turbo codes [75-76]. It is known 

that non-binary turbo codes are suitable for a higher code rate than 1/2, while binary turbo 

codes are suitable for lower than 1/2 [77-78]. Thus non-binary turbo codes could he used for 

better throughput. This section describes the encoder structure for double-binary turbo codes 

(DTC), which are adopted as a standard encoding scheme in IEEE 802.16 [64] and DVE3-

RCS [65]. 
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Figure 2.4 A double-binary encoder structure for K=4. 

Figure 2.4 illustrates the double-binary turbo encoder (DTE) structure for constraint length 

K=4 with the polynomial generators, I 3 ,s  and l5. As can be seen, two binary bits are used as 

source data for the encoder. The two input bits are then encoded as systematic bits, A and B, 

and two parity bits, C 1  and D 1 . In the same way as the binary turbo encoder, the input bits are 

then interleaved to provide the other parity bits, C 2  and D2  with the second RSC encoder. 

The code rate of the encoder is 1/3. However, it can be adjusted by puncturing the output 

code word. The double-binary encoding scheme used in this thesis refers to the encoder in 

[64] and [65]. 

2.3.2 CRSC Turbo Codes 

The DTC are often called circular recursive systematic convolutional (CRSC) turbo codes 

[77-79], which are terminated without tail bits, unlike BTC. In general, BTC are generated 

with tail bits at the end of the block in order to make the final state same with the initial state. 

In contrast to BTC, the initial state of double-binary turbo codes can be any state, and the 

final state must be the same as the initial state. Thus. CRSC turbo codes seem to be circular 
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Figure 2.5 A diagram of circular recursive systematic codes. 

as illustrated in Figure 2.5. It is assumed that a block of DTC is started at time 0, and ended 

at time k. Since the initial and final states are the same, the DTC can be circulated without 

terminating to a particular state. To generate the circular codes, an additional encoding 

process (called a training process) is needed. At first, DTE starts with initial state 0, and then 

the final state is found when completing the encoding process. DTE starts the encoding 

process again with a state that is determined following the final state found in the training 

process. For this determination, a look-up table is required, as described in [64] and [65]. 

After completing this second encoding process, the initial and final states of the DTC 

become the same. This process is summarized as follows 

I ) Initialize the initial state to 0 (D2=0, D0, D 0 0). 

Encode an input block with the double binary encoder. 

Find the final state of the input block. 

Initialize the initial state into a state determined by the final state foLind in 3) 

14 
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5) Encode the same input block again with the double-binary encoder from the newly 

determined initial state. 

2.4 Interleaving Method 
All interleaving method is used to reduce burst errors caused by transmitting data over tile 

channel, it is already widely used to construct wireless communication systems for achieving 

better performance. Interleaving method and size strongly affect the turbo decoder 

performance [80-82]. A number of interleaving methods have been suggested in order to 

achieve better BER performance. 

In this thesis, a block interleaving method [83] is used to evaluate the BER performance of 

the turbo decoders. Figure 2.6 illustrates the block interleaving method as an example. In this 

case, a square block is employed as the block interleaver. First, the block is filled with a 

series of data, after which the addresses of data in the block are switched. Then, the data are 
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.1128,4,0 	1l5913I _____ 

~13

W67 

 y 	
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7 iiDe - interleaving 12  

 

Figure 2.6 Examples of block (a) interleaving and (b) dc-interleaving. 
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read out from the interleaver in different order from the input order. Dc-interleaving is 

performed in the same way as the interleaving. The dc-interleaved data are hued in with the 

original addresses after completing the dc-interleaving process. 

2.5 Turbo Decoder Structure 

Figure 2.7 illustrates a turbo decoder structure which consists of two soft-input soft-output 

(SISO) decoders, two interleavers (II and 12), and two de-interleavers (DI and D2), as 

introduced in the literature [3]. The turbo decoding process is iteratively performed by two 

SISO decoders via I and D. An increase of the number of iteration gives better performance 

in terms of BER. The performance improvement is saturated after completing several 

numbers of iteration depending on the channel conditions. The input symbols, y.. and Yp'  and 

the extrinsic information, L are used for the turbo decoding process in the 'S ISO Decoder 

I ' that produces log-likelihood ratio, L1 1 . 1 , and a priori value, L 2 . Then the input symbols, y, 

(via interleaver) and and the extrinsic information, L ', , (interleaved value of L 2), are 

used in the 'SISO Decoder 2' that generates L 1  for the 1st SISO decoder and soft-output 

value, L 11 2., which is converted into the output for decoding information after being de-

interleaved by D2. These input symbols, y. ,  and '2.  correspond to the code word, X, Yl, 

V 

Y 

output 

Figure 2.7 A block diagram of a turbo decoder structure. 
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and Y2, generated by the turbo encoder in Figure 2.1. The decoding processes are iteratively 

performed in order to achieve a better BER performance. One iteration is finished when the 

decoding process of the two SISO decoders is completed. The structure in Figure 2.7 is for 

BTC, but it can also be used for DTC with the increased number of input symbol data. 

2.6 Maximum a posterior Algorithm for Turbo 
Decoding Process 

The decoding principle of MAP based turbo decoders is different than traditional decoders 

like Viterbi decoders [84]. While Viterbi decoders, in general, find Maximum-Likelihood 

(ML) paths to determine the hard-decision during the decoding process, MAP based turbo 

decoders compute all state metrics of the forward and backward processes to generate the 

hard-decision. These processes start at the beginning and the ending of the block as 

illustrated in Figure 2.8. Then, soft-output, called LUR, is calculated from all the state and 

branch metrics. 

The MAP algorithm suggested in [67] is modified for use in the turbo decoding process. A 

turbo decoder based on the MAP algorithm generates soft-output from the received symbol 

data. The soft-output contains information on the hard-decision and its reliability value. It is 

represented by log-likelihood ratio (LLR) of ciposteriori probability (APP) as follows 

n (-i ,Sk )ak_l (sk_I )flk (ak) 

L 1 (k—l)=ln 	
r ('k-1 Sk )akI (sk_1 )13k (Sk) 	 (2.1) 

Sk k-1 

=Liri(kl)Li rø(kl) 

where L 1, is the LLR value, )/is  the branch metric, a is the forward state metric, and 13 is the 

backward slate metric at time k and state s. These metrics can be represented in logarithm 

form as follows: 

7(k-1 ,Sk) = ln )1 (k_1 'k) = 1 / 2[LcYckUck + LCypl/(uplk ± L e lu S k] 	(2.2) 
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Figure 2.8 The Forward and backward process flow of the MAP based turbo decoder. 
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where v,k and 1k  are the input symbol for systematic hit (u , k) and parity bit (U,,i*), L. is the 

channel reliability value, which is fixed to 2 in this work, and L1 is the extrinsic info rmation. 

The forward and backward state metric computation process is illustrated in Figure 2.9 for 

(2.3) 

(2.4) 

(2,5) 
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 Figure 2.9 An example of the forward and backward state metric computation processes. 

constraint length K=4. As can be seen, a forward state metric at time k is computed from two 

of the previous state metrics at time k-I and two branch metrics. A backward state metric at 

time k is compLited from two backward state metrics at time k-1-1 and two branch metrics. 

These computation processes are performed for all the states at each time, initializing the 

forward and backward state metrics by equation (2.5) at the beginning and end of the block. 

Then, LLR is calculated from the state and branch metrics obtained by equations (2.2). (2.3), 

and (2.4). It can be represented as follows: 

L 11 . ( k) = In 	exp( 1  (sk_] , s. ) + k-1 (k-1) + Ak (.$)) 

Sk S/c.i 	
- 	 (2.6) 

In 	exp( 70  (Sk_1 k) 	kI (k-1) + / (si.)) 
Sk Sk_I 
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The hard-decision is determined by whether the result of equation (2.6) is positive or 

negative. The extrinsic information for the next decoding process is obtained from the LLR 

after subtracting input systematic symbol and extrinsic information as follows: 

L e2 (k) = L 11 . ( k) - Lcyc (k) Lei  (k) 	 (2.7) 

where L1 is used as an input for the next iteration process, as shown in the turbo decoder 

structure illustrated in Figure 23. 

2.7 Sliding Window Method 

The MAP based turbo decoder performs the forward and backward processes to generate 

LLR, as described in section 2.6. While the forward process starts at the beginning of the 

input block, the backward process starts at the end of the block. These processes cause high 

latency, because LLR can only be generated after completing the forward and backward 

processes. The latency depends on the input block size, which is significantly increased if the 

block size is large. This may result in a lowering of throughput. 

The SW method introduced in [16] can help to solve the latency problem by dividing the 

input block into several sub-blocks (called a "window"). The turbo decoder then performs 

the decoding process. sub-block by sub-block, rather than for the whole block, The size of 

each sub-block can be uniformly determined, regardless of input block size. The SW method 

cannot only reduce the latency, but also reduce hardware costs by reducing the amount of 

memory required to store the forward or backward state metrics which cause delay, before 

computing LLR. Thus it is necessary to achieve an efficient MAP-based turbo decoder 

implementation. In the literature, a number of SW based turbo decoders have been 

implemented to reduce power and area 121, 25, 26, 28], and to achieve high throughput [90-

92]. 

Figure 2.10 shows the backward and forward process flow in the SW method. In this case, 

the forward process is not affected by the SW method. The dummy-backward process starts 

at the end of the second sub-block. This process produces error-free backward state metrics 
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Figure 2. 10 Sub-frame by sub-frame turbo decoding process in the SW method. 

for the backward process of the first sub-block. After completing the dummy-backward 

process, the backward state metrics generated from the dummy-backward process are used as 

the initial state metrics of the backward process. During that time, the forward process is 

performed to generate the forward state metrics, and they are stored in memory until the 

backward process starts. Thus, LLR is calculated from the backward state metrics generated 

when the backward process starts, and the stored forward state metrics. In the process, the 

role of the dummy-backward process is similar to the traceback process in a Viterbi decoder 

[139]. While the traceback process finds an error-free state before starting the decoding 

process for generating a hard decision, the dummy-backward process generates the initial 

state metrics for the backward process, which provides the backward state metrics for LLR 

computation process. 

The data how for the turbo decoding process with the SW method is also illustrated as a 

graph with time and block axes. in Figure 2.11. The solid line without notations indicates 

input data, while the dashed line with 6 represents the dummy backward calculation 

process; the number identities the sub-block. 
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Figure 2.11 A graph of sub-block data with sliding window method. 

As stated above, the dummy backward process of the dashed line is not for computing LLR. 

The backward process for the LLR values is performed on the solid line denoted with ,Band 

L. On the solid line, the backward process and LLR computation are executed 

simultaneously. The forward process (represented by the dashed-dotted line with a), is done 

before executing the backward and LLR computation processes. 

2.8 Soft-Output Viterbi Algorithm for Turbo 
Decoding Process 

SOVA introduced in [67] generates the soft-decision (called soft-output or LLI{) rather than 

the hard-decision, finding the maximum likelihood (ML) paths during the forward process. 

The soft-output is represented by APP, as shown below. 
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P@(k) = +I L 1,. (k) = log 	 = u(k)L(k) 	 (2.8) 
- P(u(k) = + y) 

where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time k. 

In MAP-based turbo decoders, Lir(k) is calculated from the branch metrics, and all forward 

and backward state metrics. However, u(k) and L(k) in equation (2.8) are independently 

obtained from the forward process only, as in a Viterbi decoder. In SOyA, the hard-decision 

can be obtained by using traceback or register-exchange algorithms (TBA and REA) as used 

for traditional decoders [85-88]. On the other hand, the reliability value is obtained from the 

difference between the state metrics after completing the updating process. The reliability 

value, A(sk.  ), before the updating process is represented as follows 

A(sk+]) = 7 	+ (s ) - Ck ,s1) - (k ) 	 ( 2.9) 

where 7  and ã are the branch and forward state metrics, respectively. They can be obtained 

from the same equations (2.2) and (2.3) described in the previous section. Therefore this 

computation process is the same as the forward process of the MAP algorithm. However, in 

SOyA, the reliability value, A(Ski ), is obtained from an absolute valLie of the difference 

between the state metrics, as shown in equation (2.9). These values are accumulated and 

Updated at each state through the survivor and update processes [67] until the final reliability 

value for the soft-output is decided. Then, the extrinsic information for the next iteration 

process can be calculated using the equation (2.7). Thus. SOVA can be used to the iteration 

process for the turbo decoding process, exploiting the soft-output to obtain the extrinsic 

information. 

2.9 Techniques for Turbo Decoder Implementations 

The MAP and SOVA described in Sections 2.6 and 2.7 are not suitable and less efficient to 

implement a turbo decoder in practical systems, because of their complexities. Since turbo 

codes were introduced, much research has focused on the implementation of the turbo 

decoder in order to achieve high performance in terms of area, power, throughput, and so on. 
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This section reviews and summarizes techniques used in the literature to implement turbo 

decoder hardware based on either MAP or SOyA. 

2.9.1 Optimum and Sub-Optimum Algorithms 

Equations described in Section 2.6 for the MAP algorithm are not suitable for an efficient 

turbo decoder implementation because of the non-linear functions. These functions can 

increase computational complexity, which might lead to high area usage and power 

consumption in hardware implementations. This problem can be addressed by using 

Optimum and sub-optimum algorithms suggested in [15]. These algorithms are Log-MAP 

(LMAP) and Max-Log-MAP (MLMAP). The equations (2.2), (2.3), and (2.4) include 

logarithm and exponential functions which can be simplified by an approximation form 

(known as the Jacobi logarithm) represented as follows 

ln[exp(x) + exp(y)] = niax[x, y] + ln[exp(— I x - y Di 	 (2.10) 

where thc second term of the right hand side is the correction term that can be implemented 

with a simple look-up table [81]. The difference between LMAP and MLMAP algorithms is 

determined by the inclusion of this term. While this term is ignored in the MI-MAP 

algorithm, it is implemented in the LMAP algorithm. 

2.9.2 Two-Step SOVA 

Two-step SOVA (TSOVA) suggested in the literature [93] was developed to reduce the 

computational complexity of the original SOVA described in [67]. TSOVA divides the 

decoding process into the survivor and update processes to reduce the complexity. These 

processes are executed simultaneously in the original SOyA. The survivor process performs 

the same function as the traceback process in a Viterbi decoder [85-86] in order to find a 

state for beginning the decoding process to generate the hard-decision. Thus in the TSOVA, 

the survivor process finds the ML path for each state to determine the state at which all ML 

paths converge. Then, the update process starts from the converged state to update the 

reliability values by following the hard-decisions provided by the survivor and competing 

paths. The reliability values are updated at the point where the two hard-decisions of the 
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survivor and competing paths are different. The update rule described in [67] is used for the 

update process. Since the introduction ofTSOVA in [67], it has been used not only for turbo 

codes [94-96], but also for other applications [97-98]. 

2.9.3 Quantization Method 

A fixed-point method is useful to reduce the hardware complexity. The real value 

transmitted over the channel can be represented in an integer value using a fixed-point 

representation method to save the resources needed to implement digital signal processors. 

Ilowever, the fixed-point level can affect both BER performance and hardware costs. This 

represents a trade-off between performance and cost. 

In the literature [99-104], fixed-point turbo decoders have been investigated through the 

BER performance, varying the fixed-point level of soft-input symbol data to find an 

appropriate level without significant performance degradation. This fixed-point can be 

represented as follows [89]: 

Y 	=[2'y+o.] 	 (2.11) 

where y is the symbol data for the turbo decoder, v is the fixed-point representation of they, 

and p is the number of the precision bit in the fixed-point representation. In the equation, 

means 'integer part ofy'. If the total number of bits is L, the final fixed-point value, YL 

Is 

YL 

 ={

min(yfi , 2 	1) 
(2.12) 

max(y, - 2 1 ) 

Thus the maximum or minimum fixed-point value is determined by the total number of bits. 

2.9.4 Metric Wordlength Optimization 

A digital signal processor is implemented with a finite wordlength for input, output, and 

internal metric representations. Thus it is clear that the size of wordlength directly affects 
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hardware costs. An optimized wordlength of the metrics for turbo decoder implementations 

Without degrading BER performance has been considered in the literature [89, 101-104]. 

This optimization is associated with the quantization level described in the previous sub 

section. According to [15, 105], a total of 4-bits is the most suitable wordlength to represent 

soft-input symbol data. When the soft-input representation is determined, the metrics such as 

branch metrics, state metrics, and LLR, can be decided by high level simulation for 

evaluating turbo decoder performance. Larger wordlength than the 4-bits can be applied for 

turbo decoder implementations to achieve better performance, but that leads to increasing 

overheads in hardware performance in terms of area and power. Therefore the optimization 

should be determined by considering the trade-oft between performance and hardware costs. 

2.9.5 State Metric Normalization 

A turbo decoder performs an iteration process in order to produce better performance. This 

process dramatically increases the state metrics during the decoding process. Thus a large 

wordlength is needed to avoid overflow of the state metrics in turbo decoders. However, the 

large wordlength clearly increases the hardware costs of turbo decoders, as described in the 

previous sub section. A Viterbi decoder also suffers from the overflow problem. As a result 

Of using soft-input symbol data for the turbo decoding process, the increase rate of the state 

metrics in turbo decoders is much more rapid than in a Viterbi decoder. Several techniques 

to address this problem for Viterbi decoders have been suggested [106]. The state metrics 

normalization method, which is similar to the methods described in [II, 105, 107], can be 

used to reduce the wordlength of the state metrics, avoiding the overflow and saving the 

hardware costs. The normalization method is realized by subtracting a constant value from 

the computed state metrics when the state metrics are larger than the constant value. Thus the 

use of the state metric normalization can reduce the wordlength and save hardware costs, 

2.9.6 Retirning Method 

In a turbo decoder, the state metric computation unit has the highest computational 

complexity which increases exponentially with the constraint length (K). As a result, the 

number of states grows proportional to 2K  Also, the state metric computation process, 
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known as add-compare-select (ACS), is performed concurrently during the decoding process. 

Thus, the critical path delay of a turbo decoder is known to exist in the ACS unit. The 

retiming method reduces this delay by changing the order of the state metric computation 

process. Similar techniques to reduce the critical path delay are already employed for Viterbi 

decoders [108-110]. According to [34], the retiming method can reduce the critical path 

delay by 29%, but it leads to 99% and 89% overheads in area and power. 

2.9.7 Adaptive Iteration Method 

The iteration process of a turbo decoder corrects the errors introduced over the channel to 

improve BER performance, but this process can cause high latency and energy. In practical 

wireless communication systems, a turbo decoder performs the decoding process frame by 

frame. Each of the frames passed to a turbo decoder could have different error rates. Thus all 

the frames that have different error probabilities could be corrected by applying a different 

number of iterations rather than any fixed number of iterations. 

The adaptive iteration method is used to reduce the number of iterations by observing the 

errors of each frame indirectly during the decoding process, so reducing latency and energy 

consumption. Several adaptive iteration methods have been suggested in the literature [Ill-

113]. One of the methods is to observe the reliability value of LLR, during the decoding 

process. If all the reliability values are larger than the threshold value, the iteration process is 

stopped. In this way the adaptive iteration method can save energy and reduce latency. 

2.9.8 High Radix Architecture 

1-ligh radix architecture has been considered for a Viterbi decoder implementation in order to 

improve throughput of the decoder [114-117]. Although the high radix method increases 

hardware costs and complexities, it can raise throughput without high clock frequency. In 

[118]. a high radix turbo decoder implementation based on LMAP algorithm was introduced 

showing how LLR and extrinsic information for the turbo decoding process are obtained 

from the high radix turbo decoder architecture. Several papers [11, 20] show the turbo 

decoder implemented with the high radix architecture in order to achieve better throughput. 
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2.9.9 Stopping Criteria 

A turbo decoder performs an iteration process to achieve better performance in terms of BER. 

However, the iteration process causes of high latency and energy consumption. A stopping 

criterion is to address the issues by stopping the iteration process, which can prevent 

unnecessary computation and decoding delay. Thus, one can improve throughput rate and 

save energy consumption of turbo decoders. In [119-121], a method based cross entropy 

between the distributions of the estimates at the output of the decoders at each iteration has 

been proposed. In recent, several techniques for the stopping criteria [122-126] for an 

efficient turbo decoding process have been suggested. In the criteria, the most important 

thing is to minimize the additional algorithm used to stop the iteration without degrading the 

decoding performance. 

2.9.10 Parallel Implementation 

A throughput rate is always one of the most important issues in wireless and wired 

communication systems. One of the ways for achieving high throughput is to implement a 

turbo decoder in a parallel scheme. In [127-129]. a parallel scheme for high throughput turbo 

decoder implementations has been proposed showing hardware overheads. There are several 

issues to implement parallel turbo decoders. They are designing interleavers [130-134] and 

parallel architectures [135-1 36] for parallel processing. Implementing a turbo decoder in 

parallel clearly leads to an increase of the hardware costs. Thus, there must be trade-off 

between throughput and performance in terms of area usage and power consumption. The 

performance overhead led by the parallel scheme should be acceptable in the systems 

requiring turbo codes. 

2.10 Summary 

This chapter reviewed turbo encoding and decoding principles. Two sorts of turbo codes 

were introduced. The MAP based and SOVA based turbo decoding algorithms, and how they 

generate soft-output, were described and explained. For practical turbo decoder 
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implementations in hardware, the algorithms need to be modified in order to reduce their 

computational complexities. Several techniques for the turbo decoder implementations were 

described, including their methods for achieving high performance and efficient hardware. 

These techniques are utilized to implement a turbo decoder to be presented in later chapters. 
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Chapter 3 

Max-Log-MAP Based Turbo Decoder 
Hardware Architecture 

3.1 Introduction 
Many researchers have been paying a lot of attention to the outstanding BER performance of 

the turbo decoder. Ilowever, the use of the turbo decoder was expected to increase the costs 

of receiver systems, as the authors in [3] stated that the turbo decoder's complexity is twice 

that of the Viterhi decoder. In general, a decoding processor is regarded as the most 

exhaustive processor in the systems. For this reason, the turbo decoder has been challenged 

by a number of researchers to reduce the computational complexity and thus save hardware 

costs. Among the many works described in the previous chapter, the development of Log-

MAP (LMAP) and Max-Log-MAP (MLMAP) [15] contributes to a significant reduction in 

this complexity, and they are widely applied to turbo decoder implementations. 

Another issue in turbo decoder implementations is that the iterative process increases the 

data output latency, which can lower the data throughput. The turbo decoder provides the 

LLR alter computing all the forward and backward state metrics, as described in the previous 

chapter. This leads to a large latency, and also requires large amounts of memory to store 

either forward or backward state metrics until completing one of the state metric 

computation processes. Thus, the latency and memory size are dramatically increased, 

depending on the number of iterations and the block size. The sliding window (SW) method 

proposed in [25] can address the latency problem. In [137-138], several turbo decoding 

algorithms are compared in terms of implementation complexity. The results show that 

MLMAP with the SW method is the most suitable algorithm for the turbo decoder 

implementation. 

This chapter presents MLMAP based turbo decoder architecture with the SW method, which 

is similar to the conventional SW based MLMAP turbo decoder architecture. The 
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architecture consists of memory blocks for controlling data input and output through the SW 

method, metric computation units (MCU) for the branch and state metrics, an LLR 

coniputation unit (LCU) for obtaining LLR and the extrinsic information, and memory 

blocks for storing input data and the metrics. This chapter discusses a detailed 

implementation method for the units and the design flow for the turbo decoder VLSI 

implementations, in order to evaluate their hardware performance in terms of area, power 

and critical path delay for the maximum speed. Before implementing the MLMAP turbo 

decoder, the turbo decoder is investigated at high level using Matiab TM  to verify its 

functionality. For the investigation, various conditions and parameters are applied for 

evaluating BE R performance of the turbo decoder. 

The chapter is organised as follows. In Section 3.2, the MLMAP turbo decoder architecture, 

as well as the components incorporated into the architecture, is described in detail. Section 

3.3 shows the turbo decoder performance results at high level. Hardware simulation results 

are discussed in Section 3.4, and Section 3.5 summarizes the chapter. 

3.2 Max-Log-MAP and Sliding Window Method-
Based Turbo Decoder Architecture 

3.2.1 Max-Log-MAP Soft-Input Soft-Output Turbo Decoder 
Architecture 

Figure 3.1 illustrates the MLMAP turbo soft-input soft-output (SISO) decoder architecture 

implemented with the SW method described in the previous chapter. The architecture 

consists of a data scheduling unit (DSU) for managing data input and output following the 

SW method, three metric computation units (MCU) for the branch and state metric 

computation; an LLR computation unit (LCU) for generating the hard decision and the 

extrinsic information, and memory blocks for delaying the soft-input (DS), the branch 

metrics (DB), the forward state metrics (DF) and the decoded information (DL). These 

31 



Chapter 3 Max-Log-MA P based Turbo Decoder Hardware Architecture 

CNT1 I 	I CNT2 

DMCU 

Soft 	 SmC 

input 

BMCU 

DB 

Fl FOO - 

	

LCL 

SmC 	 Soft 
output 

DSU 	 FMCU 

Figure 3.1 The Max-Log MAP turbo SISO decoder architecture, 
implemented with the SW method. 

memory blocks are realised by a last-in first-out (LIFO) memory block. Two counters (CNT 

I and 2) give the DSU and each MCU the count numbers that indicate the beginning and end 

Of the input and sLib-block for the SW process. 

As shown in Figure 3.1, the soft-input data is fed into the DSU and then it is distributed to 

each of the MCUs through first-in first-out (FIFO) and last-in, last-out (LIFO) blocks, which 

have the same depth with a window size of 40. A dummy-backward MCU (DMCU) 

computes the backward state metrics to provide the initial state metrics to backward MCU 

(BMCU). The forward state metrics are computed in forward MCU (FMCU), which are then 

delayed by DF before input to LCU. Until the backward state metrics generated by BMCU 
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are passed to LCU. LCtJ calculates LLR from the branch metrics delayed by DB, the 

forward state metrics delayed by DF, and the backward state metrics computed by BMCU. 

