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ABSTRACT 

DOUBLE BINARY TURBO CODE ANALYSIS AND 

DECODER IMPLEMENTATION 

 
Özlem Yılmaz 

M.S. in Electrical and Electronics Engineering 
Supervisor: Prof. Dr. Abdullah Atalar 

September 2008 
 

 

Classical Turbo Code presented in 1993 by Berrau et al. received great attention 

due to its near Shannon Limit decoding performance. Double Binary Circular 

Turbo Code is an improvement on Classical Turbo Code and widely used in 

today’s communication standards, such as IEEE 802.16 (WIMAX) and DVB-

RSC. Compared to Classical Turbo Codes, DB-CTC has better error-correcting 

capability but more computational complexity for the decoder scheme. In this 

work, various methods, offered to decrease the computational complexity and 

memory requirements of DB-CTC decoder in the literature, are analyzed to find 

the optimum solution for the FPGA implementation of the decoder. IEEE 

802.16 standard is taken into account for all simulations presented in this work 

and different simulations are performed according to the specifications given in 

the standard. An efficient DB-CTC decoder is implemented on an FPGA board 

and compared with other implementations in the literature.  
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ÖZET 

ÇĐFT ĐKĐLĐ TURBO KOD ANALĐZĐ ve KOD ÇÖZÜCÜ 

UYGULAMASI 

Özlem Yılmaz 
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Abdullah Atalar 
Eylül 2008 

 
Đlk olarak 1993 senesinde Berrou tarafindan tariflenen klasik Turbo kodlar, 

Shannon sınırına yakın kod çözücü performansları sayesinde büyük ilgi 

toplamıştır. Çift ikili dönel Turbo kodları, klasik Turbo kodların daha da 

gelişmiş halidir ve IEEE 802.16 (WIMAX) and DVB-RSC gibi bugünün 

haberleşme standartlarında yaygın olarak kullanılmaktadır. Bu kodlar, klasik 

Turbo kodlara kıyasla daha iyi hata düzeltme yeteneğine sahip olmakla birlikte 

çözücü açısından daha fazla hesapsal karmaşa içermektedir. Bu çalışmada, çift 

ikili turbo kod çözücünün alan programlanır kapı dizilerinde en verimli şekilde 

uygulanması için, literatürde hesaplama karmaşıklığını ve gerekli hafıza alanını 

azaltmaya yönelik yapılmış çalışmalar araştırılmıştır. Çalışmada IEEE 802.16 

standardı baz alınmıştır ve burada verilen belirtimlere uygun olarak 

simülasyonlar yapılmıştır. Yapılan araştırmaya göre, alan programlanır kapı 

dizilerinde verimli bir çift ikili turbo kod çözücü uygulaması geliştirilmiştir ve 

daha önce alan programlanır kapı dizilerinde uygulanan kod çözücülerle 

karşılaştırılmıştır.  

 

 

Anahtar Kelimeler:  Çift Đkili Turbo Kodlar, IEEE 802.16, Alan Programlanır 

Kapı Dizileri, kod çözücü 
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Chapter 1 
 

 

Introduction 
 

 

 

 

 

 

In wireless communication systems, received data from the transmitter is 

corrupted due to the imperfectness of the channel. Error correcting codes are 

used to reduce the error rate in the received data avoiding increase of 

transmission power. There are two types of error correcting. In ARQ (Automatic 

Repeat reQuest) case, receiver sends an acknowledge message to the transmitter 

upon the reception of a data without error. If transmitter can not receive an 

acknowledge message in a predetermined time interval, it resends the previously 

sent data. On the other hand, “forward error correction” (FEC), which is another 

type of error correcting, uses the redundant bits sent by the transmitter. It avoids 

retransmission at the cost of high bandwidth requirement and preferred when 

retransmission is more costly or even impossible. Hybrid ARQ enables using 

FEC and ARQ together.  

    

   FEC is divided into two types: convolutional codes and block codes. Block 

codes processes on fixed length channel code while convolutional codes work 

on bits of arbitrary length. Non-recursive convolutional codes are not 

systematic, meaning that actual bits are not sent through the channel. In this 

case, output is a linear combination of input bit and delayed input bits. Another 

type of convolutional code namely recursive convolutional code is systematic 

and parity output is a function of input bits, delayed input bits and previous 

input bits. Turbo code is a modified form of convolutional codes in which two 
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recursive systematic convolutional codes are concatenated in parallel separated 

by an interleaver.     

   Turbo coding, first introduced in 1993, aroused great attention due to its near 

Shannon Limit performance [1]. It allows maximum information transfer over a 

limited bandwidth. They are widely used in cellular communication systems and 

specifications for WCDMA (UMTS) and cdma2000 [2]. Non-binary turbo codes 

introduced in [3] perform better than classical Turbo codes as explained in [4]. 

Popular radio systems such as DVB-RSC (Digital Video Broadcasting – Return 

Channel via Satellite) and IEEE 802.16 (WIMAX –Worldwide Interoperability 

for Microwave Access) [5] standards include double binary turbo codes. On the 

other hand, compared to classical turbo decoder, double binary turbo decoder is 

more complex in hardware implementation. Researchers are working on double 

binary turbo codes to find an efficient way such that the trade off between 

performance and computational complexity is optimized. First of all, Log-MAP 

algorithm -the biggest effect on computational complexity- is reduced by using 

Max-Log-MAP algorithm in the decoders. The performance of the algorithm is 

improved by using a scaling factor for the calculation of extrinsic information 

[6]. Another issue causing complexity is the estimation of the initial trellis state 

at the decoder side. By using feedback method in [6] instead of pre-decoder 

method, this problem can be solved. Although there are some implementations 

of the double binary turbo decoder, most of them are based on application 

specific integrated circuits (ASIC) and not flexible.  

 

 In this thesis, investigations improving the performance of the double binary 

turbo codes are analyzed using MATLAB simulations. Based on the results 

obtained, double binary turbo decoder is implemented on a field programmable 

gate array (FPGA). Finally the performance of the decoder is compared to other 

FPGA implementations in the literature.  
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 Basic information about turbo codes is given and double binary turbo codes 

are explained in detail together with improvements suggested by other 

investigators in Chapter 2. MATLAB simulations performed are presented in 

Chapter 3. Architecture, results of the hardware implementation and the 

comparison with other implementations are given in Chapter 4. Thesis is 

concluded in Chapter 5.       

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Chapter 2 
 

 

Turbo Code 
 

2.1 Classical Turbo Code 
 

Classical turbo code encoder consists of two rate 1/2 binary recursive systematic 

convolutional codes concatenated in parallel and separated by a random 

interleaver as shown in Figure 2.1.   

 

Figure 2.1 Turbo Encoder 

 

 In Figure 2.1, upper encoder encodes the data in natural order and lower 

encoder encodes the interleaved data. Interleaver structure has a big importance 

on the performance of the turbo codes because it provides the systematic and 

parity bits sent through the channel are uncorrelated. The data bits kA  and parity 
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bits kP , kP′  are transmitted together, thus the overall code rate of the encoder is 

1/3. After encoding all data bits, tailing bits are encoded and transmitted to force 

the trellises of the two encoders to all zero state. It is possible to terminate 

conventional convolutional codes by transmitting a tail of zeros. However, in the 

case of recursive convolutional codes, separately calculated tail bits are needed 

for the encoders [2]. These tail bits are generated by turning the switches in 

Figure 2.1 on the down position [2].  

 

 The turbo decoder is an iterative serial concatenation of two soft output 

Viterbi or BCJR algorithm decoders as shown in Figure 2.2.     

    

( )kR A

( )kR P ′

( )kR P

ˆ
kA

2 ( )kP
′Λ

1( )kPΛ

2 ( )kV P ′

2 ( )kV P

1( )kV A

( )
k

w A

2 ( )kPΛ

 

Figure 2.2 Turbo Decoder 

 

 Each iteration consists of two half iterations. RSC Decoder 1 works in the 

first iteration while RSC Decoder 2 works in the second iteration. Decoder 1 

uses the received LLR (Log Likelihood Ratios) corresponding to the systematic 

bits and LLR for the parity bits produced by the first encoder –the encoder 

which encodes the data in natural order- to produce extrinsic information to be 



6 

 

used by the second decoder. Decoder 2 produces extrinsic information by using 

the interleaved extrinsic information from the first decoder and LLR of parity 

bits produced by the second encoder –the encoder which encodes the interleaved 

data. After de-interleaving process, the extrinsic information is introduced to the 

first decoder. The progress continues until a reasonable BER or iteration number 

is reached [2]. This process includes only the actual bits; tail bits are not 

decoded.   

 

2.2 Double Binary Turbo Code 
 
Recursive Systematic Convolutional codes used in turbo codes are based on 

single-input linear feedback shift registers (LFSRs). Several information bits can 

be encoded and decoded at the same time by making use of multiple input 

LFSRs [3]. It has been shown in [3] that m-input binary turbo codes combined 

with a two-level permutation performs better than classical turbo codes 

especially at low SNR and high coding rate. The advantages of m input turbo 

codes are better convergence of the iterative decoding, large minimum distances, 

less sensitivity to puncturing patterns, reduced latency, robustness for the 

weaknesses of the Max-Log-MAP algorithm which is generally preferred as 

decoding algorithm[4]. Turbo codes with m=2 are called “Double Binary Turbo 

Codes” and 8 state double binary turbo codes have been widely used in today’s 

mobile radio systems such as DVB-RCS and IEEE 802.16(WIMAX) 

standards[5]. Figure 2.3 shows an overall picture of double binary turbo codes 

including the modulation and demodulation processes. An eight-state Double 

Binary Turbo Code encoder, interleaver, subblock interleaver, puncturing and 

decoder structures are explained in the following sections.  
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Figure 2.3 Overall picture for Double-Binary CTC 

 
 

2.2.1 Double Binary Turbo Encoder  
 

Double binary turbo encoder consists of two double binary RSC codes 

concatenated in parallel as shown in Figure 2.4. 

    

   Two data streams A and B are fed to the encoders in natural and interleaved 

orders. The encoder output consists of systematic bits A and B, parity bits 

produced by the upper encoder and lower encoder Y1, W1 and Y2, W2 

respectively, causing a 2/6 coding rate. In circular double binary Turbo codes, it 

is ensured that the ending trellis state is equal to the initial trellis state which is 

called circular state Sc [6]. When compared to classical turbo codes which uses 

redundant tail bits to force the encoder to all zero state, tail biting technique in 

double binary turbo codes brings an advantage due to the increase in spectral 

efficiency. However, in order to provide the circular behavior of the code and to 

determine the initial state for the given data stream, a pre-encoding procedure is 
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necessary. This causes the encoder scheme of the double binary codes to be 

more complex than the encoder scheme of the classical turbo codes. 

