


Errata and Addendum

. On page 36, we mention that most of the good linear trellis codes in the literature
are feedback codes. However, the feedfoward codes are used in all the simulations
presented in chapter 6. The reason for using the feedfoward codes is given as follows.
Unlike the convolutional-convolutional concatenated codes, for block-convolutional
concatenated codes we find that either feedfoward or feedback codes yield the similar
performance. But 1t 1s difficult to find tail-biting cycles for the feedback codes. In

fact, many feedback codes cannot form a tail-biting cycle.

. On page 70, for equivalent TWL graph shown in Fig. 5-4 (b), the similar illustration
can also be found in Wiberg’s dissertation [77] and Forney’s paper [38].

_ In section 6.3, we can see that, comparing with the modified min-sum algorithm with
10 iterations, a better performance 1s achieved by using the MLD rule in proposition

1 with proper d and only two iterations at high SNRs.

. On page 26, replace “- - near-ML decoding algorithms - -7 with “ - near-ML de-

coding algorithm - --”.

(44

: 2 2 bb) : « :
. On page 33, replace *: - In mamny cases we have doyroner S Ufrece llilor S e

2 2 ”
many cases we have d>, . < 2d ol

— ree,c

. On page 50, replace “ - the ENED deonel -2 it e el i symilplies

. On page 66, replace “there are many the smallest cycles” with “there are many

small cycles”.

. On page 109, we find that the parity-concatenated 4-D 16-state Wei trellis codes
with the [VA can achieve about more 0.47 dB gain than v = 18 linear trellis codes
with Wei 4-D constellation at a BER of 3.7 x 107°.

_ On page 140, reference [7] has been published as
B. Vucetic and J. H. Yuan, Turbo Codes: Principles and Applications. Kluwer
Academic, 2000.
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1.2. THESIS OUTLINE 2

the essence of turbo codes and LDPC codes. Motivated by the principle of turbo
codes, people have developed a wide range of codes, so called compound codes,
which are composed of a collection of interacting constituent codes. Examples
of such compound codes include turbo codes, LDPC codes, serially concatenated

codes [96] and various product codes [57].

Along with the great success of binary turbo codes, a similar idea to turbo
codes can be naturally extended to the bandwidth-limited regime. Some powerful
schemes, such as turbo trellis coded modulation [80][81][95] and multilevel coding
with binary turbo codes [107], were proposed, and the superior performance close
to the Shannon limit have also been achieved.

However, after investigating the existing turbo-style coding/decoding schemes,
we find that the popular Forney’s conventional concatenated code [35] (i.e, using
a simple trellis inner code, a powerful block outer code and a block table-like
interleaver) and the famous Viterbi algorithm (VA) [1], which have been widely
used over last 40 years, are not considered. Therefore, the main motivation
of this thesis is to develop a novel coding/decoding scheme based on current
communications systems for providing superior BER performance over existing
systems at a high bandwidth efficiency with low complexity. Without or with
very little modification to these existing systems, this coding/decoding scheme
may be employed in many current applications, such as telephone, satellite and

microwave digital radio channels.

1.2 Thesis Outline

The thesis is organized as follows. In chapter 2, previous work on various TCM
schemes, such as Ungerboeck’s TCM [31](32], multi-dimensional TCM [42][67]
and large constraint length TCM ([26][28], are first briefly presented. A relevant
technique called shaping [4][5][36] is also reviewed. We then introduce LDPC
codes and turbo codes which can achieve the near-Shannon limit performance

and, therefore, have drawn much attention from coding theory researchers re-


















Chapter 2

Literature Review

2.1 Trellis Coded Modulation and Shaping Tech-
niques

Trellis coded modulation (TCM) has been widely used as a combined coding
and modulation technique for digital transmission over band-limited channel.
In [31][32], Ungerboeck has shown that significant coding gains can be achieved
using trellis coded modulation with the Viterbi decoding over uncoded modula-
tion without increasing the transmitted power or sacrificing bandwidth efficiency
on a band-limited channel. This makes TCM a popular choice for digital trans-
mission over band-limited channels.

