
Turbo Decoder VLSI Implementations for Multi

Standards Wireless Communication Systems

Jong Hun Han

I V j'
le

C

t ,

A thesis submitted for the degree of Doctor of Philosophy
The University of Edinburgh

December 2006

Abstract

Turbo codes can provide a large coding gain through an iteration process as compared with a

gain achieved by a traditional channel coding method. This has led to the adoption of turbo

codes as standard in a variety of wireless conimLinication systems, despite their higher

computational complexity than a traditional decoder like a Viterbi decoder.

This thesis presents a number of high performance turbo decoder architectures for VLSI

implementation in terms of area, power, and critical path delay. A Max-Log-MAP

(MLMAP) algorithm is used to implement the turbo decoder with sliding window (SW)

method to reduce the latency. Low power and area efficient tLlrho decoder implementation is

achieved by reducing the memory blocks required by the SW method and to store the branch

metrics used for computing log-likelihood-ratio (LLR). Reliming and reordering methods are

applied to the computational units for computing the LLR and the state metrics.

A novel method is proposed to achieve high speed turbo decoder implementation for high

throughput without significant area and power overheads. The proposed method addresses

the inherent critical path delay problem in the state metric computation process by

normalizing the branch metrics. While increasing the maximum speed of the turbo decoder,

it also saves area and power of the state metric computation Units.

A two-step soft-output Viterhi algorithm (TSOVA) based turbo decoder is implemented

exploiting a novel concept for implementing a traceback algorithm (TBA) to achieve low

area and low power turbo decoder implementations as compared to the MLMAP turbo

decoder without any significant BER performance degradation.

Two recon!igurable application specific tLtrbo decoders are implemented to support variable

constraint length and binary and double-binary turbo codes for targeting various wireless

communication systems. The reconfigurable turbo decoder architectures are realized by a

proposed mapping method applied to the process for computing the state metrics and the

LLR values. It is found that radix-4 based turbo decoder architecture can be exploited to

implement the reconfigurable turbo decoder for binary and double-binary turbo codes.

ii

Declaration of originality

I hereby declare that the research recoded in this thesis and the thesis itself was composed

and originated entirely by myself in the School of Engineering and Electronics at the

University of Edinburgh.

llI

Acknowledgements

I would like to thank Dr. Ahniet Erdogan and Dr. Tughrul Arslan for their Support and

supervising. I also want to thank my lab colleagLieS for their help throughout my research

work.

Thanks to my parents and my brother for their support.

Thanks to my wife,. SY, and SF1.

lv

Contents

Declaration of originality ...iii

Acknowledgments.. iv

Contents.. V

Listof Figures ... X

Listof Tables ...xiv

Acronyms and Abbreviations...xvi

Nomenclatures...xviii

Cha1)teI I Introduction .. 1

1.1 Motivation ..

1.2 An Overview of State-of-Art Turbo Decoder Implementations.................................2

1 .3 Contributions .. 3

1.4 Thesis Contents... 5

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation

Techniques .. 8

2. 1 Introduction ..8

2.2 Encoding Binary Turbo Codes ...9

2.2.1 Turbo Encoder Structure..9

12.2 Trellis State Diagram ...11

2.3 Encoding Double-Binary Turbo Codes ..12

2.3.1 Encoder Structure for Double-Binary Turbo Codes12

2.3.2 CRSC Turbo Codes ...13

2.4 Interleaving Method ...IS

2.5 Turbo Decoder Structure ..16

2.6 Maximum aposlerior Algorithm for Turbo Decoding Process17

2.7 Sliding Window Method ..20

2.8 Soft-Output Viterbi Algorithm for Turbo Decoding Process22

2.9 Techniques for Turbo Decoder Implementations ...23

2.9.1 Optimum and Sub-Optimum Algorithms 	 .24

2.9.2 Two-Step SOVA24

2.9.3 Quantization Method ...25

2.9.4 Metric Wordlength Optimization...25

2.9.5 State Metric Normalization..26

2.9.6 Retiming Method ...26

2.9.7 Adaptive Iteration Method...27

2.9.8 High Radix Architecture .. 27

2.9.9 Stopping Criteria..28

2.9. 10 Parallel Implementation...28

2.10 Su III mary ... 28

Chapter 3 Max-Log-MAP Based Turbo Decoder Hardware Architecture 30

3.1 	Introduction 	.. 30

3.2 Max-Log-MAP and Sliding Window Method-Based Turbo Decoder Architecture. 31

32.1 Max-Log-MAP Soft-Input Soft-Output Turbo Decoder Architecture 31

32.2 	Metric Computation 	Unit... 34

3.2.2.1 	Branch 	Metric 	Unit .. .34

3.2.2.2 Add Compare Select Normalization Unit ... 35

3.2.3 	Log-Likelihood Ratio Computation Unit .. 38

3.3 	High 	Level 	Simulation 	Results ... 41

3.3.1 	Simulation Specifications and Systems ... 41

3.3.2 Performance for Varying Block Size... 42

33.3 	Fixed-Point Implementation .. 43

3.3.4 Performance with Varying Window Size .. 45

3.3.5 	BER 	Performance Comparisons .. 47

3.4 	Hardware 	Design 	and 	Results ... 49

3.4.1 	Turbo Decoder Hardware Design Flow... 49

3.4.2 	Hardware Test Environment .. 52

3.4.3 	Evaluating 	Power53

3.4.4 	Post-Synthesis 	Results ... 53

3.4.5 	Post 	Layout 	Results 	... 57

3.5 	Summary58

ku

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture 	.59

4.1 	Introduction .. 59

4.2 High Speed Turbo Decoder Implementation Method ... 60

4.2.1 Critical Path Delay in Turbo Decoder .. 60

4.2.2 Branch Metric Normalization .. 61

4.2.3 Variation of State Metrics with BMN .. 62

4.3 High Speed Turbo Decoder Hardware Architecture ... 64

4.3.1 1-ugh Speed Turbo Soft-Input Soft-Output Decoder Architecture 64

4.3.2 Metric Computation Unit with Branch Metric Normalization Unit 66

4.3.2.1 Branch Metric Normalization Unit ... 68

4.3.2.2 An Efficient BMNU .. 70

4.3.3 Log-Likelihood Ratio Computation Unit 71

4.4 Low Power and Area Efficient Max-Log MAP Turbo Decoder Hardware

Architecture .. 72

4.4.1 Low Power and Efficient Max-Log MAP Turbo Soft-Input Soft-Output

DecoderArchitecture .. 72

4.4.2 An Efficient LCU implementation ... 74

4.5 Results .. 77

4.6 Summary ... 85

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process 86

5.1 	Introduction .. 86

5.2 S041-Output Viterbi Algorithm for Turbo Decoding Process 87

5.3 Two-step Soft-Output Viterhi aLgorithm. .. 90

5.4 Results .. 91

5.4.1 Determination of Survivor and Update Depths .. 91

5.4.2 BER Performance Results .. 94

5.5 Summary ... 98

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture 99

vii

6. 1 Introduction 	 .99

6.2 Register-Exchange Algorithm Based Two-Step SOVA Decoder 100

6.3 Tracehack Algorithm Based Two-step SOVA Turbo Decoder Architecture 102

6.3.1 Two-Step SOVA Traceback Turbo SISO Architecture 102

6.32 Metric Computation Unit ... 104

6.3.3 Traceback Process Unit .. 106

6.3.4 Path Comparison and Update Process Units 109

6.4 Area-Efficient Traceback Two-Step SOVA Turbo SISO Decoder Architecture ... 111

6.5 Results .. 112

6.5.1 REA and TBA Results Comparisons ... 112

6.5.2 TSOVATBA Turbo Decoder Hardware Performance Results 114

6.5.3 Comparing with MLTBD .. 121

6.6 Summary ... 122

Chapter 7 Reconfigurable Turbo Decoder Architecture .. 124

7.1 	Introduction .. 124

7.2 Mapping Method for Recontigurable Turbo Decoder Implementation 126

7.3 Reconfigurable Turbo Decoder Hardware Architecture for Variable Constraint

Lengths ... 1 30

7.3.1 Reconfigurable Turbo Decoder Architccturc ... 1 30

7.3.2 Clock Gating Method for Reconfigurable Turbo Decoder 131

7.3.3 Recontigurable Metric Computation Unit ... 132

7.3.4 Reconhigurable Log-Likelihood Coniputation Unit 136

7.4 Turbo Decoder Implementation Methods for Binary and DoLLble-Binary Turbo

Codes .. 138

7.4.1 Radix-4 Turbo Decoding Method for Binary Turbo Codes 138

7.4.2 Double-Binary Turbo Codes Decoding Method .. 140

7.5 Reconuigurable Turbo Decoder Hardware Implementations for BTC and DTC 142

7.5.1 Reconfigurable Turbo Decoder Architecture ... 142

7.5.2 Reconfigurable Metric Computation Unit for Radix-4 BTC and DTC 143

7.5.2.1 R4 BTC and DTC Branch Metric Unit ... 144

7.5.2.2 R4 BTC and DTC Add Compare Select Normalization Unit 145

viii

7.5.3 R4 BTC and DTC Log-Likelihood Computation Unit 	 . 148

7.6 Results ..152

7.6.1 Hardware Test Systems for RDASTD...156

7.6.2 Hardware Periormance Results..157

7.7 Summary ... 161

Chapter8 Conclusions ... 163

8 .1 Introduction ..163

8.2 Review of Thesis Contents... 163

8.3 List of Achievements..166

8.4 Future Research Directions...167

Appendix A. List of Publication .. 169

Appendix B. 3GPP Turbo Codes Specifications ..171

Appendix C. WILE 802.16 Turbo Codes Specifications .. 178

References ... 185

lx

List of Figures

Figure 2.1 (a) Convolutional and (b) turbo encoder structures for 1(=4................................1 0

Figure 2.2 Turbo encoder structures for (a) K=4 and (b) K5...11

Figure 2.3 A trellis state diagram of turbo encoder for K=4...12

Figure 2.4 A double-binary encoder structure for K=4..13

Figure 2.5 A circular diagram of circular recursive systematic codes 14

Figure 2.6 Examples of block (a) interleaving and (b) deinterleaving....................... 15

Figure 2.7 A block diagram of a turbo decoder Structure ... 16

Figure 2.8 The forward and backward process flow of the MAP based turbo decoder 18

Figure 2.9 An example of the forward and backward state metric computation processes. .. 19

Figure 2.10 Sub-frame by sub-frame turbo decoding process in the SW method..................21

Figure 2.11 A graph of sub-block data with sliding window method 22

Figure 3.1 The Max-Log Map turbo SISO decoder architecture implemented with the SW

method. 	... 32

Figure 3.2 The metric computation 	unit structure 34

Figure 3.3 	The 	branch 	metric 	unit Structure . .. 35

Figure 3.4 The trellis state transition diagrams of (a) the forward and (b) backward processes.
................................. 36

Figure 3.5 An example of the add-compare-select-normalization structure for computing the

forward 	slate 	metric at state 	0... 37

Figure 3.6 The trellis state transition paths for computing (a) Lir i and (b) L1,0 38

Figure 3.7 The LLR computation 	unit structure... 39

Figure 3.8 The LCU1 	structure for constraint length K = 4... 40

Figure 3.9 A block diagram of a test system for turbo decoder BER evaluation 41

Figure 3.10 BER performance for different size of block interleave.. 42

Figure 3.11 BER performance for different fixed-point representations. (a) (4,1), (b) (4,2),

and(c) 	(4,3).. 44

Figure 3.12 BER performance comparison for different fixed-point representation 45

Figure 3.13 BER performance upon varying the window size: (a) K = 3. (h) K = 4 and

(c)K5 .. 46

Figure 3.14 BER performance comparison between real and fixed-point values for K=3.... 47

Figure 3.15 BER performance comparison between real and fixed-point values for K=4.... 4$

Figure 3.16 BER performance comparison between real and fixed-point values for K=5....48

Figure 3.17 The design flow for high level simulation 50

Figure 3.18 The design flow for the turbo decoder hardware implementation 51

Figure 3.19 The test system for the MLMAP turbo decoder architecture 52

Figure 3.20 (a) Area and (b) power simulation results of the MLMAP turbo decoders for

K=3,4,and5 .. 54

Figure 3.21 (a) Floor planning and (b) placed and routed resLtlts of the MLMAP turbo

decoder architecture for K = 4 .. 56

Figure 4.1 The state metric variations of the MLTBD with the BMN method for different Vd

atMin.-64. .. 62

Figure 4.2 The state metric variations of the MLTBD with the BMN method for different V 1

atMin.=0 ... 63

Figure 4.3 The l-ISMLTBD architecture incorporating the BMNU. 65

Figure 4.4 The metric computation Structure . .. 66

Figure 4.5 'F lie add-compare-select structure without the state metric normalization process.

... 67

Figure 4.6 The branch metric normalization unit structure 68

Figure 4.7 The LLR computation unit structure with high pipelining. 70

Figure 4.8 The LAMLTBD architecture with the reduced memory 71

Figure 4.9 The soft-input data stream input to the LAMLTBD architecture 73

Figure 4.10 The efficient LLR computation unit structure 74

Figure 4. I I The four-input compare select unit Structure 75

Figure 4.12 The logics for determining the state metrics conditions input to BMN U 76

Figure 4.13 (a) Area and (b) power results and comparisons of the turbo decoders for K=3.78

Figure 4.14 (a) Area and (b) power results and comparisons of the turbo decoders for K4.80

Figure 4.15 (a) Area and (b) power results and comparisons of the turbo decoders for K=5.82

Figure 5.1 A trellis diagram for computing the state metrics, constraint length K=4 89

Figure 5.2 A trellis diagram of the sLLrvivor and update processes in two-step SOVA for

constraintlength K=4 .. 90

Figure 5.3 BER results for varying (a) the survivor and (h) update depths for 1K3 92

Figure 5.4 BER results for varying (a) the survivor and (b) update depths for K4 93

Figure 5.5 BER results for varying (a) the survivor and (b) update depths for K=5 94

Figure 5.6 The D6U4 and D8U5 TSOVA turbo decoder BER results for K=3 95

Figure 5.7 The D6U4 and D8U5 TSOVA turbo decoder BER results for K=4 96

Figure 5.8 The D6U4 and D8U5 TSOVA turbo decoder BER results for K5 97

xi

Figure 6. 1 REA based TSOVA decoding processor architecture [93] . 100

Figure 6.2 (a) The trellis diagram for the convolutional codes K=3. (b) The register exchange

algorithm based survivor memory unit structure [93] .. 101

Figure 6.3 The TSOVATBA turbo decoder architecture . .. 103

Figure 6.4 The metric, computation unit structure in the TSOVATBA architecture 104

Figure 6.5 The add-compare-select-normalization structure in the TSOVATBA turbo

decoderarchitecture 105

Figure 6.6 The traceback process unit structure for searching the merged state 107

Figure 6.7 The process element Structure ... 108

Figure 6.8 The path comparison and update process unit structures 109

Figure 6.9 The survivor or compete path unit structure . .. 110

Figure 6.10 The area efficient TSOVA turbo decoder architecture Ill

Figure 6.11 (a) Area and (b) power results and comparisons ... 113

Figure 6.12 (a) Area and (b)power results and comparisons for K=3 116

Figure 6.13 (a) Area and (b) power results and comparisons for K4 118

Figure 6.14 (a) Area and (b)power results and comparisons for K=5 120

Figure 7.1 The trellis diagram for (a) K=5, (b) K=3 based on K=5, and (c) K=4 based on

K=5. ... 127

Figure 7.2 The backward process trellis diagram 	(a) K=5, (b) K=3 based on K=5, and (c)

K=4 based on K=5. .. 128

Figure 7.3 The reconfigurable turbo decoder architecture . .. 131

Figure 7.4 (a) An example of a clock gating method. (b) The gated clocks applied to the

recontigurable architecture 132

Figure 7.5 The reconfigurable metric computation unit Structure .. 133

Figure 7.6 The rccon fgurab1e state metric unit configuration for the forward process and

K=3. ... 134

Figure 7.7 The reconfigurable state metric unit configuration for the backward process and

J(=3. ... 135

Figure 7.8 The reconfigurable LLR computation unit structure 136

Figure 7.9 The reconfigurable L 1, or Ljrj computation unit structure 137

Figure 7. 10(a) Radix-2 and (b) radix-4 based trellis diagram for K4 binary turbo codes. 138

Figure 7.11 The trellis paths for computing (a) Lirüü and (b) Lirii based on radix-4 binary

turbocodes for K4 .. 139

Figure 7.12 The forward process trellis diagram for K=4 double-binary turbo codes 140

Figure 7. 13 The reconfigurable turbo decoder architecture for radix-4 and double-binary

turbocodes .. 142

Figure 7.14 The reconfigurable metric computation unit structure 143

xli

Figure 7.15 The branch metric unit structure for R4 BTC and DTC.144

Figure 7.16 The add-compare-select-normalization block diagram for (a) binary and (b)
double-binary turbo codes 145

Figure 7.17 The raxid-4 based add-compare-select-normalization Structure 146

Figure 7.18 The radix-4 add-compare-select-normalization structure with 4-input compare
selectunit 147

Figure 7.19 The LUR computation unit structure ... 149

Figure 7.20 L 1, 1 1 computation unit structure for radix-4 and double-binary turbo codes 150

Figure 7.21 The Liri I computation unit structure with 4-input compare select 15 1

Figure 7.22 The area results and comparisons . .. 153

Figure 7.23 The power results and comparisons 154

Figure 7.24 Test systems for the reconligurable turbo decoder verification 156

Figure 7.25 Area results and comparisons . .. 158

Figure 7.26 Power results and comparisons for binary turbo codes 159

Figure 7.27 Power results and comparisons for double-binary turbo codes 160

XIII

List of Tables

Table 3.1 Parameters used for the MLMAP turbo decoder hardware implementation..........33

Table 3.2 The MLMAP turbo decoder hardware performance results for constraint lengths

K= 3, 4 and 5 ... 55

Table 3.3 The MLMAP-based turbo decoder critical path delay for constraint lengths K = 3,

4 and 5..55

Table 3.4 Performance comparison with state-of-art turbo decoder implementations...........57

Table 4.1 Comparison of the number of adders for CON and with BMNU. 69

Table 4.2 List of schemes for hardware performance evaluation ... 77

Table 4.3 The lists of area results for K=3 turbo decoders 79

Table 4.4 The lists of power results for K=3 turbo decoders . .. 79

Table 4.5 The lists of area results for K=4 turbo decoders 81

Table 4.6 The lists of power results for K4 turbo decoders . .. 81

Table 4.7 The lists of area results for K5 turbo decoders 83

Table 4.8 The lists of power results for K=5 turbo decoders . .. 83

Table 4.9 Performance comparison with state-of-art implementations.................................. 84

Table 5.1 The Eb/NI) comparisons at 10 -4 BER. ... 98

Table 6.1 Lists of the SMU and TBU area and power results..114

Table 6.2 Lists of the area results for K=3 ...117

Table 6.3 Lists of the power results for K3 .. II 7

Table 6.4 Lists of the area results for K4...119

Table 6.5 Lists of the power results for K4..119

Table 6.6 Lists of the area results for K5 ...121

Table 6.7 Lists of the power results for K5..121

Table 6.8 Area and power comparisons for MLMAP and TSOVATBA based turbo decoder

schemes.. 122

xiv

Table 7.1 Lists of turbo codes for the applications [171-172] . 	 125

Table 7.2 Lists of the area results ..

	 153

Table 7.3 Lists of the power comparisons for K3
	 154

Table 7.4 Lists of the power comparisons for K4

	 155

Table 7.5 Lists of the power comparisons for K5

	 155

Table 7.6 List of area results ... 	 158

Table 7.7 List of power results for binary turbo codes

	 159

Table 7.8 List of power results for double-binary turbo codes
	 60

xv

Acronyms and abbreviations

ACS Add compare select

ACSN Add compare select normalization

APP A posteriori probability

ASIC Application specific integrated circuit

BER Bit error rate

BM Bruch metric

B MC U Backward metric compLitation unit

B MN U Branch metric normalization unit

BM U Branch metric unit

BPSK Binary phase shift keying

BSM Backward slate metric

BTC Binary turbo codes

BTE Binary turbo encoder

CBG Competing hit generator

CONST Constant

CRSC Circular recursive systematic convolutional

CS Compare select

DAG De-interleaver address generator

DMCU Dummy-backward metric computation unit

DMD Demodulation

DNT Deinterleaver

DS M Dummy-backward state metric

l)TC Double-binary turbo codes

DTE DoLible-binary turbo encoder

FSM Forward state metric

FMCU Forward metric computation unit

lAG Interleaver address generator

INT Interleaver

LCU LLR computation unit

xv'

LMAI Log-MAP

LLR Log likelihood ratio

MAP Maximum aposlerior

MAU Mapping unit

MCU Metric computation unit

MEM Memory

ML Maximum likelihood

MLMAP Max-Log-MAP

MOD Modulation

MUX Multiplexer

PCU Path comparison unit

QoS Quality of service

R2 Radix-2

R4 Radix-4

REA Register exchange algorithm

REASIC Reconfigurable application specific integrated circuit

REASTD Reconfigurable application specific turbo decoder

RSC Recursive systematic convolutional

RTL Register transfer level

SM State metric

S MU Survivor memory unit

SMCU State metric computation unit

SOVA Soft-output Viterbi algorithm

SW Sliding window

TB Traceback algorithm

TBU Traceback unit

TC Turbo codes

TD Turbo decoder

TE Turbo encoder

TMU Transition metric unit

TSOVAREA Two-step SOVA based on REA

TSOVATBA Two-step SOVA based on TBA

UPU Update process unit

xvii

Nomenclature

A, B Systematic bits of double-binary turbo codes

C, D Parity bits of double-binary turbo codes

X A systematic bit of binary turbo codes

Y A parity bit of binary turbo codes

L Extrinsic information

Lir Log likelihood ratio

k Time

YV Symbol data of systematic bits

Yll Symbol data of parity bits

Branch metric

a Forward state metric

13 Backward state metric

Y A vector of received data

x A vector of transmitted data

ii Noise

xviii

Chapter 1

Introduction

1.1 Motivation
Since wireless communication systems evolved from an analogue mode to a digital, there

have been intensive studies of digital signal processing, leading to development of a number

of digital signal processing techniques to deliver quality of services (Q0S). It is well known

that digital signal processing has many advantages over analogue [I]. In the past, voice

communication was the main purpose of the systems. Nowadays, with the developed

techniques, wireless communication is regarded as a way of not only voice communication,

but also delivering various services such as text messaging, web browsing, gaming,

entertaining multi-media. These services are possible due to the development of high

performance digital signal processing techniques.

A number of digital signal processing techniques are required to construct wireless

communication systems. They are needed to transmit and to receive correct information

without errors, such as those which happen due to the effect of noise and interference when a

signal is transmitted over the channel. Among the techniques, the channel encoding and

decoding processes are one of the processes most necessary to avoid the error in current

wireless communication. Several channel coding techniques are available for the purpose. In

general, a decoder in receiver systems performs an exhaustive search process to obtain error

free information. For that reason, it is regarded as one of the highest computational units in

base station systems [2].

Turbo codes introduced by Berrou el LII. [3] can provide a large coding gain through iterative

process. Their outstanding bit error rate (BER) performance has been paid a lot of attention

by many researchers, and their contributions have led turbo codes to be adopted as standard

for channel coding of various wireless communication systems such as 3GPP, IEEE 802.16,

DVB-RCS, etc. Since then, turbo codes have been researched and their performance in such

Chapter 1 Introduction

systems evaluated [4-10]. The use of turbo codes for achieving better QoS is expected to

continuously increase. However, some obstacles are needed to be overcome to achieve a

practical turbo decoder implementation, due to one's intensive computation process and high

latency occurring by an iteration process, which cause of increasing hardware costs and

reducing data rates, respectively, in addition, the use of different types of turbo encoding

schemes in the systems can decrease compatibility and reusability of turbo decoders in the

receivers. This can be addressed by implementing a turbo decoder that can be configured

different turbo codes. Thus, these issues were the motivation of this thesis, aiming at the

development of high performance in terms of area, power, and throughput and dynamically

recoii figurablc turbo decoder VLSI implementations.

1.2 An Overview of State-of-Art Turbo Decoder
Implementations
Since appearing turbo codes, many researchers have studied turbo codes to understand their

decoding principles and mechanisms in order to achieve better performance in terms of BER.

Also, implementing practical turbo decoders for wireless communication systems has been

paid a lot of attention due to their high complexity and latency as mentioned in the previous

section. In recent, turbo decoders targeting practical applications have been realized on a

silicon cliii) [11-14].

Two algorithms, Maximum a posterior (MAP) and soft-output Viterbi algorithm (SOyA),

are available to implement a turbo decoder. The MAP algorithm proposed with turbo codes

[3] has been simplified by the approximation methods called Log and Max-Log MAP

algorithms [15]. Also, the sliding window method for the MAP based turbo decoders

suggested by [16] reduces turbo decoding latency. In addition, two-step SOVA presented in

[17] improves the implementation complexity of the original SOyA. Since these techniques,

many works implementing practical turbo decoders have proposed suggesting several

techniques. Among the techniques, the look-ahead computation [18-20], pipelining [II], and

parallel processing techniques [2 1-28] are proposed for high data throughput turbo decoders

based on LMAP and MLMAP with SW methods. Also, in [29-32], low power

Chapter 1 Introduction

implementations for turbo decoders have recently been investigated for wireless applications.

On the other hand, a turbo decoder based on SOVA can provide better throughput than MAP

based turbo decoder, due to low latency. In addition, less complexity of SOVA than the

MAP algorithm has been attracted many researchers to implement an efficient SOVA based

turbo decoder [33-42]. In the literature, low power [35-38] and high rate [33-34, 39-41]

implementations for SOVA have been proposed.

Furthermore, recent wireless communication systems have adopted several channel coding

schemes as a standard. Thus, designing highly compatible and flexible decoders for the

systems is becoming a crucial issue more and more to save the costs of the systems. This

issue can be addressed by designing a turbo decoder to be configured for the systems. The

reconfigurable turbo decoders [43-53] recently have been proposed for supporting various

wireless communication systems.

1.3 Contributions

This thesis contributes to development of high performance and reconfigurable turbo

decoder architecture targeting mobile and portable applications requiring low power

consumption and area usage. The architecture is realized by using retiming and reordering

methods that are used to implement efficient modules for computing the state metrics and the

log-likelihood-ratio. A turbo decoder for high data rate is implemented using a novel

technique that addresses the inherent critical path delay problem in order to achieve high

speed turbo decoder. The turbo decoders are implemented based on Max-Log-MAP

algorithm. For achieving better area and power saving, in this thesis, a novel structure for

implementing TSOVA based turbo decoder architecture is introduced and compared with the

Max-Log-MAP based turbo decoders. Also, based on the improved turbo decoder

architectures, reconfigurable application specific turbo decoders to support various wireless

communication systems, saving the costs needed for ASIC implementations, are proposed.

The thesis starts by investigating turbo decoder at high level to verify the decoding

functionality through the BER performance evaluation. After completing the verification, a

conventional turbo decoder based on Max-Log-MAP algorithm has been designed at RTL

3

Chapter 1 Introduction

level for the hardware implementation. Parameters for designing the hardware have been

chosen based on the results of the high level simulations.

In the conventional turbo decoder architecture, it has been found that memory blocks can be

reduced by modifying the input data transaction method. This resulted in saving up to 30 %

in total area and 18 % in total power. Also, retiming and reordering methods for the state

metric and LLR value computation process achieved saving 2 1 % in area and 29 % in power.

The high-speed turbo decoder has been realized by using a novel method that normalizes the

branch metrics to reduce the critical path delay in the turbo decoder architecture. Simulation

results show that the method can reduce the critical path delay up to 42 % as compared to the

critical path delay of the conventional turbo decoder architecture.

After presenting the efficient implementation techniques applied to Max-Log MAP based

turbo decoder implementations, an alternative algorithm, called two-step soft-output Viterbi

algorithm (TSOVA), to implement a turbo decoder has been presented. The TSOVA turbo

decoder architecture has been designed with a novel concept for implementing the traceback

algorithm (TBA). Simulation results of the architecture have shown that the TSOVA turbo

decoder architecture can save 72% in area and 52% in power compared to the MLMAP turbo

decoder architecture.

To support multi-standard wireless communication systems, two reconfigurable turbo

decoder architectures have been presented in this thesis. One of these architectures has been

designed for supporting different constraint lengths from 3 to 5. For this reconfigurable

implementation, a mapping method is presented for designing the units for computing the

state metrics and LLR values. The reconfigurable architecture is implemented with a clock

gating method to minimize the power overhead as the architecture is configured for different

constraint lengths.

The other reconfigurable turbo decoder has been designed for different sorts of turbo codes

called binary and duo-binary turbo codes. It is found that radix-4 binary and double binary

turbo decoders can share many hardware resources. The design of the reconligurable

architecture is based on a radix-4 turbo decoder, and can be configured for binary and double

binary turbo codes. Its hardware performance has been compared with a convention turbo

4

I Introduction

decoder implementation. The comparison of the performance results shows that the

reconfigurable architecture can save more energy than the conventional architecture.

1.4 Thesis Contents
The thesis consists of nine chapters including this chapter. it is organized as follows.

Chapter 2 reviews turbo codes and their encoding and decoding techniques. Two kinds of

turbo codes, binary and duo-binary turbo codes, are described with their encoder structures

for different constraint length. Maximum a posterior (MAP) and SOVA are introduced, in

the literature, several techniques are proposed to achieve an efficient turbo decoder

implementation. This chapter reviews and summarizes the techniques, describing how they

are used to reduce implementation complexity and hardware costs.

Chapter 3 presents MLMAP based turbo decoder architecture. The architecture is

implemented with sliding window (SW) method in order to reduce latency and to save

hardware costs. The architecture consists of three metric computation units, a log-likelihood-

ratio computation unit, a data scheduling unit, and memory blocks. Implementation methods

and functions of those units are described in detail. Through high level simulations, before

estimating hardware performance, BER perlrmance of the turbo decoder based on MAP

algorithm is evaluated with a variety of parameters to verify the turbo decoding algorithm.

MAP and MLMAP based turbo decoders are investigated to find the optimal parameters for

efficient hardware implementation of turbo decoders. Following a design flow, the MLMAP

turbo decoder is implemented on hardware, and the hardware performance in terms of area

usage, power consumption, and critical path delay is evaluated. The results obtained in this

chapter are regarded as conventional turbo decoder results. Thus, these results are used as

reference and compared with the results obtained with proposed turbo decoders presented in

later chapters.

Chapter 4 introduces a novel technique to implement high performance MLMAP based turbo

decoders. Two main techniques are proposed in this chapter. The first is suggested in order

to achieve high speed turbo decoder implementations for high throughput by reducing the

5

Chapter 1 Introduction

critical path delay. This is realized by addressing the inherent critical path delay problem

using a novel branch metric normalization method. The second is for saving area and power

Of the turbo decoder by reducing memory blocks for controlling SW method and storing the

branch metrics. Moreover, an efficient unit used for the state metric and the LLR

computational processes is proposed to save the hardware costs. The turbo decoder hardware

performance is investigated and compared with the conventional turbo decoder results.

Chapters 5 and 6 present an alternative turbo decoding algorithm called soft-output Viterbi

algorithm (SOVA) and its hardware architecture. Specifically, two-step SOVA (TSOVA) is

implemented to evaluate BER and hardware performance. In this chapter, a novel method for

traceback algorithm (TBA) based TSOVA turbo decoder hardware implementation is

proposed to save area and power. The TBA based TSOVA turbo decoder architecture is

described and compared with the register exchange algorithm (REA) based TSOVA

described in thc literature. The results of the TBA based SOVA turbo decoder are compared

with the MLMAP based turbo decoder results in terms of area and power.

Chapter 7 presents a reconfigurable turbo decoder architecture that is implemented based on

MLMAP algorithm with SW method. The architecture is designed to be used with various

wireless communication systems. In this chapter, two different reconfiguration turbo

decoders are proposed. One reconfigurable turbo decoder is designed to support diflèrent

constraint lengths from K=3 to 5. For the reconfigurable implementation, a mapping method

for computing state metrics and LLR values is proposed, and a clock gating method is

applied to saving power consumption as the architecture is configured for K=3 and 4.

Another reconfigurable turbo decoder that can be configured for binary and double-binary

turbo codes with fixed constraint length K4. For this architecture, a radix-4 turbo decoder

for binary turbo codes, showing similarities between turbo decoders for radix-4 binary turbo

codes and double-binary turbo codes, is investigated and implemented. Thus, the radix-4

method is exploited to implement the recontigurable turbo decoder. The turbo decoders for

radix-4 binary turbo codes and duo-binary turbo codes are implemented in ASIC to compare

the hardware performance with the reconfigurable turbo decoders. The results of the two

reconfigurable turbo decoders are also compared with conventional ASIC turbo decoder

implementations.

6

Chapter 1 Introduction

Finally, the thesis is concluded in chapter 8, describing what should be researched in the

future.

Chapter 2

Turbo Codes Encoding-Decoding
Algorithms and Implementation
Techniques

2.1 Introduction

Turbo codes introduced in [3] provide a large coding gain close to the Shannon's limit [54],

Thus a turbo decoder can achieve a very low bit error rate (BER), by performing an iterative

process as shown in [3]. Since then, the principles of turbo encoding and decoding have been

studied intensively in order to improve BER performance. The authors in [56-60] describe

the turbo decoding algorithm in detail. A number of contributions to the development of the

turbo decoder for practical applications has led to the adoption of turbo codes as a standard

in various wireless communication systems, such as widehand code division multiple access

(WCDMA) [61], 3GPP [62], Consultative Committee for Space Data Systems (CCSDS) [63],

IEEE 802.16 [64] (also known as WiMax), and digital video broadcasting returned channel

over satellite (DVB-RCS) [65]. Specifications of turbo codes required by the systems are

given in Appendix B and C.

This chapter introduces turbo encoding and decoding schemes for different constraint lengths.

First, a turbo encoder used to generate binary and non-binary turbo codes is presented, and

an encoder structure described. Then, a decoding algorithm for turbo codes is presented, and

a turbo decoder structure described. Two sorts of turbo codes are widely used in wireless

communication systems. Two algorithms, maxiimim a posterior (MAP) [3] also known as

BCJR algorithm [66], and soft output Viterbi algorithm (SOVA) [67], are available for the

turbo decoder implementations. It is well known that while MAP based turbo decoders

provide better BER performance, a turbo decoder based on SOVA can be implemented with

less computational complexity. However, the original turbo decoding algorithms based on

MAP and SOVA are not suitable for establishing an efficient turbo decoder implementation.

8

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementalion Techniques

Techniques needed to implement an efficient turbo decoder for practical systems are

reviewed, and the techniques used to improve performance of turbo decoders are described.

Detailed discussion of fundamental turbo encoding and decoding theory is beyond the scope

of this thesis. The explanations and discussion set OLIt in this chapter, and in later sections,

are based on practical implementation, with the aim of understanding the encoding and

decoding principles. Detailed principles of turbo codes can be consulted elsewhere [68-40].

This chapter is organized as follows. Section 2.2 and 2.3 describe binary and non-binary

turbo codes encoding techniques showing the encoder structures. Two kinds of turbo codes,

known as binary and non-binary turbo codes, are explained, including how they are

generated. The interleaving method used in the performance evaluation is described in

section 2.4. Section 2.5 shows a general turbo decoder structure. The MAP based turbo

decoding algorithm is presented in Section 2.6. In section 2.7, SOVA is introduced, and how

it is used for a turbo decoding algorithm described. Techniques for an efficient turbo decoder

implementation are reviewed in section 2.8. Section 2.9 summarizes the chapter.

2.2 Encoding Binary Turbo Codes

2.2.1 Turbo Encoder Structure

The turbo encoder structure is based on the convolutional encoder structure. Figures 2.1 (a)

and (b) illustrate conventional encoder structures for convolutional and turbo codes with

constraint length K=4 and polynomial generators I 3 s and I 5. The encoding process starts

after initializing D 0 , D 1 , and D2 , into zero.

The convolutional encoder of Figure 2.1 (a) generates a code word of two bits, X 1 and X2, in

a half code rate with constraint length K=4. A convolutional encoder can be implemented

with different constraint length and code rate depending on the application.

9

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implemenlation Techniques

B ma r
bit

strean

	

X1 	
Binar

	

I 	
bit

strean

X,

Y l

Y ,

(a) 	 (b)

Figure 2.1 (a) Convolutional and (b) turbo encoder structures for K=4.

The turbo encoder structure illustrated in Figure 2.1 (b) consists of two recursive systematic

convolutional (RSC) encoders and one interleaver (1) with a basic code rate of 1/3. X of the

code word is the same with input binary bits, and is called a systematic bit. Y 1 and Y2 are

parity bits produced by 1st and 2nd RSC encoders. respectively. Code rate of the turbo

encoder can be adjusted by puncturing the code word. Turbo codes generated by the encoder

are called parallel concatenated convolutional codes (PCCC). Serial concatenated

convolutional codes (SCCC) [71] also exist. In this work, turbo codes for BER performance

evaluation are generated by the structure of Figure 2.1 (b). In general, binary turbo codes

terminate with tail bits. The tail bits make the final state into zero, which is crucial to obtain

a proper BER performance in the turbo decoding process [72-74]. The tailing bits for the

simulation are made following the encoding method described in 3GPP [62].

Figures 2.2 (a) and (b) illustrate turbo encoder structures for constraint length K=3 and 5, in

which polynomial generators are 7 F,5 g and 2335. These encoders also generate block code

including the tailing bits, which are generated by the same method used in the encoder of

Figure 2.1 (b).

10

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Y l

Y,

x

(b)
	

(b)

Figure 2.2 Turbo encoder structures for (a) 1(=3 and (h) K=5.

2.2.2 Trellis State Diagram

The encoder behaviour can be represented with the help of a trellis state transition diagram

method. A trellis state diagram represents the encoding process in the state transition paths

following the input sequences coming to the encoder. The state transition also gives

information of the output code word.

Figure 2.3 illustrates the trellis state diagram of the turbo encoder shown in Figure 2.1 (b), as

an example. The number of states corresponds to 2t for constraint length K. The state

transition paths represented in different line styles indicate the code word, X and Y 1 (or Y2)

generated by the RSC encoder, illustrated in Figure 2.1 (h). Each state is represented by the

information accumulated in each of the Ds of the encoder, which are initialized to 0 at the

beginning of every input block. Thus the initial state starts with 0, and then the next state

depends on the input data. This procedure is performed until the end of the block. As already

described, the turbo encoders drive the end state to converge to state 0 using the tail bits.