 

Figure 2.4 Double Binary Turbo Encoder 

             

2.2.2 Interleaver Structure 
 
In turbo codes, interleaver structure has a big effect on the noise performance of 

the code. In [3] it is stated that two level permutation-inter symbol and intra 

symbol permutation- helps obtaining large minimum distances and better error 

correction performance compared to classical turbo codes. Two steps followed 

in the interleaving procedure are:  

 

1. for j = 0,1,2 ....(N-1)  

    If (j mod 2 = 1) 

    Then, (B,A) = (A,B) (switch the couple) 
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 2. For j = 0,1,2.....(N-1) 

     Switch j mod 4: 

       Case 0 : mod( ) ( 0 1) NP j P j= × +  

       Case 1 : mod( ) ( 0 1 / 2 1) NP j P j N P= × + + +  

       Case 2 : mod( ) ( 0 1 2) NP j P j P= × + +  

       Case 3 : mod( ) ( 0 1 / 2 3) NP j P j N P= × + + +  

where  Interleaved Vector (j) = Original Vector (P(j)) and N is the block size, 

P0, P1, P2, P3 are the parameters defined in standards for the different block 

sizes [7]. In this thesis Double Binary Turbo Codes are implemented according 

to the IEEE 802.16 standard, so P0, P1, P2, P3 are picked according to the table 

given in the standard [5].  

 

2.2.3 Sub-block Interleaver Structure 
 

Sub-block interleaving process takes place on systematic bits A, B and Parity 

bits Y1, W1, Y2, W2 which are the outputs of the encoder. Addresses of the bits 

are calculated according to the formula given as:  

                                       2 ( mod ) ( / )m

k mT k j BRO k j= +     

where kT  is the output address, m  and j  are standard and block size dependent 

parameters[7].  

 

2.2.4 Puncturing 
 

After sub-block interleaving, puncturing is performed on parity bits according to 

a given formulation defined in the standards. Puncturing enables increasing the 

code rate from 1/3 to other rates defined in the standards. Table 2.1 is the 

puncturing pattern defined in IEEE 802.16 to obtain code rates 1/2, 2/3 and 3/4.  
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                     Table 2.1 Double Binary Turbo Code Puncturing Patterns 

 

   In each case, systematic bits are sent without deleting any information. For 

example, to obtain a code rate of 1/2; A, B together with Y1, Y2 blocks are 

modulated and sent through the channel. For a code rate of 2/3, bits with odd 

indexes are removed from Y1 and Y2.  

   De-puncturing is the reverse operation of puncturing and takes place after 

demodulation. In this case, according to the code rate specified, the received 

data is padded with zeros to obtain the natural code rate 1/3 which will be used 

by the iterative decoder.   

 

2.2.5 Double Binary Turbo Decoder 
 
The decoder involves two Soft Input Soft Output (SISO) decoders working 

iteratively as shown in Figure 2.5. 

 

   Decoder 1 calculates extrinsic information denoted as 1( , )k kA BΛ  by making 

use of LLR of systematic bits, LLR of parity bits and de-interleaved extrinsic 

information produced by Decoder 2. Decoder 2 uses interleaved LLR of 

systematic bits, LLR of parity bits and interleaved extrinsic output of Decoder 1. 

Iteration number generally changes from 2 to 8 depending on the required BER 

and speed. During iterations, inputs to the decoders (LLR of A, B, Y1, W1, Y2 

and W2) are kept constant and only extrinsic information is passed between the 

decoders. As it will be shown in the Chapter 3, increasing the number of 
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iterations results in better BER performance at the cost of longer decoding time 

causing the decoding rate to decrease. In order to obtain a reasonable BER while 

keeping the decoding time as low as possible, a stopping criterion should be 

defined. 

 

( , )k kR A B

1 1( , )R Y W

ˆ ˆ,k kA B

2 2( , )R Y W

2 ( , )k kA B′ ′Λ

1( , )k kA BΛ

2 ( , )k kV A B′ ′

2 ( , )k kV A B

1( , )k kV A B

( , )k kw A B

2 ( , )k kA BΛ

 

Figure 2.5 Double Binary Turbo Decoder                                      

 

   

2.2.6 Decoder Algorithm 

Considering one LLR value of a posteriori probabilities as in the case of 

classical turbo codes is not enough for double binary turbo codes. Instead a 

modified MAP algorithm or BCJR algorithm, in which three LLRs 

1

( (01) | )
ln

( (00) | )
k

k

P u y
L

P u y

 =
=  = 

, 2

( (10) | )
ln

( (00) | )
k

k

P u y
L

P u y

 =
=  = 

, 3

( (11) | )
ln

( (00) | )
k

k

P u y
L

P u y

 =
=  = 

 

are calculated, is introduced [10]. This increases the computational complexity 

of the decoder. However there is no need to compute LLR values, finding four 

posterior probabilities ( (0,0) | )kP u y= , ( (0,1) | )kP u y= , ( (1,0) | )kP u y= , 
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( (1,1) | )kP u y=  and picking up the maximum of the four values is enough for 

MAP algorithm [6]. Posteriori possibility of each data pair in log domain is 

defined as: 

 ' '
1ln ( | ) ln( exp( ( ) ( , ) ( )))k k k kP u y s s s sβ γ α −= + +∑  

' '
1

' '
1

'

1

( ) ln( exp( ( , ) ( ))

( ) ln( exp( ( , ) ( )

( , ) ln ( )

k k k

all s

k k k

all s

m n

i kl kl k

l

s s s s

where s s s s

s s x y P u

α γ α

β γ β

γ

−
′

−

+

=


 = +



= +

   = ⋅ + 
  

∑

∑

∑

 

    

where m is the length of systematic bits and n is the length of parity bits. klx  and 

kly  stands for the received LLR from the demodulator [6].  

After MAP decoder operation,  

                       
1

ln ( | ) ln ( | ) ln ( )
m

ex

out k k kl kl k

l

P u y P u y x y P u
=

= − ⋅ −∑  

representing 4 log domain extrinsic information is sent to the other decoder.  

 

   It is not an easy to implement Log-MAP algorithm in hardware. To simplify 

the algorithm further and to calculate ( , ) ln( )x yMAX x y e e= +  in an easier way, 

three main techniques are offered: 

 

 

Constant Log-MAP:   

max( , ) 0, | |
( , )

max( , ) , | |

x y if y x T
MAX x y

x y C if y x T

+ − >
= 

+ − ≤
 

According to [7], this technique gives the best results when C = 0.5 and T =  1.5.                 
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Linear Log-MAP 

max( , ) 0, | |
( , )

max( , ) (| | ), | |

x y if y x T
MAX x y

x y a y x T if y x T

+ − >
= 

+ − − − ≤
 

The optimum “a” is found to be -0.24904 and “T” to be 2.5068 in [7]. Linear 

Log-MAP algorithm gives more reliable results however include more 

computational complexity.  

 

Max-Log-MAP Algorithm 

( , ) max( , )MAX x y x y=     

   Max-Log-MAP algorithm gives less accurate results when compared to the 

Log-MAP algorithm itself. However, due to its decreased computational 

complexity; it is the most preferred algorithm for hardware implementations. In 

[12], a modified Max-Log-MAP algorithm called Enhanced Max-Log-MAP 

algorithm is introduced. In this algorithm, by multiplying the extrinsic 

information with a coefficient smaller than 1, performance of Max-Log-MAP is 

improved. In [6], it has been shown that Enhanced Max-Log-MAP algorithm 

achieves the best trade off between performance and computational complexity 

which is recommended in hardware implementations. In this thesis, Max-Log-

MAP is chosen for hardware implementation so this algorithm is explained in 

further detail.  

 

2.2.7 Max-Log-MAP Algorithm  
 

Max-Log-MAP algorithm includes sweeping the trellis in the forward and 

backward directions. Each sweep uses a modified version of the Viterbi 

algorithm in which Add Compare Select operations are carried out by MAX* 

operator [2]. Performing the forward sweep or backward sweep first does not 

matter. In either case, metrics calculated in the first sweep are stored in memory 

and metrics calculated in the second sweep are directly used together with the 

metrics stored in the first sweep to find final extrinsic information. In [2] 
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performing the backward sweep first is recommended, because in this case, LLR 

estimates of the data are produced in the forward sweep and is output in the 

correct ordering.  

 

 
                           Figure 2.6 Trellises for input AB=00, 01, 10 and 11 

 

 During backward recursion, beta metrics are calculated and stored in the 

memory. Beta metrics represent the probability for different states when 

considering all the data after time instance k [13] and are calculated according to 

the following expression:  

                                     
1

1 1 1 1( ) max[ ( ) ( )]
k

k k k k k k k
s B

s s s sβ β γ
+

+ + + +
∈

≅ + →  

where B is the set of states at time 1k +  connected to state ks .  
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Branch metrics denoted as γ  are calculated as: 

1 1 2 2 1 1 2 2 ( )
1 ,( ) ln[ ( | ). ( )] ( )

2
s s s s p p p p zc

k k k k k k k k k k k k k k e IN

L
s s P y x P u z x y x y x y x y Lγ +→ = = = + + + +

where {00,01,10,11}z ϕ∈ = ; ku is the input symbol consisting of two bits, 

( )kP u is a priori probability of ku , kx  and ky are transmitted and received 

codeword associated with ku [14]. s  and p stands for systematic and parity bits 

respectively. ( )
,
z

e INL  is the extrinsic information received from the other SISO 

decoder. cL is equal to 2/ 2σ  where 2σ  stands for the noise variance of the 

AWGN channel and generally set to a constant value since turbo decoding based 

on the Max-Log-MAP algorithm is independent of SNR[14].  

 

 During forward recursion, alpha metrics are calculated and without storing in 

the memory, they are used together with beta metrics to produce extrinsic 

information for the other SISO decoder. Alpha metrics are calculated as: 

                                  
1

1 1 1( ) max[ ( ) ( )]
k

k k k k k k k
s A

s s s sα α γ
−

− − −
∈

≅ + →  

where A is the set of states at time 1k −  connected to state ks .  