After obtaining LLR, the extrinsic information for the next decoding process is computed by 

subtracting the soft-input delayed by DS from the computed LLR. 

The output of LCU consists of nine bits, of which MSB is the hard decision and the rest is 

the extrinsic information. The DL converts the reverse ordered output into the right order. In 

the following subsections, a detailed structure and implementation method for the 

components is described. 

Before designing the MLMAP turbo decoder in hardware, parameters for representing the 

metrics are determined from high-level simulation results described in the next section. 

Table 3.1 summarizes the wordlength for each parameter for MLMA1 3  decoder 

implementation. The input symbols and the extrinsic information are represented with four 

bits and eight bits, respectively. On the other hand, the branch and state metrics are 

represented with eight bits and nine bits, respectively. The 1- and 0-bit LLR values for 

computing LLR are represented in 10 bits. All the parameters are represented in 2's 

complement. These parameters are similar to ones used in the literature [15, 104]. 

Table 3.1 Parameters used for the MLMAP turbo decoder hardware implementation. 

Metrics Wordlength 

Input Symbols 4-bits 

Extrinsic information 8-bits 

Branch Metric 8-bits 

Forward and Backward State Metrics 9-bits 

LLR 1- and 0-bit 10-bits 
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3.2.2 Metric Computation Unit 

Figure 3.2 illustrates the MCU structure, which consists of  branch metric unit (BMU) and a 

state metric computation unit (SMCU). The MCU structure is used to implement the three 

MCUs incorporated in the MLMAP turbo decoder architecture, as illustrated in Figure 3.1. 

They can be implemented in a similar way. In the MCU, BM U computes the branch metrics 

(BM) from the soft-input data. SMCU, which consists of a number of parallel add-compare-

select-normalization (ACSN) units, calculates the state metrics (SM) from the BM and 

previous SM values. The number of ACSN units incorporated into SMCU is gi ven by 2'-1 

for constraint length K. 

MCU 	 Recursive SM 

SMCU 

ACSNO 

ACSN1 

Soft-input 	BMU 	 - —4 

BM 	ACSN2 

ACSN2K1 

9 UT 

Figure 3.2 The metric computation unit structure. 

3.2.2.1 Branch Metric Unit 

BMU calculates the branch metrics from the soft-input symbol data (y and ) and the 

extrinsic information (L a) provided by the previous decoding process, which is initialised to 

zero at the first decoding process. In the turbo decoding process, four branch metrics are 

needed to compute the state metrics. 
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Figure 3.3 The branch metric unit structure. 

Figure 3.3 illustrates the BMU structure, which consists of four adders. The BMU generates 

two branch metrics, yj i  and ho  (the subscripts of y represents the code word of systematic 

and parity bits generated by a turbo encoder). The two branch metrics are negated to obtain 

the rest of the branch metrics, o  and Y01 , for computing the state metrics. The BMU does not 

depend on the constraint length, and can be used in turbo decoder implementations with 

different constraint lengths. 

3.2.2.2 Add Compare Select Normalization Unit 

Most of the MCU area and power is clearly occupied and consumed by the parallel ACSN. 

The state metric computation process can be described by the trellis state diagram, as shown 

in the previous chapter. Figures 3.4 (a) and (b) show the trellis diagram of the forward and 

backward processes for K = 4. as an example. Each of the paths in the figure is represented 

in a different line style that corresponds to the code word, By initialising the forward and 

backward state metrics following the equation (2.5) in Chapter 2, next state metrics are 

calculated from the two branch and two state metrics represented by the transition paths, as 

shown in Figure 3.4. This procedure is recursively performed for the input block. 

The structure of ACSN used in the turbo decoder implementation is similar to an ACS 

structure used in Viterbi decoders [114], except the state metric normalization process. In 
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Figure 3.4 The trellis state transition diagrams of (a) the forward and 
(b) backward processes. 

turbo decoder process, the state metrics could increase more rapidly than in a Viterbi decoder, 

due to the use of soft-input symbol data. Therefore; a large wordlength is required for the 

state metrics to avoid overflow; however, this may lead to large area and power overheads. 

Thus, the state metrics normalization process is necessary for an efficient SMCU 

implementation that has no overflow. The normalization process is performed by subtracting 

a constant value from all state metrics, after calculating the state metrics in every cycle, 

when all the computed state metrics are larger than the constant value [104]. 

Figure 3.5 illustrates the structure of the ACSN used for calculating the forward state metric 

of state 0 at time k, as an example. Two branch metrics generated by BMU, y o (k) and 711 (k). 

and two state metrics of states 0 and I, (k) and a 1 (k), are inputs of the ACSN. A pair of 

branch and state metrics is added using each of the adders (A), and then the results of each 

adder are compared to select (CS) the maximum between them. The comparison process is 

carried out by using an adder and a multiplexer (MUX). The most significant bit (MSB) of 

the adder output is used as a control signal for MUX, which selects the maximum one from 

its two inputs. The selected maximum value is used for next state metric computation 

process and for computing LLR after completing the normalization process (N). For the state 

metric normalization process, the selected maximum value is compared with a constant value 
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Figure 3.5 An example of the add-compare-select-normalization structure for 
computing the forward state metric at state 0. 

(CONST) to determine whether the maximum value is larger than CONST or not. If the 

maximum value is larger than CONST, CONST is subtracted from the maximum value. If 

the maximum value is not larger than CONST, the maximum value becomes the state metric. 

c(k+ 1), without the normalization process. 

The ACSN process is concurrently performed during the turbo decoding process, using the 

output SM as the input of the ACSN itself recursively. Thus, the whole ACSN process must 

be completed in one clock cycle concurrently, due to the recursive SM input to ACSN itself. 

In this case, the critical path delay of the MLMAP turbo decoder is determined by the ACSN 

[1 3 ], which can be approximated as follows: 
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dAcsN = 3Xta +2xt 11 , 
	 (3.!) 

where t,, is the delay of the adders used in A. C and N processes, and t is the delay of the 

MUX. This ACSN critical path delay, dACSN, determines the maximum speed of the turbo 

decoder for achieving maximum throughput. Other modules - such as BMIJ and LCU, 

which are described in the next subsection - can be implemented with pipelining method, to 

reduce the path delay. ACSN can also be implemented with pipelining method to reduce the 

delay. In this case, however, the pipelining for ACSN does not help to improve the 

throughput, since the output is also delayed by the number of pipelined stages oIACSN. 

3.2.3 Log-Likelihood Ratio Computation unit 

Aller obtaining the branch metrics and all the forward and backward state metrics, LLR can 

he calculated. Before computing the LLR, the computation process of the I - and 0-bit LLR 

values, which are the numerator and the denominator in equation (2.1), respectively, can be 

described by the trellis state diagram illustrated in Figures 3.6 (a) and (b). The figures 

illustrate the state transition paths denoting the code words in different line styles to 

distinguish the computation of 1-bit and 0-bit LLR (Liri and L,,) For constraint length K = 4. 

00 01 -- 10 	11 

0. 0s.. 

1 	. i 
2 	S.. ... 2 	• • 
3 3 	'- 	------... 

6 6 
7 7 	._.._.._.._.._.._. 

a(k) 
 

)6(k+ 1) a(k) 8(kH-1) 
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Figure 3.6 The trellis state transition paths for computing (a) L 1  and (b) Li,-i. 
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For instance, Figure 3.6 (b) shows the paths with the code words of 11 and 10, in which the 

first digit. L, implies the systematic bits. Thus, Liri  values are calculated from the two-branch 

metrics (,vi  1 ,  ) and the forward state metric at time k, c(k), and the backward state metric at 

time k+l, ,8(k+I), indicated by the ends of the paths shown in Figure 3.6 (b). In the case of 

K = 4, 8 Liri values are computed, and then the maximum among them is selected to 

calculate the LLR. In the same way, the maximum L,, value can be obtained using the 

diagram shown in Figure 3.6 (a). Thus, the LLR value is obtained by subtraction as follows: 

Lir  = 1nax[Lir10 ...L 1117  I - max[L,00 ...L . I 	for 	K = 4 	 (3.2) 

Figure 3.7 illustrates the LCU structure for calculating the LLR and extrinsic information. It 

consists of a LCUO, a LUCI and adders. The LCU inputs are the 2' numbers of the forward 

and backward state metrics for constraint length K, and the four branch metrics. LCUO and 

LCU I compute the L 1  and Liri values. Then, L 1, is obtained by subtracting L,,.0  from L 1,. ] . 

After that, the extrinsic information, L. is obtained by subtracting the soft-input from Lj r . 

The structure illustrated in Figure 3.8 is commonly used to implement the LCU I and LCUO 

with different input metrics. The structure, given as an example, generates Liri for constraint 

FS 

BSN 

BM 

Soft-input 

L ir  

L e  

Figure 3.7 The LLR computation unit structure. 
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Figure 3.8 The LCU I structure for constraint length K = 4. 

length K = 4. In this structure, eight numbers of the forward ( - a 7) and backward (fib - ,87) 

state metrics and two branch metrics (y1 - are input to LCU I . The first two adder rows 

generate eight L1,. 1  values, then the maxiMUrn among them is determined by repeating the 

compare-select (CS) processes. After completing the CS process, Liri  is finally output from 

the LCtJI. 

The critical path delay of the LCU I (or LCUO) structure can be given as follows: 

dLCUI = 5xt 5  +3xi, 	 (3.3) 

where t,, is the delay of the adder and t is the delay of the MUX. As can be seen, dLCLJI  is 

larger than the delay of ACSN (dAcsN ) given by equation (3.1). In contrast to ACSN, 
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however, this delay can be reduced by using pipelining method. The number of pipelining 

stages varies with the constraint length, K, due to the different number of CS processes 

involved. 

3.3 High Level Simulation Results 

3.3.1 Simulation Specifications and Systems 

The turbo decoder simulation model for high level simulation can be represented as follows: 

y(k) = x(k) + n(k) (3.4) 

where x(k) is the encoded data for transmission, n(k) is the additive noise, and y(k) is the 

received data for the decoding process. Figure 3.9 illustrates a block diagram for the 

simulation, The binary source data are generated at random. The turbo encoder encodes the 

source data, and then, the encoded data are modulated in the binary phase shift keying 

Source I 	I 	Turbo 
Bit Stream 	I 	Encoder H Modulator 

AWG N 

I 	Turbo 	 De- 
Error results 	 )i 	

Decoder I 	I modulator 

X(k) 

y(k) 

Figure 3.9 A block diagram of a test system for turbo decoder BER evaluation. 
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(BPSK) modulation method. The modulated data are transmitted over the additive white 

Gaussian noise (AWGN) channel model. After the received data are demodulated, they are 

decoded by the turbo decoder. The decoder output is compared with the source data to 

evaluate BER performance. 

In the simulation, turbo codes are generated for constraint length K=3, 4, and 5 using the 

encoder illustrated in the previous chapter. It is assumed that an additive white Gaussian 

noise (AWON) channel model with mean 0 and variance 1, code rate 1/3, and a block 

interleaver of 1024 bits with three tail bits are used. 

3.3.2 Performance for Varying Block Size 

There are various factors that affect the BER performance of a turbo decoder. One of them is 

the block size for the turbo decoding process, which in turn effects the interleaving. When 

the block size is large, the distance between two neighboring symbols can be increased by 

using the interleaving process. This can help to reduce the burst errors. In contrast, a small 

I .F+O() 

I,E-oI 

1. E-02 

1. E-03 

1. E-04 

1.13-05 
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0 	0.5 	1 	1.5 	2 	2.5 	3 

IfN, 

Figure 3.10. BER performance for different size olblock interleaver. 
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block size decreases the interleaving effect as a result of the reduced distance, and provides a 

lower BER performance than a large block size. 

Figure 3.11 shows the BER performance results for different block sizes, 64. 256, and 1024. 

The simulation results are based on K4 MAP based turbo decoder with the parameters and 

conditions described in the previous subsection, after completing 8 iterations for each block. 

A block interleaving method described in Section 2.4 of Chapter 2 was applied for 

performing the simulations. As can be seen, the results show that the increase in block size 

improves the turbo decoder BER performance. In next simulations, the 1024 size block 

interleaver is used to evaluate BER performance of the turbo decoder. 

3.3.3 Fixed-Point Implementation 

Following the fixed-point representation method described in the previous chapter, BER 

performance of the MLMAP based turbo decoder for constraint length K=4 was investigated 

by varying the number of total and precision numbers of tile bits. The parameters and 

simulation conditions described in Section 3.4.1 were used. Figures 3.11 (a), (b), and (c) 

illustrate the BER performance results after completing 8 iterations for (4.1), (4.2), and (4.3), 

respectively, in which 4 is the total bit number and 1, 2, and 3 are the precision bit numbers. 

In the simulation results, (4.2) provides the best BER performance of the fixed-point 

representations. For further investigation, the simulations were repeated with increasing the 

total number of bits to 5. Figure 3.12 shows the BER performance results of the 8th iteration 

for (4.1), (4.2), (4.3), (52), and (53). In the results, (53) provides tile best BER performance 

followed by (5.2). 1-lowever, it can be seen that the performance degradation of (4.2) is not 

significant as compared with the performance obtained from the fixed-point implementation 

with a total of 5-bits. Therefore, in this work, the soft-input will be represented with the (4.2) 

Fixed-point representation scheme. 
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Figure 3.11 BER performance for different fixed-point representations. (a) (4. 1), (b) 
(4.2), and (c) (4.3). 
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Figure 3.12. BER performance comparison for different fixed-point representation. 

3.3.4 Performance with Varying Window Size 

It is well known that the BER performance of the SW based MLMAP turbo decoders 

depends on the window size. If the window size is small, the state metrics computed by the 

dummy-backward process could be wrong, which can degrade the performance. If the 

window is large enough, there is no performance degradation, but latency could be increased. 

The BER performance has been evaluated by varying the window size for different 

constraint lengths. The simulation was carried out with the same conditions used in the 

previous sub sections. Figures 3.13 (a), (b) and (c) show the BER performance results when 

the window size was varied, after completing eight iterations for constraint length K = 3, 4 

and 5. respectively. The simulation results were obtained for window sizes from 4 to 20, 

with a step of 4, and 40. As can be seen, the performance is almost saturated at the window 

size of 12. 16 and 20 for K = 3, 4, and 5. respectively. These results show that the window 

size for achieving proper BER performance is strongly related to the constraint length. 
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Figure 3.13 BER performance upon varying the window size: (a) K = 3, 
(b) K4 and (c)K=5. 

In this work, the window size is determined by considering of the minimum block size of 40 

specified for turbo codes in 3GPP [62]. 
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3.3.5 BER Performance Comparisons 

This subsection shows the turbo decoder BER performance results for constraint lengths 

K=3, 4, and 5. Two turbo decoders, based on MAP and MLMAP algorithms, have been 

implemented in order to investigate the performance difference between the two algorithms. 

MAP and MLMAP turbo decoders were simulated with both real and fixed-point values. 

Thus, the BER simulation results can reflect the performance gap between the algorithms 

and also the representation methods, as well. 

Figures 3- 14, 3.15, and 3.16 illustrate the BER simulation results for constrain length K=3, 4, 

and 5, respectively, after completing I, 2, 4, and 8 iterations. As in the previous subsections, 

the parameters described in Section 3.4.1 were used in these simulations. The results show a 

feature of the turbo decoder performance that the performance improves with increasing the 

number of iterations. In the figure, the real value MAP and the fixed-point MLMAP based 

turbo decoder results are represented in dashed and solid lines, respectively. As expected, 
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Figure 3,14 BER performance comparison between real and fixed-point values for K=3 

47 



1. E-06 

0 	0.5 	1 	1.5 	2 	2.5 	3 

EbINO 

Figure 3.15 BER performance comparison between real and fixed-point values for K=4. 

l.E+00 

I EM] 

1.13-02 

1.13-03 

1.E-04 

I.E-OS 

- 

0  

S:\N:I:IEEEE ~A ~2ntd  Fixed - -  -  ••..• 	
. 	 - 	- 	- 	- 	-. 	 - 

value 
_ 

0--4th 
8th 

-- 	- 
Real ... 	 -- 2ndE=EEr: - Eu - = 
value o 	4th  - 	- 

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture 

1. E±00 

• E-0 I 

I.E-02 

l.E-03 
	

Ist 	 - - - - - - - - - - - 

Fixed 	2nd  

1.13-04 
	value —*--4th 	 - 

I St 

I.E-OS -  Real . . . Q -- 2nd --- -- 
value A 401 	::3 

- 	---0-80, -  ---------- 
I E-06 

0 	0.5 	1 	1.5 	2 	2.5 	3 

13/N0 

Figure 3.16 BER performance comparison between real and fixed-point values for K=5. 
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the real value MAP turbo decoder provides better performance than the fixed-point MLMAP 

based turbo decoder, due to the approximation. However, as can be seen, there is no 

significant performance improvement after completing 4 iterations. The simulation results 

show that the fixed-point representation and MLMAP algorithm lose a coding gain of around 

0.25. 0.15, and 0.15 in Eb/No at a BER of for K3, 4, and 5, respectively, after 

completing 8 iterations. 

3.4 Hardware Design and Results 

3.4.1 Turbo Decoder Hardware Design Flow 

This section shows the design flow utilised in this thesis for the turbo decoder hardware 

implementation. Figure 3.17 shows high level simulation flow for verifying turbo decoding 

algorithm. It starts by determining the specifications of the turbo encoder and decoder. At 

this stage, the algorithm used to implement the turbo decoder is verified by evaluating its 

BER performance. This step is important in verifying the functionality of the turbo decoder. 

Figure 3.18 illustrates how the turbo decoder hardware is designed, verified, and evaluated in 

this thesis. The hardware is designed at a register transfer level (RTL) using the Verilog 

hardware description language (1-IDU). Some of the parameters needed to design optimised 

hardware are provided by high-level simulation results. The hardware is then synthesised 

using a standard CMOS technology library. 

Gate-level netlist generated by the synthesis process are simulated with the timing 

information to verify the functionality. After completing the synthesis, the power 

consumption of the hardware can be estimated by using the capacitance obtained from the 

synthesis and the switching activity generated during the netlist simulation. The physical 

synthesis process for generating layout can then be performed with the netlist and the 

information generated by the synthesis process. The layout of the hardware is produced 

through floor planning, placing and routing processes. After completing the layout 

generation, the hardware power can also be estimated in the same way with the gate-level 

simulation, 
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Figure 3.18 The design flow for the turbo decoder hardware implementation. 
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3.4.2 Hardware Test Environment 

A test system for the MLMAP turbo decoder hardware functional verification has been built 

using MatiahTM and Verilog HDL. Figure 3.19 illustrates the test system for the verification. 

The data fed into the testbench for hardware verification is generated in Matlab TM, as used in 

the high-level simulation described in Section 3.4. The source bits generated at random are 

encoded, and then the symbol data transmitted over the AWGN channel is converted into the 

fixed-point representation, so that it can be provided to the testbench. At the same time, the 

interleaver and deinterleaver addresses generated by the interleaver and deinterleaver address 

generators (IAG/DAG) are also sent to memory in the testbench. The turbo encoders for 

constraint lengths K = 3, 4 and 5 described in Chapter 2 are used, and the parameters for the 

data generation are the same as used in Section 3.4. 

The testbench for the MLMAP turbo decoder hardware is designed using Verilog l-IDL. It 

incorporates the memory blocks for the interleaver and deinterleaver with the input data. The 

sequences for the turbo decoding process and the number of iterations are controlled and 

generated by the testbench, which can be used not only for the RTL-level simulation, but 

also the gate-level simulation. 

Testbench 
RTL/Gate-Level 

I nterieaver/ 
Deinterleaver 

Turbo 
Decoder 

Figure 3.19 The test system for the MLMAP turbo decoder architecture. 
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3.4.3 Evaluating Power 

The sources of power consumption in CMOS circuits are switching, short-circuit and leakage 

powers [140-141]. The switching power is the power consumed in charging and discharging 

the load capacitance; it accounts for most of the total power consumption in the circuits. The 

switching power, Pr ', can be represented as follows: 

Ivw = aS)V C/OOdVdf 	 (3.4) 

where V&j  is the supply voltagc;f is the clock frequency; Cl,,,, , is the load capacitance of the 

Pte; and a., is the switching activity factor, which is defined as the average number of gate 

transitions ( I -> 0 or 0 -> I ). 

3.4.4 Post-Synthesis Results 

As shown in the design flow in Figures 3.17 and 3.18, the MLMAP turbo decoders for 

constraint lengths K = 3, 4 and 5 were designed at RTL level using Verilog HDL, after 

completing the high-level simulations discussed in the previous section. The correct 

functionality of the Verilog code at RTL level was tested with Cadence Verilog-XL TM , with 

the testhench shown in Figure 3.19. Then, the turbo decoder was synthesised using the UMC 

0.1 Stim standard CMOS library with Synopsys DesignCompiler TM  to obtain gate-level 

netlists. These gate-level netlists were simulated with Cadence Verilog-XL Th1 , using the 

timing data produced by the synthesis. During the gate-level simulation, the switching 

activities of all the circuit nets of the MLMAP turbo decoder hardware were captured to be 

used for the power consumption using Synopsys PowerComplier TM. These processes were 

carried out at a clock frequency of 50 MHz. 

Figures 3.20 (a) and (b) illustrate the total and breakdown area and power results of the 

MLMAP turbo decoders, respectively, for the constraint lengths K = 3, 4 and 5. In the graphs, 

the primary and secondary y axes show results for individual components and the whole 

design, respectively. As can be seen, the increase in total area and power is not linear with 
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the increase of constraint length, K. This could be explained with the exponential increase of 

the number of states given by 21. 

The area results show that MEM occupied the most area with 80%, 74% and 64% for K = 3, 

4 and 5, respectively. This is followed by SMCU, LCU. and BMU. On the other hand, the 

power results show different aspects than the area results. The power consumed by MEM is 

equal to or less than the total power of SMCU, LCU, and BMU for K3, 4, and 5. As K 
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Table 3.2 The MLMAP turbo decoder hardware performance results for constraint lengths 
K = 3, 4 and 5. The power consumption results are evaluated at a clock frequency of 

50M Hz. 

K3 K4 KS 

Area 
(Mill  

Power 
(mVV) 

Area 	1 
(mm2 ) 

Power 
1.W) 

Area 
(mm2 ) 

Power 
(mW) 

BMU 0,014 1.21 0.014 1.21 0.014 1.20 

SMCU 0.071 5.9 0.137 10.54 0.268 22.46 

LCU 0.049 4.32 0.083 7.35 0.180 15.65 

MEM 0.553 12.51 0.698 15.66 0.988 22.99 

Total 0.689 23.95 0.934 34.781.452 62.32 

increases, the power of SMCU and LCU starts to dominate the overall power consumption, 

due to increased computational complexity. 

The critical path delay of each MLMAP turbo decoder architecture was investigated, and the 

results are depicted in Table 3.3. In all cases, the critical path delay was in the ACSN unit, 

whose structure does not change with different constraint lengths. Although the critical path 

delay for K = 3 is the shortest, there is no significant difference among the results. It can be 

assumed that the differences were led by the different input and output interfaces of the 

SMCLJ for the different constraint lengths. 

Table 3.3 The MLMAP-based turbo decoder critical path delay for 
constraint lengths K = 3, 4 and 5. 

K=3 K=4 K=5 

Critical path delay 4.49nsec 5.02nsec 4.94nsec 
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decoder architecture for K = 4. 
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3.4.5 Post Layout Results 

The gate-level netlists and timing information obtained from the synthesis were used to 

generate the layout of the MLMAP turbo decoder by using Cadence Soc EncounterTM. 

Figures 3.21 (a) and (b) show the floor planning and place routing results, respectively, for 

K = 4. Table 3.4 shows performance results comparing with stale-of-art turbo decoder 

implementations. In the table, the area results are core area without including an area of pads 

for inputs and outputs. The total number of gates for each turbo decoder is equivalent to the 

total number of NAND gates. Each throughput of the turbo decoders is estimated after 8 

numbers of iterations. The turbo decoder hardware performance in terms BER has been 

justified by comparing its outputs with the high level simulation results. It also shows that 

the power consumption results of the turbo decoders are similar to the results shown in Table 

3.2. 

Table 3.4 Performance comparison with state-of-art turbo decoder implementations. 

This work 
[11] [13] [12] 

K=3 K=4 K=5 

Area (rnn; 2_)7 0.69 0.93 1.45 1.5 14.5 10 

No. olgates 59K 80K 124K 150K 410K - 

Max. Speed 200MHz 180MHz 180MHz 285MHz 145MHz 352MHz 

Throughput (Mb/s) 25 22.5 22.5 - 24 352 

Technology 0.18tim 0.18iim 0.18ijm 0.18im 0.1811111 0.13tim 

Note - - - K=3 
K=4 

Radix-4 
K=5 
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3.5 Summary 
This chapter presented MLMAP-based turbo decoder hardware architectures with the SW 

method for K = 3. 4 and 5. In the architecture, the SW method was realised by using LIFO 

and FIFO blocks. A detailed structure of the decoding process units incorporated in the 

architecture was described and the implementation method and the functionality for the 

decoding process were explained. In the simulation results, the turbo decoder performance in 

terms of BER was examined in various ways to justify the algorithms and other factors that 

affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based 

turbo decoders have been compared in terms of BER performance in order to observe the 

performance differences between the two turbo decoder implementations. After completing 

high level simulations, the MLMAP turbo decoder architectures have been designed using 

Verilog HDL and then synthesised using UMC 0.18iim standard CMOS technology. The 

area, power, and critical path delay results of the MLMAP turbo decoder architecture for 

different constraint lengths were estimated, and the total number of gates was obtained after 

generating the layout. In this thesis, the hardware results obtained in this chapter are 

considered consistent with those of a conventional MLMAP turbo decoder, and so the results 

are compared with those of proposed turbo decoders described in later chapters. 
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Chapter 4 

High Performance Max-Log-MAP 
Turbo Decoder Architecture 

4.1 Introduction 
This chapter presents high performance MLMAP based turbo decoder architecture in terms 

of low power, efficient area and high speed for high throughput. In MLMAP turbo decoder 

VLSI implementations, power and area are always one of the most important issues, if they 

target portable and mobile equipment operated by a battery. Many works have tried to 

achieve low power and area efficient turbo decoder implementations 1101-105, 107]. 