Therefore. the turbo decoder at a receiver can perform the decoding process with the initial

and final state information available.

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and linpiemen ta/ion Techniques

State [D2 D 1 DJ

o 	[0 0 0]

1 	[0 0 11

2 	[0 1 0] •:
-2

3 	[0 1 1]

4 	[1 0 01

: : .

7 [1 1 11 	---'--

o0—o1 ------ 10 ____ 11--.

Figure 2.3 A trellis state diagram of a turbo encoder for K=4.

2.3 Encoding Double-Binary Turbo Codes

2.3.1 Encoder Structure for Double-Binary Turbo Codes

The turbo encoder in the previous section accepts binary bit data. Non-binary data can also

be encoded by a turbo encoder that generates non-binary turbo codes [75-76]. It is known

that non-binary turbo codes are suitable for a higher code rate than 1/2, while binary turbo

codes are suitable for lower than 1/2 [77-78]. Thus non-binary turbo codes could he used for

better throughput. This section describes the encoder structure for double-binary turbo codes

(DTC), which are adopted as a standard encoding scheme in IEEE 802.16 [64] and DVE3-

RCS [65].

12

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Double-binary
bit stream

C I
D 1

C,

Figure 2.4 A double-binary encoder structure for K=4.

Figure 2.4 illustrates the double-binary turbo encoder (DTE) structure for constraint length

K=4 with the polynomial generators, I 3 ,s and l5. As can be seen, two binary bits are used as

source data for the encoder. The two input bits are then encoded as systematic bits, A and B,

and two parity bits, C 1 and D 1 . In the same way as the binary turbo encoder, the input bits are

then interleaved to provide the other parity bits, C 2 and D2 with the second RSC encoder.

The code rate of the encoder is 1/3. However, it can be adjusted by puncturing the output

code word. The double-binary encoding scheme used in this thesis refers to the encoder in

[64] and [65].

2.3.2 CRSC Turbo Codes

The DTC are often called circular recursive systematic convolutional (CRSC) turbo codes

[77-79], which are terminated without tail bits, unlike BTC. In general, BTC are generated

with tail bits at the end of the block in order to make the final state same with the initial state.

In contrast to BTC, the initial state of double-binary turbo codes can be any state, and the

final state must be the same as the initial state. Thus. CRSC turbo codes seem to be circular

13

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Iniplementalion Techniques

Figure 2.5 A diagram of circular recursive systematic codes.

as illustrated in Figure 2.5. It is assumed that a block of DTC is started at time 0, and ended

at time k. Since the initial and final states are the same, the DTC can be circulated without

terminating to a particular state. To generate the circular codes, an additional encoding

process (called a training process) is needed. At first, DTE starts with initial state 0, and then

the final state is found when completing the encoding process. DTE starts the encoding

process again with a state that is determined following the final state found in the training

process. For this determination, a look-up table is required, as described in [64] and [65].

After completing this second encoding process, the initial and final states of the DTC

become the same. This process is summarized as follows

I) Initialize the initial state to 0 (D2=0, D0, D 0 0).

Encode an input block with the double binary encoder.

Find the final state of the input block.

Initialize the initial state into a state determined by the final state foLind in 3)

14

.4,3,2,1,0
H 1

4 5 671 —1
trite to interleaver

F—
8

-

9
-

10 ij

12 13 14 15

0 4 I 8 1121

1 5 9 13 ...1, 	12,8,4,0

2 6 10 14 Read from interleaver
Interleaving 3 7 ii 15

TU

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

5) Encode the same input block again with the double-binary encoder from the newly

determined initial state.

2.4 Interleaving Method
All interleaving method is used to reduce burst errors caused by transmitting data over tile

channel, it is already widely used to construct wireless communication systems for achieving

better performance. Interleaving method and size strongly affect the turbo decoder

performance [80-82]. A number of interleaving methods have been suggested in order to

achieve better BER performance.

In this thesis, a block interleaving method [83] is used to evaluate the BER performance of

the turbo decoders. Figure 2.6 illustrates the block interleaving method as an example. In this

case, a square block is employed as the block interleaver. First, the block is filled with a

series of data, after which the addresses of data in the block are switched. Then, the data are

I0 4 I8 12 	 0 1 I 2 I

.1128,4,0 	1l5913I _____

~13

W67

 y 	

45 	.4,32,1,0

8 	Read from de-interleaver Write to deinterleaver 	
7 iiDe - interleaving 12

Figure 2.6 Examples of block (a) interleaving and (b) dc-interleaving.

15

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

read out from the interleaver in different order from the input order. Dc-interleaving is

performed in the same way as the interleaving. The dc-interleaved data are hued in with the

original addresses after completing the dc-interleaving process.

2.5 Turbo Decoder Structure

Figure 2.7 illustrates a turbo decoder structure which consists of two soft-input soft-output

(SISO) decoders, two interleavers (II and 12), and two de-interleavers (DI and D2), as

introduced in the literature [3]. The turbo decoding process is iteratively performed by two

SISO decoders via I and D. An increase of the number of iteration gives better performance

in terms of BER. The performance improvement is saturated after completing several

numbers of iteration depending on the channel conditions. The input symbols, y.. and Yp' and

the extrinsic information, L are used for the turbo decoding process in the 'S ISO Decoder

I ' that produces log-likelihood ratio, L1 1 . 1 , and a priori value, L 2 . Then the input symbols, y,

(via interleaver) and and the extrinsic information, L ', , (interleaved value of L 2), are

used in the 'SISO Decoder 2' that generates L 1 for the 1st SISO decoder and soft-output

value, L 11 2., which is converted into the output for decoding information after being de-

interleaved by D2. These input symbols, y. , and '2. correspond to the code word, X, Yl,

V

Y

output

Figure 2.7 A block diagram of a turbo decoder structure.

16

Chapter 2 Turbo ('odes Encoding-Decoding Algorithms and Implementation Techniques

and Y2, generated by the turbo encoder in Figure 2.1. The decoding processes are iteratively

performed in order to achieve a better BER performance. One iteration is finished when the

decoding process of the two SISO decoders is completed. The structure in Figure 2.7 is for

BTC, but it can also be used for DTC with the increased number of input symbol data.

2.6 Maximum a posterior Algorithm for Turbo
Decoding Process

The decoding principle of MAP based turbo decoders is different than traditional decoders

like Viterbi decoders [84]. While Viterbi decoders, in general, find Maximum-Likelihood

(ML) paths to determine the hard-decision during the decoding process, MAP based turbo

decoders compute all state metrics of the forward and backward processes to generate the

hard-decision. These processes start at the beginning and the ending of the block as

illustrated in Figure 2.8. Then, soft-output, called LUR, is calculated from all the state and

branch metrics.

The MAP algorithm suggested in [67] is modified for use in the turbo decoding process. A

turbo decoder based on the MAP algorithm generates soft-output from the received symbol

data. The soft-output contains information on the hard-decision and its reliability value. It is

represented by log-likelihood ratio (LLR) of ciposteriori probability (APP) as follows

n (-i ,Sk)ak_l (sk_I)flk (ak)

L 1 (k—l)=ln 	
r ('k-1 Sk)akI (sk_1)13k (Sk) 	 (2.1)

Sk k-1

=Liri(kl)Li rø(kl)

where L 1, is the LLR value,)/is the branch metric, a is the forward state metric, and 13 is the

backward slate metric at time k and state s. These metrics can be represented in logarithm

form as follows:

7(k-1 ,Sk) = ln)1 (k_1 'k) = 1 / 2[LcYckUck + LCypl/(uplk ± L e lu S k] 	(2.2)

17

Chap/er 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

0 — 1–••–••

0 	•-ø ..—.

11

N-2 	N-I 	N

' —. 	" —.

Figure 2.8 The Forward and backward process flow of the MAP based turbo decoder.

	

= in a(sk) in 	exp[(s_ 1 ,Sk) +
Sk1

	

fl(sk) = In fl(sk) = in 	exp{?(sk+1 ,sk) + fJ(sk~ 1)]

	

IcC /brs=0 	- 	 [cc fors=O
a(so)= 	'. 	 fl(sv)=

	

[0 for s ~ 0 	 [0 for 	0

where v,k and 1k are the input symbol for systematic hit (u , k) and parity bit (U,,i*), L. is the

channel reliability value, which is fixed to 2 in this work, and L1 is the extrinsic info rmation.

The forward and backward state metric computation process is illustrated in Figure 2.9 for

(2.3)

(2.4)

(2,5)

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Iniplemenfalion Techniques

'00 (k-I)
a(kl) • 	"Ic'

•• fl0 (k±1)

a1(k-I) 	.'1(k-I) 	:•ç 111 (k-1)
N

a, (k 1)e)t N\ 	• ,(k+ l)

a, (k- .<.,• /3(k+l)

a4 (k- 1) ' 84 (k 	I)

a(k l)S 	 ,)/ 	 • /3(k 	I)

a6(k I) • (k+ 1)

•- -

—- 	• 7 (k+ l)

00- 01 ------10---- 11------

 Figure 2.9 An example of the forward and backward state metric computation processes.

constraint length K=4. As can be seen, a forward state metric at time k is computed from two

of the previous state metrics at time k-I and two branch metrics. A backward state metric at

time k is compLited from two backward state metrics at time k-1-1 and two branch metrics.

These computation processes are performed for all the states at each time, initializing the

forward and backward state metrics by equation (2.5) at the beginning and end of the block.

Then, LLR is calculated from the state and branch metrics obtained by equations (2.2). (2.3),

and (2.4). It can be represented as follows:

L 11 . (k) = In 	exp(1 (sk_] , s.) + k-1 (k-1) + Ak (.$))

Sk S/c.i 	
- 	 (2.6)

In 	exp(70 (Sk_1 k) 	kI (k-1) + / (si.))
Sk Sk_I

19

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

The hard-decision is determined by whether the result of equation (2.6) is positive or

negative. The extrinsic information for the next decoding process is obtained from the LLR

after subtracting input systematic symbol and extrinsic information as follows:

L e2 (k) = L 11 . (k) - Lcyc (k) Lei (k) 	 (2.7)

where L1 is used as an input for the next iteration process, as shown in the turbo decoder

structure illustrated in Figure 23.

2.7 Sliding Window Method

The MAP based turbo decoder performs the forward and backward processes to generate

LLR, as described in section 2.6. While the forward process starts at the beginning of the

input block, the backward process starts at the end of the block. These processes cause high

latency, because LLR can only be generated after completing the forward and backward

processes. The latency depends on the input block size, which is significantly increased if the

block size is large. This may result in a lowering of throughput.

The SW method introduced in [16] can help to solve the latency problem by dividing the

input block into several sub-blocks (called a "window"). The turbo decoder then performs

the decoding process. sub-block by sub-block, rather than for the whole block, The size of

each sub-block can be uniformly determined, regardless of input block size. The SW method

cannot only reduce the latency, but also reduce hardware costs by reducing the amount of

memory required to store the forward or backward state metrics which cause delay, before

computing LLR. Thus it is necessary to achieve an efficient MAP-based turbo decoder

implementation. In the literature, a number of SW based turbo decoders have been

implemented to reduce power and area 121, 25, 26, 28], and to achieve high throughput [90-

92].

Figure 2.10 shows the backward and forward process flow in the SW method. In this case,

the forward process is not affected by the SW method. The dummy-backward process starts

at the end of the second sub-block. This process produces error-free backward state metrics

20

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Backward Process 	Dummy Backward Process

I sub-block 1 	 sub-block 2

Forward Process 	
Backward Process 	Dummy Backward Process

sub-block2 	 sub-block3

Forward Process 	
Backward Process 	Dummy Backward Process

sub-block3 	 sub-block4

Forward Process

Figure 2. 10 Sub-frame by sub-frame turbo decoding process in the SW method.

for the backward process of the first sub-block. After completing the dummy-backward

process, the backward state metrics generated from the dummy-backward process are used as

the initial state metrics of the backward process. During that time, the forward process is

performed to generate the forward state metrics, and they are stored in memory until the

backward process starts. Thus, LLR is calculated from the backward state metrics generated

when the backward process starts, and the stored forward state metrics. In the process, the

role of the dummy-backward process is similar to the traceback process in a Viterbi decoder

[139]. While the traceback process finds an error-free state before starting the decoding

process for generating a hard decision, the dummy-backward process generates the initial

state metrics for the backward process, which provides the backward state metrics for LLR

computation process.

The data how for the turbo decoding process with the SW method is also illustrated as a

graph with time and block axes. in Figure 2.11. The solid line without notations indicates

input data, while the dashed line with 6 represents the dummy backward calculation

process; the number identities the sub-block.

21

A74 a4

d.: . " 2_

sub-block4

sub-block 3

sub-block 2

sub-block 1

Time

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

Block

t

Figure 2.11 A graph of sub-block data with sliding window method.

As stated above, the dummy backward process of the dashed line is not for computing LLR.

The backward process for the LLR values is performed on the solid line denoted with ,Band

L. On the solid line, the backward process and LLR computation are executed

simultaneously. The forward process (represented by the dashed-dotted line with a), is done

before executing the backward and LLR computation processes.

2.8 Soft-Output Viterbi Algorithm for Turbo
Decoding Process

SOVA introduced in [67] generates the soft-decision (called soft-output or LLI{) rather than

the hard-decision, finding the maximum likelihood (ML) paths during the forward process.

The soft-output is represented by APP, as shown below.

22

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

P@(k) = +I L 1,. (k) = log 	 = u(k)L(k) 	 (2.8)
- P(u(k) = + y)

where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time k.

In MAP-based turbo decoders, Lir(k) is calculated from the branch metrics, and all forward

and backward state metrics. However, u(k) and L(k) in equation (2.8) are independently

obtained from the forward process only, as in a Viterbi decoder. In SOyA, the hard-decision

can be obtained by using traceback or register-exchange algorithms (TBA and REA) as used

for traditional decoders [85-88]. On the other hand, the reliability value is obtained from the

difference between the state metrics after completing the updating process. The reliability

value, A(sk.), before the updating process is represented as follows

A(sk+]) = 7 	+ (s) - Ck ,s1) - (k) 	 (2.9)

where 7 and ã are the branch and forward state metrics, respectively. They can be obtained

from the same equations (2.2) and (2.3) described in the previous section. Therefore this

computation process is the same as the forward process of the MAP algorithm. However, in

SOyA, the reliability value, A(Ski), is obtained from an absolute valLie of the difference

between the state metrics, as shown in equation (2.9). These values are accumulated and

Updated at each state through the survivor and update processes [67] until the final reliability

value for the soft-output is decided. Then, the extrinsic information for the next iteration

process can be calculated using the equation (2.7). Thus. SOVA can be used to the iteration

process for the turbo decoding process, exploiting the soft-output to obtain the extrinsic

information.

2.9 Techniques for Turbo Decoder Implementations

The MAP and SOVA described in Sections 2.6 and 2.7 are not suitable and less efficient to

implement a turbo decoder in practical systems, because of their complexities. Since turbo

codes were introduced, much research has focused on the implementation of the turbo

decoder in order to achieve high performance in terms of area, power, throughput, and so on.

23

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implemental/on Techniques

This section reviews and summarizes techniques used in the literature to implement turbo

decoder hardware based on either MAP or SOyA.

2.9.1 Optimum and Sub-Optimum Algorithms

Equations described in Section 2.6 for the MAP algorithm are not suitable for an efficient

turbo decoder implementation because of the non-linear functions. These functions can

increase computational complexity, which might lead to high area usage and power

consumption in hardware implementations. This problem can be addressed by using

Optimum and sub-optimum algorithms suggested in [15]. These algorithms are Log-MAP

(LMAP) and Max-Log-MAP (MLMAP). The equations (2.2), (2.3), and (2.4) include

logarithm and exponential functions which can be simplified by an approximation form

(known as the Jacobi logarithm) represented as follows

ln[exp(x) + exp(y)] = niax[x, y] + ln[exp(— I x - y Di 	 (2.10)

where thc second term of the right hand side is the correction term that can be implemented

with a simple look-up table [81]. The difference between LMAP and MLMAP algorithms is

determined by the inclusion of this term. While this term is ignored in the MI-MAP

algorithm, it is implemented in the LMAP algorithm.

2.9.2 Two-Step SOVA

Two-step SOVA (TSOVA) suggested in the literature [93] was developed to reduce the

computational complexity of the original SOVA described in [67]. TSOVA divides the

decoding process into the survivor and update processes to reduce the complexity. These

processes are executed simultaneously in the original SOyA. The survivor process performs

the same function as the traceback process in a Viterbi decoder [85-86] in order to find a

state for beginning the decoding process to generate the hard-decision. Thus in the TSOVA,

the survivor process finds the ML path for each state to determine the state at which all ML

paths converge. Then, the update process starts from the converged state to update the

reliability values by following the hard-decisions provided by the survivor and competing

paths. The reliability values are updated at the point where the two hard-decisions of the

24

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

survivor and competing paths are different. The update rule described in [67] is used for the

update process. Since the introduction ofTSOVA in [67], it has been used not only for turbo

codes [94-96], but also for other applications [97-98].

2.9.3 Quantization Method

A fixed-point method is useful to reduce the hardware complexity. The real value

transmitted over the channel can be represented in an integer value using a fixed-point

representation method to save the resources needed to implement digital signal processors.

Ilowever, the fixed-point level can affect both BER performance and hardware costs. This

represents a trade-off between performance and cost.

In the literature [99-104], fixed-point turbo decoders have been investigated through the

BER performance, varying the fixed-point level of soft-input symbol data to find an

appropriate level without significant performance degradation. This fixed-point can be

represented as follows [89]:

Y 	=[2'y+o.] 	 (2.11)

where y is the symbol data for the turbo decoder, v is the fixed-point representation of they,

and p is the number of the precision bit in the fixed-point representation. In the equation,

means 'integer part ofy'. If the total number of bits is L, the final fixed-point value, YL

Is

YL

 ={

min(yfi , 2 	1)
(2.12)

max(y, - 2 1)

Thus the maximum or minimum fixed-point value is determined by the total number of bits.

2.9.4 Metric Wordlength Optimization

A digital signal processor is implemented with a finite wordlength for input, output, and

internal metric representations. Thus it is clear that the size of wordlength directly affects

25

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

hardware costs. An optimized wordlength of the metrics for turbo decoder implementations

Without degrading BER performance has been considered in the literature [89, 101-104].

This optimization is associated with the quantization level described in the previous sub

section. According to [15, 105], a total of 4-bits is the most suitable wordlength to represent

soft-input symbol data. When the soft-input representation is determined, the metrics such as

branch metrics, state metrics, and LLR, can be decided by high level simulation for

evaluating turbo decoder performance. Larger wordlength than the 4-bits can be applied for

turbo decoder implementations to achieve better performance, but that leads to increasing

overheads in hardware performance in terms of area and power. Therefore the optimization

should be determined by considering the trade-oft between performance and hardware costs.

2.9.5 State Metric Normalization

A turbo decoder performs an iteration process in order to produce better performance. This

process dramatically increases the state metrics during the decoding process. Thus a large

wordlength is needed to avoid overflow of the state metrics in turbo decoders. However, the

large wordlength clearly increases the hardware costs of turbo decoders, as described in the

previous sub section. A Viterbi decoder also suffers from the overflow problem. As a result

Of using soft-input symbol data for the turbo decoding process, the increase rate of the state

metrics in turbo decoders is much more rapid than in a Viterbi decoder. Several techniques

to address this problem for Viterbi decoders have been suggested [106]. The state metrics

normalization method, which is similar to the methods described in [II, 105, 107], can be

used to reduce the wordlength of the state metrics, avoiding the overflow and saving the

hardware costs. The normalization method is realized by subtracting a constant value from

the computed state metrics when the state metrics are larger than the constant value. Thus the

use of the state metric normalization can reduce the wordlength and save hardware costs,

2.9.6 Retirning Method

In a turbo decoder, the state metric computation unit has the highest computational

complexity which increases exponentially with the constraint length (K). As a result, the

number of states grows proportional to 2K Also, the state metric computation process,

26

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

known as add-compare-select (ACS), is performed concurrently during the decoding process.

Thus, the critical path delay of a turbo decoder is known to exist in the ACS unit. The

retiming method reduces this delay by changing the order of the state metric computation

process. Similar techniques to reduce the critical path delay are already employed for Viterbi

decoders [108-110]. According to [34], the retiming method can reduce the critical path

delay by 29%, but it leads to 99% and 89% overheads in area and power.

2.9.7 Adaptive Iteration Method

The iteration process of a turbo decoder corrects the errors introduced over the channel to

improve BER performance, but this process can cause high latency and energy. In practical

wireless communication systems, a turbo decoder performs the decoding process frame by

frame. Each of the frames passed to a turbo decoder could have different error rates. Thus all

the frames that have different error probabilities could be corrected by applying a different

number of iterations rather than any fixed number of iterations.

The adaptive iteration method is used to reduce the number of iterations by observing the

errors of each frame indirectly during the decoding process, so reducing latency and energy

consumption. Several adaptive iteration methods have been suggested in the literature [Ill-

113]. One of the methods is to observe the reliability value of LLR, during the decoding

process. If all the reliability values are larger than the threshold value, the iteration process is

stopped. In this way the adaptive iteration method can save energy and reduce latency.

2.9.8 High Radix Architecture

1-ligh radix architecture has been considered for a Viterbi decoder implementation in order to

improve throughput of the decoder [114-117]. Although the high radix method increases

hardware costs and complexities, it can raise throughput without high clock frequency. In

[118]. a high radix turbo decoder implementation based on LMAP algorithm was introduced

showing how LLR and extrinsic information for the turbo decoding process are obtained

from the high radix turbo decoder architecture. Several papers [11, 20] show the turbo

decoder implemented with the high radix architecture in order to achieve better throughput.

27

Chapter 2 Turbo Codes Encoding-Decoding Algorithms ancl Imp lam en ta/ion Techniques

2.9.9 Stopping Criteria

A turbo decoder performs an iteration process to achieve better performance in terms of BER.

However, the iteration process causes of high latency and energy consumption. A stopping

criterion is to address the issues by stopping the iteration process, which can prevent

unnecessary computation and decoding delay. Thus, one can improve throughput rate and

save energy consumption of turbo decoders. In [119-121], a method based cross entropy

between the distributions of the estimates at the output of the decoders at each iteration has

been proposed. In recent, several techniques for the stopping criteria [122-126] for an

efficient turbo decoding process have been suggested. In the criteria, the most important

thing is to minimize the additional algorithm used to stop the iteration without degrading the

decoding performance.

2.9.10 Parallel Implementation

A throughput rate is always one of the most important issues in wireless and wired

communication systems. One of the ways for achieving high throughput is to implement a

turbo decoder in a parallel scheme. In [127-129]. a parallel scheme for high throughput turbo

decoder implementations has been proposed showing hardware overheads. There are several

issues to implement parallel turbo decoders. They are designing interleavers [130-134] and

parallel architectures [135-1 36] for parallel processing. Implementing a turbo decoder in

parallel clearly leads to an increase of the hardware costs. Thus, there must be trade-off

between throughput and performance in terms of area usage and power consumption. The

performance overhead led by the parallel scheme should be acceptable in the systems

requiring turbo codes.

2.10 Summary

This chapter reviewed turbo encoding and decoding principles. Two sorts of turbo codes

were introduced. The MAP based and SOVA based turbo decoding algorithms, and how they

generate soft-output, were described and explained. For practical turbo decoder

28

Chapter 2 Turbo Codes Encoding-Decoding Algorithms and Implementation Techniques

implementations in hardware, the algorithms need to be modified in order to reduce their

computational complexities. Several techniques for the turbo decoder implementations were

described, including their methods for achieving high performance and efficient hardware.

These techniques are utilized to implement a turbo decoder to be presented in later chapters.

29

Chapter 3

Max-Log-MAP Based Turbo Decoder
Hardware Architecture

3.1 Introduction
Many researchers have been paying a lot of attention to the outstanding BER performance of

the turbo decoder. Ilowever, the use of the turbo decoder was expected to increase the costs

of receiver systems, as the authors in [3] stated that the turbo decoder's complexity is twice

that of the Viterhi decoder. In general, a decoding processor is regarded as the most

exhaustive processor in the systems. For this reason, the turbo decoder has been challenged

by a number of researchers to reduce the computational complexity and thus save hardware

costs. Among the many works described in the previous chapter, the development of Log-

MAP (LMAP) and Max-Log-MAP (MLMAP) [15] contributes to a significant reduction in

this complexity, and they are widely applied to turbo decoder implementations.

Another issue in turbo decoder implementations is that the iterative process increases the

data output latency, which can lower the data throughput. The turbo decoder provides the

LLR alter computing all the forward and backward state metrics, as described in the previous

chapter. This leads to a large latency, and also requires large amounts of memory to store

either forward or backward state metrics until completing one of the state metric

computation processes. Thus, the latency and memory size are dramatically increased,

depending on the number of iterations and the block size. The sliding window (SW) method

proposed in [25] can address the latency problem. In [137-138], several turbo decoding

algorithms are compared in terms of implementation complexity. The results show that

MLMAP with the SW method is the most suitable algorithm for the turbo decoder

implementation.

This chapter presents MLMAP based turbo decoder architecture with the SW method, which

is similar to the conventional SW based MLMAP turbo decoder architecture. The

30

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Arch/lecture

architecture consists of memory blocks for controlling data input and output through the SW

method, metric computation units (MCU) for the branch and state metrics, an LLR

coniputation unit (LCU) for obtaining LLR and the extrinsic information, and memory

blocks for storing input data and the metrics. This chapter discusses a detailed

implementation method for the units and the design flow for the turbo decoder VLSI

implementations, in order to evaluate their hardware performance in terms of area, power

and critical path delay for the maximum speed. Before implementing the MLMAP turbo

decoder, the turbo decoder is investigated at high level using Matiab TM to verify its

functionality. For the investigation, various conditions and parameters are applied for

evaluating BE R performance of the turbo decoder.

The chapter is organised as follows. In Section 3.2, the MLMAP turbo decoder architecture,

as well as the components incorporated into the architecture, is described in detail. Section

3.3 shows the turbo decoder performance results at high level. Hardware simulation results

are discussed in Section 3.4, and Section 3.5 summarizes the chapter.

3.2 Max-Log-MAP and Sliding Window Method-
Based Turbo Decoder Architecture

3.2.1 Max-Log-MAP Soft-Input Soft-Output Turbo Decoder
Architecture

Figure 3.1 illustrates the MLMAP turbo soft-input soft-output (SISO) decoder architecture

implemented with the SW method described in the previous chapter. The architecture

consists of a data scheduling unit (DSU) for managing data input and output following the

SW method, three metric computation units (MCU) for the branch and state metric

computation; an LLR computation unit (LCU) for generating the hard decision and the

extrinsic information, and memory blocks for delaying the soft-input (DS), the branch

metrics (DB), the forward state metrics (DF) and the decoded information (DL). These

31

Chapter 3 Max-Log-MA P based Turbo Decoder Hardware Architecture

CNT1 I 	I CNT2

DMCU

Soft 	 SmC

input

BMCU

DB

Fl FOO -

	

LCL

SmC 	 Soft
output

DSU 	 FMCU

Figure 3.1 The Max-Log MAP turbo SISO decoder architecture,
implemented with the SW method.

memory blocks are realised by a last-in first-out (LIFO) memory block. Two counters (CNT

I and 2) give the DSU and each MCU the count numbers that indicate the beginning and end

Of the input and sLib-block for the SW process.

As shown in Figure 3.1, the soft-input data is fed into the DSU and then it is distributed to

each of the MCUs through first-in first-out (FIFO) and last-in, last-out (LIFO) blocks, which

have the same depth with a window size of 40. A dummy-backward MCU (DMCU)

computes the backward state metrics to provide the initial state metrics to backward MCU

(BMCU). The forward state metrics are computed in forward MCU (FMCU), which are then

delayed by DF before input to LCU. Until the backward state metrics generated by BMCU

32

Chapter 3 Max-Log-IkIAI' based Turbo Decoder Hardware Architecture

are passed to LCU. LCtJ calculates LLR from the branch metrics delayed by DB, the

forward state metrics delayed by DF, and the backward state metrics computed by BMCU.

After obtaining LLR, the extrinsic information for the next decoding process is computed by

subtracting the soft-input delayed by DS from the computed LLR.

The output of LCU consists of nine bits, of which MSB is the hard decision and the rest is

the extrinsic information. The DL converts the reverse ordered output into the right order. In

the following subsections, a detailed structure and implementation method for the

components is described.

Before designing the MLMAP turbo decoder in hardware, parameters for representing the

metrics are determined from high-level simulation results described in the next section.

Table 3.1 summarizes the wordlength for each parameter for MLMA1 3 decoder

implementation. The input symbols and the extrinsic information are represented with four

bits and eight bits, respectively. On the other hand, the branch and state metrics are

represented with eight bits and nine bits, respectively. The 1- and 0-bit LLR values for

computing LLR are represented in 10 bits. All the parameters are represented in 2's

complement. These parameters are similar to ones used in the literature [15, 104].

Table 3.1 Parameters used for the MLMAP turbo decoder hardware implementation.

Metrics Wordlength

Input Symbols 4-bits

Extrinsic information 8-bits

Branch Metric 8-bits

Forward and Backward State Metrics 9-bits

LLR 1- and 0-bit 10-bits

fin

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.2.2 Metric Computation Unit

Figure 3.2 illustrates the MCU structure, which consists of branch metric unit (BMU) and a

state metric computation unit (SMCU). The MCU structure is used to implement the three

MCUs incorporated in the MLMAP turbo decoder architecture, as illustrated in Figure 3.1.

They can be implemented in a similar way. In the MCU, BM U computes the branch metrics

(BM) from the soft-input data. SMCU, which consists of a number of parallel add-compare-

select-normalization (ACSN) units, calculates the state metrics (SM) from the BM and

previous SM values. The number of ACSN units incorporated into SMCU is gi ven by 2'-1

for constraint length K.

MCU 	 Recursive SM

SMCU

ACSNO

ACSN1

Soft-input 	BMU 	 - —4

BM 	ACSN2

ACSN2K1

9 UT

Figure 3.2 The metric computation unit structure.

3.2.2.1 Branch Metric Unit

BMU calculates the branch metrics from the soft-input symbol data (y and) and the

extrinsic information (L a) provided by the previous decoding process, which is initialised to

zero at the first decoding process. In the turbo decoding process, four branch metrics are

needed to compute the state metrics.

34

Chapter 3 Ivlax-Log-MAP based Turbo Decoder Hardware Architecture

Y 	.i, L, 	 L e y 	yr

- 	

B MU

T 	 if

In 	 210

Figure 3.3 The branch metric unit structure.

Figure 3.3 illustrates the BMU structure, which consists of four adders. The BMU generates

two branch metrics, yj i and ho (the subscripts of y represents the code word of systematic

and parity bits generated by a turbo encoder). The two branch metrics are negated to obtain

the rest of the branch metrics, o and Y01 , for computing the state metrics. The BMU does not

depend on the constraint length, and can be used in turbo decoder implementations with

different constraint lengths.

3.2.2.2 Add Compare Select Normalization Unit

Most of the MCU area and power is clearly occupied and consumed by the parallel ACSN.

The state metric computation process can be described by the trellis state diagram, as shown

in the previous chapter. Figures 3.4 (a) and (b) show the trellis diagram of the forward and

backward processes for K = 4. as an example. Each of the paths in the figure is represented

in a different line style that corresponds to the code word, By initialising the forward and

backward state metrics following the equation (2.5) in Chapter 2, next state metrics are

calculated from the two branch and two state metrics represented by the transition paths, as

shown in Figure 3.4. This procedure is recursively performed for the input block.

The structure of ACSN used in the turbo decoder implementation is similar to an ACS

structure used in Viterbi decoders [114], except the state metric normalization process. In

35

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

00— 01

0

1

2 •. - ...
0

3 	•0 :.:.;0 0

10 11

0g....
_00 • ••'

I
.-...0 	 ..

2 :. 	 ..

3 *_,_ 	>K
4a. - •;7 -•

k
	

k-H 	 k
	

k-H

(a)
	

(b)

Figure 3.4 The trellis state transition diagrams of (a) the forward and
(b) backward processes.

turbo decoder process, the state metrics could increase more rapidly than in a Viterbi decoder,

due to the use of soft-input symbol data. Therefore; a large wordlength is required for the

state metrics to avoid overflow; however, this may lead to large area and power overheads.

Thus, the state metrics normalization process is necessary for an efficient SMCU

implementation that has no overflow. The normalization process is performed by subtracting

a constant value from all state metrics, after calculating the state metrics in every cycle,

when all the computed state metrics are larger than the constant value [104].

Figure 3.5 illustrates the structure of the ACSN used for calculating the forward state metric

of state 0 at time k, as an example. Two branch metrics generated by BMU, y o (k) and 711 (k).

and two state metrics of states 0 and I, (k) and a 1 (k), are inputs of the ACSN. A pair of

branch and state metrics is added using each of the adders (A), and then the results of each

adder are compared to select (CS) the maximum between them. The comparison process is

carried out by using an adder and a multiplexer (MUX). The most significant bit (MSB) of

the adder output is used as a control signal for MUX, which selects the maximum one from

its two inputs. The selected maximum value is used for next state metric computation

process and for computing LLR after completing the normalization process (N). For the state

metric normalization process, the selected maximum value is compared with a constant value

Chapter 3 Max-Log-M4P based Turbo Decoder Hardware Architecture

a0(k) 	700(k) 	a1 (k) 	711 (k)

8 	9 	8'

+ 	
+

+ 	'IHs

\MUX/J 1 1

CONST

+

:N

\MUX/ 1

ACSN

a0(k+l)

Figure 3.5 An example of the add-compare-select-normalization structure for
computing the forward state metric at state 0.

(CONST) to determine whether the maximum value is larger than CONST or not. If the

maximum value is larger than CONST, CONST is subtracted from the maximum value. If

the maximum value is not larger than CONST, the maximum value becomes the state metric.

c(k+ 1), without the normalization process.

The ACSN process is concurrently performed during the turbo decoding process, using the

output SM as the input of the ACSN itself recursively. Thus, the whole ACSN process must

be completed in one clock cycle concurrently, due to the recursive SM input to ACSN itself.

In this case, the critical path delay of the MLMAP turbo decoder is determined by the ACSN

[1 3], which can be approximated as follows:

37

Chapter 3 Max-Lo,-M4P based Turbo Decoder Hardware Architecture

dAcsN = 3Xta +2xt 11 ,
	 (3.!)

where t,, is the delay of the adders used in A. C and N processes, and t is the delay of the

MUX. This ACSN critical path delay, dACSN, determines the maximum speed of the turbo

decoder for achieving maximum throughput. Other modules - such as BMIJ and LCU,

which are described in the next subsection - can be implemented with pipelining method, to

reduce the path delay. ACSN can also be implemented with pipelining method to reduce the

delay. In this case, however, the pipelining for ACSN does not help to improve the

throughput, since the output is also delayed by the number of pipelined stages oIACSN.

3.2.3 Log-Likelihood Ratio Computation unit

Aller obtaining the branch metrics and all the forward and backward state metrics, LLR can

he calculated. Before computing the LLR, the computation process of the I - and 0-bit LLR

values, which are the numerator and the denominator in equation (2.1), respectively, can be

described by the trellis state diagram illustrated in Figures 3.6 (a) and (b). The figures

illustrate the state transition paths denoting the code words in different line styles to

distinguish the computation of 1-bit and 0-bit LLR (Liri and L,,) For constraint length K = 4.

00 01 -- 10 	11

0. 0s..

1 	. i
2 	S.. ... 2 	• •
3 3 	'- 	------...

6 6
7 7 	._.._.._.._.._.._.

a(k)

)6(k+ 1) a(k) 8(kH-1)

(a) (b)

Figure 3.6 The trellis state transition paths for computing (a) L 1 and (b) Li,-i.

38

Chapter 3 Ivlax-Log-A'L4F based Turbo Decoder Hardware Architecture

For instance, Figure 3.6 (b) shows the paths with the code words of 11 and 10, in which the

first digit. L, implies the systematic bits. Thus, Liri values are calculated from the two-branch

metrics (,vi 1 ,) and the forward state metric at time k, c(k), and the backward state metric at

time k+l, ,8(k+I), indicated by the ends of the paths shown in Figure 3.6 (b). In the case of

K = 4, 8 Liri values are computed, and then the maximum among them is selected to

calculate the LLR. In the same way, the maximum L,, value can be obtained using the

diagram shown in Figure 3.6 (a). Thus, the LLR value is obtained by subtraction as follows:

Lir = 1nax[Lir10 ...L 1117 I - max[L,00 ...L . I 	for 	K = 4 	 (3.2)

Figure 3.7 illustrates the LCU structure for calculating the LLR and extrinsic information. It

consists of a LCUO, a LUCI and adders. The LCU inputs are the 2' numbers of the forward

and backward state metrics for constraint length K, and the four branch metrics. LCUO and

LCU I compute the L 1 and Liri values. Then, L 1, is obtained by subtracting L,,.0 from L 1,.] .

After that, the extrinsic information, L. is obtained by subtracting the soft-input from Lj r .

The structure illustrated in Figure 3.8 is commonly used to implement the LCU I and LCUO

with different input metrics. The structure, given as an example, generates Liri for constraint

FS

BSN

BM

Soft-input

L ir

L e

Figure 3.7 The LLR computation unit structure.

39

ChaDser 3 Max-Log-MAP based Turbo Decoder Ffuithvare Architecture

cc 	fl4 	a /?, 	a2 fl1 	a5 ,8 	(i 16 	a6 fl2 	a6 fl 	a7

CS CS CS
CS

CS CS

+ Cs

LOW \2 11 I
'fri

Figure 3.8 The LCU I structure for constraint length K = 4.

length K = 4. In this structure, eight numbers of the forward (- a 7) and backward (fib - ,87)

state metrics and two branch metrics (y1 - are input to LCU I . The first two adder rows

generate eight L1,. 1 values, then the maxiMUrn among them is determined by repeating the

compare-select (CS) processes. After completing the CS process, Liri is finally output from

the LCtJI.