LLR(extrinsic information) calculations are: 

                               1

1

( )
1 1 1 1

( , )

1 1 1 1
( ,00)

max [ ( ) ( ) ( )]

      max [ ( ) ( ) ( )]
k k

k k

z

k k k k k k k k
s s z

k k k k k k k
s s

s s s s

s s s s

α γ β

α γ β
+

+

+ + + +
→

+ + + +
→

Λ ≅ + → +

− + → +
 

 

where {01,10,11}z ϕ∈ = , ks  is the state of the encoder at time k . 
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Figure 2.7 Trellis for calculation of extrinsic information when AB=00 

 

 It is possible to implement Max-Log-MAP algorithm in two ways; MAP 

decoding is applied to the whole data block or a large block is split into several 

windows and MAP decoding is applied to each window separately which is 

called sliding window technique [15]. The sliding window technique is effective 

on reducing the memory size required to store metrics [14]. In this technique, 

forward metrics are calculated before backward metrics are ready, so a dummy 

calculation is performed for the backward metrics to obtain reliable initial 

values. Since the dummy calculations do not reflect the actual backward metric 

values, the performance of the decoder is degraded. The performance gets better 

as the window size is increased. Instead of dummy calculation another method is 

introduced in [14] based on border metric encoding. In this method, for each 
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window, the final backward metric is stored in the border metric memory and 

used in the next iteration as initial values for the new metrics [14]. There is 

performance degradation when compared to dummy calculation method, but 

degradation disappears as the number of iterations increases. By applying the 

energy efficient turbo decoding method based on border metric encoding, the 

size of branch memory is reduced by half and the dummy calculation causing 

computational complexity is removed. [14].   

 
 Initiation of forward and backward metrics has a big effect on the 

performance of the turbo codes. As explained in Section 2.2.1, in the classical 

turbo code, trellis starts and ends at all zero state so forward and backward 

metrics can be initiated as follows [6] : 

0 0

0 0

( 0) 0

( 0) 0

( )

( )   for all s 0

N N

N N

A S

B S

A S s

B S s

= =

= =

= = −∞

= = −∞ ≠

 

 For double binary turbo codes, since circular RSC codes are used, the 

decoder doesn’t have any information about the initial and final state of the 

trellis. Several methods are offered to solve this problem. One solution is to 

include a pre-decoder to estimate the initial state of the trellis and use through 

the remaining iterations [8][9]. However this method increases both the 

computational complexity and latency [6]. In [6] a new method called 

“feedback” is introduced. Forward and backward metrics are initially set to zero 

but final metric values are stored to be used as initial values for the metrics in 

the following iterations. This method does not add any computational 

complexity or latency but requires the final metric values to be memorized [6]. 

This method is shown in Figure 2.8.  
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Figure 2.8 Double Binary Turbo Decoder with Feedback 

 

In this case 

                                               0 0
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For the first few iterations, the performance of the algorithm is worse when 

compared to pre-decoder method but it gets better as the number of iterations 

increases [6].   
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Chapter 3 
 

 

Simulation Results for Double-Binary  

Turbo Codes 
 
 
Using MATLAB environment, different simulations are carried out in order to 

analyze the performance of the Double Binary Turbo Code under different 

circumstances explained in Chapter 2. Using MATLAB function “rand”, 

random data is generated for different block sizes. Two random data streams are 

then encoded by using “encode” function written according to the information 

given in Chapter 2. Interleaving process is applied by using the parameters given 

in [5].  “SubBlockInterleaver” function is also written according to the 

specifications in [5] and applied to the output of “encode” function. Code rate 

higher than 1/3 is obtained by making use of the puncturing pattern defined in 

[5]. IEEE defines parameters for three types of modulations: QPSK, 16-QAM 

and 64 QAM. For modulation, “pskmod” function of MATLAB are used with 

relevant parameters and passed through the channel defined by “awgn” function 

of MATLAB which accepts SNR values as parameter. The output of AWGN 

function is fed to “pskdemod” function of which parameters are “pi/4” for phase 

offset, “binary” for symbol order, “bit” for decision type and “llr” for decision 

type. After passing through de-puncturing and sub-block de-interleaving 

functions, data is given as input to the decoders implemented in “SISO” 

functions. Output of one SISO function is passed to the other SISO function as 

input and progress continues until specified iteration number is reached. For 

each simulation, program runs until the number of decoded bits is 960000.    
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3.1 Effect of Block Size 
 
Simulations are carried out for block size values 240, 480, 960 and 1920. For 

each simulation code rate is 1/3(no puncturing), modulation type is QPSK and 

iteration number is 6.  
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Figure 3.1 Effect of Block Size on the performance of the Turbo code 

 

 According to the simulation results, BER performance gets better upon 

increasing the block size. Using blocks consisting of 1920 bits brings about 0.5 

dB performance gain at 0.007 BER. However, large blocks require more 

memory in hardware, so a block size optimizing the performance and memory 

requirement can be preferred.  
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3.2 Effect of Iteration Number 
 
Iteration number has a significant effect on the performance of the decoder. As 

explained in Chapter 2, pre-decoder method or feedback method is used for 

estimation of the circular state. According to [6], when feedback method is used, 

the number of iteration becomes more important. To observe the effect of 

iteration number for both “feedback” case and “pre-decoder” case, two different 

simulations are carried out. For the simulation in Figure 3.2, code rate is 1/3 (no 

puncturing), modulation type is QPSK and block size is 480. 
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Figure 3.2 Effect of iteration numbers when pre-decoder method is used  

 
 When pre-decoder is used for initial metric estimation, iterating 6 or 8 times 

instead of 2 brings about 1 dB gain at BER of 310− . As it is seen in Figure 3.2, at 

BER of 310− , the difference between 2 iterations and 4 iterations is about 0.8 

dB. On the other hand the difference between 4 iterations and 6 iterations is 

about 0.2 dB at BER of 310− . This indicates that number of iterations does not 
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affect the performance linearly. As the number of iterations increase, the 

improvement on BER performance decreases.   

 

   Simulation results when feedback method is used for initial metric estimation 

are shown in Figure 3.3. For the simulation in Figure 3.3, code rate is 1/3 (no 

puncturing), modulation type is QPSK and block size is 480. 
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Figure 3.3 Effect of iteration number when feedback method is used  

 
 When feedback method is used for initial metric estimation, iterating 6 or 8 

times instead of 2 brings more than 1 dB gain at BER of 310− . At 310−  BER, 

performance difference between 2 iterations and 4 iterations is about 0.9 dB. On 

the other hand performance difference between 4 iterations and 6 iterations or 6 

iterations and 8 iterations is about 0.1 dB at 310−  BER. In the case of feedback 

method, increasing the number of iterations improves the performance more 

when compared to pre-decoder case.  
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 Another simulation is carried out to observe the effect of iteration number 

when code rate is different than 1/3. For the simulation in Figure 3.3, code rate 

is 1/2, modulation type is QPSK and block size is 480. 

 

 

Figure 3.4 Effect of iteration number when code rate is 1/2  

 
   Comparing Figure 3.3 and 3.4, it can be concluded that effect of iteration 

number is similar for a code rate of 1/3 (no puncturing) and 1/2.   

 Simulation results indicate that increasing iteration number improves the 

BER performance. However high number of iteration means latency and results 

in low decoding rate. Keeping in mind that the amount of improvement on the 

BER performance decreases after 4 iterations; ideal number for iteration can be 

chosen as 6 or 8 depending on the BER requirement of the application.    
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3.3 Effect of Pre-Decoder and Feedback Methods 
 
Number of iterations plays a significant role on the performance of the Pre-

Decoder and Feedback methods. For this reason, pre-decoder and feedback 

methods are compared for iteration number 2 and iteration number 6. Code rate 

is 1/3(no puncturing), modulation type is QPSK and block size is 480 for this 

simulation.
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Figure 3.5 Effect of using feedback techniques and pre-decoder techniques 

 
As it is seen in Figure 3.5 when iteration number is 2, pre-decoder method 

performs slightly better but when iteration number is 6, performance of feedback 

method supersedes.  
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   Effect of pre-decoder and feedback methods are compared when code rate is 

different than 1/3 (no puncturing). For the simulation in Figure 3.6, code rate is 

1/2, modulation type is QPSK and block size is 480. Simulation is carried out for 

2 iterations and 6 iterations.  

 

 

Figure 3.6 Effect of using feedback techniques and pre-decoder techniques when 
code rate is 1/2 

 
   As it is seen in Figure 3.6, for iteration number 6, performance of pre-decoder 

and feedback methods are nearly the same while in Figure 3.5 the difference is 

more significant. Except this slight difference between Figure 3.5 and Figure 3.6 

it can be concluded that effect of using pre-decoder and feedback methods is 

similar for code rates 1/3 and 1/2.  

    

   According to simulation results there is not a big performance difference 

between pre-decoder and feedback methods especially at high number of 
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iterations. Besides, feedback method brings advantage in terms of computational 

complexity and decoding rate of the decoder.  

 
 

3.4 Effect of Enhanced Max-Log-MAP 
 
To observe the effect of scaling the extrinsic information by a constant, namely 

Enhanced Max-Log-MAP algorithm, simulation is carried out for which code 

rate is 1/3, modulation type is QPSK, iteration number is 6 and block size is 480. 

Scaling constant is 0.75 for the simulations.   
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Figure 3.7 Effect of Using Enhanced Max-Log-MAP algorithm 

 

   Figure 3.7 indicates that Enhanced Max-Log MAP algorithm improves the BER 

performance about 0.1 dB at BER of 310− . This method does not increase the 

computational complexity much because it requires the multiplication of the 

extrinsic values by 0.75 which can easily be implemented in hardware.  
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Chapter 4 
 

 

Hardware Implementation of  

Turbo Decoder  
 
 

Based on the results obtained through MATLAB simulations, a double binary 

turbo decoder supporting feedback method and Max-Log-MAP algorithm is 

implemented on an FPGA board. The code is written in VHDL and 

XC4VFX12-FF668-10 Virtex4 FPGA on Xilinx ML 403 board is used as target 

system. The code is developed by making use of Xilinx 9.2i ISE, and XST is 

chosen as synthesis tool.  

   De-puncturing and sub-block de-interleaving parts are not included in the 

implementation. These processes are assumed to be performed in software on 

the processor.  

 

4.1 Architecture 
 
Main modules in the hardware implementation are Controller module, Data 

selector module, Beta module, Alpha&LLR module and Serial Channel module. 