Moreover, another important issue in wireless communication systems is throughput to 

support a variety of services requiring high data rate, such as multi-media broadcasting. A 

high throughput turbo decoder can be realized by the turbo decoders in a parallel scheme 

[106, 142-147]. However, parallel implementations might lead to large area and power 

overheads, and would not be suitable to be employed by portable and mobile systems. 

Without these overheads, one of the ways to achieve high throughput is to implement a high 

speed turbo decoder. The literature, however, considers high speed turbo decoder 

implementations less than parallel implementations. 

This chapter presents a novel method for achieving high speed turbo decoder 

implementations to provide high throughput data rate without significant overheads of 

hardware costs. The novel method described in this chapter is to normalize branch metrics 

before using in the state metric computation process. It reduces a critical path delay of a 

turbo decoder in a unit for computing the state metrics. That results in increasing the 

maximum speed of a turbo decoder. Furthermore, area and power for the high throughput 

turbo decoder are improved by reducing memory blocks and implementing efficient 

computational logics. A detailed structure and implementation method for improving the 
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performance is described. The hardware performance results are compared to the 

conventional turbo decoder results given in the previous chapter. 

This chapter is organized as follows. Section 4.2 describes the method to increase the 

MLMAP turbo decoder speed for high throughput. A detailed implementation method and 

structure for that are shown in Section 4.3. The architecture for low power and efficient area 

is described in Section 4.4. The turbo decoder simulation results are given in Section 4.5. 

Section 4.6 summarizes the chapter. 

4.2 High Speed Turbo Decoder Implementation 
Method 

4.2.1 Critical Path Delay in Turbo Decoder 

As already stated in the previous chapter, it is well know that the process of computing the 

state metrics is the bottleneck for achieving high speed turbo decoder implementation. In 

addition, the state metrics grow dramatically and need to be represented by a large 

wordlength to prevent overflow. The same problem also exists with more traditional 

decoders, such as a Viterbi decoder. Several techniques for preventing the overflow in a 

Viterbi decoder were suggested in [106]. These techniques not only reduce the critical path 

delay, but also conserve hardware resources. A detailed data path for a Viterbi decoder has 

been studied to reduce the critical path delay in add-compare-select (ACS) units [148]. These 

methods could be applied to turbo decoder implementations as well. However, the critical 

path delay in turbo decoders is much longer than in Viterbi decoders because MAP based 

turbo decoders use soft-input information and require the computation of all state metrics for 

forward and backward processes. One popular technique to address the overflow problem is 

to normalize the state metrics by subtracting a constant value from all state metrics when one 

of the computed state metrics is larger than a threshold value [1 05, 107]. This technique was 

also described for Viterbi decoder implementations in [106]. The state metric normalization 

process has been applied to the conventional turbo decoder presented in the previous chapter 
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for implementing add-compare-select-normalization (ACSN). In this chapter another method 

will be introduced for achieving high throughput turbo decoder implementations. 

4.2.2 Branch Metric Normalization 

A branch metric normalization (BMN) method is proposed to address the inherent critical 

path delay problem. The BMN method aims to increase the MI-MAP turbo decoder 

maximum speed by reducing the critical path delay. The method removes the state metric 

normalisation process of ACSN, so only ACS is used for turbo decoder implementations. 

This method can be applied not only to turbo decoders, but also Viterbi decoders, if the state 

metric computatioll process incorporates the state metric normalisation process. The rule of 

BMN is summarized as follows 

For n=O...N 
if all state metrics > Vd 

77(k) = 	(k) - max [y(k), ... , 1(k) 1 	 (4.1) 

else if all state metrics < V <  

i7(k) = 	- mm ii r0(k)......,7(k) I 
else 

= y(k) 

where n denotes the total number of branch metrics, (k) is the branch metric at time k, ,1 17 (k) 

is the normalized branch metric, and V (1  is a constant value. The state metrics are used to 

determine whether the branch metrics need to be normalized by the maximum or minimum 

branch metric. If all state metrics are larger than V 1 , the maximum branch metric is used for 

the normalization. However, if all state metrics are less than Vd,  then the minimum branch 

metric is used for the normalization. If these conditions are not satisfied, the branch metrics 

are passed on to SMCIJ without normalization. From these conditions, we can see that the 

normalized branch metrics are either equal to or less than zero if all state metrics are larger 

than Vd.  Similarly, normalized branch metrics are either equal to or greater than zero if all 

state metrics are less than V. 

ff 
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4.2.3 Variation of State Metrics with BMN 

Employing the BMN method does not affect BER performance of MLMAP turbo decoders. 

During the simulations, all of the forward and backward state metrics have been observed in 

order to investigate their variation. The BMN process relies on a constant value of Vd to 

determine when the branch metrics need to be normalized. The simulations were repeated for 
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Figure 4.1 The state metric variations of the MLMAP turbo decoder with the BMN 
method for different Vd values when the initial state metrics are set to -64. 
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Figure 4.2 The state metric variations of the MI-MAP turbo decoder with the BMN 
method for different Vd values when the initial state metrics are set to 0. 

different Vd ranging from -200 to 200 with a step size of 100. The simulation results are 

shown in Figures 4.1 and 4.2, where horizontal and vertical axes represent the state metrics 

and the number of times each state metric encountered, respectively. To find the effect of the 

minimum state metrics, different initial minimum state metrics of -64 and 0 were used to 

obtain the results of Figures 4.1 and 4.2, respectively. The minimum and maximum state 

metrics for each V 1  can also be seen in these figures. The minimum and maximum state 
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metrics change with Vd and the main distribution is shifted to the right with increases in Vd. 

The simulation results of Figure 4.1 also show that the minimum state metric values for V (1  = 

0, 100 and 200 are the same. For practical implementations, the initial state metrics for the 

forward and backward processes are a finite value. Thus, the minimum state metric value, - 

64, for Vd = 0. 100 and 200 can be used as the initial state metric, which means that if V (1  is 

larger than the initial state metric value, the minimum state metric value is the same as the 

initial value. The simulation results show that Vd = -100 leads to a more balanced 

distribution of the state metrics where the minimum and maximum state metrics are -113 and 

86, respectively. The results of Figure 4.2 are similar to Figure 4.1. However, due to the 

initial minimum state metrics of 0, the same minimum state metrics of 0 are observed when 

Vd is 100 and 200. As in Figure 4.1, V-100 leads to a more balanced distribution of the 

state metrics. 

It is interesting to note that the results shown in Figures 4.1 and 4.2 coincide with the results 

in [1 5, 105], which suggested 8-bits for the state metrics if 4-bits were used for input 

symbols. Therefore, we can see that the BMN method drives the state metrics to the level 

required for the decoding process. However, in practical implementations, 9-bits are used to 

represent the state metrics in the ACSN unit to prevent overflows [105]. The same 

wordlength was used to implement ACS with BMN in this work. 

4.3 High Speed Turbo Decoder Hardware 
Architecture 

4.3.1 High Speed Turbo Soft-input Soft-Output Decoder 
Architecture 

The high speed MLMAP turbo SISO decoder (HSMLTBD) architecture improves the 

MLMAP turbo decoder (MLTBD) architecture presented in the previous chapter. The 

HSMLTBD architecture uses the BMN method described in the previous section to reduce 

the critical path delay in order to achieve high speed turbo decoder implementation for high 

throughput. Figure 4.3 illustrates the HSMLTBD architecture. It is configured similarly to 
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Figure 4.3 The HSMLTBD architecture incorporating the BMNU. 

the MLTBD architecture. One difference is the use of a branch metric normalization unit 

(BMNU) between BMU and SMCU in each MCU for the forward (FMCU), backward 

(BMCU), and dummy-backward (DMCU) processes. In the architecture, the branch metrics 

generated by BMU are passed to SMCU after they are normalized by BMNU. Then, the 

normalized branch metrics and the state metrics are sent to SMCU, which consists of a 

parallel ACS without the state metric normalization process. Thus, SMCU in the HSMLTBD 

architecture is much more simplified than the SMCU incorporated in the MLTBD 

architecture. This results in a reduction of the SMCU critical path delay, which can increase 

the turbo decoder maximum speed. 

As in the previous chapter, the other modules are implemented the same way as in the 

MLTBD implementation. However, due to the reduction of the critical path delay of SMCU, 

path delays of other modules need to be reduced as well. Thus, the modules implement more 
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pipelining stages. The following sections describe in detail the structure and implementation 

method of each module. 

4.3.2 Metric Computation Unit with Branch Metric Normalization 
Unit 

Figure 4.4 illustrates the structure of the metric computation unit (MCU). The MCU for the 

forward and backward processes consists of a BMU for computing the branch metrics, a 

BMNU for normalizing the branch metrics and an SMCU consisting of a parallel ACS. The 

soft-input data is first processed by BMU to provide the two branch metrics (BM) needed by 

BMNU. Then, BMNU normalizes these branch metrics based on the state metrics (SM) 

provided by SMCU. Finally, the four normalized branch metrics (NBM) are input to SMCU 

with the Recursive SM to compute the new state metrics. 

The BMU incorporated in the MCU uses the BMU illustrated in Figure 3.5. On the other 

hand, SMCU consists of a parallel ACS without the state metric normalization process. As 

an example, Figure 4.5 illustrates the ACS structure for calculating the forward state metric 

of state 0 for constraint length K=4. The ACS performs add (A) and compare select (CS) 

processes to calculate the next state metrics. Two NBMs, i700(k) and q00(k), and two forward 

state metrics, (k) and a1 (k), are the ACS inputs for computing the state metric, (k+l). 

IVICU 
Recursive SM 

Soft 
it 	[BMU 	BH BMNU 	

NBMH SMCU 

	 SM 

Figure 4.4 The metric computation structure. 
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Therefore, the ACS can generate the state metric with the same wordlength used in ACSN 

Without the need for the state metric normalization process, while still avoiding overflow 

problems. The ACS critical path delay can be represented as follows: 

dACS 2Xta +t 111 	 (4.2) 

where t is the delay of the adder, and t, is the MUX's delay. As can be seen, this delay is 

less than the delay of ACSN (dAC 5N ) derived in the previous chapter (see equation (3.1)). 

Thus, employing the BMNU can simplify SMCU implementation while achieving high 

speed turbo decoder implementations. 

a0(k) 	7700(k) 	a1 (k) 	ii (k) 

9 	8 	9 	8 

+ 	 + 

ACS 

+ 

Mux 
	1(MSB) 

9 

a0(k±l) 

Figure 4.5 The add-compare-select structure without the state metric normalization process. 

67 



Chapter -i High Performance Max-Log-MAP Turbo Decoder Architecture 

4.3.2.1 Branch Metric Norrnalizatioii Unit 

Figure 4.6 illustrates the BMNU structure employed in the l-ISMLTBD architecture. The 

BMNU inputs are the two branch metrics provided by BMU. These branch metrics are first 

converted into absolute values (ABS). The absolute values are compared to select the 

maximum of them, max[(k)], using the compare-select (CS) unit as used in ACS and ACSN. 

Then, the sign of the maximum branch metric is determined by the state metric condition 

(STC) input to the sign conversion unit (SCU). The sequence of STC is generated by using 

state metrics of ACS, and is described in next sub section how it is obtained from them. 

711 (k) 	 21 0(k) 

ABS 	 ABS 

BMNU 

+- Hs_ 

1(M8) mux 

SCU 	 STC 

±max[(k)] 
or zero 

--------------- 

il 0(k) 	, ,(k) 	 i7 10(k) 

Figure 4.6 The branch metric normalization unit structure. 
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After determining the sign of max[<k)], the output of the SCU is used to normalize the 

branch metrics by using the four adders. The results of the four adders can be categorized as 

all four branch metrics are i) larger than or equal to zero, ii) less than or equal to zero, iii) the 

same as the original branch metrics, which means that the branch metrics did not need to be 

normalized. 

In the BMNU. the data path delay can be represented as follows: 

dBMNU 3Xla + t m+ t 	 (4.3) 

where i,, is the delay of the adder, t, is the delay of the MUX; and Iscu  is the delay of the 

SCU, which could be assumed to be same as t. Clearly, dtlNu is larger than dAcs delay. In 

this case, the turbo decoder critical path delay is in BMNU. In order to reduce the critical 

path delay of BMNU, it can be pipelined as shown in Figure 4.6. 

When the conventional MCU and MCU with BMN methods are compared for the number of 

adders required to compute branch and state metrics, BMN requires fewer adders as the 

constraint length K increases. Table 4.1 summarizes the comparisons for constraint lengths 

from K=3 to 5. As can be seen, the number of adders for BMU and BMNU is not affected by 

the constraint length. Although the BMN method needs seven additional adders for BMNU, 

it uses a less complex SMCU, which leads to a decrease in the overall number of adders as K 

increases. In addition to the number of adders, BMNU needs two multiplexors for the 

normalization process. 

Table 4.1 Comparison of the number of adders for conventional MCU and MCU with 
B MN. 

Conventional MCU MCU with BMN 

K=3 K=4 K=5 K=3 K=4 K=5 

BMU 4 4 4 4 4 4 

BMNU - - - 7 7 7 

SMCU 16 32 64 12 24 48 

Total 20 36 68 23 1 	35 59 
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4.3.2.2 An Efficient BMNU 

This section describes an efficient BMNU implementation method. A conventional method 

for obtaining the STC sequence may use the same state number of adders, 2, as a 

comparator for the determination described in (4.1). However, the sequence can be generated 

by simple circuits without using the adders. The previous section showed that Vd=-1  00 led to 

well balanced state metrics. The distribution of the state metrics for Vd=-1 28 was also 

investigated. As already shown in Figures 4.1 and 4.2, although the distribution range for 

Vd=- I 28  was slightly shifted to the left, the wordlength of 9-bits was sufficient to represent 

the state metrics. 

STCO 	STC1 	STC2 	STC3 

MSB of SM03 	 2nd MSB of SM03  

Figure 4.7 Circuit for generating STC signals for BMNU with K3. 

Figure 4.7 illustrates a simple circuits for generating four STC sequences for constraint 

length K=3. The inputs of the AND and OR gates are MSB and the second MSB of the state 

metrics generated by SMCU illustrated in Figure 4.4. Using these STC signals in the figure, 

the BMN rule shown in (4.1) can be written as follows 

For nO ... N 

if STCO = 1 0' or {STC1, STC21 = '11' 	 (4.4) 

= 2(k) - Inax[ )(k), ..., 
else if {STC2,STC3} = '10' 

71,(k) = ',(k) - 111in[ )(k).....y, 7 (k)] 

70 



Chapter 4 High Perform once Max-Log-MAP Turbo Decoder Architecture 

else 
i1(k) = v,(k) 

Ilere, the first and second conditions imply that all stale metrics are larger or less than Vd=-

128. if these conditions are not satisfied, the branch metrics are passed to the ACS units 

Without the normalization process. 

4.3.3 Log-Likelihood Ratio Computation unit 

The basic LCU structure used in the MLMAP turbo decoder architecture is not affected by 

employing the BMNU. However, due to the reduced ACS critical path delay, the LCU might 

be implemented with more pipelined stages than were used before in the MLMAP turbo 

a 	A 	ce , it 13 /3, 	a, 	/3 	a, /3, 	a, 	/3, 	a, /3, 

9 9 9 9 9 9 9 9 	9 9 9 9 	9 9 9 
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+ 	+ + 	+ + 	+ + + 	+ + + + 	+ + + + 

- + 	- + 	- 
CS cs Cs 
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CS 
+- 

CS 

MtJX 

+ 	
- Cs 

MUX 

Figure 4.8 The structure oILLR computation unit with high level of'pipelining. 
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decoder architecture to avoid a path delay longer than the critical path delay. This can be 

realised by inserting pipeline registers. Figure 4.8 illustrates an LCU structure for calculating 

L 111  for constraint length K=4. As can be seen, the LCU structure is implemented in 3 

pipelined stages to reduce its delay to less than the ACS delay. The additional pipelining 

stages could increase area and power due to the inserted registers. To address this problem, 

the next section describes a more efficient LCU implementation method. 

4.4 Low Power and Area Efficient Max-Log MAP 
Turbo Decoder Hardware Architecture 

4.4.1 Low Power and Efficient Max-Log MAP Turbo Soft-Input 
Soft-Output Decoder Architecture 

This section presents a low power and area efficient MLTBD (LAMLTBD) architecture 

incorporating the BMNU. The previous chapter showed that the memory blocks had the 

largest area in the MLTBD implementations. The LAMLTBD architecture improves the area 

usage and power consumption by reducing the size of the memory required to control the 

input data for the SW method and to delay the soft-input data passed to the LCU. Moreover, 

the LCU is more efficiently implemented by exploiting retiming and a four-input compare 

select (4-CS) unit to reduce the data path and hardware resources. 

Figure 4.9 illustrates the LAMLTBD architecture. As the figure shows, the data schedule 

unit (DSU) of the MLTBD illustrated in the previous chapter is simplified by using only a 

single FIFO block. The FIFO block is used to delay the soft-input data before fed into 

BMCU, and its depth is the same as the window size, 40. To eliminate the LIFO blocks used 

in the DSU of the MLTBD, a triple read and single write memory (TRMEM) block is 

employed to store soft-input data. Once the window size is determined, the data addresses 

for SW method can be decided for performing the forward, backward, and dummy-backward 

processes. Thus, following the SW method with the determined addresses, the three inputs, 

Soft-input 0. 1 and 2," corresponding to each of TRMEM read ports can be controlled to 

pass them to the LAMLTBD architecture. The soft-input data flow is illustrated in Figure 
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Figure 4.9 The LAMLTBD architecture with the reduced memory. 

4. 10, sub-block by sub-block. While the reverse ordered "Sub-block 2" data are passed to 

DMCU as "Soil-input 0" to calculate the dummy backward state metrics, the reverse and 

right ordered "Sub-block 1" data are input to the FIFO for delaying and the FMCU for 

computing the forward state metrics, respectively. The reverse ordered "Sub-block 1" data 

are delayed in the FIFO block until the completion of the dummy backward state metric 

computation process for the reverse ordered "Sub-block 2." When the dummy backward 

state metric computation is completed, the backward state metrics and the delayed forward 

state metrics in DF are passed to LCU to compute the LUR value, as illustrated in Figure 4.3. 

The sub-block data addressing can be controlled by TRMEM without significant overhead in 

area and power. 

For further area savings, the memory for delaying the branch metrics passed to LCU is 

replaced by an additional BMU. The DB in Figure 4.3 is used to delay the branch metrics 
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Sub-block 3 	1 Sub-block 2 	1 Soft-input 0 
Reverse order 	

j 
Reverse order 

Sub-Frame 2 Sub-block 1 	1 Soft-input 1 
Reverse order Reverse order 

Sub-block 1 	1 Sub-block 2 Soft-input 2 
Right order Right order 

Time 

Figure 4.10 The soft-input data stream input to the LAMLTBD architecture. 

that are required by LCU to calculate LLR. The LAMLTBD architecture eliminates the DB. 

Instead, the branch metrics for computing LLR are generated by an additional BMU (placed 

before LCU in Figure 4.3) from the soft-input data delayed by the DS. The soft-input data is 

also used for obtaining the extrinsic information by subtracting it from LLR. The added 

BMU is the same as other BMIJs used in MCU. Thus, the replacement of DL with an 

additional BMU contributes to further area savings. 

4.4.2 An Efficient LCU implementation 

The previous section showed that the BMN method can reduce the turbo decoder critical 

path delay. However, this reduction may lead to high level of pipelining in LCU 

implementations for making the LCU critical path delay shorter than the ACS critical path 

delay. In general, high level of pipelining increases area and power due to an excessive use 

of the registers incorporated. To address this problem, this section describes an 

implementation method for reducing the number of pipelining stages in LCU for an efficient 

implementation in terms of area and power. 

Figure 4.11 illustrates the new LCU structure for constraint length K=4, whose output 

sequence is the same as the LCU output illustrated in Figure 4.8. The new LCU is 

implemented with retiming method and a four-input compare select unit (CS). In the LCU 
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Figure 4. 1 I The efficient LLR computation unit structure. 

structure shown in Figure 4.8, the first CS process is performed after completing the 

additions of two state and one branch metrics. However, the new LCU performs the first CS 

after finishing the addition of the forward and backward state metrics. The first CS and the 

addition of the branch metric to the results of the addition of the two state metrics are 

executed simultaneously. This is possible because the same branch metrics are added to the 

first and second state metrics' addition results, as shown in Figure 4.10. Thus, in the new 

LCU, the first CS compares two state metric addition results, and then selects one of them 

after adding the branch metric during the comparison process. The four selected values are 

then 1n1)Ut to a four-input CS to determine the maximum among them which corresponds to 

Figure 4.12 illustrates the four-input CS structure that consists of six adders for the 

comparison process, and a unit for selecting the maximum input. it is designed to minimise 

its critical path delay. As can be seen, the 4-CS delay is given by the delay of an adder and 

the four-input selector. The four-input selector is processed as follows 
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If {S0,S1,S2} = 3'bDOO 	 (4.5) 

Liri = A 
else if {so,sl,s2} = 3'100 

L j, j 	B 
else if {3 0 ,s 3 ,s 4 } = 3' 110 

Liri = C 
else 

Liri = D 

While the UCU in Figure 4.8 needs four pipelined stages, the new LCU is realized with only 

two pipelined stages. However, the number of adders in the new LCU is increased by 

employing the 4-CS. The next section shows area and power comparison results of the LCU 

I in p1 ementat i oils. 

A 	B 	C 	D 

10 

max (A, B, C, D) 

Figure 4.12 The four-input compare select unit structure. 
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4.5 Results 
The HSMLTBD and LAMLTBD architectures were designed at RTL using Verilog HDL. 

These designs were verified by the same test systems used in the previous chapter. After 

completing the hardware verification, they were synthesized using the 0.1 8tim  UMC 

standard CMOS library with Synopsys Des ignCompiler m1 . The netlists were simulated using 

Cadence Verilog-XLTM  with the timing constraints obtained from the synthesis to generate 

the switching activities of all the circuit nets. Then, the power consumption of both 

architectures was evaluated using Synopsys PowerCompiIer''. A clock frequency of 50MHz 

was used in the hardware performance evaluation process. 

Table 4.2 List of schemes for hardware performance evaluation. 

List of Schemes Descriptions 

CON Conventional 

HSTD HSMLTBD 

LATD1 LAMLTBD with efficient LCIJ 

LATD2 LAMLTBD with efficient LCU and BMNU 

After investigating various turbo decoder schemes in order to decide on an optimized 

configuration for the turbo decoder hardware implementation, three different schemes for 

constraint lengths from K=3 to K5 have been implemented to evaluate their hardware 

performance in terms of area, power and critical path delay for maximum speed. These 

schemes are listed in Table 4.2. CON, called conventional, is the MLTBD implemented in 

the previous chapter. HSTD is the HSMLTBD illustrated in Figure 4.3 for high speed turbo 

decoder implementations. LATDI and LATD2 are based on the LAMLTBD architecture 

illustrated in Figure 4.9 for low power and area efficient turbo decoder implementations. The 

difference between LATDI and LATD2 is in their BMNU implementations. The circuit 

illustrated in Figure 4.7 for BMNU has been incorporated in LATD2, while LATDI has 

been implemented with a conventional BMNU shown in Figure 4.6. 
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Figures 4.13-15 and Tables 4.3-8 show the hardware performance evaluation results for K=3, 

4 and 5, respectively. The overall area and power of HSTD was increased by around 7%, 7% 

and 5% and 10%, 8% and 0% for each constraint length, respectively, when compared to 

CON. On the other hand, LATDI and LATD2 can save up to 30% in area and 19% in power 

as compared to CON. These results show that the BMNU leads to an increase in hardware 

costs in HSTD. Despite including the BMNU, eliminating the memory blocks for the SW 

EJBMU =BMNUEJSMCU 
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Schemes 

 

BMU = BMNU = SMCU 
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Figure 4.13 (a) Area and (b) power comparisons for K=3. 
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method and the efficient LCU and BMNU implementations can save the area and power of 

LATDI and LATD2. 

Figures 4.13 (a) and (b) illustrate the area and power results for K=3, respectively. In these 

tigures, the primary and secondary Y-axes indicate the results of each component and total 

area or power, respectively. These results are summarized in Tables 4.3 and 4.4. The area 

Table 4.3 List of area results for K=3 turbo decoders. 

K=3 

CON HSTD LATDI LATD2 

Area 
(mtn) 

Save 
o (/o) 

Area 
2 (mm 
) 

Save 
o (_/o) 

Area 
(11,1112) 

 

Save 
 o  (/o) 

Area 
(Mm) 

Save 
(%) 

BMU 0.014 - 0.014 0 0.019 -33.13 0.019 -33.13 

BMNU - - - 0.051 0.051 - 0.033 - 

SMCU 0.071 - 0.060 E15.96 0.060 15.96 0.060 15.96 

LCU 0.049 - 0.053 0,048 1.70 0.048 1.70 

MEM 0.553 - 0.558 -0.94 0.314 43.18 0.314 43.18 

Total 0.689 - 0.738 -7.14 0.493 28.33 0.475 30.95 

Table 4.4 List of power results for K=3 turbo decoders. 