The critical path delay of the LCU I (or LCUO) structure can be given as follows:

dLCUI = 5xt 5 +3xi, 	 (3.3)

where t,, is the delay of the adder and t is the delay of the MUX. As can be seen, dLCLJI is

larger than the delay of ACSN (dAcsN) given by equation (3.1). In contrast to ACSN,

40

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

however, this delay can be reduced by using pipelining method. The number of pipelining

stages varies with the constraint length, K, due to the different number of CS processes

involved.

3.3 High Level Simulation Results

3.3.1 Simulation Specifications and Systems

The turbo decoder simulation model for high level simulation can be represented as follows:

y(k) = x(k) + n(k) (3.4)

where x(k) is the encoded data for transmission, n(k) is the additive noise, and y(k) is the

received data for the decoding process. Figure 3.9 illustrates a block diagram for the

simulation, The binary source data are generated at random. The turbo encoder encodes the

source data, and then, the encoded data are modulated in the binary phase shift keying

Source I 	I 	Turbo
Bit Stream 	I 	Encoder H Modulator

AWG N

I 	Turbo 	 De-
Error results)i 	

Decoder I 	I modulator

X(k)

y(k)

Figure 3.9 A block diagram of a test system for turbo decoder BER evaluation.

41

Chapter 3 Max-Log-AMP based Turbo Decoder Hardware Architecture

(BPSK) modulation method. The modulated data are transmitted over the additive white

Gaussian noise (AWGN) channel model. After the received data are demodulated, they are

decoded by the turbo decoder. The decoder output is compared with the source data to

evaluate BER performance.

In the simulation, turbo codes are generated for constraint length K=3, 4, and 5 using the

encoder illustrated in the previous chapter. It is assumed that an additive white Gaussian

noise (AWON) channel model with mean 0 and variance 1, code rate 1/3, and a block

interleaver of 1024 bits with three tail bits are used.

3.3.2 Performance for Varying Block Size

There are various factors that affect the BER performance of a turbo decoder. One of them is

the block size for the turbo decoding process, which in turn effects the interleaving. When

the block size is large, the distance between two neighboring symbols can be increased by

using the interleaving process. This can help to reduce the burst errors. In contrast, a small

I .F+O()

I,E-oI

1. E-02

1. E-03

1. E-04

1.13-05

256

0 	0.5 	1 	1.5 	2 	2.5 	3

IfN,

Figure 3.10. BER performance for different size olblock interleaver.

42

Chapter 3 Max-Log-IVIAP based Turbo Decoder Hardware Architecture

block size decreases the interleaving effect as a result of the reduced distance, and provides a

lower BER performance than a large block size.

Figure 3.11 shows the BER performance results for different block sizes, 64. 256, and 1024.

The simulation results are based on K4 MAP based turbo decoder with the parameters and

conditions described in the previous subsection, after completing 8 iterations for each block.

A block interleaving method described in Section 2.4 of Chapter 2 was applied for

performing the simulations. As can be seen, the results show that the increase in block size

improves the turbo decoder BER performance. In next simulations, the 1024 size block

interleaver is used to evaluate BER performance of the turbo decoder.

3.3.3 Fixed-Point Implementation

Following the fixed-point representation method described in the previous chapter, BER

performance of the MLMAP based turbo decoder for constraint length K=4 was investigated

by varying the number of total and precision numbers of tile bits. The parameters and

simulation conditions described in Section 3.4.1 were used. Figures 3.11 (a), (b), and (c)

illustrate the BER performance results after completing 8 iterations for (4.1), (4.2), and (4.3),

respectively, in which 4 is the total bit number and 1, 2, and 3 are the precision bit numbers.

In the simulation results, (4.2) provides the best BER performance of the fixed-point

representations. For further investigation, the simulations were repeated with increasing the

total number of bits to 5. Figure 3.12 shows the BER performance results of the 8th iteration

for (4.1), (4.2), (4.3), (52), and (53). In the results, (53) provides tile best BER performance

followed by (5.2). 1-lowever, it can be seen that the performance degradation of (4.2) is not

significant as compared with the performance obtained from the fixed-point implementation

with a total of 5-bits. Therefore, in this work, the soft-input will be represented with the (4.2)

Fixed-point representation scheme.

43

Chavter 3 Max-Log-M4P based Turbo Decoder Hardware Architecture

I 	ElI)0 	- - 	 - 	 -

LU

oci

I E-05

0 05 	I I S 	2 	25 	5

(a)

I 0+00

I 0.01

1.0-02

04

LE-03 	
IsE

l.E-04 	
—.-4th

10-05 	 .

0 	05 	I 	15 	2 	25 	3

F.jN1

(b)

I E-00

I.E-al

I 0-02

Ui

1.0-03

1.0-04

EEEE

EEEEEE:::
I E-05

0 	0.5 	1 	15 	2 	25 	3

01JN0

(c)

Figure 3.11 BER performance for different fixed-point representations. (a) (4. 1), (b)
(4.2), and (c) (4.3).

44

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

LE-00

LE-01

LL-02

Lu

1. E-03

.0-04

LE-05

0 	0.5 	1 	1.5 	2 	2.5 	3

F.b/No

Figure 3.12. BER performance comparison for different fixed-point representation.

3.3.4 Performance with Varying Window Size

It is well known that the BER performance of the SW based MLMAP turbo decoders

depends on the window size. If the window size is small, the state metrics computed by the

dummy-backward process could be wrong, which can degrade the performance. If the

window is large enough, there is no performance degradation, but latency could be increased.

The BER performance has been evaluated by varying the window size for different

constraint lengths. The simulation was carried out with the same conditions used in the

previous sub sections. Figures 3.13 (a), (b) and (c) show the BER performance results when

the window size was varied, after completing eight iterations for constraint length K = 3, 4

and 5. respectively. The simulation results were obtained for window sizes from 4 to 20,

with a step of 4, and 40. As can be seen, the performance is almost saturated at the window

size of 12. 16 and 20 for K = 3, 4, and 5. respectively. These results show that the window

size for achieving proper BER performance is strongly related to the constraint length.

45

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1.15 i (Xl

1.15-01

I. [-(12

151

Lk-03

115-1)4

- - - - - - - - 	 - - - - -

LE-05

0 	0.5 	I 	1.5 	2 	2.5 	3

EbINO

(a)

15.00
	

1 	 -

1 [-0)
	

l.E-0I

1 [-02
	

I [-02

LiJ
CO

1 [-03
	

I [-03

1,15-04
	

I [-04

.

0 	05 	I 	15 	2 	2.5 	3 	 0 	05 	I 	15 	2 	2.5 	3

(b) 	 (c)

Figure 3.13 BER performance upon varying the window size: (a) K = 3,
(b) K4 and (c)K=5.

In this work, the window size is determined by considering of the minimum block size of 40

specified for turbo codes in 3GPP [62].

46

Chapter 3 Max-Log-IVLIP based Turbo Decoder J-Iard'i' are Architecture

3.3.5 BER Performance Comparisons

This subsection shows the turbo decoder BER performance results for constraint lengths

K=3, 4, and 5. Two turbo decoders, based on MAP and MLMAP algorithms, have been

implemented in order to investigate the performance difference between the two algorithms.

MAP and MLMAP turbo decoders were simulated with both real and fixed-point values.

Thus, the BER simulation results can reflect the performance gap between the algorithms

and also the representation methods, as well.

Figures 3- 14, 3.15, and 3.16 illustrate the BER simulation results for constrain length K=3, 4,

and 5, respectively, after completing I, 2, 4, and 8 iterations. As in the previous subsections,

the parameters described in Section 3.4.1 were used in these simulations. The results show a

feature of the turbo decoder performance that the performance improves with increasing the

number of iterations. In the figure, the real value MAP and the fixed-point MLMAP based

turbo decoder results are represented in dashed and solid lines, respectively. As expected,

LU

I St

-Fixed 0 	2nd - -- 0_..

I.E-04 vztlue —-4th

- —*—Sth EEE i..E

---0-1st
-

LE-05 - 	 Real ... O ... 2nd

I 	value A 	4th rEEEEEE±EEEE:

---0-8th . . - - - - - - - - - - - - - - - - -

I.E-nc,

0 	05 	I 	L5 	2 	25 	3

1 - s/No

Figure 3,14 BER performance comparison between real and fixed-point values for K=3

47

1. E-06

0 	0.5 	1 	1.5 	2 	2.5 	3

EbINO

Figure 3.15 BER performance comparison between real and fixed-point values for K=4.

l.E+00

I EM]

1.13-02

1.13-03

1.E-04

I.E-OS

-

0

S:\N:I:IEEEE ~A ~2ntd Fixed - - - ••..• 	
. 	 - 	- 	- 	- 	-. 	 -

value
_

0--4th
8th

-- 	-
Real ... 	 -- 2ndE=EEr: - Eu - =
value o 	4th - 	-

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1. E±00

• E-0 I

I.E-02

l.E-03
	

Ist 	 - - - - - - - - - - -

Fixed 	2nd

1.13-04
	value —*--4th 	 -

I St

I.E-OS - Real . . . Q -- 2nd --- --
value A 401 	::3

- 	---0-80, - ----------
I E-06

0 	0.5 	1 	1.5 	2 	2.5 	3

13/N0

Figure 3.16 BER performance comparison between real and fixed-point values for K=5.

48

Chapter 3 Max-Log-AMP based Turbo Decoder Hardware Architecture

the real value MAP turbo decoder provides better performance than the fixed-point MLMAP

based turbo decoder, due to the approximation. However, as can be seen, there is no

significant performance improvement after completing 4 iterations. The simulation results

show that the fixed-point representation and MLMAP algorithm lose a coding gain of around

0.25. 0.15, and 0.15 in Eb/No at a BER of for K3, 4, and 5, respectively, after

completing 8 iterations.

3.4 Hardware Design and Results

3.4.1 Turbo Decoder Hardware Design Flow

This section shows the design flow utilised in this thesis for the turbo decoder hardware

implementation. Figure 3.17 shows high level simulation flow for verifying turbo decoding

algorithm. It starts by determining the specifications of the turbo encoder and decoder. At

this stage, the algorithm used to implement the turbo decoder is verified by evaluating its

BER performance. This step is important in verifying the functionality of the turbo decoder.

Figure 3.18 illustrates how the turbo decoder hardware is designed, verified, and evaluated in

this thesis. The hardware is designed at a register transfer level (RTL) using the Verilog

hardware description language (1-IDU). Some of the parameters needed to design optimised

hardware are provided by high-level simulation results. The hardware is then synthesised

using a standard CMOS technology library.

Gate-level netlist generated by the synthesis process are simulated with the timing

information to verify the functionality. After completing the synthesis, the power

consumption of the hardware can be estimated by using the capacitance obtained from the

synthesis and the switching activity generated during the netlist simulation. The physical

synthesis process for generating layout can then be performed with the netlist and the

information generated by the synthesis process. The layout of the hardware is produced

through floor planning, placing and routing processes. After completing the layout

generation, the hardware power can also be estimated in the same way with the gate-level

simulation,

49

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

Encoder & Decoder
Specifications

High Level
Implementation

Simulation

No

4sYes

Parameters
for Design

RTL designing

Figure 3.17 The design flow for high level simulation-

50

Chapter 3 Max-Log-AMP based Turbo Decoder flarthvare Architecture

Parameters

Yes

RTL coding
Verilog HDL

Data 	I 	I RTL simulation

Results

Yes

Synthesis
SDF, netlists

No
Results

Yes

G-level Simulation
SAl F

ults- es

Power Evaluation

Physical Synthesis
SDF, netlists]

Post-Layout
Simulation

No
Results 	

No

Yes

Power Evaluation

Figure 3.18 The design flow for the turbo decoder hardware implementation.

RE

Chapter 3 Max-Log-AMP based Turbo Decoder Hardware Architecture

3.4.2 Hardware Test Environment

A test system for the MLMAP turbo decoder hardware functional verification has been built

using MatiahTM and Verilog HDL. Figure 3.19 illustrates the test system for the verification.

The data fed into the testbench for hardware verification is generated in Matlab TM, as used in

the high-level simulation described in Section 3.4. The source bits generated at random are

encoded, and then the symbol data transmitted over the AWGN channel is converted into the

fixed-point representation, so that it can be provided to the testbench. At the same time, the

interleaver and deinterleaver addresses generated by the interleaver and deinterleaver address

generators (IAG/DAG) are also sent to memory in the testbench. The turbo encoders for

constraint lengths K = 3, 4 and 5 described in Chapter 2 are used, and the parameters for the

data generation are the same as used in Section 3.4.

The testbench for the MLMAP turbo decoder hardware is designed using Verilog l-IDL. It

incorporates the memory blocks for the interleaver and deinterleaver with the input data. The

sequences for the turbo decoding process and the number of iterations are controlled and

generated by the testbench, which can be used not only for the RTL-level simulation, but

also the gate-level simulation.

Testbench
RTL/Gate-Level

I nterieaver/
Deinterleaver

Turbo
Decoder

Figure 3.19 The test system for the MLMAP turbo decoder architecture.

52

Chapter 3 Max-Log-IVL4P based Turbo Decoder Hardware Architecture

3.4.3 Evaluating Power

The sources of power consumption in CMOS circuits are switching, short-circuit and leakage

powers [140-141]. The switching power is the power consumed in charging and discharging

the load capacitance; it accounts for most of the total power consumption in the circuits. The

switching power, Pr ', can be represented as follows:

Ivw = aS)V C/OOdVdf 	 (3.4)

where V&j is the supply voltagc;f is the clock frequency; Cl,,,, , is the load capacitance of the

Pte; and a., is the switching activity factor, which is defined as the average number of gate

transitions (I -> 0 or 0 -> I).

3.4.4 Post-Synthesis Results

As shown in the design flow in Figures 3.17 and 3.18, the MLMAP turbo decoders for

constraint lengths K = 3, 4 and 5 were designed at RTL level using Verilog HDL, after

completing the high-level simulations discussed in the previous section. The correct

functionality of the Verilog code at RTL level was tested with Cadence Verilog-XL TM , with

the testhench shown in Figure 3.19. Then, the turbo decoder was synthesised using the UMC

0.1 Stim standard CMOS library with Synopsys DesignCompiler TM to obtain gate-level

netlists. These gate-level netlists were simulated with Cadence Verilog-XL Th1 , using the

timing data produced by the synthesis. During the gate-level simulation, the switching

activities of all the circuit nets of the MLMAP turbo decoder hardware were captured to be

used for the power consumption using Synopsys PowerComplier TM. These processes were

carried out at a clock frequency of 50 MHz.

Figures 3.20 (a) and (b) illustrate the total and breakdown area and power results of the

MLMAP turbo decoders, respectively, for the constraint lengths K = 3, 4 and 5. In the graphs,

the primary and secondary y axes show results for individual components and the whole

design, respectively. As can be seen, the increase in total area and power is not linear with

53

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

1.4 - BMU 	SMCU = LCU
	 MWO

1.2 	
MEM 	Total 	

1.2

0.8
	

Co

0.8
0.6

CO

0.4 	 0.4 H

0.2

0
	

0

K3 	 K4 	 K5

Schemes

40
— BM1J =SNICU=LCU

MRM -U--Total
30

20

0

10
	

JT
K3 	 K4 	 KS

Schemes

Figures 3.20 (a) Area and (b) power simulation results of the
MLMAP turbo decoders for K = 1, 4 and 5,

the increase of constraint length, K. This could be explained with the exponential increase of

the number of states given by 21.

The area results show that MEM occupied the most area with 80%, 74% and 64% for K = 3,

4 and 5, respectively. This is followed by SMCU, LCU. and BMU. On the other hand, the

power results show different aspects than the area results. The power consumed by MEM is

equal to or less than the total power of SMCU, LCU, and BMU for K3, 4, and 5. As K

70

60

50

40

30

20

10

0

54

Chapter 3 Max-Log-AMP based Turbo Decoder Hardware Architecture

Table 3.2 The MLMAP turbo decoder hardware performance results for constraint lengths
K = 3, 4 and 5. The power consumption results are evaluated at a clock frequency of

50M Hz.

K3 K4 KS

Area
(Mill

Power
(mVV)

Area 	1
(mm2)

Power
1.W)

Area
(mm2)

Power
(mW)

BMU 0,014 1.21 0.014 1.21 0.014 1.20

SMCU 0.071 5.9 0.137 10.54 0.268 22.46

LCU 0.049 4.32 0.083 7.35 0.180 15.65

MEM 0.553 12.51 0.698 15.66 0.988 22.99

Total 0.689 23.95 0.934 34.781.452 62.32

increases, the power of SMCU and LCU starts to dominate the overall power consumption,

due to increased computational complexity.

The critical path delay of each MLMAP turbo decoder architecture was investigated, and the

results are depicted in Table 3.3. In all cases, the critical path delay was in the ACSN unit,

whose structure does not change with different constraint lengths. Although the critical path

delay for K = 3 is the shortest, there is no significant difference among the results. It can be

assumed that the differences were led by the different input and output interfaces of the

SMCLJ for the different constraint lengths.

Table 3.3 The MLMAP-based turbo decoder critical path delay for
constraint lengths K = 3, 4 and 5.

K=3 K=4 K=5

Critical path delay 4.49nsec 5.02nsec 4.94nsec

55

RaMp 	L° clorlp 	P1 	 gndc fimm 	Th.g

L: 	 ctit

Toob

. 	. 	 . 	
. 	.

Liu

k.

.-) 	 -

'n

-

Vleu

—, 	I I

I 	 -

I 	F0W 	0110 III

Denlgn l 	Ranted

I
- 	. 	. VS

• Module 	j- r
Olock Box U 	I

Vance 	jr 	r

(blOc 	jr 	I

Obstnjct I Region 	I-
OcreOn 	jE

• •.=- Instance 	jI 	 r

Net 	• 	j

- 	• 	. 	-• 	:• SNot 	_•j
P61 	j

- Ruler 	I
VcongesiU•

IlCcngeot U.
Teul 	• jE

-

Chapter 3 May-Log-MAP based Turbo Decoder Hardware Architecture

W PV#Cldp PwMm &wOm 	 90eK BeeW Ie.e 31 ftWW VWY T0* 	
Im

V C.) 	0 	 C, EM D 	 K51 1 (7j 	 Oen 	Poured

VS

Module j

DIeM Dec

Fence 	I
(SuEde 	I .
ObIrucl It
000lon 	_.i
Screen J

j - Instance 	r
Net 	1; . .j
SNeI

P61

Rolr 	JF

VCon9esl Ui
ICone5t • . 4

Teot j

(a)

1 	209260. 	575241)

(b)

Figures 3.21 (a) Floor planning and (b) placed and routed results of the MLMAP turbo
decoder architecture for K = 4.

56

Chapter 3 Max-Log-MAP based Turbo Decoder Hardware Architecture

3.4.5 Post Layout Results

The gate-level netlists and timing information obtained from the synthesis were used to

generate the layout of the MLMAP turbo decoder by using Cadence Soc EncounterTM.

Figures 3.21 (a) and (b) show the floor planning and place routing results, respectively, for

K = 4. Table 3.4 shows performance results comparing with stale-of-art turbo decoder

implementations. In the table, the area results are core area without including an area of pads

for inputs and outputs. The total number of gates for each turbo decoder is equivalent to the

total number of NAND gates. Each throughput of the turbo decoders is estimated after 8

numbers of iterations. The turbo decoder hardware performance in terms BER has been

justified by comparing its outputs with the high level simulation results. It also shows that

the power consumption results of the turbo decoders are similar to the results shown in Table

3.2.

Table 3.4 Performance comparison with state-of-art turbo decoder implementations.

This work
[11] [13] [12]

K=3 K=4 K=5

Area (rnn; 2_)7 0.69 0.93 1.45 1.5 14.5 10

No. olgates 59K 80K 124K 150K 410K -

Max. Speed 200MHz 180MHz 180MHz 285MHz 145MHz 352MHz

Throughput (Mb/s) 25 22.5 22.5 - 24 352

Technology 0.18tim 0.18iim 0.18ijm 0.18im 0.1811111 0.13tim

Note - - - K=3
K=4

Radix-4
K=5

57

Chapter 3 Max-Log-AMP based Turbo Decoder Hardware Architecture

3.5 Summary
This chapter presented MLMAP-based turbo decoder hardware architectures with the SW

method for K = 3. 4 and 5. In the architecture, the SW method was realised by using LIFO

and FIFO blocks. A detailed structure of the decoding process units incorporated in the

architecture was described and the implementation method and the functionality for the

decoding process were explained. In the simulation results, the turbo decoder performance in

terms of BER was examined in various ways to justify the algorithms and other factors that

affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based

turbo decoders have been compared in terms of BER performance in order to observe the

performance differences between the two turbo decoder implementations. After completing

high level simulations, the MLMAP turbo decoder architectures have been designed using

Verilog HDL and then synthesised using UMC 0.18iim standard CMOS technology. The

area, power, and critical path delay results of the MLMAP turbo decoder architecture for

different constraint lengths were estimated, and the total number of gates was obtained after

generating the layout. In this thesis, the hardware results obtained in this chapter are

considered consistent with those of a conventional MLMAP turbo decoder, and so the results

are compared with those of proposed turbo decoders described in later chapters.

58

Chapter 4

High Performance Max-Log-MAP
Turbo Decoder Architecture

4.1 Introduction
This chapter presents high performance MLMAP based turbo decoder architecture in terms

of low power, efficient area and high speed for high throughput. In MLMAP turbo decoder

VLSI implementations, power and area are always one of the most important issues, if they

target portable and mobile equipment operated by a battery. Many works have tried to

achieve low power and area efficient turbo decoder implementations 1101-105, 107].

Moreover, another important issue in wireless communication systems is throughput to

support a variety of services requiring high data rate, such as multi-media broadcasting. A

high throughput turbo decoder can be realized by the turbo decoders in a parallel scheme

[106, 142-147]. However, parallel implementations might lead to large area and power

overheads, and would not be suitable to be employed by portable and mobile systems.

Without these overheads, one of the ways to achieve high throughput is to implement a high

speed turbo decoder. The literature, however, considers high speed turbo decoder

implementations less than parallel implementations.

This chapter presents a novel method for achieving high speed turbo decoder

implementations to provide high throughput data rate without significant overheads of

hardware costs. The novel method described in this chapter is to normalize branch metrics

before using in the state metric computation process. It reduces a critical path delay of a

turbo decoder in a unit for computing the state metrics. That results in increasing the

maximum speed of a turbo decoder. Furthermore, area and power for the high throughput

turbo decoder are improved by reducing memory blocks and implementing efficient

computational logics. A detailed structure and implementation method for improving the

59

Chapter 4 High Per/brmance Max-Log-MAP Turbo Decoder Architecture

performance is described. The hardware performance results are compared to the

conventional turbo decoder results given in the previous chapter.

This chapter is organized as follows. Section 4.2 describes the method to increase the

MLMAP turbo decoder speed for high throughput. A detailed implementation method and

structure for that are shown in Section 4.3. The architecture for low power and efficient area

is described in Section 4.4. The turbo decoder simulation results are given in Section 4.5.

Section 4.6 summarizes the chapter.

4.2 High Speed Turbo Decoder Implementation
Method

4.2.1 Critical Path Delay in Turbo Decoder

As already stated in the previous chapter, it is well know that the process of computing the

state metrics is the bottleneck for achieving high speed turbo decoder implementation. In

addition, the state metrics grow dramatically and need to be represented by a large

wordlength to prevent overflow. The same problem also exists with more traditional

decoders, such as a Viterbi decoder. Several techniques for preventing the overflow in a

Viterbi decoder were suggested in [106]. These techniques not only reduce the critical path

delay, but also conserve hardware resources. A detailed data path for a Viterbi decoder has

been studied to reduce the critical path delay in add-compare-select (ACS) units [148]. These

methods could be applied to turbo decoder implementations as well. However, the critical

path delay in turbo decoders is much longer than in Viterbi decoders because MAP based

turbo decoders use soft-input information and require the computation of all state metrics for

forward and backward processes. One popular technique to address the overflow problem is

to normalize the state metrics by subtracting a constant value from all state metrics when one

of the computed state metrics is larger than a threshold value [1 05, 107]. This technique was

also described for Viterbi decoder implementations in [106]. The state metric normalization

process has been applied to the conventional turbo decoder presented in the previous chapter

60

Chapter 4 High Per/brn?ance Max-Log-MAP Turbo Decoder Architecture

for implementing add-compare-select-normalization (ACSN). In this chapter another method

will be introduced for achieving high throughput turbo decoder implementations.

4.2.2 Branch Metric Normalization

A branch metric normalization (BMN) method is proposed to address the inherent critical

path delay problem. The BMN method aims to increase the MI-MAP turbo decoder

maximum speed by reducing the critical path delay. The method removes the state metric

normalisation process of ACSN, so only ACS is used for turbo decoder implementations.

This method can be applied not only to turbo decoders, but also Viterbi decoders, if the state

metric computatioll process incorporates the state metric normalisation process. The rule of

BMN is summarized as follows

For n=O...N
if all state metrics > Vd

77(k) = 	(k) - max [y(k), ... , 1(k) 1 	 (4.1)

else if all state metrics < V <

i7(k) = 	- mm ii r0(k)......,7(k) I
else

= y(k)

where n denotes the total number of branch metrics, (k) is the branch metric at time k, ,1 17 (k)

is the normalized branch metric, and V (1 is a constant value. The state metrics are used to

determine whether the branch metrics need to be normalized by the maximum or minimum

branch metric. If all state metrics are larger than V 1 , the maximum branch metric is used for

the normalization. However, if all state metrics are less than Vd, then the minimum branch

metric is used for the normalization. If these conditions are not satisfied, the branch metrics

are passed on to SMCIJ without normalization. From these conditions, we can see that the

normalized branch metrics are either equal to or less than zero if all state metrics are larger

than Vd. Similarly, normalized branch metrics are either equal to or greater than zero if all

state metrics are less than V.

ff

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

4.2.3 Variation of State Metrics with BMN

Employing the BMN method does not affect BER performance of MLMAP turbo decoders.

During the simulations, all of the forward and backward state metrics have been observed in

order to investigate their variation. The BMN process relies on a constant value of Vd to

determine when the branch metrics need to be normalized. The simulations were repeated for

2.E+07

I.E-I-07

rj
9.E+06

F-

0
C-)
0

0
z

6.E+06

3.F+06

fl

Vd200 min-64

	 max 383

---A44~t4

- 	

min-64

Vd= tOO

- V,1=0

inin -64 	 max208

-/
min= -] 13 	 niax86

Vd=-100 	J
min -2 1 	 maxO

Yd 20 L

-300 	-200 	-100 	0 	100 	200 	300 	400 	500

State Metric

Figure 4.1 The state metric variations of the MLMAP turbo decoder with the BMN
method for different Vd values when the initial state metrics are set to -64.

Chapter 4 I-Jig/i Peiibrmance Max-Log-M4P Turbo Decoder Architecture

2.E+07

1.E+07

L 9.E F06

0
U
0

0

6.E106

3.E+06

a F? I nfl

	

min — O 	 max - 402

V1=200

	

minO 	 x317

Vd=lOO

=0 	

min-12 	 max= 192

Vd

inin-1 14 	 max=93

Vd=-100 	
- - 	 - -

min-20$ 	 niax64

Vd=-200 	
11

U. F?'UU

-300 	-200 	-100 	0 	100 	200 	300 	400 	500

State Metrcs

Figure 4.2 The state metric variations of the MI-MAP turbo decoder with the BMN
method for different Vd values when the initial state metrics are set to 0.

different Vd ranging from -200 to 200 with a step size of 100. The simulation results are

shown in Figures 4.1 and 4.2, where horizontal and vertical axes represent the state metrics

and the number of times each state metric encountered, respectively. To find the effect of the

minimum state metrics, different initial minimum state metrics of -64 and 0 were used to

obtain the results of Figures 4.1 and 4.2, respectively. The minimum and maximum state

metrics for each V 1 can also be seen in these figures. The minimum and maximum state

0,)

Chapter 4 High Perfbrrnance Max-Log-MAP Turbo Decoder Architecture

metrics change with Vd and the main distribution is shifted to the right with increases in Vd.

The simulation results of Figure 4.1 also show that the minimum state metric values for V (1 =

0, 100 and 200 are the same. For practical implementations, the initial state metrics for the

forward and backward processes are a finite value. Thus, the minimum state metric value, -

64, for Vd = 0. 100 and 200 can be used as the initial state metric, which means that if V (1 is

larger than the initial state metric value, the minimum state metric value is the same as the

initial value. The simulation results show that Vd = -100 leads to a more balanced

distribution of the state metrics where the minimum and maximum state metrics are -113 and

86, respectively. The results of Figure 4.2 are similar to Figure 4.1. However, due to the

initial minimum state metrics of 0, the same minimum state metrics of 0 are observed when

Vd is 100 and 200. As in Figure 4.1, V-100 leads to a more balanced distribution of the

state metrics.

It is interesting to note that the results shown in Figures 4.1 and 4.2 coincide with the results

in [1 5, 105], which suggested 8-bits for the state metrics if 4-bits were used for input

symbols. Therefore, we can see that the BMN method drives the state metrics to the level

required for the decoding process. However, in practical implementations, 9-bits are used to

represent the state metrics in the ACSN unit to prevent overflows [105]. The same

wordlength was used to implement ACS with BMN in this work.

4.3 High Speed Turbo Decoder Hardware
Architecture

4.3.1 High Speed Turbo Soft-input Soft-Output Decoder
Architecture

The high speed MLMAP turbo SISO decoder (HSMLTBD) architecture improves the

MLMAP turbo decoder (MLTBD) architecture presented in the previous chapter. The

HSMLTBD architecture uses the BMN method described in the previous section to reduce

the critical path delay in order to achieve high speed turbo decoder implementation for high

throughput. Figure 4.3 illustrates the HSMLTBD architecture. It is configured similarly to

Chapier 4 High Peiforniance Max-Log-MAP Turbo Decoder Architecture

CNT1 I 	 I CNT2

DMCU

input

	

Soft _ BMuBMN M0U 	H
4Mjl LCU

____ BMCU
DB

FIFOO F - H BMU 	BMNU 	SMCU

TFDiF 	DL

:LIF:0:1]-- FBMUBMNUSMGU1
Soft

FMCU

Figure 4.3 The HSMLTBD architecture incorporating the BMNU.

the MLTBD architecture. One difference is the use of a branch metric normalization unit

(BMNU) between BMU and SMCU in each MCU for the forward (FMCU), backward

(BMCU), and dummy-backward (DMCU) processes. In the architecture, the branch metrics

generated by BMU are passed to SMCU after they are normalized by BMNU. Then, the

normalized branch metrics and the state metrics are sent to SMCU, which consists of a

parallel ACS without the state metric normalization process. Thus, SMCU in the HSMLTBD

architecture is much more simplified than the SMCU incorporated in the MLTBD

architecture. This results in a reduction of the SMCU critical path delay, which can increase

the turbo decoder maximum speed.

As in the previous chapter, the other modules are implemented the same way as in the

MLTBD implementation. However, due to the reduction of the critical path delay of SMCU,

path delays of other modules need to be reduced as well. Thus, the modules implement more

65

Chapter 4 High Per/brinance Max-Log-MAP Turbo Decoder Architecture

pipelining stages. The following sections describe in detail the structure and implementation

method of each module.

4.3.2 Metric Computation Unit with Branch Metric Normalization
Unit

Figure 4.4 illustrates the structure of the metric computation unit (MCU). The MCU for the

forward and backward processes consists of a BMU for computing the branch metrics, a

BMNU for normalizing the branch metrics and an SMCU consisting of a parallel ACS. The

soft-input data is first processed by BMU to provide the two branch metrics (BM) needed by

BMNU. Then, BMNU normalizes these branch metrics based on the state metrics (SM)

provided by SMCU. Finally, the four normalized branch metrics (NBM) are input to SMCU

with the Recursive SM to compute the new state metrics.

The BMU incorporated in the MCU uses the BMU illustrated in Figure 3.5. On the other

hand, SMCU consists of a parallel ACS without the state metric normalization process. As

an example, Figure 4.5 illustrates the ACS structure for calculating the forward state metric

of state 0 for constraint length K=4. The ACS performs add (A) and compare select (CS)

processes to calculate the next state metrics. Two NBMs, i700(k) and q00(k), and two forward

state metrics, (k) and a1 (k), are the ACS inputs for computing the state metric, (k+l).

IVICU
Recursive SM

Soft
it 	[BMU 	BH BMNU 	

NBMH SMCU

	 SM

Figure 4.4 The metric computation structure.

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Therefore, the ACS can generate the state metric with the same wordlength used in ACSN

Without the need for the state metric normalization process, while still avoiding overflow

problems. The ACS critical path delay can be represented as follows:

dACS 2Xta +t 111 	 (4.2)

where t is the delay of the adder, and t, is the MUX's delay. As can be seen, this delay is

less than the delay of ACSN (dAC 5N) derived in the previous chapter (see equation (3.1)).

Thus, employing the BMNU can simplify SMCU implementation while achieving high

speed turbo decoder implementations.

a0(k) 	7700(k) 	a1 (k) 	ii (k)

9 	8 	9 	8

+ 	 +

ACS

+

Mux
	1(MSB)

9

a0(k±l)

Figure 4.5 The add-compare-select structure without the state metric normalization process.

67

Chapter -i High Performance Max-Log-MAP Turbo Decoder Architecture

4.3.2.1 Branch Metric Norrnalizatioii Unit

Figure 4.6 illustrates the BMNU structure employed in the l-ISMLTBD architecture. The

BMNU inputs are the two branch metrics provided by BMU. These branch metrics are first

converted into absolute values (ABS). The absolute values are compared to select the

maximum of them, max[(k)], using the compare-select (CS) unit as used in ACS and ACSN.

Then, the sign of the maximum branch metric is determined by the state metric condition

(STC) input to the sign conversion unit (SCU). The sequence of STC is generated by using

state metrics of ACS, and is described in next sub section how it is obtained from them.

711 (k) 	 21 0(k)

ABS 	 ABS

BMNU

+- Hs_

1(M8) mux

SCU 	 STC

±max[(k)]
or zero

il 0(k) 	, ,(k) 	 i7 10(k)

Figure 4.6 The branch metric normalization unit structure.

1300

Chapter 4 High Performance Max-Log-M4P Turbo Decoder Architecture

After determining the sign of max[<k)], the output of the SCU is used to normalize the

branch metrics by using the four adders. The results of the four adders can be categorized as

all four branch metrics are i) larger than or equal to zero, ii) less than or equal to zero, iii) the

same as the original branch metrics, which means that the branch metrics did not need to be

normalized.

In the BMNU. the data path delay can be represented as follows:

dBMNU 3Xla + t m+ t 	 (4.3)

where i,, is the delay of the adder, t, is the delay of the MUX; and Iscu is the delay of the

SCU, which could be assumed to be same as t. Clearly, dtlNu is larger than dAcs delay. In

this case, the turbo decoder critical path delay is in BMNU. In order to reduce the critical

path delay of BMNU, it can be pipelined as shown in Figure 4.6.

When the conventional MCU and MCU with BMN methods are compared for the number of

adders required to compute branch and state metrics, BMN requires fewer adders as the

constraint length K increases. Table 4.1 summarizes the comparisons for constraint lengths

from K=3 to 5. As can be seen, the number of adders for BMU and BMNU is not affected by

the constraint length. Although the BMN method needs seven additional adders for BMNU,

it uses a less complex SMCU, which leads to a decrease in the overall number of adders as K

increases. In addition to the number of adders, BMNU needs two multiplexors for the

normalization process.

Table 4.1 Comparison of the number of adders for conventional MCU and MCU with
B MN.

Conventional MCU MCU with BMN

K=3 K=4 K=5 K=3 K=4 K=5

BMU 4 4 4 4 4 4

BMNU - - - 7 7 7

SMCU 16 32 64 12 24 48

Total 20 36 68 23 1 	35 59

69

Chapter 4 High Perjhrniance Max-Log-AMP Turbo Decoder Architecture

4.3.2.2 An Efficient BMNU

This section describes an efficient BMNU implementation method. A conventional method

for obtaining the STC sequence may use the same state number of adders, 2, as a

comparator for the determination described in (4.1). However, the sequence can be generated

by simple circuits without using the adders. The previous section showed that Vd=-1 00 led to

well balanced state metrics. The distribution of the state metrics for Vd=-1 28 was also

investigated. As already shown in Figures 4.1 and 4.2, although the distribution range for

Vd=- I 28 was slightly shifted to the left, the wordlength of 9-bits was sufficient to represent

the state metrics.

STCO 	STC1 	STC2 	STC3

MSB of SM03 	 2nd MSB of SM03

Figure 4.7 Circuit for generating STC signals for BMNU with K3.

Figure 4.7 illustrates a simple circuits for generating four STC sequences for constraint

length K=3. The inputs of the AND and OR gates are MSB and the second MSB of the state

metrics generated by SMCU illustrated in Figure 4.4. Using these STC signals in the figure,

the BMN rule shown in (4.1) can be written as follows

For nO ... N

if STCO = 1 0' or {STC1, STC21 = '11' 	 (4.4)

= 2(k) - Inax[)(k), ...,
else if {STC2,STC3} = '10'

71,(k) = ',(k) - 111in[)(k).....y, 7 (k)]

70

Chapter 4 High Perform once Max-Log-MAP Turbo Decoder Architecture

else
i1(k) = v,(k)

Ilere, the first and second conditions imply that all stale metrics are larger or less than Vd=-

128. if these conditions are not satisfied, the branch metrics are passed to the ACS units

Without the normalization process.

4.3.3 Log-Likelihood Ratio Computation unit

The basic LCU structure used in the MLMAP turbo decoder architecture is not affected by

employing the BMNU. However, due to the reduced ACS critical path delay, the LCU might

be implemented with more pipelined stages than were used before in the MLMAP turbo

a 	A 	ce , it 13 /3, 	a, 	/3 	a, /3, 	a, 	/3, 	a, /3,

9 9 9 9 9 9 9 9 	9 9 9 9 	9 9 9

+ + 7 	+ + 7 	+ + 7 	+ +r 	+ + 7 ,, 	+ +% 	+ + 7 	+ +%

8 8 8 8 8 8 8

8-
+ 	+ + 	+ + 	+ + + 	+ + + + 	+ + + +

- + 	- + 	-
CS cs Cs

MUX V MUX MUX

CS
+-

CS

MtJX

+ 	
- Cs

MUX

Figure 4.8 The structure oILLR computation unit with high level of'pipelining.