Figure 4.1 depicts the interaction of these modules.  

    

   LLR values of received systematic bits and parity bits to be processed are 

assumed to be loaded to the block RAMs both in the natural order and in 

interleaved order. These values are the de-punctured and de-interleaved soft 

outputs of the demodulator block. In other words, this implementation 
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corresponds to the “Decoding” part in Figure 2.3 and changes in the code rate 

does not affect the implementation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Overall architecture of the implemented Turbo Decoder  

 

   Controller module has interaction with all other modules in the architecture as 

it is seen in Figure 4.1. Controller module is responsible for managing other 

modules by determining the inputs and outputs of the modules according to the 

state of the decoder. Number of iterations and block size is also set in the 

controller module.  

    

   Beta and Alpha&LLR modules correspond to backward sweep and forward 

sweep respectively. One backward sweep and one forward sweep together with 

LLR calculation represents a half-cycle of the turbo decoder. In this 

implementation, backward sweep of trellis is performed first and followed by 

forward sweep together with LLR calculation in parallel. Due to the iterative 

nature of turbo decoder, second half iteration has to wait for the first half 
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iteration to be completed. This means that single Beta and single Alpha&LLR 

module is enough for a turbo decoder implementation if proper input is supplied 

to the modules. Using single modules for forward and backward metric 

calculation, the area required to implement a turbo decoder is minimized.      

    

   Beta module’s main task is to calculate backward metrics using the input data 

fed from its own data selector module and Alpha&LLR module. Calculated 

metrics are stored in the addresses specified by the controller module. The 

outputs of the Beta module are connected to the Alpha&LLR module and 

updated according to the addresses specified by the controller module.  

 

   Alpha&LLR module calculates forward metrics employing the input data fed 

from its own data selector module and extrinsic information produced by itself 

in the previous half iteration. Forward metrics are not stored in the memory and 

included directly to the calculations of current extrinsic information together 

with the metrics produced by the Beta module. Extrinsic information is stored in 

the addresses determined according to the state and address information supplied 

by the controller module. In other words, for the first half iteration, Alpha&LLR 

uses the addresses specified by the controller module directly but in the second 

half iteration, uses those addresses to calculate the interleaved addresses. The 

outputs of Alpha&LLR module are utilized by both itself and by the Beta 

module. This module updates its output according to the addresses and state 

information fed by the controller module. For example, if the decoder runs for 

the second half iteration, data stored in the interleaved addresses is supplied to 

the Beta module although the addresses fed by the controller are in natural order.   

  

 Due to the data dependency between Alpha and Beta modules, they have to 

work sequentially. Controller decides on which module to run at each state. 

However, to improve the decoding speed, Alpha and Beta modules should work 

in parallel. This is achieved by providing another data block to the decoder and 

saving the metrics belonging to the new data block to a different location in the 
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memory of each module. In this scheme, while Beta module processes for the 

first data block, Alpha&LLR Module processes for the second data block and 

vice versa. For each module, Controller module decides on the data blocks to be 

processed at each state and specifies the addresses to be used. Parallel 

processing of two different data blocks doubles the decoding speed at the cost of 

larger memory requirement. Since we focus primarily on the speed of the 

decoder, memory disadvantage of parallel processing is ignored.  

  

4.2 Modules in Detail 
 
Inputs and outputs of the modules in the decoder architecture are explained in 

detail in this section. All modules operates at the rising edge of the clock and 

fixed point operations are carried out for the data, metrics and extrinsic 

information in which fractional part is 3 bit width. 

4.2.1 Data Selector Module 
 
Main task of Data Selector module is to selectively direct the proper data to the 

module connected to its outputs. Inputs and outputs of the module are shown in 

Figure 4.2.  

 

 

Figure 4.2 Data Selector module inputs and outputs 
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   Beta and Alpha&LLR modules work on different data blocks at the same time 

hence there are two separate Data Selector modules for each module.  

 

   Inputs of the Data Selector module are connected directly to the outputs of the 

block RAMs in which LLR values of received systematic bits and parity bits are 

stored. Proposed turbo decoder processes two different data blocks in parallel 

hence data related to two different blocks are fed to the module doubling the 

number of inputs. Inputs denoted as DATA_A, INT_DATA_A, DATA_B, 

INT_DATA_B, DATA_Y, INT_DATA_Y, DATA_W, INT_DATA_W 

corresponds to the received LLR of the systematic and parity bits of the first 

data block and DATA_A_2, INT_DATA_A_2, DATA_B_2, INT_DATA_B_2, 

DATA_Y_2, INT_DATA_Y_2, DATA_W_2, INT_DATA_W_2 are the 

received LLR of the systematic bits and parity bits of the second data block. 

INT_DATA_Y and INT_DATA_W are the received LLR values of the bits 

encoded by the lower encoder in Figure 2.4 and transmitted through the channel 

while INT_DATA_A and INT_DATA_B are the interleaved DATA_A and 

DATA_B respectively at the decoder side. Inputs INTERLEAVE and 

SELECT_BLOCK of the module are set by the Controller module according to 

the state of the decoder. For example if a module will process for the first data 

block and in the second half iteration, then INTERLEAVE signal is set to high 

and SELECT_BLOCK signal is set to low. In this case, the input signals will be 

directed as follows: 

 

           INT_DATA_A => OUT_A  

           INT_DATA_B => OUT_B 

           INT_DATA_Y => OUT_Y 

           INT_DATA_W => OUT_W 
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4.2.2 Beta Module 
 
Beta module’s responsibility is to calculate, store and emit backward metrics.  

Inputs and outputs of the module are shown in Figure 4.3. 
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Figure 4.3 Beta Module inputs and outputs 

 

 Inputs DATA_A, DATA_B, DATA_Y and DATA_W are directly connected 

to the outputs of the Data Selector module which is reserved for the use of Beta 

Module. Other inputs are determined by the Controller module. When the input 

denoted as START is set to high by the controller module, Beta module begins 

to calculate the backward metrics using DATA_A, DATA_B, DATA_Y and 

DATA_W together with EXTR_01, EXTR_10 and EXTR_11 which are the 

extrinsic values calculated by the Alpha&LLR module in the previous half 

iteration. For each different time instance in other words for each different data 

pair, 8 beta metrics are calculated corresponding to 8 different states in the 

Trellis. A normalization operation is performed before saving the metrics in the 

memory. This is done by subtracting the first Beta metric –metric for state 0-   

from other Beta metrics. Each metric is stored in a separate dual port block 

RAM hence there are 8 block RAMs inside the module. Actually 7 block RAMs 
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are needed since Beta metrics for state 0 will always be zero because of the 

normalization, however 8 block RAMs are used to obtain a flexible design. 

WEN and REN signals enable writing and reading to the RAMs. Last half of 

each block RAM is reserved for saving the metrics of the second data block. 

Calculated metrics are stored in the memory locations specified by 

ADDR_WRITE signal which is set by the Controller module. Outputs of the 

module which are connected to the inputs of the Alpha&LLR module are beta 

metrics saved in the memory locations determined by ADDR_READ signal.  

 

   Due to the parallel processing of Alpha and Beta modules, block RAMs are 

written and read at the same time. When Beta module is calculating and writing 

to the block RAMs, Alpha&LLR module is reading the metrics of the other data 

block stored in the previous half iteration. Dual port block RAMs in the module 

enables concurrent read and write operations. For each RAM, one port is 

assigned for reading and one port is assigned for writing.  

 

   Feedback method explained in Chapter 2 is implemented for the initialization 

of the Beta metrics. Final Beta metrics for a data block are kept to be used as 

initial values for the same half iteration of the data block.  

 

   It takes two cycles for the Beta module to calculate and store the metrics to the 

RAM when clock frequency is 100 MHz.   

 

4.2.3 Alpha&LLR Module 
 

Main task of Alpha&LLR module is to calculate forward metrics and produce 

extrinsic information by making use of backward metrics and forward metrics. 

Inputs and outputs of the module are shown in Figure 4.4. This module is the 

most complex module and occupies the largest area on the FPGA.  
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Figure 4.4 Alpha&LLR module inputs and outputs 

 

   Inputs DATA_A, DATA_B, DATA_Y, DATA_W are directly connected to 

the outputs of the Data Selector module assigned for the Alpha&LLR module.  

Beta metrics are taken from the Beta module through the inputs BETA_IN_0, 

BETA_IN_1 ..... BETA_IN_7. EXTR_IN_01, EXTR_IN_10, EXTR_IN_11 are 

connected to EXTR_01, EXTR_10, EXTR_11 respectively which are the 

outputs of the module. Other inputs are set by the Controller Module.  

 

   When START signal is set to high by the Controller module, it begins 

calculating forward metrics using the DATA_A, DATA_B, DATA_Y, 

DATA_W signals and extrinsic information(EXTR_IN_01, EXTR_IN_10, 

EXTR_IN_11) calculated in the previous half iteration of the related data block. 
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Forward metrics are not stored in the memory and together with BETA_IN_0, 

BETA_IN_1 ..... BETA_IN_7, included to the calculations carried out to 

produce extrinsic information. Extrinsic information is saved in the memory 

locations of which addresses are calculated by the module itself. The module 

calculates the addresses to write according to the inputs SELECT_BLOCK, 

READ_INT and READ_NORM. If READ_INT is set to high, this means that 

the module is operating in the second half iteration of the data block specified by 

SELECT_BLOCK. In this case extrinsic information is stored in de-interleaved 

addresses for the Beta module to be able to read them in normal order in the 

following half iteration.  

    

   In the second half iteration of decoding process of a data block, extrinsic 

information produced in the first iteration should be read in interleaved order. If 

READ_INT is high, it reads the extrinsic information produced in the prior half 

iteration of the block specified by SELECT_BLOCK in the interleaved order. In 

this module, an interleaver is designed to calculate the interleaved addresses for 

different block sizes. However, this design is not used during tests since the 

block size is kept constant and the corresponding interleaver addresses are 

embedded in the code. Using the ADDR_READ signal and the table embedded 

in the code, interleaved addresses are found and output is updated accordingly.  

    

   SELECT_BLOCK is set to high or low to indicate the module whether it is 

working on the first data block or second data block respectively. Extrinsic 

information belonging to the first data block and second data block are stored in 

the first half and second half of the block RAMs respectively. 

