

DOUBLE BINARY TURBO CODES

ANALYSIS AND DECODER

IMPLEMENTATION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Özlem Yılmaz

September 2008

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Abdullah Atalar (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Arıkan

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Đbrahim Körpeoğlu

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet B. Baray

Director of Institute of Engineering and Sciences

iii

ABSTRACT

DOUBLE BINARY TURBO CODE ANALYSIS AND

DECODER IMPLEMENTATION

Özlem Yılmaz

M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Abdullah Atalar

September 2008

Classical Turbo Code presented in 1993 by Berrau et al. received great attention

due to its near Shannon Limit decoding performance. Double Binary Circular

Turbo Code is an improvement on Classical Turbo Code and widely used in

today’s communication standards, such as IEEE 802.16 (WIMAX) and DVB-

RSC. Compared to Classical Turbo Codes, DB-CTC has better error-correcting

capability but more computational complexity for the decoder scheme. In this

work, various methods, offered to decrease the computational complexity and

memory requirements of DB-CTC decoder in the literature, are analyzed to find

the optimum solution for the FPGA implementation of the decoder. IEEE

802.16 standard is taken into account for all simulations presented in this work

and different simulations are performed according to the specifications given in

the standard. An efficient DB-CTC decoder is implemented on an FPGA board

and compared with other implementations in the literature.

Keywords: Double Binary Turbo Codes, IEEE 802.16, FPGA, decoder.

iv

ÖZET

ÇĐFT ĐKĐLĐ TURBO KOD ANALĐZĐ ve KOD ÇÖZÜCÜ

UYGULAMASI

Özlem Yılmaz
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar
Eylül 2008

Đlk olarak 1993 senesinde Berrou tarafindan tariflenen klasik Turbo kodlar,

Shannon sınırına yakın kod çözücü performansları sayesinde büyük ilgi

toplamıştır. Çift ikili dönel Turbo kodları, klasik Turbo kodların daha da

gelişmiş halidir ve IEEE 802.16 (WIMAX) and DVB-RSC gibi bugünün

haberleşme standartlarında yaygın olarak kullanılmaktadır. Bu kodlar, klasik

Turbo kodlara kıyasla daha iyi hata düzeltme yeteneğine sahip olmakla birlikte

çözücü açısından daha fazla hesapsal karmaşa içermektedir. Bu çalışmada, çift

ikili turbo kod çözücünün alan programlanır kapı dizilerinde en verimli şekilde

uygulanması için, literatürde hesaplama karmaşıklığını ve gerekli hafıza alanını

azaltmaya yönelik yapılmış çalışmalar araştırılmıştır. Çalışmada IEEE 802.16

standardı baz alınmıştır ve burada verilen belirtimlere uygun olarak

simülasyonlar yapılmıştır. Yapılan araştırmaya göre, alan programlanır kapı

dizilerinde verimli bir çift ikili turbo kod çözücü uygulaması geliştirilmiştir ve

daha önce alan programlanır kapı dizilerinde uygulanan kod çözücülerle

karşılaştırılmıştır.

Anahtar Kelimeler: Çift Đkili Turbo Kodlar, IEEE 802.16, Alan Programlanır

Kapı Dizileri, kod çözücü

v

Acknowledgements

 I would like to express my gratitude to Prof. Abdullah Atalar for his guidance

and supervision throughout the development of this thesis; I would also like to

gratefully thank Prof. Erdal Arıkan for suggesting, leading the project and

providing FPGA board.

I would like to thank my committee member Assist. Prof. Đbrahim Körpeoğlu for

reading and commenting on this thesis.

I would like to express my thanks to Cahit Uğur Ungan and Oğuzhan Atak for

sharing their knowledge with me.

Special thanks to Erdem Ersagun for reviewing my thesis and all his support and

understanding throughout the development of this thesis.

I would also like to express my thanks to Duygu Ceylan, Soner Çınar and other

colleagues in Aselsan for their support and understanding during my studies.

Last but not the least I would like to thank my family for their endless support,

encouragement and love throughout my life.

vi

Table of Contents

1. INTRODUCTION ...1

2. TURBO CODE ..4

2.1 CLASSICAL TURBO CODE ...4

2.2 DOUBLE BINARY TURBO CODE..6

2.2.1 Double Binary Turbo Encoder ..7

2.2.2 Interleaver Structure ...8

2.2.3 Sub-block Interleaver Structure ..9

2.2.4 Puncturing...9

2.2.5 Double Binary Turbo Decoder..10

2.2.6 Decoder Algorithm..11

2.2.7 Max-Log-MAP Algorithm..13

3. SIMULATION RESULTS FOR DOUBLE-BINARY TURBO CODES................19

3.1 EFFECT OF BLOCK SIZE ..20

3.2 EFFECT OF ITERATION NUMBER ...21

3.3 EFFECT OF PRE-DECODER AND FEEDBACK METHODS ...24

3.4 EFFECT OF ENHANCED MAX-LOG-MAP ..26

4. HARDWARE IMPLEMENTATION OF TURBO DECODER27

4.1 ARCHITECTURE ..27

4.2 MODULES IN DETAIL..30

4.2.1 Data Selector Module..30

4.2.2 Beta Module ..32

4.2.3 Alpha&LLR Module ..33

4.2.4 Serial Channel Module..36

4.3 TEST PROCEDURE ..37

4.4 RESULTS ..38

4.4.1 FPGA Device Utilization Report...38

4.4.2 Decoding Rate...39

4.4.3 Comparison ...42

5. CONCLUSIONS AND FUTURE WORK...44

vii

A. MATLAB SIMULATION CODES..46

A.1 DOUBLE BINARY TURBO CODE ...46

A.2 INTERLEAVER..47

A.3 ENCODE ..48

A.4 SUBBLOCK INTERLEAVER ...49

A.5 PUNCTURING ...51

A.6 DE-PUNCTURING ...51

A.7 SUB BLOCK DE-INTERLEAVING...52

A.8 SOFT INPUT SOFT OUTPUT DECODING ..53

A.9 INTERLEAVING EXTRINSIC INFORMATION ...57

A.9 DE-INTERLEAVING EXTRINSIC INFORMATION ...58

A.10 DECISION ..59

viii

List of Figures

Figure 2.1 Turbo Encoder... 4

Figure 2.2 Turbo Decoder .. 5

Figure 2.3 Overall picture for Double-Binary CTC ... 7

Figure 2.4 Double Binary Turbo Encoder.. 8

Figure 2.5 Double Binary Turbo Decoder.. 11

Figure 2.6 Trellises for input AB=00, 01, 10 and 11 ... 14

Figure 2.7 Trellis for calculation of extrinsic information when AB=00 16

Figure 2.8 Double Binary Turbo Decoder with Feedback 18

Figure 3.1 Effect of Block Size on the performance of the Turbo code 20

Figure 3.2 Effect of iteration numbers when pre-decoder method is used......... 21

Figure 3.3 Effect of iteration number when feedback method is used............... 22

Figure 3.4 Effect of using feedback techniques and pre-decoder techniques 24

Figure 3.5 Effect of Using Enhanced Max-Log-MAP algorithm 26

Figure 4.1 Overall architecture of the implemented Turbo Decoder 28

Figure 4.2 Data Selector module inputs and outputs.. 30

Figure 4.3 Beta Module inputs and outputs ... 32

Figure 4.4 Alpha&LLR module inputs and outputs... 34

Figure 4.5 Serial Channel Module Inputs and Outputs 36

ix

List of Tables

Table 2.1 Double Binary Turbo Code Puncturing Patterns…………………….10

Table 4.1 Device Utilization Report... 38

Table 4.2 Decoding Rate for different block sizes for 2 data blocks 40

Table 4.3 Decoding Rate for different block sizes for very large number of data

blocks.. 41

Table 4.4 Comparison of the proposed decoder to the decoder in [13] 42

Table 4.5 Decoded Data Rate for four decoders with frequency 100 MHz....... 43

x

 To My Family…

1

Chapter 1

Introduction

In wireless communication systems, received data from the transmitter is

corrupted due to the imperfectness of the channel. Error correcting codes are

used to reduce the error rate in the received data avoiding increase of

transmission power. There are two types of error correcting. In ARQ (Automatic

Repeat reQuest) case, receiver sends an acknowledge message to the transmitter

upon the reception of a data without error. If transmitter can not receive an

acknowledge message in a predetermined time interval, it resends the previously

sent data. On the other hand, “forward error correction” (FEC), which is another

type of error correcting, uses the redundant bits sent by the transmitter. It avoids

retransmission at the cost of high bandwidth requirement and preferred when

retransmission is more costly or even impossible. Hybrid ARQ enables using

FEC and ARQ together.

 FEC is divided into two types: convolutional codes and block codes. Block

codes processes on fixed length channel code while convolutional codes work

on bits of arbitrary length. Non-recursive convolutional codes are not

systematic, meaning that actual bits are not sent through the channel. In this

case, output is a linear combination of input bit and delayed input bits. Another

type of convolutional code namely recursive convolutional code is systematic

and parity output is a function of input bits, delayed input bits and previous

input bits. Turbo code is a modified form of convolutional codes in which two

2

recursive systematic convolutional codes are concatenated in parallel separated

by an interleaver.

 Turbo coding, first introduced in 1993, aroused great attention due to its near

Shannon Limit performance [1]. It allows maximum information transfer over a

limited bandwidth. They are widely used in cellular communication systems and

specifications for WCDMA (UMTS) and cdma2000 [2]. Non-binary turbo codes

introduced in [3] perform better than classical Turbo codes as explained in [4].

Popular radio systems such as DVB-RSC (Digital Video Broadcasting – Return

Channel via Satellite) and IEEE 802.16 (WIMAX –Worldwide Interoperability

for Microwave Access) [5] standards include double binary turbo codes. On the

other hand, compared to classical turbo decoder, double binary turbo decoder is

more complex in hardware implementation. Researchers are working on double

binary turbo codes to find an efficient way such that the trade off between

performance and computational complexity is optimized. First of all, Log-MAP

algorithm -the biggest effect on computational complexity- is reduced by using

Max-Log-MAP algorithm in the decoders. The performance of the algorithm is

improved by using a scaling factor for the calculation of extrinsic information

[6]. Another issue causing complexity is the estimation of the initial trellis state

at the decoder side. By using feedback method in [6] instead of pre-decoder

method, this problem can be solved. Although there are some implementations

of the double binary turbo decoder, most of them are based on application

specific integrated circuits (ASIC) and not flexible.

 In this thesis, investigations improving the performance of the double binary

turbo codes are analyzed using MATLAB simulations. Based on the results

obtained, double binary turbo decoder is implemented on a field programmable

gate array (FPGA). Finally the performance of the decoder is compared to other

FPGA implementations in the literature.

3

 Basic information about turbo codes is given and double binary turbo codes

are explained in detail together with improvements suggested by other

investigators in Chapter 2. MATLAB simulations performed are presented in

Chapter 3. Architecture, results of the hardware implementation and the

comparison with other implementations are given in Chapter 4. Thesis is

concluded in Chapter 5.