71

Chapter 4 High Performance Max-Log-JvL4P Turbo Decoder Architecture

decoder architecture to avoid a path delay longer than the critical path delay. This can be

realised by inserting pipeline registers. Figure 4.8 illustrates an LCU structure for calculating

L 111 for constraint length K=4. As can be seen, the LCU structure is implemented in 3

pipelined stages to reduce its delay to less than the ACS delay. The additional pipelining

stages could increase area and power due to the inserted registers. To address this problem,

the next section describes a more efficient LCU implementation method.

4.4 Low Power and Area Efficient Max-Log MAP
Turbo Decoder Hardware Architecture

4.4.1 Low Power and Efficient Max-Log MAP Turbo Soft-Input
Soft-Output Decoder Architecture

This section presents a low power and area efficient MLTBD (LAMLTBD) architecture

incorporating the BMNU. The previous chapter showed that the memory blocks had the

largest area in the MLTBD implementations. The LAMLTBD architecture improves the area

usage and power consumption by reducing the size of the memory required to control the

input data for the SW method and to delay the soft-input data passed to the LCU. Moreover,

the LCU is more efficiently implemented by exploiting retiming and a four-input compare

select (4-CS) unit to reduce the data path and hardware resources.

Figure 4.9 illustrates the LAMLTBD architecture. As the figure shows, the data schedule

unit (DSU) of the MLTBD illustrated in the previous chapter is simplified by using only a

single FIFO block. The FIFO block is used to delay the soft-input data before fed into

BMCU, and its depth is the same as the window size, 40. To eliminate the LIFO blocks used

in the DSU of the MLTBD, a triple read and single write memory (TRMEM) block is

employed to store soft-input data. Once the window size is determined, the data addresses

for SW method can be decided for performing the forward, backward, and dummy-backward

processes. Thus, following the SW method with the determined addresses, the three inputs,

Soft-input 0. 1 and 2," corresponding to each of TRMEM read ports can be controlled to

pass them to the LAMLTBD architecture. The soft-input data flow is illustrated in Figure

72

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

LT_ii 	 CNT2 	 -

1 DMCU

Soft input 0 	 BMU 	BMNU 	SMCU N
Soft input I

M

IFO 	 BMCU

BMU 	BMNU 	SMCU

MU

LOU

Soft input 	 Soft
output

FMCU

Figure 4.9 The LAMLTBD architecture with the reduced memory.

4. 10, sub-block by sub-block. While the reverse ordered "Sub-block 2" data are passed to

DMCU as "Soil-input 0" to calculate the dummy backward state metrics, the reverse and

right ordered "Sub-block 1" data are input to the FIFO for delaying and the FMCU for

computing the forward state metrics, respectively. The reverse ordered "Sub-block 1" data

are delayed in the FIFO block until the completion of the dummy backward state metric

computation process for the reverse ordered "Sub-block 2." When the dummy backward

state metric computation is completed, the backward state metrics and the delayed forward

state metrics in DF are passed to LCU to compute the LUR value, as illustrated in Figure 4.3.

The sub-block data addressing can be controlled by TRMEM without significant overhead in

area and power.

For further area savings, the memory for delaying the branch metrics passed to LCU is

replaced by an additional BMU. The DB in Figure 4.3 is used to delay the branch metrics

I.)

Chapter 4 High PerJrmance Max-Log-AMP Turbo Decoder Architecture

Sub-block 3 	1 Sub-block 2 	1 Soft-input 0
Reverse order 	

j
Reverse order

Sub-Frame 2 Sub-block 1 	1 Soft-input 1
Reverse order Reverse order

Sub-block 1 	1 Sub-block 2 Soft-input 2
Right order Right order

Time

Figure 4.10 The soft-input data stream input to the LAMLTBD architecture.

that are required by LCU to calculate LLR. The LAMLTBD architecture eliminates the DB.

Instead, the branch metrics for computing LLR are generated by an additional BMU (placed

before LCU in Figure 4.3) from the soft-input data delayed by the DS. The soft-input data is

also used for obtaining the extrinsic information by subtracting it from LLR. The added

BMU is the same as other BMIJs used in MCU. Thus, the replacement of DL with an

additional BMU contributes to further area savings.

4.4.2 An Efficient LCU implementation

The previous section showed that the BMN method can reduce the turbo decoder critical

path delay. However, this reduction may lead to high level of pipelining in LCU

implementations for making the LCU critical path delay shorter than the ACS critical path

delay. In general, high level of pipelining increases area and power due to an excessive use

of the registers incorporated. To address this problem, this section describes an

implementation method for reducing the number of pipelining stages in LCU for an efficient

implementation in terms of area and power.

Figure 4.11 illustrates the new LCU structure for constraint length K=4, whose output

sequence is the same as the LCU output illustrated in Figure 4.8. The new LCU is

implemented with retiming method and a four-input compare select unit (CS). In the LCU

74

Chapter 4 High Performance Max-Log-A'L.4P Turbo Decoder Architecture

ao 	B4 a 	A 	a, 	A a 	f1 	 40 as 	['2 	 a 	A a, 	/3

9 	9 	 9

+ 	+ 	+ 	+ 	 + 	+ 	+ 	+ 	 + 	+ 	+ 	+ 	 + 	+ 	+ 	+

Ti 	 Ti 	Ti1 	 T10 	/io 	 ho 	211 	 Ti i

8 	 8 	 88 	 8 	8 	 8

+ 	+1+ 	-•+ 	+ 	+ 	+:-- 	.-+- 	+ 	+ 	+1+

	

/ MUX 	CS 	 MUX 	CS 	/ MUX 	Cs 	/ MUX 	CS

10 	10 	10 	10

4-Input CS

411111

Figure 4. 1 I The efficient LLR computation unit structure.

structure shown in Figure 4.8, the first CS process is performed after completing the

additions of two state and one branch metrics. However, the new LCU performs the first CS

after finishing the addition of the forward and backward state metrics. The first CS and the

addition of the branch metric to the results of the addition of the two state metrics are

executed simultaneously. This is possible because the same branch metrics are added to the

first and second state metrics' addition results, as shown in Figure 4.10. Thus, in the new

LCU, the first CS compares two state metric addition results, and then selects one of them

after adding the branch metric during the comparison process. The four selected values are

then 1n1)Ut to a four-input CS to determine the maximum among them which corresponds to

Figure 4.12 illustrates the four-input CS structure that consists of six adders for the

comparison process, and a unit for selecting the maximum input. it is designed to minimise

its critical path delay. As can be seen, the 4-CS delay is given by the delay of an adder and

the four-input selector. The four-input selector is processed as follows

75

Chapter 4 High Pertbrrnance Max-Log-JVL4P Turbo Decoder Architecture

If {S0,S1,S2} = 3'bDOO 	 (4.5)

Liri = A
else if {so,sl,s2} = 3'100

L j, j 	B
else if {3 0 ,s 3 ,s 4 } = 3' 110

Liri = C
else

Liri = D

While the UCU in Figure 4.8 needs four pipelined stages, the new LCU is realized with only

two pipelined stages. However, the number of adders in the new LCU is increased by

employing the 4-CS. The next section shows area and power comparison results of the LCU

I in p1 ementat i oils.

A 	B 	C 	D

10

max (A, B, C, D)

Figure 4.12 The four-input compare select unit structure.

76

Chapter 4 High Per/rnwnce Max-Log-MAP Turbo Decoder Architecture

4.5 Results
The HSMLTBD and LAMLTBD architectures were designed at RTL using Verilog HDL.

These designs were verified by the same test systems used in the previous chapter. After

completing the hardware verification, they were synthesized using the 0.1 8tim UMC

standard CMOS library with Synopsys Des ignCompiler m1 . The netlists were simulated using

Cadence Verilog-XLTM with the timing constraints obtained from the synthesis to generate

the switching activities of all the circuit nets. Then, the power consumption of both

architectures was evaluated using Synopsys PowerCompiIer''. A clock frequency of 50MHz

was used in the hardware performance evaluation process.

Table 4.2 List of schemes for hardware performance evaluation.

List of Schemes Descriptions

CON Conventional

HSTD HSMLTBD

LATD1 LAMLTBD with efficient LCIJ

LATD2 LAMLTBD with efficient LCU and BMNU

After investigating various turbo decoder schemes in order to decide on an optimized

configuration for the turbo decoder hardware implementation, three different schemes for

constraint lengths from K=3 to K5 have been implemented to evaluate their hardware

performance in terms of area, power and critical path delay for maximum speed. These

schemes are listed in Table 4.2. CON, called conventional, is the MLTBD implemented in

the previous chapter. HSTD is the HSMLTBD illustrated in Figure 4.3 for high speed turbo

decoder implementations. LATDI and LATD2 are based on the LAMLTBD architecture

illustrated in Figure 4.9 for low power and area efficient turbo decoder implementations. The

difference between LATDI and LATD2 is in their BMNU implementations. The circuit

illustrated in Figure 4.7 for BMNU has been incorporated in LATD2, while LATDI has

been implemented with a conventional BMNU shown in Figure 4.6.

77

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

Figures 4.13-15 and Tables 4.3-8 show the hardware performance evaluation results for K=3,

4 and 5, respectively. The overall area and power of HSTD was increased by around 7%, 7%

and 5% and 10%, 8% and 0% for each constraint length, respectively, when compared to

CON. On the other hand, LATDI and LATD2 can save up to 30% in area and 19% in power

as compared to CON. These results show that the BMNU leads to an increase in hardware

costs in HSTD. Despite including the BMNU, eliminating the memory blocks for the SW

EJBMU =BMNUEJSMCU

E53LC(i 	MEM —*—Total

CON 	 HSTD 	 LATD1 	 LATD2

Schemes

BMU = BMNU = SMCU

	

.r LCU 	MEM -*-- Total

JuiLH_LIifI_ri_ni.
CON 	 I 511) 	 LAI[)I 	 LATI)2

Schemes

Figure 4.13 (a) Area and (b) power comparisons for K=3.

0.8

0.6

0.4

0.2

0

16

12

E

0

4

0

0.8

IQR

0.4

0
H

0.2

i 30

20

a.
-a

10

'0

78

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

method and the efficient LCU and BMNU implementations can save the area and power of

LATDI and LATD2.

Figures 4.13 (a) and (b) illustrate the area and power results for K=3, respectively. In these

tigures, the primary and secondary Y-axes indicate the results of each component and total

area or power, respectively. These results are summarized in Tables 4.3 and 4.4. The area

Table 4.3 List of area results for K=3 turbo decoders.

K=3

CON HSTD LATDI LATD2

Area
(mtn)

Save
o (/o)

Area
2 (mm
)

Save
o (_/o)

Area
(11,1112)

Save
 o (/o)

Area
(Mm)

Save
(%)

BMU 0.014 - 0.014 0 0.019 -33.13 0.019 -33.13

BMNU - - - 0.051 0.051 - 0.033 -

SMCU 0.071 - 0.060 E15.96 0.060 15.96 0.060 15.96

LCU 0.049 - 0.053 0,048 1.70 0.048 1.70

MEM 0.553 - 0.558 -0.94 0.314 43.18 0.314 43.18

Total 0.689 - 0.738 -7.14 0.493 28.33 0.475 30.95

Table 4.4 List of power results for K=3 turbo decoders.

K=3

CON HSTD LATDI LATD2

Power
(III W)

Save
(%)

Power
(mw)

Save
(%)

Power
(mW)

Save
(%)

Power
(mW)

Save
(%)

BMU 1.21 - 1.22 -0.66 1.66 -37.48 1.66 -37.48

BMNU - - 3.44 - 3.48 - 2.56 -

SMCU 5.9 - 4.33 26.59 4.46 24.27 4.41 25.18

LCU 4.32 - 4.10 2.97 3.86 8.76 3.45 18.51

MEM 12.51 - 13.42 -6.45 7.59 39.79 7.54 40.18

Total 23.95 - 26.52 -10.74 21.07 12.01 19.63 18.04

79

Chapter 4 High Performance Max-Log-AMP Turbo Decoder Arch/lecture

and power increase of BMN in LATDI and LATD2 is due to the additional BMU needed to

replace the memory blocks for generating the branch metrics used to compute LLR in LCU.

Clearly, the SMCU of FISTD, LATDI and LATD2 is reduced by up to 16% in area and 26%

in power by eliminating the state metric normalization process. The efficient LCU

incorporated in LATD1 and LATD2 saves area and power. A significant change in area and

LBMU EJBMNU ESMCU

(18
	 ' LCU M MEM —ill-- Total

1.2

06

0.8

- 04
0 6

	

0.2 	 04

	

0
	

0.2 H

	

CON 	 1-ISTI) 	 LATDI 	LATD2

Schemes

25
EIIIIBMU EJBMNU =SMCU

40

20
	 LC U — MEM —NE— Total

30

15
I)

0
20 -

10
0

I-

0

	 I 	0

10

	

CON 	 I 1511.) 	 I All) I 	 LATD2

Schemes

Figure 4.14 (a) Area and (b) power comparisons for K=4

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

power is indeed seen in the MEM of LATD1 and LATD2. The reduced memory needed to

control data input following the SW method saves the total area and power dominantly.

The area and power results for 1K=4 are illustrated in Figures 4.14 (a) and (b), and are

summarized in Tables 4.5 and 4.6. The BMU results are almost the same as the results of

K=3. In the results, the LCU of HSTD is increased by 23% in area, which is due to the

Table 4.5 List of area results for K=4 turbo decoders.

K=4

CON HSTD LATDI LATD2

Area (111111
2)

Save
(%)

Area
(mm 2)

Save
(%)

Area
(m111 2)

Save
(%)

Area
(11Im 2)

Save
(%)

BM(J 0.014 - 0.014 0 0.019 -33.13 0.019 -33.13

BMNU - - 0.072 - 0.072 - 0.035 -

SMCU 0.137 - 0.110 19.56 0.110 19.52 0.110 19.52

LCU 0.083 - 0.102 -23.03 0.089 -7.03 0.089 -7.03

MEM 0.698 - 0.703 -0.74 0.459 34.22 0.459 34.22

Total 0.934 - 1.004 -7.51 0.751 19.52 0.714 23.47

Table 4.6 List of power results for K=4 turbo decoders.

K=4

CON HSTD LATDI LATD2

Power
(mW)

Save
(%)

Power
On W)

Save
(%)

Power
(m W)

Save
(%)

Power
(rnW)

Save
(%)

BMU 1.21 - 1,21 0.08 1.66 -36.78 1.66 -36.61

BMNU - - 4.36 - 4.51 - 2.77 -

SMCU 10.54 - 7.77 26.27 8.1 23.17 8.30 21.26

LCU 7.35 - 7.74 -5.29 6.94 5.58 6.72 8.52

MEM 15.66 - 16.73 -6.79 10.63 32.14 10.22 34.76

Total 34.78 - 37.83 -8.76 31.85 8.42 29.68 14.64

81

Chapter 4, High Performance Max-Log-iVL4P Turbo Decoder Architecture

highly pipelined implementation, compared to CON. On the other hand, the efficient LCU

area of LATDI and LATD2 is slightly increased compared to CON. Moreover, the efficient

LCU can save 8% in power despite the area increase. Similar to the K=3 results, it is clear

13MU EJBMNVLJSMCU -

LCU — MEM —*— Total

	

CON 	 HSTD 	 LATDI 	 LATD2

Schemes

L] BMLJ E:iI] BMNU = SMCU
-

Em I.CU — MEM --- Total

	

CON 	 HSTD 	 LATDI 	 LATD2

Schemes

Figure 4.15 (a) Area and (b) power comparisons for K=5.

1.4

1.2

0.8

0.6

0.4

0.2

0

35

30

25

20

0
15

10

S

0

1.6

1.2

0.8

0
H

0.4

80

70

60

50
1)

40

30 '
0
H

20

10

0

82

Chaj,ter 4 High Performance Max-Log-WP Turbo Decoder Architecture

from the results in Tables 4.5 and 4.6 that area and power savings of MEM dominantly

contribute to reduce the total area and power.

Finally, Figures 4.15 (a) and (b) and Tables 4.7 and 4.8 illustrate and summarize the area and

power results of K=5 turbo decoder hardware implementations. Inserting BMNU saves 21%

in area and 31% in power of the SMCU of HSTD, LATDI and LATD2. Moreover, the

Table 4.7 List of area results for K=5 turbo decoders.

K=5

CON I-ISTD LATDI LATD2

Area
(mm 2)

Save
(%)

Area
(min 2)

Save
(%)

Area
(mnY)

Save
(%)

Area
(111m

2)

Save
(%)

BMU 0.014 - 0.014 0 0.019 -33.1 0.019 -33.1

BMNU - - 0.115 - 0.115 - 0.035 -

SMCIJ 0.268 - 0.211 21.3 0.211 21 .3 0.211 21.3

LCIJ 0.180 - 0.197 -9.6 0.176 2.0 0.176 2.0

MEM 0.988 - 0.993 -0.5 0,749 24.1 0.749 24.1

Total 1.452 - 1.532 -5.5 1.272 12.3 1.192 17.9

Table 4.8 List of power results for lK5 turbo decoders.

K=5

CON HSTD LAID! LATD2

Power
(mw)

Save
(%)

Power
(mW)

Save
(%)

Power
(m W)

Save
(%)

Power
(mW)

Save
(%)

BM 1.20 - 1.20 -0.3 1,65 -37.17 1.65 -37.0

I3MNU - - 6.65 - 6.93 - 2.83 -

SMCU 22.46 - 15.32 31.7 16.09 28.34 15.91 29.1

LCU 15.65 - 15.19 2.9 14.45 7.66 13.78 11.9

MEM 22.99 - 23.92 -4.0 16.77 27.07 15.76 31.4

Total 62.32 - 62.30 0.0 55.91 10.28 49.94 19.8

83

Chapter 4 High Performance Max-Log-MAP Turbo Decoder Architecture

efficient BMNU implementation of LATD2 saves 69% and 59% in area and power,

respectively, compared to LATDI. Also, the efficient LCU of LATDI and LATD2 reduces

2% and 11 % in area and power, respectively. With the area and power savings of MEM,

LATD2 has achieved 17% and 19% savings in total area and power, respectively.

One of the crucial results in this chapter is the critical path delay, which is compared with the

results in Table 3.3 in Chapter 3. The proposed BMNU addresses the inherent critical path

delay problem to achieve the high speed turbo decoder implementation. Thus, the critical

path delay of each scheme was measured. Table 4.9 lists the results comparing with the

conventional architecture (CON) obtained in the previous chapter and state-of-art turbo

decoders. In the table, total number of gates is equivalent to the number of NAND gates. As

is apparent, HSTD reduces the critical path delay for [(=3, 4 and 5 by 32%, 42% and 41%,

respectively, compared with the delays of CON. This leads to the increase of the maximum

speed of HSTD and LATD2. All the delays measured are in SMCU of the architectures.

Thus. HSTD can he used to provide higher throughput than the conventional architecture.

Also, the critical path delay results of LATDI and LATD2 are the same with HSTD.

Table 4.9 Performance comparison with state-of-art implementations.

CON HSTD LATD2 [11] [13] [12]

Area(mm 2) 0.934 1.004 0.714 1.5 14.5 10

No. of gates 59K 80K 124K 150K 410K -

Power(rnW) 34 37 29 330 1450' 2464

Max. Speed 180MHz 300MHz 300M1-lz 285MHz 145MHz 352MHz

Throughput (Mb/s) 22.5 37 37 - 24 352

Technology 0.18Jm 0.181Jm 0.18ljm 0.l8pm 0.I8tm 0.134im

Note Kr=4 K=4 K=4 K=3
K=4

Radix-4
K=5

Power consumption at the maximum clock speed.

84

Chapter 4 High Peifrmance Max-Log-AMP Turbo Decoder Architecture

4.6 Summary
This chapter presented a high performance M LTBD architecture based on a novel scheme in

order to save area and power, and to improve the critical path delay. To achieve low power

and area efficient MLTBD implementations, the memory blocks needed for the SW method

were reduced by using a triple read port based memory. This helped to reduce both total

power consumption and area usage. The triple read port memory was designed in this thesis

for the hardware simulation using without synthesizing. Also, more efficient LCU and

BMNU implementations contributed to save power and area. The BMN method addressed

the inherent critical path delay problem to achieve high speed turbo decoders for high

throughput. The next two chapters present an alternative turbo decoder algorithm, which is

called soft-output Viterbi algorithm (SOyA), and architecture, and introduce a novel

architecture for the turbo decoder implementations.

85

Chapter 5

Soft-Output Viterbi Algorithm Based
Turbo Decoding Process

5.1 Introduction
In previous chapters, the MAID based turbo decoders have been investigated at algorithmic

and architectural levels. This chapter presents an alternative turbo decoding algorithm, called

a soft-output Viterbi algorithm (SOyA), which was introduced by Hagenauer and Hoeher

[67]. SOVA was suggested before turbo codes appcared, which were developed to provide

outer-decoder soft-output (also known as soft-decision or LLR) in order to achieve better

performance. With increased understanding of the principle of the iterative turbo decoding

process, it was found that the extrinsic information for the iterative decoding process could

be obtained from the soft-output of SOVA in a way that used a MAP based turbo decoding

algorithm [59, 150-151]. Since then, there were some attempts to implement a turbo decoder

based on SOyA. However, the decoding complexity of the SOVA was very high, making it

difficult to apply to practical applications. To address the complexity problem, a two-step

SOVA (TSOVA) was suggested, which divided the decoding process into the survivor and

update processes [93, 152]. Since the introduction of TSOVA, the TSOVA based turbo

decoders have been widely researched for achieving better performance [33-34, 98, 152-161].

This chapter describes SOVA and TSOVA based turbo decoders, investigating their BER

performance for different constraint lengths, K3, 4, and 5. In a TSOVA based turbo

decoder, the survivor and update depths strongly affect BER performance. They also impact

the hardware costs required to design the TSOVA based turbo decoder hardware in an

optimised implementation. In the literature [98, 1 53-156], different depths of the survivor

and update processes are suggested for TSOVA turbo decoder implementations. Thus, this

chapter discusses BER performance relative to varying TSOVA survivor and update depths,

86

Chapter 5 SofI-Ouipui Viierhi Algorithm Based Turbo Decoding Process

and then, two different depths are chosen for evaluating overall BER performance with

TSOVA turbo decoders.

The chapter is organised as follows. Section 5.2 describes the original SOVA and how it is

used in turbo decoder implementations. A two-step SOVA that reduces SOVA complexity is

presented in Section 5.3. Section 5.4 shows the simulation results of the two-step SOyA-

based turbo decoders, giving BER performance with optimised survivor and update depths.

Section 5.5 summarizes the chapter.

5.2 Soft-Output Viterbi Algorithm for Turbo
Decoding Process
The basic decoding principle of SOVA is not different than the conventional Viterbi

decoding process [84, 139]. While a Viterbi decoder provides a hard-decision in a bit

sequence, a SOVA-based decoder outputs a soft-decision including the hard-decision and its

reliability value. The SOVA decoder output is exploited to obtain the extrinsic information

needed in the turbo decoding process. While the LLR value of MAP-based turbo decoders is

calculated from all the metrics generated during the forward and backward processes, the

soft-output of the SOVA-based turbo decoders is obtained by multiplying the hard-decision

Of the survivor path with the reliability value of the LLR. Both of these values (hard-decision

and reliability value) are generated independently during the decoding process. The extrinsic

information is passed to the next decoding process in an iterative process and can be

obtained from the soft-output after subtracting the systematic symbol and the extrinsic

information from it as described in Section 2.6 of Chapter 2, Thus, this allows SOVA to

perform the turbo decoding process.

According to 1671, SOVA generates a soft-output rather than a hard-decision, finding the

maximum likelihood (ML) paths in the forward process. The soft-output is represented by a

posterior probability (APP) as LLR as shown below.

P(u(k) = + y)
Lir

 (k) = g - P(u(k) = + I) =
u(k)L(k) 	 (5.1)

ON

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

where u(k) is the hard-decision and L(k) is the reliability value of the hard-decision at time k.

In MAP based turbo decoders, Lir(k) is calculated from the branch metrics, and all forward

and backward state metrics. However, ii(k) and L(k) in equation (5.1) are independently

obtained from only the forward process, as in a Viterbi decoder.

The turbo decoder structure illustrated in Figure 2.7 in Chapter 2 can also be used for the

SOVA-based turbo decoding process. In order to describe the obtaining of Ll(k) for SOVA

decoders, let's note that y.,(k) and y(k) are input symbols of the systematic and parity bits at

time k, respectively. Then, the branch metric, bm(k), is

h#n (k) = 	(k)u + Lv (k)u + L, (k)u 	 (5.2)

where L is the channel reliability value, but is fixed to 2 in this work, u, and U1, are

associated with the code word of the systematic and the parity bits, respectively, and L e (IC) is

the extrinsic information, which is provided by previous decoding process and initialised at

zero for the first decoding process.

The state metric computation process is illustrated using a trellis diagram in Figure 5.1. The

trellis diagram shows the forward process, representing the transition paths in different line

styles with code words. As an example in Figure 5. 1, the transition paths for obtaining the

state metrics of state 0 at time k and k--1 are represented with a bold-style line. In the figure,

hm oo (k) and sm o(k) are the branch metric of code word 00 and the state metric of state 0 at

time k, respectively. The difference of two paths converged to one state is the reliability

value, A(k), at time k. Specifically, with the branch metrics computed by the equation (5.2), a

state metric of each state, sni, can be represented as follows:

sin, (k + 1) = max[bm (sk ,sk+I) + sm, (k), bm (s.,s kH) + sm,(k)1 	(5.3)

where sm,(k) is the state metric at the state s and the time k, hm(sk, 5k 1) is the branch metric

of the state transition Sk to 5k /. The ML path corresponding to the decision bit at each state is

determined from the maximum state metric obtained by comparing the two state metrics.

Then, the absolute value of the two state metric differences, A. is used as the reliability value

of the soft-output as follows:

88

Chapter 5 SoJi-Output Viterbi Algorithm Based Turbo Decoding Process

	

hrn 0(k- 1) sm0(k) 	bm00(k)

zi 0(k-1)

s1271(k-1) 	bm 1 (k1) 	• 	bm 1 (k) 	: vi(kI 1)

n?2(k I). 	 \ 	rn(k+1)

srn3 (k+1)
>• .-... .). S 	 - - 	

. ,..

sm 4(k-1) c. 	 /•.'/ 	• s1774(k+l)

/ 	
S.. /
	 •/ 	

S. /

srn 5(k-1) - 	 sn75(k+1)

sm 6(k-1) 	 sm 6(k+1)

srn7(k-l)-

00— 01 ------10---- 11-.-..

Figure 5.1 A trellis diagram for computing the state metrics for constraint length K=4

A(k + 1) = --bm (sA.,sk+l) + sm(k) I?/n(sh.,$) - sni(k) 	(5.4)

These values are accumulated and updated at each state through the survivor and update

processes until deciding the final reliability value for the soft-output. In these processes, the

Update rule is:

ForjO to U 	 (5,5)

if 	u(j) then L(j) = min(L(j), 4(k))

else L(j) = L(/).

where U is the depth of update process, u(j) and u.(/) are the hard-decisions of the survivor

and competing paths, L(j) is the reliability value of LLR, and 4(k) is the reliability value for

states at time k. Therefore. LLR is finally represented by the multiplication of u(/) and L(j).

89

Chapter 5 Sofi - Oulput Viterhi Algori/hin Based Turbo Decoding Process

5.3 Two-step Soft-Output Viterbi algorithm

As already stated, the two-step SOYA (TSOVA) suggested in the literature [93] was

developed to reduce the computational complexity of the original SOyA. TSOVA divides

the decoding process into the survivor and update processes, which are executed

simLLltaneously in the original SOyA. The survivor process performs the same function as

the traceback process in a Viterbi decoder, that is, to find an appropriate state for starting the

decoding process to generate the hard-decision. Figure 5.2 illustrates a trellis state diagram

for the TSOVA decoding process for constraint length K=4 as an example. The survivor

process finds the ML paths from time k to k-D (D is the depth of the survivor process) to

determine the state at which all ML paths are converged. The update process updates the

reliability values starting from the converged state by following the hard-decisions provided

by the survivor and competing paths. In Figure 5.2, the two paths are shown with different

line styles corresponding to the hard-decisions, 0 and I. The reliability values are updated

where the two paths are represented in different line styles, which mean that the hard-

decisions of the survivor and competing paths are different. The update rule given in

equation (5.5) is used for the update process.

0— 1--

0. 	• • 	_ .. _•4 . S 	•
1. 	•

.

7 46 . . .
k-D-U k-D

Update process
	

Survivor process

Figure 5.2 A trellis diagram of the survivor and update processes in two-step SOVA for

constraint length K=4.

90

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

5.4 Results
TSOVA turbo decoder BER performance has been evaluated for constraint lengths K=3, 4,

and 5. Turbo codes for performance evaluation were generated by the encoders illustrated in

Figures 2.1 and 2.2 of Chapter 2. In this simulation, additive white Gaussian channel

(AWGN), binary phase shift keying (BPSK) modulation, 1/3 code rate, and 1024-size block

interleaver are assumed. The received data is represented in a fixed-point format with 4-bits

total and 2-bits precision as described in Chapter 2 for evaluating the MAP based turbo

decoder performance.

At first, BER performance was investigated varying the survivor and update depths of the

TSOVA turbo decoders, to determine the optimised depths for each constraint length. Then,

the BER performance of the turbo decoders was evaluated with the optimal survivor and

Update depths. Optimizing the depths is crucial not only to achieve better performance, but

also to save area usage and power consumption in hardware implementation. The depths

determined in this chapter will be applied to the TSOVA hardware implementations in the

next chapter.

5.4.1 Determination of Survivor and Update Depths

Many papers [I 52-156] have discussed the survivor and update depths and how they affect

TSOVA decoder performance. As already described in the previous section, the decoding

process of TSOVA is divided into the survivor and update processes. The survivor process is

the same as the traceback process in a Viterbi decoder, and is performed before the decoding

process to generate a hard-decision. Thus, the depth of the survivor process primarily affects

BER performance. It is well known that the traceback length in Viterbi decoder

implementations must be at least 5 times of the constraint length, K. If the length is large

enough, there is no performance degradation. However, a proper depth of the survivor

process needs to be determined in order to achieve BER performance with optimal hardware

performance. The same rule used to determine the traceback length of a Viterbi decoder

could be applied to determine the survivor depth of the TSOVA decoder as well. The BER

simulation results described in [66] show that the optimised survivor and update depths for

convolutional codes are approximately K x 6 and K x 3, respectively. On the other hand, in

91

Chapter 5 Soft-Output Viterhi Algorithm Based Turbo Decoding Process

1.E'00

lE-Ol

1.13-02

Ui

1. E,03

1 .E-04

1. F,05

-•- Ist 	_2nd __A_±uI_______

- 	
U •-

I E±O0

I.E-UI

I.E-02

Ui

1.E-03

1.F.-04

i.E-OS

2 	3 	4 	5 	6 	7 	8 	9 	10

Survivor Depth

-U- lst 	--2nd 	-A-4th 	--8th

-- U-. • 	 U •

0 	I 	2 	3 	4 	5 	6 	7 	8

Update Depth

Figure 5.3 BER results for varying (a) the survivor and (b) update depths for K=3.

the literature [33], the depths of the survivor and update processes for turbo codes arc

suggested to be approximately K (3) x 6 and K (3) x 8, respectively.

In this sub section. the BER performance of the TSOVA turbo decoder for constraint lengths

K=3. 4, and 5 has been evaluated by varying the survivor and update depths for Eb/NO2dB.

A total of 5M bits of source data were used to obtain the simulation results. Figures 53 to

5.5 illustrate the simulation results for constraint lengths K3, 4, and 5, respectively, after

completing 1, 2, 4, and 8 iterations. The improvement in BER performance was almost

92

C/tap/er 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

l.E-0()

-.- 2nd 	—A--4th 	-- 8th

1.0-01 	
- 	

- 	 -

1.0-05

2 	3 	4 	5 	6 	7 	8 	9 	10

Survivor Depth

(a)

I.U+00

I.E-0l

.0-02

LL

I.E-03

l.E-04

1.0-05

0

2nd 	a 4II1 	8th

	

.-.-----. -- - . ---. -i- . 	 U - U -

I 	2 	3 	4 	5 	6 	7 	8 	9

Update depth

(b)

Figure 5.4 BER results for varying (a) the survivor and (b) update depths for K=4

saturated after 4 iterations. In these simulations, while the performance for different survivor

depths is evaluated, the update depths are fixed to K<5 for each constraint length. On the

contrary, during the investigation of the performance for varying the update depths, the

survivor depths are fixed to Kx8 for each constraint length. The simulation results show that

BER performance is almost saturated at near Kx6 for the survivor depth and at near Kx4 for

the update depth. These results are similar to the results described in [93].

9-.,

Chapter 5 SoJi-Output Viferbi Algorithm Based Turbo Decoding Process

1.E-4-OO 	 :.

2nd 	41h 	Sth

LE-01
.. 	. 	.

1.17-02

1.E-03

i.E-04

t.E-05

2 	3 	4 	5 	6 	7 	8 	9

Survivor Depth

• 17+00

I 17-01

1.17-02
04
uJ
im

.17-03

I.E-04

st 	2nd 	4tIi

1.17-05

0 	I 	2 	3 	4 	5 	6 	7 	8

Update Depth

Figure 5.5 BER results for varying (a) the survivor and (b) update depths for K=5.

5.4.2 BER Performance Results

This subsection shows the TSOVA turbo decoder BER performance results for constraint

lengths K3, 4, and 5 with fixed survivor and update depths. The survivor and update depths

were determined based on the results obtained in the previoLts subsection. The survivor and

update depths used for the evaluation were:

D = K x 6 and U = 0.5 x D + K - D6U4 	 (5.6)

94

Chapter 5 SoJl-Output Viterbi Algorithm Based Turbo Decoding Process

D=Kx 8andUO.5xD+K —> D8IJ5 	 (5.7)

Figures 5.6, 5.7 and 5.8 illustrate the BER performance results for K=3, 4, and 5,

respectively, after completing 1, 2, 4, and 8 iterations. In these figures, the BER performance

of the TSOVA turbo decoder with D6U4 is represented by solid lines, while the dotted lines

represent the results with D8U4. As can be seen, the TSOVA turbo decoder for K=4

improved the performance by approximately 1.0dB compared to the turbo decoders for K=3

at a BER of 10. On the other hand, the performance of K5 TSOVA decoders was not

much improved as compared with the K=4 TSOVA turbo decoder results.

Figure 5.6 shows the BER performance results obtained from the depths defined in equation

(5.6) and (5.7). In the case of K3, the TSOVA turbo decoders have been implemented with

l::i

l.E-02 - -

--- 1st

6D4U 	2nd 	11111111 	.:IIIIT

	

I.E-04 --_ 	—A ---4th _______________

	

H 	E 	8tli 	EEEEEEEEEEH

	

- 	

- 	 -

 -D---Is- 	-- - - - - - - - -

	

— 	 - --a--- 2nd -_________________ LE-05

LE-06

0 	0.5 	I 	1.5 	2 	2.5 	3

Figure 5.6 The D61J4 and D8U5 TSOVA turbo decoder BER results for K3.

95

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

1E+00 1
11-01

1.E-03 - 	-=-=--=-=-- - 	'-• 	.. 	-

--Jst :-::::::__:::
2nd

LE-04 T6D4U 	4th
8th

- -- 0 - 1st
I.E-OS 	 ---0---21id

8D5U 	£ 4th

	

- 	—0-8th
1.E-06

	

0 	0.5 	1 	1.5 	2 	2.5 	3

Eb/No

Figure 5.7 The D6U4 and D8U5 TSOVA turbo decoder BER results for K=4.

the survivor depths of 18 and 24, and the update depths of 12 and IS. There was no

significant difference in BER performance between these trials.

Figure 5.7 illustrates the BER performance results of the TSOVA turbo decoders for K"4.

The TSOVA turbo decoders have been implemented with the survivor depths of 24 and 32,

and the update depths of 16 and 20, respectively. It can be shown that after 8 iterations,

D8U5 provides about 0.2dB improvement at BER of 10-4 compared to D61J4.

The BER performance of the TSOVA turbo decoder for K5 is illustrated in Figure 5.8. In

this case, the survivor depths of 30 and 40, and the update depths of 20 and 25 were used to

evaluate the TSOVA turbo decoder performance. There was no significant difference in the

BER performance between these trials.

96

Chapter 5 Soft-Output Viterbi Algorithm Based Turbo Decoding Process

1.E+00 --- 	-- 	--- 	-

LE-Ol -

LE-02 -- ----- 	-

LE-03 -- 	- 	-=---=--- 	- - 	-- - 	- - - - - - - - -
- 	• 	1st 	::::_:: ----

- 2nd 	-------- 	- .
6D4U

1.E-04 - 	A 4th ----. 	-
• 	8th 	EEE:EEEEEEE:

- 	---- lst 	-----------.-- --- .
i.E-OS

-
--O"2 n ---. _

813%A-- - 4th
- 	--O-"Sth 	i::i:ii::::iiiiii: 	II

LE-06
o 	0.5 	1 	1.5 	2 	2.5

E,/No

Figure 5.8 The S6U4 and S8U5 TSOVA turbo decoder BER results for K=5.

The performance results of the TSOVA turbo decoders have been compared with the

performance of the MLMAP turbo decoders described in Chapter 3. Table 5.1 summarizes

the comparisons between the two turbo decoders. Among the results, the largest difference

was found between the turbo decoders for K=5. However, the overall results show that turbo

decoders based on the two algorithms can provide similar performance. According to [139],

MLMAP and TSOVA turbo decoders show almost same BER performance. The results

listed in Table 5.1 supports this observation.

3

97

Chapter 5 So fl-Output Vi terhi Algorithm Based Turbo Decoding Process

Table 5.1 Eb/No comparisons at 10 " BER.

MLMAPISO VA with S8U5

5.5 Summary
This chapter described the SOVA and TSOVA algorithms that are alternatively used for the

turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced.

The survivor and update depths of the TSOVA turbo decoders were investigated to

determine an optimised depth. The simulation results have shown that the BER performance

was almost saturated when the survivor and update depths were Kx6 and Kx4, respectively.