 
   Number of block RAMs in the module is 6 although there are 3 types of 

extrinsic information. The reason is that when Alpha module is in progress it 

both writes and reads the extrinsic information from the RAMs so two ports of 

each RAM is occupied by the Alpha module. However, Beta module is also in 

progress on the other data block. Hence RAM number is doubled and 3 RAMs 
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are reserved for the usage of Beta Modules.  As it is seen in Figure 4.4, there are 

six outputs of the module: EXTR_01, EXTR_10, and EXTR_11 stands for the 

extrinsic information to be used by the module itself and BETA_EXTR_01, 

BETA_EXTR_10, BETA_EXTR_11 stands for the extrinsic information to be 

used by the Beta module. BETA_READ_INT and BETA_READ_NORM 

control the read address of the extrinsic information to be used by the Beta 

module.  

 

   Feedback method explained in Chapter 2 is implemented for the initialization 

of the Alpha metrics. Final Alpha metrics for a data block are kept to be used as 

initial values for the same half iteration of the data block.  

 

   Calculation and storage of extrinsic information is performed in 2 clock cycles 

at 100 MHz operating frequency.  

 

4.2.4 Serial Channel Module 
 
A serial channel module operating at a baud rate of 115200 is implemented for 

test purpose. Input and outputs of the module are shown in Figure 4.5 

 

 

Figure 4.5 Serial Channel Module Inputs and Outputs 

 
 Input DATA_IN which is 8 bits width is updated by the Controller module.  

When START is set to high, module begins to send bits of DATA_IN through 

SERIAL_OUT at the desired baud rate. Output SENT is set to high upon 

transmission of one byte to indicate the readiness of the serial channel. Extrinsic 
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information stored in the Alpha&LLR module is sent through the serial channel 

at the end of each iteration or at the end of all iterations.   

      

4.3 Test Procedure 
 

Data generated by the MATLAB model is loaded to the Block RAMs manually 

and the decoding process starts. After specified number of iterations is 

completed, final extrinsic values are transmitted to the PC through serial channel 

with a baud rate of 115200. An application developed using Microsoft Visual 

Studio 6.0 running on the PC collects the data received from the ML403 board 

into a file and converts the data to a suitable format. File is compared with 

MATLAB output. Test is carried out for different number of iterations configured 

in the code and it is observed that hardware results and software results are the 

same.   
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4.4 Results 
 

In this section, hardware implementation is evaluated in terms of the resources 

used on the FPGA and the decoding rate. Results are compared with another 

FPGA implementation in the literature [13]. 

 

4.4.1 FPGA Device Utilization Report 
 

As it is stated at the beginning of Chapter 4, XC4VFX12-FF668-10 Virtex4 

FPGA on Xilinx ML 403 board is used as target system. The code is developed 

by using Xilinx 9.2 ISE and XST is preferred as the synthesis tool. The amount 

of the resources used for the implementation is depicted in Table 4.1.  

 

 

 Used Available 

Number of Slice Flip Flops 2992 10944 

Number of 4 input LUTs used as logic 7734 

Number of 4 input LUTs used as shift registers 242 10944 

Number of Occupied Slices 4866 5472 

Number of DCM 1 4 

Number of BRAM 22 36 

 

Table 4.1 Device Utilization Report 

 

 

In this table, BRAMs used to store the data blocks should be excluded since they 

are not a part of the decoding process. Thus actual number of BRAM is 14; 8 for 

Beta module and 6 for Alpha&LLR module.  
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4.4.2 Decoding Rate 
 

The decoder proposed works for a block size of 480; however it can easily be 

configured to another number less than 480 defined in the IEEE.802.16 standard. 

For the block size of K, a complete iteration for two different data blocks takes 

(4 5) 2 (2 3)K K× + × + × +  cycles and each cycle takes 10 ns since the operating 

frequency is 100 MHz. For N iterations, this formula becomes  

(4 5) 2 (2 3)K N K× + × × + × + . 

At the end of iterations, 4xK  bits are decoded; then the decoded data rate per 

clock cycle is:            

4

(4 5) 2 (2 3)

K

K N K

×
× + × × + × +

 

The formula is evaluated for different block size values and the results in Table 

4.2 are obtained. 

 

   Now assume that a data stream including 2P blocks (P blocks for each stream) 

are available at the input of the decoder and the blocks are sent to the decoder in 

such a way that when the decoding of a block is over, immediately new block, to 

be decoded, is ready. Then the formula becomes      

4

(4 5) 2 (2 3)

P K

P K N K

× ×
× × + × × + × +

  

and for P >> K the results becomes 

4

(4 5) 2

P K

P K N

× ×
× × + × ×

 

and the decoding rate becomes as indicated in Table 4.3. 
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Block Size (K) 

 

 

2 iterations 

(Mb/sec) 

 

4 iterations 

(Mb/sec) 

6 iterations 

(Mb/sec) 

8 iterations 

(Mb/sec) 

480 22,16 11,73 8,00 6,00 

240 22,10 11,70 7,96 6,00 

216 22,09 11,70 7,95 6,00 

192 22,07 11,69 7,95 6,00 

180 22,06 11,68 7,95 6,00 

144 22,03 11,66 7,93 6,00 

120 21,99 11,64 7,92 6,00 

108 21,96 11,63 7,90 5,99 

96 21,93 11,62 7,89 5,98 

72 21,83 11,56 7,86 5,96 

48 21,65 11,46 7,79 5,90 

36 21,46 11,36 7,73 5,86 

24 21,10 11,17 7,60 5,76 

 

Table 4.2 Decoding Rate for different block sizes for 2 data blocks 
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Block Size(K) 

 

2 iterations 

(Mb/sec) 

4 iterations 

(Mb/sec) 

6 iterations 

(Mb/sec) 

8 iterations 

(Mb/sec) 

480 24,95 12,47 8,31 6,24 

240 24,87 12,44 8,29 6,22 

216 24,86 12,43 8,28 6,21 

192 24,84 12,42 8,28 6,20 

180 24,83 12,41 8,28 6,20 

144 24,78 12,40 8,26 6,20 

120 24,74 12,37 8,24 6,18 

108 24,71 12,36 8,24 6,18 

96 24,68 12,34 8,23 6,17 

72 24,57 12,29 8,19 6,14 

48 24,36 12,18 8,12 6,09 

36 24,16 12,08 8,05 6,04 

24 23,76 11,88 7,92 5,94 

      

 Table 4.3 Decoding Rate for different block sizes for very large number of data 

blocks 

 

 

 

 

 

 



42 

 

4.4.3 Comparison 
 

A number of previous researchers implemented Double Binary Turbo Decoder. 

In most of them, an ASIC has been designed and analyzed. Comparison of a 

dedicated ASIC for turbo decoding and an FPGA implementation is not suitable 

both in terms of decoding rate and in terms of area occupied. Another FPGA 

implementation is performed by the authors of [13] from Linköping University 

and our implementation is compared with [13].  

 

   In [13], an Altera Stratix II FPGA is used and Synplify Pro is used as synthesis 

tool. In Table 4.4, resource utilizations of two implementations are given.  

 

 Proposed Decoder Decoder in [13] 

Number of Slice Flip Flops 2992 2869 

Number of Occupied Slices 4866 7146 

Memory 14 BRAM (16Kb each) 57600 bits 

 

Table 4.4 Comparison of the proposed decoder to the decoder in [13] 

 

   As Table 4.4 reveals, our implementation occupies less logic cells but more 

memory on the FPGA. One reason of larger memory requirement is that block 

size of 480 is also supported in our implementation. In [13], block sizes up to 240 

are supported only. Parallel decoding of two different data blocks using only one 

decoder, which is not available in [13] also doubles the memory required to save 

metrics.    
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Table 4.5 are the decoding rates in [13] for different block sizes and when four 

decoders are working on different data blocks in parallel, at 100 MHz clock 

frequency.  

 

 

 

        Table 4.5 Decoded Data Rate for four decoders with frequency 100 MHz 

 

 

   Decoding rates in Table 4.5 are nearly 4 times greater than the decoding rates 

of the proposed turbo decoder given in Table 4.3. In [13] it is stated that 

decoding rate is linearly dependent to the number of decoders working in 

parallel; this means that the decoding rate of a single decoder in [13] is nearly 

equal to the decoding rate of our decoder.  
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Chapter 5 
 

 

Conclusions and Future Work 

 

 

 

Double Binary Turbo codes which are widely used in today’s communication 

standards such as DVB-RSC and IEEE 802.16 are explored and an efficient 

double binary Turbo decoder is implemented on an FPGA. The implementation 

is compared with the previous implementations in the literature.  

  

 Double Binary Turbo encoder is parallel concatenation of two double binary 

RSC codes. The encoder has a circular nature which means that the initial state 

of the trellis is equal to the final state of the trellis. This brings the advantage of 

spectral efficiency at the expense of an extra pre-encoder process.  

  

 Double Binary Turbo decoder consists of two SISO decoders working 

iteratively and exchanging the extrinsic information in between. MAP algorithm 

used in SISO decoders is very important to achieve the best trade-off between 

performance and computational complexity for an efficient hardware 

implementation. Different studies are investigated and a MATLAB code is 

developed to apply the recommendations. According to the results, the best 

solution is Enhanced Max-Log-MAP algorithm. Another important issue for the 

decoder is initializing the forward and backward metrics in the algorithm. Due 

to the circular nature of the encoder, the initial hence the final state of the trellis 

can not be estimated by the decoder. Two techniques- using a pre-decoder and 

feedback- to overcome this problem are discussed. Pre-decoder technique 

provides good performance even in the initial iterations but brings an important 

computational complexity and decreases the decoding rate. Simulations show 
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that feedback technique is as good as pre-decoder technique especially when 

iteration number increases and does not bring much computational complexity. 

Border metric encoding which is introduced to reduce the memory size and 

power consumption of the decoder, is also investigated.  

 

 A turbo decoder configurable up to a data block size of 480 is implemented 

in hardware. One SISO decoder together with a dedicated controller is designed. 

The modules calculating backward metrics, forward metrics and LLR values are 

used as efficient as possible. Two data blocks are decoded in parallel using a 

single decoder and a decoding rate of 6.3 Mb/s is achieved for 8 iterations at 100 

MHz operating frequency.   

 

 As future work, de-puncturing process supporting different code rates 

changing dynamically should be included to the hardware implementation. 