Since the 1980’s, more powerful multi-dimensional (M-D) trellis codes have
been discovered and introduced into the telecommunications industry due to a
number of potential advantages, such as more coding gain, more robustness to
signal-dependent impairment, smaller constellation expansion, etc. As the most
attractive selection, 4-D Wei TCM schemes [67] have been widely accepted due
to the modest tradeoff between complexity and coding gain improvement. Nowa-
days they have been used in many applications such as the high-rate voice band
modem [115] and the ADSL modem [117].

From a different perspective for achieving more coding gains, Wang and
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consists of | = log} parallel binary encoders as shown in Fig. 2-2.

. o
Turbo Encoder [

Serial/ : : : Signal
C 5%
1 Parallel ) 2 Vioer |
Converter C v PP

Turbo Encoder 2

I Turbo Encoder 1

Figure 2-2: Multilevel turbo encoder

A message sequence is split into [ blocks. Each message block ¢; is then en-
coded by an individual binary turbo encoder. The output digits of the encoders
form a binary label (v, vy, -+ ,v;), which is mapped onto an M-ary signal con-
stellation.

The maximum likelihood decoder operates on the overall code trellis. In
general, however, this decoder is too complicated to implement. Alternatively, a
suboptimum technique, called multistage decoding [47], can be used, resulting in
the same asymptotic error performance as the maximum likelihood decoding.

An important issue in the code design is the choice of component codes and
their code rates. Wachsmann and Huber [107][108] proposed a technique for
selecting the component code rates. In this design, the component code rate at a
particular modulation level, is chosen to be equal to the capacity of the equivalent
binary input channel associated with that level. For infinite code lengths, in
theory, as the overall channel capacity is equal to the sum of the channel capacities
for all levels, this design results in error free coding. Turbo codes come close to
the Shannon capacity limit and provide almost error free coding. Therefore, they
are suitable candidates for components codes in a multilevel scheme. Another
good property is that due to their good performance it can be assumed that
there is negligible error propagation between the modulation levels [108]. This

1s an important conclusion which enables the use of multistage decoding, as it
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asymptotically leads to the optimum results. However, for small block sizes, there
can be significant loss in terms of the signal-to-noise ratio needed to achieve a
certain error rate. For example, for block sizes of the order of several hundred,
the loss of a multilevel coding with multistage decoding is about 1 dB relative
to random coding [107]. In this example of multistage decoding there are no
iterations between levels and only hard decisions are passed from one stage to

the next one.

B. Turbo trellis coded modulation

In [80][81], a turbo trellis coded modulation (TTCM) system was presented
in which two recursive Ungerboeck type trellis codes with rate k/(k + 1) are
concatenated in parallel. Fig. 2-3 shows the encoder structure comprising of two
recursive convolutional encoders linked by a symbol interleaver and followed by

a signal mapper.

k bits k + 1bits x"
: Encoder 1 Mapper 1 - X
l
X
\
Symbol Symbol
Interleaver Deinterleaver
5(1

e Encoder 2 [ pis| Mapper 2

Figure 2-3: Turbo TCM encoder with parity symbol puncturing

It is noted that the interleaver is constrained to interleave symbols. That is,
the ordering of k information bits arriving at the interleaver at a particular instant
remains unchanged. For the component trellis code, some of the input bits may
not be encoded. In practical implementations these inputs do not needed to be
interleaved, but are directly used to select the final point in a signal subset. At
the receiver the values of these bits are estimated by subset decoding [3iL]:

The output of the second encoder is de-interleaved. This ensures that the k
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verge on finite cycle-free graphs [88], and Pearl’s BP (or probability propagation)
algorithm also only gives exact answers when there are no loops in Bayesian net-
works [51]). However, it has been discovered that the most powerful codes known,
namely turbo codes and LDPC codes, are naturally represented by graph with
cycles. Empirically, iterative decoding algorithms using probability propagation
often work very well in graphs with cycles, provided that the cycles are long
enough that cyclical dependencies die out as they propagate around a cycle [38].
Theoretically, however, it is still not well understood why these decoders work so
well. Frey, Mackay [11] and Weiss [113] have made efforts toward this direction.