The TSOVA turbo decoders provided slightly better performance with larger survivor and

Update depths, Based on these results, the I'SOVA turbo decoders for K3, 4. and 5 were

simulated to evaluate their BER performance. Furthermore, the performance results were

compared with the results of the MLMAP based turbo decoders at a BER of lO'. The

comparisons showed that the TSOVA turbo decoder can produce BER performance close to

the performance of the M LMAP turbo decoder without significant performance degradations.

In the next chapter, a novel TSOVA based turbo decoder architecture will be presented.

98

Chapter 6

Two-Step Soft-Output Viterbi
Algorithm Turbo Decoder Architecture

6.1 Introduction

In the previous chapter, the two-step SOVA (TSOVA) turbo decoder BER performance has

been evaluated and the optimal survivor and update depths investigated. This chapter

presents TSOVA turbo decoder architecture with a novel implementation method for

implementing the survivor and update processes, designed according to the results obtained

by the high level simulations of Chapter 5.

As described in the previous chapter, since TSOVA reduced the computational complexity

of the original SOyA, it has been widely used not only for turbo decoder implementations,

but also for other applications such as magnetic recoding, etc. [34, 157]. Two algorithms

known as register exchange and traceback algorithms (REA and TBA) [85-88] are available

to implement the SOVA turbo decoder. These algorithms are already widely used in Viterbi

decoder implementations. It is well known that REA can provide high throughput and that

TBA is suitable for low power implementations. However, if constraint length, K, is long,

REA is not suitable due to the number of registers dramatically increased with K. In general,

turbo encoders use constraint lengths up to K=5, as discussed in Chapter 2. Thus, the REA is

widely used in TSOVA based turbo decoder implementations [160-162]. However, although

TSOVA reduced the computational complexity of the original SOyA, the registers

incorporated in REA based TSOVA (TSOVAREA) turbo decoders might increase hardware

costs.

To improve the REA based TSOVA turbo decoders, this chapter uses TBA to implement the

TSOVA (TSOVATBA) turbo decoder. TBA is implemented with a novel implementation

method to save the hardware costs by reducing the number of registers required. Also, the

novel method addresses the latency problem known to be a problem of TBA based decoders.

99

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

The chapter gives detailed descriptions of TSOVATBA turbo decoder implementations, and

shows the performance results compared to the TSOVAREA and MLMAP based turbo

decoders.

This chapter is organized as follows. Section 6.2 reviews the TSOVAREA decoder based on

the presentation of past literature [93]. Section 63) describes the proposed TSOVATBA

decoder architecture and its modules. An efficient area architecture is introduced in Section

6.4. Hardware performance results are given in Section 6.5. Section 6.6 summarizes the

chapter.

6.2 Register-Exchange Algorithm Based Two-Step
SOVA Decoder

This section reviews the TSOVAREA decoder architecture [93] before presenting the

proposed TSOVATBA decoder architecture, The TSOVATBA architecture is modified from

the TSOVAREA architecture. The two architectures have many similarities. However, the

main components for the decoding process of each architecture are designed in a different

SMU
Hard deciding 	

PCU
Path Comparison Unit 	Symbol

Delay

1!!!! Relevance bits

_jZJ' ~kl)

Delay Select Update Unit
Likelihood

Figure 6.1 REA based TSOVA decoding processor architecture [93]

orl

PF

0

0
0

deco

0

0

dec 1

1

1

dec2

dec3

1 	 2

(b)

It

0

1

2

3

(a)

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

way. Thus, it is necessary to explain the TSOVAREA architecture and part of the

architecture compared to the TSOVATBA architecture in the next section.

Figure 6.1 illustrates the TSOVAREA decoder architecture for the survivor and update

processes. The architecture consists of a survivor memory unit (SMU) for generating the

hard-decision and the merged state, a path comparison unit (PCU) for comparing the

survivor and update paths, an update unit (UPU) for updating and generating the reliability

values, and memory blocks for delaying the decision bits and the reliability values. The

decision bits (dec, k) and reliability values (J 'vk) generated by the transition metric unit

(TMU) are input to SMU and Delays, in which one of the Delays is for the decision bits, and

the other is for the reliability values. SMU generates the hard-decision, and finds the merged

state (s0) to determine the initial state in PCU. The merged state is also used to select one of

the reliability values stored in the Delay. The hard-decision (IA--D) is passed to PCU to

compare with the hard-decision generated by the competing path. The compared results

Figure 6.2 (a) The trellis diagram for the convolutional codes K=3. (b) The register
exchange algorithm based survivor memory unit structure [93].

N

Chapter 6 Two-Step Soft - Output Viterbi A1gorithn Turbo Decoder Arch/lecture

obtained by PCU are input to UPU for the updating process. The updating process is

performed following the updating rule described by equation (5.5) of Chapter 5.

In the architecture illustrated in Figure 6.1, SMU and PCU are implemented based on the

REA. Figure 6.2 illustrates the REA-based SMU structure for generating hard-decision for a

trellis diagram with a constraint length K=3 [93]. This structure can also be used to

implement PCU. The structure is comprised of an array of process elements (Ph) for

exchanging the hard-decisions in every clock cycle. The output of the Ph is determined by

the input decision bits (dcc) sent from TMU. As can be seen in Figure 6.2, the initial inputs

of the first column PEs are the same with the code words of the trellis diagram. The number

of columns is the same with the survivor depth. All outputs of tile last column PEs are the

same and represent the hard-decision.

6.3 Traceback Algorithm Based Two-step SOVA
Turbo Decoder Architecture

This section presents the proposed TSOVATBA turbo SISO decoder architecture. The

architecture is described in comparison with the TSOVAREA decoder architecture described

in the previous section, and the components incorporated in tile architecture are described in

detail with an explanation of their functions in the decoding process.

6.3.1 Two-Step SOYA Traceback Turbo SISO Architecture

TSOVATBA turbo decoder architecture is proposed to improve hardware performance in

terms of area and power as compared to TSOVAREA and MLMAP turbo decoders. TBA is

widely employed in Viterbi decoder implementations due to its advantage of low power

consumption as compared to REA-based decoders. in general, the registers for REA cause

large area usage and power consumption. Despite low power and area, less attention has

been paid to TBA for implementing TSOVA turbo decoders because TBA is regarded as

high-latency, which lowers the throughput. The architecture introduced in this section

Chapter 6 Two-Step Soft-Output Viterhi Algorithm Turbo Decoder Architecture

Traceback Process
Metric Computation 	.- -------------------------,

Process

0-74
TBU

Soft
input

MEM

Update Process

PCU

UP•..UP .

SIVAN

+

Delay

Figure 6.3 TSOVATBA turbo decoder architecture.

does not increase the latency as compared to TSOVAREA decoder, while retaining the low

power advantage of TBA.

Figure 6.3 illustrates the TSOVATBA turbo SISO decoder architecture to be implemented in

this work. This architecture consists of three main processes, which are metric computations,

traceback and Update processes. In the metric computation process, the soft-input is

computed by branch and state metric computation units (BMU and SMCU) to generate the

decision bits, CI07k, and the reliability values, L07k, from all the states at time k. d07k and L 0_

are passed to the traceback unit (TBU) and memory (MEM) blocks, respectively. TBU

finds the merged state, S P,,kD, and one of the reliability values stored in MEM is selected with

S,kD. The merged state is then sent to the path comparison unit (PCU) that provides the path

comparison results to the update process unit (UPU) to output the soft-output. Thus, the role

of the traceback and update processes in the architecture is the same as the survivor and

Update processes in TSOVA decoder introduced in [93]. The extrinsic information for the

next decoding process is obtained after subtracting the delayed soft-input from the soft-

output.

 103

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

In the architecture, the memory blocks (MEM and Delay) are realised by using a first-in

first-out (FIFO) memory block. MEM consists of parallel FIFO blocks, The number of FIFO

blocks is 2 for constraint length K, and the depth of the FIFO is the same as the survivor

depth. The Delay is realized by a FIFO, the depth of which is the same as the total depth of

the survivor and update processes.

6.3.2 Metric Computation Unit

The metric compLLtatlon unit (MCU) in the TSOVATBA turbo decoder architecture is

similar to the MCU ill the MLMAP turbo decoder architecture, shown in Chapter 3. While

the MLMAP turbo decoder architecture requires three MCUs, the TSOVATBA turbo

decoder architecture needs only one MCU, corresponding to the MCU for the forward

process in the MLMAP-based turbo decoding process. Figure 6.4 illustrates the MCU

structure incorporated in the TSOVATBA architecture. It consists of a branch metric unit

(BMU) for generating the branch metrics, and a state metric computation unit (SMCU),

which is realised by a number of parallel add-compare-select-normalization (ACSN) units.

The BMU in this architecture is the same with the BMU illustrated in Figure 3.5 of Chapter

3. However, the output sequence of the ACSN differs from the output of the ACSN used in

the MLMAP turbo decoder architecture. While the ACSN for the MAP based turbo decoding

process produces only the state metrics, the ACSN illustrated in Figure 6.4 for the

TSOVATBA turbo decoding process generates the decision bit (DB), the reliability value

MCU
Recursive SM

Soft
BMU 	

BM 	
SMCU 	 DB

Input
;RV

Figure 6.4 The metric computation unit structure in the TSOVATBA architecture.

104

Chapter 6 Two-Step Soil-Output Viterbi Algorithm Turbo Decoder Architecture

(RV), and the state metric (SM), which is recursively input to the ACSN itseli. DB and RV

are passed to TBU and MEM, respectively.

numbers of parallel ACSN recursively compute the state metrics from the BM and the

recursive SM to produce the DB and RV. Figure 6.5 illustrates the ACSN structure used in

the TSOVATBA turbo decoder architecture. This ACSN structure generates the state metric,

sm o(k+1), of state 0 at time k+l. For obtaining sm >(k+1), two branch (bm oo(k), b7n 1 (k)) and

two state metrics (sin o(k), and sm i (k)) at time k are input to the ACSN. First, the first two

adders (A) conipute two new state metrics, which then are compared in order to select (CS)

the maximum state metric. In the CS process, a subtractor, which is represented with an

sm 0(k) hm 00(k) 	sin 1 (k) 	bni 11 (k)

9 	8 	98

L 	+ 	

+

Cs

1
\Mux/ 1

- 	ABS

CONST F 	8k

L OA

\Mux/

JN

srn(,(k+I)

Figure 6.5 The add-compare-select-normalization structure in the TSOVATBA turbo
decoder architecture.

it'll

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

adder in Figure 6,5, is used for the comparing process. The most significant bit (MSB) of the

subtractor output is input to the multiplexer (MUX) to select the maximum state metric, and

is associated with the decision bit (dok) passed to the survivor process. The reliability value

(Lok) sent to MEM is the absolute value of the subtractor output. In this process, 8-bits

wordlength was enough to represent the absolute value, which is obtained from simply

discarding the second MSB of the absolute value before passing to MEM.

In the turbo decoding process, the state metrics increase rapidly due to the use of soft-input

symbol data and extrinsic information. This requires a large wordlength to represent the state

metrics. To reduce the size of the wordlength without overflowing, the state metrics

normalization process (N) is necessary as illustrated in Figure 6.5. This process is performed

when the maximum state metric is larger than a constant (CONST), as described in [105].

6.3.3 Traceback Process Unit

The survivor process is performed to determine the merged state, from which the selected

reliability value is passed to the update process. While the merged state is searched by the

traceback process unit (TBU), the reliability values generated by SMCU are stored in MEM

before selecting one of the reliability values using the merged state. The TBU is one of the

main units in the TSOVATBA turbo decoder architecture. It uses the decision bits generated

by SMCU to determine the merged state by tracing in backward as shown in Figure 5.2 of

Chapter 5. Thus, the role of TBU is the same as the SMU of the TSOVAREA turbo decoder

described in the previous section, but the TBU operates in a different way to find the merged

state.

Figure 6.6 illustrates a novel TBU structure proposed in this thesis. In this structure, a

process clement (PE) is placed on each state as the trellis state diagram for constraint length

K=4. Thus, the TBU consists o 12 1 numbers of PE row and D numbers of PE columns. The

structure shown in Figure 6.6 appears to be similar to the structure of the SMU introduced in

[93] for the TSOVAREA decoder implementation. However, there are some significant

differences in the implementation methods described below.

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

Traceback Process Unit

1 E

0. "\I' d()A _ J c10 , '\\j 	'10k1)

1
PE PE / PE\

dik \ '/k-! dik,

1
: PE PE /I PT \ \/PE

d,k \/ '2k-1

)/\ A/\ t3 k'-2

/A\/\ C 41-1 CI4).

14

1 ::II1I7 FE PE / 	FE

cI d5 k,

PE FE FE PE

d6k 16kI d., 'ok1)

PE FE PE PE

d,k/ d, kfl

Figure 6,6 The traceback process unit structure for searching the merged state.

First of all, PEs incorporated in TBU are implemented with only four gates and have no

registers, as shown in Figure 6.7. As illustrated in Figure 6.6, each of the PEs are connected

by identical wired connections with the transition paths of the trellis diagram illustrated in

Figure 5.2. On the other hand. PEs used for the SMU contain a register for exchanging the

hard-decision. Thus, while the inputs of the first column PEs of the SMU are initialized with

the code words corresponding to the hard-decisions, all first column PE inputs in TBU are

initialized to 'I ' to make all state in the first column survivor states. Here ' I ' denotes a

survivor path such that only one of the 16 outputs at the last column of PEs becomes ' after

completing the survivor process. However, all outputs of the SMU are the same, representing

the hard-decision. Hence, the SMU needs an accumulator for state information in order to

ID)4

Chapter 6 Two-Step Soil-Output Viterbi Algorithm Turbo Decoder Architecture

Input

Output

PAW

Figure 6.7 The process element structure.

determine the merged state, while the hard-decision and merged state in the TBU can be

represented by using one of the outputs of the PEs in the last column without a memory for

storing the state information.

Furthermore, in the SMU, the same decision bits generated by TMU are input to each of the

PEs in the same row in every clock cycle. However, as shown in Figure 6,6, the decision bit

input to all the PEs of the TI3U are different, and are controlled by shift registers. The

decision bits in the TBU are used for determining which of PE outputs is 1' or O' in which

'1 ' indicates a survivor path of a state. If the input sequences of PE are '0', the outputs of PE

become '0' no matter what the input decision bit is. The survivor paths are finally merged to

one PE at time k-D, which is the merged state. S,,,. During the decoding process, the TBU

provides only the merged state to the PCU without the sequences of the hard-decision, while

the SMU generates the hard-decision and merged states for the update process.

In our TBU, a potential issue could be a critical path delay occurring due to the wired

connections between the PEs. Whereas, in REA-based SMU, a critical path delay is no

problem at all. The critical path delay due to the wired connections may be a cause of speed

reduction of the turbo decoder to achieve maximum throughput. In general, it is well-known

that the critical path delay of a turbo decoder is in ACSN [13]. Critical paths of the TBU and

the ACSN in Figure 6.5 are investigated to determine which path affects the determination of

the maximum speed of TSOVATBA turbo decoder implementation.

108

Chapter 6 Two-Step Sqti-Output Viterbi Algorithm Turbo Decoder Architecture

6.3.4 Path Comparison and Update Process Units

The update process is performed to generate the soft-output, including the hard-decision and

the reliability value and the extrinsic information for the next decoding process. Figure 6.8

illustrates the path comparison and update process units (PCU and UPU) for performing the

update process. PCU generates the comparison sequences of the survivor and competing

paths, which are passed to REU to perform the updating process following the update rule in

(5.5). The inputs of PCU are the decision bits, the merged state information, and the selected

reliability value. The decision bits and the merged state are sent from TBU. The selected

reliability value is one of the outputs delayed by the memory block.

Pcu

Competing Path Unit

cis
	 Survivor Path Unit

SIS

I)

	

uPt—*luPH---- UPI 	 —IU

____ ____ 	I

uu

Figure 6.8 The path comparison and update process unit structures

Figure 6.8 illustrates the UPU structure, in which the PCU consists of a competing path unit

(CPU) and a survivor path unit (SPU). While the inputs of TBU are initialized to 'I', the

inputs of the CPU and SPU are initialized by the merged state, which indicates the initial

state to start the survivor and update processes. The CPU and SPU generate the comparison

109

Chapter 6 Two-Step So/i-Output Viterbi Algorithm Turbo Decoder Architecture

dkkr ,
	 dQkfl(,

FPE

d, kflr ,

U,kI) (or lckf) 	.k.L-I (or 1 k-n.,)

1

46 k-D

0 _....r
d6kfl ,

I 	I

Figure 6.9 The structure of CPU and SPU.

bits. These are then processed by the update processors (UP), which are realized based on the

update rule given by equation (5.5) in Chapter 5.

Figure 6.9 illustrates the structure of CPU and SPU, which is almost the same with the

structure of TBU, shown in Figure 6.6. The number of the column PEs is the same as the

update length, U. While the inputs of all first column PEs in TBU are initialized to 'I', the

inputs of only one PE in PCU are initialized to 'I'. The initial inputs of CPU and SPU are

determined by the merged state obtained by the TBU. During the update process, only one

output path of each of the column PEs becomes I', and the rest of their outputs are V.

From this output sequence, hard-decisions (11.k and u.i,) of the survivor and competing paths

can be generated by a hard-decision generator (HDG), and then they are compared to

determine whether the reliability value needed to be updated or not following the rule in

(5.5). The XORs shown in Figure 6.8 generate the comparison results (CO that are input to

go

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

the UPU. As shown in Figure 6.8, the UPU is implemented with pipelined stages, in which

the stage number is also the same as the update depth, U.

6.4 Area-Efficient Traceback Two-Step SOYA Turbo
SISO Decoder Architecture
Figure 6.10 illustrates the area-efficient TSOVATBA turbo SISO decoder architecture. In

this architecture, the MEM in the architecture illustrated in Figure 6.3 is replaced with an

additional MCU incorporating BMU and SMCU, which is similar to the technique suggested

in 11521. In addition, the Delay block for delaying the soft-input is divided into two blocks.

The MEM area depends on the survivor depth and the constraint length. On the other hand,

the area of MCU replacing MEM depends only on the constraint length. The separated

DelayO has the same depth as the survivor depth. The total depth of DelayO and Delay I is

Traceback Process 	 Update Process
Metric Computation 	.-------------------------- ---------------- -

Process

- - --------

Soft
input

-

 i1UI = U UP U ...

Delayed
soft input

	 UPU

DelayO 	—f ----------------------- ~E)'

Figure 6.] 0 The area efficient TSOVA turbo decoder architecture

Chapter 6 Two-Step Soli-Output Viterhi Algorithm Turbo Decoder Architecture

almost same as the depth of the Delay of the architecture illustrated in Figure 6.3. The two

architectures described in Figure 6.3 and 6. tO are compared for area usage and power.

6.5 Results

The TBA based TSOVA turbo SISO decoders have been designed at RTL using Verilog

HDL. After completing RTL simulations with Cadence Verilog-XL TM, they were

synthesized with Synopsys DesignCompiler TM using the UMC 0.18p111 standard CMOS

technology. The gate-level netlists obtained from the synthesis were simulated with Cadence

Verilog-XL. Power consLimption of the TSOVATBA decoders was evaluated by Synopsys

PowerCompiler T with the switching activities obtained during the gate-level netlists

simulation. The test systems used in the simulation were the same with those used in

Chapters 3 and 4 for the MLMAP turbo decoder simulation. The block size and other

parameters. such as code rates, fixed-point representation for soft-input, etc., were also the

same.

6.5.1 REA and TBA Results Comparisons

In TSOVA based turbo decoder implementations, as already stated in previous sections, one

of the main processes is the survivor process, which can be implemented with REA or TBA.

REA has been popularly employed for TSOVA decoder implementations using the method

described in Section 6.2. The main differences between TSOVAREA and TSOVATBA

decoders are in the modules that perform the survivor and update processes, while MCU can

be commonly used in both decoder implementations. Thus, by comparing the SMU

incorporated in TSOVAREA with the TBU used in TSOVATBA, we can forecast how much

difference exists between the hardware performances of these decoders. For this comparison,

REA based SMU following the structure described in [93] has been implemented and

compared with the area usage and power consumption of the proposed TBU illustrated in

Figure 6.5. Note that in this comparison SMU and TBU have been compared without the

inclusion of memory blocks for storing the reliability values. Two different survivor depths,

112

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

Kx6 and K><8, for constraint lengths K3, 4, and 5, were considered for these performance

D SMUI E TBUI E SMU2 • TBU2

rJrV1A
K3 	 K4 	 KS

Constraint length

JSMU1 DTI3UI EISMU2 •TBLI2

15

10

0
0

0 .

K3 	 K1 	 KS

Constraint length

Figure 6.11 (a) Area and (b) power comparisons.

comparisons. The update depths were fixed to (0.5xthe survivor depth + K). The depths were

determined based on the decoder performance results obtained in the previous chapter.

Figures 6.11(a) and (b) illustrate the area and power results of the SMU and TBU for K=3, 4,

and 5. In these figures, SMUI and TBU1 imply the survivor depth Kx6 and the update depth

Kx4, while SMU2 and TBU2 imply the survivor depth K<8 and the update depth Kx5. Table

0.25

0.2

0.15

0.1

0.05

0

20

113

Chapter 6 Two-Step So fl-Output Vilerbi Algorithm Turbo Decoder Architecture

6.1 summarizes the results. It is clear from the results that the area and power depends

Table 6.1 List of the SMU and TBU area and power results.

D=Kx6, U=K><4 D=Kx8, UKx5

SMU1 TBUI
[_Save

SMU2 TBU2
Save

Area (rnm 2) 0.022 0.0103 53.7 0.029 0.013 53.9
K=3

Power(mW) 1.85 0.96 47.8 2.48 1.41 42.9

J(=4
Area (min 2) 0.059 0.027 53.9 0.078 0.036 54.1

Power(mW) 5.02 2.71 45.8 6.69 3.67 45.1

Area (mm 2) 0.147 0.067 54.1 0.196 0.089 54.2
K=5

Power(mW) 12.45 6.85 44.9 16.51 8.71 47.2

strongly on the constraint length, as well as the survivor and update depths. The results also

show that TBU can save 54% in area and 47% in power as compared to SMU. The area and

power savings of TBU were almost same with different constraint lengths, survivor and

update depths. While SMU is implemented with a number of registers used for REA. TBA

used in TBU requires only wired connections which contribute to much of the area and

power savings of TBA compared to REA.

6.5.2 TSOVATBA Turbo Decoder Hardware Performance Results

Two TSOVATBA based turbo decoders have been implemented for the evaluation of their

hardware performance. The two decoders are illustrated in Figures 6.3 and 6.9, and are

called the TSOVATBA turbo decoder (TBTD) and the area efficient TSOVATBA turbo

decoder (AETD), respectively.

First, the latency was investigated, which affects the throughput performance. The iterative

process in a turbo decoder results in a large latency that reduces the throughput. In general,

the latency of a MAP based turbo decoder with sliding window (SW) method is known to be

114

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

4 times the window size in the first half iteration [16]. On the other hand, the latency of

ISO VATBA can be defined as the total depth of the survivor and Update processes. If it is

assumed that the survivor depth is the same as the window size, the latency of the

TSOVATBA becomes less than half of the MAP based turbo decoder latency. It must also

be noted that TSOVATBA and TSOVAREA have the same latency. The latency of the

TSOVATBA turbo decoders could be given as follows:

Latency = (D + U ± P) x a clock period 	 (6.1)

where D is the survivor depth, U is the update depth, and P is the number of pipeline stages

in the TSOVATBA turbo decoder implementation. P depends on the design of the decoder

and is typically much less than U. As can be seen, even though D is the same as the window

size in the MAP based turbo decoders, the latency of the TSOVATBA turbo decoders is less

than that of the MAP based turbo decoders.

The area usage and power consumption results for TBTD and AETD are illustrated in

Figures 6.12-6.14, and summarized in Table 6.2-6.7 for constraint lengths K=3, 4, and 5. In

the figures, the primary and secondary Y-axes indicate the breakdown component and total

results, respectively. As before, two different survivor and update depths are considered in

the implementation of the decoders. The results show that the overall area of AETD for K=3

and 4 is saved by up to 26% as compared with TBTD area results. On the contrary, the

overall power of AETD for K3 and 4 increased by up to 27% as compared to TBTD.

However, for K=5. AETD saves up to 36% in area and 6% in power. From these results, it is

clear that the replacement of the memory for the reliability values with an additional MCU

can achieve significant savings in overall area, while increasing the overall power

consumption for 1K3 and 4 due to high switching activities led by the replaced MCU. On the

other hand, the memory size for the reliability values is increased proportional to the number

of states, 2. Thus, for K5, the results show that the dramatically increased memory

blocks consume more power than the computational logics of MCU. The results for each

constraint length are discussed below.

Figures 6.12 (a) and (b) illustrates the area and power results for TBTD and AETD,

respectively, for K=3. The results are summarized in Tables 6.2 and 6.3. AETD D6U4 and

D8U5 save 8% and 18% in area, respectively, as compared to TBTD D6U4 and D8U5. The

115

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

replacement of the memory block for storing the reliability values leads significantly to area

0.2
EBMU =SMCU =TBU EJPCU

0.3

UPU 	MEM —0—Total 	 0.25
0.16

0.2
0.12

0.15

0.08
0.1

H

	

0.04 	 0.05

	

0
	

0

TBTDD6U4 AETDD6U4 TBTDD8U5 AETDD8U5

Schemes

6

5

I3MU =SMCU =TBU = PCU

UPU 	MEM —U—Total

we

12

(-)

C

8
C

C
4E-

0
	

0

TBI1)1)6U4 AF- [DDOU4 UBT1)D8U5 AEi'DD81J5

Schemes

Figure 6.12 (a) Area and (b) power comparisons for K=3

reduction. In AETD, the area of BMU and SMCU is increased to two times that of the BMU

and MCU of TBTD. This is because the BMU and SMCU area results of AETD include the

area of the added MCU for generating the reliability values for the UPU. This results in the

116

chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

power increase of AETD, despite of the area reduction. Thus, it is clear that although the

Table 6.2 List of area results for K=3

D6U4 D8U5

-TT BTD
(111111

2)
AETD
(mm 2)

Save
(%)

TBTD
(mm 2)

AETD
(mm 2)

Save
(%)

BMU 0.004 0.008 -100 0.004 0.008 -100

SMCU 0.025 0.052 -105.6 0.025 0.052 -105.6

TBU 0.010 0,010 0 0.013 0.013 0

PCU 0.010 0.010 0 0.013 0.013 0

UPU 0.032 0.031 2.8 0.038 0.038 0

MEM 0.100 0.054 46.0 0.141 0.066 53.2

Total 0.183 0.168 8.5 0.236 0.192 18.6

Table 6.3 List of power results for K3

D6U4 D8U5

TBTD
(inW)

AETD
(mw)

Save
(%)

TBTD
(m W)

AETD
(ni\V)

Save
(%)

BMU 0.36 0.75 -106.8 0.37 0.74 -100

SMCU 1.93 4.14 -114.0 1.96 4.13 -109.9

TBU 0.96 1.09 -12.6 1.41 1.49 -5.0

PCU 1.00 1.21 -20.6 1.46 1.56 -7.0

UPU 1.98 2.4 3 -22.9 2.58 2.91 -12.8

MEM 3.43 2.66 22.2 3.67 2.85 22.2

Total 9.69 12.31 -27.0 11.47 13.7 -19.3

computational logic area is less than the memory area, it can consume more power due to a

high switching activity led by the metric computation process.

Chapter 6 Two-Step Soft-Output Viterhi Algorithm Turbo Decoder Architecture

Figures 6.13 (a) and (b) and Tables 6.4 and 6.5 illustrate and summarize the area and power

results of TBTD and AETD for K=4. Similar to the results for K=3, AETD saves up to 26%

0.4
I3MU =SMCtJ=TBU E PCU
UPU 	MEM --M—Total

0.3

02

0.1

0.5
p

0.4

0.3
0

0.2

	

0
	

0.1

TBTDD6U4 AETDD6U4 TBTDD8U5 AFTDD8U5

Schemes

	

14
	

30
BMU 	SMCU ETBU 	PC(J:

	

12
	

UPU 	MEM —U--Total
	

25

	

,.-. 10 	
20E

ES
15

6
0 	

lO

	

4
	

0

	

0
	

0

TBTDD6U4 AETDD6U4 TBTDD8U5 AETDD8U5

Schemes

Figure 6.13 (a) Area and (b) power comparisons for K=4

in area by eliminating the memory for the reliability values. The power of AETD is slightly

increased by 9% as compared to TBTD. This power increase rate is smaller than the increase

118

Chapter 6 Two-Step Sofl -Output Viterbi Algorithm Turbo Decoder Architecture

seen for K=3. The number of states for K=4 is doubled compared to K=3. This leads to an

increase of computational complexity and memory size. Thus, it is clear from the results for

Table 6.4 List of area results for K=4.

D6U4 D8U5

TBTD
(111111

2)
AETD
(mill2)

Save
(%)

TBTD
(mm2)

AETD
(mm 2)

Save
(%)

BMU 0.004 0.008 -100 0.004 0.008 -100

SMCU 0.049 0.099 -101.39 0.049 0.099 -101.39

TBU 0.027 0.027 0 0.036 0.036 0

PCU 0.027 0.027 0 0.034 0.034 0

UPU 0.039 0.039 0 0.048 0.048 0.31

MEM 0.226 0.073 67.70 0.255 0.090 64.67

Total 0.374 0.275 26.46 0.427 0.316 25.94

Table 6.5 List of power results for K=4

D6U4 D8U5

TBTD
(mW)

AETD
(mw)

Save
(%)

TBTD
(mW)

AETD
(mW)

Save
(%)

BMU 0.37 0.74 -101.61 0.37 0.75 -101.34

SMCU 3.79 7.74 -104.05 3.74 7.53 -101.30

TBU 2.71 2.71 0.18 3.67 3.70 -0.89

PCU 2.89 2.86 0.89 3.78 3.76 0.29

UPU 2.83 2.89 -1.93 3.31 3.43 -3.68

MEM 5.81 3.26 43.94 6,80 3.64 46.45

Total 18.43 20.23 -9.73 22.82 22.83 -0.05

K=4 that the increased memory for the reliability values contributes to the total power as

well as the total area as compared to the results for K3 decoder results. This difference is

even greater in the results for K=5.

119

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Architecture

The area and power results for K5 are illustrate in Figures 6.14 (a) and (b), and summarized

in Tables 6.6 and 6.7. The results for K5 show different aspects than the results for K=3

20
I3MU =SMCU =TBU 	PC1J
UPU 	MEM —U— Thtal

15

FM-
10

C

30

C

20

C

10

!'13IDJ)6U4 	AIlDDôU4 	IB1DD8LI5 	AI.lDD8tJ5

S chemes

0.8
-BMU =SMCU=TBU E:'.PCU

0.8
0.6

0.6

0.4

0.4

	

0.2
	 F—'

0.2

	

0
	

0

TBTDD6U4 AETDD6U4 TBTDD8LJ5 AETDD8U5

Schemes

Figure 6.14 (a) Area and (b) power comparisons for K=5.

and 4. In the TSOVATBA turbo decoder architecture, the memory size for the reliability

values is higher than that of K3 and K=4 results. Thus, AETD can achieve savings in both

.) J

40

120

Chapter 6 Two-Step Soft -Output Viterbi Algorithm Turbo Decoder Architecture

area and power as compared to TBTD. The area of the memory is much more reduced

compared to K=3 and 4, which also leads to the overall power reduction of AETD.

Table 6.6 List of area results for K5

D6U4 D8U5

TBTD
(rnn)

AETD
(mm2)

Save
(%)

TBTD
(mm 2)

AETD
(urn 2)

Save
(°/)

BMU 0.004 0.008 -100 0.004 0.008 -100

SMCU 0.096 0.195 -102.1 0.096 0.195 -102.1

i'BU 0.067 0.067 - 0.089 0.089 -

PCU 0.068 0.068 - 0.084 0.084 -

UPU 0.048 0.048 0.3 0.059 0.059 0.2

MEM 0.396 0.084 78.6 0.519 0.106 79.4

Total 	1 	0.682 0.473 30.6 0.855 0.544 36.2

Table 6.7 List of power results for K=5.

D6U4 D8U5

TBTD
(mW)

AETD
(rnW)

Save
(%)

TBTD
(mW)

AETD
(In W)

Save
(%)

BMU 0.3 6 0.74 -106.0 0.36 0.73 -104.7

SMCU 8.10 14.48 -78.6 7.99 14.29 -78.7

TB 6.85 6.29 8.1 8.71 8.19 5.9

PCU 5.71 5.64 1.2 7.16 7.08 1.0

UPU 3.38 3.05 9.8 4.22 3.69 12.6

MEM 11.88 4.50 62.0 13.28 5.08 61.7

Total 36.30 34.72 4.3 41.74 39.1 6.3

121

Chapter 6 Two-Step So fl-Output Viterbi Algorithm Turbo Decoder Architecture

6.5.3 Comparing with MLTBD

The TSOVATBA turbo decoder results shown in the previous SLLb section are compared with

the conventional MLTBD turbo decoder performance results obtained in Chapter 3. In the

literature, an REA based SOVA or TSOVA turbo decoder does not reduce the computational

complexity or improve hardware performance as compared to a MLTBD turbo decoder. This

chapter shows that the proposed TBA based TSOVA turbo decoder can save more area and

power than the REA based TSOVA turbo decoder. Thus, this section shows performance

comparison between the TSOVATBA and the MLTBD turbo decoders for different

constraint lengths, K3, 4, and 5. Table 6.8 lists the area and power comparison results

between the MLTBD, the TBTD, and the AETD. The IBID and AETD results were

obtained from the survivor and update depths of D8U5. From the results, the TBTD and

AETD for K=3 can save up to 65% and 72% in area and 52% and 42% in power as

compared to the MLTBD for K=3, respectively. For K4 and 5, the area and power savings

or the TBTD and AETD are slightly less than for K=3, but the area and power savings still

reach up to 66% and 34% for K=4 and 62% and 37% for K=5, respectively.

Table 6.8 Area and power comparisons for the MLMAP and TSOVATBA based turbo
decoder schemes.

MLTBD TBTD AETD
Save

Area (mm 2) 0.689 0.236 65.7 0.192 72.1
K=3

Power(mW) 23.9 11.4 52.3 13.7 42.6

Area (mm) 0.93 0.427 54.0 0.3 16 66.0
K=4

Power (mW) 34.78 22.82 34.3 22.83 34.3

Area (min. 2) 1.452 0.855 41.1 0.544 62.5
K=5

Power(mW) 62.3 41.7 33.0 39.1 37.2

122

Chapter 6 Two-Step Soft-Output Viterbi Algorithm Turbo Decoder Archileclure

6.6 Summary
This chapter presented a TSOVA turbo decoder based on TBA. The decoder architecture

was described in comparison with the TSOVAREA architecture suggested in the literature.

The hardware simulation results have shown that the TSOVATBA turbo decoder

implementations can save more area and power than TSOVAREA turbo decoders. The

savings are due to eliminating the registers required by the survivor and update processes of

the TSOVAREA turbo decoders. The TSOVATBA turbo decoders were also compared with

the MLMAP turbo decoders in terms of area and power. The results of this comparison

showed that the TSOVATBA turbo decoders can reduce area and power more so than the

MLMAP turbo decoders. Thus, the TSOVATBA turbo decoders could be more suitable for

mobile and portable wireless communication systems requiring low power consumption and

area usage without significant BER performance degradation, as shown in the previous

chapter. In the next two chapters, reconfigurable application specific turbo decoder

architectures targeting multi standard wireless communication systems are presented. The

chapters present a turbo decoder that can be reconfigured for different constraint lengths and

different type of turbo codes.

123

Chapter 7

Reconfigurable Turbo Decoder
Architecture

7.1 Introduction

Wireless comrnLlnication systems are constructed with a number of digital signal processing

techniques. One trend for future wireless communication systems is that of converging to

one system, which is compatible and flexible for different standardized systems [162-165].

In order to make the systems compatible and flexible, digital signal processors incorporated

in these systems must be reconfigurable and reusable for different standards.

In wireless communication systems, the adoption of different encoding techniques has led to

the development of a recon figurable channel decoder, like the reconfigurable Viterb i decoder

[166-168]. After the emergence of turbo codes, a dual mode decoder, which can be

reconfigured as Viterbi and turbo decoders, has been proposed [I 3, 169-170] for supporting

convolutional and turbo codes. However, a reconfigurable turbo decoder is considered less in

the literature, and the demand of the reconligurable turbo decoder is continuously expected

to be increased in the future by requiring the compatibility and reusability with a very low

BER. Table 7.1 summarizes the turbo code specifications for different applications [171-

172]. As can be seen, the encoding schemes and parameters of turbo codes vary with the

individual applications. Thus, this chapter presents a reconfigurable application specific

integration circuit (REASIC) turbo decoder architecture that is designed to support turbo

codes generated by different constraint lengths.

The recontigurable application specific turbo decoder (REASTD) architecture presented in

this chapter, which can he configured dynamically, is designed based on the K=5 MLMAP

turbo decoder proposed in Chapter 4. This architecture can be reconfigured for K3 and 4

with a proposed mapping method, which is used for implementing the state metric and LLR

value computation units. The proposed mapping method involves minimized area overhead

124

Chapter 7 Reconjlgurable Turbo Decoder Architecture

Table 7.1 List Of turbo codes for different applications [171-172].

Applications Turbo code Termination Polynomials
[

Rates

CCDSD
Binary,

Tail bits 23, 33, 25, 37 1/6, 1/4, 1/3. 1/2
K=5

UMTS. CDMA2000
Binary,

Tail bits
K=4

13, 15, 17 1/4, 1/3. 1/2

DVB-RCS
Double-binary,

Circular 13 , 15 1/3 up to 6/7
K=4

DVB- RC'I'
Double-Binary,

Circular 13, 15 1/2, 3/4
K=5

M4
Binary,

None 23,35 1/2
M=5

Skyplex
Double -Binary,

Circular 13, 	15 4/5, 6/7
K=4

IEEE802J6, WiMax
Double -Binary,

Circular 13,15 1/2 up to 7/8
K=4 I

for the reconfigurable implementation. In order to achieve low power recontigurable turbo

decoder implementation, a clock gating method is employed in the memory blocks for

storing the state metrics, and the units for computing the state metrics and the LLR values.

With the help of simulation results, the hardware performance of the reconfigurable turbo

decoder is compared with the ASIC turbo decoder implementations.