K=3 

CON HSTD LATDI LATD2 

Power 
(III W) 

Save 
(%) 

Power 
(mw) 

Save 
(%) 

Power 
(mW) 

Save 
(%) 

Power 
(mW) 

Save  
(%) 

BMU 1.21 - 1.22 -0.66 1.66 -37.48 1.66 -37.48 

BMNU - - 3.44 - 3.48 - 2.56 - 

SMCU 5.9 - 4.33 26.59 4.46 24.27 4.41 25.18 

LCU 4.32 - 4.10 2.97 3.86 8.76 3.45 18.51 

MEM 12.51 - 13.42 -6.45 7.59 39.79 7.54 40.18 

Total 23.95 - 26.52 -10.74 21.07 12.01 19.63 18.04 
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and power increase of BMN in LATDI and LATD2 is due to the additional BMU needed to 

replace the memory blocks for generating the branch metrics used to compute LLR in LCU. 

Clearly, the SMCU of FISTD, LATDI and LATD2 is reduced by up to 16% in area and 26% 

in power by eliminating the state metric normalization process. The efficient LCU 

incorporated in LATD1 and LATD2 saves area and power. A significant change in area and 
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Figure 4.14 (a) Area and (b) power comparisons for K=4 
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power is indeed seen in the MEM of LATD1 and LATD2. The reduced memory needed to 

control data input following the SW method saves the total area and power dominantly. 

The area and power results for 1K=4 are illustrated in Figures 4.14 (a) and (b), and are 

summarized in Tables 4.5 and 4.6. The BMU results are almost the same as the results of 

K=3. In the results, the LCU of HSTD is increased by 23% in area, which is due to the 

Table 4.5 List of area results for K=4 turbo decoders. 

K=4 

CON HSTD LATDI LATD2 

Area (111111 
2 ) 

Save 
(%) 

Area 
(mm 2 ) 

Save 
(%) 

Area 
(m111 2 ) 

Save 
(%) 

Area 
(11Im 2 ) 

Save  
(%) 

BM(J 0.014 - 0.014 0 0.019 -33.13 0.019 -33.13 

BMNU - - 0.072 - 0.072 - 0.035 - 

SMCU 0.137 - 0.110 19.56 0.110 19.52 0.110 19.52 

LCU 0.083 - 0.102 -23.03 0.089 -7.03 0.089 -7.03 

MEM 0.698 - 0.703 -0.74 0.459 34.22 0.459 34.22 

Total 0.934 - 1.004 -7.51 0.751 19.52 0.714 23.47 

Table 4.6 List of power results for K=4 turbo decoders. 

K=4 

CON HSTD LATDI LATD2 

Power 
(mW) 

Save 
(%) 

Power 
On W) 

Save 
(%) 

Power 
(m W) 

Save 
(%) 

Power 
(rnW) 

Save 
(%) 

BMU 1.21 - 1,21 0.08 1.66 -36.78 1.66 -36.61 

BMNU - - 4.36 - 4.51 - 2.77 - 

SMCU 10.54 - 7.77 26.27 8.1 23.17 8.30 21.26 

LCU 7.35 - 7.74 -5.29 6.94 5.58 6.72 8.52 

MEM 15.66 - 16.73 -6.79 10.63 32.14 10.22 34.76 

Total 34.78 - 37.83 -8.76 31.85 8.42 29.68 14.64 
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highly pipelined implementation, compared to CON. On the other hand, the efficient LCU 

area of LATDI and LATD2 is slightly increased compared to CON. Moreover, the efficient 

LCU can save 8% in power despite the area increase. Similar to the K=3 results, it is clear 
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Figure 4.15 (a) Area and (b) power comparisons for K=5. 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0 

35 

30 

25 

20 

0 
15 

10 

S 

0 

1.6 

1.2 

0.8 

0 
H 

0.4 

80 

70 

60 

50 
1) 

40 

30 ' 
0 
H 

20 

10 

0 

82 



Chaj,ter 4 High Performance Max-Log-WP Turbo Decoder Architecture 

from the results in Tables 4.5 and 4.6 that area and power savings of MEM dominantly 

contribute to reduce the total area and power. 

Finally, Figures 4.15 (a) and (b) and Tables 4.7 and 4.8 illustrate and summarize the area and 

power results of K=5 turbo decoder hardware implementations. Inserting BMNU saves 21% 

in area and 31% in power of the SMCU of HSTD, LATDI and LATD2. Moreover, the 

Table 4.7 List of area results for K=5 turbo decoders. 

K=5 

CON I-ISTD LATDI LATD2 

Area 
(mm 2 ) 

Save 
(%) 

Area 
(min 2) 

Save 
(%) 

Area 
(mnY) 

Save 
(%) 

Area 
(111m

2 ) 

Save 
(%) 

BMU 0.014 - 0.014 0 0.019 -33.1 0.019 -33.1 

BMNU - - 0.115 - 0.115 - 0.035 - 

SMCIJ 0.268 - 0.211 21.3 0.211 21 .3 0.211 21.3 

LCIJ 0.180 - 0.197 -9.6 0.176 2.0 0.176 2.0 

MEM 0.988 - 0.993 -0.5 0,749 24.1 0.749 24.1 

Total 1.452 - 1.532 -5.5 1.272 12.3 1.192 17.9 

Table 4.8 List of power results for lK5 turbo decoders. 

K=5 

CON HSTD LAID! LATD2 

Power 
(mw) 

Save 
(%) 

Power 
(mW) 

Save 
(%) 

Power 
(m W) 

Save 
(%) 

Power 
(mW) 

Save 
(%) 

BM  1.20 - 1.20 -0.3 1,65 -37.17 1.65 -37.0 

I3MNU - - 6.65 - 6.93 - 2.83 - 

SMCU 22.46 - 15.32 31.7 16.09 28.34 15.91 29.1 

LCU 15.65 - 15.19 2.9 14.45 7.66 13.78 11.9 

MEM 22.99 - 23.92 -4.0 16.77 27.07 15.76 31.4 

Total 62.32 - 62.30 0.0 55.91 10.28 49.94 19.8 
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efficient BMNU implementation of LATD2 saves 69% and 59% in area and power, 

respectively, compared to LATDI. Also, the efficient LCU of LATDI and LATD2 reduces 

2% and 11 % in area and power, respectively. With the area and power savings of MEM, 

LATD2 has achieved 17% and 19% savings in total area and power, respectively. 

One of the crucial results in this chapter is the critical path delay, which is compared with the 

results in Table 3.3 in Chapter 3. The proposed BMNU addresses the inherent critical path 

delay problem to achieve the high speed turbo decoder implementation. Thus, the critical 

path delay of each scheme was measured. Table 4.9 lists the results comparing with the 

conventional architecture (CON) obtained in the previous chapter and state-of-art turbo 

decoders. In the table, total number of gates is equivalent to the number of NAND gates. As 

is apparent, HSTD reduces the critical path delay for [(=3, 4 and 5 by 32%, 42% and 41%, 

respectively, compared with the delays of CON. This leads to the increase of the maximum 

speed of HSTD and LATD2. All the delays measured are in SMCU of the architectures. 

Thus. HSTD can he used to provide higher throughput than the conventional architecture. 

Also, the critical path delay results of LATDI and LATD2 are the same with HSTD. 

Table 4.9 Performance comparison with state-of-art implementations. 

CON HSTD LATD2 [11] [13] [12] 

Area(mm 2) 0.934 1.004 0.714 1.5 14.5 10 

No. of gates 59K 80K 124K 150K 410K - 

Power(rnW) 34 37 29 330 1450' 2464 

Max. Speed 180MHz 300MHz 300M1-lz 285MHz 145MHz 352MHz 

Throughput (Mb/s) 22.5 37 37 - 24 352 

Technology 0.18Jm 0.181Jm 0.18ljm 0.l8pm 0.I8tm 0.134im 

Note Kr=4 K=4 K=4 K=3 
K=4 

Radix-4 
K=5 

Power consumption at the maximum clock speed. 
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4.6 Summary 
This chapter presented a high performance M LTBD architecture based on a novel scheme in 

order to save area and power, and to improve the critical path delay. To achieve low power 

and area efficient MLTBD implementations, the memory blocks needed for the SW method 

were reduced by using a triple read port based memory. This helped to reduce both total 

power consumption and area usage. The triple read port memory was designed in this thesis 

for the hardware simulation using without synthesizing. Also, more efficient LCU and 

BMNU implementations contributed to save power and area. The BMN method addressed 

the inherent critical path delay problem to achieve high speed turbo decoders for high 

throughput. The next two chapters present an alternative turbo decoder algorithm, which is 

called soft-output Viterbi algorithm (SOyA), and architecture, and introduce a novel 

architecture for the turbo decoder implementations. 
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Chapter 5 

Soft-Output Viterbi Algorithm Based 
Turbo Decoding Process 

5.1 Introduction 
In previous chapters, the MAID based turbo decoders have been investigated at algorithmic 

and architectural levels. This chapter presents an alternative turbo decoding algorithm, called 

a soft-output Viterbi algorithm (SOyA), which was introduced by Hagenauer and Hoeher 

[67]. SOVA was suggested before turbo codes appcared, which were developed to provide 

outer-decoder soft-output (also known as soft-decision or LLR) in order to achieve better 

performance. With increased understanding of the principle of the iterative turbo decoding 

process, it was found that the extrinsic information for the iterative decoding process could 

be obtained from the soft-output of SOVA in a way that used a MAP based turbo decoding 

algorithm [59, 150-151]. Since then, there were some attempts to implement a turbo decoder 

based on SOyA. However, the decoding complexity of the SOVA was very high, making it 

difficult to apply to practical applications. To address the complexity problem, a two-step 

SOVA (TSOVA) was suggested, which divided the decoding process into the survivor and 

update processes [93, 152]. Since the introduction of TSOVA, the TSOVA based turbo 

decoders have been widely researched for achieving better performance [33-34, 98, 152-161 ]. 

This chapter describes SOVA and TSOVA based turbo decoders, investigating their BER 

performance for different constraint lengths, K3, 4, and 5. In a TSOVA based turbo 

decoder, the survivor and update depths strongly affect BER performance. They also impact 

the hardware costs required to design the TSOVA based turbo decoder hardware in an 

optimised implementation. In the literature [98, 1 53-156], different depths of the survivor 

and update processes are suggested for TSOVA turbo decoder implementations. Thus, this 

chapter discusses BER performance relative to varying TSOVA survivor and update depths, 
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and then, two different depths are chosen for evaluating overall BER performance with 

TSOVA turbo decoders. 

The chapter is organised as follows. Section 5.2 describes the original SOVA and how it is 

used in turbo decoder implementations. A two-step SOVA that reduces SOVA complexity is 

presented in Section 5.3. Section 5.4 shows the simulation results of the two-step SOyA-

based turbo decoders, giving BER performance with optimised survivor and update depths. 

Section 5.5 summarizes the chapter. 

5.2 Soft-Output Viterbi Algorithm for Turbo 
Decoding Process 
The basic decoding principle of SOVA is not different than the conventional Viterbi 

decoding process [84, 139]. While a Viterbi decoder provides a hard-decision in a bit 

sequence, a SOVA-based decoder outputs a soft-decision including the hard-decision and its 

reliability value. The SOVA decoder output is exploited to obtain the extrinsic information 

needed in the turbo decoding process. While the LLR value of MAP-based turbo decoders is 

calculated from all the metrics generated during the forward and backward processes, the 

soft-output of the SOVA-based turbo decoders is obtained by multiplying the hard-decision 

Of the survivor path with the reliability value of the LLR. Both of these values (hard-decision 

and reliability value) are generated independently during the decoding process. The extrinsic 

information is passed to the next decoding process in an iterative process and can be 

obtained from the soft-output after subtracting the systematic symbol and the extrinsic 

information from it as described in Section 2.6 of Chapter 2, Thus, this allows SOVA to 

perform the turbo decoding process. 

According to 1671, SOVA generates a soft-output rather than a hard-decision, finding the 

maximum likelihood (ML) paths in the forward process. The soft-output is represented by a 

posterior probability (APP) as LLR as shown below. 

P(u(k) = + y) 
Lir 

 (k) = g - P(u(k) = + I ) = 
u(k)L(k) 	 (5.1) 
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where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time k. 

In MAP based turbo decoders, Lir(k) is calculated from the branch metrics, and all forward 

and backward state metrics. However, ii(k) and L(k) in equation (5.1) are independently 

obtained from only the forward process, as in a Viterbi decoder. 

The turbo decoder structure illustrated in Figure 2.7 in Chapter 2 can also be used for the 

SOVA-based turbo decoding process. In order to describe the obtaining of Ll(k)  for SOVA 

decoders, let's note that y.,(k) and y(k) are input symbols of the systematic and parity bits at 

time k, respectively. Then, the branch metric, bm(k), is 

h#n (k) = 	(k)u + Lv (k)u + L, (k)u 	 (5.2) 

where L is the channel reliability value, but is fixed to 2 in this work, u, and U1, are 

associated with the code word of the systematic and the parity bits, respectively, and L e (IC) is 

the extrinsic information, which is provided by previous decoding process and initialised at 

zero for the first decoding process. 

The state metric computation process is illustrated using a trellis diagram in Figure 5.1. The 

trellis diagram shows the forward process, representing the transition paths in different line 

styles with code words. As an example in Figure 5. 1, the transition paths for obtaining the 

state metrics of state 0 at time k and k--1 are represented with a bold-style line. In the figure, 

hm oo (k) and sm o(k) are the branch metric of code word 00 and the state metric of state 0 at 

time k, respectively. The difference of two paths converged to one state is the reliability 

value, A(k), at time k. Specifically, with the branch metrics computed by the equation (5.2), a 

state metric of each state, sni, can be represented as follows: 

sin, (k + 1) = max[ bm (sk ,sk+I ) + sm, (k), bm (s.,s kH ) + sm,(k)1 	(5.3) 

where sm,(k) is the state metric at the state s and the time k, hm(sk, 5k 1 ) is the branch metric 

of the state transition Sk to 5k /. The ML path corresponding to the decision bit at each state is 

determined from the maximum state metric obtained by comparing the two state metrics. 

Then, the absolute value of the two state metric differences, A. is used as the reliability value 

of the soft-output as follows: 
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Figure 5.1 A trellis diagram for computing the state metrics for constraint length K=4 

A(k + 1) = --bm (sA.,sk+l) + sm(k) I?/n(sh.,$) - sni(k) 	(5.4) 

These values are accumulated and updated at each state through the survivor and update 

processes until deciding the final reliability value for the soft-output. In these processes, the 

Update rule is: 

ForjO to U 	 (5,5) 

if 	u(j) then L(j) = min(L(j), 4(k)) 

else L(j) = L(/). 

where U is the depth of update process, u(j) and u.(/) are the hard-decisions of the survivor 

and competing paths, L(j) is the reliability value of LLR, and 4(k) is the reliability value for 

states at time k. Therefore. LLR is finally represented by the multiplication of u(/) and L(j). 
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5.3 Two-step Soft-Output Viterbi algorithm 

As already stated, the two-step SOYA (TSOVA) suggested in the literature [93] was 

developed to reduce the computational complexity of the original SOyA. TSOVA divides 

the decoding process into the survivor and update processes, which are executed 

simLLltaneously in the original SOyA. The survivor process performs the same function as 

the traceback process in a Viterbi decoder, that is, to find an appropriate state for starting the 

decoding process to generate the hard-decision. Figure 5.2 illustrates a trellis state diagram 

for the TSOVA decoding process for constraint length K=4 as an example. The survivor 

process finds the ML paths from time k to k-D (D is the depth of the survivor process) to 

determine the state at which all ML paths are converged. The update process updates the 

reliability values starting from the converged state by following the hard-decisions provided 

by the survivor and competing paths. In Figure 5.2, the two paths are shown with different 

line styles corresponding to the hard-decisions, 0 and I. The reliability values are updated 

where the two paths are represented in different line styles, which mean that the hard-

decisions of the survivor and competing paths are different. The update rule given in 

equation (5.5) is used for the update process. 

0— 1-- 

0. 	• • 	_ .. _•4 . S 	• 
1. 	• 

. 

7 46 . . . 
k-D-U k-D 

Update process 
	

Survivor process 

Figure 5.2 A trellis diagram of the survivor and update processes in two-step SOVA for 

constraint length K=4. 
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5.4 Results 
TSOVA turbo decoder BER performance has been evaluated for constraint lengths K=3, 4, 

and 5. Turbo codes for performance evaluation were generated by the encoders illustrated in 

Figures 2.1 and 2.2 of Chapter 2. In this simulation, additive white Gaussian channel 

(AWGN), binary phase shift keying (BPSK) modulation, 1/3 code rate, and 1024-size block 

interleaver are assumed. The received data is represented in a fixed-point format with 4-bits 

total and 2-bits precision as described in Chapter 2 for evaluating the MAP based turbo 

decoder performance. 

At first, BER performance was investigated varying the survivor and update depths of the 

TSOVA turbo decoders, to determine the optimised depths for each constraint length. Then, 

the BER performance of the turbo decoders was evaluated with the optimal survivor and 

Update depths. Optimizing the depths is crucial not only to achieve better performance, but 

also to save area usage and power consumption in hardware implementation. The depths 

determined in this chapter will be applied to the TSOVA hardware implementations in the 

next chapter. 

5.4.1 Determination of Survivor and Update Depths 

Many papers [I 52-156] have discussed the survivor and update depths and how they affect 

TSOVA decoder performance. As already described in the previous section, the decoding 

process of TSOVA is divided into the survivor and update processes. The survivor process is 

the same as the traceback process in a Viterbi decoder, and is performed before the decoding 

process to generate a hard-decision. Thus, the depth of the survivor process primarily affects 

BER performance. It is well known that the traceback length in Viterbi decoder 

implementations must be at least 5 times of the constraint length, K. If the length is large 

enough, there is no performance degradation. However, a proper depth of the survivor 

process needs to be determined in order to achieve BER performance with optimal hardware 

performance. The same rule used to determine the traceback length of a Viterbi decoder 

could be applied to determine the survivor depth of the TSOVA decoder as well. The BER 

simulation results described in [66] show that the optimised survivor and update depths for 

convolutional codes are approximately K x 6 and K x 3, respectively. On the other hand, in 
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Figure 5.3 BER results for varying (a) the survivor and (b) update depths for K=3. 

the literature [33], the depths of the survivor and update processes for turbo codes arc 

suggested to be approximately K ( 3 ) x 6 and K ( 3 ) x 8, respectively. 

In this sub section. the BER performance of the TSOVA turbo decoder for constraint lengths 

K=3. 4, and 5 has been evaluated by varying the survivor and update depths for Eb/NO2dB. 

A total of 5M bits of source data were used to obtain the simulation results. Figures 53 to 

5.5 illustrate the simulation results for constraint lengths K3, 4, and 5, respectively, after 

completing 1, 2, 4, and 8 iterations. The improvement in BER performance was almost 
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Figure 5.4 BER results for varying (a) the survivor and (b) update depths for K=4 

saturated after 4 iterations. In these simulations, while the performance for different survivor 

depths is evaluated, the update depths are fixed to K<5 for each constraint length. On the 

contrary, during the investigation of the performance for varying the update depths, the 

survivor depths are fixed to Kx8 for each constraint length. The simulation results show that 

BER performance is almost saturated at near Kx6 for the survivor depth and at near Kx4 for 

the update depth. These results are similar to the results described in [93]. 
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Figure 5.5 BER results for varying (a) the survivor and (b) update depths for K=5. 

5.4.2 BER Performance Results 

This subsection shows the TSOVA turbo decoder BER performance results for constraint 

lengths K3, 4, and 5 with fixed survivor and update depths. The survivor and update depths 

were determined based on the results obtained in the previoLts subsection. The survivor and 

update depths used for the evaluation were: 

D = K x 6 and U = 0.5 x D + K - D6U4 	 (5.6) 
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D=Kx 8andUO.5xD+K —> D8IJ5 	 (5.7) 

Figures 5.6, 5.7 and 5.8 illustrate the BER performance results for K=3, 4, and 5, 

respectively, after completing 1, 2, 4, and 8 iterations. In these figures, the BER performance 

of the TSOVA turbo decoder with D6U4 is represented by solid lines, while the dotted lines 

represent the results with D8U4. As can be seen, the TSOVA turbo decoder for K=4 

improved the performance by approximately 1.0dB compared to the turbo decoders for K=3 

at a BER of 10. On the other hand, the performance of K5 TSOVA decoders was not 

much improved as compared with the K=4 TSOVA turbo decoder results. 

Figure 5.6 shows the BER performance results obtained from the depths defined in equation 

(5.6) and (5.7). In the case of K3, the TSOVA turbo decoders have been implemented with 
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Figure 5.6 The D61J4 and D8U5 TSOVA turbo decoder BER results for K3. 

95 



Chapter 5 Soft-Output  Viterbi Algorithm Based Turbo Decoding Process 

1E+00 1 
11-01 

1.E-03 - 	-=-=--=-=-- - 	'-• 	.. 	- 

--Jst :-::::::__::: 
2nd 

LE-04 T6D4U 	4th 
8th 

- -- 0 - 1st 
I.E-OS 	 ---0---21id 

8D5U 	£ 4th  

	

- 	—0-8th 
1.E-06 

	

0 	0.5 	1 	1.5 	2 	2.5 	3 

Eb/No 

Figure 5.7 The D6U4 and D8U5 TSOVA turbo decoder BER results for K=4. 

the survivor depths of 18 and 24, and the update depths of 12 and IS. There was no 

significant difference in BER performance between these trials. 

Figure 5.7 illustrates the BER performance results of the TSOVA turbo decoders for K"4. 

The TSOVA turbo decoders have been implemented with the survivor depths of 24 and 32, 

and the update depths of 16 and 20, respectively. It can be shown that after 8 iterations, 

D8U5 provides about 0.2dB improvement at BER of 10-4  compared to D61J4. 

The BER performance of the TSOVA turbo decoder for K5 is illustrated in Figure 5.8. In 

this case, the survivor depths of 30 and 40, and the update depths of 20 and 25 were used to 

evaluate the TSOVA turbo decoder performance. There was no significant difference in the 

BER performance between these trials. 
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Figure 5.8 The S6U4 and S8U5 TSOVA turbo decoder BER results for K=5. 

The performance results of the TSOVA turbo decoders have been compared with the 

performance of the MLMAP turbo decoders described in Chapter 3. Table 5.1 summarizes 

the comparisons between the two turbo decoders. Among the results, the largest difference 

was found between the turbo decoders for K=5. However, the overall results show that turbo 

decoders based on the two algorithms can provide similar performance. According to [139], 

MLMAP and TSOVA turbo decoders show almost same BER performance. The results 

listed in Table 5.1 supports this observation. 

3 
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Table 5.1 Eb/No comparisons at 10 "  BER. 

MLMAPISO VA with S8U5 

5.5 Summary 
This chapter described the SOVA and TSOVA algorithms that are alternatively used for the 

turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced. 

The survivor and update depths of the TSOVA turbo decoders were investigated to 

determine an optimised depth. The simulation results have shown that the BER performance 

was almost saturated when the survivor and update depths were Kx6 and Kx4, respectively. 

The TSOVA turbo decoders provided slightly better performance with larger survivor and 

Update depths, Based on these results, the I'SOVA turbo decoders for K3, 4. and 5 were 

simulated to evaluate their BER performance. Furthermore, the performance results were 

compared with the results of the MLMAP based turbo decoders at a BER of lO'. The 

comparisons showed that the TSOVA turbo decoder can produce BER performance close to 

the performance of the M LMAP turbo decoder without significant performance degradations. 

In the next chapter, a novel TSOVA based turbo decoder architecture will be presented. 
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Chapter 6 

Two-Step Soft-Output Viterbi 
Algorithm Turbo Decoder Architecture 

6.1 Introduction 

In the previous chapter, the two-step SOVA (TSOVA) turbo decoder BER performance has 

been evaluated and the optimal survivor and update depths investigated. This chapter 

presents TSOVA turbo decoder architecture with a novel implementation method for 

implementing the survivor and update processes, designed according to the results obtained 

by the high level simulations of Chapter 5. 

As described in the previous chapter, since TSOVA reduced the computational complexity 

of the original SOyA, it has been widely used not only for turbo decoder implementations, 

but also for other applications such as magnetic recoding, etc. [34, 157]. Two algorithms 

known as register exchange and traceback algorithms (REA and TBA) [85-88] are available 

to implement the SOVA turbo decoder. These algorithms are already widely used in Viterbi 

decoder implementations. It is well known that REA can provide high throughput and that 

TBA is suitable for low power implementations. However, if constraint length, K, is long, 

REA is not suitable due to the number of registers dramatically increased with K. In general, 

turbo encoders use constraint lengths up to K=5, as discussed in Chapter 2. Thus, the REA is 

widely used in TSOVA based turbo decoder implementations [160-162]. However, although 

TSOVA reduced the computational complexity of the original SOyA, the registers 

incorporated in REA based TSOVA (TSOVAREA) turbo decoders might increase hardware 

costs. 

To improve the REA based TSOVA turbo decoders, this chapter uses TBA to implement the 

TSOVA (TSOVATBA) turbo decoder. TBA is implemented with a novel implementation 

method to save the hardware costs by reducing the number of registers required. Also, the 

novel method addresses the latency problem known to be a problem of TBA based decoders. 
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The chapter gives detailed descriptions of TSOVATBA turbo decoder implementations, and 

shows the performance results compared to the TSOVAREA and MLMAP based turbo 

decoders. 

This chapter is organized as follows. Section 6.2 reviews the TSOVAREA decoder based on 

the presentation of past literature [93]. Section 63) describes the proposed TSOVATBA 

decoder architecture and its modules. An efficient area architecture is introduced in Section 

6.4. Hardware performance results are given in Section 6.5. Section 6.6 summarizes the 

chapter. 