[n this thesis, we will investigate the parity-concatenated trellis codes in which
lots of small cycles exist. As the effective methods dealing with small cycles,
the iterative Viterbi algorithm (IVA) and modified iterative two-way algorithm

(ITWA) are developed.

2.6 Iterative Viterbi Algorithm for Forney’s Con-
catenated Systems

During the last 7 years, much work has been done in the area of iterative decoding
for concatenated compound codes, such as turbo codes and LDPC codes. Until

now, there are two key results on iterative decoding of those compound codes:

(1). The sum-product type of algorithms (i.e., soft-in /soft-out decoders includ-
ing the Gallager’s APP [87], BCJR [70] and SOVA [56]) are favoured over
the min-sum type of algorithms (including bi-directional VA and the stan-

dard VA).

(2). Random interleavers with large minimum girth are favoured over block in-
terleavers, except block-block component codes in [57] in which both ran-
dom and block interleavers result in a similar error performance. Here the

minimum girth is defined as the length of minimum cycle in the TWL graph.












Chapter 3

Encoder Structures for

Parity-Concatenated Trellis
Codes

3.1 Introduction

Concatenation is a specific method of constructing long codes from shorter codes 135].
In this chapter, we will present the encoder structures for parity-concatenated
trellis codes in which a simple even parity check code is serially concatenated
with trellis codes including the 2-D trellis codes and multi-dimensional trellis
codes. To be suitable in packet transmission with short, medium and long block
lengths, the corresponding single- and double-parity-check encoding structures
are built up respectively, and their graph representations based on TWL graph
are presented. In addition, since shaping techniques have been used with the
conventional TCM schemes, in this chapter we also consider shaping with the
parity-concatenated trellis codes. First, let us introduce conventional trellis coded

modulation.

2
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the trellis-encoded information bits in a 4-D symbol

I;-,m the non-trellis-encoded information bits in a 4-D symbol

the trellis-encoded parity check bits in a 4-D symbol

t: time unit

g — 2t — ]
Figure 3-7: Parity-concatenated 4-D trellis codes on a single-parity-check

structure consisting of m streams

differential encoder is necessary in the transmitter (see Fig. 3-3). We note that
the differential encoder is a nonlinear operator (i.e., a modulo four addition; refer
to [67]). Therefore, to prevent the PC property being violated after the differ-
ential encoding, we impose the PC property on the trellis-encoded bits of all m
streams only after the differential encoding, i.e., If, (j = 1,--- ,m) consists of

three bits /1¢, 72!" and [3!" rather than 1%, 12% and I3, (see Fig. 3-3). Then

we have

Y @I => "o =Y a3 =0 (3.5)
=1 =1 J=1

Next all m streams are then encoded by the same 4-D trellis encoder indepen-
dently. Due to the linearity of the trellis encoder, the output bits of the trellis
encoder also follow the PC property at time ¢, i.e., > i1 ©If = 0, where [} in-
cludes the four bits Y0, e [2;-/ and ]3;’. Then, as for the operations in the
conventional 4-D Wei encoder, Y0, /1, ]2;-/ and [3;«' are converted by a bit con-

verter, and then (with those uncoded bits) mapped into a 4-D signal constellation
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a binary BCH block code is illustrated in Fig. 3-9, in which the convolutional
encoder is associated with the partitioning Ag/A;/--- /A, and the BCH encoder
1s associated with the partitioning A,, /A, 1. The shaping bits and the uncoded

bits can then be viewed as a third-level code.

. | Convolutional
41. E d : AO/ reLe /A'nc
Nt ncoder | n. bits
per symbol >~ -7-7777- -~~~ persymbol
:I Second-level code E
: BCH :
- | Encod : An,[An 11
ky bits | ncoder iy bits
per kb LR Iper ]q;b
T = . symbols
SHlolS ) Third-level code ! {
: Shaping E
rs bits | Encoder |y, pits | Signal S
persymbel | per symbol| Selector
Ty bltS N e m - /]
per symbol