In addition, as shown in Table 7. 1, there are two types of turbo codes adopted as a standard

in wireless communication systems. They are binary and double-binary turbo codes (BTC

and DTC). As shown in Chapter 2, BTC and DTC are generated by different encoding

schemes. Thus, the reconfigurable turbo decoder for supporting the two turbo codes is

desirable for compatible and flexible systems.

This chapter also proposes a reconligurable application specific turbo decoder (RDASTD)

architecture that can be configured for BTC and DTC with a fixed constraint length K=4. For

supporting both turbo codes, BTC and DTC, the RDASTD needs different design strategies

due to the different number of inputs and outputs required by BTC and DTC. A radix-4 (R4)

BTC turbo decoding process [14, 20] is investigated; and it is found that the decoding

125

Chapter 7 RecontIgurable Turbo Decoder Architecture

process can be exploited to implement the RDASTD. The high radix method is already

employed by Viterbi decoder implementations in order to achieve high throughput [114-117].

The high radix method can also be used to increase turbo decoder throughput.

When the turbo decoding process for DTC is compared to the R4 process, it shows that many

hardware resources can be shared for decoding both turbo codes. The complexity of a R4

based turbo decoder is clearly higher than a general radix-2 (R2) turbo decoder. However,

the overhead led by the R4 method might be traded off with the compatibility and flexibility

of wireless systems. Detailed simulation results are provided to compare with the

performance of the ASIC turbo decoder implementations.

This chapter is organized as follows. Section 7.2 describes the mapping method for the

recon f gurab Ic implementations. The REA SIC turbo decoder architecture and the

incorporated components are illustrated in Section 7.3. Section 7.4 shows the R4 and DTC

decoding methods used to implement the RDASTD. The detailed architecture and structure

of each component are explained in Section 7.5. Simulation results in terms of area and

power compared with ASIC turbo decoders are given in Section 7.6. Section 7.7 summarizes

the chapter.

7.2 Mapping Method for Reconfigurable Turbo
Decoder Implementation

The reconfigurable turbo decoder, presented in this chapter, is designed based on the

MLMAP decoder architecture for constraint length K=5. The units for computing the state

metrics and LLR are the main components in the reconfigurable turbo decoder

implementations. They might be reconfigured for constraint lengths from K3 to 5. A

mapping method in this work is to reallocate the forward and backward state metrics based

on constraint length K=5. This method can be described with the trellis state diagram for

1K5 turbo codes.

Figures 7.1 and 7.2 illustrate the trellis diagrams of the forward and backward processes for

K=5, respectively. There are 16 states given by 2K1 for constraint length K5. The arrow

126

Chapter 7 ReconfIgurable Turbo Decoder Architecture

0 . _.._..-
1
2
3'\\—,-' .

4
-V

5 <Sv
6K)k/

8
9

10
11 N

12 'I• 	.:
13
14

15

0t 77-49

2
3 	 41P

10

12
134{
14

15

Ot\ ••__ .. _-..I.
1 -.

v -•-----
2

4

5 <• "/' ,p
6

7
8 cc

•0

10
11 	 N

12 c(// 	..••
131
141

15 -- ' - '-

k 	 k+l 	k 	 k+l 	k 	 k+l

(a) 	 (b) 	 (c)

Figure 7.1 The forward process trellis diagrams for (a) K=5, (b) K=3 based on K=5, and
(c) K4 based on 1K5.

indicates the process direction in different line styles corresponding to a systematic bit of the

code words. Figures 7.1 (a) and 7.2 (a) are the trellis diagrams for K=5. Figures (b) and (c)

show the state transitions in a bold line as required by the configurations for K=3 and 4

based on the K=5 trellis state diagram.

In the case of fixed constraint length turbo decoder implementations, the number of state

metrics does not change. However, the reconfigurable turbo decoder is designed for

reallocating the output state metrics before computing the new state metrics based on K=5

turbo decoder. For instance, when the constraint length is set to K3, four states of the 16

states are needed for the turbo decoding process, as illustrated with the bold lines in Figures

7.1 (b) and 7.2 (b) for the forward and backward processes. Then, the output state metrics

for each process are reordered as follows.

127

k+ 1

Chapter 7 ReconfIgurable Turbo Decoder Architecture

0 	 ..-. 0 •_••.__.. 01

5 5 5'

6 6 6

7 7 7'

8(;y')< 8a
9d

10 :' . 10.i

11 / 	N 11

12 12 12

13 134 13
14 144 ii 14'

15 15 15

k k+1 k k-H k

(a) 	 (b) 	 (c)

Figure 7.2 The backward process trellis diagram for (a) K5, (b) K=3 based on K=5, and
(c) K=4 based on K=5.

c(k+1) -> ao(k+1), 	ai(k+1) -> ai(k+1), 	 (7.1)

a8(k+1) -> a2(k+1), a9(k+1) -* a3(k+1),

Others -* 0

In a similar way, the state metrics for the backward process is represented as follows:

,L(k+1) -> /(k+1), /31(k+1) -> ,[]1(k+1), (7.2)

/7(k+1) -> ,88(k+1), /33(k+1) -> f(k+1),

128

Chapter 7 ReconfIgurable Turbo Decoder Architecture

Others -+ 0

While the state metrics of states 8 and 9 are input to state metrics 2 and 3 for the forward

state metric computation, the state metrics are input to the state metrics 8 and 9 for the

backward state metric computation. Four state metrics are only passed to LCU in order to

calculate LLR.

On the other hand, of the 16 state metrics, the mapping method for K=4 reallocates eight

state metrics. The mapping can be represented for the forward and backward processes as

follows:

Mapping forward state metrics for K4:

ao(k+l) -> 	(k+1), 	a1 (k+1) -> a1 (k+I), 	(7.3)

a3 (k+l) -> a2(k+1), a4(k+l) -> a3 (k+l),

a8(k+1) -> a4(k+1), a9(k+1) -> a5(k+1),

ao(k+1) -> a6(k+1), a1 1 (k+I) - a7(k+1),

Others -> 0

Mapping backward state metrics for K=4:

	

-> /(k+ l), 	61(k+1) -4,81 (k+ I), 	(7.4)

fl(k+1) -> ,82(k+1), /33(k+1) -> /(k+]),

	

,(k+1)—>/3(k+1), 	85(k+1)-.J3(k+1),

	

/(k+1) -> /310(k+1), 	/3(k+1) -> 1811(k+l),

Others -> 0

129

Chapter 7 ReconjIgurable Turbo Decoder Architecture

Following the mapping methods described above, the output state metrics are

computed after reordering their state numbers when the REASTD is configured for

K=3 and

7.3 Reconfigurable Turbo Decoder Hardware
Architecture for Variable Constraint Lengths

This section presents the recontigurable application specific turbo decoder (REASTD)

architecture for supporting variable constraint length. A detailed structure of the units

incorporated in the architecture is described. To save on power consumption of the REASTD

hardware, gated clock is used to implement a reconfigurable state metric computation unit

(RESMCU) and a reconfigurable LLR computation unit (RELCU).

7.3.1 Reconfigurable Turbo Decoder Architecture

The REASTD architecture is illustrated in Figure 7.3. The incorporated components are

almost same with the MLMAP architecture presented in Chapter 3. The REASTD is

implemented based on K5 to support K=3 and 4 as well. It consists of three reconfigurable

metric computation units for the forward (FREMCU), backward (BREMCU), and dummy-

backward state metrics (DREMCU), a recontigurable LLR computation unit (RELCU) to

calculate LLR for K=3, 4, and 5, the memory blocks for a data scheduling unit (DSU) and

delaying for the soft-input and the forward state metrics. The reconfigurable units can be

configured for the mode (M), and operate with a gated clock (GC) to save on power

consumption. In addition, the memory block, DF, for storing the forward state metrics is

designed with 16 parallel LIFO blocks with GC. The 16 parallel LIFOs are for K5, but 4 or

8 of them are used if K=3 or 4. The unused LIFO blocks are deactivated by the GC.

13
I-,

Chapter 7 Reconjigurabie Turbo Decoder Architecture

NJ [NTj

DREMCU

BMU

'°—
BMUHBU SMOUHH

Soft ------------ - -

input1l c
M GCM OS MAU

FIFO BREMCU k- M

RELCU
*BM UHBULSl

RE- RE
HMAUFL CU

-

GO M DF DL

Soft RE
i2

— BMUHBU ----- __fl
ft

I 	 A---------------- -

FREMCU "- 	Iv'
output

GO M

Figure 7.3 The reconfigurable turbo decoder architecture.

7.3.2 Clock Gating Method for Reconfigurable Turbo Decoder

It is well known that a clock gating method [140-141] is very useful for saving on power

consumption. Figures 7.4 (a) and (b) illustrate an example of the use of the GC, and the GCs

applied to the REASTD implementation, respectively. As shown in Figure 7.4 (a), a system

clock is input to a register flUOUgh an AND gate. If the register does not need to be activated,

the 'Enable' input of the AND gate is set to '0' and hence the system clock is blocked.

Figure 7.4 (b) illustrates how the gated clocks are generated for the REASTD. Three gated

clocks (GC0, GC 1 , and GC 2) are used in the REASTD architecture. The mode (M)

I -,
I-)

Chapter 7 Reconfigurable Turbo Decoder Architecture

Clock
GC0

Date

111 ________j
Gate clock

Enable
1

GC 1

GC2

(a)
	

(b)

Figure 7.4 (a) Clock gating method. (b) The gated clocks applied to the recoil figurable
architecture.

corresponding to the Enable in Figure 7.4 (a) is determined by the constraint length and

represented in 3-bits. Thus, when K is 3, the least significant bit of M, M [0], is ' 1' that

enables GC 0 . When K is 4, M [1:0] enables GC 0 and GC 1 . When K is 5, all GC signals are

enabled.

7.3.3 Reconfigurable Metric Computation Unit

The reconfigurable metric computation unit (REMCU) consists of a BMU, a reconfigurable

branch metric normalization unit (REBMNU), a reconfigurable state metric computation unit

(RESMCU), and a mapping unit (MAU), as illustrated in Figure 7.5. It is used to compute

the forward and backward state metrics. The soft-input data is fed into BMU to generate the

branch metrics (BM). The BM is normalized by REBMNU with the state metrics (SM)

providing by MAU. The normalized branch metrics (NBM) and the Recursive SM are

passed to RESMCU for computing the next state metrics. The REBMNU is almost the same

as the BMNU introduced in Chapter 4. The difference is that the number of SM inputs for

determining the normalizing condition is controlled by the configuration of the constraint

132

Chap/er 7 Reconflgurah le Turbo Decoder Architecture

Soft-input

REMCU
Recursive SM

H
RE

BMU B
	

BMNU N
	

RESMCU H MAU

M: Mode 	M 	GC0 GO 1 GO2

SM

GC: Gated clock

Figure 7.5 The reconfigurable metric computation unit structure.

length. For example, if REBMNU is configured for K=3, REBMNU accepts only four SM

values.

RESMCU that is implemented based on K5 consists of 16 ACSs in parallel and a MAU.

The ACS structure is the same as the one used in Chapter 4. It operates with the mode (M)

and three gated-clocks (GC 0 , GC 1 , GC,) associated with the constraint length.

Figures 7.6 and 7.7 illustrate the configurations of RESMCU and MAU for computing the

forward and backward SM, respectively. These figures are given as an example when they

are configured for K3. As described in the previous subsection, when K3, GC0 is enabled

only, while the other two gated-clocks are blocked. In this case, four of the 16 ACS units are

activated with GC 0 , as illustrated in Figure 7.6. Thus, when K=3, the rest of the ACS units

do not operate and their inputs are set to zero. In the figure, the unused ACSs are represented

in grey coloured blocks. As can be seen, ACS 0, 1, 8, and 9 are activated by GC 0 and M [0].

Outputs of the four ACSs are reordered as r, raj , ra7, and raj by MAU before recursively

being input to the four ACS 0, 1, 8 and 9 of the RESMCU. The reordering method that is

described in the previous section follows.

133

Chapter 7 Recon/igurab Ic Turbo Decoder Architecture

a0 , a1 H 	ACS 0 I' a.

a2 , a3 ACS1 ra1

ia

- 	 ACS ,' icr3

ACS I -

-4-

,A,(S 7
'1AU

a0 , a1 +rAcs 8

a2 , a3

ACS 10

•

	

ACS 11

ACS 12 	•- -

ACS 14

ACS 15 - -

GO0 M[O]

RESMCU

Figure 7.6 The reconfigurable state metric unit configuration for the forward process and
K=3.

Figure 7.7 illustrates the configuration for the backward process that is performed in a

similar way with the process illustrated in Figure 7.6. As before, GC 0 and M [0] are used to

operate the four ACSs, 0, I, 2, and 3. The rest of the ACSs are deactivated. Outputs of the

four ACSs are reordered as r, r,81 , r, and rA through the MAU. This backward SM

reordering method is described in Section 7.2. The dummy-backward process is performed

in the same way with the backward process.

134

Chapter 7 ReconfIgurable Turbo Decoder Architecture

H ACS

)YO , 1 8 H ACS1

H ACS 2

J31 , 89 H ACS 3

—41

-

- 	

- 	

.--p

ACS 7 	. -' 	 RESMCU
MAL

• 	ACS 8

-

r/J

ACS 10 	•-

ACS 11

—CS12

ACS 14 	--~

ACS 15 	--'

GC0 M[O]

Figure 7.7 The reconfigurable state metric unit configuration for the backward process
and K=3.

The configurations of the RESMCU for the constraint length K4 can also be represented by

using the method illustrated in Figure 7.6 and 7.7 with the mapping method described in

section 7.2.

135

Chapter 7 Reconjigurahle Turbo Decoder Architecture

7.3.4 Reconfigurable Log-Likelihood Cornputatioii Unit

A reconfigw-able log-likelihood computation unit (RELCU) is also designed based on the

constraint length K=5 to support the constraint length K3 and 4, as well. A gated-clock

method is applied to the RELCU implementation to save power consumption as in the

RESMCU implementation. The RELCU structure is illustrated in Figure 7,8, which consists

of two mapping units (MAU) and two main components, LCUI and LCUO, to generate I-

and 0- bit LLR values, Liri and L 11.0 . The extrinsic information is obtained from the

differences of Ljri and L10 after subtracting the solt-input. The forward and backward state

metrics (FSM and BSM) and the branch metrics (BM) are input to RELCU, and then, they

are distributed by MAU following the mode (M) that is associated with the constraint length.

The three gated-clocks, GC 0 , GC 1 , and GC,, are input to each of the LCUO and LCU I

depending on M to save on the power consumption.

RELCU

rIr_

M GCQGC1GC2 	 I
LLR

. 	- 	-

M GC0 GC 1 GC2

Extrinsic
Information

FSM

BSM

Soft
input

Figure 7.8 The reconfigurable LLR computation unit structure.

Ii
I-,

Chapter 7 Reconfigurable Turbo Decoder Architecture

PE1

fl
P.ADD 	4CS:

PE2_______

ADD 	4-CS 	
ma [L,,).4.,,

BM

FSM 	MAU ---- --' 	4-CS

B S M

ADD 	L 4-CS
	rnax[L,..Lfr011]

PE4

ADD I 	4-CS.
rnax[L1012 ...L /, 015 1

M[0] 	GC0

Figure 7.9 The reconfigurable L 1,0 or Lir i computation unit structure.

As an example, Figure 7.9 illustrates a structure that can be used for LCUO or LCU I with

MAU. The figure is shown when it is configured for K3. The process for computing the I-

or 0-bit LLR value is no different from that described in Chapters 3 and 4. In the structure,

the four process elements (PE) are activated by the three gated-clocks. Each PE computes 4

I- or 0-bit LLR values from the input FSM, BSM, and BM, and then the LLR values are

compared by 4-input compare-select (4-CS) to determine the maximum value, as represented

by max[L110 ... L,, 3] in PEI. The outputs of the four PEs are compared again to select the

13 7

Chapter 7 ReconjIgurable Turbo Decoder Architecture

final LLR value. However, when the LCU is configured for K3, only PEI is activated and

its results are output through the 4-CS as the final value L,,., as shown in Figure 7.9, in

Which the grey coloured PEs are deactivated.

7.4 Turbo Decoder Implementation Methods for
Binary and Double-Binary Turbo Codes

7.4.1 Radix-4 Turbo Decoding Method for Binary Turbo Codes

Radix-4 and higher radix decoders for convolutional codes were developed in order to

achieve high throughput at the expense of increased implementation complexity [114]. An

R4 turbo decoder VLSI implementation for BTC is described in [118]. Similarly, as with the

decoder for convolutional codes, R4 turbo decoder processes the input data at times k and

k+1 concurrently. Figures 7.10 (a) and (b) illustrate R2 and R4 trellis diagrams for BTC with

a constraint length K4. In Figure 7. 10 (b), four transition paths converge into one state,

0 	1 -•'- 	00— 01---- 10–j– 11

0
1
2

3
4

5
6

7

k 	k+l k 	k±l

(a) 	 (b)

Figure 7.10 (a) Radix-2 and (h) radix-4 based trellis diagram for K=4 binary turbo codes.

138

00— 11

I 	• 	OS\

2 .-••

3.- .-

4 ,..... 	..

5 .-..

6

I -. 	7.-.. ...

0

I

2

3

4

5

6

7

Chapter 7 ReconfIgurable Turbo Decoder Architecture

represented in different line styles, which indicate two systematic bits of the code words at

times k and k+l. Thus, a state metric for each state is obtained from the four branch metrics

calculated from the soft-input data at times k and k+l, and the four state metrics. Therefore,

the number of the state metrics for forward and backward processes is reduced to half of the

number of the state metrics computed by the R2 turbo decoder implementations, which are

the MLMAP turbo decoders described in previous chapters. However, two LLRs and

extrinsic information must be obtained from the half number of the state metrics and the

branch metrics generated at times k and k+ I. The two LLRs are concurrently calculated as

follows:

L 1,. (k) = max[L111 (k, k + 1), L1,. 1 0 (k, k + I)] - niax[L,,. 00 (k, k + 1), L 1,. 01 (k, k + 1)] (7.5)

L 1,. (k + I) = inax[L11. (k, k + I), L1r01 (k, k + 1)J - max[Liroo (k, k + I), L1r1 (k,k + 1)] (7.6)

where Lirjj, Lir. Lirüi, and Ljrjü are obtained from the state and branch metrics of the

k 	k+l
	

k 	k+l

(a)
	

(b)

Figure 7.11 The trellis paths for computing (a) L 1, 0 and (b) Liri based on radix-4 binary
turbo codes for K=4.

I)
I-,

0
1

2

3
4

5

6

7

0 	 1 	 2

Chapter 7 Reconfigurable Turbo Decoder Architecture

transition paths represented by the systematic bits of the code words, II, 00, 01, and 10,

respectively. Figures 7.11 (a) and (b) are given as an example to obtain L 1, 00 and Lirij, which

are the maximum values of the LLRs calculated from the eight transition paths, respectively.

The other two LLRs can be obtained using the same method. Then, the final LLR values in

equations (7.5) and (7.6) can be obtained. The extrinsic information at times k and k+l can

be provided to the next decoder by subtracting the systematic input symbol and the extrinsic

information of each time from the LLR values obtained from equations (7.5) and (7.6).

7.4.2 Double-Binary Turbo Codes Decoding Method

As described in Chapter 2, the DTC is generated from a double-binary input data stream.

Many papers have researched the turbo decoder implementations for BTC. However, the

turbo decoders for DTC are relatively less considered in the literature from the hardware

implementation point of view. Thus, in this work the DTC turbo decoding algorithm has

been investigated. This investigation showed that the algorithm needs a different strategy

from the BTC turbo decoding algorithm.

Basically, the same components are used to implement BTC and DTC turbo decoders.

However, due to using different techniques in the encoding process, the initial and final state

metrics for the forward and backward processes need to he treated differently in the

00— 01 ----- 10—.—. 11

—'V

.' 	•e

N-2 N-1

Figure 7.12 The forward process trellis diagram for K4 double-binary turbo codes.

140

Chapter 7 RecontIgurable Turbo Decoder Architecture

implementations, which require modifying the design of the state metric computation unit

(SMCIJ).

The decoding algorithm for DTC has similarities, as shown in the trellis diagrams in Figure

7.12. Thus, calculating the branch and state metrics for the DTC decoding process is almost

the same as that of the R4 BTC decoding process. However, while the initial state metrics for

forward and backward processes for BTC are already known at the decoder side, due to

using CRSC by its encoder, as described in Chapter 2, they may be determined and updated

for DTC during the decoding process. For these processes, the initial state metrics for the

forward and backward processes are initialized to zero at the first iteration as follows:

a(so)=O, ,G(SN_1) = 0 for all slates 	 (7.7)

Then, the final state metrics for the forward process and the backward process, 	(S jV_])

and 	, are updated to the initial state metrics in the next decoding process. This

happens at every iteration for updating the new initial state metrics. Therefore, the final state

metrics need to be accumulated until the next decoding process starts for the updating.

Then, two LLRs are computed using the same method described in (7.5) and (7.6). In

addition, two extrinsic information data can be obtained as follows:

L 2 (k) = LJ. (k) - Lyj' - L 1 	 (7.8)

L 2 (k) = L (k) - Lyf - L 	 (7.9)

where A and B are the systematic bits as shown in Figure 2.4 in Chapter 2. Therefore, each

set of extrinsic information, L 2 and L 2 , corresponds to the input systematic symbols. This

process is the same with the method used in the R413 turbo decoding process described in the

previous subsection.

As can be seen, a R4 BTC turbo decoder structure can be exploited to implement the

RDASIC turbo decoder that supports BTC and DTC.

141

Chapter 7 ReconfIgurable Turbo Decoder Architecture

7.5 Reconfigurable Turbo Decoder Hardware
Implementations for BTC and DTC

7.5.1 Recoiiflgurable Turbo Decoder Architecture

In this section, the RDASTD architecture for R413 and DTC is described based on the

architecture described in Figure 4.1 of Chapter 4. Figure 7.13 illustrates the reconfigurable

architecture that consists of three R4 BTC and DTC metric computation units for forward

(FRDMCU), backward (BRDMCU), and dummy-backward processes (DRDMCU), an R4

BTC and DTC LLR. computation unit (RDLCU), memory blocks for data scheduling (DSU)

and delaying the soft-input (DS), the forward state metrics (DF), and the soft-output (DL).

These memory blocks can be realized by FIFO and LIFO blocks. The depth of the LIFO and

TNJ
_ M-

DRDMCU
RDBMU t ---- 	-----------------

Soft ERDBMU 	MAU H RDSMCU H -

input
DS

M 	M 	 RDLCU

BRDMCU
DSU M

 MAUH RDSMCU ERDBMU

-

DF 	DL

- 	 ---W.
1. 	 IT:

 RDBMU 	 RDSMCU
Soft

Output
I 	FRDMCU

M
M

Figure 7.13 The reconfigurable turbo decoder architecture for radix-4 and double-binary
turbo codes.

142

Chapter 7 ReconJlgurczble Turbo Decoder Architecture

FIFO is related to the window size. In this architecture, the window size is determined by the

minimum block size of 3GPP for BTC and IEEE 802.16 for DTC. Thus, the memory block

size can be configured following the input mode (M) for BTC and DTC. The computational

logic components. RDMCU and RDLCU, are designed for supporting the R4 BTC and DTC

decoding process. The delay for the branch metrics input to RDLCU is replaced by an

additional R4 BTC and DTC BMU (RDBMU) for saving area. All the components are

configured by the mode (M), either for R4 BTC or DTC. Detailed implementation methods

of each component are described in the following sections.

7.5.2 Reconfigurable Metric Computation Unit for Radix-4 BTC
and DTC

Figure 7.14 illustrates the R4 BTC and DTC MCU (RDMCU) structure that consists of a

reconfigurable R4 BTC and DTC branch metric unit (RDBMU) and a R4 BTC and DTC

state metric computation unit (RDSMCU) that incorporates a mapping unit (MAU) and a

parallel R4 BTC and DTC add-compare-select-normalization (RDACSN). The mode (M)

input to RDMCU determines the algorithm (BTC or DTC) to be implemented. Before

starting the decoding process, each component is configured for the selected mode. Then,

MAU distributes the branch metrics (BM) obtained by RDBMU and the state metrics

generated by RDSMCU in the previous process to calculate the new SMs.

I RDMCU

Recursive SM

Soft-input 	 __'SM

Figure 7.14 The reconfigurable metric computation unit structure.

1
I '-I.)

Chapter 7 ReconfIgurable Turbo Decoder Architecture

7.5.2.1 R4 BTC and DTC Branch Metric Unit

Figure 7.15 illustrates the RDBMU structure used to implement the RDASTD architecture

with R4 BTC and DTC. This figure is given as an example for R4 BTC. As can be seen, due

to the high radix decoding process, the implementation complexity is clearly higher than the

BMN implemented in previous chapters. While the BMU used in the previous MLTBD

architectures generates the two branch metrics of the required four branch metrics, the

RDBMU provides the eight branch metrics of the required 16 branch metrics from the six

inputs as illustrated in Figure 7.15. The other eight metrics can simply be obtained by

negating the outputs of RDBMU Generally, the branch metric computation process does not

significantly affect the overall turbo decoder performance in terms of area usage and power

consumption. However, it was found that different weighting for the soft-input data and

extrinsic information is needed for R4 BTC and DTC in order to achieve better BER

I 	 1 	 U 	 1)

lull 	lillo 	mo! 	;,1 100 	110!! 	1101 	1100! 	11000

Figure 7.15 The branch metric unit structure for R4 BTC and DTC.

144

Chapter 7 ReconjIgurahie Turbo Decoder Arch ilecture

performance. Therefore, the weighting relies on the encoding style and it is implemented

with shift registers.

7.5.2.2 R4 BTC and DTC Add Compare Select Normalization Unit

In common turbo decoder implementations, an ACSN unit is regarded as one of the key

components. Here, the ACSN for RDSMCU is separately described by whether it is for

either R4 BTC or DTC. As an example, Figures 7.16 (a) and (b) show a block diagram of

ACSN for R4 BTC and DTC, respectively. In Figure 7.16 (a), BM, SM, and dummy state

metric (DSM) generated by DRDMCU shown in Figure 7.14 are input to ACSN. While SM

is input recursively to ACSN through a multiplexer (MUX), the input recursive SM is

updated in DSM at the beginning of every sub frame during the decoding process following

the number of the counters (CNTI and CNT2).

On the other hand, the ACSN illustrated in Figure 7.16 (b) requires an accumulator (ACM).

All the functions and the data input sequence of Figure 7.16 (b) are the same as with Figure

7.16 (a). However, as already described in Section 7.4, while the initial state metrics for BTC

BM DSM 	 BM DSM

\MUX

- I
CNT2

SM 	 I 	ISM

C Nil

C NT2

ACM

ACSN 	I 	I 	 I 	ACSN

SM 	 SM

(a) 	 (b)

Figure 7.16 The add-compare-select-normalization block diagram for (a) binary and (b)
double-binary turbo codes.

'45

Chap/er 7 ReconjIgurable Turbo Decoder Architecture

a() 	0() 	a1 	"1100 	112 	YIIIII 	03 	II

Is

new a0

Figure 7.17 The raxid-4 based add-compare-select-normalization structure.

are known at the decoder side, the initial state metrics for DTC must be found for every

iterative process after being initialized with zero for the first iteration. The initial state

metrics are then updated when the next iteration is started. The updating takes place once in

every frame. Therefore, the ACM is for storing the state metrics used for the initial state

metrics in the next iteration process.

Figure 7.17 is a conventional ACSN structure, which can be used for R4 BTC and DTC.

This structure is given as an example for calculating a state metric of state 0 for R4 BTC.

The input branch and state metrics must be altered as they are for DTC. These inputs are

controlled by MAU in Figure 7.14. Four branch (t000, 7tioo, yioii, yiii) and state (a0, a, a2,

a3) metrics are added by using four adders and, then, the results of each adder is repeatedly

compared for selecting the maximum state metric. The selected maximum state metric is

146

Chapter 7 Reconfigurable Turbo Decoder Architecture

normalized by subtracting a constant (CONST) value to prevent overflows, as the state

metric is larger than the constant. Finally, 'new ' is generated and is recursively input to

the ACSN itself.

It is well known that ACSN is the bottleneck in a high-speed turbo decoder and the critical

path delay of a turbo decoder is in ACSN as was discussed in Chapter 3. The critical path

delay, d, of the structure illustrated in Figure 7.17 can be given as follows:

d=4xr0 +3xt,,, 	 (7.10)

where t, is the adder delay and t,,, is the multiplexer delay. In order to achieve a high-speed

turbo decoder, the delay must be reduced. The retiining method used in [154] may be

- 	 ,, 	 ' -V1 	 /Y 	 Y- ...

4-input CS

new ao

Figure 7.18 The radix-4 add-compare-select-normalization structure with 4-input compare
select unit.

147

Chapter 7 Reconfigurable Turbo Decoder Architecture

applied to the ACSN to reduce the delay. However, this method is not suitable for

implementing the ACSN for R4 BTC and DTC due to large overheads in area usage and

power consumption led by the method.

Figure 7.18 illustrates another ACSN structure for improving the critical path delay. Instead

of the three CS stages in Figure 7. 17, a 4-input CS introduced in Chapter 4 is employed in

Figure 7.18. As can be seen, the four sets of results corresponding to the outputs of the first

adder set are compared with each other at the same time by using six adders. Then, the six

most significant bits (MSB). SO-5, generated by the six adders, are used to select the

rnaxinuim state metric as described in Chapter 4. Thus, the delay of the ACSN in Figure 7.18

is

d =3XIa +(in +t ;n

where ,;, is the delay of 4-input selector, which may be a little longer than t,. With the 4-

input CS, it is shown that the ACSN delay in (7.11) is roughly reduced by the delay of one

adder and one MUX. However, the use of 4-input CS increases the number of adders that

may lead to area and power overhead. The hardware performance between the two ACSN

implementations is evaluated and compared in later sections.

7.5.3 R4 BTC and DTC Log-Likelihood Computation Unit

Al] of the branch metrics and the forward and backward state metrics generated by each

RDMCU are used to calculate the LLR values. Figure 7.19 illustrates a block diagram of R4

BTC and DTC LLR computation unit (RDLCU) that consists of a mapping unit (MAP) for

the distribution of the input branch metrics (BM), forward and backward state metrics (FSM

and BSM), four sub LLR computation units (LLROO, 01, 10, and 11), and two LLR

computation units (Sub-LCUO and 1). The purpose of the mapping unit (MAU) is the same

as that of the MAU shown in Figure 7.14. MAU reallocates the input BM, FSM, and BSM

for computing LLR based on the selected operation mode (R4 BTC or DTC). After

completing the distribution of all branch and state metrics, LLROO, 0 I, 10, and 11, calculate

L 1, 10, Lirüi, L ip- yo , and Lir ij following the method described in Section 7.4. These values are

used to obtain two LLR values by Sub-LCUO and Sub-LCU1 based on the methods in (7.6)

148

Chapter 7 Reconflgurahle Turbo Decoder Architecture

BM

FSM

BSM

Figure 7.19 The LLR compLitation unit structure.

and (7.6). At the same time, the extrinsic information for the next iterative decoding process

is also computed from the LLR values obtained by Sub-LCUO and Sub-LCU I. The outputs

of the RDLCU are represented by 9-bits, in which the most significant bit (MSB) represents

the LLR and the other 8-bits represent extrinsic information. The MSB is the decoded bit

information of the turbo decoder.

In Figure 7. 11(b), the trellis state diagram associated with computing Ljrjj for R4 BTC was

given as an example, in which eight transition paths exist. Figure 7.20 illustrates a

conventional structure of the LLR1 1 for computing L 1,. 11 . Similarly, this structure can also be

used to implement the sub-LCUOO, 01, and 10 with different combinations of the input

branch and state metrics. As shown in Figure 7.20, there are eight pairs of branch and state

metrics corresponding to eight transition paths and forward/backward states. Note that the

subscript of and , indicates state 0 of forward and backward state metrics. In addition,

the subscript of Yo denotes branch metric of 0000 code word generated by the encoder. In

this case, after adding three input metrics, the L 11 is determined by selecting the maximum

value by using seven CS units. In this structure, the critical path delay is

Chapter 7 Reconfigurable Turbo Decoder Architecture

6*1

Figure 7.20 L ii computation unit structure for radix-4 and double-binary turbo codes.

d-5xç+3xt 	 (7.12)

We can see that this delay, d, is longer than ACSN in (7.10). To reduce this critical path

delay, the structure can be pipelined by inserting a set of registers. This cannot only reduce

the critical path delay but also decrease the glitches. However, excessive pipelining may also

lead to increased area usage and power consumption due to the insertion of registers.

Figure 7.21 illustrates an improved structure of Figure 7.20. When we look at the input

branch metrics, we can see that the actual number of branch metrics is only four to calculate

L 1 1. This is the same for computing L 01 , L , and L whether it is for BTC or DTC. This

allows comparisons to be made before adding all the three metrics. Therefore, after adding

forward and backward state metrics, the results are compared to select the maximum value

and, at the same time, branch metrics are summed with the two state metrics. The four

150

Chapter 7 Recon.figurable Turbo Decoder Architecture

Tii•

Figure 7.21 The L n computation unit structure with 4-input compare select.

outputs generated from the first stage comparisons are then used to compute the final output.

Here, the 4-input CS as shown in Figure 7.18 is used to select the maximum LLR as the final

output. The critical path delay of the structure in Figure 7.21 can be given as below:

d=3Xta ±t,,: +t,n 	 (7.12)

Clearly, this delay is the same with (7.10). Therefore, the structure provides an efficient

implementation for reducing the critical path delay without needing to employ pipelining.

The structures of Figures 7.20 and 7.21 have been implemented and their performance

compared in terms of area usage, power consumption, and delay, which are discussed in the

next section.

151

Chapter 7 Reconfigurable Turbo Decoder Architecture

7.6 Results

The reconfigurable ML-MAP turbo decoder has been designed at RTL using Verilog HDL

and synthesized with the Synopsys DesignCompiler TM using the UMC 0,1 8im standard

CMOS cell library. RTL and gate level simulations were performed using Cadence Verilog-

XLTN1. The switching activities generated from all circuit nets were obtained during the gate

level simulation after eight numbers of iterations. The reconfigurable turbo decoder power

consumption was evaluated with Synopsys DesignPower m' with the switching activity

information generated by the gate-level simulation. These simulation processes were carried

out at a clock frequency of 50MHz.

At first, Figure 7.22 illustrates the area results of the REASTD compared with the ASIC

turbo decoder implementation results for each constraint length K=3, 4, and 5, which were

given in Chapter 4. The primary and secondary axes in the graph indicate breakdown

components and total area results. In the figure, K3A implies the K=3 MLMAP turbo

decoder implemented as an ASIC. The comparisons of the area results are also depicted in

Table 7.2. As expected, the area of the REASTD designed based on K5 is larger than K=3

and K=4 ASIC implementations. Area overheads of the REASTD were 173% and 79% for

K=3 and K=4 ASIC implementations, respectively. On the other hand, the area overhead

compared to K=5 ASIC implementation was just 6%. When the results of each component of

the REASTD are compared with the results of K5A, it is clear that the total area overhead is

led by the reconfigurable components such as BMNU, SMCU, and LCU. The BMN does not

include the reconfigurable feature, so its area remains unchanged.

The REASTD power results need to be analysed in a different way. The REASTD power

was evaluated after it was configured for each constraint length K=3, 4, and 5. In this power

evaluation, two cases were considered for the REASTD. One is the case of without the gated

clock; the other is the case of with the gated clock. In the former case, the REASTD can be

configured for each constraint length, but it operates without the gated clock. Although a

clock signal is input to all the components, zero sequences are set to inputs of the unused

components so that glitching can be reduced. Thus, the power results obtained from the two

cases provide information about the effectiveness of the gated clock.

152

0.75

0.5

0.25

0

1.2
Th

I 	g
Ce

0.8

0.6

0.4

1.4

0.2

0

• Eli BMN Eli BMN U El S MC U

Chapter 7 Reconfigurable Turbo Decoder Architecture

MA 	K4A 	K5A 	REASTD

Schemes

Fi gure 7.22 The area results and comparisons.

Table 7.2 List of area results.

MA K4A K5A REASTD

Area
(111m

2)

Area
(mm2)

Area
(in 1112)

Area
(iniii)

K3R ________ K4R K5R

Save Save Save

BMU 0.019 0.019 0.019 0.019 0 0 0

BMNU 0.051 0.072 0.115 0.115 -126.4 -59.3 -0.3

SMU 0.060 0.110 0.211 0.220 -265.5 -99.3 -4.4

LCU 0.048 0.089 0.176 0.223 -361.5 -149.4 -26.1

MEM 0.314 0.459 0.749 0.771 -145.2 -67.8 -2.8

Total 0.493 0.751 1.272 1.350 -173.3 -79.5 -6.0

Figure 7.23 illustrates the power results of the REASTD with and without the gated clock,

after being configured for each constraint length. The primary and secondary y-axes indicate

153

Chapter 7 Reconfigurable Turbo Decoder Architecture

25
	

70
BMN = BMNU SMCU

20
	= LLR 	MEM -*-- Total

50

15

I-

>
0 10

I

30

10

-10

V

K3A K3WO K3GC 	K4i\ K4WO K4GC 	K5A REASTD

Schemes

Figure 7.23 The power results and comparisons.

Table 7.3 List of power comparisons for K=3.

K3A K3WO K-3) GC

Power
(rn\V)

Power (In

W)
Save
(%)

Power
(niVV)

Save
(%)

BMU 1.6 1.65 0.9 1.6 0.9

BMNU 3.4 4.964 -42.3 4.96 -423

SMCU 4.4 6.328 -41.6 4.88 -9.3

LCU 3.8 7.4 -91.5 5.12 -32.5

MEM 7.5 14.097 -85.7 8.37 -10.3

Total 21.0 34.439 -63.4 25.00 -18.6

the breakdown component and total power results. In the figure, K3WO and K3GC imply

that REASTD is configured for K=3 'without gated clock' and 'with gated clock',

respectively.