Border metric encoding introduced in [14] should be applied in order to decrease 

the memory used. Although the implementation supports block sizes up to 480 

with a proper configuration in the VHDL code, it should be tested whether it 

works properly when block size changes dynamically. The decoder should be 

fed with continuous data through Ethernet or etc. to observe the performance of 

the decoder.     
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Appendix A 
 

 

MATLAB Simulation Codes 
 

A.1 Double Binary Turbo Code  
 
function [Number,DemodError] = 
DuoBinaryTurboCode(Length,ItNo,Noise,ModType,PunctRate) 
  
%Random data is generated 
A = round(rand(Length,1)); 
B = round(rand(Length,1)); 
  
%Interleaving 
[AI,BI]=interleaver(A,B); 
  
%Encoding 
[Y1,W1]=encode(A,B); 
[Y2,W2]=encode(AI,BI); 
  
%SubBlockInterleaver 
TempDataToSend=SubBlockInterleaver(A,B,Y1,Y2,W1,W2); 
  
%puncturing is performed 
DataToSend = Puncture(PunctRate,TempDataToSend);  
  
%Modulation, Noise addition and Demodulation 
if ModType==1 
    m = modem.pskmod('M', 4, 'PhaseOffset', pi/4,    'SymbolOrder','binary', 
'InputType', 'bit'); 
    Modulated = modulate(m,DataToSend); 
    Channel = awgn(Modulated,Noise,'measured'); 
    h = modem.pskdemod('M', 4, 'PhaseOffset', pi/4,'SymbolOrder', 'binary', 
'OutputType', 'bit','DecisionType', 'llr'); 
    Demodulated = demodulate(h,Channel); 
elseif ModType==2 
    m = modem.qammod('M', 16, 'PhaseOffset', pi/4, 'SymbolOrder','binary', 
'InputType', 'bit'); 
    Modulated = modulate(m,DataToSend); 
    Channel = awgn(Modulated,Noise,'measured'); 
    h = modem.qamdemod('M', 16, 'PhaseOffset', pi/4,'SymbolOrder', 'binary', 
'OutputType', 'bit','DecisionType', 'llr'); 
    Demodulated = demodulate(h,Channel); 
elseif ModType==3 
    m = modem.qammod('M', 64, 'PhaseOffset', pi/4, 'SymbolOrder','binary', 
'InputType', 'bit'); 
    Modulated = modulate(m,DataToSend); 
    Channel = awgn(Modulated,Noise,'measured'); 
    h = modem.qamdemod('M', 64, 'PhaseOffset', pi/4,'SymbolOrder', 'binary', 
'OutputType', 'bit','DecisionType', 'llr'); 
    Demodulated = demodulate(h,Channel); 
end 
Demodulated = Demodulated * (-1); 
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DepuncturedData = Depuncture(PunctRate,Demodulated);  
[Ar,Br,Y1r,W1r,Y2r,W2r]=SubBlockDeInterleaver(DepuncturedData); 
DemodOut = [Ar;Br]; 
ActualData = [A;B]; 
[DemodError,R]=biterr((DemodOut>0)+0,ActualData); 
%Interleave received LLR of A and B 
[ArI,BrI]=interleaver(Ar,Br); 
Extrinsic=zeros(3,Length); 
%Final alpha and beta metrics for each decoder 
AlphaI = zeros(8,1); 
BetaI = zeros(8,1); 
AlphaO = zeros(8,1); 
BetaO = zeros(8,1); 
%Iterative decoding 
for k=1:ItNo 
    %First decoder processes data in natural order 
    [Extrinsic1,AlphaI,BetaI]=SISO(Ar,Br,Y1r,W1r,Extrinsic,AlphaI,BetaI); 
    ExtrinsicInt=Interleaver_Ext(Extrinsic1); 
    %Second decoder processes data in interleaved order 
    [Extrinsic2,AlphaO,BetaO]=SISO(ArI,BrI,Y2r,W2r,ExtrinsicInt,AlphaO,BetaO); 
    Extrinsic = DeInterleaver_Ext(Extrinsic2); 
    %After each full iteration, decision is carried out 
    [Out,Number]= Decision(A,B,Extrinsic); 
end 

 

A.2 Interleaver 
 
function [AI,BI] = interleaver(A,B) 
% This function interleaves data streams given as A and B using the 
% parameters specified in IEEE 802.16 standard 
  
%T holds the block sizes defined in the standard 
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920 
2400]; 
%P holds parameters P0,P1,P2,P3 specified for different block sizes  
P=zeros(17,4); 
P(1,:) = [5 0 0 0]; 
P(2,:) = [11 18 0 18]; 
P(3,:) = [13 24 0 24]; 
P(4,:) = [11 6 0 6]; 
P(5,:) = [7 48 24 72]; 
P(6,:) = [11 54 56 2]; 
P(7,:) = [13 60 0 60]; 
P(8,:) = [17 74 72 2]; 
P(9,:) = [11 90 0 90]; 
P(10,:) = [11 96 48 144]; 
P(11,:) = [13 108 0 108]; 
P(12,:) = [13 120 60 180]; 
P(13,:) = [53 62 12 2]; 
P(14,:) = [43 64 300 824]; 
P(15,:) = [43 720 360 540]; 
P(16,:) = [31 8 24 16]; 
P(17,:) = [53 66 24 2]; 
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%Parameter set corresponding to the block size of A and B 
index = 0; 
[length,temp]=size(A); 
for j=1:17 
    if (T(j)==length) 
        index=j; 
    end 
end 
  
AI = A; 
BI = B; 
t = 0; 
%STEP 1, intrasymbol permutation 
for k=1:length 
    if rem(k,2)==0 
        temp=A(k,1); 
        A(k,1)=B(k,1); 
        B(k,1)=temp; 
    end 
end 
%STEP 2, intersymbol permutation 
for m=0:(length-1) 
    if rem(m,4)==0 
        t = 0;     %P=0 
    elseif rem(m,4)==1 
        t = length/2 + P(index,2); %P=N/2+P1 
    elseif rem(m,4)==2 
        t = P(index,3);  %P=P2 
    elseif rem(m,4)==3 
        t = length/2 + P(index,4); %P=N/2+P3 
    end 
    AI(m+1,1)=A(mod(((P(index,1)*m)+t+1),length)+1); 
    BI(m+1,1)=B(mod(((P(index,1)*m)+t+1),length)+1); 
end 

 
 

A.3 Encode 
 
function [Y1,W1] = encode(A,B) 
% This function corresponds to an 8 state double binary turbo encoder 
% Two streams A and B are encoded 
% Y1 and W1 are encoded A and B respectively 
  
[length,temp]=size(A);   %size of A and B are equal 
Y1 = zeros(length,1);  
W1 = zeros(length,1); 
  
Si = [ 0     % Si is the trellis state 
       0     % Pre-encoder part assumes that  
       0 ];  % trellis is in all zero state initially 
R1 = [ 1 1 0 ];  
R2 = [ 1 0 0 ]; 
G = [ 1 0 1 
      1 0 0  
      0 1 0 ]; 
C = [ 1 1  
      0 1  
      0 1 ]; 
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for k = 1 : length 
    di = [A(k)   % input to the encoder 
          B(k)]; 
    Ti = C*di; 
    Y1(k,1) = mod((sum(di) + R1*Si),2) ; 
    W1(k,1) = mod((sum(di) + R2*Si),2) ; 
    % Next state of the trellis is calculated 
    Si = G*Si+Ti;     
    Si = rem(Si,2);   
end 
  
% Final trellis state should be equal to the initial trellis state 
% Matrix_Sc holds circular states and the result of Pre-encoder part is 
used to find the initial state of the encoder 
Matrix_Sc = [0 6 4 2 7 1 3 5 
             0 3 7 4 5 6 2 1 
             0 5 3 6 2 7 1 4 
             0 4 1 5 6 2 7 3 
             0 2 5 7 1 3 4 6 
             0 7 6 1 3 4 5 2];          
Sc = Matrix_Sc(mod(length,7),(Si(1,1)*4+Si(2,1)*2+Si(3,1)*1)+1); 
% Initial state of the encoder 
Si(3,1) = rem (Sc,2); 
Si(2,1) = rem (fix(Sc./2),2); 
Si(1,1) = fix(Sc./4); 
%Actual Encoding 
Y1 = zeros(length,1); 
W1 = zeros(length,1); 
for k = 1 : length 
    di = [A(k) 
          B(k)]; 
    Ti = C*di; 
    Y1(k,1) = mod((sum(di) + R1*Si),2) ; 
    W1(k,1) = mod((sum(di) + R2*Si),2) ; 
    % Next state of the trellis is calculated     
    Si = G*Si+Ti;    
    Si = rem(Si,2); 
end 

 
 
 
 
 
 

  

A.4 SubBlock Interleaver 
 
function Out = SubBlockInterleaver(u1,u2,u3,u4,u5,u6) 
% This function performs sub block interleaving using the parameters 
% defined in IEEE 802.16 standard 
% u1,u2 are systematic bits 
% u3,u4 are encoded bits 
% u5,u6 are encoded bits of interleaved data 
  
% T holds block sizes defined 
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920 
2400]; 
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% P holds parameters m and j defined for different block sizes  
P=zeros(17,2); 
P(1,:) = [3 3]; 
P(2,:) = [4 3]; 
P(3,:) = [4 3]; 
P(4,:) = [5 3]; 
P(5,:) = [5 3]; 
P(6,:) = [5 4]; 
P(7,:) = [6 2]; 
P(8,:) = [6 3]; 
P(9,:) = [6 3]; 
P(10,:) = [6 3]; 
P(11,:) = [6 4]; 
P(12,:) = [7 2]; 
P(13,:) = [8 2]; 
P(14,:) = [9 2]; 
P(15,:) = [9 3]; 
P(16,:) = [10 2]; 
P(17,:) = [10 3]; 
  
index = 1; 
[length,temp]=size(u1); 
for j=1:17 
    if (T(j)==length) 
        index=j; 
    end 
end 
% Parameters corresponding to the block size of inputs are found by 
%making use of index 
m=P(index,1); 
J=P(index,2); 
y1 = zeros(length,1); 
y2 = zeros(length,1); 
y3 = zeros(length,1); 
y4 = zeros(length,1); 
y5 = zeros(length,1); 
y6 = zeros(length,1); 
k = 0 ; 
i = 0 ; 
while i<length  
    Tk = (2^m)*mod(k,J)+BitReverseOrder(floor(k./J),m); 
    if Tk <length 
        y1(i+1)=u1(Tk+1); 
        y2(i+1)=u2(Tk+1); 
        y3(i+1)=u3(Tk+1); 
        y4(i+1)=u4(Tk+1); 
        y5(i+1)=u5(Tk+1); 
        y6(i+1)=u6(Tk+1); 
        i=i+1; 
    end 
    k=k+1;     
end 
for j=1:length 
    if mod(j,2)==0 
        temp = y3(j); 
        y3(j)= y4(j); 
        y4(j)=temp; 
        temp = y5(j); 
        y5(j)= y6(j); 
        y6(j)=temp; 
    end 
end; 
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Out = [y1; 
       y2; 
       y3; 
       y4; 
       y5; 
       y6]; 