Figure 3-9: Encoder structure of multilevel concatenated code

Due to the introduction of a BCH code, it is clear that (n; — ky) redundant
bits every ky trellis symbols are produced. Then the question is how to deal with
those redundant bits. In the TCM scheme, the normal method is to expand the
constellation size to settle in the redundant bits. But in our case, the average
number of redundant bits for each symbol is (n;/k, — 1). If the error-correct
capability ¢, is small, then n;/k; will be very close to one for long BCH codes.
Therefore, expanding the constellation size is not appropriate here. Instead, we
Just simply replace (n, — k) bits in parity-concatenated trellis codes with (mp— k)
redundant bits. Moreover, such bits should belong to the trellis coded bits because
the coded bit errors on the error floor are pretty infrequent and the uncoded bit

errors dominate the error floor.
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B, B; |

B, By |

B3 By :"-.

(a) Trellis representation

& S B

O State node (00, 01, 10 and 11)
® Coded symbol node (B, By, B, and B3)

®  Parity check node

(b) TWL graph representation

Figure 3-16: Trellis representation and TWL graph representation for a 4-state

Ungerboeck trellis code

Figure 3-18 illustrates the TWL graph of the parity-concatenated trellis codes
with a modified single-parity-check structure (i.e., with tail-biting), in which m =
4 and [ = 4. It is clear that Fig. 3-18 (b) is another form of Fig. 3-18 (a).

Figure 3-19 illustrates the TWL graph of the parity-concatenated trellis codes
with tail-biting on a double-parity-check structure, in which m = 20q—1 3 and
[ = 2. From Fig. 3-19, it is clearly shown that a symbol node is parity checked
by two partial parity check nodes.
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the other direction, we have to re-decode all the packets no matter whether the
errors in them have been really corrected or not. Generally the remaining errors
can be corrected quickly since the positive information is dominated in feedback

at this stage.

4.3 Discussion

In this chapter, the iterative Viterbi algorithm was presented for decoding the
parity-concatenated 2-D or M-D Wei trellis codes. The new branch metric func-
tions used in the IVA were derived using some simplifying assumptions. We can
see that the IVA decoder is identical to the standard VA except that the branch
metric functions are updated according to the decisions of the Viterbi decoder in
previous iterations, and the remaining parts are exactly same. If all the branch
metrics of symbols in a single- or double-parity-check structure are able to be
saved in the memory during the first iteration, then only few calculations are
needed for updating new branch metrics used in next iteration. In addition, the
computations of the IVA on a double-parity-check structure can be further re-
duced through a “pre-decision” method which excludes some packets satisfying
parity-check constraint being involved in the next iterative decoding process. For
the parity-concatenated M-D trellis codes, due to a nonlinear operation in the
encoding process, some extra effort, but with negligible additional computation
has to be made in the [VA.

Some relevant issues on the IVA have been discussed. Here we emphasised
following three points: (a) the number of packet(s) /stream(s) (i.e., m and/or ¢)
should be properly selected to minimize the gap between the decoding perfor-
mance and the Shannon limit; (b) during the process of updating branch metric,
we should randomly choose one symbol to feedback its extrinsic information: (¢c)
the scaling parameter o used in the IVA should be carefully determined. Both
over-setting and under-setting scaling factor could degrade the error performance

as well as convergence speed of the [VA.
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algorithms (include iterative min-sum and sum-product algorithms) work on the

parity-concatenated TCM scheme based on its TWL graph representation.

5.1.1 The min-sum algorithm

In the TWL representation of trellis codes, each possible value z; of each coded

symbol node V; can be assigned a weight w,(z,); e.g.; a log likelihood weight

where R; is the received signal corresponding to the coded symbol V;, and P()
denotes the probability density function. The total weight w(V) of a valid con-

figuration (codeword) V is the sum of its symbol weights:
Ww(V) = > w(V). (5.2)

The min-sum algorithm is then used to find the most likelihood decision on

the codeword V, i.e.,
V = min{w(V)|V € C}, (5.3)

where C represents the overall possible codewords, w(V) are the log likelihood
weights —log P(R/V), R denotes the received codeword corresponding to the
codeword V. For a cycle-free graph, if we cut through any edge, the graph
becomes two disjoint parts, say “upstream” and “downstream”. The weigh
w(V) of any codeword V may correspondingly be expressed as the sum w(V) =
w(V*') + w(V~) of the upstream and downstream weights w(V*) and w(V™),
respectively. The upstream and downstream weights can be computed separately
by the min-sum algorithm (whence the name “two-way algorithm” [38]).