4

Chapter 2

Turbo Code

2.1 Classical Turbo Code

Classical turbo code encoder consists of two rate 1/2 binary recursive systematic

convolutional codes concatenated in parallel and separated by a random

interleaver as shown in Figure 2.1.

Figure 2.1 Turbo Encoder

 In Figure 2.1, upper encoder encodes the data in natural order and lower

encoder encodes the interleaved data. Interleaver structure has a big importance

on the performance of the turbo codes because it provides the systematic and

parity bits sent through the channel are uncorrelated. The data bits kA and parity

5

bits kP , kP′ are transmitted together, thus the overall code rate of the encoder is

1/3. After encoding all data bits, tailing bits are encoded and transmitted to force

the trellises of the two encoders to all zero state. It is possible to terminate

conventional convolutional codes by transmitting a tail of zeros. However, in the

case of recursive convolutional codes, separately calculated tail bits are needed

for the encoders [2]. These tail bits are generated by turning the switches in

Figure 2.1 on the down position [2].

 The turbo decoder is an iterative serial concatenation of two soft output

Viterbi or BCJR algorithm decoders as shown in Figure 2.2.

()kR A

()kR P ′

()kR P

ˆ
kA

2 ()kP
′Λ

1()kPΛ

2 ()kV P ′

2 ()kV P

1()kV A

()
k

w A

2 ()kPΛ

Figure 2.2 Turbo Decoder

 Each iteration consists of two half iterations. RSC Decoder 1 works in the

first iteration while RSC Decoder 2 works in the second iteration. Decoder 1

uses the received LLR (Log Likelihood Ratios) corresponding to the systematic

bits and LLR for the parity bits produced by the first encoder –the encoder

which encodes the data in natural order- to produce extrinsic information to be

6

used by the second decoder. Decoder 2 produces extrinsic information by using

the interleaved extrinsic information from the first decoder and LLR of parity

bits produced by the second encoder –the encoder which encodes the interleaved

data. After de-interleaving process, the extrinsic information is introduced to the

first decoder. The progress continues until a reasonable BER or iteration number

is reached [2]. This process includes only the actual bits; tail bits are not

decoded.

2.2 Double Binary Turbo Code

Recursive Systematic Convolutional codes used in turbo codes are based on

single-input linear feedback shift registers (LFSRs). Several information bits can

be encoded and decoded at the same time by making use of multiple input

LFSRs [3]. It has been shown in [3] that m-input binary turbo codes combined

with a two-level permutation performs better than classical turbo codes

especially at low SNR and high coding rate. The advantages of m input turbo

codes are better convergence of the iterative decoding, large minimum distances,

less sensitivity to puncturing patterns, reduced latency, robustness for the

weaknesses of the Max-Log-MAP algorithm which is generally preferred as

decoding algorithm[4]. Turbo codes with m=2 are called “Double Binary Turbo

Codes” and 8 state double binary turbo codes have been widely used in today’s

mobile radio systems such as DVB-RCS and IEEE 802.16(WIMAX)

standards[5]. Figure 2.3 shows an overall picture of double binary turbo codes

including the modulation and demodulation processes. An eight-state Double

Binary Turbo Code encoder, interleaver, subblock interleaver, puncturing and

decoder structures are explained in the following sections.

7

Figure 2.3 Overall picture for Double-Binary CTC

2.2.1 Double Binary Turbo Encoder

Double binary turbo encoder consists of two double binary RSC codes

concatenated in parallel as shown in Figure 2.4.

 Two data streams A and B are fed to the encoders in natural and interleaved

orders. The encoder output consists of systematic bits A and B, parity bits

produced by the upper encoder and lower encoder Y1, W1 and Y2, W2

respectively, causing a 2/6 coding rate. In circular double binary Turbo codes, it

is ensured that the ending trellis state is equal to the initial trellis state which is

called circular state Sc [6]. When compared to classical turbo codes which uses

redundant tail bits to force the encoder to all zero state, tail biting technique in

double binary turbo codes brings an advantage due to the increase in spectral

efficiency. However, in order to provide the circular behavior of the code and to

determine the initial state for the given data stream, a pre-encoding procedure is

8

necessary. This causes the encoder scheme of the double binary codes to be

more complex than the encoder scheme of the classical turbo codes.

Figure 2.4 Double Binary Turbo Encoder

2.2.2 Interleaver Structure

In turbo codes, interleaver structure has a big effect on the noise performance of

the code. In [3] it is stated that two level permutation-inter symbol and intra

symbol permutation- helps obtaining large minimum distances and better error

correction performance compared to classical turbo codes. Two steps followed

in the interleaving procedure are:

1. for j = 0,1,2(N-1)

 If (j mod 2 = 1)

 Then, (B,A) = (A,B) (switch the couple)

9

 2. For j = 0,1,2.....(N-1)

 Switch j mod 4:

 Case 0 : mod() (0 1) NP j P j= × +

 Case 1 : mod() (0 1 / 2 1) NP j P j N P= × + + +

 Case 2 : mod() (0 1 2) NP j P j P= × + +

 Case 3 : mod() (0 1 / 2 3) NP j P j N P= × + + +

where Interleaved Vector (j) = Original Vector (P(j)) and N is the block size,

P0, P1, P2, P3 are the parameters defined in standards for the different block

sizes [7]. In this thesis Double Binary Turbo Codes are implemented according

to the IEEE 802.16 standard, so P0, P1, P2, P3 are picked according to the table

given in the standard [5].

2.2.3 Sub-block Interleaver Structure

Sub-block interleaving process takes place on systematic bits A, B and Parity

bits Y1, W1, Y2, W2 which are the outputs of the encoder. Addresses of the bits

are calculated according to the formula given as:

 2 (mod) (/)m

k mT k j BRO k j= +   

where kT is the output address, m and j are standard and block size dependent

parameters[7].

2.2.4 Puncturing

After sub-block interleaving, puncturing is performed on parity bits according to

a given formulation defined in the standards. Puncturing enables increasing the

code rate from 1/3 to other rates defined in the standards. Table 2.1 is the

puncturing pattern defined in IEEE 802.16 to obtain code rates 1/2, 2/3 and 3/4.

10

 Table 2.1 Double Binary Turbo Code Puncturing Patterns

 In each case, systematic bits are sent without deleting any information. For

example, to obtain a code rate of 1/2; A, B together with Y1, Y2 blocks are

modulated and sent through the channel. For a code rate of 2/3, bits with odd

indexes are removed from Y1 and Y2.

 De-puncturing is the reverse operation of puncturing and takes place after

demodulation. In this case, according to the code rate specified, the received

data is padded with zeros to obtain the natural code rate 1/3 which will be used

by the iterative decoder.

2.2.5 Double Binary Turbo Decoder

The decoder involves two Soft Input Soft Output (SISO) decoders working

iteratively as shown in Figure 2.5.

 Decoder 1 calculates extrinsic information denoted as 1(,)k kA BΛ by making

use of LLR of systematic bits, LLR of parity bits and de-interleaved extrinsic

information produced by Decoder 2. Decoder 2 uses interleaved LLR of

systematic bits, LLR of parity bits and interleaved extrinsic output of Decoder 1.

Iteration number generally changes from 2 to 8 depending on the required BER

and speed. During iterations, inputs to the decoders (LLR of A, B, Y1, W1, Y2

and W2) are kept constant and only extrinsic information is passed between the

decoders. As it will be shown in the Chapter 3, increasing the number of

11

iterations results in better BER performance at the cost of longer decoding time

causing the decoding rate to decrease. In order to obtain a reasonable BER while

keeping the decoding time as low as possible, a stopping criterion should be

defined.

(,)k kR A B

1 1(,)R Y W

ˆ ˆ,k kA B

2 2(,)R Y W

2 (,)k kA B′ ′Λ

1(,)k kA BΛ

2 (,)k kV A B′ ′

2 (,)k kV A B

1(,)k kV A B

(,)k kw A B

2 (,)k kA BΛ

Figure 2.5 Double Binary Turbo Decoder

2.2.6 Decoder Algorithm

Considering one LLR value of a posteriori probabilities as in the case of

classical turbo codes is not enough for double binary turbo codes. Instead a

modified MAP algorithm or BCJR algorithm, in which three LLRs

1

((01) |)
ln

((00) |)
k

k

P u y
L

P u y

 =
=  = 

, 2

((10) |)
ln

((00) |)
k

k

P u y
L

P u y

 =
=  = 

, 3

((11) |)
ln

((00) |)
k

k

P u y
L

P u y

 =
=  = 

are calculated, is introduced [10]. This increases the computational complexity

of the decoder. However there is no need to compute LLR values, finding four

posterior probabilities ((0,0) |)kP u y= , ((0,1) |)kP u y= , ((1,0) |)kP u y= ,

12

((1,1) |)kP u y= and picking up the maximum of the four values is enough for

MAP algorithm [6]. Posteriori possibility of each data pair in log domain is

defined as:

 ' '
1ln (|) ln(exp(() (,) ()))k k k kP u y s s s sβ γ α −= + +∑

' '
1

' '
1

'

1

() ln(exp((,) ())

() ln(exp((,) ()

(,) ln ()

k k k

all s

k k k

all s

m n

i kl kl k

l

s s s s

where s s s s

s s x y P u

α γ α

β γ β

γ

−
′

−

+

=


 = +



= +

   = ⋅ + 
  

∑

∑

∑

where m is the length of systematic bits and n is the length of parity bits. klx and

kly stands for the received LLR from the demodulator [6].

After MAP decoder operation,

1

ln (|) ln (|) ln ()
m

ex

out k k kl kl k

l

P u y P u y x y P u
=

= − ⋅ −∑

representing 4 log domain extrinsic information is sent to the other decoder.

 It is not an easy to implement Log-MAP algorithm in hardware. To simplify

the algorithm further and to calculate (,) ln()x yMAX x y e e= + in an easier way,

three main techniques are offered:

Constant Log-MAP:

max(,) 0, | |
(,)

max(,) , | |

x y if y x T
MAX x y

x y C if y x T

+ − >
= 

+ − ≤

According to [7], this technique gives the best results when C = 0.5 and T = 1.5.

13

Linear Log-MAP

max(,) 0, | |
(,)

max(,) (| |), | |

x y if y x T
MAX x y

x y a y x T if y x T

+ − >
= 

+ − − − ≤

The optimum “a” is found to be -0.24904 and “T” to be 2.5068 in [7]. Linear

Log-MAP algorithm gives more reliable results however include more

computational complexity.

Max-Log-MAP Algorithm

(,) max(,)MAX x y x y=

 Max-Log-MAP algorithm gives less accurate results when compared to the

Log-MAP algorithm itself. However, due to its decreased computational

complexity; it is the most preferred algorithm for hardware implementations. In

[12], a modified Max-Log-MAP algorithm called Enhanced Max-Log-MAP

algorithm is introduced. In this algorithm, by multiplying the extrinsic

information with a coefficient smaller than 1, performance of Max-Log-MAP is

improved. In [6], it has been shown that Enhanced Max-Log-MAP algorithm

achieves the best trade off between performance and computational complexity

which is recommended in hardware implementations. In this thesis, Max-Log-

MAP is chosen for hardware implementation so this algorithm is explained in

further detail.