  

A.5 Puncturing 
 
 
function Out = Puncture(Rate,In) 
% This function punctures the data given as In to obtain the desired  
% coding rate specified as "Rate" 
  
[length,temp]=size(In); 
DataSize = length/6;   
if Rate == 1/2  
    Out(1:DataSize*4,1) = In(1:DataSize*4,1); 
elseif Rate == 2/3  
    Out(1:DataSize*2,1) = In(1:DataSize*2,1); 
    Out(DataSize*2+1:DataSize*3,1) = In(DataSize*2+1:2:DataSize*4,1) ; 
elseif Rate == 3/4  
    Out(1:DataSize*2,1) = In(1:DataSize*2,1); 
    Out(DataSize*2+1:DataSize*2+DataSize*2/3,1) =In(DataSize*2+1:3:DataSize*4,1);  
elseif Rate == 1/3 % no puncturing 
    Out = In; 
end; 
 
 

A.6 De-puncturing 
 
 
function Out = Depuncture(Rate,In) 
% This function depunctures the data given as In to obtain the natural  
% coding rate 1/3 
  
[length,temp]=size(In); 
DataSize = length*Rate/2; 
Out = zeros (DataSize*6,1); 
if Rate == 1/2  
    Out(1:DataSize*4,1) = In(1:DataSize*4,1); 
    Out(DataSize*4+1:DataSize*6,1) = zeros(DataSize*2,1); 
elseif Rate == 2/3  
    Out(1:DataSize*2,1) = In(1:DataSize*2,1); 
    Out(DataSize*2+1:2:DataSize*4,1) = In(DataSize*2+1:DataSize*3,1) ; 
elseif Rate == 3/4  
    Out(1:DataSize*2,1) = In(1:DataSize*2,1); 
    Out(DataSize*2+1:3:DataSize*4,1) =In(DataSize*2+1:DataSize*2+DataSize*2/3,1);  
elseif Rate == 1/3  % no puncturing 
    Out=In; 
end; 
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A.7 Sub Block De-interleaving 
 
 
function [A,B,Y1,W1,Y2,W2]= SubBlockDeInterleaver(In) 
% This function performs subblock deinterleaving 
% Input in is deinterleaved and A,B,Y1,W1,Y2,W2 are formed 
  
[length,temp]=size(In);    
BlockNo = 6 ;  
A = zeros (length/BlockNo,1); 
B = zeros (length/BlockNo,1); 
Y1 = zeros (length/BlockNo,1); 
Y2 = zeros (length/BlockNo,1); 
W1 = zeros (length/BlockNo,1); 
W2 = zeros (length/BlockNo,1); 
  
K = reshape(In,[(length/BlockNo),BlockNo]); 
At = K (:,1); 
Bt = K (:,2); 
Y1t = K (:,3); 
Y2t = K (:,4); 
W1t = K (:,5); 
W2t = K (:,6); 
for j=1:length/BlockNo 
    if mod(j,2)==0 
        temp = Y1t(j); 
        Y1t(j)= Y2t(j); 
        Y2t(j)=temp; 
        temp = W1t(j); 
        W1t(j)= W2t(j); 
        W2t(j)=temp; 
    end 
end; 
% T holds block sizes defined 
T = [24 36 48 72 96 108 120 144 180 192 216 240 480 960 1440 1920 2400]; 
% P holds parameters m and j defined for different block sizes  
P=zeros(17,2); 
P(1,:) = [3 3]; 
P(2,:) = [4 3]; 
P(3,:) = [4 3]; 
P(4,:) = [5 3]; 
P(5,:) = [5 3]; 
P(6,:) = [5 4]; 
P(7,:) = [6 2]; 
P(8,:) = [6 3]; 
P(9,:) = [6 3]; 
P(10,:) = [6 3]; 
P(11,:) = [6 4]; 
P(12,:) = [7 2]; 
P(13,:) = [8 2]; 
P(14,:) = [9 2]; 
P(15,:) = [9 3]; 
P(16,:) = [10 2]; 
P(17,:) = [10 3]; 
% Parameters corresponding to the block size of inputs are found by making 
% use of index 
index = 1; 
for j=1:17 
    if T(j)==(length/BlockNo) 
        index=j; 
    end 
end 
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m=P(index,1); 
J=P(index,2); 
y = zeros(length/BlockNo,1); 
k = 0 ; 
i = 0 ; 
Tk=0; 
while i<(length/BlockNo)  
    Tk = (2^m)*mod(k,J)+BitReverseOrder(floor(k./J),m); 
    if Tk <(length/BlockNo) 
        A(Tk+1)=At(i+1); 
        B(Tk+1)=Bt(i+1); 
        Y1(Tk+1)=Y1t(i+1); 
        Y2(Tk+1)=Y2t(i+1); 
        W1(Tk+1)=W1t(i+1); 
        W2(Tk+1)=W2t(i+1); 
        i=i+1; 
    end 
    k=k+1;     
end 
  
  

A.8 Soft Input Soft Output Decoding 
 
function [Extrinsic,AlphaOut,BetaOut]  = SISO(Ai,Bi,Y1i,W1i,ExtIn,AlphaIn,BetaIn) 
% This function calculates LLR values for given inputs.  
% Ai,Bi are the received LLR of systematic bits 
% Y1i and W1i are the received LLR of parity bits 
% ExtIn is extrinsic information for inputs 01,10 and 11 calculated in the  
% previous half iteration 
% AlphaIn, BetaIn are final metrics calculated in the previous half iteration 
% Extrinsic is extrinsic information for inputs 01,10 and 11 calculated in 
% this function 
% AlphaOut, BetaOut are final metrics calculated in this function  
  
TRELLIS_END_STATE = 1; 
TRELLIS_OUT = 2; 
TRELLIS_SIZE=32; 
INPUT_NO=2; 
M = 4; 
MAX_STATE_NO=8; 
TRELLIS = zeros(32,2); 
TRELLIS(1,:)  = [0 0]; 
TRELLIS(2,:)  = [7 3]; 
TRELLIS(3,:)  = [4 3]; 
TRELLIS(4,:)  = [3 0]; 
TRELLIS(5,:)  = [4 0]; 
TRELLIS(6,:)  = [3 3]; 
TRELLIS(7,:)  = [0 3]; 
TRELLIS(8,:)  = [7 0]; 
TRELLIS(9,:)  = [1 2]; 
TRELLIS(10,:) = [6 1]; 
TRELLIS(11,:) = [5 1]; 
TRELLIS(12,:) = [2 2]; 
TRELLIS(13,:) = [5 2]; 
TRELLIS(14,:) = [2 1]; 
TRELLIS(15,:) = [1 1]; 
TRELLIS(16,:) = [6 2]; 
TRELLIS(17,:) = [6 3]; 
TRELLIS(18,:) = [1 0]; 
TRELLIS(19,:) = [2 0]; 
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TRELLIS(20,:) = [5 3]; 
TRELLIS(21,:) = [2 3]; 
TRELLIS(22,:) = [5 0]; 
TRELLIS(23,:) = [6 0]; 
TRELLIS(24,:) = [1 3]; 
TRELLIS(25,:) = [7 1]; 
TRELLIS(26,:) = [0 2]; 
TRELLIS(27,:) = [3 2]; 
TRELLIS(28,:) = [4 1]; 
TRELLIS(29,:) = [3 1]; 
TRELLIS(30,:) = [4 2]; 
TRELLIS(31,:) = [7 2]; 
TRELLIS(32,:) = [0 1]; 
  
%All parameters are initialized 
AlphaOut = zeros (MAX_STATE_NO,1); 
BetaOut = zeros (MAX_STATE_NO,1); 
[length,N]=size(Ai); 
Extrinsic = zeros(3,length); 
Alpha = zeros (MAX_STATE_NO,length+1); 
Beta = zeros (MAX_STATE_NO,length+1); 
Gamma = zeros (TRELLIS_SIZE,1); 
MAXLOG = 1e7; 
tempab = zeros(MAX_STATE_NO,1); 
  
A =  Ai; 
B =  Bi; 
Y1=  Y1i; 
W1=  W1i; 
% Alpha and Beta metrics are initialized by making use of inputs AlphaIn,BetaIn  
for i=1:MAX_STATE_NO 
      Alpha(i,1)=AlphaIn(i,1); 
      Beta(i,length+1)=BetaIn(i,1); 
end 
  
%Calculation of beta metrics  
for i=length:-1:1 
    for j=1:TRELLIS_SIZE 
        temp_input = mod((j-1),M); 
        temp_output = TRELLIS(j,TRELLIS_OUT); 
        %Calculate Branch Metrics 
        if temp_input == 0 
            Gamma(j,1) = 0; 
        elseif temp_input == 1 
            Gamma(j,1) = B(i,1) + ExtIn(1,i); 
        elseif temp_input == 2 
            Gamma(j,1) = A(i,1) + ExtIn(2,i); 
        else 
            Gamma(j,1) = A(i,1)+B(i,1)+ ExtIn(3,i); 
        end 
        if temp_output == 0 
            Gamma(j,1) = Gamma(j,1) + 0; 
        elseif temp_output == 1 
            Gamma(j,1) = Gamma(j,1) + W1(i,1); 
        elseif temp_output == 2 
            Gamma(j,1) = Gamma(j,1) + Y1(i,1); 
        else 
            Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1); 
        end 
        Gamma(j,1) = Gamma(j,1) + Beta (TRELLIS(j,TRELLIS_END_STATE)+1,i+1); 
    End 
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    for j=1:MAX_STATE_NO 
        tempab(j,1) = -MAXLOG; 
    end 
    % find the maximum 
    for j=1:TRELLIS_SIZE 
        if tempab((floor((j-1)./M)+1),1) < Gamma(j,1) 
            tempab((floor((j-1)./M)+1),1) = Gamma(j,1); 
        end 
    end 
    for j=2:MAX_STATE_NO 
        tempab(j,1) = tempab(j,1)-tempab(1,1); %normalize with respect to the 
first metric 
        Beta(j,i)=tempab(j,1); 
    end 
    Beta(1,i)=0; 
end 
for j=1:MAX_STATE_NO 
    BetaOut(j,1)=Beta(j,1); % save the final beta metric 
end 
  