There is an important issue that should be mentioned here. It is about updat-
ing order of the graph. For a cycle-free graph, the flooding schedule and sequential
updating schedule [38] are the two alternative methods. In the flooding schedule,

each symbol node and check node are allocated one processing unit, and then

all computations are simultaneously performed for all values of all edges at all
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The problem of numerical overflow also exists in the sum-product algorithm.
Therefore, an arbitrary normalization factor should be included in the decoding

process.

5.1.3 Iterative two-way algorithms (ITWAs) for parity con-
catenated trellis codes

Based on the TWL graph representation of the parity-concatenated trellis codes,
the I'TWA is a straightforward solution. Fig. 5-1 shows a TWL graph correspond-
ing to the codes based on a single-parity-check structure without tail-biting, in
which m = 3 and [ = 4. The definitions of four types of node appearing in
Fig. 5-1 have been explained in section 3.5.

kel

0/

—== the smallest cycle
packet 2

- A
¢
2
#
3
#

Figure 5-1: TWL graph representation for the parity-concatenated trellis codes

on a single-parity-check structure with m = 3 and [ = 4

Obviously, the TWL graphs corresponding to each trellis diagram are cycle-
free. But after concatenating them via partial parity check nodes, there are
many the smallest cycles in the TWL graph (see Fig. 5-1). Suppose the coded

symbol Vs o will be decoded, then all the extrinsic information about Vs o, spread
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throughout the symbol nodes in other packets, is “collected” through the two-way
algorithm. The arrows shown in Fig. 5-1 illustrate how the eztrinsic information
flows to the coded symbol V4 ,. The conventional ITWAs for decoding the parity-

concatenated trellis codes are summarized as follows.

(The conventional ITWAs for parity-concatenated trellis codes:)

step (a) In the first iteration, cut all partial parity check nodes and apply the
min-sum (or sum-product) algorithm to an “unwrapped” trellis* [41][60] (an
example is shown in Fig. 5-2). The weight of each possible value of symbol

node is then obtained;

step (b) In the next iteration, first update the weight of each symbol node using
the min-sum (or sum-product) algorithm based on the eztrinsic information
collected from the other symbol nodes, as shown in Fig. 5-1. (Fig. 5-3 (b)
illustrates the updating procedure, which will be discussed in detail late.)

Then repeat step (a);

step (c) Repeat step (b) for several iterations until a stop criterion is satisfied or

a pre-set maximum number of iterations is reached.

Only the partial parity check node is new here. Thus, we go through an
example to illustrate how to update the weight of a symbol node via its partial
parity check node. (A more detailed example, including steps (a), (b) and (c),
1s given in Appendix A.) Since the min-sum algorithm is exactly the same as
the sum-product algorithm, except that the “min-of-sum” is replaced by a “sum-
of-product” operation, here we just use the min-sum algorithm to illustrate the
updating procedure.

Consider a parity-concatenated trellis code defined in gt 6ol ie s ams — 13

Assume that 2 bits of each symbol are inputted into a linear rate 1 /2, 4-state

"This is for the parity-concatenated trellis codes based on a single-parity-check structure
with tail-biting (see Fig. 3-13). For the codes defined in Fig. 3-11, the “unwrapped” packet, as
shown in Fig. 3-12, is employed.
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Va4 Va3
e
=)

Figure 5-2: An “unwrapped” trellis for a single-parity-check structure with

tail-biting

trellis encoder (i.e., k = 2. k=1landv = 2), and the output symbols are mapped
nto an 8-PSK constellation (see Fig. 5-3 (a)). Three coded symbol nodes V1.2,
Va2 and V3o are connected via a partial parity check node. Therefore, each
coded symbol node V' counsists of four possible values 00, 01, 10 and 11. In the
receiver, the local weights w(V') of symbol V, i.e., —log P(R/V) can be obtained
by selecting the smallest weight in each of four subsets. Suppose that w(Via) =
(0.1, 1.0, 3.0, 1.3), w(Va2) = (1.3, 0.1, 1.0, 3.0) and w(V3,) = (1.3, 0.1, 1.0, 3.0)
for four subsets 00, 01, 10 and 11, respectively, as shown in Fig. 5-3 (b). Now let
us focus on updating the weights for symbol node V5 5.