6.2 Register-Exchange Algorithm Based Two-Step 
SOVA Decoder 

This section reviews the TSOVAREA decoder architecture [93] before presenting the 

proposed TSOVATBA decoder architecture, The TSOVATBA architecture is modified from 

the TSOVAREA architecture. The two architectures have many similarities. However, the 

main components for the decoding process of each architecture are designed in a different 
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Figure 6.1 REA based TSOVA decoding processor architecture [93] 
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way. Thus, it is necessary to explain the TSOVAREA architecture and part of the 

architecture compared to the TSOVATBA architecture in the next section. 

Figure 6.1 illustrates the TSOVAREA decoder architecture for the survivor and update 

processes. The architecture consists of a survivor memory unit (SMU) for generating the 

hard-decision and the merged state, a path comparison unit (PCU) for comparing the 

survivor and update paths, an update unit (UPU) for updating and generating the reliability 

values, and memory blocks for delaying the decision bits and the reliability values. The 

decision bits (dec, k) and reliability values (J 'vk) generated by the transition metric unit 

(TMU) are input to SMU and Delays, in which one of the Delays is for the decision bits, and 

the other is for the reliability values. SMU generates the hard-decision, and finds the merged 

state (s0) to determine the initial state in PCU. The merged state is also used to select one of 

the reliability values stored in the Delay. The hard-decision (IA--D) is passed to PCU to 

compare with the hard-decision generated by the competing path. The compared results 

Figure 6.2 (a) The trellis diagram for the convolutional codes K=3. (b) The register 
exchange algorithm based survivor memory unit structure [93]. 
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obtained by PCU are input to UPU for the updating process. The updating process is 

performed following the updating rule described by equation (5.5) of Chapter 5. 

In the architecture illustrated in Figure 6.1, SMU and PCU are implemented based on the 

REA. Figure 6.2 illustrates the REA-based SMU structure for generating hard-decision for a 

trellis diagram with a constraint length K=3 [93]. This structure can also be used to 

implement PCU. The structure is comprised of an array of process elements (Ph) for 

exchanging the hard-decisions in every clock cycle. The output of the Ph is determined by 

the input decision bits (dcc) sent from TMU. As can be seen in Figure 6.2, the initial inputs 

of the first column PEs are the same with the code words of the trellis diagram. The number 

of columns is the same with the survivor depth. All outputs of tile last column PEs are the 

same and represent the hard-decision. 

6.3 Traceback Algorithm Based Two-step SOVA 
Turbo Decoder Architecture 

This section presents the proposed TSOVATBA turbo SISO decoder architecture. The 

architecture is described in comparison with the TSOVAREA decoder architecture described 

in the previous section, and the components incorporated in tile architecture are described in 

detail with an explanation of their functions in the decoding process. 

6.3.1 Two-Step SOYA Traceback Turbo SISO Architecture 

TSOVATBA turbo decoder architecture is proposed to improve hardware performance in 

terms of area and power as compared to TSOVAREA and MLMAP turbo decoders. TBA is 

widely employed in Viterbi decoder implementations due to its advantage of low power 

consumption as compared to REA-based decoders. in general, the registers for REA cause 

large area usage and power consumption. Despite low power and area, less attention has 

been paid to TBA for implementing TSOVA turbo decoders because TBA is regarded as 

high-latency, which lowers the throughput. The architecture introduced in this section 
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Figure 6.3 TSOVATBA turbo decoder architecture. 

does not increase the latency as compared to TSOVAREA decoder, while retaining the low 

power advantage of TBA. 

Figure 6.3 illustrates the TSOVATBA turbo SISO decoder architecture to be implemented in 

this work. This architecture consists of three main processes, which are metric computations, 

traceback and Update processes. In the metric computation process, the soft-input is 

computed by branch and state metric computation units (BMU and SMCU) to generate the 

decision bits, CI07k, and the reliability values, L07k,  from all the states at time k. d07k and L 0_ 

are passed to the traceback unit (TBU) and memory (MEM) blocks, respectively. TBU 

finds the merged state, S P,,kD, and one of the reliability values stored in MEM is selected with 

S,kD. The merged state is then sent to the path comparison unit (PCU) that provides the path 

comparison results to the update process unit (UPU) to output the soft-output. Thus, the role 

of the traceback and update processes in the architecture is the same as the survivor and 

Update processes in TSOVA decoder introduced in [93]. The extrinsic information for the 

next decoding process is obtained after subtracting the delayed soft-input from the soft-

output. 
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In the architecture, the memory blocks (MEM and Delay) are realised by using a first-in 

first-out (FIFO) memory block. MEM consists of parallel FIFO blocks, The number of FIFO 

blocks is 2 for constraint length K, and the depth of the FIFO is the same as the survivor 

depth. The Delay is realized by a FIFO, the depth of which is the same as the total depth of 

the survivor and update processes. 

6.3.2 Metric Computation Unit 

The metric compLLtatlon unit (MCU) in the TSOVATBA turbo decoder architecture is 

similar to the MCU ill the MLMAP turbo decoder architecture, shown in Chapter 3. While 

the MLMAP turbo decoder architecture requires three MCUs, the TSOVATBA turbo 

decoder architecture needs only one MCU, corresponding to the MCU for the forward 

process in the MLMAP-based turbo decoding process. Figure 6.4 illustrates the MCU 

structure incorporated in the TSOVATBA architecture. It consists of a branch metric unit 

(BMU) for generating the branch metrics, and a state metric computation unit (SMCU), 

which is realised by a number of parallel add-compare-select-normalization (ACSN) units. 

The BMU in this architecture is the same with the BMU illustrated in Figure 3.5 of Chapter 

3. However, the output sequence of the ACSN differs from the output of the ACSN used in 

the MLMAP turbo decoder architecture. While the ACSN for the MAP based turbo decoding 

process produces only the state metrics, the ACSN illustrated in Figure 6.4 for the 

TSOVATBA turbo decoding process generates the decision bit (DB), the reliability value 

MCU 
Recursive SM 

Soft 
BMU 	

BM 	
SMCU 	 DB 

Input
;RV 

Figure 6.4 The metric computation unit structure in the TSOVATBA architecture. 
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(RV), and the state metric (SM), which is recursively input to the ACSN itseli. DB and RV 

are passed to TBU and MEM, respectively. 

numbers of parallel ACSN recursively compute the state metrics from the BM and the 

recursive SM to produce the DB and RV. Figure 6.5 illustrates the ACSN structure used in 

the TSOVATBA turbo decoder architecture. This ACSN structure generates the state metric, 

sm o(k+1), of state 0 at time k+l. For obtaining sm >(k+1), two branch (bm oo(k), b7n 1  (k)) and 

two state metrics (sin o(k), and sm i (k)) at time k are input to the ACSN. First, the first two 

adders (A) conipute two new state metrics, which then are compared in order to select (CS) 

the maximum state metric. In the CS process, a subtractor, which is represented with an 

sm 0(k) hm 00(k) 	sin 1 (k) 	bni 11 (k) 
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Figure 6.5 The add-compare-select-normalization structure in the TSOVATBA turbo 
decoder architecture. 
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adder in Figure 6,5, is used for the comparing process. The most significant bit (MSB) of the 

subtractor output is input to the multiplexer (MUX) to select the maximum state metric, and 

is associated with the decision bit (dok) passed to the survivor process. The reliability value 

(Lok) sent to MEM is the absolute value of the subtractor output. In this process, 8-bits 

wordlength was enough to represent the absolute value, which is obtained from simply 

discarding the second MSB of the absolute value before passing to MEM. 

In the turbo decoding process, the state metrics increase rapidly due to the use of soft-input 

symbol data and extrinsic information. This requires a large wordlength to represent the state 

metrics. To reduce the size of the wordlength without overflowing, the state metrics 

normalization process (N) is necessary as illustrated in Figure 6.5. This process is performed 

when the maximum state metric is larger than a constant (CONST), as described in [105]. 

6.3.3 Traceback Process Unit 

The survivor process is performed to determine the merged state, from which the selected 

reliability value is passed to the update process. While the merged state is searched by the 

traceback process unit (TBU), the reliability values generated by SMCU are stored in MEM 

before selecting one of the reliability values using the merged state. The TBU is one of the 

main units in the TSOVATBA turbo decoder architecture. It uses the decision bits generated 

by SMCU to determine the merged state by tracing in backward as shown in Figure 5.2 of 

Chapter 5. Thus, the role of TBU is the same as the SMU of the TSOVAREA turbo decoder 

described in the previous section, but the TBU operates in a different way to find the merged 

state. 

Figure 6.6 illustrates a novel TBU structure proposed in this thesis. In this structure, a 

process clement (PE) is placed on each state as the trellis state diagram for constraint length 

K=4. Thus, the TBU consists o 12 1  numbers of PE row and D numbers of PE columns. The 

structure shown in Figure 6.6 appears to be similar to the structure of the SMU introduced in 

[93] for the TSOVAREA decoder implementation. However, there are some significant 

differences in the implementation methods described below. 
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Figure 6,6 The traceback process unit structure for searching the merged state. 

First of all, PEs incorporated in TBU are implemented with only four gates and have no 

registers, as shown in Figure 6.7. As illustrated in Figure 6.6, each of the PEs are connected 

by identical wired connections with the transition paths of the trellis diagram illustrated in 

Figure 5.2. On the other hand. PEs used for the SMU contain a register for exchanging the 

hard-decision. Thus, while the inputs of the first column PEs of the SMU are initialized with 

the code words corresponding to the hard-decisions, all first column PE inputs in TBU are 

initialized to 'I ' to make all state in the first column survivor states. Here ' I ' denotes a 

survivor path such that only one of the 16 outputs at the last column of PEs becomes ' after 

completing the survivor process. However, all outputs of the SMU are the same, representing 

the hard-decision. Hence, the SMU needs an accumulator for state information in order to 
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Figure 6.7 The process element structure. 

determine the merged state, while the hard-decision and merged state in the TBU can be 

represented by using one of the outputs of the PEs in the last column without a memory for 

storing the state information. 

Furthermore, in the SMU, the same decision bits generated by TMU are input to each of the 

PEs in the same row in every clock cycle. However, as shown in Figure 6,6, the decision bit 

input to all the PEs of the TI3U are different, and are controlled by shift registers. The 

decision bits in the TBU are used for determining which of PE outputs is 1' or O' in which 

'1 ' indicates a survivor path of a state. If the input sequences of PE are '0', the outputs of PE 

become '0' no matter what the input decision bit is. The survivor paths are finally merged to 

one PE at time k-D, which is the merged state. S,,,. During the decoding process, the TBU 

provides only the merged state to the PCU without the sequences of the hard-decision, while 

the SMU generates the hard-decision and merged states for the update process. 

In our TBU, a potential issue could be a critical path delay occurring due to the wired 

connections between the PEs. Whereas, in REA-based SMU, a critical path delay is no 

problem at all. The critical path delay due to the wired connections may be a cause of speed 

reduction of the turbo decoder to achieve maximum throughput. In general, it is well-known 

that the critical path delay of a turbo decoder is in ACSN [13]. Critical paths of the TBU and 

the ACSN in Figure 6.5 are investigated to determine which path affects the determination of 

the maximum speed of TSOVATBA turbo decoder implementation. 
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6.3.4 Path Comparison and Update Process Units 

The update process is performed to generate the soft-output, including the hard-decision and 

the reliability value and the extrinsic information for the next decoding process. Figure 6.8 

illustrates the path comparison and update process units (PCU and UPU) for performing the 

update process. PCU generates the comparison sequences of the survivor and competing 

paths, which are passed to REU to perform the updating process following the update rule in 

(5.5). The inputs of PCU are the decision bits, the merged state information, and the selected 

reliability value. The decision bits and the merged state are sent from TBU. The selected 

reliability value is one of the outputs delayed by the memory block. 
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Figure 6.8 The path comparison and update process unit structures 

Figure 6.8 illustrates the UPU structure, in which the PCU consists of a competing path unit 

(CPU) and a survivor path unit (SPU). While the inputs of TBU are initialized to 'I', the 

inputs of the CPU and SPU are initialized by the merged state, which indicates the initial 

state to start the survivor and update processes. The CPU and SPU generate the comparison 
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bits. These are then processed by the update processors (UP), which are realized based on the 

update rule given by equation (5.5) in Chapter 5. 

Figure 6.9 illustrates the structure of CPU and SPU, which is almost the same with the 

structure of TBU, shown in Figure 6.6. The number of the column PEs is the same as the 

update length, U. While the inputs of all first column PEs in TBU are initialized to 'I', the 

inputs of only one PE in PCU are initialized to 'I'. The initial inputs of CPU and SPU are 

determined by the merged state obtained by the TBU. During the update process, only one 

output path of each of the column PEs becomes I', and the rest of their outputs are V. 

From this output sequence, hard-decisions (11.k  and u.i,) of the survivor and competing paths 

can be generated by a hard-decision generator (HDG), and then they are compared to 

determine whether the reliability value needed to be updated or not following the rule in 

(5.5). The XORs shown in Figure 6.8 generate the comparison results (CO  that are input to 
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the UPU. As shown in Figure 6.8, the UPU is implemented with pipelined stages, in which 

the stage number is also the same as the update depth, U. 

6.4 Area-Efficient Traceback Two-Step SOYA Turbo 
SISO Decoder Architecture 
Figure 6.10 illustrates the area-efficient TSOVATBA turbo SISO decoder architecture. In 

this architecture, the MEM in the architecture illustrated in Figure 6.3 is replaced with an 

additional MCU incorporating BMU and SMCU, which is similar to the technique suggested 

in 11521. In addition, the Delay block for delaying the soft-input is divided into two blocks. 

The MEM area depends on the survivor depth and the constraint length. On the other hand, 

the area of MCU replacing MEM depends only on the constraint length. The separated 

DelayO has the same depth as the survivor depth. The total depth of DelayO and Delay I is 
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almost same as the depth of the Delay of the architecture illustrated in Figure 6.3. The two 

architectures described in Figure 6.3 and 6. tO are compared for area usage and power. 

6.5 Results 

The TBA based TSOVA turbo SISO decoders have been designed at RTL using Verilog 

HDL. After completing RTL simulations with Cadence Verilog-XL TM, they were 

synthesized with Synopsys DesignCompiler TM  using the UMC 0.18p111 standard CMOS 

technology. The gate-level netlists obtained from the synthesis were simulated with Cadence 

Verilog-XL. Power consLimption of the TSOVATBA decoders was evaluated by Synopsys 

PowerCompiler T  with the switching activities obtained during the gate-level netlists 

simulation. The test systems used in the simulation were the same with those used in 

Chapters 3 and 4 for the MLMAP turbo decoder simulation. The block size and other 

parameters. such as code rates, fixed-point representation for soft-input, etc., were also the 

same. 

6.5.1 REA and TBA Results Comparisons 

In TSOVA based turbo decoder implementations, as already stated in previous sections, one 

of the main processes is the survivor process, which can be implemented with REA or TBA. 

REA has been popularly employed for TSOVA decoder implementations using the method 

described in Section 6.2. The main differences between TSOVAREA and TSOVATBA 

decoders are in the modules that perform the survivor and update processes, while MCU can 

be commonly used in both decoder implementations. Thus, by comparing the SMU 

incorporated in TSOVAREA with the TBU used in TSOVATBA, we can forecast how much 

difference exists between the hardware performances of these decoders. For this comparison, 

REA based SMU following the structure described in [93] has been implemented and 

compared with the area usage and power consumption of the proposed TBU illustrated in 

Figure 6.5. Note that in this comparison SMU and TBU have been compared without the 

inclusion of memory blocks for storing the reliability values. Two different survivor depths, 
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Kx6 and K><8, for constraint lengths K3, 4, and 5, were considered for these performance 
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Figure 6.11 (a) Area and (b) power comparisons. 

comparisons. The update depths were fixed to (0.5xthe survivor depth + K). The depths were 

determined based on the decoder performance results obtained in the previous chapter. 

Figures 6.11(a) and (b) illustrate the area and power results of the SMU and TBU for K=3, 4, 

and 5. In these figures, SMUI and TBU1 imply the survivor depth Kx6 and the update depth 

Kx4, while SMU2 and TBU2 imply the survivor depth K<8 and the update depth Kx5. Table 
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6.1 summarizes the results. It is clear from the results that the area and power depends 

Table 6.1 List of the SMU and TBU area and power results. 

D=Kx6, U=K><4 D=Kx8, UKx5 

SMU1 TBUI 
[_Save 

SMU2 TBU2 
Save 

Area (rnm 2 ) 0.022 0.0103 53.7 0.029 0.013 53.9 
K=3 

Power(mW) 1.85 0.96 47.8 2.48 1.41 42.9 

J(=4 
Area (min 2) 0.059 0.027 53.9 0.078 0.036 54.1 

Power(mW) 5.02 2.71 45.8 6.69 3.67 45.1 

Area (mm 2 ) 0.147 0.067 54.1 0.196 0.089 54.2 
K=5 

Power(mW) 12.45 6.85 44.9 16.51 8.71 47.2 

strongly on the constraint length, as well as the survivor and update depths. The results also 

show that TBU can save 54% in area and 47% in power as compared to SMU. The area and 

power savings of TBU were almost same with different constraint lengths, survivor and 

update depths. While SMU is implemented with a number of registers used for REA. TBA 

used in TBU requires only wired connections which contribute to much of the area and 

power savings of TBA compared to REA. 

6.5.2 TSOVATBA Turbo Decoder Hardware Performance Results 

Two TSOVATBA based turbo decoders have been implemented for the evaluation of their 

hardware performance. The two decoders are illustrated in Figures 6.3 and 6.9, and are 

called the TSOVATBA turbo decoder (TBTD) and the area efficient TSOVATBA turbo 

decoder (AETD), respectively. 

First, the latency was investigated, which affects the throughput performance. The iterative 

process in a turbo decoder results in a large latency that reduces the throughput. In general, 

the latency of a MAP based turbo decoder with sliding window (SW) method is known to be 
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4 times the window size in the first half iteration [16]. On the other hand, the latency of 

ISO VATBA can be defined as the total depth of the survivor and Update processes. If it is 

assumed that the survivor depth is the same as the window size, the latency of the 

TSOVATBA becomes less than half of the MAP based turbo decoder latency. It must also 

be noted that TSOVATBA and TSOVAREA have the same latency. The latency of the 

TSOVATBA turbo decoders could be given as follows: 

Latency = (D + U ± P) x a clock period 	 (6.1) 

where D is the survivor depth, U is the update depth, and P is the number of pipeline stages 

in the TSOVATBA turbo decoder implementation. P depends on the design of the decoder 

and is typically much less than U. As can be seen, even though D is the same as the window 

size in the MAP based turbo decoders, the latency of the TSOVATBA turbo decoders is less 

than that of the MAP based turbo decoders. 

The area usage and power consumption results for TBTD and AETD are illustrated in 

Figures 6.12-6.14, and summarized in Table 6.2-6.7 for constraint lengths K=3, 4, and 5. In 

the figures, the primary and secondary Y-axes indicate the breakdown component and total 

results, respectively. As before, two different survivor and update depths are considered in 

the implementation of the decoders. The results show that the overall area of AETD for K=3 

and 4 is saved by up to 26% as compared with TBTD area results. On the contrary, the 

overall power of AETD for K3 and 4 increased by up to 27% as compared to TBTD. 

However, for K=5. AETD saves up to 36% in area and 6% in power. From these results, it is 

clear that the replacement of the memory for the reliability values with an additional MCU 

can achieve significant savings in overall area, while increasing the overall power 

consumption for 1K3 and 4 due to high switching activities led by the replaced MCU. On the 

other hand, the memory size for the reliability values is increased proportional to the number 

of states, 2. Thus, for K5, the results show that the dramatically increased memory 

blocks consume more power than the computational logics of MCU. The results for each 

constraint length are discussed below. 

Figures 6.12 (a) and (b) illustrates the area and power results for TBTD and AETD, 

respectively, for K=3. The results are summarized in Tables 6.2 and 6.3. AETD D6U4 and 

D8U5 save 8% and 18% in area, respectively, as compared to TBTD D6U4 and D8U5. The 
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replacement of the memory block for storing the reliability values leads significantly to area 
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Figure 6.12 (a) Area and (b) power comparisons for K=3 

reduction. In AETD, the area of BMU and SMCU is increased to two times that of the BMU 

and MCU of TBTD. This is because the BMU and SMCU area results of AETD include the 

area of the added MCU for generating the reliability values for the UPU. This results in the 
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power increase of AETD, despite of the area reduction. Thus, it is clear that although the 

Table 6.2 List of area results for K=3 

D6U4 D8U5 

-TT BTD 
(111111 

2) 
AETD 
(mm 2 ) 

Save 
(%) 

TBTD 
(mm 2 ) 

AETD 
(mm 2 ) 

Save  
(%) 

BMU 0.004 0.008 -100 0.004 0.008 -100 

SMCU 0.025 0.052 -105.6 0.025 0.052 -105.6 

TBU 0.010 0,010 0 0.013 0.013 0 

PCU 0.010 0.010 0 0.013 0.013 0 

UPU 0.032 0.031 2.8 0.038 0.038 0 

MEM 0.100 0.054 46.0 0.141 0.066 53.2 

Total 0.183 0.168 8.5 0.236 0.192 18.6 

Table 6.3 List of power results for K3 

D6U4 D8U5 

TBTD 
(inW) 

AETD 
(mw) 

Save 
(%) 

TBTD 
(m W) 

AETD 
(ni\V) 

Save 
(%) 

BMU 0.36 0.75 -106.8 0.37 0.74 -100 

SMCU 1.93 4.14 -114.0 1.96 4.13 -109.9 

TBU 0.96 1.09 -12.6 1.41 1.49 -5.0 

PCU 1.00 1.21 -20.6 1.46 1.56 -7.0 

UPU 1.98 2.4 3  -22.9 2.58 2.91 -12.8 

MEM 3.43 2.66 22.2 3.67 2.85 22.2 

Total 9.69 12.31 -27.0 11.47 13.7 -19.3 

computational logic area is less than the memory area, it can consume more power due to a 

high switching activity led by the metric computation process. 
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Figures 6.13 (a) and (b) and Tables 6.4 and 6.5 illustrate and summarize the area and power 

results of TBTD and AETD for K=4. Similar to the results for K=3, AETD saves up to 26% 
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Figure 6.13 (a) Area and (b) power comparisons for K=4 

in area by eliminating the memory for the reliability values. The power of AETD is slightly 

increased by 9% as compared to TBTD. This power increase rate is smaller than the increase 
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seen for K=3. The number of states for K=4 is doubled compared to K=3. This leads to an 

increase of computational complexity and memory size. Thus, it is clear from the results for 

Table 6.4 List of area results for K=4. 

D6U4 D8U5 

TBTD 
(111111 

2 ) 
AETD 
(mill2) 

Save 
(%) 

TBTD 
(mm2 ) 

AETD 
(mm 2 ) 

Save  
(%) 

BMU 0.004 0.008 -100 0.004 0.008 -100 

SMCU 0.049 0.099 -101.39 0.049 0.099 -101.39 

TBU 0.027 0.027 0 0.036 0.036 0 

PCU 0.027 0.027 0 0.034 0.034 0 

UPU 0.039 0.039 0 0.048 0.048 0.31 

MEM 0.226 0.073 67.70 0.255 0.090 64.67 

Total 0.374 0.275 26.46 0.427 0.316 25.94 

Table 6.5 List of power results for K=4 

D6U4 D8U5 

TBTD 
(mW) 

AETD 
(mw) 

Save 
(%) 

TBTD 
(mW) 

AETD 
(mW) 

Save 
(%) 

BMU 0.37 0.74 -101.61 0.37 0.75 -101.34 

SMCU 3.79 7.74 -104.05 3.74 7.53 -101.30 

TBU 2.71 2.71 0.18 3.67 3.70 -0.89 

PCU 2.89 2.86 0.89 3.78 3.76 0.29 

UPU 2.83 2.89 -1.93 3.31 3.43 -3.68 

MEM 5.81 3.26 43.94 6,80 3.64 46.45 

Total 18.43 20.23 -9.73 22.82 22.83 -0.05 

K=4 that the increased memory for the reliability values contributes to the total power as 

well as the total area as compared to the results for K3 decoder results. This difference is 

even greater in the results for K=5. 
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The area and power results for K5 are illustrate in Figures 6.14 (a) and (b), and summarized 

in Tables 6.6 and 6.7. The results for K5 show different aspects than the results for K=3 
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Figure 6.14 (a) Area and (b) power comparisons for K=5. 

and 4. In the TSOVATBA turbo decoder architecture, the memory size for the reliability 

values is higher than that of K3 and K=4 results. Thus, AETD can achieve savings in both 

.) J 

40 
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area and power as compared to TBTD. The area of the memory is much more reduced 

compared to K=3 and 4, which also leads to the overall power reduction of AETD. 

Table 6.6 List of area results for K5 

D6U4 D8U5 

TBTD 
(rnn) 

AETD 
(mm2 ) 

Save 
(%) 

TBTD 
(mm 2 ) 

AETD 
(urn 2 ) 

Save 
(°/) 

BMU 0.004 0.008 -100 0.004 0.008 -100 

SMCU 0.096 0.195 -102.1 0.096 0.195 -102.1 

i'BU 0.067 0.067 - 0.089 0.089 - 

PCU 0.068 0.068 - 0.084 0.084 - 

UPU 0.048 0.048 0.3 0.059 0.059 0.2 

MEM 0.396 0.084 78.6 0.519 0.106 79.4 

Total 	1 	0.682 0.473 30.6 0.855 0.544 36.2 

Table 6.7 List of power results for K=5. 