2.2.7 Max-Log-MAP Algorithm

Max-Log-MAP algorithm includes sweeping the trellis in the forward and

backward directions. Each sweep uses a modified version of the Viterbi

algorithm in which Add Compare Select operations are carried out by MAX*

operator [2]. Performing the forward sweep or backward sweep first does not

matter. In either case, metrics calculated in the first sweep are stored in memory

and metrics calculated in the second sweep are directly used together with the

metrics stored in the first sweep to find final extrinsic information. In [2]

14

performing the backward sweep first is recommended, because in this case, LLR

estimates of the data are produced in the forward sweep and is output in the

correct ordering.

 Figure 2.6 Trellises for input AB=00, 01, 10 and 11

 During backward recursion, beta metrics are calculated and stored in the

memory. Beta metrics represent the probability for different states when

considering all the data after time instance k [13] and are calculated according to

the following expression:

1

1 1 1 1() max[() ()]
k

k k k k k k k
s B

s s s sβ β γ
+

+ + + +
∈

≅ + →

where B is the set of states at time 1k + connected to state ks .

15

Branch metrics denoted as γ are calculated as:

1 1 2 2 1 1 2 2 ()
1 ,() ln[(|). ()] ()

2
s s s s p p p p zc

k k k k k k k k k k k k k k e IN

L
s s P y x P u z x y x y x y x y Lγ +→ = = = + + + +

where {00,01,10,11}z ϕ∈ = ; ku is the input symbol consisting of two bits,

()kP u is a priori probability of ku , kx and ky are transmitted and received

codeword associated with ku [14]. s and p stands for systematic and parity bits

respectively. ()
,
z

e INL is the extrinsic information received from the other SISO

decoder. cL is equal to 2/ 2σ where 2σ stands for the noise variance of the

AWGN channel and generally set to a constant value since turbo decoding based

on the Max-Log-MAP algorithm is independent of SNR[14].

 During forward recursion, alpha metrics are calculated and without storing in

the memory, they are used together with beta metrics to produce extrinsic

information for the other SISO decoder. Alpha metrics are calculated as:

1

1 1 1() max[() ()]
k

k k k k k k k
s A

s s s sα α γ
−

− − −
∈

≅ + →

where A is the set of states at time 1k − connected to state ks .

LLR(extrinsic information) calculations are:

 1

1

()
1 1 1 1

(,)

1 1 1 1
(,00)

max [() () ()]

 max [() () ()]
k k

k k

z

k k k k k k k k
s s z

k k k k k k k
s s

s s s s

s s s s

α γ β

α γ β
+

+

+ + + +
→

+ + + +
→

Λ ≅ + → +

− + → +

where {01,10,11}z ϕ∈ = , ks is the state of the encoder at time k .

16

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(0)kβ

(1)
k
β

(2)kβ

(3)kβ

(4)kβ

(5)kβ

(6)kβ

(7)
k
β

1(0)kα −

1(1)kα −

1(2)kα −

1(3)kα −

1(4)kα −

1(5)kα −

1(6)kα −

1(7)kα −

Figure 2.7 Trellis for calculation of extrinsic information when AB=00

 It is possible to implement Max-Log-MAP algorithm in two ways; MAP

decoding is applied to the whole data block or a large block is split into several

windows and MAP decoding is applied to each window separately which is

called sliding window technique [15]. The sliding window technique is effective

on reducing the memory size required to store metrics [14]. In this technique,

forward metrics are calculated before backward metrics are ready, so a dummy

calculation is performed for the backward metrics to obtain reliable initial

values. Since the dummy calculations do not reflect the actual backward metric

values, the performance of the decoder is degraded. The performance gets better

as the window size is increased. Instead of dummy calculation another method is

introduced in [14] based on border metric encoding. In this method, for each

17

window, the final backward metric is stored in the border metric memory and

used in the next iteration as initial values for the new metrics [14]. There is

performance degradation when compared to dummy calculation method, but

degradation disappears as the number of iterations increases. By applying the

energy efficient turbo decoding method based on border metric encoding, the

size of branch memory is reduced by half and the dummy calculation causing

computational complexity is removed. [14].

 Initiation of forward and backward metrics has a big effect on the

performance of the turbo codes. As explained in Section 2.2.1, in the classical

turbo code, trellis starts and ends at all zero state so forward and backward

metrics can be initiated as follows [6] :

0 0

0 0

(0) 0

(0) 0

()

() for all s 0

N N

N N

A S

B S

A S s

B S s

= =

= =

= = −∞

= = −∞ ≠

 For double binary turbo codes, since circular RSC codes are used, the

decoder doesn’t have any information about the initial and final state of the

trellis. Several methods are offered to solve this problem. One solution is to

include a pre-decoder to estimate the initial state of the trellis and use through

the remaining iterations [8][9]. However this method increases both the

computational complexity and latency [6]. In [6] a new method called

“feedback” is introduced. Forward and backward metrics are initially set to zero

but final metric values are stored to be used as initial values for the metrics in

the following iterations. This method does not add any computational

complexity or latency but requires the final metric values to be memorized [6].

This method is shown in Figure 2.8.

18

(,)k kR A B

1 1(,)R Y W

ˆ ˆ,k kA B

2 2(,)R Y W

0 0

()

()
N NS s

S s

α

β

′ =

′ =

0 0

()

()
N NS s

S s

α

β

′′ =

′′ =

2 (,)
k k

A B′ ′Λ

1(,)k kA BΛ

2 (,)k kV A B′ ′

2 (,)k kV A B

1(,)k kV A B

(,)k kw A B

2 (,)k kA BΛ

Figure 2.8 Double Binary Turbo Decoder with Feedback

In this case

 0 0

0 0

() ()

() ()
N N

N N

S s S s

S s S s

α α

β β

′= = =

′= = =

For the first few iterations, the performance of the algorithm is worse when

compared to pre-decoder method but it gets better as the number of iterations

increases [6].

19

Chapter 3

Simulation Results for Double-Binary

Turbo Codes

Using MATLAB environment, different simulations are carried out in order to

analyze the performance of the Double Binary Turbo Code under different

circumstances explained in Chapter 2. Using MATLAB function “rand”,

random data is generated for different block sizes. Two random data streams are

then encoded by using “encode” function written according to the information

given in Chapter 2. Interleaving process is applied by using the parameters given

in [5]. “SubBlockInterleaver” function is also written according to the

specifications in [5] and applied to the output of “encode” function. Code rate

higher than 1/3 is obtained by making use of the puncturing pattern defined in

[5]. IEEE defines parameters for three types of modulations: QPSK, 16-QAM

and 64 QAM. For modulation, “pskmod” function of MATLAB are used with

relevant parameters and passed through the channel defined by “awgn” function

of MATLAB which accepts SNR values as parameter. The output of AWGN

function is fed to “pskdemod” function of which parameters are “pi/4” for phase

offset, “binary” for symbol order, “bit” for decision type and “llr” for decision

type. After passing through de-puncturing and sub-block de-interleaving

functions, data is given as input to the decoders implemented in “SISO”

functions. Output of one SISO function is passed to the other SISO function as

input and progress continues until specified iteration number is reached. For

each simulation, program runs until the number of decoded bits is 960000.

20

3.1 Effect of Block Size

Simulations are carried out for block size values 240, 480, 960 and 1920. For

each simulation code rate is 1/3(no puncturing), modulation type is QPSK and

iteration number is 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 10
-5

10 -4

10
-3

10
-2

10 -1

10
0

SNR(Eb/N0)

BER

SNR vs BER (960000 bits)

BlockSize:240
BlockSize:480
BlockSize:960
BlockSize:1920

Figure 3.1 Effect of Block Size on the performance of the Turbo code

 According to the simulation results, BER performance gets better upon

increasing the block size. Using blocks consisting of 1920 bits brings about 0.5

dB performance gain at 0.007 BER. However, large blocks require more

memory in hardware, so a block size optimizing the performance and memory

requirement can be preferred.

21

3.2 Effect of Iteration Number

Iteration number has a significant effect on the performance of the decoder. As

explained in Chapter 2, pre-decoder method or feedback method is used for

estimation of the circular state. According to [6], when feedback method is used,

the number of iteration becomes more important. To observe the effect of

iteration number for both “feedback” case and “pre-decoder” case, two different

simulations are carried out. For the simulation in Figure 3.2, code rate is 1/3 (no

puncturing), modulation type is QPSK and block size is 480.

0 0.5 1 1.5 2 2.5 3 10
-5

10 -4

10
-3

10
-2

10 -1

10
0

SNR(Eb/N0)

BER

SNR vs BER (960000 bits)

ItNo:2
ItNo:4
ItNo:6
ItNo:8

Figure 3.2 Effect of iteration numbers when pre-decoder method is used

 When pre-decoder is used for initial metric estimation, iterating 6 or 8 times

instead of 2 brings about 1 dB gain at BER of 310− . As it is seen in Figure 3.2, at

BER of 310− , the difference between 2 iterations and 4 iterations is about 0.8

dB. On the other hand the difference between 4 iterations and 6 iterations is

about 0.2 dB at BER of 310− . This indicates that number of iterations does not

22

affect the performance linearly. As the number of iterations increase, the

improvement on BER performance decreases.

 Simulation results when feedback method is used for initial metric estimation

are shown in Figure 3.3. For the simulation in Figure 3.3, code rate is 1/3 (no

puncturing), modulation type is QPSK and block size is 480.

0 0.5 1 1.5 2 2.5 3 10
-5

10 -4

10
-3

10
-2

10 -1

10
0

SNR(Eb/N0)

BER

SNR vs BER (960000 bits)

ItNo:2
ItNo:4
ItNo:6
ItNo:8

Figure 3.3 Effect of iteration number when feedback method is used

 When feedback method is used for initial metric estimation, iterating 6 or 8

times instead of 2 brings more than 1 dB gain at BER of 310− . At 310− BER,

performance difference between 2 iterations and 4 iterations is about 0.9 dB. On

the other hand performance difference between 4 iterations and 6 iterations or 6

iterations and 8 iterations is about 0.1 dB at 310− BER. In the case of feedback

method, increasing the number of iterations improves the performance more

when compared to pre-decoder case.

23

 Another simulation is carried out to observe the effect of iteration number

when code rate is different than 1/3. For the simulation in Figure 3.3, code rate

is 1/2, modulation type is QPSK and block size is 480.

Figure 3.4 Effect of iteration number when code rate is 1/2

 Comparing Figure 3.3 and 3.4, it can be concluded that effect of iteration

number is similar for a code rate of 1/3 (no puncturing) and 1/2.

 Simulation results indicate that increasing iteration number improves the

BER performance. However high number of iteration means latency and results

in low decoding rate. Keeping in mind that the amount of improvement on the

BER performance decreases after 4 iterations; ideal number for iteration can be

chosen as 6 or 8 depending on the BER requirement of the application.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

SNR vs BER (960000 bits)

ItNo:2

ItNo:4

ItNo:6

24

3.3 Effect of Pre-Decoder and Feedback Methods

Number of iterations plays a significant role on the performance of the Pre-

Decoder and Feedback methods. For this reason, pre-decoder and feedback

methods are compared for iteration number 2 and iteration number 6. Code rate

is 1/3(no puncturing), modulation type is QPSK and block size is 480 for this

simulation.