According to Fig. 5-3 (b), the updating procedure can be divided into three

stages.

stage I List all subsets and their corresponding weights for all starting symbol
nodes, i.e., V19 and V3,. Then simply transfer their weights to the neigh-
bouring edge;

stage 2 The weight for every subset after the partial parity check node is com-

puted via the min-sum algorithm. For example, for subset viv, = 01, we
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V13 \Q vivg : coded bits
2 010
110@, ,0 100
_'4 0 I
001 000
1010° T®111
5¢ 011

(a) Mapping of 4 subsets on a 8-PSK constellation

v1vg, w(V] 2) v1v2, w(V32)

00 0.1 Vio V3 00 1.3
01 1.0 01 0.1
10 3.0 10 1.0
11 13 11 30
StogeNB
V102, W
' (00 1.1
01 02
10 1.1
stage 20 oy
Y
V1V2, w(VQ 2) V1V, OJ,(VQ 2) = w(VQ 2) =i
00 1.3 V‘ 00 2.4
01 0.1 e 0
10 1.0 Bptate 1| L0 21
a0 11 5.0
stages, ... .~ ...~ L

(b) Update the weight for Vs o
Figure 5-3: Illustration of the updating procedure for the min-sum algorithm

on a finite cycle-free graph

have w' = min{0.14+ 0.1, 1.0+ 1.3, 3.0+ 3.0, 1.3+ 1.0} = 0.2;

stage 3 List all subsets and their corresponding weights for updating symbol
node, i.e, V5 5. Then, the updated weight w'(V50) for each subset is equal to
the sum of its local weight w(V35) and the extrinsic weight «'. For example,

for subset viv; = 00, w'(Vaq) = 1.3+ 1.1 = 2.4.
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vivg, w(Vi2)

00 0.1 Vio V3.2 —~

o=
01 1.0 [(1) - 2
10 3.0
L aLs
stage L =~
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' (o1 01
00 1.0
11 3.0
stage M@ w i

I (01 0025
00 0.250
i 0,750
stage2(b) .| \: 10 0325)
v1v9, w(VQ 2) V12, (.U/<V2 2) = w(VQ 2) + w
00 1.3 00 1.550
01 0.1 42 o1 0.125
W L == @ 295
update
11 3.0 11  3.750

Figure 5-8: Illustration of the updating procedure for the IVA

(local weights) of one symbol controlled by the decisions of the other symbol
values are transmitted to the symbol node which is being decoded. Unlike the
iterative min-sum algorithm, the sum of upstream and downstream weights of
one symbol are passed.

Finally, it is worth mentioning here that the issues A, B, D, E and F discussed
in section 4.2.3 for the IVA are also applicable to the ITWAs.
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Figure 6-1: Comparison of x with different o values in the IVA
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(b) Bit error rate of parity-concatenated 16-state 16-QA-TCM

Figure 6-2: Comparison of BER performance for parity-concatenated 4-state

8PSK-TCM and 16-state 16-QA-TCM with partial and full protection, respec-

il (o = 20, 6 — 210 el d— 1)
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the trellis-coded bits is enough to achieve almost all of the expected gains. For
comparison, the performance of a 256-state TCM scheme using the standard VA
1s also reported in Fig. 6-3. The results show that for the v = 8 codes about 2.0
dB gross gain can be achieved by the IVA beyond the VA without shaping and
about 2.7 dB gross gain with shaping. However, note that the shaping gain is
smaller at low SNRs and only about 0.7 dB shaping gain was obtained in this
case (a similar example can be found in [104]) if 16-state trellis shaping was used
(assuming that the baseline constellation is a 128-point cross constellation). In
Fig. 6-3, we also noted that the performances of the v = 4 and v = 8 codes are
pretty close. This may be explained by the same reason that the performance of
the v = 8 codes is worse than the v = 4 codes at low SNRs if only the VA is used
as the decoding algorithm.