154

Chapter 7 Reconfigurable Turbo Decoder Architecture

Table 7.4 List of power comparisons for K=4

K4A K4WO K4GC

Power
(III W)

Power
(m W)

Save
(%)

Power

_(MW)

Save
(%)

BMU 1.6 1.63 1.9 1.63 1.9

BMNU 4.5 5.33 -18.2 5.33 -18.2

SMCU 8.1 9.75 -20.4 8.79 -8.5

LCU 6.9 10 -44.0 8.48 -22.1

MEM 10.6 14.83 -39.5 11.03 -3.7

Total 31.8 41.56 -30.5 35.27 -10.7

Table 7.5 List of power comparisons for 1K5.

K5A REASTD

Power
(MW)

Power
(mw)

Save
(%)

BMU 1.6 1.66 -0.8

BMNU 6.9 6.87 0.8

SMCU 16.0 18.95 -17.7

LCU 14.4 17.69 -22.3

MEM 16.7 17.05 -1.7

Total 55.9 62.24 -11.3

In the figure, the ASIC implementation power results are the results given in Chapter 4.

Tables 7.3, 7.4 and 7.5 summarize the comparisons of the power results for constraint length

K=3, 4, and 5, respectively. It is clear from the results that the clock gating method is very

effective for conserving the power consumption of the REASTD when it is configured for

K=3 and 4. While the power overheads of K3WO and K4WO were 63% and 30%, as

compared to the ASIC turbo decoders, the power overheads using the clock gating method

were 18% for 1K3 and 10% for 1K4. When the REASTD power for K5 is compared with

K5A, it is clear that the logics required for the recorifigurability resulted in an 11% increase

lull

Chapter 7 ReconfI,gurable Turbo Decoder Architecture

in power. As in the area results, most of the power overheads were led by the reconfigurable

components. BMNU, SMCU, and LCU. Among them, the LCU power overhead dominantly

affected the overall power overhead.

7.6.1 Hardware Test Systems for RDASTD

A test environment has been built for verifying and evaluating the reconfigurable turbo

decoder at the RTL and gate levels. For this, two test systems for BTC and DTC were

created. Figure 7.24 illustrates a block diagram of the test systems. The systems consist of

two main blocks, one is for generating turbo codes and transmitting them to the decoder over

the AWGN channel, and the other one is for performing and testing the turbo decoding

process with the transmitted data. As can be seen, BTC and DTC codes were generated in a

MatlabTM environment, and then, they were passed to the testbench after converting into a

fixed-point representation. Additionally, the interleaver and deinterleaver addresses

generated by the interleaver and deinterleaver address generator (lAG & DAG) were sent to

MatIabTM Testbench
3GPP RTLJGate-Level

IEEE 802.16
IAGIDAG

Interleaver/

Binary

jEnc

Deinterleaver

Turbo 	
Mod. _________ 	

Fixed
Duo- Bina 	Demod. . oder L Data R4DTD

AWGN

Figure 7.24 Test systems for the reconfigurable turbo decoder verification.

the testbench. The interleaver and deinterleaver addresses for binary and double-binary turbo

codes were generated following the method described in 3GPP and IEEE 802.16. The

testbench consists of memory blocks for accumulating all the transmitted data, interleaver

and deinterleaver addresses, and control units for controlling data transactions between turbo

decoders. From the tests, the latency of the turbo decoders was obtained as follows:

156

Chapter 7 ReconfIgurable Turbo Decoder Architecture

Latency = clock period x (window size x 4 + 3) 	 (7.13)

where 3 corresponds to the number of clock cycles due to the pipeline stages.

7.6.2 Hardware Performance Results

The RDASTD also designed using Verilog I-IDL has been synthesized with the Synopsys

DesignCornpiler1M using the UMC 0.18 urn standard CMOS cell library. RTL and gate-level

simulations of the turbo decoder hardware were performed using Cadence Verilog-XL Th

with the test systems shown in Figure 7.24. After completing the gate-level simulation,

power consumption was evaluated using the Synopsys PowerCompiler TM with the switching

activities generated from all the circuit nets during the gate-level simulation. All the

simulations were carried out at a clock frequency of 50MHz.

The RDASTD implementation has been investigated with various schemes in order to find

an optimized hardware implementation. In addition, R4 BTC and DTC MLMAP turbo

decoders have been implemented as ASIC in order to compare the hardware performance

with the RDASTD. Figure 7.25 and Table 7.6 illustrate and summarize the area results for

the different turbo decoder schemes. In the figure and table, CON is the conventional turbo

decoder for constraint length K=4 BTC implemented in Chapter 3. R4A and DTA are turbo

decoders for R4 I3TC and DTC, respectively, implemented in this chapter. RDASTD implies

the reconfigurable turbo decoder which is able to support R4 BTC and DTC. It is clear that

the area of RDASTD is the largest among the schemes due to the additional logics for the

recontigurability. Area overhead of RDASTD was 40%, 21%, and 5% compared to CON,

MA, and DTA, respectively. In addition, the area of R4A is 15% more than the area of CON

due to the increased complexity. As can be seen, most of the area increase was led by the

increased computational complexity in the units for computing the branch and state metrics

(BMU and SMCU), and LLR value (LCU). The R4 based turbo decoder requires a much

more complex computation process, which results in the significant area increase of the

computational logics. However, the area of memory blocks is less in R4A and DTA, and is

slightly higher in RDASTD when compared to CON. This is because of the reduction of the

memory blocks for storing the forward state metrics before they are fed to the LLR

computation unit for calculating LLR. Although the computational complexity is increased

157

Chapter 7 ReconfIgurable Turbo Decoder Architecture

1.2

0.8

0.6

0.4

0.2

0

1BMU EIIIJSMCU = LCU

- MEM -*- Total
1.6

Ce
1

Ce

0

0.8 H

0.4

CON 	R4A 	DTA 	RDASTD

Schemes

Figure 7.25 Area results and comparisons.

Table 7.6 List of area results

CON R4A DTA RDASTD

Area
(111m 2)

Area
(111m)

Save

CON

Area
(111111

2)
Save
(%)

Area
(mm2)

Save
(%)

 CON

Save
(%)
R4D

Save
(%)

DTA

BMU 0.014 0.067 -354.1 0.067 - 0.070 -377.0 -5.0 -5.0

SMCU 0.137 0.283 -105,8 0.347 - 0.370 -169.4 -30.8 -6.5

LCU 0.083 0.151 -81.7 0.152 - 0.165 -97.6 -8.7 -8.5

MEM 0.698 0.577 17.2 0.678 - 0.703 -0.7 -21.7 -3.6

Total 0.934 1.079 -15.5 1.245 - 1.309 -40.2 -21.2 -5.1

by implementation based on R4, the size of the memory required for storing the forward

state metrics can be reduced by almost half of the memory required by CON. In other words,

if a turbo decoder is implemented based on radix-8, the memory size will be reduced by

almost a quarter of the CON memory. In this case, however, the increased computational

complexity would dramatically increase the overall area and power as well.

158

Chapter 7 Reconfigurable Turbo Decoder Architecture

40
BMU = SMCU = LCU
MEM -- Total

30

9

20

CL
C

10

0

CON 	 R4A 	RDASTD

Schemes

Figure 7.26 Power results and comparisons for binary turbo codes.

Table 7.7 List of power results for binary turbo codes

CON R4A RDASTD

Power
(m W)

Power
(mW)

Save
(%)

CON

Power
(III W)

Save
(%)

 CON

Save
(%)
R4A

BMU 1.21 6.18 -407.9 6.59 -441.1 -6.5

SMCU 10.54 22.89 -117.1 28.69 -172.1 -25.3

LCU 7.35 16.36 -122.5 16.79 -128.4 -2.6

MEM 15.66 16.28 -3.96 18.15 -15.8 -11.4

Total 34.78 61.73 -77.50 70.23 -101.9 -13.7

The power consumption results need to be compared differently than the area results because

two different data for BTC and DTC are fed into the turbo decoders. FLirtherinore, the block

sizes of BTC and DTC are not the same. Due to these considerations, RDASTD has been

compared with BTC and DTC separately.

80

60

40 C

4a

C

20

0

159

Chapier 7 Reconfigurahie Turbo Decoder Architecture

BMU = SMCU = LCU
MEM -)- Total

LI
DTA 	 RDASTD

Schemes

Figure 7.27 Power results and comparisons for double-binary turbo codes

Table 7.8 List of power results for double-binary turbo codes.

DTA RDASTD

Power
(rnW)

Save
(%)

Power
(MW)

Save
(%)

BMU 5.01 - 5.08 -1.4

SMCU 22.38 - 26.65 -19.0

LCU 13.27 - 14.86 -11.9

MEM 16.27 - 16.95 -4.1

Total 56.93 - 63.55 -11.6

The power consumption results of the turbo decoders after completing eight iterations for

BTC are given in Figure 7.26, where the primary and secondary Y-axis denotes the

breakdown and overall power consumption of the turbo decoders. Table 7.7 lists the power

results where CON and R4A are the ASIC turbo decoders for BTC and R4 BTC,

40

30

E
20

C

10

0

80

40

::!

160

Chapter 7 ReconfIgurable Turbo Decoder Architecture

respectively. In the results, RDASTD is configured for BTC. The power results of the turbo

decoders are obtained after simulations with the same data sets and number of iterations. A

clock frequency of 50MHz is used. Total power consumption of R4A and RDASTD

increased by 77% and 101% as compared with CON. On the other hand, the power overhead

of RDASTD was only 13% as compared to R4A. From the results, it can be seen that the

power overheads are due to the high complexity of the computational logics implemented

based on R4. In R4A the power is five times the power of BMU and double the power of

SMCU and LCU as compared to CON. Conversely, the power of MEM is not significantly

increased. As in the area results, this is because the R4 based decoder implementations

reduce the depth of the memory required to store the forward state metrics.

For better comparisons among the different turbo decoders, the total energy of the decoder

iiight be considered because the time needed to complete eight iterations involves different

CON and R4 based turbo decoders. R4 and RDASTD generate two LLR values, and take

only half of the time required by CON to complete the decoding process. Thus, the results

reveal that the total energy obtained by multiplying time by the power of the R4 and

RDASTD is almost the same or less than the energy consumed by CON.

Figure 7.27 illustrates the power results of DTA and RDASTD configured for DTC. In this

case, the power consumption results have been obtained from the same size of input blocks

and decoding time for both the decoders, DTA and RDASTD. Table 7.8 summarizes the

power results. Overall, the power overhead of RDASTD was 11% as compared to DTA. As

can be seen, the results show that the power increase was mainly led by the recoil figurable

logics incorporated in SMCU and LCU. The power increase in BMU and MEM of RDASTD

was less significant than SMCU and LCU.

7.7 Summary

This chapter presented a reconfigurable turbo decoder architecture for supporting different

constraint lengths, K=3, 4, and 5, turbo codes. For designing the reconfigurable architecture,

a mapping method has been introduced for efficient implementation. The reconfigurable

1113011

Chapter 7 ReconjIgurable Turbo Decoder Architecture

architecture has been implemented based on the constraint length K5. To save on the power

consumption, the clock gating method has been applied to the implementation. The power

results have shown that the clock gating method is very effective for saving on the power

consumption of the reconfigurable architecture. The power overhead of the reconfigurable

turbo decoder was around 18%, 10%, and 11% respectively, when compared with K=3, 4,

and 5 turbo decoder ASIC implementations. Meanwhile, the reconfigurable turbo decoder

increased just 6% in area as compared to the K=5 turbo decoder AISC implementation. This

chapter also presented a reconfigurable turbo decoder architecture for constraint length K=4

BTC and DTC. Before designing the RDASTD, the radix-4 based turbo decoder for BTC has

been investigated. This investigation has revealed that the radix-4 BTC and DTC turbo

decoders had many similarities in their functions and implementation methods. The

RDASTD, which exploited the radix-4 method for its hardware implementation, has been

compared with the performance of ASIC turbo decoder implementations. For the comparison,

the radix-4 BTC and DTC turbo decoders have been implemented as ASIC in this chapter.

The simulation results have shown that the area overhead of the RDASTD was 40%. The

power of the RDASTD has been analysed in two modes, BTC and DTC. When the

RDASTD was set to the BTC mode, the power overhead was 101%. However, the total

energy required to complete the turbo decoding process was less than the conventional turbo

decoders.

162

Chapter 8

Conclusions

8.1 Introduction

This chapter concludes the thesis. Section 2 reviews each chapter specifying the results

obtained. In Section 3, the achievements of the thesis are listed. Finally, Section 4 gives

possible directions for future work related to this thesis work.

8.2 Review of Thesis Contents

Chapter 2 has described the turbo encoding and decoding principles for binary and double-

binary turbo codes, describing their encoder and decoder structures. This chapter explained

turbo decoding algorithms based up on MAP and SOyA, showing a turbo decoder structure

for an iterative process. For a practical turbo decoder implementation, the complexity of the

algorithms should be reduced. Techniques for efficient turbo decoder hardware

implementations were reviewed and summarized. Some of the techniques were used in this

thesis to reduce the turbo decoder computational complexity and to improve hardware

performance in terms of area, power, and speed for throughput.

Chapter 3 has presented the MLMAP based turbo decoder hardware architectures with SW

method for K=3, 4, and 5. In the architecture, the SW method was realised by using LIFO

and FIFO blocks. A detailed structure of the decoding process units incorporated in the

architecture was described and the implementation method and the functionality for the

decoding process were explained. In the simulation results, the turbo decoder performance in

terms of BER was examined in various ways to justify the algorithms and other factors that

affect the turbo decoder performance. The real MAP and the fixed-point MLMAP based

turbo decoders have been compared in terms of BER performance in order to observe the

163

Chapter 8 Conclusions

performance differences between the two turbo decoder implementations. The comparisons

showed that the MLMAP based turbo decoder can provide a BER performance without

significant degradation. After showing the design flow, the MLMAP turbo decoder

architectures have been designed using Verilog HDL and then synthesized using the UMC

0.1 8tim standard CMOS technology. Area, power, and critical path delay results of the

MLTBD architecture for constraint lengths K=3, 4, and 5 were estimated. Also, the total

number of gates of the architectures was obtained after generating their layouts. These

hardware performance results were used to compare the improved turbo decoders introduced

in later chapters.

Chapter 4 has proposed a high performance MLMAP turbo decoder architecture

implemented base on a novel scheme in order to save area and power, and to reduce the

critical path delay for high speed implementation. For achieving low power and area

efficient MLMAP turbo decoder implementations, the memory blocks needed for the SW

method were reduced by using a triple read port-based memory. Simulation results show that

the memory reduction can achieve 30% reduction in area and 20% in power. In addition,

efficient implementations of LCU and BMNU contributed to power and area savings. The

BMN method addressed the inherent critical path delay problem to achieve high speed

MLMAP turbo decoder for high throughput. Using this method, the critical path delay was

reduced by up to 42%, as compared with the delay of the conventional turbo decoder.

Chapter 5 has described the SOVA and TSOVA algorithms that are alternatively used for the

turbo decoding process. In this chapter, the TSOVA based turbo decoder has been introduced

to evaluate the BER performance. Before the evaluation, the optimized survivor and update

depths of the TSOVA turbo decoders were investigated. The simulation results have shown

that the BER performance was almost saturated when the survivor and update depths were

Kx6 and Kx4, respectively. Based on these results, the TSOVA turbo decoders for K=3, 4,

and 5 have been simulated to evaluate their BER performance. The performance results were

compared with the results of the MLMAP based turbo decoder. These comparisons showed

that the TSOVA turbo decoder can produce a BER performance close to the MLMAP turbo

decoder without significant performance degradations.

164

Chapter 8 Conclusions

Chapter 6 has proposed a novel TSOVA turbo decoder based on TRA. This novel turbo

decoder architecture was described and compared with the TSOVAREA architecture

suggested in the literature. The hardware simulation results have shown that the

TSOVATBA based turbo decoder implementations can save more area and power than the

TSOVAREA based turbo decoders. in addition, tile hardware performance was compared

with the MLMAP based turbo decoder hardware. It was also shown that the TSOVATBA

can save up to 72% in area and 52% in power compared to the MLMAP turbo decoder.

These results indicate that the TSOVATBA turbo decoder is suitable to apply to mobile and

portable wireless communication systems requiring low power consumption and area usage,

Without sign i hcant B ER performance degradation.

Chapter 7 has presented a reconhgurable turbo decoder architecture for supporting different

constraint lengths, K=3, 4, and 5, turbo codes. To improve the efficiency of the

implementation, a novel mapping method was employed in the design of the reconfigurable

architecture. Tile reconfigurable architecture has been implemented based on the constraint

length K=5. To reduce the power consumption as the architecture is configured for constraint

lengths less than K5, the clock gating method has been applied to the implementation. The

power results have shown that the clock gating method is very effective in reducing tile

power consumption of the reconfigurable architecture. The power overhead of tile

reconligurabie turbo decoder was around 18%, 10%, and 11% as compared with K=3, 4, and

5 turbo decoder ASIC implementations, respectively. Meanwhile, the reconfigurable turbo

decoder area increased Just by 6% as compared to K5 turbo decoder AJSC implementation.

On this other hand, this chapter has presented another reconfigurable turbo decoder

architecture which can be configured for BTC and DTC with K=4. Before designing the

recontigurable turbo decoder hardware, radix-4 based turbo decoder for BTC has been

investigated. This revealed that the radix-4 based BTC and the DTC turbo decoders had

many similarities in their functions and implementation methods. Therefore, the

reconfigurable turbo decoder exploited the radix-4 for its hardware implementation. For

comparison, radix-4 based BTC and DTC turbo decoders have also been implemented as an

ASIC each. The simulation results have shown that the area overhead of the reconfigurable

turbo decoder was 40%. The power of the reconfigurable has been analysed in two modes,

BTC and DTC. When the reconfigurable turbo decoder was set to the BTC mode, the power

overhead was 101%. However, the total energy required to complete the turbo decoding

165

Chapter 8 Conclusions

process was less than the conventional turbo decoders, due to reducing the time required for

the decoding process.

8.3 List of Achievements

This section specifies the achievements of this thesis.

• A novel technique for high speed turbo decoder implementation in order to achieve

high throughput is proposed. The technique normalizes the branch metrics to reduce

the inherent critical path delay in the state metric computation process. It achieves

42% reduction in critical path delay.

• A low power and area efficient turbo decoder is developed by reducing the memory

block size required by sliding window method. This results in savings up to 30% in

area and 20 % in power.

• A novel concept of SOVA turbo decoder implementation is presented. The new

SOVA turbo decoder is based on TBA, which significantly reduces the power and

area as compared with a conventional REA based SOVA turbo decoder

implementation.

• Two reconfigurable turbo decoder implementations are presented to support multi

standard wireless communication systems. The first turbo decoder is designed to be

configured for different constraint lengths K=3, 4, and 5. This reconfigurable turbo

decoder is implemented with a clock gating method in order to save power when it

is configured for constant lengths less than K=5. The second reconfigurable turbo

decoder supports binary and double-binary turbo codes is designed. To make it

reconfigurable, the turbo decoder exploits a radix-4 binary turbo decoding method.

Chapter 8 Conclusions

8.4 Future Research Directions

Wireless communication systems are evolving to provide better performance such as BER

and throughput. The use of turbo codes in these systems is expected to be continuously

increasing and hence the performance of these systems will be strongly affected by the turbo

decoder they employ. Some of the issues related to turbo decoders are suggested below for

future work.

1-ugh throughput is one of the important issues for current and future wireless

communication systems. Due to their iterative process, the turbo decoders could be an

obstacle to achieving high throughput. A parallel turbo decoder scheme is one of the

solutions to address this problem. Several papers have suggested some parallel turbo decoder

schemes in order to achieve high throughput. However, this will lead to large hardware

overhead in terms of area and power. This could be an obstacle to employing the parallel

turbo decoders for mobile applications. In the literature, there is little work on efficient

implementation of parallel turbo decoder architectures. Thus, in order to achieve an efficient

high throughput turbo decoder, the hardware implementation methods must be researched.

In the turbo decoding process, interleaving and dc-interleaving require large memory blocks.

Moreover, the addresses for the interleaving and de-interleaving also need to be stored in a

large memory size. The memory size can be reduced by implementing an efficient address

generator for interleaving and dc-interleaving. in wireless communication systems, the

address can be generated easily and efficiently if the input block size is known. However, if

a parallel turbo decoder scheme is used, the multiple output of the turbo decoder can conflict

with writing the output to the interleaver memory. Thus, the technique to avoid the data

collision during the writing process should be studied. Another difficulty is that usually

different interleaving methods between the wireless communication systems are employed to

implement the address generator.

Less attention has been paid to a SOVA based turbo decoder when compared to a MAP

based turbo decoder. The method proposed in this thesis has contributed to saving the

hardware costs, as compared to the MLMAP based turbo decoder, without significant

degradation in BER performance. Thus, the use of the SOVA based turbo decoder can

contribute to reduce the costs of the receiver systems requiring high performance and

167

Chapter 8 Conclusions

throughput. Also, a SOVA decoder for double-binary turbo codes is hardly considered in the

literature. Therefore, a study of the SOVA turbo decoder architecture should be carried out

for supporting different types of turbo codes.

168

Appendix A. List of Publication

1. J. H. Han, A.T. Erdogan, and T. Arsiati, "Exploiting Radix-4 Method in Max-Log-MAP

Turbo Decoder Implementation for Duo-Binary Turbo Codes," submitted to IEEE

International Symposium on Circuits and Systems, 27-30 May, 2007.

2, J. H. Han, A.T. Erdogan, and T. Arslan, "A Power and Area Efficient Maximum

Lilkelihood Detector Implementation for High Throughput MIMO Systems," in IEEE

VLSI Design Confrence, 6 - 10 Jan., 2007.

J. H. Han, A.T. Erdogan, and T. Arsian, "Traceback Algorithm based Two-Step SOVA

Turbo Soft-Input Soft-Output Decoder VLSI Architecture," submitted to IEEE

Transactions on VLSI systems.

J. H. Han, A.T. Erdogan, and T. Arsian, "Normalization of Branch Metrics for 1 -ugh

Speed Turbo Decoder Implementation," submitted to IEEE Transactions on Circuits and

Systems I.

J. H. Han, A.T. Erdogan, and T. Arsian, "An Efficient Reconfigurable Max-Log-MAP

Turbo SISO Decoder for Multi-Standards Wireless Communication Systems," submitted

to IEEE Transactions on VLSI systems.

R. Zhang, J. H. Han, A.T. Erdogan, and T. Arslan, "Low Power CORDIC IP Core

Implementation." in IEEE International Conference on Acoustics, Speech, and Signal

Processing, pp. 111-956 - 111-959,21 —24 May 2006.

T. Takahashi, A.T. Erdogan, T. Arslan, and J. H. Han, "Low Power Layered Space-

Time Channel Detector for MIMO Systems," in IEEE Computer Society Annual

Symposium on VLSI, 2 - 3 March, 2006.

WE

Appendix A. List of Publication

J. H. Han, A.T. Erdogan, and T. Arsian, "A Low Power Pipelined Maximum Likelihood

Detector for 4x4 QPSK MIMO Wireless Communication Systems," in IEEE Computer

Society Annual Symposium on VLSI. 2 - 3 March, 2006.

J. H. Han, A. Erdogan, and T. Arslaii, "Implementation of an Efficient Two-Step SOVA

Turbo Decoder for Wireless Communication Systems," in IEEE Global

Telecommunications Contrence, pp. 2429 - 2433, 28 Nov. - 2 Dec., 2005.

J. H. Han, A. Erdogan, and T. Arslan, 'Power and Area Efficient Turbo Decoder

Implementation for Mobile Wireless Systems," in IEEE 2005 Workshop on Signal

Processing Systems, pp. 705 - 709, 2 - 4 Nov., 2005.

J. H. Han, A. Erdogan, and T. Arslan, "A Power Efficient Recontigurable Max-Log-

MAP Turbo Decoder for Wireless Communication Systems," in IEEE System on Chip

Conference, pp. 247-2 50, 25 - 28 Sep., 2005.

J. H. Han, A. Erdogan, and T. Arsian, "High Speed Max-Log-MAP Turbo SISO

Decoder Implementation Using Branch Metric Normalization," in IEEE Computer

SocietAnnualSvniposiuni on VLSI, pp. 173-178, 11 —12 May, 2005.

170

Appendix B. 3GPP Turbo Codes Specifications

B.! Turbo coder

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two

8-state constituent encoders and one Turbo code internal interleaver. The coding rate of

Turbo coder is 1/3. The structure of Turbo coder is illustrated in Figure B.1.

The transfer function of the 8-state constituent code for PCCC is:

G(D)=
L g0D)]

where

go(D) = I +D2 +D,

g,(D) = 1 +D+JY.

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros

when starting to encode the input bits.

Output from the Turbo coder is

X1, Zj, 	X2, 2, 2 XK, EK, ZA,

where x 1 , xi, XK are the bits input to the Turbo coder i.e. both first 8-state constituent

encoder and Turbo code internal interleaver, and K is the number of hits, and z 1 , Z2. ..., ZK

and 22. 2K are the bits output from first and second 8-state constituent encoders,

respectively.

The bits output from Turbo code internal iiiterleaver are denoted by x 1 , x2. ..., X'K, and these

bits are to he input to the second 8-state constituent encoder.

171

Appendix B. 3GPP Turbo Codes SpecUIcations

Xk

1St constituent encoder 	Zk

Xk
Input

Input 	 Output
Turbo code

internal interleaver 	
2nd constituent encoder 	

' Output 	 Zk
10 L 	D ..D=F

Figure B. I Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only)

B.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after

all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch

of figure B.1 in lower position) while the second constituent encoder is disabled. The last

three tail bits shall be used to terminate the second constituent encoder (lower switch of

Figure B. I in lower position) while the first constituent encoder is disabled.

l'he transmitted bits for trellis termination shall then be:

XK+1, ZKI I, xK+2, ZK.2, XK+3, ZK+3, xK+l, ZKH, X 'K+2, Z 'K+7 , X 'K*i, Z 'K+3.

172

Appendix B. 3GPP Turbo Codes Specifications

13.3 Turbo code internal interleaver

The Turbo code internal interlcavcr consists of bits-input to a rectangular matrix with

padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output

from the rectangular matrix with pruning. The bits input to the Turbo code internal

interleaver are denoted by x1,x2,x3. XK, where K is the integer number of the bits and

takes one value of 40 < K < 5114. The relation between the bits input to the Turbo code

internal interleaver and the bits input to the channel coding is defined by Xk =0irk and K =

K1 .

The following suhclause specific symbols are used in following sections

K 	Number of bits input to Turbo code internal interleaver

R 	Number of rows of rectangular matrix

C 	Number of columns of rectangular matrix

P 	Prime number

v 	Primitive root

(s) jlo 1 ..1_2} 	 Base sequence for intra-row permutation

qj 	Mini mum prime integers

Permuted prime integers

Inter-row permutation pattern

Intra-row permutation pattern of i-thi row

Index of row number of rectangular matrix

j 	Index of column number of rectangularmatrix

k 	Index of bit sequence

B.3.I Bits-input to rectangular matrix with padding

The bit sequence x 1 ,x 7 ,x3 ,....XK input to the Turbo code internal interleaver is written into

the rectangular matrix as follows.

173

Appendix B. 3GPP Turbo Codes SpecUlca [ions

Determine the number of rows of the rectangular matrix, R, such that:

5. if(40 :!~ K ~ 159)

R= 	l0.ii((160:!~ K200)or(48I: ~;K ~ 530))

20, if (K = any other value)

The rows of rectangular matrix are numbered 0. 1..... R - I from top to bottom.

Determine the prime number to be used in the intra-permutation, p, and the number of

columns of rectangular matrix, C, such that:

if(481 < K 530)then
p = 53 and C p.

else
Find minimum prime numberp from table 2 such that

K~ Rx(p+1).

and determine C such that
p — I if K ~ Rx(p—l)

Cr p 	if Rx(p—I)<KRxp.

p + I if Rxp<K

end if
The columns of rectangular matrix are numbered 0, 1...... C - 1 from left to right.

Table B.l List of prime nirmberp and associated primitive root v.

p v p v p v P p v
7 3 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2
13 2 59 2 107 2 167 5 229 6
17 3 61 2 109 6 173 2 233 3
19 2 67 2 113 3 179 2 239 7
23 5 71 7 127 3 181 2 241 7
29 2 73 5 131 2 191 19 251 6
31 3 79 3 137 3 193 5 257 3
37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2

174

B. 3GPP Turbo Codes Specifications

(3) Write the input bit sequence XI,X2,XS, ... ,XK into the R xC rectangular matrix row by

row starting with hit Vi in column 0 o Crow 0:

.Yi Y2 Y3

V(C+1) Y(c+2) Y((-+3) Yc

.V((R_1)C+I) Y((R-1)c+2) Y((R-1)('+3)

where Yk = Xk for k = 1. 2.....K and if RxC>K, the dummy bits are padded such that

.vk Oorl for k = K ± 1, K ± 2.....RxC. These dummy bits are pruned away from the

output of the rectangular matrix after intra-row and inter-row permutations.

B.3.2 Intra-row and inter-row permutations

After the bits-input to the R C rectangular matrix, the intra-row and inter-row permutations

for the Rx C rectangular matrix are performed stepwise by using the following algorithm

with steps (1) (6):

(I) Select a primitive root v from Table B. I in previous subsection, which is indicated on the

right side of the prime nunibcrp.

Construct the base sequence (s(j)) {oi 	7}
for intra-row permutation as:

s(j)= (vxs(/_l))modp, 	j = 1,2,..., (p -2), and s(0) = 1.

Assign q0 = I to he the first prime integer in the sequence (I),J RI}' and determine

the prime integer q 1 in the sequence (q 1 	
to be a least prime integer such that

g.c.d(q 1 , j' - 1) = I, q> 6. and q, > q(for each i = 1.2, ..., R - I. 1-Icre g.c.d. is greatest

common divisor.

175

Appendix B. 3GPP Turbo Codes Spec ifications

Permute the sequence (q1){ 0 	to make the sequence ('1) Ol RI)
such that

1 ,7- i = q,, 1 = 0, I..... R - 1,

Where (7(i 	is the inter-row permutation pattern defined as the one of the four

kind of patterns, which are shown in Table B.2, depending on the number of input bits K.

Table B.2 Inter-row permutation patterns for Turbo code internal interleaver

Number of input bits
Numbe

rof
Inter-row permutation patterns

K
rows

<T(0), T(1), ..., T(R-1)>

(40K159) 5 <4, 3, 2, 1,0>
(160:~ K200) or (481 ~ K530) 10 <9, 8, 7, 6,5,4, 3, 2, 1, 0>

(2281 :~ K:~ 2480) or
20

<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13,
(3161 	K!~ 3210) 17, 15, 3, 1, 6, 11, 8, 10>

K= any other value 20
<19,9, 1 4, 4, 0, 2, 5, 7 1 12, 18, 10, 8,

13,17,3, 1, 16, 6, 15, 11>

Perform the i-tb (/ = 0, I..... R - 1) intra-row permutation as:

if (C =p) then

U,(j)=s((jxr1)mod(p-l)). j0,l..... (p-2). and U,(p-I)=0,

where (Jj) is the original bit position ofj-th permuted bit of i-tb row.

end if

if(C=p+ 1) then

u 1 j)=s((jxi)inod(p-I)), 1=0, 1,(p- 2). L(j) - 1) =0, and U1(p)=p,

where UX1) is the original bit position ofj-th permuted bit of i-th row, and

if(K= RXC)then

Exchange (JR (p) with (JR (0).

end if

end if

if(Cp- 1) then

1111110

Appendix B. 3GPP Turbo Codes Specifications

U,= s((jx rJ rnod(p- i))- I, j = 0, I,..., (p -2),

where U(j) is the original bit position ofj-th permuted bit of i-tb row.

end if

(6) Perform the inter-row permutation for the rectangular matrix based on the pattern

where T(i) is the original row position of the i-tb permuted row.

B.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are

denoted by Yk

Yi Y'(R+I) Y'(2R+I) Y((c-1)R+1)

Y2 Y(R-i.2) Y' (2R+2) ... Y((('-1)R+2)

YR Y2R Y31? YCxR

The output of the Turbo code internal intericaver is the bit sequence read out column by

column from the intra-row and inter-row permuted R x C rectangular matrix starting with bit

Y' in row 0 of column 0 and ending with bity' CR in row R - I of column C- 1. The output is

pruned by deleting dummy bits that were padded to the input of the rectangular matrix before

intra-row and inter row permutations, i.e. bits y'k that corresponds to bits Yk with k > K are

removed from the output. The bits output from Turbo code internal interleavcr are denoted

by x' 1 , x2V'K, where x' 1 corresponds to the bit y'. with smallest index k after pruning, x',

to the bit Yk with second smallest index k after pruning, and so on. The number of bits output

from turbo code internal interleaver is K and the total number of pruned bits is:

R x C-K.

177

Appendix C. IEEE 802.16 Turbo Codes Specifications

C.1 CTC encoder

The Convolutional Turbo Code (CTC) defined in this subclause is designed to enable

support of hybrid ARQ (HARQ). HARQ implementation is optional. The CTC encoder,

including its constituent encoder, is depicted in Figure C.I. It uses a double binary Circular

Recursive Systematic Convolutional code. The bits of the data to be encoded are alternately

fed to A and B, starting with the MSB of the first byte being fed to A. The encoder is fed by

blocks of k bits or N couples (k = 2*N bits). For all the frame sizes, k is a multiple of 8 and N

is a multiple of4. Further, N shall be limited to: 8 !~ N1 4 1024

The polynomials defining the connections are described in octal and symbol notations as

follows:

- For the feedback branch: OxB, equivalently I + D + D3 (in symbolic notation)

- For the Yparity bit: OxD, equivalently I + D 2 + D3

- For the W parity bit: 0x9, equivalently I + D 3

First, the encoder (after initialization by the circulation state Sd) is fed the sequence in the

natural order (position 1) with the incremental address i = 0 .. N—I. This first encoding is

called C 1 encoding. Then the encoder (after initialization by the circulation state Sc2) is fed

by the interleaved sequence (switch in position 2) with incremental addressj = 0, ... N—I.

This second encoding is called C2 encoding. The order in which the encoded bit shall be fed

into the subpacket generation block is:

A, B, Y 1, Y, W, W, =

A0, B 0,.,., A. 1 , BN/, Y10, Y 11,..., YIN.], Y, U, K1 . 1,....Y2N1, W1 , 0, WJ,J.....WI,N.I, W2, 0. W2,1,, W2,N.I

178

Appendix C. IEEE 802.16 Turbo Codes Specifications

IeIflILJFL

C 	.11'.! ILtc'fll LIh.' JLI

Figure C. 1 CTC encoder

Note that the interleaver shall not he used when using CTC.

The encoding block size shall depend on the number of subchannels allocated and the

modulation spcci fled for the current transmission. Concatenation of a number of subchanncis

shall be performed in order to make larger blocks of coding where it is possible, with the

limitation of not passing the largest block under the same coding rate (the block defined by

64-QAM modulation). Table C.! specifies the concatenation of subchanncls for different

allocations and modulations. The concatenation rule shall not be used when using H-ARQ.

For any modulation and FEC rate, given an allocation of n subchannels, the following

parameters are defined:

I 	parameter dependent on the modulation and FEC rate

n 	number of allocated subchannels

k = fioor(n/j)

in = n rnodj

179

Appendix C. IEEE 802.16 Turbo Codes Specifications

Table C. I shows the rules used for suhcliannel concatenation

Table C. I Subchannel concatenation rule for CTC

N 11111 her of 	u I)CIlauluIcIS Stibchaimels concatenMed

I 	II 	cL olii

I bleL 	i 4 	ubchiniiek
I hIck 	3 	ubchtniick

i, k-I i ht'cks 	ii subcIiaiinIs
I hi 	cL 	1 [he 	chiiinI
I 	hick o iL,, SLIIIC11,11111ek

..ii 	in 	fl 	2i
I. 	!I,)Il I ,fl 	: 	2 02

Ii 	i/_• 	7:or i 1., 	7
I.hi 	1.hI 	I: I.i?2 	1.h2 	L

Table C.2 Encoding subchanncl concatenation for different rates in CTC

loduItion and tatc

çlK 3 .4

I ñ-.\\l 	12 5

I f . 	 1 	. 	4 3

I 	2 3

4-I\\I 	.4 2

180

Appendix C. IEEE 802.16 Turbo Codes Specifications

Table C.3 Optimal CTC channel coding per modulation

I(ltilaliot)
Data

I)I4Ck Jze
(blvIcs

t; IIC(Kk(I

chia I)I4Ck
Site (bytes)

CMIC
rate

N I', P 1 P, P 3

.'ISK I

.2 21 I 	2 4N, l. .24 1 14

i,i'K l X

24

.Th 12 2 It

4 11, I 	2 4 24 72

1.2 44 1 7 74 7 2

45 1Y, .48 144

l'X 1 0

11'' I 	2 .240 I. 12' i' is''

lsK ' 12 .4 . II Is ' Is

'iIsk IS 24 . 	4 1 II

4 Si 2

-I 144 4 2 2

f)ISK 4 '' . 	4 IS') II .:.

4 2I I t5

I'-',.\\l 11 .24 1.2 1s l. 24 ' 24

48 12 45 24 7 2

12 144 I 7) 7 2 2

1, —(j. 45 . 12 I2 II 45 144

Is 21 . 	-1 TI ii

4 144 I 74 2 2

2 I'. I .7 I 	' :'

I IS N I 2 :1 II

12 144 i 74 7 2 2

4-).\\I 24 3' 1 96 3 4S 24 2

4S 31 1 	.7 I.2 II s 45 144

7.4 1.S II S4 5r 2

181

Appendix C. IEEE 802.16 Turbo Codes Speci,tIcalions

Table C.3 Optimal CTC channel coding per modulation (continued)

Encoded
odtIlinn)1)Ck .i/& daa block

Code
 P\I 	 3 P '> 1 P 2

(1k,) sue (hvk%)
rale

Fable C.3 gives the block sizes, code rates, channel efficiency, and code parameters for the

different modulation and coding schemes. As 64-QAM is optional, the codes for this

modulation shall only be implemented if the modulation is implemented. Table C.4 shows

code parameters for HARQ.

Table C.4 Optimal CTC channel coding per modulation when supporting H-ARQ

MEMMIN
~Mmmmm
~Mmmmm
~Mmmmm
~=Mmm

1.

~Mmmmm
~=Mmmm
~Mmmmm
~Mmmmm
~=Mmmm
~Mmmmm
.III IU.IIIUIKlLUII

182

Appendix C. IEEE 802.16 Turbo Codes Spec ifications

C.2 CTC interleaver

The interleaver requires the parameters P0 and P1, shown in Table C.4.