  
%Calculation of alpha metrics 
for i=1:length 
    for j=1:TRELLIS_SIZE 
        temp_input = mod((j-1),M); 
        temp_output = TRELLIS(j,TRELLIS_OUT); 
         %Calculate Branch Metrics 
        if temp_input == 0 
            Gamma(j,1) = 0; 
        elseif temp_input == 1 
            Gamma(j,1) = B(i,1)+ExtIn(1,i); 
        elseif temp_input == 2 
            Gamma(j,1) = A(i,1)+ExtIn(2,i); 
        else 
            Gamma(j,1) = A(i,1)+B(i,1)+ExtIn(3,i); 
        end 
        if temp_output == 0 
            Gamma(j,1) = Gamma(j,1) + 0; 
        elseif temp_output == 1 
            Gamma(j,1) = Gamma(j,1) + W1(i,1); 
        elseif temp_output == 2 
            Gamma(j,1) = Gamma(j,1) + Y1(i,1); 
        else 
            Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1); 
        end 
        Gamma(j,1) = Gamma(j,1) + Alpha(floor((j-1)./M)+1,i); 
    end 
    for j=1:MAX_STATE_NO 
        tempab(j,1) = -MAXLOG; 
    end 
    % find the maximum 
    for j=1:TRELLIS_SIZE 
        if tempab(TRELLIS(j,TRELLIS_END_STATE)+1,1) < Gamma(j,1) 
            tempab(TRELLIS(j,TRELLIS_END_STATE)+1,1) = Gamma(j,1); 
        end 
    end 
    for j=2:MAX_STATE_NO 
        tempab(j,1) = tempab(j,1)-tempab(1,1);%normalize with respect to the 
first metric 
        Alpha(j,i+1)=tempab(j,1); 
    end 
    Alpha(1,i+1)=0; 
end 
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for j=1:MAX_STATE_NO 
    AlphaOut(j,1) = Alpha(j,length+1); %save the final alpha metric 
end 
  
temp_llrout = zeros(4,1); 
Extrinsic=zeros(3,length); 
%LLR Calculation 
for i=1:length 
    for j=1:TRELLIS_SIZE 
            temp_input = mod((j-1),M); 
            temp_output = TRELLIS(j,TRELLIS_OUT); 
             %Calculate Branch Metrics 
            if temp_input == 0 
                Gamma(j,1) = 0; 
            elseif temp_input == 1  
                Gamma(j,1) = B(i,1) + ExtIn(1,i); 
            elseif temp_input == 2 
                Gamma(j,1) = A(i,1)  + ExtIn(2,i); 
            else 
                Gamma(j,1) = A(i,1)+B(i,1) + ExtIn(3,i); 
            end 
            if temp_output == 0 
                Gamma(j,1) = Gamma(j,1) + 0; 
            elseif temp_output == 1 
                Gamma(j,1) = Gamma(j,1) + W1(i,1) ; 
            elseif temp_output == 2 
                Gamma(j,1) = Gamma(j,1) + Y1(i,1) ; 
            else 
                Gamma(j,1) = Gamma(j,1) + Y1(i,1) + W1(i,1) ; 
            end 
            Gamma(j,1) = Gamma(j,1) + Alpha(floor((j-1)./M)+1,i) + Beta 
(TRELLIS(j,TRELLIS_END_STATE)+1,i+1); 
    end 
    for j=1:M 
        temp_llrout(j,1) = -MAXLOG; 
    end 
    % Find the maximum 
    for j=1:TRELLIS_SIZE 
        if temp_llrout((mod((j-1),M))+1,1)<Gamma(j,1) 
            temp_llrout((mod((j-1),M))+1,1) = Gamma(j,1); 
        end 
    end 
    for j=2:M 
        Extrinsic((j-1),i) = temp_llrout(j,1)-temp_llrout(1,1); %Normalize with 
respect to LLR of input 00 
    end 
end 
Extrinsic = Extrinsic - ExtIn ;  
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A.9 Interleaving Extrinsic Information  
  
function LLR_Int = Interleaver_Ext(Ext) 
% This function interleaves extrinsic information 
  
P=zeros(2400,4); 
P(24,:) = [5 0 0 0]; 
P(36,:) = [11 18 0 18]; 
P(48,:) = [13 24 0 24]; 
P(72,:) = [11 6 0 6]; 
P(96,:) = [7 48 24 72]; 
P(108,:) = [11 54 56 2]; 
P(120,:) = [13 60 0 60]; 
P(144,:) = [17 74 72 2]; 
P(180,:) = [11 90 0 90]; 
P(192,:) = [11 96 48 144]; 
P(216,:) = [13 108 0 108]; 
P(240,:) = [13 120 60 180]; 
P(480,:) = [53 62 12 2]; 
P(960,:) = [43 64 300 824]; 
P(1440,:) = [43 720 360 540]; 
P(1920,:) = [31 8 24 16]; 
P(2400,:) = [53 66 24 2]; 
  
[temp,length]=size(Ext); 
  
C = zeros(2,length); 
C(1:2*length) = 1:2*length; 
D = zeros(2,length); 
t = 0; 
interleaver = zeros(3,length); 
%STEP 1 
for k=1:length 
    if rem(k,2)==0 
        C(1,k)=2*k; 
        C(2,k)=2*k-1; 
    end 
end 
  
%STEP 2 
for m=0:(length-1) 
    if rem(m,4)==0 
        t = 0;     %P=0 
    elseif rem(m,4)==1 
        t = length/2 + P(length,2); %P=N/2+P1 
    elseif rem(m,4)==2 
        t = P(length,3);  %P=P2 
    elseif rem(m,4)==3 
        t = length/2 + P(length,4); %P=N/2+P3 
    end 
    D(:,m+1)=C(:,(mod(((P(length,1)*m)+t+1),length)+1)); 
end 
  
Inter_M = reshape(D,1,2*length); 
  
couple_index = ceil(Inter_M(1:2:2*length)/2); 
interleaver(1,:) = (couple_index-1 + Inter_M(1:2:2*length))'; 
interleaver(2,:) = (couple_index-1 + Inter_M(2:2:2*length))'; 
interleaver(3,:) = (3*couple_index)'; 
LLR_Int = Ext(interleaver); 
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A.9 De-interleaving Extrinsic Information  
 
function LLR = DeInterleaver_Ext(Ext) 
% This function deinterleaves extrinsic information 
  
P=zeros(2400,4); 
P(24,:) = [5 0 0 0]; 
P(36,:) = [11 18 0 18]; 
P(48,:) = [13 24 0 24]; 
P(72,:) = [11 6 0 6]; 
P(96,:) = [7 48 24 72]; 
P(108,:) = [11 54 56 2]; 
P(120,:) = [13 60 0 60]; 
P(144,:) = [17 74 72 2]; 
P(180,:) = [11 90 0 90]; 
P(192,:) = [11 96 48 144]; 
P(216,:) = [13 108 0 108]; 
P(240,:) = [13 120 60 180]; 
P(480,:) = [53 62 12 2]; 
P(960,:) = [43 64 300 824]; 
P(1440,:) = [43 720 360 540]; 
P(1920,:) = [31 8 24 16]; 
P(2400,:) = [53 66 24 2]; 
  
[temp,length]=size(Ext); 
  
C = zeros(2,length); 
C(1:2*length) = 1:2*length; 
D = zeros(2,length); 
t = 0; 
interleaver = zeros(1,3*length); 
LLR = zeros(3,length); 
%STEP 1 
for k=1:length 
    if rem(k,2)==0 
        C(1,k)=2*k; 
        C(2,k)=2*k-1; 
    end 
end 
%STEP 2 
for m=0:(length-1) 
    if rem(m,4)==0 
        t = 0;     %P=0 
    elseif rem(m,4)==1 
        t = length/2 + P(length,2); %P=N/2+P1 
    elseif rem(m,4)==2 
        t = P(length,3);  %P=P2 
    elseif rem(m,4)==3 
        t = length/2 + P(length,4); %P=N/2+P3 
    end 
    D(:,m+1)=C(:,(mod(((P(length,1)*m)+t+1),length)+1)); 
end 
  
Inter_M = reshape(D,1,2*length); 
couple_index = ceil(Inter_M(1:2:2*length)/2); 
interleaver(1:3:3*length) = (couple_index-1 + Inter_M(1:2:2*length))'; 
interleaver(2:3:3*length) = (couple_index-1 + Inter_M(2:2:2*length))'; 
interleaver(3:3:3*length) = (3*couple_index)'; 
LLR(interleaver) = Ext; 
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A.10 Decision  
 
 
function [Out,Number]=Decision(A,B,In) 
% This function decides on the received bits by making use of extrinsic 
% information given as In 
% This unction also calculates bit error rate by using actual data sent by 
% the transmitter 
% Output "Number" is the number of bits with error 
  
[temp,length] = size(In); 
temp_llrout = zeros(4,1); 
Detected = zeros(2*length,1); 
for i=1:length 
    temp_llrout(1,1) = 0 ; 
    temp_llrout(2,1) = In(1,i); 
    temp_llrout(3,1) = In(2,i); 
    temp_llrout(4,1) = In(3,i); 
    if(temp_llrout(4,1)>temp_llrout(3,1)) 
        term1 = temp_llrout(4,1); 
    else 
        term1 = temp_llrout(3,1); 
    end 
    if(temp_llrout(1,1)>temp_llrout(2,1)) 
        term2 = temp_llrout(1,1); 
    else 
        term2 = temp_llrout(2,1); 
    end 
    if(temp_llrout(4,1)>temp_llrout(2,1)) 
        term3 = temp_llrout(4,1); 
    else 
        term3 = temp_llrout(2,1); 
    end 
    if(temp_llrout(1,1)>temp_llrout(3,1)) 
        term4 = temp_llrout(1,1); 
    else 
        term4 = temp_llrout(3,1); 
    end 
    Detected(i,1)=term1-term2; 
    Detected(i+length,1)=term3-term4; 
end 
  
Out=(Detected>0)+0; 
Data = [ A ; B]; 
[Number,Ratio] = biterr(Out,Data); 
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