-5
10 T I I I I
ETPTTRE Y Y [ESFT R VAo i

[
............. GPO (VA for A eaees i ol ShapING
_____ ...........| ~©  IVA forv=8 codes without shaping
—0O— IVA forv=4 codes with shaping

: : ! : —O— IVA forv=8 codes with shaping
e Ty o oo o oo o ol e e e e e S s

10.5 11 5 12 125 13 13.5 14

Figure 6-3: BER performance of the 16-state and 256-state trellis codes using
the IVA based on a double-parity-check structure at a spectral efficiency of

5.805 bits/T" with partial protection

Similar to the two codes in Fig. 6-2, the results shown in Fig. 6-3 are not the

ultimate gains because each block includes some non-information bits which cause
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Figure 6-5: BER performance of the parity-concatenated 16-state and 256-
state trellis codes (the case of Fig. 6-3) combined with a (511,493,2) BCH

code
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Figure 6-8: Comparison of BER performance between the modified iterative

min-sum algorithm and the iterative ML algorithm at high SNRs

6.4.1 Packet transmission with long block length

In Figures 6-9 (a) and (b), with various maximum iterations, we compare the
performances of five IDAs for the same 256-state trellis codes used in Fig. 6-3
with long packet transmission. Here still m = 20, ¢ = 20 and [ = 50. The
peak iteration number was set to 20 for the modified iterative min-sum and sum-
product algorithms (d = 4) and 50 for IDA /, IDA 5 and the IVA, since the
IVA often converges much more slowly than the modified iterative min-sum or
sum-product algorithm. 16-state trellis shaping is combined with all the five
IDAs.

In Fig. 6-9 (a), we can see that IDA 3 (iterative sum-product algorithm)
achieves the best performance and /DA 1 (IVA) gives the worst performance,
but the difference in performance achieved by these five IDAs is not substantial
(less than 0.1 dB). Compared with the performance of a 256-state TCM scheme
using the VA reported in Fig. 6-3, the results show that at a BER = 4.0 x

107°, about 2.8 dB coding gain can be achieved by the parity-concatenated code
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(b) Bit error rate of five IDAs with various maximum iterations

Figure 6-9: Comparison of BER performance of the v = 8 trellis codes at a

spectral efficiency of 5.805 bits/T using the IDAs for packet transmission with

long block length (m = 20, ¢ = 20 and [ = 50, 20,000-symbol in each block)
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Figure 6-11: Comparison of BER performance of the v = 8 trellis codes at a

spectral efficiency of 5.800 bits/T" using the IDAs for packet transmission with
short block length(m = 10 and [ = 20, 200-symbol in each block)
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Figure 6-13: Comparison of BER performance of the v = 8 trellis codes at

a spectral efficiency of 5.620 bits/T using the IDAs for packet transmission

with medium block length (double-parity-check structure, m = 10, ¢ = 10 and
[ = 20, 2,000-symbol in each block)
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Figure 6-14: Comparison of BER Performance of the parity-concatenated 4-D

16-state Wei trellis codes at a spectral efficiency of 6.7871 bits/T using the
IVA and ITWAs (m = ¢ = 20)
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Let the input and output symbols of the trellis encoder be U, and V; respec-
tively at time ¢. After modulation, we have the transmitted symbol s,. The

received symbol R; at time ¢ can then be expressed as

where n, is the channel noise whose PDF can change. In this thesis, we assume
that the noise variables n; are mutually independent for all time.