0 0.5 1 1.5 2 2.5 3 10
-5

10 -4

10
-3

10
-2

10 -1

10
0

SNR(Eb/N0)

BER

SNR vs BER (960000 bits)

ItNo:2 Predecoder
ItNo:2 Feedback
ItNo:6 Predecoder
ItNo:6 Feedback

Figure 3.5 Effect of using feedback techniques and pre-decoder techniques

As it is seen in Figure 3.5 when iteration number is 2, pre-decoder method

performs slightly better but when iteration number is 6, performance of feedback

method supersedes.

25

 Effect of pre-decoder and feedback methods are compared when code rate is

different than 1/3 (no puncturing). For the simulation in Figure 3.6, code rate is

1/2, modulation type is QPSK and block size is 480. Simulation is carried out for

2 iterations and 6 iterations.

Figure 3.6 Effect of using feedback techniques and pre-decoder techniques when
code rate is 1/2

 As it is seen in Figure 3.6, for iteration number 6, performance of pre-decoder

and feedback methods are nearly the same while in Figure 3.5 the difference is

more significant. Except this slight difference between Figure 3.5 and Figure 3.6

it can be concluded that effect of using pre-decoder and feedback methods is

similar for code rates 1/3 and 1/2.

 According to simulation results there is not a big performance difference

between pre-decoder and feedback methods especially at high number of

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

SNR vs BER (960000 bits)

ItNo:2 Predecoder

ItNo:2 Feedback

ItNo:6 Predecoder

ItNo:6 Feedback

26

iterations. Besides, feedback method brings advantage in terms of computational

complexity and decoding rate of the decoder.

3.4 Effect of Enhanced Max-Log-MAP

To observe the effect of scaling the extrinsic information by a constant, namely

Enhanced Max-Log-MAP algorithm, simulation is carried out for which code

rate is 1/3, modulation type is QPSK, iteration number is 6 and block size is 480.

Scaling constant is 0.75 for the simulations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(Eb/N0)

B
E

R

SNR vs BER (960000 bits)

Enhanced Max-Log-MAP

Max-Log-MAP

Figure 3.7 Effect of Using Enhanced Max-Log-MAP algorithm

 Figure 3.7 indicates that Enhanced Max-Log MAP algorithm improves the BER

performance about 0.1 dB at BER of 310− . This method does not increase the

computational complexity much because it requires the multiplication of the

extrinsic values by 0.75 which can easily be implemented in hardware.

27

Chapter 4

Hardware Implementation of

Turbo Decoder

Based on the results obtained through MATLAB simulations, a double binary

turbo decoder supporting feedback method and Max-Log-MAP algorithm is

implemented on an FPGA board. The code is written in VHDL and

XC4VFX12-FF668-10 Virtex4 FPGA on Xilinx ML 403 board is used as target

system. The code is developed by making use of Xilinx 9.2i ISE, and XST is

chosen as synthesis tool.

 De-puncturing and sub-block de-interleaving parts are not included in the

implementation. These processes are assumed to be performed in software on

the processor.

4.1 Architecture

Main modules in the hardware implementation are Controller module, Data

selector module, Beta module, Alpha&LLR module and Serial Channel module.

Figure 4.1 depicts the interaction of these modules.

 LLR values of received systematic bits and parity bits to be processed are

assumed to be loaded to the block RAMs both in the natural order and in

interleaved order. These values are the de-punctured and de-interleaved soft

outputs of the demodulator block. In other words, this implementation

28

corresponds to the “Decoding” part in Figure 2.3 and changes in the code rate

does not affect the implementation.

Figure 4.1 Overall architecture of the implemented Turbo Decoder

 Controller module has interaction with all other modules in the architecture as

it is seen in Figure 4.1. Controller module is responsible for managing other

modules by determining the inputs and outputs of the modules according to the

state of the decoder. Number of iterations and block size is also set in the

controller module.

 Beta and Alpha&LLR modules correspond to backward sweep and forward

sweep respectively. One backward sweep and one forward sweep together with

LLR calculation represents a half-cycle of the turbo decoder. In this

implementation, backward sweep of trellis is performed first and followed by

forward sweep together with LLR calculation in parallel. Due to the iterative

nature of turbo decoder, second half iteration has to wait for the first half

BRAM

(16 K)

BRAM

(16 K)

BRAM
(16 K)

BRAM

(16 K)

BRAM

(16 K)

BRAM

(16 K)

BRAM
(16 K)

BRAM

(16 K)

Beta Module

BRAM

(16 K)

BRAM

(16 K)

BRAM

(16 K)

Alpha&LLR Module

BRAM

BRAM

Received LLR

Received LLR
Interleaved

DATA

SELECTOR
MODULE

SERIAL

CHANNEL

MODULE

CONTROLLER

MODULE

BRAM

(16 K)

BRAM

(16 K)
BRAM

(16 K)

DATA

SELECTOR
MODULE

29

iteration to be completed. This means that single Beta and single Alpha&LLR

module is enough for a turbo decoder implementation if proper input is supplied

to the modules. Using single modules for forward and backward metric

calculation, the area required to implement a turbo decoder is minimized.

 Beta module’s main task is to calculate backward metrics using the input data

fed from its own data selector module and Alpha&LLR module. Calculated

metrics are stored in the addresses specified by the controller module. The

outputs of the Beta module are connected to the Alpha&LLR module and

updated according to the addresses specified by the controller module.

 Alpha&LLR module calculates forward metrics employing the input data fed

from its own data selector module and extrinsic information produced by itself

in the previous half iteration. Forward metrics are not stored in the memory and

included directly to the calculations of current extrinsic information together

with the metrics produced by the Beta module. Extrinsic information is stored in

the addresses determined according to the state and address information supplied

by the controller module. In other words, for the first half iteration, Alpha&LLR

uses the addresses specified by the controller module directly but in the second

half iteration, uses those addresses to calculate the interleaved addresses. The

outputs of Alpha&LLR module are utilized by both itself and by the Beta

module. This module updates its output according to the addresses and state

information fed by the controller module. For example, if the decoder runs for

the second half iteration, data stored in the interleaved addresses is supplied to

the Beta module although the addresses fed by the controller are in natural order.

 Due to the data dependency between Alpha and Beta modules, they have to

work sequentially. Controller decides on which module to run at each state.

However, to improve the decoding speed, Alpha and Beta modules should work

in parallel. This is achieved by providing another data block to the decoder and

saving the metrics belonging to the new data block to a different location in the

30

memory of each module. In this scheme, while Beta module processes for the

first data block, Alpha&LLR Module processes for the second data block and

vice versa. For each module, Controller module decides on the data blocks to be

processed at each state and specifies the addresses to be used. Parallel

processing of two different data blocks doubles the decoding speed at the cost of

larger memory requirement. Since we focus primarily on the speed of the

decoder, memory disadvantage of parallel processing is ignored.

4.2 Modules in Detail

Inputs and outputs of the modules in the decoder architecture are explained in

detail in this section. All modules operates at the rising edge of the clock and

fixed point operations are carried out for the data, metrics and extrinsic

information in which fractional part is 3 bit width.

4.2.1 Data Selector Module

Main task of Data Selector module is to selectively direct the proper data to the

module connected to its outputs. Inputs and outputs of the module are shown in

Figure 4.2.

Figure 4.2 Data Selector module inputs and outputs

31

 Beta and Alpha&LLR modules work on different data blocks at the same time

hence there are two separate Data Selector modules for each module.

 Inputs of the Data Selector module are connected directly to the outputs of the

block RAMs in which LLR values of received systematic bits and parity bits are

stored. Proposed turbo decoder processes two different data blocks in parallel

hence data related to two different blocks are fed to the module doubling the

number of inputs. Inputs denoted as DATA_A, INT_DATA_A, DATA_B,

INT_DATA_B, DATA_Y, INT_DATA_Y, DATA_W, INT_DATA_W

corresponds to the received LLR of the systematic and parity bits of the first

data block and DATA_A_2, INT_DATA_A_2, DATA_B_2, INT_DATA_B_2,

DATA_Y_2, INT_DATA_Y_2, DATA_W_2, INT_DATA_W_2 are the

received LLR of the systematic bits and parity bits of the second data block.

INT_DATA_Y and INT_DATA_W are the received LLR values of the bits

encoded by the lower encoder in Figure 2.4 and transmitted through the channel

while INT_DATA_A and INT_DATA_B are the interleaved DATA_A and

DATA_B respectively at the decoder side. Inputs INTERLEAVE and

SELECT_BLOCK of the module are set by the Controller module according to

the state of the decoder. For example if a module will process for the first data

block and in the second half iteration, then INTERLEAVE signal is set to high

and SELECT_BLOCK signal is set to low. In this case, the input signals will be

directed as follows:

 INT_DATA_A => OUT_A

 INT_DATA_B => OUT_B

 INT_DATA_Y => OUT_Y

 INT_DATA_W => OUT_W

32

4.2.2 Beta Module

Beta module’s responsibility is to calculate, store and emit backward metrics.

Inputs and outputs of the module are shown in Figure 4.3.

CLOCK (1 bit)

RESET (1 bit)

START (1 bit)

DATA_A (8 bits)

DATA_B (8 bits)

DATA_Y (8 bits)

DATA_W (8 bits)

ADDR_WRITE (10 bits)

W_EN (1 bit)

ADDR_READ (10 bits)

R_EN (1 bit)

EXTR_01 (16 bits)

EXTR_10 (16 bits)

EXTR_11 (16 bits)

BETAOUT_0 (16 bits)

BETAOUT_1 (16 bits)

BETAOUT_2 (16 bits)

BETAOUT_3 (16 bits)

BETAOUT_4 (16 bits)

BETAOUT_5 (16 bits)

BETAOUT_6 (16 bits)

BETAOUT_7 (16 bits)

Figure 4.3 Beta Module inputs and outputs

 Inputs DATA_A, DATA_B, DATA_Y and DATA_W are directly connected

to the outputs of the Data Selector module which is reserved for the use of Beta

Module. Other inputs are determined by the Controller module. When the input

denoted as START is set to high by the controller module, Beta module begins

to calculate the backward metrics using DATA_A, DATA_B, DATA_Y and

DATA_W together with EXTR_01, EXTR_10 and EXTR_11 which are the

extrinsic values calculated by the Alpha&LLR module in the previous half

iteration. For each different time instance in other words for each different data

pair, 8 beta metrics are calculated corresponding to 8 different states in the

Trellis. A normalization operation is performed before saving the metrics in the

memory. This is done by subtracting the first Beta metric –metric for state 0-

from other Beta metrics. Each metric is stored in a separate dual port block

RAM hence there are 8 block RAMs inside the module. Actually 7 block RAMs

33

are needed since Beta metrics for state 0 will always be zero because of the

normalization, however 8 block RAMs are used to obtain a flexible design.