The two-step interleaver shall be performed by:

Step 1: Switch alternate couples

for! =O ... N—1

if(j,,Ø(=O) let (BA) = (A,B) (i.e., switch the couple)

Step 2: P,(j

The function P,(j) provides the interleaved address i of the consider couple!.

tbrJ=O ... N—1

switch Jmod4

case 0: i = (P0 .j + I

case I: i = (P0 1 + I + N/2 + PI)IOdN

case 2: i = (P0 .j + I + P2) 0dr

case 3: i = (P0 -j + 1 + N12 + P3 OmodN

C.3 Determination of CTC circulation states

The state of the encoder is denoted S (0 ! ~ S !~ 7) with S the value read binary (left to right)

out of the constituent encoder memory. The circulation states Sci and Sc2 are determined by

the following operations:

I) Initialize the encoder with state 0. Encode the sequence in the natural order for the

determination of Sc! or in the interleaved order for determination of Sc2. In both

cases the final state of the encoder is SON- 1;

2) According to the length Nof the sequence, use Table C.5 to find Sc I orSc2.

O I Ol I 	.

Appendix C. IEEE 802.16 Turbo Codes

Table C.5 Circulation state lookup table (Sc)

"I

0 I 2 3 -I 5 6 7

.4 1 7 I 3

2 .
7 4 5 2 I

5 3 2 7 I 4

4 4 I 2 7

7 I 3 4 5
I 	

2

184

References

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley and Sons, 1999.

L. Yuan, L. l-lyunseok, M. Woh, Y. Hare], S. Mahike, T. Mudge, C. Chakrabarti, and K.
Flautner. "SODA: A Low-power Architecture For Software Radio," in International
Symposium on Computer Architecture, pp. 89 - 101, June 2006.

C. Berrou, A. Glavieux, and P. Thitirnajshima, "Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1," in IEEE International Conference on
Communications, vol. 2. pp. 1064-1070, May 1993

P. Cherriman, T. Keller, and L. Hanzo, "Constant-rate turbo-coded orthogonal frequency
division multiplex videophony over UMTS," in IEEE Global Telecommunications

Conference, vol. 5. pp. 2848 —2852, Nov. 1998.

A. Gueguen, and D. Castelain, "Performance of frame oriented turbo codes on IJMTS
channel with various termination schemes," in IEEE Vehicular Technology Conference,
vol. 3. pp. 1550— 1554, Sep. 1999.

Z. Jinyun, L. Ling, and T. Poon, "Turbo coded HSDPA systems with transmit diversity
over frequency selective fading channels," in IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 90 - 94, Sep. 2002.

M. C. Valenti, "Inserting turbo code technology into the DVB satellite broadcasting
system," in Military Communications Conference, vol. 2, pp. 650 - 654, Oct. 2000.

A. Bartolazzi, G. Cardarilli, A. Del Re, D. Giancristofaro, and M. Re."Implementation
of DVB-RCS turbo decoder for satellite on-board processing," in IEEE International
Confrence on Circuits and Systems jbr Communications, pp. 142 - 145, June 2002.

L. N. Lee, A. R. Hammons Jr., S. Feng-Wen, and M. Eroz, "Application and
standardization of turbo codes in third-generation high-speed wireless data services,"
IEEE Transactions on Vehicular Technology, vol. 49, pp. 2198-2207, Nov. 2000.

F. Berens, A. Worm, H. Michel, and N. Wehn, "Implementation aspects of turbo-
decoders for future radio applications," in IEEE Vehicular Technology Conference, vol.
5, pp. 2601-2605, Sep. 1999.

[II] L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, "285-MHz pipelined MAP decoder in
0.1 8-/spl mu/rn CMOS," IEEE I of Solid-State Circuits, vol. 40, pp. 1718 - 1725, Aug.
2005.

P. Urard, L. Paurnicr, M. Viollet, E. Lantreibecq, H. Michel, S. Muroor, B. Coates, B.
Gupta, "A generic 350 Mb/s turbo-codec based on a 16-states SISO decoder," IEEE Int.
Solid-State Circuits Conf Digest of Technical Papers, pp. 424 - 536, Feb. 2004.

M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, Z. Gongyu, L. M.
Davis, G. Woodward, C. Nicol, and Y. Ran-Hong "A unified turbo/Viterbi channel

185

References

decoder for 3GPP mobile wireless in 0.1 8-/spl mu/rn CMOS," IEEE J. of Solid-State
Circuits, vol. 37, no. 11, pp. 1555 - 1564, Nov. 2002.

[14] C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, C. Nicol, "Integrated circuits for channel coding in 3G cellular mobile wireless
systems," IEEE Communications Magazine, vol. 41. no. 8, pp. 150— 159, Aug. 2003.

[IS] P. Robertson, E. Villcbrun, and P. l-loehcr. "A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain," in IEEE International
Confrence on Communications, vol.2, pp. 1009-10 13, June 1995.

H. Dawid, and H. Meyer, "Real-time algorithms and VLSI architectures for soft output
MAP convolutional decoding," in IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, vol. 1, pp. 193-197, Sep. 1995.

0. Joeressen, M. Vaupel, and H. Mcyr, "High-speed VLSI architectures for soft-output
Viterbi decoding," in IEEE International Con/rence on Application Specific Array
Processors, pp. 373 —384, Aug. 1992.

T. Miyaitchi, K. Yamamoto, and T. Yokokawa, "High-performance programmable
SISO decoder VLSI implementation for decoding turbo codes," in Proc. IEEE Global
Telecommunications Con!:, vol. 1,2001, pp. 305-309.

M. El-Assal and M. Bayoumi. "A high-speed architecture for MAP decoder," in Proc.
IEEE Signal Processing Systems (SiPS,): Design and Implementation, pp. 69-74, Oct.
2002.

M. Bickerstaff, L. Davis, C. Thomas, D. Garret, and C. Nicol, "A 24 Mb/s radix-4
IogMAP turbo decoder for 3GPP-HSDPA mobile wireless," IEEE mt. Solid-State
Circuits Conf (ISSCC) Dig. Tee/i. Papers, pp. 150-151, 2003.

[2 11 Z. Wang, Z. Chi, and K. Parhi, "Area-efficient high-speed decodingschemes for turbo
decoders," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6, Pp. 902-
912. Dec. 2002.

J. I-Iso and C. Wang, "A parallel decoding scheme for turbo codes," in Proc. IEEE In!.
Con,f Circuits and Systems, vol. 4, 1998, pp. 445-448.

B. BoLigard, A. Ciulietti, L. V. d. Perre, and F. Catthoor, "A class ofpower efficient
VLSI architectures for high speed turbo-decoding," in Proc. IEEE Global
Telecommunication Conf, vol. I, 2002, pp. 553-549.

B. Bougard ci al., "A scalable 8.7 nJ/bit 75.6 Mb/s parallel concatenatedconvolutional
(turbo-) codec," in IEEE lilt. Solid-State Circuits Conf (155CC,) Dig. Tech. Papers,
2003, pp. 152-153.

A. Worm, H. Lamm. and N. Wehn, "A high-speed MAP architecturewith optimized
memory size and power consumption," in Proc. IEEE Workshop on Signal Processing
Systems (SiPS200), 2000, pp. 265-274.

A. Worm, H. Lamin, and N. Wehn,, "Design of low-power high-speed maximum a
priori decoder architectures," in Proc. Design, Automation and Test in Eur. Conf
Exhibition, Apr. 2001, pp. 258-265.

References

M. M. Mansour and N. R. Shanbhag, "Design methodology for highspeed iterative
decoder architectures," in Proc. IEEE Jut. Cont. Acoustics, Speech, and Signal
Processing, vol. 3, 2002, pp. 3085-3088.

M. M. Mansour and N. R. Shanbhag, "VLSI architectures for SISO-APP decoders,"
IEEE Trans. Veiy Large Scale Integration (VLSI) Syst., vol. 11, no. 4. PP. 627-650,
Aug. 2003.

D. Garrett, B. Xu, and C. Nicol, "Energy efficient turbo decoding for 3G mobile," in
Proc. IEEE In!. Symp. Lou , Power Electronics Design (JSLPED '01), 2001, pp. 328-333.

0. Leung, C. Yue, C. Tsui, and R. Cheng, "Reducing power consumption of turbo code
decoder using adaptive iteration with variable supply voltage," in Proc. IEEE hit. Symp.
Low Power Electronics Design (ISLPED '99), 1999, pp. 36-41.

[3 I] P. H. Wu and S. M. Pisuk, "Implementation of a low complexity, low power, integer-
based turbo decoder," in Proc. Global Telecommunications Conf, vol. 2, 2001, pp.
946--95 1.

S. Lee, N. Shanbhag, and A. Singer, "Low-power turbo equalizer architecture," Proc.
IEEE Signal Processing Systems 'SiPS): Design and Implementation, pp. 33-38, Oct.
2002.

W. Zhongfeng and K. K. Parhi, "High performance, high throughput turbo/SOVA
decoder design," IEEE Trans. on Communications, vol. 51, no. 4, pp. 570 —579, April
2003.

Y. Engling; S. A. Augsburger, and W. R. Davis, and B. A. Nikolic, "A 500-Mb/s soft-
output Viterbi decoder," IEEE J. of Solid-State Circuits, vol. 38, no. 7, pp. 1234 -
1241, July 2003.

M. El-Assal, and M. Bayoumi, "Low power SOVA architecture using bi-directional
scheme," in Proc. IEEE mt. Symp. on Circuits and Systems, vol. 1, 26-29 May 2002 pp.
1-277 - 1-280.

D. Garrett, and M. Stan, "A 2.5 Mb/s, 23 iiiW SOVA traeeback chip for turbo decoding
applications," in Proc. IEEE In!. Symp. on Circuits and systems, vol. 4, 6-9 May 2001,
pp. 61-64.

W. Wang, T. Chi-Ying, and R. S. Cheng, "A low power VLSI architecture of SOyA-
based turbo-code decoder using scarce state transition scheme," in Proc. IEEE Jut.
Svmp. on Circuits and Systems, vol. 1, 28-31 May 2000, pp. 28') - 286.

D. Garrett and M. Stan, "Low power architecture of the soft-output Viterbi algorithm,"
in Proc. IEEE mt. Synip. Low Power Electronics Design, 1998, pp. 262-267.

E. Yeo, and S. A. Augsburger, W. R. Davis, and B. Nikolic, "Implementation of high
throughput soft output Viterbi decoders," in IEEE Workshop on Signal Processing
Systems, 16-I8 Oct. 2002, pp. 146— 151.

A. Ghrayeb, and W. E. Ryan, "Performance of high rate turbo codes employing the
soft-output Viterbi algorithm (SOyA)," in Asilomar Conf on Signals, Systems, and
Computers, vol. 2. 24-27 Oct. 1999, pp. 1665 - 1669.

187

References

W. Zhongfeng, H. Suzuki, and K. K. Parhi, "Efficient approaches to improving
performance of VLSI SOVA-based turbo decoders," in Proc. IEEE In!. Syinp. on
Circuits and Systems, vol. 1, 28-31 May 2000, PP. 287 - 290.

W. Duanyi, and H. Kobayashi, "High-performance SOVA decoding for turbo codes
over cdma2000 mobile radio," in Proc. Military Communications Conference MILCOM
2000, vol. 1, 22-25 Oct. 2000, Pp. 189— 193.

A. La Rosa, L. Lavagno, and C. Passerone, "Implementation of a UMTS turbo decoder
on a dynamically reconfigurable platform," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 1, pp. 100— 106, Jan. 2005.

C. Chaikalis, and J. M. Noras, "Implementation of an improved reconfigurable
SO VA/log-MAP turbo decoder" in Proc. mt. Conj.' 	 3GPP3G Mobile
Communication Technologies, 8-10 May 2002, pp. 146— 150.

1. Ahmed, and T. Arsian, "A Reconfigurable Viterbi Traceback for Implemenation on
Turbo Decoding Array," in Proc. IEEE ml. SOC Conf, Sept. 2006, pp. 107 - 108.

1. Ahmed, T. Arsian, S. Baloch, 1. Underwood, R. Woodburn, "Domain Specific
Rcconflgurable Architecture of Turbo Decoder Optimized for Short Distance Wireless
Communication," in Proc. IEEE mt. Parallel and Distributed Processing Symp., 4-8
April 2005, pp. 166b - 166b.

C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, and C. Nicol, "Integrated circuits for channel coding in 3G cellular mobile
wireless systems," IEEE Communications Magazine, vol. 41, no. 8, pp. 150 - 159, Aug.
2003.

S. Lingyan, T. Horigome, and B. V. K. V. Kumar, "A high-throughput, field
programmable gate array implementation of soft output Vitcrbi algorithm for magnetic
recording," IEEE Trans. on Magnetics, vol. 40, no. 4, pp. 3081 - 3083, July 2004.

L. Cheng-Hung, L. Fan-Mm, S. Xin-Yu Shi, and W. An-Ycu, "A Triple-Mode
MAP/VA lP Design for Advanced Wireless Communication Systems," Asian Solid-
Slate Circuits Cony:, Nov. 2005, pp. 221 —224.

L. Fan-Mm, S. Pei-Ling, and W. An-Yeu, "Unified convolutional/turbo decoder
architecture design based on triple-mode MAP/VA kernel," in Proc. IEEE Asia-Pacific
Conf on Circuits and Systems, vol. 2, 6-9 Dec. 2004, pp. 1073 - 1076.

H. Kai, L. Fan-Mm, S. Pei-Ling, an W. An-Yeu, "VLSI design of dual-mode
Viterbi/turbo decoder for 3GPP," in Proc. mt. Symp. on Circuits and Systems, vol.
2, 23-26 May 2004, pp. II - 773-776.

C. Pen-Hsin, Kai-Huang, H. Nai-Hsuan, W. An-Yeu, "Dual-mode convolutional!
SOVA based turbo code decoder VLSI design for wireless communication systems," in
Proc. IEEE In!. SOC Conf, 17-20 Sept. 2003, pp. 369 - 372.

J. R. Cavallaro, and M. Vaya, "Viturbo: a rcconfigurable architecture for Viterbi and
turbo decodingAcoustics," in Proc. IEEE mt. Conf on Speech, and Signal Processing,
vol. 2, 6-10 April 2003, pp. II - 497-500.

C. E. Shannon, "A Mathematical Theory of Communication," The Bell System
Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948. By

188

References

J. Hagenauer, "The Turbo principle : Tutorial Introduction and State of the Art," in
Symposium on Turbo-Codes, pp. 1-1 1, Sep. 1997.

C. Berrou, and A. Glavieux, "Near optimum error correcting coding and decoding:
turbo-codes." IEEE Transactions on Communications, vol. 44, pp. 1261 - 1271, Oct.
1996.

A. J. Viterbi, "An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes," IEEE Journal on Selected Areas in Communications,
vol. 16, pp. 260 —264, Feb. 1998.

J. P. Woodard, and L. Hanzo, "Comparative study of turbo decoding techniques: an
Overview," IEEE Transactions on Vehicular Technology, vol. 49, pp. 2208 - 2233,
Nov. 2000.

J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and
convolutional codes," IEEE Transactions on Information Theory, vol. 42, pp. 429 - 445,
Mar. 1996.

"Guest Editorial the turbo principle: from theory to practice," IEEE .Journal on
SeleciedAreas in Communications, vol.19, May 2001.

Japan's Proposal for Candidate Radio Transmission Technology on IMT-2000: W -
CDMA. 	Japan 	Ass, 	of Radio 	Industries 	and 	Business 	(ARIB),
http://www.arib.or.jp/IMT-2000/proponent

3GPP TS 25.212, Multiplexing and channel coding (FDD), v.4.6.0, pp. 16-21, Sep.
2005.

Consultative committee for space data systems (CCSDS), Telemetry Channel Coding,
Blue Book 10 1.0-B-4, pp. 305-309, 1999.

IEEE 802.16-2004, Air Interface for Fixed Broadband Wireless Access Systems, pp.
594-599.

ETSI EN 390-790, Digital Video Broadcasting (DVB); Interaction channel fbr satellite
distribution systems, v.2.4.1, pp. 23-26, Sep. 2005,

L.R. Bahl, J. Cocke, F. Jelinck and J. Raviv, "Optimal decoding of linear codes for
minimizing symbol error rate," IEEE Transaction In!brmation Theory, IT-20, pp. 248-
287. Mar. 1974.

J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its
applications," in IEEE Global Telecommunications Conft'rence, vol. 3. pp. 1680— 1686,
Nov. 1989.

L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding, Turbo Equal/sat/on, and Space-
Time Coding/br Transmission Over Fading Channels, John Wiley and Sons Ltd., 2005.

M. Bossert, Channel Codingjbr Telecommunications, .John Wiley and Sons Ltd., 1999.

J. G. Proakis, Digital Communications, McGraw-Hill, 2001.

S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, "Serial Concatenation of
Interleaved Codes: Performance Analysis, Design, and Iterative Decoding," The JPL
TDA Progress Report, pp. 42-126, Aug. 1996.

189

References

W. J. Blackert, E. K. Hall, and S. G. Wilson, "Turbo code termination and interleaver
conditions," Electronics Letters, vol. 31, pp. 2082-2084, Nov. 1995.

L. Lang, and R. S. Cheng, "On the tail effect of SOVA-based decoding for turbo
codes," in IEEE Global Telecommunications Con!èrence, vol. 2, PP. 644 - 648, Nov.
1997.

74] C. Weiss, C. Bcttstctter, S. Riedel, and D. J. Costello Jr., "Turbo decoding with tail-
biting trellises," in International Symposium on Signals, Systems, and Electronics, pp.
343-348, Sep. 1998.

C. Berrou, and M. Jezequel, "Non-binary convolutional codes for turbo coding,"
Electronics Letters, vol. 35, pp. 3 9 —40, Jan. 1999.

C. Douillard. and C. Berrou, "Turbo codes with rate-rn/(m+1) constituent convolutional
codes," IEEE Transactions on Communications, vol. 53, pp. 1630— 1638, Oct. 2005.

C. BerroLl, "The ten-year-old turbo codes are entering into service," IEEE
Communications Magazine, vol. 41, pp. 110 - 116, Aug. 2003.

C. Berrou, M. Jezequci, C. Douillard, and S. Kerouedan, "The advantages of non-
binary turbo codes," in IEEE Information Theory Workshop, pp. 61 - 63, Sep. 2001.

C. Berrou, C. Douillard, and M. Jezequel. "Designing turbo codes for low error rates,"
in lEE Colloquium, pp. 6-7, Nov. 1999.

S. Benedetto, and G. Montorsi, "Performance evaluation of turbo-codes," Electronics
Letters, vol. 31, pp. 163— 165, Feb. 1995.

S. Benedetto, and G. Montorsi, "Design of parallel concatenated convolutional codes,"
IEEE Transactions on Communications, vol. 44, pp. 591 - 600, May 1996.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Analysis, design, and iterative
decoding of double serially concatenated codes with inlerleavers," IEEE Journal on
Selected Areas in Communications, vol. 16, pp. 231 —244, Feb. 1998.

J. G. Proakis, Digital Communications, McGraw-Hill, 2001.

P. Gulak, and E. Shwedyk, "Viterbi decoder VLSI Structures for Viterbi Receivers:
Part I--General Theory and Applications," IEEE Journal on Selected Areas in
Communications, vol. 4, pp. 142 - 154, Jan. 1986.

G. Feygin, and P. Gulak, "Architectural tradeoffs for survivor sequence memory
management in Viterbi decoders," IEEE Transactions on Communications, vol. 41, pp.
425 —429, March 1993.

G. Feygin, P. Chow, P. G. Gulak,. J. Chappel, G. Goodes, 0. Hall, A. Sayes, S. Singh,
M. B. Smith, and S. Wilton, "A VLSI implementation of a cascade Viterbi decoder with
traceback," in IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1945
- 1948, May 1993

C. Shiunn-Jang, and H. Li-Da, "A VLSI architecture of SMU for strongly connected
Viterbi decoder," in IEEE Asia-Pacific Conference on Circuits and Systems, pp. 200 -
205, Dec. 1994.

C. Yun-Nan, H. Suzuki, and K. K. Parhi, "A 2-Mb/s 256-state 10-mW rate-1/3 Viterbi
decoder." IEEE Journal of Solid-Si ate Circuits, vol. 35, pp. 826 - 834, June 2000.

lI1I]

References

G. Montorsi, and S. Benedetto, "Design of fixed-point Iterative Decoders for
Concatenated Codes with Interleavers," IEEE Journal on Selected Areas in
Communication, vol. 19, pp. 871-882, May 2001.

W. Chien-Ming, S. Ming-Der, W. Chien-Hsing H. Yin-Tsung, and C. Jun-Hong,
"VLSI architectural design tradeoffs for sliding-window log-MAP decoders," IEEE
Transactions on Very Large Scale Integration Systems, vol. 13, pp. 439 - 447, April
2005.

N. Engin, 'A turbo decoder architecture with scalable parallelism," in IEEE Workshop
on Signal Processing Systems, pp. 298 - 303, Oct. 2004

E. Boutillon, W. J. Gross, and, P. G. Gulak, "VLSI architectures for the MAP
algorithm," IEEE Transactions on Communications, vol. 51, pp. 175-185, Feb. 2003.

0. Joeressen, M. Vaupel, and H. Meyr, "High-speed VLSI architectures for soft-output
Viterbi decoding," in IEEE International Conftrence on Application Specific Array
Processors, pp. 37') —384, Aug. 1992.

Z. Wang, and K. K. Parhi, "High performance, high throughput turbo/SOVA decoder
design," IEEE Transactions on Commun., vol. 51, 110. 4, pp. 570 - 579, April 2003.

Y. N. Chang, "Design of soft-output Viterbi decoders with hybrid trace-back
processing," in Proc. mt. IEEE Symp. Circuits and Systems, vol. 2, May 2003, pp. 11-
69 - 11-72.

C. Berrou, P. Conibelles, P. Penard, and B. Talibart, "An IC for turbo-codes encoding
and decoding," in Digest of Tech. Papers IEEE mt. Solid-State Circuits Conf., Feb.
1995, pp. 90-91

C. Ghrayeb, and X. Huang, "Improvements in SOVA-based decoding for turbo-coded
storage channels," IEEE Trans. on Magnetics, vol. 41, 110. 12, pp. 4435 - 4442, Dec.
2005.

M. El-Assal, and M. Bayoumi, "Low power SOVA architecture using bi-directional
scheme," in Proc. mt. IEEE Synip. Circuits and Systems, vol. 1, May 2002. pp. 1-277 -
1-280.

W. Yufei, and B. D. Woerner, "The influence of quantization and fixed point arithmetic
upon the BER performance of turbo codes," in IEEE Vehicular Technology Con.fèrence,
vol.2, pp. 1683— 1687, May 1999.

H. Michel, A. Worm, and N. Wehn, "Influence of quantization on the bit-error
performance of turbo-decoders," in IEEE Vehicular Technology Conference, vol.
1, pp. 581 -585, May 2000.

T. K. Blankenship, and B. Classon, "Fixed-point performance of low-complexity turbo
decoding algorithms," in IEEE Vehicular Technology Conference, vol. 2, pp. 483 -
1487, May 2001.

J. Gibong, and H. Dan, "Optimal quantization for soft-decision turbo decoder," in
IEEE Vehicular Technology Confrence, vol.3, pp. 1620- 1624, Sep. 1999.

H. Michel, and N. Wehn, "Turbo-decoder quantization for UNITS," IEEE
Communications Letters, vol. pp. 55 - 57, Feb. 2001.

191

References

L. Xizhong, M. Zhigang, and C. Yanmin, "Quantization issues in turbo decoding
Communications," in International Conference on Communications, Circuits and
Systems, vol. 1, pp. 35 - 39, May 2005.

Z. Wang, H. Suzuki, and K. K. Parhi, "VLSI implementation issues of TURBO
decoder design for wireless applications," in IEEE Workshop on Signal Processing
Systems, pp. 503-5 12, Oct. 1999.

C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, "VLSI architectures for
metric normalization in the Viterbi algorithm," in IEEE Conference Communication,
pp. 1723 - 1728, April 1990.

L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, "Area-efficient high-throughput VLSI
architecture for MAP-based turbo equalizer," in IEEE Workshop on Signal Processing
Systems, pp. 87 - 92, Aug. 2003-

T. Gemmeke, M. Gansen, and T. G. Noll, "Implementation of scalable power and area
efficient high-throughput Vitcrbi decoders." IEEE Journal Solid-State Circuits, vol.
37, no. 7, pp. 941 —948, July 2002.

T. Gemmeke, V. S. Gicrenz, arid T. G. Noll, "Scalable, power and area efficient high
throughput Vitcrbi decoder implementations," in Proceedings European Solid-State
Circuits ConJirence, pp. 474 - 477, Sep. 200 I.

P. J. Black, and T. H. Meng, "A l-Gb/s, four-state, sliding block Viterbi decoder,"
IEEE Journal qf Solid-State Circuits, vol. 32, no. 6, pp. 797-805, June 1997.

[III] 0. Y. Leung, T. Chi-Ying, and R. S. Cheng, "Reducing power consumption of turbo-
code decoder using adaptive iteration with variable supply voltage," IEEE
Transactions on VLSI Systems, vol.9. no. 1, pp. 34-41, Feb. 2001.

[112] W. Zhongicng, and K. K. Parhi, "On-line extraction of soft decoding information and
applications in VLSI turbo decoding," IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 49, no. 12, pp. 760-769, Dec. 2002.

[II 3] G. Jian, Z. Yi, Y. Dacheng, and L. Zhen, "Adaptive Iterative Turbo Decoding
Algorithm," in IEEE Vehicular Technology Conference, vol. 3, pp. 1472-1476, 2006.

P. J. Black, and T. H. Meng, "A 140-Mb/s, 32-state, radix-4 Viterbi decoder," IEEE
Journal ofSolid-State Circuits, vol. 27, pp. 1877 - 1885, Dec. 1992.

A. K. Yeung, and J. M. Rabaey, "A 210 Mb/s radix-4 bit-level pipelined Viterbi
decoder," in IEEE International Solid-State Circuits Conference, pp. 88 - 89, Feb.
1995.

V. S. Gicreiiz, 0. Weiss, T. G. Noll, I. Carew, J. Ashley, and R. Karabed, "A 550 Mb/s
radix-4 bit-level pipelined 16-state 0.25-pin CMOS Viterbi decoder," in IEEE
International Conference on Application-Specific Systems, Architectures, and
Processors, pp. 342 —345, Feb. 1999.

T. Conway, "Implementation of high speed Viterbi detectors," Electronics Letters, vol.
35, pp. 2089 - 2090, Nov. 1999.

192

References

[I I 8] C. Thomas, M. A. Bickerstaff, L. M. Davis, T. Prokop, B. Widdup, Z. Gongyu, D.
Garrett, C. Nicol, "Integrated circuits for channel coding in 3G cellular mobile
wireless systems," IEEE Commun, Mag., vol. 41, no. 8, pp. 150-159, Aug. 2003.

J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and
convolutional codes," IEEE Trans. Infhrm. Theory, vol. 42, pp. 429-445, Mar. 1996.

M. Moller, "Decoding via cross entropy minimization," in Proc. IEEEGlobecoin Cont.,
1-louston, TX, Dec. 1993, pp. 809-8 13.

12 1] R. Y. Shao, S. Lin, and P. C. Marc, "Two Simple Stopping Criteria for Turbo
Decoding." IEEE Trans. on Communications, vol. 7, no. 8, 1999

M. Rovini, and A. Martinez, "Efficient stopping rule for turbo decoders," Electronics
Letters, vol. 42, no. 4, pp. 235 —236, 2006.

L. Lei, W. Qin, and Y. L. Cheng, "A Novel Stopping Criterion for Turbo Decoding
Innovative Computing," in In!. Conf Information and Control, Aug. 2006, pp. 201 -
205.

[1 24] S. Byoung-Sup, J. Dae-Ho, L. Soon-ia, and K. Hwan-Yong, "A new stopping criterion
for turbo codes," in mt. Conf Advanced Communication Technology, Feb. 2006, pp. 5.

M. Zheng, F. Pingzhi. and H. M. Wai, "An effective stopping scheme for reduced-
complexity iterative decoding of short-frame turbo codes," in Proc. mt. Conf
Communications, Circuits and Systems, May 2005, pp. 28 - 30.

K. Gracie, S. Crozier, and P. Guinand, "Performance of an MLSE-based early
stopping technique for turbo codes," in IEEE Vehicular Technology Conference, Sept.
2004, pp. 2287-2291.

[1 271 W. Zhongfeng, T. Yiyan, and W. Yukc, "Low hardware complexity parallel turbo
decoder architecture," in Proc. Jot. Symp. Circuits and Systems, May 2003, pp. 11-53 -
11-56.

P. Ciao, G. Colavolpe, and L. Fanucci, "A parallel VLSI architecture for I-Gb/s. 2048-
h, rate-1/2 turbo Gallagcr code decoder," in Euromicro Symp. on Digital System
Design, 31 Aug.-3 Sept. 2004, pp. 174 - 18 1.

M. Mansour and N. R. Shanbhag, "VLSI architectures for SISO-APPdecoders," IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. II, no. 2, pp. 627-650, Apr. 2003.

R. Dobkin, M. Peleg, and R. Ginosar, "Parallel interleaver design and VLSI
architecture for low-latency MAP turbo decoders," in IEEE Trans. On Very Large
Scale Integration (VLSI) Systems, vol. 13, no. 4, pp. 427-438,2005.

[13 I] L. Dinoi, and S. Benedetto, "Variable-size interleaver design for parallel turbo decoder
architectures." IEEE Trans. on Communications, vol. 53, no. Il, pp. 1833 - 1840,
2005.

L. Dinoi, A. Tarable, and S. Benedetto, "A permutation decomposition based
algorithm for the design of prunable intcrlcavcrs for parallel turbo decoder
architectures," in IEEE In!. Conf Communications, June 2006, pp. 1148— 1153.

A. Tarable, and S. Benedetto, "Mapping interleaving laws to parallel turbo decoder
architectures," IEEE Communications Letiers, vol. 8, no. 3, pp. 162 - 164, 2004.

1 (\
I '21.)

References

A. Giulietti, L. van der Perre, and M. Strum, "Parallel turbo coding interleavers:
avoiding collisions in accesses to storage elements," IEEE Commun. Let!., vol. 38, no.
2, pp. 232-234, Feb. 2002.

A. Worm, H. Lamm, and N. Wehn, "VLSI architectures for high-speed MAP
decoders," in Proc. 14th mt. Conf VLSI Design, Jan. 2001, Pp. 446-453.

1'136] W. Zhongfeng, C. Zliipci, and K. K. Parhi, "Area-efficient high-speeddecoding
schemes for turbo decoders," IEEE Trans. I'eiy Large Scalelntegr. (VLSI) Syst., vol.
10, no. 6, pp. 902-912, Dec. 2002.

J. Vogt, K. Koors, A. Finger, and G. Fettweis, "Comparison of different turbo decoder
realizations for IMT-2000," in IEEE Global Telecommunications Conference, vol.
5, pp. 2704-2708, Dec. 1999.

P. H. Wu, "On the complexity of turbo decoding algorithms," in IEEE Vehicular
Technology Conference, vol.2, pp. 1439- 1443, May 2001.

[1391 R. Cypher, and C. B. Shung, "Generalized trace back techniques for survivor memory
management in the Viterbi algorithm," in IEEE Global Telecommunications

Confrence, vol. 2, pp. 1318 - 1322, Dec. 1990.

1140] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS design, Kluwer, 1995.

J. M. Rabaey and M. Pedram, Low power design methodologies, Kluwer, 1996.

L. Seok-Jun, N. R. Shanbhag, and A. C. Singer, "A low-power VLSI architecture for
turbo decoding," in IEEE International Symposium on Low Power Electronics and
Design, pp. 366 371, Aug. 2003.

G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, "Architectural
strategies for low-power VLSI turbo decoders," IEEE Transactions on Very Large
Scale Integration Systems. vol. 10. pp. 279— 285, June 2002.

D. Garrett, X. Bing, and C. Nicol, "Energy efficient turbo decoding for 3G mobile," in
IEEE International Symposium on Low Power Electronics and Design, pp. 328 - 333,
Aug. 2001.

0. Y. Leung, T. Chi-Ying. and R. S. Cheng, "Reducing power consumption of turbo-
code decoder using adaptive iteration with variable supply voltage," IEEE
Transactions on Very Large Scale Integration Systems, vol. 9, pp. 34-41, Feb. 2001.

M. Elassal, and M. Bayoumi, "A low power turbo decoder architecture," in IEEE
Workshop on Signal Processing Systems, pp. 105— 110, Aug. 2003.

W. Zhongfeng, C. Zhipci and K. K. Parhi, "Area-efficient high speed decoding
schemes for turbo/MAP decoders," in IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 4, pp. 2633 - 2636, May 2001.

K. K. Parhi, "An Improved Pipelined MSB-First Add-Compare-Select Unit Structure
for Viterbi Decoders," IEEE Trans. On Circuits and Systems-fReg. Papers, vol. 51,
no. 3, pp. 504-511, Mar, 2004.

J. Hagenauer, and L. Papke, "Decoding turbo-codes with the soft output Viterbi
algorithm (SOyA)," in IEEE International Symposium on Injrniation Theory, pp. 164,
June 1994.

Im

References

[I 50] M. P. C. Fossorier, F. Burkert, L. Shu, and J. Hagenauer, "On the equivalence between
SOYA and max-log-MAP decodings," IEEE Communications Letters, vol. 2, PP. 137
- 139, May 1998.

[151] G. Colavolpe, G. Ferrari, and R. Raheli, "Extrinsic information in turbo decoding: a
unified view." in IEEE Global Telecommunications Conference, vol. Ia, pp. 505 - 509,
1999.

[I 52] C. Berrou, P. Adde, E. Angui, and S. Faudeil, "A low complexity soft-output Viterbi
decoder architecture," in IEEE International ConJCrence on Communications, vol.
2, Pp. 737-740, May 1993.

L. Papke, P. Robertson, and E. Villebrun, "Improved decoding with the SOVA in a
parallel concatenated (Turbo-code) scheme," in IEEE International Conference on
Communications, vol. I, pp. 102— 106, June 1996.

L. Lang, and R. S. Cheng, "Improvements in SO VA-based decoding for turbo codes,"
in IEEE International Conference on Communications, vol. 3, pp. 1473 - 1478, June
1997.

W. Duanyi, and H. Kobayashi, "High-performance SOVA decoding for turbo codes
over cdma2000 mobile radio," in Military Communications Conference, vol. I, pp.
189— 193, Oct. 2000.

Y. Fahrny, H. A. G. Abdel Kader, and M. M. S. El-Soudani, "On the use of SOVA for
iterative decoding," in Mediterranean Electrotechnical ContCrence, pp. 168 - 172,
May 2002.

S. Lingyan, T. Horigome, and B. V. K. V. Kumar, "A high-throughput, field
programmable gate array implementation of soft output Viterbi algorithm for magnetic
recording," IEEE Transactions on Magnetics, vol. 40, pp. 3081 - 3083, July 2004.

[1 58] D. Garrett, and M. Stan, "Low power architecture of the soft-output Viterbi
algorithm," in IEEE International Symposium on Low Power Electronics and Design,
pp. 262 - 267, Aug. 1998.

K. W. Tae, B. S. Jac, K. S. Geun, and J. E. Kyeong, "Reduction of computational
complexity in two-step SOVA decoder for turbo code," in IEEE Global
Telecommunications Conference, vol. 3, pp. 1887— 1891, Nov. 2000.

D. Garrett, and M. A. Stan, "2.5 Mb/s, 23 mW SOVA traceback chip for turbo
decoding applications," in IEEE International Symposium on Circuits and Systems, vol.
4, Pp. 61 —64, May 200 I.

C. Berrou, P. Combelles, P. Penard, and B. Talibart, "An IC for turbo-codes encoding
and decoding," in IEEE International Solid-State Circuits Conference, pp. 90 - 91,
Feb. 1995.

J. Glossner, D. lancu, L. Jiui, E. Hokenek, and M. Moudgill, "A software-defined
communications baseband design," IEEE Communications Magazine, vol. 41, pp. 120
- 128, Jan. 2003.

M. Barnard, and S. McLaughlin, "Reconfigurable terminals for mobile communication
systems," Journal of Electronics & Communication Engineering, vol. 12, pp. 281 -
292, Dec. 2000.

195

References

W. H. W. Tuttlebee, "Software-defined radio: facets of a developing technology,"
IEEE Personal Communications, vol.6, PP. 38-44, April 1999.

M. Mehta, N. Drew, G. Vardoulias, N. Greco, and C. Niederrneier, "Reconfigurabic
terminals: an overview of architectural solutions," IEEE Communications Magazine,

vol. 39, pp. 82-89, Aug. 2001.

T. C. Reiner, and M. J. Lindsey, "VLSI development of a rcconfigurable multi-user
Viterbi decoder," in IEEE Military Communications Con/irence, vol. I, pp. 244 - 248.
Sep. 1990.

P. H. Kelly, and P. M. Chau, "A flexible constraint length, foldable Viterbi decoder,"
in IEEE Global Telecommunications Conf'rence, vol. 1, pp. 63 1 - 635, Nov. 1993.

K. Chadha, and J. R. Cavallaro, "A reconfigurable Viterbi decoder architecture," in
Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 66 - 71, Nov.
2001.

J. R. Cavallaro, and M. Vaya, "Viturbo: a reconfigurable architecture for Viterbi and
turbo decoding," in IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. 2, pp. 497-500, April 2003.

P. H. Chen, H. Kai, H. Nai-Hsuan, and W. An-Yeu, "Dual-mode convolutional/SO VA
based turbo code decoder VLSI design for wireless communication systems," in IEEE
International Systems-on-Chip Confrence, pp. 369 - 372, Sep. 2003.

[1711 C. Bcrrou, R. Pyndiah, P. Adde, C. Douillard, and R. Le Bidan, "An overview of turbo
codes and their applications," in The European Conference on Wireless Technolo',

pp. 1 —9, Oct. 2005.

[172] C. Berrou, "The ten-year-old turbo codes are entering into service," IEEE
Comm unications Magazine, vol. 41, pp. 110— 116, Aug. 2003.

196