D6U4 D8U5 

TBTD 
(mW) 

AETD 
(rnW) 

Save 
(%) 

TBTD 
(mW) 

AETD 
(In W) 

Save 
(%) 

BMU 0.3 6 0.74 -106.0 0.36 0.73 -104.7 

SMCU 8.10 14.48 -78.6 7.99 14.29 -78.7 

TB  6.85 6.29 8.1 8.71 8.19 5.9 

PCU 5.71 5.64 1.2 7.16 7.08 1.0 

UPU 3.38 3.05 9.8 4.22 3.69 12.6 

MEM 11.88 4.50 62.0 13.28 5.08 61.7 

Total 36.30 34.72 4.3 41.74 39.1 6.3 
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6.5.3 Comparing with MLTBD 

The TSOVATBA turbo decoder results shown in the previous SLLb section are compared with 

the conventional MLTBD turbo decoder performance results obtained in Chapter 3. In the 

literature, an REA based SOVA or TSOVA turbo decoder does not reduce the computational 

complexity or improve hardware performance as compared to a MLTBD turbo decoder. This 

chapter shows that the proposed TBA based TSOVA turbo decoder can save more area and 

power than the REA based TSOVA turbo decoder. Thus, this section shows performance 

comparison between the TSOVATBA and the MLTBD turbo decoders for different 

constraint lengths, K3, 4, and 5. Table 6.8 lists the area and power comparison results 

between the MLTBD, the TBTD, and the AETD. The IBID and AETD results were 

obtained from the survivor and update depths of D8U5. From the results, the TBTD and 

AETD for K=3 can save up to 65% and 72% in area and 52% and 42% in power as 

compared to the MLTBD for K=3, respectively. For K4 and 5, the area and power savings 

or the TBTD and AETD are slightly less than for K=3, but the area and power savings still 

reach up to 66% and 34% for K=4 and 62% and 37% for K=5, respectively. 

Table 6.8 Area and power comparisons for the MLMAP and TSOVATBA based turbo 
decoder schemes. 

MLTBD TBTD AETD 
Save 

Area (mm 2 ) 0.689 0.236 65.7 0.192 72.1 
K=3 

Power(mW) 23.9 11.4 52.3 13.7 42.6 

Area (mm) 0.93 0.427 54.0 0.3 16 66.0 
K=4 

Power (mW) 34.78 22.82 34.3 22.83 34.3 

Area (min. 2 ) 1.452 0.855 41.1 0.544 62.5 
K=5 

Power(mW) 62.3 41.7 33.0 39.1 37.2 
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6.6 Summary 
This chapter presented a TSOVA turbo decoder based on TBA. The decoder architecture 

was described in comparison with the TSOVAREA architecture suggested in the literature. 

The hardware simulation results have shown that the TSOVATBA turbo decoder 

implementations can save more area and power than TSOVAREA turbo decoders. The 

savings are due to eliminating the registers required by the survivor and update processes of 

the TSOVAREA turbo decoders. The TSOVATBA turbo decoders were also compared with 

the MLMAP turbo decoders in terms of area and power. The results of this comparison 

showed that the TSOVATBA turbo decoders can reduce area and power more so than the 

MLMAP turbo decoders. Thus, the TSOVATBA turbo decoders could be more suitable for 

mobile and portable wireless communication systems requiring low power consumption and 

area usage without significant BER performance degradation, as shown in the previous 

chapter. In the next two chapters, reconfigurable application specific turbo decoder 

architectures targeting multi standard wireless communication systems are presented. The 

chapters present a turbo decoder that can be reconfigured for different constraint lengths and 

different type of turbo codes. 
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Reconfigurable Turbo Decoder 
Architecture 

7.1 Introduction 

Wireless comrnLlnication systems are constructed with a number of digital signal processing 

techniques. One trend for future wireless communication systems is that of converging to 

one system, which is compatible and flexible for different standardized systems [162-165]. 

In order to make the systems compatible and flexible, digital signal processors incorporated 

in these systems must be reconfigurable and reusable for different standards. 

In wireless communication systems, the adoption of different encoding techniques has led to 

the development of a recon figurable channel decoder, like the reconfigurable Viterb i decoder 

[166-168]. After the emergence of turbo codes, a dual mode decoder, which can be 

reconfigured as Viterbi and turbo decoders, has been proposed [I 3, 169-170] for supporting 

convolutional and turbo codes. However, a reconfigurable turbo decoder is considered less in 

the literature, and the demand of the reconligurable turbo decoder is continuously expected 

to be increased in the future by requiring the compatibility and reusability with a very low 

BER. Table 7.1 summarizes the turbo code specifications for different applications [171-

172]. As can be seen, the encoding schemes and parameters of turbo codes vary with the 

individual applications. Thus, this chapter presents a reconfigurable application specific 

integration circuit (REASIC) turbo decoder architecture that is designed to support turbo 

codes generated by different constraint lengths. 

The recontigurable application specific turbo decoder (REASTD) architecture presented in 

this chapter, which can he configured dynamically, is designed based on the K=5 MLMAP 

turbo decoder proposed in Chapter 4. This architecture can be reconfigured for K3 and 4 

with a proposed mapping method, which is used for implementing the state metric and LLR 

value computation units. The proposed mapping method involves minimized area overhead 
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Table 7.1 List Of turbo codes for different applications [171-172]. 

Applications Turbo code Termination Polynomials 
[ 	

Rates 

CCDSD 
Binary, 

Tail bits 23, 33, 25, 37 1/6, 1/4, 1/3. 1/2 
K=5  

UMTS. CDMA2000 
Binary, 

Tail bits 
K=4  

13, 15, 17 1/4, 1/3. 1/2 

DVB-RCS 
Double-binary, 

Circular 13 , 15 1/3 up to 6/7 
K=4 

DVB- RC'I' 
Double-Binary, 

Circular 13, 15 1/2, 3/4 
K=5  

M4 
Binary, 

None 23,35 1/2 
M=5  

Skyplex 
Double -Binary, 

Circular 13, 	15 4/5, 6/7 
K=4  

IEEE802J6, WiMax 
Double -Binary, 

Circular 13,15 1/2 up to 7/8 
K=4 I 

for the reconfigurable implementation. In order to achieve low power recontigurable turbo 

decoder implementation, a clock gating method is employed in the memory blocks for 

storing the state metrics, and the units for computing the state metrics and the LLR values. 

With the help of simulation results, the hardware performance of the reconfigurable turbo 

decoder is compared with the ASIC turbo decoder implementations. 

In addition, as shown in Table 7. 1, there are two types of turbo codes adopted as a standard 

in wireless communication systems. They are binary and double-binary turbo codes (BTC 

and DTC). As shown in Chapter 2, BTC and DTC are generated by different encoding 

schemes. Thus, the reconfigurable turbo decoder for supporting the two turbo codes is 

desirable for compatible and flexible systems. 

This chapter also proposes a reconligurable application specific turbo decoder (RDASTD) 

architecture that can be configured for BTC and DTC with a fixed constraint length K=4. For 

supporting both turbo codes, BTC and DTC, the RDASTD needs different design strategies 

due to the different number of inputs and outputs required by BTC and DTC. A radix-4 (R4) 

BTC turbo decoding process [14, 20] is investigated; and it is found that the decoding 
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process can be exploited to implement the RDASTD. The high radix method is already 

employed by Viterbi decoder implementations in order to achieve high throughput [114-117]. 

The high radix method can also be used to increase turbo decoder throughput. 

When the turbo decoding process for DTC is compared to the R4 process, it shows that many 

hardware resources can be shared for decoding both turbo codes. The complexity of a R4 

based turbo decoder is clearly higher than a general radix-2 (R2) turbo decoder. However, 

the overhead led by the R4 method might be traded off with the compatibility and flexibility 

of wireless systems. Detailed simulation results are provided to compare with the 

performance of the ASIC turbo decoder implementations. 

This chapter is organized as follows. Section 7.2 describes the mapping method for the 

recon f gurab Ic implementations. The REA SIC turbo decoder architecture and the 

incorporated components are illustrated in Section 7.3. Section 7.4 shows the R4 and DTC 

decoding methods used to implement the RDASTD. The detailed architecture and structure 

of each component are explained in Section 7.5. Simulation results in terms of area and 

power compared with ASIC turbo decoders are given in Section 7.6. Section 7.7 summarizes 

the chapter. 

7.2 Mapping Method for Reconfigurable Turbo 
Decoder Implementation 

The reconfigurable turbo decoder, presented in this chapter, is designed based on the 

MLMAP decoder architecture for constraint length K=5. The units for computing the state 

metrics and LLR are the main components in the reconfigurable turbo decoder 

implementations. They might be reconfigured for constraint lengths from K3 to 5. A 

mapping method in this work is to reallocate the forward and backward state metrics based 

on constraint length K=5. This method can be described with the trellis state diagram for 

1K5 turbo codes. 

Figures 7.1 and 7.2 illustrate the trellis diagrams of the forward and backward processes for 

K=5, respectively. There are 16 states given by 2K1  for constraint length K5. The arrow 
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Figure 7.1 The forward process trellis diagrams for (a) K=5, (b) K=3 based on K=5, and 
(c) K4 based on 1K5. 

indicates the process direction in different line styles corresponding to a systematic bit of the 

code words. Figures 7.1 (a) and 7.2 (a) are the trellis diagrams for K=5. Figures (b) and (c) 

show the state transitions in a bold line as required by the configurations for K=3 and 4 

based on the K=5 trellis state diagram. 

In the case of fixed constraint length turbo decoder implementations, the number of state 

metrics does not change. However, the reconfigurable turbo decoder is designed for 

reallocating the output state metrics before computing the new state metrics based on K=5 

turbo decoder. For instance, when the constraint length is set to K3, four states of the 16 

states are needed for the turbo decoding process, as illustrated with the bold lines in Figures 

7.1 (b) and 7.2 (b) for the forward and backward processes. Then, the output state metrics 

for each process are reordered as follows. 
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Figure 7.2 The backward process trellis diagram for (a) K5, (b) K=3 based on K=5, and 
(c) K=4 based on K=5. 

c(k+1) -> ao(k+1), 	ai(k+1) -> ai(k+1), 	 (7.1) 

a8(k+1) -> a2(k+1), a9(k+1) -* a3(k+1), 

Others -* 0 

In a similar way, the state metrics for the backward process is represented as follows: 

,L(k+1) -> /(k+1), /31(k+1) -> ,[]1(k+1), (7.2) 

/7(k+1) -> ,88(k+1), /33(k+1) -> f(k+1), 
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Others -+ 0 

While the state metrics of states 8 and 9 are input to state metrics 2 and 3 for the forward 

state metric computation, the state metrics are input to the state metrics 8 and 9 for the 

backward state metric computation. Four state metrics are only passed to LCU in order to 

calculate LLR. 

On the other hand, of the 16 state metrics, the mapping method for K=4 reallocates eight 

state metrics. The mapping can be represented for the forward and backward processes as 

follows: 

Mapping forward state metrics for K4: 

ao(k+l) -> 	(k+1), 	a1 (k+1) -> a1 (k+I), 	(7.3) 

a3 (k+l) -> a2(k+1), a4(k+l) -> a3 (k+l), 

a8(k+1) -> a4(k+1), a9(k+1) -> a5(k+1), 

ao(k+1) -> a6(k+1), a1 1 (k+I) - a7(k+1), 

Others -> 0 

Mapping backward state metrics for K=4: 

	

-> /(k+ l), 	61(k+1) -4,81  (k+ I ), 	(7.4) 

fl(k+1) -> ,82(k+1), /33(k+1) -> /(k+]), 

	

,(k+1)—>/3(k+1), 	85(k+1)-.J3(k+1), 

	

/(k+1) -> /310(k+1), 	/3(k+1) -> 1811(k+l), 

Others -> 0 
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Following the mapping methods described above, the output state metrics are 

computed after reordering their state numbers when the REASTD is configured for 

K=3 and  

7.3 Reconfigurable Turbo Decoder Hardware 
Architecture for Variable Constraint Lengths 

This section presents the recontigurable application specific turbo decoder (REASTD) 

architecture for supporting variable constraint length. A detailed structure of the units 

incorporated in the architecture is described. To save on power consumption of the REASTD 

hardware, gated clock is used to implement a reconfigurable state metric computation unit 

(RESMCU) and a reconfigurable LLR computation unit (RELCU). 

7.3.1 Reconfigurable Turbo Decoder Architecture 

The REASTD architecture is illustrated in Figure 7.3. The incorporated components are 

almost same with the MLMAP architecture presented in Chapter 3. The REASTD is 

implemented based on K5 to support K=3 and 4 as well. It consists of three reconfigurable 

metric computation units for the forward (FREMCU), backward (BREMCU), and dummy-

backward state metrics (DREMCU), a recontigurable LLR computation unit (RELCU) to 

calculate LLR for K=3, 4, and 5, the memory blocks for a data scheduling unit (DSU) and 

delaying for the soft-input and the forward state metrics. The reconfigurable units can be 

configured for the mode (M), and operate with a gated clock (GC) to save on power 

consumption. In addition, the memory block, DF, for storing the forward state metrics is 

designed with 16 parallel LIFO blocks with GC. The 16 parallel LIFOs are for K5, but 4 or 

8 of them are used if K=3 or 4. The unused LIFO blocks are deactivated by the GC. 
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Figure 7.3 The reconfigurable turbo decoder architecture. 

7.3.2 Clock Gating Method for Reconfigurable Turbo Decoder 

It is well known that a clock gating method [140-141] is very useful for saving on power 

consumption. Figures 7.4 (a) and (b) illustrate an example of the use of the GC, and the GCs 

applied to the REASTD implementation, respectively. As shown in Figure 7.4 (a), a system 

clock is input to a register flUOUgh an AND gate. If the register does not need to be activated, 

the 'Enable' input of the AND gate is set to '0' and hence the system clock is blocked. 

Figure 7.4 (b) illustrates how the gated clocks are generated for the REASTD. Three gated 

clocks (GC0, GC 1 , and GC 2) are used in the REASTD architecture. The mode (M) 

I -, 
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Figure 7.4 (a) Clock gating method. (b) The gated clocks applied to the recoil figurable 
architecture. 

corresponding to the Enable in Figure 7.4 (a) is determined by the constraint length and 

represented in 3-bits. Thus, when K is 3, the least significant bit of M, M [0], is ' 1' that 

enables GC 0 . When K is 4, M [1:0] enables GC 0  and GC 1 . When K is 5, all GC signals are 

enabled. 

7.3.3 Reconfigurable Metric Computation Unit 

The reconfigurable metric computation unit (REMCU) consists of a BMU, a reconfigurable 

branch metric normalization unit (REBMNU), a reconfigurable state metric computation unit 

(RESMCU), and a mapping unit (MAU), as illustrated in Figure 7.5. It is used to compute 

the forward and backward state metrics. The soft-input data is fed into BMU to generate the 

branch metrics (BM). The BM is normalized by REBMNU with the state metrics (SM) 

providing by MAU. The normalized branch metrics (NBM) and the Recursive SM are 

passed to RESMCU for computing the next state metrics. The REBMNU is almost the same 

as the BMNU introduced in Chapter 4. The difference is that the number of SM inputs for 

determining the normalizing condition is controlled by the configuration of the constraint 
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Figure 7.5 The reconfigurable metric computation unit structure. 

length. For example, if REBMNU is configured for K=3, REBMNU accepts only four SM 

values. 

RESMCU that is implemented based on K5 consists of 16 ACSs in parallel and a MAU. 

The ACS structure is the same as the one used in Chapter 4. It operates with the mode (M) 

and three gated-clocks (GC 0 , GC 1 , GC,) associated with the constraint length. 

Figures 7.6 and 7.7 illustrate the configurations of RESMCU and MAU for computing the 

forward and backward SM, respectively. These figures are given as an example when they 

are configured for K3. As described in the previous subsection, when K3, GC0  is enabled 

only, while the other two gated-clocks are blocked. In this case, four of the 16 ACS units are 

activated with GC 0 , as illustrated in Figure 7.6. Thus, when K=3, the rest of the ACS units 

do not operate and their inputs are set to zero. In the figure, the unused ACSs are represented 

in grey coloured blocks. As can be seen, ACS 0, 1, 8, and 9 are activated by GC 0  and M [0]. 

Outputs of the four ACSs are reordered as r, raj , ra7, and raj  by MAU before recursively 

being input to the four ACS 0, 1, 8 and 9 of the RESMCU. The reordering method that is 

described in the previous section follows. 
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a0 , a1 H 	ACS 0 I' a. 

a2 , a3 ACS1 ra1 

ia 
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ACS 11 

ACS 12 	•- - 

ACS 14 

ACS 15 - - 

GO0  M[O] 

RESMCU 

Figure 7.6 The reconfigurable state metric unit configuration for the forward process and 
K=3. 

Figure 7.7 illustrates the configuration for the backward process that is performed in a 

similar way with the process illustrated in Figure 7.6. As before, GC 0  and M [0] are used to 

operate the four ACSs, 0, I, 2, and 3. The rest of the ACSs are deactivated. Outputs of the 

four ACSs are reordered as r, r,81 , r, and rA through the MAU. This backward SM 

reordering method is described in Section 7.2. The dummy-backward process is performed 

in the same way with the backward process. 
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Figure 7.7 The reconfigurable state metric unit configuration for the backward process 
and K=3. 

The configurations of the RESMCU for the constraint length K4 can also be represented by 

using the method illustrated in Figure 7.6 and 7.7 with the mapping method described in 

section 7.2. 
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7.3.4 Reconfigurable Log-Likelihood Cornputatioii Unit 

A reconfigw-able log-likelihood computation unit (RELCU) is also designed based on the 

constraint length K=5 to support the constraint length K3 and 4, as well. A gated-clock 

method is applied to the RELCU implementation to save power consumption as in the 

RESMCU implementation. The RELCU structure is illustrated in Figure 7,8, which consists 

of two mapping units (MAU) and two main components, LCUI and LCUO, to generate I-

and 0- bit LLR values, Liri  and L 11.0 . The extrinsic information is obtained from the 

differences of Ljri and L10 after subtracting the solt-input. The forward and backward state 

metrics (FSM and BSM) and the branch metrics (BM) are input to RELCU, and then, they 

are distributed by MAU following the mode (M) that is associated with the constraint length. 

The three gated-clocks, GC 0 , GC 1 , and GC,, are input to each of the LCUO and LCU I 

depending on M to save on the power consumption. 

RELCU 

rIr_ 

M GCQGC1GC2 	 I 
LLR 

. 	- 	-  

M GC0 GC 1 GC2  

Extrinsic 
Information 

FSM 

BSM 

Soft 
input 

Figure 7.8 The reconfigurable LLR computation unit structure. 
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PE2_______ 

ADD 	4-CS 	
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BM 

FSM 	MAU ---- --' 	4-CS  

B S M 

ADD 	L 4-CS 
	rnax[L,..Lfr011] 

PE4 

ADD I 	4-CS. 
rnax[L1012 ...L /, 015 1 

M[0] 	GC0  

Figure 7.9 The reconfigurable L 1,0  or Lir i computation unit structure. 

As an example, Figure 7.9 illustrates a structure that can be used for LCUO or LCU I with 

MAU. The figure is shown when it is configured for K3. The process for computing the I- 

or 0-bit LLR value is no different from that described in Chapters 3 and 4. In the structure, 

the four process elements (PE) are activated by the three gated-clocks. Each PE computes 4 

I- or 0-bit LLR values from the input FSM, BSM, and BM, and then the LLR values are 

compared by 4-input compare-select (4-CS) to determine the maximum value, as represented 

by max[L110  ... L,, 3 ] in PEI. The outputs of the four PEs are compared again to select the 
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final LLR value. However, when the LCU is configured for K3, only PEI is activated and 

its results are output through the 4-CS as the final value L,,., as shown in Figure 7.9, in 

Which the grey coloured PEs are deactivated. 

7.4 Turbo Decoder Implementation Methods for 
Binary and Double-Binary Turbo Codes 

7.4.1 Radix-4 Turbo Decoding Method for Binary Turbo Codes 

Radix-4 and higher radix decoders for convolutional codes were developed in order to 

achieve high throughput at the expense of increased implementation complexity [114]. An 

R4 turbo decoder VLSI implementation for BTC is described in [118]. Similarly, as with the 

decoder for convolutional codes, R4 turbo decoder processes the input data at times k and 

k+1 concurrently. Figures 7.10 (a) and (b) illustrate R2 and R4 trellis diagrams for BTC with 

a constraint length K4. In Figure 7. 10 (b), four transition paths converge into one state, 

0 	1 -•'- 	00— 01---- 10–j– 11 

0 
1 
2 

3 
4 

5 
6 

7 

 

k 	k+l k 	k±l 

(a) 	 (b) 

Figure 7.10 (a) Radix-2 and (h) radix-4 based trellis diagram for K=4 binary turbo codes. 
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represented in different line styles, which indicate two systematic bits of the code words at 

times k and k+l. Thus, a state metric for each state is obtained from the four branch metrics 

calculated from the soft-input data at times k and k+l, and the four state metrics. Therefore, 

the number of the state metrics for forward and backward processes is reduced to half of the 

number of the state metrics computed by the R2 turbo decoder implementations, which are 

the MLMAP turbo decoders described in previous chapters. However, two LLRs and 

extrinsic information must be obtained from the half number of the state metrics and the 

branch metrics generated at times k and k+ I. The two LLRs are concurrently calculated as 

follows: 

L 1,. (k) = max[L111  (k, k + 1), L1,. 1 0 (k, k + I)] - niax[L,,. 00 (k, k + 1), L 1,. 01  (k, k + 1)] (7.5) 

L 1,. (k + I) = inax[L11. (k, k + I), L1r01 (k, k + 1)J - max[Liroo (k, k + I), L1r1  (k,k + 1)] (7.6) 

where Lirjj, Lir. Lirüi, and Ljrjü are obtained from the state and branch metrics of the 

k 	k+l 
	

k 	k+l 

(a) 
	

(b) 

Figure 7.11 The trellis paths for computing (a) L 1, 0  and (b) Liri based on radix-4 binary 
turbo codes for K=4. 
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transition paths represented by the systematic bits of the code words, II, 00, 01, and 10, 

respectively. Figures 7.11 (a) and (b) are given as an example to obtain L 1, 00  and Lirij, which 

are the maximum values of the LLRs calculated from the eight transition paths, respectively. 

The other two LLRs can be obtained using the same method. Then, the final LLR values in 

equations (7.5) and (7.6) can be obtained. The extrinsic information at times k and k+l can 

be provided to the next decoder by subtracting the systematic input symbol and the extrinsic 

information of each time from the LLR values obtained from equations (7.5) and (7.6). 

7.4.2 Double-Binary Turbo Codes Decoding Method 

As described in Chapter 2, the DTC is generated from a double-binary input data stream. 

Many papers have researched the turbo decoder implementations for BTC. However, the 

turbo decoders for DTC are relatively less considered in the literature from the hardware 

implementation point of view. Thus, in this work the DTC turbo decoding algorithm has 

been investigated. This investigation showed that the algorithm needs a different strategy 

from the BTC turbo decoding algorithm. 

Basically, the same components are used to implement BTC and DTC turbo decoders. 

However, due to using different techniques in the encoding process, the initial and final state 

metrics for the forward and backward processes need to he treated differently in the 

00— 01 ----- 10—.—. 11 

—'V  

.' 	•e 

N-2 N-1 

Figure 7.12 The forward process trellis diagram for K4 double-binary turbo codes. 
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implementations, which require modifying the design of the state metric computation unit 

(SMCIJ). 

The decoding algorithm for DTC has similarities, as shown in the trellis diagrams in Figure 

7.12. Thus, calculating the branch and state metrics for the DTC decoding process is almost 

the same as that of the R4 BTC decoding process. However, while the initial state metrics for 

forward and backward processes for BTC are already known at the decoder side, due to 

using CRSC by its encoder, as described in Chapter 2, they may be determined and updated 

for DTC during the decoding process. For these processes, the initial state metrics for the 

forward and backward processes are initialized to zero at the first iteration as follows: 

a(so )=O, ,G(SN_1) = 0 for all slates 	 (7.7) 

Then, the final state metrics for the forward process and the backward process, 	(S jV_]) 

and 	, are updated to the initial state metrics in the next decoding process. This 

happens at every iteration for updating the new initial state metrics. Therefore, the final state 

metrics need to be accumulated until the next decoding process starts for the updating. 

Then, two LLRs are computed using the same method described in (7.5) and (7.6). In 

addition, two extrinsic information data can be obtained as follows: 

L 2  (k) = LJ. (k) - Lyj' - L 1 	 (7.8) 

L 2  (k) = L (k) - Lyf - L 	 (7.9) 

where A and B are the systematic bits as shown in Figure 2.4 in Chapter 2. Therefore, each 

set of extrinsic information, L 2  and L 2 , corresponds to the input systematic symbols. This 

process is the same with the method used in the R413 turbo decoding process described in the 

previous subsection. 

As can be seen, a R4 BTC turbo decoder structure can be exploited to implement the 

RDASIC turbo decoder that supports BTC and DTC. 
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7.5 Reconfigurable Turbo Decoder Hardware 
Implementations for BTC and DTC 

7.5.1 Recoiiflgurable Turbo Decoder Architecture 

In this section, the RDASTD architecture for R413 and DTC is described based on the 

architecture described in Figure 4.1 of Chapter 4. Figure 7.13 illustrates the reconfigurable 

architecture that consists of three R4 BTC and DTC metric computation units for forward 

(FRDMCU), backward (BRDMCU), and dummy-backward processes (DRDMCU), an R4 

BTC and DTC LLR. computation unit (RDLCU), memory blocks for data scheduling (DSU) 

and delaying the soft-input (DS), the forward state metrics (DF), and the soft-output (DL). 