WEN and REN signals enable writing and reading to the RAMs. Last half of

each block RAM is reserved for saving the metrics of the second data block.

Calculated metrics are stored in the memory locations specified by

ADDR_WRITE signal which is set by the Controller module. Outputs of the

module which are connected to the inputs of the Alpha&LLR module are beta

metrics saved in the memory locations determined by ADDR_READ signal.

 Due to the parallel processing of Alpha and Beta modules, block RAMs are

written and read at the same time. When Beta module is calculating and writing

to the block RAMs, Alpha&LLR module is reading the metrics of the other data

block stored in the previous half iteration. Dual port block RAMs in the module

enables concurrent read and write operations. For each RAM, one port is

assigned for reading and one port is assigned for writing.

 Feedback method explained in Chapter 2 is implemented for the initialization

of the Beta metrics. Final Beta metrics for a data block are kept to be used as

initial values for the same half iteration of the data block.

 It takes two cycles for the Beta module to calculate and store the metrics to the

RAM when clock frequency is 100 MHz.

4.2.3 Alpha&LLR Module

Main task of Alpha&LLR module is to calculate forward metrics and produce

extrinsic information by making use of backward metrics and forward metrics.

Inputs and outputs of the module are shown in Figure 4.4. This module is the

most complex module and occupies the largest area on the FPGA.

34

Figure 4.4 Alpha&LLR module inputs and outputs

 Inputs DATA_A, DATA_B, DATA_Y, DATA_W are directly connected to

the outputs of the Data Selector module assigned for the Alpha&LLR module.

Beta metrics are taken from the Beta module through the inputs BETA_IN_0,

BETA_IN_1 BETA_IN_7. EXTR_IN_01, EXTR_IN_10, EXTR_IN_11 are

connected to EXTR_01, EXTR_10, EXTR_11 respectively which are the

outputs of the module. Other inputs are set by the Controller Module.

 When START signal is set to high by the Controller module, it begins

calculating forward metrics using the DATA_A, DATA_B, DATA_Y,

DATA_W signals and extrinsic information(EXTR_IN_01, EXTR_IN_10,

EXTR_IN_11) calculated in the previous half iteration of the related data block.

35

Forward metrics are not stored in the memory and together with BETA_IN_0,

BETA_IN_1 BETA_IN_7, included to the calculations carried out to

produce extrinsic information. Extrinsic information is saved in the memory

locations of which addresses are calculated by the module itself. The module

calculates the addresses to write according to the inputs SELECT_BLOCK,

READ_INT and READ_NORM. If READ_INT is set to high, this means that

the module is operating in the second half iteration of the data block specified by

SELECT_BLOCK. In this case extrinsic information is stored in de-interleaved

addresses for the Beta module to be able to read them in normal order in the

following half iteration.

 In the second half iteration of decoding process of a data block, extrinsic

information produced in the first iteration should be read in interleaved order. If

READ_INT is high, it reads the extrinsic information produced in the prior half

iteration of the block specified by SELECT_BLOCK in the interleaved order. In

this module, an interleaver is designed to calculate the interleaved addresses for

different block sizes. However, this design is not used during tests since the

block size is kept constant and the corresponding interleaver addresses are

embedded in the code. Using the ADDR_READ signal and the table embedded

in the code, interleaved addresses are found and output is updated accordingly.

 SELECT_BLOCK is set to high or low to indicate the module whether it is

working on the first data block or second data block respectively. Extrinsic

information belonging to the first data block and second data block are stored in

the first half and second half of the block RAMs respectively.

 Number of block RAMs in the module is 6 although there are 3 types of

extrinsic information. The reason is that when Alpha module is in progress it

both writes and reads the extrinsic information from the RAMs so two ports of

each RAM is occupied by the Alpha module. However, Beta module is also in

progress on the other data block. Hence RAM number is doubled and 3 RAMs

36

are reserved for the usage of Beta Modules. As it is seen in Figure 4.4, there are

six outputs of the module: EXTR_01, EXTR_10, and EXTR_11 stands for the

extrinsic information to be used by the module itself and BETA_EXTR_01,

BETA_EXTR_10, BETA_EXTR_11 stands for the extrinsic information to be

used by the Beta module. BETA_READ_INT and BETA_READ_NORM

control the read address of the extrinsic information to be used by the Beta

module.

 Feedback method explained in Chapter 2 is implemented for the initialization

of the Alpha metrics. Final Alpha metrics for a data block are kept to be used as

initial values for the same half iteration of the data block.

 Calculation and storage of extrinsic information is performed in 2 clock cycles

at 100 MHz operating frequency.

4.2.4 Serial Channel Module

A serial channel module operating at a baud rate of 115200 is implemented for

test purpose. Input and outputs of the module are shown in Figure 4.5

Figure 4.5 Serial Channel Module Inputs and Outputs

 Input DATA_IN which is 8 bits width is updated by the Controller module.

When START is set to high, module begins to send bits of DATA_IN through

SERIAL_OUT at the desired baud rate. Output SENT is set to high upon

transmission of one byte to indicate the readiness of the serial channel. Extrinsic

37

information stored in the Alpha&LLR module is sent through the serial channel

at the end of each iteration or at the end of all iterations.

4.3 Test Procedure

Data generated by the MATLAB model is loaded to the Block RAMs manually

and the decoding process starts. After specified number of iterations is

completed, final extrinsic values are transmitted to the PC through serial channel

with a baud rate of 115200. An application developed using Microsoft Visual

Studio 6.0 running on the PC collects the data received from the ML403 board

into a file and converts the data to a suitable format. File is compared with

MATLAB output. Test is carried out for different number of iterations configured

in the code and it is observed that hardware results and software results are the

same.

38

4.4 Results

In this section, hardware implementation is evaluated in terms of the resources

used on the FPGA and the decoding rate. Results are compared with another

FPGA implementation in the literature [13].

4.4.1 FPGA Device Utilization Report

As it is stated at the beginning of Chapter 4, XC4VFX12-FF668-10 Virtex4

FPGA on Xilinx ML 403 board is used as target system. The code is developed

by using Xilinx 9.2 ISE and XST is preferred as the synthesis tool. The amount

of the resources used for the implementation is depicted in Table 4.1.

 Used Available

Number of Slice Flip Flops 2992 10944

Number of 4 input LUTs used as logic 7734

Number of 4 input LUTs used as shift registers 242 10944

Number of Occupied Slices 4866 5472

Number of DCM 1 4

Number of BRAM 22 36

Table 4.1 Device Utilization Report

In this table, BRAMs used to store the data blocks should be excluded since they

are not a part of the decoding process. Thus actual number of BRAM is 14; 8 for

Beta module and 6 for Alpha&LLR module.

39

4.4.2 Decoding Rate

The decoder proposed works for a block size of 480; however it can easily be

configured to another number less than 480 defined in the IEEE.802.16 standard.

For the block size of K, a complete iteration for two different data blocks takes

(4 5) 2 (2 3)K K× + × + × + cycles and each cycle takes 10 ns since the operating

frequency is 100 MHz. For N iterations, this formula becomes

(4 5) 2 (2 3)K N K× + × × + × + .

At the end of iterations, 4xK bits are decoded; then the decoded data rate per

clock cycle is:

4

(4 5) 2 (2 3)

K

K N K

×
× + × × + × +

The formula is evaluated for different block size values and the results in Table

4.2 are obtained.

 Now assume that a data stream including 2P blocks (P blocks for each stream)

are available at the input of the decoder and the blocks are sent to the decoder in

such a way that when the decoding of a block is over, immediately new block, to

be decoded, is ready. Then the formula becomes

4

(4 5) 2 (2 3)

P K

P K N K

× ×
× × + × × + × +

and for P >> K the results becomes

4

(4 5) 2

P K

P K N

× ×
× × + × ×

and the decoding rate becomes as indicated in Table 4.3.

40

Block Size (K)

2 iterations

(Mb/sec)

4 iterations

(Mb/sec)

6 iterations

(Mb/sec)

8 iterations

(Mb/sec)

480 22,16 11,73 8,00 6,00

240 22,10 11,70 7,96 6,00

216 22,09 11,70 7,95 6,00

192 22,07 11,69 7,95 6,00

180 22,06 11,68 7,95 6,00

144 22,03 11,66 7,93 6,00

120 21,99 11,64 7,92 6,00

108 21,96 11,63 7,90 5,99

96 21,93 11,62 7,89 5,98

72 21,83 11,56 7,86 5,96

48 21,65 11,46 7,79 5,90

36 21,46 11,36 7,73 5,86

24 21,10 11,17 7,60 5,76

Table 4.2 Decoding Rate for different block sizes for 2 data blocks

41

Block Size(K)

2 iterations

(Mb/sec)

4 iterations

(Mb/sec)

6 iterations

(Mb/sec)

8 iterations

(Mb/sec)

480 24,95 12,47 8,31 6,24

240 24,87 12,44 8,29 6,22

216 24,86 12,43 8,28 6,21

192 24,84 12,42 8,28 6,20

180 24,83 12,41 8,28 6,20

144 24,78 12,40 8,26 6,20

120 24,74 12,37 8,24 6,18

108 24,71 12,36 8,24 6,18

96 24,68 12,34 8,23 6,17

72 24,57 12,29 8,19 6,14

48 24,36 12,18 8,12 6,09

36 24,16 12,08 8,05 6,04

24 23,76 11,88 7,92 5,94

 Table 4.3 Decoding Rate for different block sizes for very large number of data

blocks

42

4.4.3 Comparison

A number of previous researchers implemented Double Binary Turbo Decoder.

In most of them, an ASIC has been designed and analyzed. Comparison of a

dedicated ASIC for turbo decoding and an FPGA implementation is not suitable

both in terms of decoding rate and in terms of area occupied. Another FPGA

implementation is performed by the authors of [13] from Linköping University

and our implementation is compared with [13].

 In [13], an Altera Stratix II FPGA is used and Synplify Pro is used as synthesis

tool. In Table 4.4, resource utilizations of two implementations are given.

 Proposed Decoder Decoder in [13]

Number of Slice Flip Flops 2992 2869

Number of Occupied Slices 4866 7146

Memory 14 BRAM (16Kb each) 57600 bits

Table 4.4 Comparison of the proposed decoder to the decoder in [13]

 As Table 4.4 reveals, our implementation occupies less logic cells but more

memory on the FPGA. One reason of larger memory requirement is that block

size of 480 is also supported in our implementation. In [13], block sizes up to 240

are supported only. Parallel decoding of two different data blocks using only one

decoder, which is not available in [13] also doubles the memory required to save

metrics.

43

Table 4.5 are the decoding rates in [13] for different block sizes and when four

decoders are working on different data blocks in parallel, at 100 MHz clock

frequency.

 Table 4.5 Decoded Data Rate for four decoders with frequency 100 MHz

 Decoding rates in Table 4.5 are nearly 4 times greater than the decoding rates

of the proposed turbo decoder given in Table 4.3. In [13] it is stated that

decoding rate is linearly dependent to the number of decoders working in

parallel; this means that the decoding rate of a single decoder in [13] is nearly

equal to the decoding rate of our decoder.