These memory blocks can be realized by FIFO and LIFO blocks. The depth of the LIFO and 

TNJ 
_ M-  

DRDMCU
RDBMU  t ---- 	----------------- 

Soft ERDBMU 	MAU H RDSMCU H - 

input 
DS 

M 	M 	 RDLCU 

BRDMCU 
DSU M 

 MAUH RDSMCU  ERDBMU 

 

- 

DF 	DL  

- 	 ---W.
1. 	 IT: 

 RDBMU 	 RDSMCU 
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Output 
I 	FRDMCU 

M 
M 

Figure 7.13 The reconfigurable turbo decoder architecture for radix-4 and double-binary 
turbo codes. 
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FIFO is related to the window size. In this architecture, the window size is determined by the 

minimum block size of 3GPP for BTC and IEEE 802.16 for DTC. Thus, the memory block 

size can be configured following the input mode (M) for BTC and DTC. The computational 

logic components. RDMCU and RDLCU, are designed for supporting the R4 BTC and DTC 

decoding process. The delay for the branch metrics input to RDLCU is replaced by an 

additional R4 BTC and DTC BMU (RDBMU) for saving area. All the components are 

configured by the mode (M), either for R4 BTC or DTC. Detailed implementation methods 

of each component are described in the following sections. 

7.5.2 Reconfigurable Metric Computation Unit for Radix-4 BTC 
and DTC 

Figure 7.14 illustrates the R4 BTC and DTC MCU (RDMCU) structure that consists of a 

reconfigurable R4 BTC and DTC branch metric unit (RDBMU) and a R4 BTC and DTC 

state metric computation unit (RDSMCU) that incorporates a mapping unit (MAU) and a 

parallel R4 BTC and DTC add-compare-select-normalization (RDACSN). The mode (M) 

input to RDMCU determines the algorithm (BTC or DTC) to be implemented. Before 

starting the decoding process, each component is configured for the selected mode. Then, 

MAU distributes the branch metrics (BM) obtained by RDBMU and the state metrics 

generated by RDSMCU in the previous process to calculate the new SMs. 

I RDMCU 

Recursive SM 

Soft-input 	 __'SM 

Figure 7.14 The reconfigurable metric computation unit structure. 
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7.5.2.1 R4 BTC and DTC Branch Metric Unit 

Figure 7.15 illustrates the RDBMU structure used to implement the RDASTD architecture 

with R4 BTC and DTC. This figure is given as an example for R4 BTC. As can be seen, due 

to the high radix decoding process, the implementation complexity is clearly higher than the 

BMN implemented in previous chapters. While the BMU used in the previous MLTBD 

architectures generates the two branch metrics of the required four branch metrics, the 

RDBMU provides the eight branch metrics of the required 16 branch metrics from the six 

inputs as illustrated in Figure 7.15. The other eight metrics can simply be obtained by 

negating the outputs of RDBMU Generally, the branch metric computation process does not 

significantly affect the overall turbo decoder performance in terms of area usage and power 

consumption. However, it was found that different weighting for the soft-input data and 

extrinsic information is needed for R4 BTC and DTC in order to achieve better BER 

I 	 1 	 U 	 1) 

lull 	lillo 	mo! 	;,1 100 	110!! 	1101 	1100! 	11000 

Figure 7.15 The branch metric unit structure for R4 BTC and DTC. 
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performance. Therefore, the weighting relies on the encoding style and it is implemented 

with shift registers. 

7.5.2.2 R4 BTC and DTC Add Compare Select Normalization Unit 

In common turbo decoder implementations, an ACSN unit is regarded as one of the key 

components. Here, the ACSN for RDSMCU is separately described by whether it is for 

either R4 BTC or DTC. As an example, Figures 7.16 (a) and (b) show a block diagram of 

ACSN for R4 BTC and DTC, respectively. In Figure 7.16 (a), BM, SM, and dummy state 

metric (DSM) generated by DRDMCU shown in Figure 7.14 are input to ACSN. While SM 

is input recursively to ACSN through a multiplexer (MUX), the input recursive SM is 

updated in DSM at the beginning of every sub frame during the decoding process following 

the number of the counters (CNTI and CNT2). 

On the other hand, the ACSN illustrated in Figure 7.16 (b) requires an accumulator (ACM). 

All the functions and the data input sequence of Figure 7.16 (b) are the same as with Figure 

7.16 (a). However, as already described in Section 7.4, while the initial state metrics for BTC 

BM DSM 	 BM DSM 

\MUX 

- I 
CNT2 

SM 	 I 	ISM 

C Nil 

C NT2 

ACM 

ACSN 	I 	I 	 I 	ACSN 

SM 	 SM 

(a) 	 (b) 

Figure 7.16 The add-compare-select-normalization block diagram for (a) binary and (b) 
double-binary turbo codes. 
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Figure 7.17 The raxid-4 based add-compare-select-normalization structure. 

are known at the decoder side, the initial state metrics for DTC must be found for every 

iterative process after being initialized with zero for the first iteration. The initial state 

metrics are then updated when the next iteration is started. The updating takes place once in 

every frame. Therefore, the ACM is for storing the state metrics used for the initial state 

metrics in the next iteration process. 

Figure 7.17 is a conventional ACSN structure, which can be used for R4 BTC and DTC. 

This structure is given as an example for calculating a state metric of state 0 for R4 BTC. 

The input branch and state metrics must be altered as they are for DTC. These inputs are 

controlled by MAU in Figure 7.14. Four branch (t000, 7tioo, yioii, yiii) and state (a0, a, a2, 

a3 ) metrics are added by using four adders and, then, the results of each adder is repeatedly 

compared for selecting the maximum state metric. The selected maximum state metric is 
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normalized by subtracting a constant (CONST) value to prevent overflows, as the state 

metric is larger than the constant. Finally, 'new ' is generated and is recursively input to 

the ACSN itself. 

It is well known that ACSN is the bottleneck in a high-speed turbo decoder and the critical 

path delay of a turbo decoder is in ACSN as was discussed in Chapter 3. The critical path 

delay, d, of the structure illustrated in Figure 7.17 can be given as follows: 

d=4xr0 +3xt,,, 	 (7.10) 

where t, is the adder delay and t,,, is the multiplexer delay. In order to achieve a high-speed 

turbo decoder, the delay must be reduced. The retiining method used in [154] may be 

- 	 ,, 	 ' -V1 	 /Y 	 Y- ... 

4-input CS 

new ao 

Figure 7.18 The radix-4 add-compare-select-normalization structure with 4-input compare 
select unit. 
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applied to the ACSN to reduce the delay. However, this method is not suitable for 

implementing the ACSN for R4 BTC and DTC due to large overheads in area usage and 

power consumption led by the method. 

Figure 7.18 illustrates another ACSN structure for improving the critical path delay. Instead 

of the three CS stages in Figure 7. 17, a 4-input CS introduced in Chapter 4 is employed in 

Figure 7.18. As can be seen, the four sets of results corresponding to the outputs of the first 

adder set are compared with each other at the same time by using six adders. Then, the six 

most significant bits (MSB). SO-5,  generated by the six adders, are used to select the 

rnaxinuim state metric as described in Chapter 4. Thus, the delay of the ACSN in Figure 7.18 

is 

d =3XIa +( in +t ;n  

where ,;, is the delay of 4-input selector, which may be a little longer than t,. With the 4- 

input CS, it is shown that the ACSN delay in (7.11) is roughly reduced by the delay of one 

adder and one MUX. However, the use of 4-input CS increases the number of adders that 

may lead to area and power overhead. The hardware performance between the two ACSN 

implementations is evaluated and compared in later sections. 

7.5.3 R4 BTC and DTC Log-Likelihood Computation Unit 

Al] of the branch metrics and the forward and backward state metrics generated by each 

RDMCU are used to calculate the LLR values. Figure 7.19 illustrates a block diagram of R4 

BTC and DTC LLR computation unit (RDLCU) that consists of a mapping unit (MAP) for 

the distribution of the input branch metrics (BM), forward and backward state metrics (FSM 

and BSM), four sub LLR computation units (LLROO, 01, 10, and 11), and two LLR 

computation units (Sub-LCUO and 1). The purpose of the mapping unit (MAU) is the same 

as that of the MAU shown in Figure 7.14. MAU reallocates the input BM, FSM, and BSM 

for computing LLR based on the selected operation mode (R4 BTC or DTC). After 

completing the distribution of all branch and state metrics, LLROO, 0 I, 10, and 11, calculate 

L 1, 10, Lirüi, L ip- yo , and Lir ij following the method described in Section 7.4. These values are 

used to obtain two LLR values by Sub-LCUO and Sub-LCU1 based on the methods in (7.6) 
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BM 

FSM 

BSM 

Figure 7.19 The LLR compLitation unit structure. 

and (7.6). At the same time, the extrinsic information for the next iterative decoding process 

is also computed from the LLR values obtained by Sub-LCUO and Sub-LCU I. The outputs 

of the RDLCU are represented by 9-bits, in which the most significant bit (MSB) represents 

the LLR and the other 8-bits represent extrinsic information. The MSB is the decoded bit 

information of the turbo decoder. 

In Figure 7. 11(b), the trellis state diagram associated with computing Ljrjj for R4 BTC was 

given as an example, in which eight transition paths exist. Figure 7.20 illustrates a 

conventional structure of the LLR1 1 for computing L 1,. 11 . Similarly, this structure can also be 

used to implement the sub-LCUOO, 01, and 10 with different combinations of the input 

branch and state metrics. As shown in Figure 7.20, there are eight pairs of branch and state 

metrics corresponding to eight transition paths and forward/backward states. Note that the 

subscript of and , indicates state 0 of forward and backward state metrics. In addition, 

the subscript of Yo  denotes branch metric of 0000 code word generated by the encoder. In 

this case, after adding three input metrics, the L 11  is determined by selecting the maximum 

value by using seven CS units. In this structure, the critical path delay is 
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6*1  

Figure 7.20 L ii  computation unit structure for radix-4 and double-binary turbo codes. 

d-5xç+3xt 	 (7.12) 

We can see that this delay, d, is longer than ACSN in (7.10). To reduce this critical path 

delay, the structure can be pipelined by inserting a set of registers. This cannot only reduce 

the critical path delay but also decrease the glitches. However, excessive pipelining may also 

lead to increased area usage and power consumption due to the insertion of registers. 

Figure 7.21 illustrates an improved structure of Figure 7.20. When we look at the input 

branch metrics, we can see that the actual number of branch metrics is only four to calculate 

L 1 1. This is the same for computing L 01 , L , and L whether it is for BTC or DTC. This 

allows comparisons to be made before adding all the three metrics. Therefore, after adding 

forward and backward state metrics, the results are compared to select the maximum value 

and, at the same time, branch metrics are summed with the two state metrics. The four 
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Tii• 

Figure 7.21 The L n  computation unit structure with 4-input compare select. 

outputs generated from the first stage comparisons are then used to compute the final output. 

Here, the 4-input CS as shown in Figure 7.18 is used to select the maximum LLR as the final 

output. The critical path delay of the structure in Figure 7.21 can be given as below: 

d=3Xta ±t,,: +t,n 	 (7.12) 

Clearly, this delay is the same with (7.10). Therefore, the structure provides an efficient 

implementation for reducing the critical path delay without needing to employ pipelining. 

The structures of Figures 7.20 and 7.21 have been implemented and their performance 

compared in terms of area usage, power consumption, and delay, which are discussed in the 

next section. 
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7.6 Results 

The reconfigurable ML-MAP turbo decoder has been designed at RTL using Verilog HDL 

and synthesized with the Synopsys DesignCompiler TM  using the UMC 0,1 8im standard 

CMOS cell library. RTL and gate level simulations were performed using Cadence Verilog-

XLTN1. The switching activities generated from all circuit nets were obtained during the gate 

level simulation after eight numbers of iterations. The reconfigurable turbo decoder power 

consumption was evaluated with Synopsys DesignPower m' with the switching activity 

information generated by the gate-level simulation. These simulation processes were carried 

out at a clock frequency of 50MHz. 

At first, Figure 7.22 illustrates the area results of the REASTD compared with the ASIC 

turbo decoder implementation results for each constraint length K=3, 4, and 5, which were 

given in Chapter 4. The primary and secondary axes in the graph indicate breakdown 

components and total area results. In the figure, K3A implies the K=3 MLMAP turbo 

decoder implemented as an ASIC. The comparisons of the area results are also depicted in 

Table 7.2. As expected, the area of the REASTD designed based on K5 is larger than K=3 

and K=4 ASIC implementations. Area overheads of the REASTD were 173% and 79% for 

K=3 and K=4 ASIC implementations, respectively. On the other hand, the area overhead 

compared to K=5 ASIC implementation was just 6%. When the results of each component of 

the REASTD are compared with the results of K5A, it is clear that the total area overhead is 

led by the reconfigurable components such as BMNU, SMCU, and LCU. The BMN does not 

include the reconfigurable feature, so its area remains unchanged. 

The REASTD power results need to be analysed in a different way. The REASTD power 

was evaluated after it was configured for each constraint length K=3, 4, and 5. In this power 

evaluation, two cases were considered for the REASTD. One is the case of without the gated 

clock; the other is the case of with the gated clock. In the former case, the REASTD can be 

configured for each constraint length, but it operates without the gated clock. Although a 

clock signal is input to all the components, zero sequences are set to inputs of the unused 

components so that glitching can be reduced. Thus, the power results obtained from the two 

cases provide information about the effectiveness of the gated clock. 
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Fi gure 7.22 The area results and comparisons. 

Table 7.2 List of area results. 

MA K4A K5A REASTD 

Area 
(111m

2 ) 

Area 
(mm2 ) 

Area 
(in 1112) 

Area 
(iniii) 

K3R ________ K4R K5R 

Save Save Save 

BMU 0.019 0.019 0.019 0.019 0 0 0 

BMNU 0.051 0.072 0.115 0.115 -126.4 -59.3 -0.3 

SMU 0.060 0.110 0.211 0.220 -265.5 -99.3 -4.4 

LCU 0.048 0.089 0.176 0.223 -361.5 -149.4 -26.1 

MEM 0.314 0.459 0.749 0.771 -145.2 -67.8 -2.8 

Total 0.493 0.751 1.272 1.350 -173.3 -79.5 -6.0 

Figure 7.23 illustrates the power results of the REASTD with and without the gated clock, 

after being configured for each constraint length. The primary and secondary y-axes indicate 
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Figure 7.23 The power results and comparisons. 

Table 7.3 List of power comparisons for K=3. 

K3A K3WO K-3) GC 

Power 
(rn\V) 

Power (In 

W) 
Save 
(%) 

Power 
(niVV) 

Save 
(%) 

BMU 1.6 1.65 0.9 1.6 0.9 

BMNU 3.4 4.964 -42.3 4.96 -423 

SMCU 4.4 6.328 -41.6 4.88 -9.3 

LCU 3.8 7.4 -91.5 5.12 -32.5 

MEM 7.5 14.097 -85.7 8.37 -10.3 

Total 21.0 34.439 -63.4 25.00 -18.6 

the breakdown component and total power results. In the figure, K3WO and K3GC imply 

that REASTD is configured for K=3 'without gated clock' and 'with gated clock', 

respectively. 
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Table 7.4 List of power comparisons for K=4 

K4A K4WO K4GC 

Power 
(III W) 

Power 
(m W) 

Save 
(%) 

Power 

_(MW) 

Save  
(%) 

BMU 1.6 1.63 1.9 1.63 1.9 

BMNU 4.5 5.33 -18.2 5.33 -18.2 

SMCU 8.1 9.75 -20.4 8.79 -8.5 

LCU 6.9 10 -44.0 8.48 -22.1 

MEM 10.6 14.83 -39.5 11.03 -3.7 

Total 31.8 41.56 -30.5 35.27 -10.7 

Table 7.5 List of power comparisons for 1K5. 

K5A REASTD 

Power 
(MW) 

Power 
(mw) 

Save  
(%) 

BMU 1.6 1.66 -0.8 

BMNU 6.9 6.87 0.8 

SMCU 16.0 18.95 -17.7 

LCU 14.4 17.69 -22.3 

MEM 16.7 17.05 -1.7 

Total 55.9 62.24 -11.3 

In the figure, the ASIC implementation power results are the results given in Chapter 4. 

Tables 7.3, 7.4 and 7.5 summarize the comparisons of the power results for constraint length 

K=3, 4, and 5, respectively. It is clear from the results that the clock gating method is very 

effective for conserving the power consumption of the REASTD when it is configured for 

K=3 and 4. While the power overheads of K3WO and K4WO were 63% and 30%, as 

compared to the ASIC turbo decoders, the power overheads using the clock gating method 

were 18% for 1K3 and 10% for 1K4. When the REASTD power for K5 is compared with 

K5A, it is clear that the logics required for the recorifigurability resulted in an 11% increase 
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in power. As in the area results, most of the power overheads were led by the reconfigurable 

components. BMNU, SMCU, and LCU. Among them, the LCU power overhead dominantly 

affected the overall power overhead. 

7.6.1 Hardware Test Systems for RDASTD 

A test environment has been built for verifying and evaluating the reconfigurable turbo 

decoder at the RTL and gate levels. For this, two test systems for BTC and DTC were 

created. Figure 7.24 illustrates a block diagram of the test systems. The systems consist of 

two main blocks, one is for generating turbo codes and transmitting them to the decoder over 

the AWGN channel, and the other one is for performing and testing the turbo decoding 

process with the transmitted data. As can be seen, BTC and DTC codes were generated in a 

MatlabTM  environment, and then, they were passed to the testbench after converting into a 

fixed-point representation. Additionally, the interleaver and deinterleaver addresses 

generated by the interleaver and deinterleaver address generator (lAG & DAG) were sent to 

MatIabTM Testbench 
3GPP RTLJGate-Level 

IEEE 802.16 
IAGIDAG 

Interleaver/ 

Binary 

jEnc

Deinterleaver 

Turbo 	
Mod. _________ 	

Fixed 
Duo- Bina   	Demod. . oder  L Data R4DTD 

AWGN 

Figure 7.24 Test systems for the reconfigurable turbo decoder verification. 

the testbench. The interleaver and deinterleaver addresses for binary and double-binary turbo 

codes were generated following the method described in 3GPP and IEEE 802.16. The 

testbench consists of memory blocks for accumulating all the transmitted data, interleaver 

and deinterleaver addresses, and control units for controlling data transactions between turbo 

decoders. From the tests, the latency of the turbo decoders was obtained as follows: 
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Latency = clock period x (window size x 4 + 3) 	 (7.13) 

where 3 corresponds to the number of clock cycles due to the pipeline stages. 

7.6.2 Hardware Performance Results 

The RDASTD also designed using Verilog I-IDL has been synthesized with the Synopsys 

DesignCornpiler1M  using the UMC 0.18 urn standard CMOS cell library. RTL and gate-level 

simulations of the turbo decoder hardware were performed using Cadence Verilog-XL Th  

with the test systems shown in Figure 7.24. After completing the gate-level simulation, 

power consumption was evaluated using the Synopsys PowerCompiler TM  with the switching 

activities generated from all the circuit nets during the gate-level simulation. All the 

simulations were carried out at a clock frequency of 50MHz. 

The RDASTD implementation has been investigated with various schemes in order to find 

an optimized hardware implementation. In addition, R4 BTC and DTC MLMAP turbo 

decoders have been implemented as ASIC in order to compare the hardware performance 

with the RDASTD. Figure 7.25 and Table 7.6 illustrate and summarize the area results for 

the different turbo decoder schemes. In the figure and table, CON is the conventional turbo 

decoder for constraint length K=4 BTC implemented in Chapter 3. R4A and DTA are turbo 

decoders for R4 I3TC and DTC, respectively, implemented in this chapter. RDASTD implies 

the reconfigurable turbo decoder which is able to support R4 BTC and DTC. It is clear that 

the area of RDASTD is the largest among the schemes due to the additional logics for the 

recontigurability. Area overhead of RDASTD was 40%, 21%, and 5% compared to CON, 

MA, and DTA, respectively. In addition, the area of R4A is 15% more than the area of CON 

due to the increased complexity. As can be seen, most of the area increase was led by the 

increased computational complexity in the units for computing the branch and state metrics 

(BMU and SMCU), and LLR value (LCU). The R4 based turbo decoder requires a much 

more complex computation process, which results in the significant area increase of the 

computational logics. However, the area of memory blocks is less in R4A and DTA, and is 

slightly higher in RDASTD when compared to CON. This is because of the reduction of the 

memory blocks for storing the forward state metrics before they are fed to the LLR 

computation unit for calculating LLR. Although the computational complexity is increased 
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Figure 7.25 Area results and comparisons. 

Table 7.6 List of area results 

CON R4A DTA RDASTD 

Area 
(111m 2) 

Area 
(111m)  

Save 

CON 

Area 
(111111 

2 ) 
Save 
(%) 

Area 
(mm2) 

Save 
(%) 

 CON 

Save 
(%) 
R4D 

Save 
(%) 

DTA 

BMU 0.014 0.067 -354.1 0.067 - 0.070 -377.0 -5.0 -5.0 

SMCU 0.137 0.283 -105,8 0.347 - 0.370 -169.4 -30.8 -6.5 

LCU 0.083 0.151 -81.7 0.152 - 0.165 -97.6 -8.7 -8.5 

MEM 0.698 0.577 17.2 0.678 - 0.703 -0.7 -21.7 -3.6 

Total 0.934 1.079 -15.5 1.245 - 1.309 -40.2 -21.2 -5.1 

by implementation based on R4, the size of the memory required for storing the forward 

state metrics can be reduced by almost half of the memory required by CON. In other words, 

if a turbo decoder is implemented based on radix-8, the memory size will be reduced by 

almost a quarter of the CON memory. In this case, however, the increased computational 

complexity would dramatically increase the overall area and power as well. 
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Figure 7.26 Power results and comparisons for binary turbo codes. 

Table 7.7 List of power results for binary turbo codes 

CON R4A RDASTD 

Power 
(m W) 

Power 
(mW) 

Save 
(%) 

CON 

Power 
(III W) 

Save 
(%) 

 CON 

Save 
(%) 
R4A 

BMU 1.21 6.18 -407.9 6.59 -441.1 -6.5 

SMCU 10.54 22.89 -117.1 28.69 -172.1 -25.3 

LCU 7.35 16.36 -122.5 16.79 -128.4 -2.6 

MEM 15.66 16.28 -3.96 18.15 -15.8 -11.4 

Total 34.78 61.73 -77.50 70.23 -101.9 -13.7 

The power consumption results need to be compared differently than the area results because 

two different data for BTC and DTC are fed into the turbo decoders. FLirtherinore, the block 

sizes of BTC and DTC are not the same. Due to these considerations, RDASTD has been 

compared with BTC and DTC separately. 
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Figure 7.27 Power results and comparisons for double-binary turbo codes 

Table 7.8 List of power results for double-binary turbo codes. 

DTA RDASTD 

Power 
(rnW) 

Save 
(%) 

Power 
(MW) 

Save 
(%) 

BMU 5.01 - 5.08 -1.4 

SMCU 22.38 - 26.65 -19.0 

LCU 13.27 - 14.86 -11.9 

MEM 16.27 - 16.95 -4.1 

Total 56.93 - 63.55 -11.6 

The power consumption results of the turbo decoders after completing eight iterations for 

BTC are given in Figure 7.26, where the primary and secondary Y-axis denotes the 

breakdown and overall power consumption of the turbo decoders. Table 7.7 lists the power 

results where CON and R4A are the ASIC turbo decoders for BTC and R4 BTC, 
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respectively. In the results, RDASTD is configured for BTC. The power results of the turbo 

decoders are obtained after simulations with the same data sets and number of iterations. A 

clock frequency of 50MHz is used. Total power consumption of R4A and RDASTD 

increased by 77% and 101% as compared with CON. On the other hand, the power overhead 

of RDASTD was only 13% as compared to R4A. From the results, it can be seen that the 

power overheads are due to the high complexity of the computational logics implemented 

based on R4. In R4A the power is five times the power of BMU and double the power of 

SMCU and LCU as compared to CON. Conversely, the power of MEM is not significantly 

increased. As in the area results, this is because the R4 based decoder implementations 

reduce the depth of the memory required to store the forward state metrics. 

For better comparisons among the different turbo decoders, the total energy of the decoder 

iiight be considered because the time needed to complete eight iterations involves different 

CON and R4 based turbo decoders. R4 and RDASTD generate two LLR values, and take 

only half of the time required by CON to complete the decoding process. Thus, the results 

reveal that the total energy obtained by multiplying time by the power of the R4 and 

RDASTD is almost the same or less than the energy consumed by CON. 

Figure 7.27 illustrates the power results of DTA and RDASTD configured for DTC. In this 

case, the power consumption results have been obtained from the same size of input blocks 

and decoding time for both the decoders, DTA and RDASTD. Table 7.8 summarizes the 

power results. Overall, the power overhead of RDASTD was 11% as compared to DTA. As 

can be seen, the results show that the power increase was mainly led by the recoil figurable 

logics incorporated in SMCU and LCU. The power increase in BMU and MEM of RDASTD 

was less significant than SMCU and LCU. 

7.7 Summary 

This chapter presented a reconfigurable turbo decoder architecture for supporting different 

constraint lengths, K=3, 4, and 5, turbo codes. For designing the reconfigurable architecture, 

a mapping method has been introduced for efficient implementation. The reconfigurable 
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architecture has been implemented based on the constraint length K5. To save on the power 

consumption, the clock gating method has been applied to the implementation. The power 

results have shown that the clock gating method is very effective for saving on the power 

consumption of the reconfigurable architecture. The power overhead of the reconfigurable 

turbo decoder was around 18%, 10%, and 11% respectively, when compared with K=3, 4, 

and 5 turbo decoder ASIC implementations. Meanwhile, the reconfigurable turbo decoder 

increased just 6% in area as compared to the K=5 turbo decoder AISC implementation. This 

chapter also presented a reconfigurable turbo decoder architecture for constraint length K=4 

BTC and DTC. Before designing the RDASTD, the radix-4 based turbo decoder for BTC has 

been investigated. This investigation has revealed that the radix-4 BTC and DTC turbo 

decoders had many similarities in their functions and implementation methods. The 

RDASTD, which exploited the radix-4 method for its hardware implementation, has been 

compared with the performance of ASIC turbo decoder implementations. For the comparison, 

the radix-4 BTC and DTC turbo decoders have been implemented as ASIC in this chapter. 