44

Chapter 5

Conclusions and Future Work

Double Binary Turbo codes which are widely used in today’s communication

standards such as DVB-RSC and IEEE 802.16 are explored and an efficient

double binary Turbo decoder is implemented on an FPGA. The implementation

is compared with the previous implementations in the literature.

 Double Binary Turbo encoder is parallel concatenation of two double binary

RSC codes. The encoder has a circular nature which means that the initial state

of the trellis is equal to the final state of the trellis. This brings the advantage of

spectral efficiency at the expense of an extra pre-encoder process.

 Double Binary Turbo decoder consists of two SISO decoders working

iteratively and exchanging the extrinsic information in between. MAP algorithm

used in SISO decoders is very important to achieve the best trade-off between

performance and computational complexity for an efficient hardware

implementation. Different studies are investigated and a MATLAB code is

developed to apply the recommendations. According to the results, the best

solution is Enhanced Max-Log-MAP algorithm. Another important issue for the

decoder is initializing the forward and backward metrics in the algorithm. Due

to the circular nature of the encoder, the initial hence the final state of the trellis

can not be estimated by the decoder. Two techniques- using a pre-decoder and

feedback- to overcome this problem are discussed. Pre-decoder technique

provides good performance even in the initial iterations but brings an important

computational complexity and decreases the decoding rate. Simulations show

45

that feedback technique is as good as pre-decoder technique especially when

iteration number increases and does not bring much computational complexity.

Border metric encoding which is introduced to reduce the memory size and

power consumption of the decoder, is also investigated.

 A turbo decoder configurable up to a data block size of 480 is implemented

in hardware. One SISO decoder together with a dedicated controller is designed.

The modules calculating backward metrics, forward metrics and LLR values are

used as efficient as possible. Two data blocks are decoded in parallel using a

single decoder and a decoding rate of 6.3 Mb/s is achieved for 8 iterations at 100

MHz operating frequency.

 As future work, de-puncturing process supporting different code rates

changing dynamically should be included to the hardware implementation.

Border metric encoding introduced in [14] should be applied in order to decrease

the memory used. Although the implementation supports block sizes up to 480

with a proper configuration in the VHDL code, it should be tested whether it

works properly when block size changes dynamically. The decoder should be

fed with continuous data through Ethernet or etc. to observe the performance of

the decoder.

46

Appendix A

MATLAB Simulation Codes

A.1 Double Binary Turbo Code

function [Number,DemodError] =
DuoBinaryTurboCode(Length,ItNo,Noise,ModType,PunctRate)

%Random data is generated
A = round(rand(Length,1));
B = round(rand(Length,1));

%Interleaving
[AI,BI]=interleaver(A,B);

%Encoding
[Y1,W1]=encode(A,B);
[Y2,W2]=encode(AI,BI);

%SubBlockInterleaver
TempDataToSend=SubBlockInterleaver(A,B,Y1,Y2,W1,W2);

%puncturing is performed
DataToSend = Puncture(PunctRate,TempDataToSend);

%Modulation, Noise addition and Demodulation
if ModType==1
 m = modem.pskmod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder','binary',
'InputType', 'bit');
 Modulated = modulate(m,DataToSend);
 Channel = awgn(Modulated,Noise,'measured');
 h = modem.pskdemod('M', 4, 'PhaseOffset', pi/4,'SymbolOrder', 'binary',
'OutputType', 'bit','DecisionType', 'llr');
 Demodulated = demodulate(h,Channel);
elseif ModType==2
 m = modem.qammod('M', 16, 'PhaseOffset', pi/4, 'SymbolOrder','binary',
'InputType', 'bit');
 Modulated = modulate(m,DataToSend);
 Channel = awgn(Modulated,Noise,'measured');
 h = modem.qamdemod('M', 16, 'PhaseOffset', pi/4,'SymbolOrder', 'binary',
'OutputType', 'bit','DecisionType', 'llr');
 Demodulated = demodulate(h,Channel);
elseif ModType==3
 m = modem.qammod('M', 64, 'PhaseOffset', pi/4, 'SymbolOrder','binary',
'InputType', 'bit');
 Modulated = modulate(m,DataToSend);
 Channel = awgn(Modulated,Noise,'measured');
 h = modem.qamdemod('M', 64, 'PhaseOffset', pi/4,'SymbolOrder', 'binary',
'OutputType', 'bit','DecisionType', 'llr');
 Demodulated = demodulate(h,Channel);
end
Demodulated = Demodulated * (-1);

47

DepuncturedData = Depuncture(PunctRate,Demodulated);
[Ar,Br,Y1r,W1r,Y2r,W2r]=SubBlockDeInterleaver(DepuncturedData);
DemodOut = [Ar;Br];
ActualData = [A;B];
[DemodError,R]=biterr((DemodOut>0)+0,ActualData);
%Interleave received LLR of A and B
[ArI,BrI]=interleaver(Ar,Br);
Extrinsic=zeros(3,Length);
%Final alpha and beta metrics for each decoder
AlphaI = zeros(8,1);
BetaI = zeros(8,1);
AlphaO = zeros(8,1);
BetaO = zeros(8,1);
%Iterative decoding
for k=1:ItNo
 %First decoder processes data in natural order
 [Extrinsic1,AlphaI,BetaI]=SISO(Ar,Br,Y1r,W1r,Extrinsic,AlphaI,BetaI);
 ExtrinsicInt=Interleaver_Ext(Extrinsic1);
 %Second decoder processes data in interleaved order
 [Extrinsic2,AlphaO,BetaO]=SISO(ArI,BrI,Y2r,W2r,ExtrinsicInt,AlphaO,BetaO);
 Extrinsic = DeInterleaver_Ext(Extrinsic2);
 %After each full iteration, decision is carried out
 [Out,Number]= Decision(A,B,Extrinsic);
end

A.2 Interleaver

function [AI,BI] = interleaver(A,B)
% This function interleaves data streams given as A and B using the
% parameters specified in IEEE 802.16 standard

%T holds the block sizes defined in the standard
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920
2400];
%P holds parameters P0,P1,P2,P3 specified for different block sizes
P=zeros(17,4);
P(1,:) = [5 0 0 0];
P(2,:) = [11 18 0 18];
P(3,:) = [13 24 0 24];
P(4,:) = [11 6 0 6];
P(5,:) = [7 48 24 72];
P(6,:) = [11 54 56 2];
P(7,:) = [13 60 0 60];
P(8,:) = [17 74 72 2];
P(9,:) = [11 90 0 90];
P(10,:) = [11 96 48 144];
P(11,:) = [13 108 0 108];
P(12,:) = [13 120 60 180];
P(13,:) = [53 62 12 2];
P(14,:) = [43 64 300 824];
P(15,:) = [43 720 360 540];
P(16,:) = [31 8 24 16];
P(17,:) = [53 66 24 2];

48

%Parameter set corresponding to the block size of A and B
index = 0;
[length,temp]=size(A);
for j=1:17
 if (T(j)==length)
 index=j;
 end
end

AI = A;
BI = B;
t = 0;
%STEP 1, intrasymbol permutation
for k=1:length
 if rem(k,2)==0
 temp=A(k,1);
 A(k,1)=B(k,1);
 B(k,1)=temp;
 end
end
%STEP 2, intersymbol permutation
for m=0:(length-1)
 if rem(m,4)==0
 t = 0; %P=0
 elseif rem(m,4)==1
 t = length/2 + P(index,2); %P=N/2+P1
 elseif rem(m,4)==2
 t = P(index,3); %P=P2
 elseif rem(m,4)==3
 t = length/2 + P(index,4); %P=N/2+P3
 end
 AI(m+1,1)=A(mod(((P(index,1)*m)+t+1),length)+1);
 BI(m+1,1)=B(mod(((P(index,1)*m)+t+1),length)+1);
end

A.3 Encode

function [Y1,W1] = encode(A,B)
% This function corresponds to an 8 state double binary turbo encoder
% Two streams A and B are encoded
% Y1 and W1 are encoded A and B respectively

[length,temp]=size(A); %size of A and B are equal
Y1 = zeros(length,1);
W1 = zeros(length,1);

Si = [0 % Si is the trellis state
 0 % Pre-encoder part assumes that
 0]; % trellis is in all zero state initially
R1 = [1 1 0];
R2 = [1 0 0];
G = [1 0 1
 1 0 0
 0 1 0];
C = [1 1
 0 1
 0 1];

49

for k = 1 : length
 di = [A(k) % input to the encoder
 B(k)];
 Ti = C*di;
 Y1(k,1) = mod((sum(di) + R1*Si),2) ;
 W1(k,1) = mod((sum(di) + R2*Si),2) ;
 % Next state of the trellis is calculated
 Si = G*Si+Ti;
 Si = rem(Si,2);
end

% Final trellis state should be equal to the initial trellis state
% Matrix_Sc holds circular states and the result of Pre-encoder part is
used to find the initial state of the encoder
Matrix_Sc = [0 6 4 2 7 1 3 5
 0 3 7 4 5 6 2 1
 0 5 3 6 2 7 1 4
 0 4 1 5 6 2 7 3
 0 2 5 7 1 3 4 6
 0 7 6 1 3 4 5 2];
Sc = Matrix_Sc(mod(length,7),(Si(1,1)*4+Si(2,1)*2+Si(3,1)*1)+1);
% Initial state of the encoder
Si(3,1) = rem (Sc,2);
Si(2,1) = rem (fix(Sc./2),2);
Si(1,1) = fix(Sc./4);
%Actual Encoding
Y1 = zeros(length,1);
W1 = zeros(length,1);
for k = 1 : length
 di = [A(k)
 B(k)];
 Ti = C*di;
 Y1(k,1) = mod((sum(di) + R1*Si),2) ;
 W1(k,1) = mod((sum(di) + R2*Si),2) ;
 % Next state of the trellis is calculated
 Si = G*Si+Ti;
 Si = rem(Si,2);
end

A.4 SubBlock Interleaver

function Out = SubBlockInterleaver(u1,u2,u3,u4,u5,u6)
% This function performs sub block interleaving using the parameters
% defined in IEEE 802.16 standard
% u1,u2 are systematic bits
% u3,u4 are encoded bits
% u5,u6 are encoded bits of interleaved data

% T holds block sizes defined
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920
2400];

50

% P holds parameters m and j defined for different block sizes
P=zeros(17,2);
P(1,:) = [3 3];
P(2,:) = [4 3];
P(3,:) = [4 3];
P(4,:) = [5 3];
P(5,:) = [5 3];
P(6,:) = [5 4];
P(7,:) = [6 2];
P(8,:) = [6 3];
P(9,:) = [6 3];
P(10,:) = [6 3];
P(11,:) = [6 4];
P(12,:) = [7 2];
P(13,:) = [8 2];
P(14,:) = [9 2];
P(15,:) = [9 3];
P(16,:) = [10 2];
P(17,:) = [10 3];

index = 1;
[length,temp]=size(u1);
for j=1:17
 if (T(j)==length)
 index=j;
 end
end
% Parameters corresponding to the block size of inputs are found by
%making use of index
m=P(index,1);
J=P(index,2);
y1 = zeros(length,1);
y2 = zeros(length,1);
y3 = zeros(length,1);
y4 = zeros(length,1);
y5 = zeros(length,1);
y6 = zeros(length,1);
k = 0 ;
i = 0 ;
while i<length
 Tk = (2^m)*mod(k,J)+BitReverseOrder(floor(k./J),m);
 if Tk <length
 y1(i+1)=u1(Tk+1);
 y2(i+1)=u2(Tk+1);
 y3(i+1)=u3(Tk+1);
 y4(i+1)=u4(Tk+1);
 y5(i+1)=u5(Tk+1);
 y6(i+1)=u6(Tk+1);
 i=i+1;
 end
 k=k+1;
end
for j=1:length
 if mod(j,2)==0
 temp = y3(j);
 y3(j)= y4(j);
 y4(j)=temp;
 temp = y5(j);
 y5(j)= y6(j);
 y6(j)=temp;
 end
end;

51

Out = [y1;
 y2;
 y3;
 y4;
 y5;
 y6];

A.5 Puncturing

function Out = Puncture(Rate,In)
% This function punctures the data given as In to obtain the desired
% coding rate specified as "Rate"

[length,temp]=size(In);
DataSize = length/6;
if Rate == 1/2
 Out(1:DataSize*4,1) = In(1:DataSize*4,1);
elseif Rate == 2/3
 Out(1:DataSize*2,1) = In(1:DataSize*2,1);
 Out(DataSize*2+1:DataSize*3,1) = In(DataSize*2+1:2:DataSize*4,1) ;
elseif Rate == 3/4
 Out(1:DataSize*2,1) = In(1:DataSize*2,1);
 Out(DataSize*2+1:DataSize*2+DataSize*2/3,1) =In(DataSize*2+1:3:DataSize*4,1);
elseif Rate == 1/3 % no puncturing
 Out = In;
end;

A.6 De-puncturing

function Out = Depuncture(Rate,In)
% This function depunctures the data given as In to obtain the natural
% coding rate 1/3

[length,temp]=size(In);
DataSize = length*Rate/2;
Out = zeros (DataSize*6,1);
if Rate == 1/2
 Out(1:DataSize*4,1) = In(1:DataSize*4,1);
 Out(DataSize*4+1:DataSize*6,1) = zeros(DataSize*2,1);
elseif Rate == 2/3
 Out(1:DataSize*2,1) = In(1:DataSize*2,1);
 Out(DataSize*2+1:2:DataSize*4,1) = In(DataSize*2+1:DataSize*3,1) ;
elseif Rate == 3/4
 Out(1:DataSize*2,1) = In(1:DataSize*2,1);
 Out(DataSize*2+1:3:DataSize*4,1) =In(DataSize*2+1:DataSize*2+DataSize*2/3,1);
elseif Rate == 1/3 % no puncturing
 Out=In;
end;

52

A.7 Sub Block De-interleaving

function [A,B,Y1,W1,Y2,W2]= SubBlockDeInterleaver(In)
% This function performs subblock deinterleaving
% Input in is deinterleaved and A,B,Y1,W1,Y2,W2 are formed

[length,temp]=size(In);
BlockNo = 6 ;
A = zeros (length/BlockNo,1);
B = zeros (length/BlockNo,1);
Y1 = zeros (length/BlockNo,1);
Y2 = zeros (length/BlockNo,1);
W1 = zeros (length/BlockNo,1);
W2 = zeros (length/BlockNo,1);

K = reshape(In,[(length/BlockNo),BlockNo]);
At = K (:,1);
Bt = K (:,2);
Y1t = K (:,3);
Y2t = K (:,4);
W1t = K (:,5);
W2t = K (:,6);
for j=1:length/BlockNo
 if mod(j,2)==0
 temp = Y1t(j);
 Y1t(j)= Y2t(j);
 Y2t(j)=temp;
 temp = W1t(j);
 W1t(j)= W2t(j);
 W2t(j)=temp;
 end
end;
% T holds block sizes defined
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920 2400];
% P holds parameters m and j defined for different block sizes
P=zeros(17,2);
P(1,:) = [3 3];
P(2,:) = [4 3];
P(3,:) = [4 3];
P(4,:) = [5 3];
P(5,:) = [5 3];
P(6,:) = [5 4];
P(7,:) = [6 2];
P(8,:) = [6 3];
P(9,:) = [6 3];
P(10,:) = [6 3];
P(11,:) = [6 4];
P(12,:) = [7 2];
P(13,:) = [8 2];
P(14,:) = [9 2];
P(15,:) = [9 3];
P(16,:) = [10 2];
P(17,:) = [10 3];
% Parameters corresponding to the block size of inputs are found by making
% use of index
index = 1;
for j=1:17
 if T(j)==(length/BlockNo)
 index=j;
 end
end

53

m=P(index,1);
J=P(index,2);
y = zeros(length/BlockNo,1);
k = 0 ;
i = 0 ;
Tk=0;
while i<(length/BlockNo)
 Tk = (2^m)*mod(k,J)+BitReverseOrder(floor(k./J),m);
 if Tk <(length/BlockNo)
 A(Tk+1)=At(i+1);
 B(Tk+1)=Bt(i+1);
 Y1(Tk+1)=Y1t(i+1);
 Y2(Tk+1)=Y2t(i+1);
 W1(Tk+1)=W1t(i+1);
 W2(Tk+1)=W2t(i+1);
 i=i+1;
 end
 k=k+1;
end

A.8 Soft Input Soft Output Decoding

function [Extrinsic,AlphaOut,BetaOut] = SISO(Ai,Bi,Y1i,W1i,ExtIn,AlphaIn,BetaIn)
% This function calculates LLR values for given inputs.
% Ai,Bi are the received LLR of systematic bits
% Y1i and W1i are the received LLR of parity bits
% ExtIn is extrinsic information for inputs 01,10 and 11 calculated in the
% previous half iteration
% AlphaIn, BetaIn are final metrics calculated in the previous half iteration
% Extrinsic is extrinsic information for inputs 01,10 and 11 calculated in
% this function
% AlphaOut, BetaOut are final metrics calculated in this function

TRELLIS_END_STATE = 1;
TRELLIS_OUT = 2;
TRELLIS_SIZE=32;
INPUT_NO=2;
M = 4;
MAX_STATE_NO=8;
TRELLIS = zeros(32,2);
TRELLIS(1,:) = [0 0];
TRELLIS(2,:) = [7 3];
TRELLIS(3,:) = [4 3];
TRELLIS(4,:) = [3 0];
TRELLIS(5,:) = [4 0];
TRELLIS(6,:) = [3 3];
TRELLIS(7,:) = [0 3];
TRELLIS(8,:) = [7 0];
TRELLIS(9,:) = [1 2];
TRELLIS(10,:) = [6 1];
TRELLIS(11,:) = [5 1];
TRELLIS(12,:) = [2 2];
TRELLIS(13,:) = [5 2];
TRELLIS(14,:) = [2 1];
TRELLIS(15,:) = [1 1];
TRELLIS(16,:) = [6 2];
TRELLIS(17,:) = [6 3];
TRELLIS(18,:) = [1 0];
TRELLIS(19,:) = [2 0];

54

TRELLIS(20,:) = [5 3];
TRELLIS(21,:) = [2 3];
TRELLIS(22,:) = [5 0];
TRELLIS(23,:) = [6 0];
TRELLIS(24,:) = [1 3];
TRELLIS(25,:) = [7 1];
TRELLIS(26,:) = [0 2];
TRELLIS(27,:) = [3 2];
TRELLIS(28,:) = [4 1];
TRELLIS(29,:) = [3 1];
TRELLIS(30,:) = [4 2];
TRELLIS(31,:) = [7 2];
TRELLIS(32,:) = [0 1];

%All parameters are initialized
AlphaOut = zeros (MAX_STATE_NO,1);
BetaOut = zeros (MAX_STATE_NO,1);
[length,N]=size(Ai);
Extrinsic = zeros(3,length);
Alpha = zeros (MAX_STATE_NO,length+1);
Beta = zeros (MAX_STATE_NO,length+1);
Gamma = zeros (TRELLIS_SIZE,1);
MAXLOG = 1e7;
tempab = zeros(MAX_STATE_NO,1);

A = Ai;
B = Bi;
Y1= Y1i;
W1= W1i;
% Alpha and Beta metrics are initialized by making use of inputs AlphaIn,BetaIn
for i=1:MAX_STATE_NO
 Alpha(i,1)=AlphaIn(i,1);
 Beta(i,length+1)=BetaIn(i,1);
end

%Calculation of beta metrics
for i=length:-1:1
 for j=1:TRELLIS_SIZE
 temp_input = mod((j-1),M);
 temp_output = TRELLIS(j,TRELLIS_OUT);
 %Calculate Branch Metrics
 if temp_input == 0
 Gamma(j,1) = 0;
 elseif temp_input == 1
 Gamma(j,1) = B(i,1) + ExtIn(1,i);
 elseif temp_input == 2
 Gamma(j,1) = A(i,1) + ExtIn(2,i);
 else
 Gamma(j,1) = A(i,1)+B(i,1)+ ExtIn(3,i);
 end
 if temp_output == 0
 Gamma(j,1) = Gamma(j,1) + 0;
 elseif temp_output == 1
 Gamma(j,1) = Gamma(j,1) + W1(i,1);
 elseif temp_output == 2
 Gamma(j,1) = Gamma(j,1) + Y1(i,1);
 else
 Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1);
 end
 Gamma(j,1) = Gamma(j,1) + Beta (TRELLIS(j,TRELLIS_END_STATE)+1,i+1);
 End

55

 for j=1:MAX_STATE_NO
 tempab(j,1) = -MAXLOG;
 end
 % find the maximum
 for j=1:TRELLIS_SIZE
 if tempab((floor((j-1)./M)+1),1) < Gamma(j,1)
 tempab((floor((j-1)./M)+1),1) = Gamma(j,1);
 end
 end
 for j=2:MAX_STATE_NO
 tempab(j,1) = tempab(j,1)-tempab(1,1); %normalize with respect to the
first metric
 Beta(j,i)=tempab(j,1);
 end
 Beta(1,i)=0;
end
for j=1:MAX_STATE_NO
 BetaOut(j,1)=Beta(j,1); % save the final beta metric
end

%Calculation of alpha metrics
for i=1:length
 for j=1:TRELLIS_SIZE
 temp_input = mod((j-1),M);
 temp_output = TRELLIS(j,TRELLIS_OUT);
 %Calculate Branch Metrics
 if temp_input == 0
 Gamma(j,1) = 0;
 elseif temp_input == 1
 Gamma(j,1) = B(i,1)+ExtIn(1,i);
 elseif temp_input == 2
 Gamma(j,1) = A(i,1)+ExtIn(2,i);
 else
 Gamma(j,1) = A(i,1)+B(i,1)+ExtIn(3,i);
 end
 if temp_output == 0
 Gamma(j,1) = Gamma(j,1) + 0;
 elseif temp_output == 1
 Gamma(j,1) = Gamma(j,1) + W1(i,1);
 elseif temp_output == 2
 Gamma(j,1) = Gamma(j,1) + Y1(i,1);
 else
 Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1);
 end
 Gamma(j,1) = Gamma(j,1) + Alpha(floor((j-1)./M)+1,i);
 end
 for j=1:MAX_STATE_NO
 tempab(j,1) = -MAXLOG;
 end
 % find the maximum
 for j=1:TRELLIS_SIZE
 if tempab(TRELLIS(j,TRELLIS_END_STATE)+1,1) < Gamma(j,1)
 tempab(TRELLIS(j,TRELLIS_END_STATE)+1,1) = Gamma(j,1);
 end
 end
 for j=2:MAX_STATE_NO
 tempab(j,1) = tempab(j,1)-tempab(1,1);%normalize with respect to the
first metric
 Alpha(j,i+1)=tempab(j,1);
 end
 Alpha(1,i+1)=0;
end