The simulation results have shown that the area overhead of the RDASTD was 40%. The 

power of the RDASTD has been analysed in two modes, BTC and DTC. When the 

RDASTD was set to the BTC mode, the power overhead was 101%. However, the total 

energy required to complete the turbo decoding process was less than the conventional turbo 

decoders. 
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Conclusions 

8.1 Introduction 

This chapter concludes the thesis. Section 2 reviews each chapter specifying the results 

obtained. In Section 3, the achievements of the thesis are listed. Finally, Section 4 gives 

possible directions for future work related to this thesis work. 

8.2 Review of Thesis Contents 

Chapter 2 has described the turbo encoding and decoding principles for binary and double-

binary turbo codes, describing their encoder and decoder structures. This chapter explained 

turbo decoding algorithms based up on MAP and SOyA, showing a turbo decoder structure 

for an iterative process. For a practical turbo decoder implementation, the complexity of the 

algorithms should be reduced. Techniques for efficient turbo decoder hardware 

implementations were reviewed and summarized. Some of the techniques were used in this 

thesis to reduce the turbo decoder computational complexity and to improve hardware 

performance in terms of area, power, and speed for throughput. 

Chapter 3 has presented the MLMAP based turbo decoder hardware architectures with SW 

method for K=3, 4, and 5. In the architecture, the SW method was realised by using LIFO 

and FIFO blocks. A detailed structure of the decoding process units incorporated in the 

architecture was described and the implementation method and the functionality for the 

decoding process were explained. In the simulation results, the turbo decoder performance in 

terms of BER was examined in various ways to justify the algorithms and other factors that 

affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based 

turbo decoders have been compared in terms of BER performance in order to observe the 
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performance differences between the two turbo decoder implementations. The comparisons 

showed that the MLMAP based turbo decoder can provide a BER performance without 

significant degradation. After showing the design flow, the MLMAP turbo decoder 

architectures have been designed using Verilog HDL and then synthesized using the UMC 

0.1 8tim  standard CMOS technology. Area, power, and critical path delay results of the 

MLTBD architecture for constraint lengths K=3, 4, and 5 were estimated. Also, the total 

number of gates of the architectures was obtained after generating their layouts. These 

hardware performance results were used to compare the improved turbo decoders introduced 

in later chapters. 

Chapter 4 has proposed a high performance MLMAP turbo decoder architecture 

implemented base on a novel scheme in order to save area and power, and to reduce the 

critical path delay for high speed implementation. For achieving low power and area 

efficient MLMAP turbo decoder implementations, the memory blocks needed for the SW 

method were reduced by using a triple read port-based memory. Simulation results show that 

the memory reduction can achieve 30% reduction in area and 20% in power. In addition, 

efficient implementations of LCU and BMNU contributed to power and area savings. The 

BMN method addressed the inherent critical path delay problem to achieve high speed 

MLMAP turbo decoder for high throughput. Using this method, the critical path delay was 

reduced by up to 42%, as compared with the delay of the conventional turbo decoder. 

Chapter 5 has described the SOVA and TSOVA algorithms that are alternatively used for the 

turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced 

to evaluate the BER performance. Before the evaluation, the optimized survivor and update 

depths of the TSOVA turbo decoders were investigated. The simulation results have shown 

that the BER performance was almost saturated when the survivor and update depths were 

Kx6 and Kx4, respectively. Based on these results, the TSOVA turbo decoders for K=3, 4, 

and 5 have been simulated to evaluate their BER performance. The performance results were 

compared with the results of the MLMAP based turbo decoder. These comparisons showed 

that the TSOVA turbo decoder can produce a BER performance close to the MLMAP turbo 

decoder without significant performance degradations. 
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Chapter 6 has proposed a novel TSOVA turbo decoder based on TRA. This novel turbo 

decoder architecture was described and compared with the TSOVAREA architecture 

suggested in the literature. The hardware simulation results have shown that the 

TSOVATBA based turbo decoder implementations can save more area and power than the 

TSOVAREA based turbo decoders. in addition, tile hardware performance was compared 

with the MLMAP based turbo decoder hardware. It was also shown that the TSOVATBA 

can save up to 72% in area and 52% in power compared to the MLMAP turbo decoder. 

These results indicate that the TSOVATBA turbo decoder is suitable to apply to mobile and 

portable wireless communication systems requiring low power consumption and area usage, 

Without sign i hcant B ER performance degradation. 

Chapter 7 has presented a reconhgurable turbo decoder architecture for supporting different 

constraint lengths, K=3, 4, and 5, turbo codes. To improve the efficiency of the 

implementation, a novel mapping method was employed in the design of the reconfigurable 

architecture. Tile reconfigurable architecture has been implemented based on the constraint 

length K=5. To reduce the power consumption as the architecture is configured for constraint 

lengths less than K5, the clock gating method has been applied to the implementation. The 

power results have shown that the clock gating method is very effective in reducing tile 

power consumption of the reconfigurable architecture. The power overhead of tile 

reconligurabie turbo decoder was around 18%, 10%, and 11% as compared with K=3, 4, and 

5 turbo decoder ASIC implementations, respectively. Meanwhile, the reconfigurable turbo 

decoder area increased Just by 6% as compared to K5 turbo decoder AJSC implementation. 

On this other hand, this chapter has presented another reconfigurable turbo decoder 

architecture which can be configured for BTC and DTC with K=4. Before designing the 

recontigurable turbo decoder hardware, radix-4 based turbo decoder for BTC has been 

investigated. This revealed that the radix-4 based BTC and the DTC turbo decoders had 

many similarities in their functions and implementation methods. Therefore, the 

reconfigurable turbo decoder exploited the radix-4 for its hardware implementation. For 

comparison, radix-4 based BTC and DTC turbo decoders have also been implemented as an 

ASIC each. The simulation results have shown that the area overhead of the reconfigurable 

turbo decoder was 40%. The power of the reconfigurable has been analysed in two modes, 

BTC and DTC. When the reconfigurable turbo decoder was set to the BTC mode, the power 

overhead was 101%. However, the total energy required to complete the turbo decoding 
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process was less than the conventional turbo decoders, due to reducing the time required for 

the decoding process. 

8.3 List of Achievements 

This section specifies the achievements of this thesis. 

• A novel technique for high speed turbo decoder implementation in order to achieve 

high throughput is proposed. The technique normalizes the branch metrics to reduce 

the inherent critical path delay in the state metric computation process. It achieves 

42% reduction in critical path delay. 

• A low power and area efficient turbo decoder is developed by reducing the memory 

block size required by sliding window method. This results in savings up to 30% in 

area and 20 % in power. 

• A novel concept of SOVA turbo decoder implementation is presented. The new 

SOVA turbo decoder is based on TBA, which significantly reduces the power and 

area as compared with a conventional REA based SOVA turbo decoder 

implementation. 

• Two reconfigurable turbo decoder implementations are presented to support multi 

standard wireless communication systems. The first turbo decoder is designed to be 

configured for different constraint lengths K=3, 4, and 5. This reconfigurable turbo 

decoder is implemented with a clock gating method in order to save power when it 

is configured for constant lengths less than K=5. The second reconfigurable turbo 

decoder supports binary and double-binary turbo codes is designed. To make it 

reconfigurable, the turbo decoder exploits a radix-4 binary turbo decoding method. 
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8.4 Future Research Directions 

Wireless communication systems are evolving to provide better performance such as BER 

and throughput. The use of turbo codes in these systems is expected to be continuously 

increasing and hence the performance of these systems will be strongly affected by the turbo 

decoder they employ. Some of the issues related to turbo decoders are suggested below for 

future work. 

1-ugh throughput is one of the important issues for current and future wireless 

communication systems. Due to their iterative process, the turbo decoders could be an 

obstacle to achieving high throughput. A parallel turbo decoder scheme is one of the 

solutions to address this problem. Several papers have suggested some parallel turbo decoder 

schemes in order to achieve high throughput. However, this will lead to large hardware 

overhead in terms of area and power. This could be an obstacle to employing the parallel 

turbo decoders for mobile applications. In the literature, there is little work on efficient 

implementation of parallel turbo decoder architectures. Thus, in order to achieve an efficient 

high throughput turbo decoder, the hardware implementation methods must be researched. 

In the turbo decoding process, interleaving and dc-interleaving require large memory blocks. 

Moreover, the addresses for the interleaving and de-interleaving also need to be stored in a 

large memory size. The memory size can be reduced by implementing an efficient address 

generator for interleaving and dc-interleaving. in wireless communication systems, the 

address can be generated easily and efficiently if the input block size is known. However, if 

a parallel turbo decoder scheme is used, the multiple output of the turbo decoder can conflict 

with writing the output to the interleaver memory. Thus, the technique to avoid the data 

collision during the writing process should be studied. Another difficulty is that usually 

different interleaving methods between the wireless communication systems are employed to 

implement the address generator. 

Less attention has been paid to a SOVA based turbo decoder when compared to a MAP 

based turbo decoder. The method proposed in this thesis has contributed to saving the 

hardware costs, as compared to the MLMAP based turbo decoder, without significant 

degradation in BER performance. Thus, the use of the SOVA based turbo decoder can 

contribute to reduce the costs of the receiver systems requiring high performance and 
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throughput. Also, a SOVA decoder for double-binary turbo codes is hardly considered in the 

literature. Therefore, a study of the SOVA turbo decoder architecture should be carried out 

for supporting different types of turbo codes. 
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B.! Turbo coder 

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two 

8-state constituent encoders and one Turbo code internal interleaver. The coding rate of 

Turbo coder is 1/3. The structure of Turbo coder is illustrated in Figure B.1. 

The transfer function of the 8-state constituent code for PCCC is: 

G(D)= 
L g0D)] 

where 

go(D) = I +D2 +D, 

g,(D) = 1 +D+JY. 

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros 

when starting to encode the input bits. 

Output from the Turbo coder is 

X1, Zj, 	X2, 2, 2 ..... XK, EK, ZA, 

where x 1 , xi, .... XK are the bits input to the Turbo coder i.e. both first 8-state constituent 

encoder and Turbo code internal interleaver, and K is the number of hits, and z 1 , Z2. ..., ZK 

and 22. .... 2K are the bits output from first and second 8-state constituent encoders, 

respectively. 

The bits output from Turbo code internal iiiterleaver are denoted by x 1 , x2. ..., X'K, and these 

bits are to he input to the second 8-state constituent encoder. 
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Xk 

1St constituent encoder 	Zk 

Xk 
Input 

Input 	 Output 
Turbo code 

internal interleaver 	
2nd constituent encoder 	

' Output 	 Zk  
10 L 	D ..D=F 

Figure B. I Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only) 

B.2 Trellis termination for Turbo coder 

Trellis termination is performed by taking the tail bits from the shift register feedback after 

all information bits are encoded. Tail bits are padded after the encoding of information bits. 

The first three tail bits shall be used to terminate the first constituent encoder (upper switch 

of figure B.1 in lower position) while the second constituent encoder is disabled. The last 

three tail bits shall be used to terminate the second constituent encoder (lower switch of 

Figure B. I in lower position) while the first constituent encoder is disabled. 

l'he transmitted bits for trellis termination shall then be: 

XK+1, ZKI I,  xK+2, ZK.2, XK+3, ZK+3, xK+l,  ZKH,  X 'K+2, Z 'K+7 , X 'K*i, Z 'K+3. 
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13.3 Turbo code internal interleaver 

The Turbo code internal interlcavcr consists of bits-input to a rectangular matrix with 

padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output 

from the rectangular matrix with pruning. The bits input to the Turbo code internal 

interleaver are denoted by x1,x2,x3. .... XK, where K is the integer number of the bits and 

takes one value of 40 < K < 5114. The relation between the bits input to the Turbo code 

internal interleaver and the bits input to the channel coding is defined by Xk =0irk and K = 

K1 . 

The following suhclause specific symbols are used in following sections 

K 	Number of bits input to Turbo code internal interleaver 

R 	Number of rows of rectangular matrix 

C 	Number of columns of rectangular matrix 

P 	Prime number 

v 	Primitive root 

(s) jlo 1  ..1_2} 	 Base sequence for intra-row permutation 

qj 	Mini mum prime integers 

Permuted prime integers 

Inter-row permutation pattern 

Intra-row permutation pattern of i-thi row 

Index of row number of rectangular matrix 

j 	Index of column number of rectangularmatrix 

k 	Index of bit sequence 

B.3.I Bits-input to rectangular matrix with padding 

The bit sequence x 1 ,x 7 ,x3 ,....XK  input to the Turbo code internal interleaver is written into 

the rectangular matrix as follows. 
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Determine the number of rows of the rectangular matrix, R, such that: 

5. if(40 :!~ K ~ 159) 

R= 	l0.ii((160:!~ K200)or(48I: ~;K ~ 530)) 

20, if (K = any other value) 

The rows of rectangular matrix are numbered 0. 1..... R - I from top to bottom. 

Determine the prime number to be used in the intra-permutation, p, and the number of 

columns of rectangular matrix, C, such that: 

if(481 < K 530)then 
p = 53 and C p. 

else 
Find minimum prime numberp from table 2 such that 

K~ Rx(p+1). 

and determine C such that 
p — I if K ~ Rx(p—l) 

Cr p 	if Rx(p—I)<KRxp. 

p + I if Rxp<K 

end if 
The columns of rectangular matrix are numbered 0, 1...... C - 1 from left to right. 

Table B.l List of prime nirmberp and associated primitive root v. 

p v p v p v P  p v 
7 3 47 5 101 2 157 5 223 3 

11 2 53 2 103 5 163 2 227 2 
13 2 59 2 107 2 167 5 229 6 
17 3 61 2 109 6 173 2 233 3 
19 2 67 2 113 3 179 2 239 7 
23 5 71 7 127 3 181 2 241 7 
29 2 73 5 131 2 191 19 251 6 
31 3 79 3 137 3 193 5 257 3 
37 2 83 2 139 2 197 2  

41 6 89 3 149 2 199 3  

43 3 97 5 151 6 211 2  
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(3) Write the input bit sequence XI,X2,XS,  ... ,XK  into the R xC rectangular matrix row by 

row starting with hit Vi  in column 0 o Crow 0: 

.Yi Y2 Y3 

V(C+1) Y(c+2) Y((-+3) Yc 

.V((R_1)C+I) Y((R-1)c+2) Y((R-1)('+3) 

where Yk = Xk for k = 1. 2.....K and if RxC>K, the dummy bits are padded such that 

.vk Oorl for k = K ± 1, K ± 2.....RxC. These dummy bits are pruned away from the 

output of the rectangular matrix after intra-row and inter-row permutations. 

B.3.2 Intra-row and inter-row permutations 

After the bits-input to the R  C rectangular matrix, the intra-row and inter-row permutations 

for the Rx C rectangular matrix are performed stepwise by using the following algorithm 

with steps (1) (6): 

(I) Select a primitive root v from Table B. I in previous subsection, which is indicated on the 

right side of the prime nunibcrp. 

Construct the base sequence (s(j)) {oi 	7} 
for intra-row permutation as: 

s(j)= (vxs(/_l))modp, 	j = 1,2,..., (p -2), and s(0) = 1. 

Assign q0 = I to he the first prime integer in the sequence (I),J RI}' and determine 

the prime integer q 1  in the sequence (q 1  	
to be a least prime integer such that 

g.c.d(q 1 , j' - 1) = I, q> 6. and q, > q( 	for each i = 1.2, ..., R - I. 1-Icre g.c.d. is greatest 

common divisor. 
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Permute the sequence (q1){ 0 	to make the sequence ('1) Ol RI) 
such that 

1 ,7-  i = q,, 1 = 0, I..... R - 1, 

Where (7(i 	is the inter-row permutation pattern defined as the one of the four 

kind of patterns, which are shown in Table B.2, depending on the number of input bits K. 

Table B.2 Inter-row permutation patterns for Turbo code internal interleaver 

Number of input bits 
Numbe 

rof 
Inter-row permutation patterns 

K 
rows  

<T(0), T(1), ..., T(R-1)> 

(40K159) 5 <4, 3, 2, 1,0> 
(160:~ K200) or (481 ~ K530) 10 <9, 8, 7, 6,5,4, 3, 2, 1, 0> 

(2281 :~ K:~ 2480) or 
20 

<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 
(3161 	K!~ 3210)  17, 15, 3, 1, 6, 11, 8, 10> 

K= any other value 20 
<19,9,  1 4, 4, 0, 2, 5, 7 1  12, 18, 10, 8, 

13,17,3, 1, 16, 6, 15, 11> 

Perform the i-tb (/ = 0, I..... R - 1) intra-row permutation as: 

if (C =p) then 

U,(j)=s((jxr1 )mod(p-l)). j0,l..... (p-2). and U,(p-I)=0, 

where (Jj) is the original bit position ofj-th permuted bit of i-tb row. 

end if 

if(C=p+ 1) then 

u 1 j)=s((jxi)inod(p-I)), 1=0, 1, ....(p- 2). L(j) - 1) =0, and U1(p)=p, 

where UX1)  is the original bit position ofj-th permuted bit of i-th row, and 

if(K= RXC)then 

Exchange (JR  (p) with (JR  (0). 

end if 

end if 

if(Cp- 1) then 
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U,= s((jx rJ rnod(p- i))- I, j = 0, I,..., (p -2), 

where U(j) is the original bit position ofj-th permuted bit of i-tb row. 

end if 

(6) Perform the inter-row permutation for the rectangular matrix based on the pattern 

where T(i) is the original row position of the i-tb permuted row. 

B.3.3 Bits-output from rectangular matrix with pruning 

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are 

denoted by Yk 

Yi Y'(R+I) Y'(2R+I) Y((c-1)R+1) 

Y2 Y(R-i.2) Y' ( 2R+2) ... Y((('-1)R+2) 

YR Y2R Y31? YCxR 

The output of the Turbo code internal intericaver is the bit sequence read out column by 

column from the intra-row and inter-row permuted R x C rectangular matrix starting with bit 

Y' in row 0 of column 0 and ending with bity' CR  in row R - I of column C- 1. The output is 

pruned by deleting dummy bits that were padded to the input of the rectangular matrix before 

intra-row and inter row permutations, i.e. bits y'k  that corresponds to bits Yk  with k > K are 

removed from the output. The bits output from Turbo code internal interleavcr are denoted 

by x' 1 , x2 ......V'K, where x' 1  corresponds to the bit y'. with smallest index k after pruning, x', 

to the bit Yk  with second smallest index k after pruning, and so on. The number of bits output 

from turbo code internal interleaver is K and the total number of pruned bits is: 

R x C-K. 
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C.1 CTC encoder 

The Convolutional Turbo Code (CTC) defined in this subclause is designed to enable 

support of hybrid ARQ (HARQ). HARQ implementation is optional. The CTC encoder, 

including its constituent encoder, is depicted in Figure C.I. It uses a double binary Circular 

Recursive Systematic Convolutional code. The bits of the data to be encoded are alternately 

fed to A and B, starting with the MSB of the first byte being fed to A. The encoder is fed by 

blocks of k bits or N couples (k = 2*N bits). For all the frame sizes, k is a multiple of 8 and N 

is a multiple of4. Further, N shall be limited to: 8 !~ N1 4 1024 

The polynomials defining the connections are described in octal and symbol notations as 

follows: 

- For the feedback branch: OxB, equivalently I + D + D3  (in symbolic notation) 

- For the Yparity bit: OxD, equivalently I + D 2  + D3  

- For the W parity bit: 0x9, equivalently I + D 3  

First, the encoder (after initialization by the circulation state Sd) is fed the sequence in the 

natural order (position 1) with the incremental address i = 0 .. N—I. This first encoding is 

called C 1  encoding. Then the encoder (after initialization by the circulation state Sc2) is fed 

by the interleaved sequence (switch in position 2) with incremental addressj = 0, ... N—I. 

This second encoding is called C2  encoding. The order in which the encoded bit shall be fed 

into the subpacket generation block is: 

A, B, Y 1, Y, W, W, = 

A0, B 0,.,., A. 1 , BN/, Y10, Y 11,..., YIN.],  Y, U, K1 . 1,....Y2N1,  W1 , 0, WJ,J.....WI,N.I, W2, 0. W2,1, ...., W2,N.I 
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IeIflILJFL 

C 	.11'.! ILtc'fll LIh.' JLI 

Figure C. 1 CTC encoder 

Note that the interleaver shall not he used when using CTC. 

The encoding block size shall depend on the number of subchannels allocated and the 

modulation spcci fled for the current transmission. Concatenation of a number of subchanncis 

shall be performed in order to make larger blocks of coding where it is possible, with the 

limitation of not passing the largest block under the same coding rate (the block defined by 

64-QAM modulation). Table C.! specifies the concatenation of subchanncls for different 

allocations and modulations. The concatenation rule shall not be used when using H-ARQ. 

For any modulation and FEC rate, given an allocation of n subchannels, the following 

parameters are defined: 

I 	parameter dependent on the modulation and FEC rate 

n 	number of allocated subchannels 

k = fioor(n/j) 

in = n rnodj 
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Table C. I shows the rules used for suhcliannel concatenation 

Table C. I Subchannel concatenation rule for CTC 

N 11111 her of 	u I)CIlauluIcIS Stibchaimels concatenMed 

I 	II 	cL olii 

I bleL 	i 4 	ubchiniiek 
I hIck 	3 	ubchtniick 

i,  k-I i ht'cks 	ii subcIiaiinIs 
I hi 	cL 	1 [he 	chiiinI 
I 	hick o iL,, SLIIIC11,11111ek 

..ii 	in 	fl 	2i 
I. 	!I,)Il I ,fl 	: 	2 02 

Ii 	i/_• 	7:or i 1., 	7 
I.hi 	1.hI 	I: I.i?2 	1.h2 	L 

Table C.2 Encoding subchanncl concatenation for different rates in CTC 

loduItion and tatc 

çlK 3 .4 

I ñ-.\\l 	12 5 

I f . 	 1 	. 	4 3 

I 	2 3 

4-I\\I 	.4 2 
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Table C.3 Optimal CTC channel coding per modulation 

I(ltilaliot) 
Data 

I)I4Ck Jze 
(blvIcs 

t; IIC(Kk(I 

chia I)I4Ck 
Site (bytes) 

CMIC 
rate 

N I', P 1  P, P 3  

.'ISK I 

.2 21 I 	2 4N,  l. .24 1  14 

i,i'K l X 

24 

.Th 12 2 It 

4 11,  I 	2 4 24 72 

1.2 44 1 7  74 7 2 

45 1Y,  .48 144 

l'X 1 0 

11'' I 	2 .240  I. 12' i' is'' 

lsK ' 12 .4 . II Is ' Is 

'iIsk IS 24 . 	4 1 II 

4 Si 2 

-I 144 4 2 2 

f)ISK 4 '' . 	4 IS') II .:. 

4 2I I t5 

I'-',.\\l 11 .24 1.2 1s l. 24 ' 24  

48 12 45 24 7 2 

12 144 I 7) 7 2 2 

1, —(j. 45 . 12 I2 II 45 144 

Is 21 . 	-1 TI ii 

4 144 I 74 2 2 

2 I'. I .7 I 	' :' 

I IS N I 2 :1 II 

12 144 i 74 7 2 2 

4-).\\I 24 3' 1 96 3 4S 24 2 

4S 31 1 	.7 I.2 II s 45 144 

7.4 1.S II S4 5r 2 
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Table C.3 Optimal CTC channel coding per modulation (continued) 

Encoded  
odtIlinn )1)Ck .i/& daa block 

Code 
 P\I 	 3  P '> 1 P 2 

(1k,) sue (hvk%) 
rale 

Fable C.3 gives the block sizes, code rates, channel efficiency, and code parameters for the 

different modulation and coding schemes. As 64-QAM is optional, the codes for this 

modulation shall only be implemented if the modulation is implemented. Table C.4 shows 

code parameters for HARQ. 

Table C.4 Optimal CTC channel coding per modulation when supporting H-ARQ 

MEMMIN 
~Mmmmm 
~Mmmmm 
~Mmmmm 
~=Mmm 

1. 

~Mmmmm 
~=Mmmm 
~Mmmmm 
~Mmmmm 
~=Mmmm 
~Mmmmm 
.III IU.IIIUIKlLUII 
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C.2 CTC interleaver 

The interleaver requires the parameters P0  and P1, shown in Table C.4. 

The two-step interleaver shall be performed by: 

Step 1: Switch alternate couples 

for! =O ... N—1 

if(j,,Ø( =O) let (BA) = (A,B) (i.e., switch the couple) 

Step 2: P,(j 

The function P,(j) provides the interleaved address i of the consider couple!. 

tbrJ=O ... N—1 

switch Jmod4 

case 0: i = (P0  .j + I 

case I: i = (P0  1 + I + N/2 + PI)IOdN 

case 2: i = (P0  .j + I + P2) 0dr 

case 3: i = (P0  -j + 1 + N12 +  P3 OmodN 

C.3 Determination of CTC circulation states 

The state of the encoder is denoted S (0 ! ~ S !~ 7) with S the value read binary (left to right) 

out of the constituent encoder memory. The circulation states Sci and Sc2 are determined by 

the following operations: 

I) Initialize the encoder with state 0. Encode the sequence in the natural order for the 

determination of Sc! or in the interleaved order for determination of Sc2. In both 

cases the final state of the encoder is SON- 1; 

2) According to the length Nof the sequence, use Table C.5 to find Sc I orSc2. 

O I Ol I 	. 
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Table C.5 Circulation state lookup table (Sc) 

"I 

0 I 2 3 -I 5 6 7 

.4 1 7 I 3 

2 . 
7 4 5 2 I 

5 3 2 7 I 4 

4 4 I 2 7 

7 I 3 4 5 
I 	

2 
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