56

for j=1:MAX_STATE_NO
 AlphaOut(j,1) = Alpha(j,length+1); %save the final alpha metric
end

temp_llrout = zeros(4,1);
Extrinsic=zeros(3,length);
%LLR Calculation
for i=1:length
 for j=1:TRELLIS_SIZE
 temp_input = mod((j-1),M);
 temp_output = TRELLIS(j,TRELLIS_OUT);
 %Calculate Branch Metrics
 if temp_input == 0
 Gamma(j,1) = 0;
 elseif temp_input == 1
 Gamma(j,1) = B(i,1) + ExtIn(1,i);
 elseif temp_input == 2
 Gamma(j,1) = A(i,1) + ExtIn(2,i);
 else
 Gamma(j,1) = A(i,1)+B(i,1) + ExtIn(3,i);
 end
 if temp_output == 0
 Gamma(j,1) = Gamma(j,1) + 0;
 elseif temp_output == 1
 Gamma(j,1) = Gamma(j,1) + W1(i,1) ;
 elseif temp_output == 2
 Gamma(j,1) = Gamma(j,1) + Y1(i,1) ;
 else
 Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1) ;
 end
 Gamma(j,1) = Gamma(j,1) + Alpha(floor((j-1)./M)+1,i) + Beta
(TRELLIS(j,TRELLIS_END_STATE)+1,i+1);
 end
 for j=1:M
 temp_llrout(j,1) = -MAXLOG;
 end
 % Find the maximum
 for j=1:TRELLIS_SIZE
 if temp_llrout((mod((j-1),M))+1,1)<Gamma(j,1)
 temp_llrout((mod((j-1),M))+1,1) = Gamma(j,1);
 end
 end
 for j=2:M
 Extrinsic((j-1),i) = temp_llrout(j,1)-temp_llrout(1,1); %Normalize with
respect to LLR of input 00
 end
end
Extrinsic = Extrinsic - ExtIn ;

57

A.9 Interleaving Extrinsic Information

function LLR_Int = Interleaver_Ext(Ext)
% This function interleaves extrinsic information

P=zeros(2400,4);
P(24,:) = [5 0 0 0];
P(36,:) = [11 18 0 18];
P(48,:) = [13 24 0 24];
P(72,:) = [11 6 0 6];
P(96,:) = [7 48 24 72];
P(108,:) = [11 54 56 2];
P(120,:) = [13 60 0 60];
P(144,:) = [17 74 72 2];
P(180,:) = [11 90 0 90];
P(192,:) = [11 96 48 144];
P(216,:) = [13 108 0 108];
P(240,:) = [13 120 60 180];
P(480,:) = [53 62 12 2];
P(960,:) = [43 64 300 824];
P(1440,:) = [43 720 360 540];
P(1920,:) = [31 8 24 16];
P(2400,:) = [53 66 24 2];

[temp,length]=size(Ext);

C = zeros(2,length);
C(1:2*length) = 1:2*length;
D = zeros(2,length);
t = 0;
interleaver = zeros(3,length);
%STEP 1
for k=1:length
 if rem(k,2)==0
 C(1,k)=2*k;
 C(2,k)=2*k-1;
 end
end

%STEP 2
for m=0:(length-1)
 if rem(m,4)==0
 t = 0; %P=0
 elseif rem(m,4)==1
 t = length/2 + P(length,2); %P=N/2+P1
 elseif rem(m,4)==2
 t = P(length,3); %P=P2
 elseif rem(m,4)==3
 t = length/2 + P(length,4); %P=N/2+P3
 end
 D(:,m+1)=C(:,(mod(((P(length,1)*m)+t+1),length)+1));
end

Inter_M = reshape(D,1,2*length);

couple_index = ceil(Inter_M(1:2:2*length)/2);
interleaver(1,:) = (couple_index-1 + Inter_M(1:2:2*length))';
interleaver(2,:) = (couple_index-1 + Inter_M(2:2:2*length))';
interleaver(3,:) = (3*couple_index)';
LLR_Int = Ext(interleaver);

58

A.9 De-interleaving Extrinsic Information

function LLR = DeInterleaver_Ext(Ext)
% This function deinterleaves extrinsic information

P=zeros(2400,4);
P(24,:) = [5 0 0 0];
P(36,:) = [11 18 0 18];
P(48,:) = [13 24 0 24];
P(72,:) = [11 6 0 6];
P(96,:) = [7 48 24 72];
P(108,:) = [11 54 56 2];
P(120,:) = [13 60 0 60];
P(144,:) = [17 74 72 2];
P(180,:) = [11 90 0 90];
P(192,:) = [11 96 48 144];
P(216,:) = [13 108 0 108];
P(240,:) = [13 120 60 180];
P(480,:) = [53 62 12 2];
P(960,:) = [43 64 300 824];
P(1440,:) = [43 720 360 540];
P(1920,:) = [31 8 24 16];
P(2400,:) = [53 66 24 2];

[temp,length]=size(Ext);

C = zeros(2,length);
C(1:2*length) = 1:2*length;
D = zeros(2,length);
t = 0;
interleaver = zeros(1,3*length);
LLR = zeros(3,length);
%STEP 1
for k=1:length
 if rem(k,2)==0
 C(1,k)=2*k;
 C(2,k)=2*k-1;
 end
end
%STEP 2
for m=0:(length-1)
 if rem(m,4)==0
 t = 0; %P=0
 elseif rem(m,4)==1
 t = length/2 + P(length,2); %P=N/2+P1
 elseif rem(m,4)==2
 t = P(length,3); %P=P2
 elseif rem(m,4)==3
 t = length/2 + P(length,4); %P=N/2+P3
 end
 D(:,m+1)=C(:,(mod(((P(length,1)*m)+t+1),length)+1));
end

Inter_M = reshape(D,1,2*length);
couple_index = ceil(Inter_M(1:2:2*length)/2);
interleaver(1:3:3*length) = (couple_index-1 + Inter_M(1:2:2*length))';
interleaver(2:3:3*length) = (couple_index-1 + Inter_M(2:2:2*length))';
interleaver(3:3:3*length) = (3*couple_index)';
LLR(interleaver) = Ext;

59

A.10 Decision

function [Out,Number]=Decision(A,B,In)
% This function decides on the received bits by making use of extrinsic
% information given as In
% This unction also calculates bit error rate by using actual data sent by
% the transmitter
% Output "Number" is the number of bits with error

[temp,length] = size(In);
temp_llrout = zeros(4,1);
Detected = zeros(2*length,1);
for i=1:length
 temp_llrout(1,1) = 0 ;
 temp_llrout(2,1) = In(1,i);
 temp_llrout(3,1) = In(2,i);
 temp_llrout(4,1) = In(3,i);
 if(temp_llrout(4,1)>temp_llrout(3,1))
 term1 = temp_llrout(4,1);
 else
 term1 = temp_llrout(3,1);
 end
 if(temp_llrout(1,1)>temp_llrout(2,1))
 term2 = temp_llrout(1,1);
 else
 term2 = temp_llrout(2,1);
 end
 if(temp_llrout(4,1)>temp_llrout(2,1))
 term3 = temp_llrout(4,1);
 else
 term3 = temp_llrout(2,1);
 end
 if(temp_llrout(1,1)>temp_llrout(3,1))
 term4 = temp_llrout(1,1);
 else
 term4 = temp_llrout(3,1);
 end
 Detected(i,1)=term1-term2;
 Detected(i+length,1)=term3-term4;
end

Out=(Detected>0)+0;
Data = [A ; B];
[Number,Ratio] = biterr(Out,Data);

60

BIBLIOGRAPHY

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error

Correcting Coding and Decoding : Turbo Codes,” Proc. Int. Conf. Commun.,

1993, pp. 1064-1070.

[2] M.C. Valenti and J. Sun, “The UMTS Turbo Code an Efficient Decoder

Implementation Suitable for Software Defined Radios,” International Journal of

Wireless Information Networks, 2001

[3] C. Douillard, C. Berrou, “Turbo Codes with Rate –m/(m+1) Constituent

Convolutional Codes”, IEEE Transactions on Communications, 2005

[4] C. Berrou, M. Jezequel, C. Douillard and S. Kerouedan, “The Advantages of

Non-Binary Turbo Codes”, IEEE Information Theory Workshop, 2001, pp. 61-

63

[5] IEEE Std 802.16 Part 16: Air Interface for Fixed Broad Band Wireless

Access Systems, 2004

[6] C. Zhan, T. Aslan, A. T. Erdogan and S. MacDougall, “An Efficient

Decoder Scheme for Double Binary Circular Turbo Codes”, IEEE international

conference on Acoustics, Speech and Signal Processing, 2006, ICASSP 2006

proceedings Volume 4, 2006, pp. IV229-IV232

[7] LB Communications, “Method for Hardware implementation of a

Convolutional Turbo Code Interleaver and a Sub-block Interleaver”

[8] D. Giancristofaro, A. Bartolazzi, “Novel DVB-RSC Standard Turbo Code:

Details and Performances of a Decoding Algorithm”, ESA conference, 2001

[9] C. Douillard, M. Jezequel and C. Berrou, “The Turbo Code Standard for

DVB-RSC”, 2nd International Symposium on Turbo Codes & Related Topics,

Brest, France, 2000, pp. 535-538

61

[10] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate”, IEEE Transactions on Information

Theory, 1974

[11] J. F. Cheng and T. Ottosson, “Linearly Aprroximated log-MAP Algorithms

for Turbo Coding”, Proc. Of IEEE VTC, 2000

[12] J. Vogt, A. Finger, “Improving the Max-Log-MAP Turbo Decoder”,

Electronics letters, Vol.36 No:23, 2000

[13] J. Bjarmark, M. Strandberg, “Hardware Accelerator for Duo Binary CTC

decoding : Algorithm Selection, HW/SW Partitioning and FPGA

Implementation”, MS Thesis, 2006

[14] J. H. Kim, I. C. Park, “Energy Efficient Double Binary Tail Biting Turbo

Decoder Based on Border Metric Encoding,”, Proc. IEEE Int. Symp. On Circuits

and Systems, 2007, pp. 1325-1328

[15] A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation

of the MAP Decoder for Convolutional Codes”, IEEE. J. Sel Areas Commun.

Vol. 16, no:2, 1998, pp. 260-264