Let the noise model at time slot ¢ depend on a parameter vector A;, which in-
dicates the noise type and variance. The noise PDF of the channel (characterised
by B.) and the noise PDF used for decoder design (/3;) are then able to written
as p(n;; A'IB) and p(n;; Af"), respectively. For purpose of simulation, we will use

a class of generalised noise density functions, namely,

p(ni; A;) = plngol, ) (7.2)
- 1 exp {~ ™ _ }
20/ a(vi)T(1/v,) [auyi) /2o

where the parameter vector A; equals (07, v;), ['(:) denotes the Gamma function,

I'(1/7)
I'(3/7i)’

distributions is chosen because it is a large class which contains several commonly

at time 7. This class of

o? is the variance of the noise and a(y) =

used distributions as special cases. When v = 2, p(n) is the Gaussian distribution
function; when v = 1, p(n) given in equation (7.2) is the Laplace distribution
function; when v = 0.5, p(n) denotes the square-root noise; when v = 4, p(n)
represents the generalised Gaussian noise.

The PDF p(n;; A,ﬂ ") is used to derive various branch metrics for optimal trellis-
based decoding algorithms such as the standard VA and APP algorithms. If the
decoder knows exactly the channel noise model, namely Af f— A? “, then the

VA and APP decoders are optimal. When the actual channel noise is unknown

to the decoder, we have A’L6 = A?d, and the standard VA and APP decoders
are no longer optimal due to the mismatch of noise parameters between channel
and decoder. Therefore, to achieve optimal performance for the decoder, we need

to know the exact noise PDF, in our case, the parameter vector 5,.. In reality,
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By B; B, Bj

Figure 7-3: Trellis diagram with four transitions from one state

For this case, we may calculate the average LSM of these n branch metrics as

P(R;|V; € Bi; Aj)
P(R;|V; € B;; A)|’

log (7.11)

1 7
LSM,(A;) = o] ST
2/ lj=L;l#j

which can then be used to determine the noise parameter vector. It is clear
that the computational complexity of calculating LSM,(A;) is exponentionally
increasing with 7. Therefore, as a simplification, we can use the following LS M,

to detect the noise pattern.

max{P(R;|V; € B;; A,)}
min{ P(R;|V; € Bj; Ai)} |’

where the maximum and minimum branch metrics are selected to calculate the

LSMy(A;) = |log L1 (D)

LSMy. Through simulation, we find that such a simplification has negligible

impact on the error performance.

7.3.4 Scale consideration in the robust IVA

In chapters 4 and 5, we have explained that the scale parameter « is crucial to the
performance of the IVA. When the IVA is employed in the decoder corresponding
to a different type of noisy channel (v is set to 0.5, 1.0, 2.0, and 4.0 in this
chapter), should we adjust a according to the type of decoder?

In a 1-D signal constellation, suppose the squared Euclidean distance be-
tween the received signal and one signal point is d ., then the branch met-

ricstusediinSthe VAN orMINVAR Srehy/ doy, s Nd b d=

4
main’ d

min

for the decoders with
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algorithm, and its performance is dominated by only matched or mismatched
decoders. The simulation results in the following section will corroborate this

assertion.

7.4 Simulation Results

In this section, we present simulation results for minimaz robust decoders com-
pared with matched and mismatched decoders under various uncertain channel
conditions. A class of generalised noise density functions (7.13) will be used in

the example system. The noise PDFs of different types are shown in Fig. 7-6.

;
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Figure 7-6: Different types of noise with v = 0.5, 1.0, 2.0, 4.0 (¢ = 1.0)

The trellis code under study is a 16-state Ungerboeck code with (hY, A, h?) =
(23,04, 16) using a 128-QAM constellation. For the parity-concatenated trellis
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Figure 7-7: BER performance of the robust VA decoder for the v = 0.5 and

1.0 channels
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Figure 7-10: Performance of the robust IVA decoder for the channel v = 0.5
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Figure 7-12: Performance of the robust IVA decoder for the channel v = 2.0
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Figure 7-13: performance of the robust IVA decoder for the channel v = 4.0
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decoders and amplification of the negative impact. For comparison, in Fig. 7-14
the performance of the same codes using the modified iterative min-sum algorithm
is reported. The peak number of iterations in this case is set to 30. We can see
that the decoder with v = 4.0 performs best according to BER performance.

In Fig. 7-15, we present the case where mixed types of noise affect the decoder
and the IVA is employed. The matched and mismatched decoders perform sim-
ilarly according to error performance. However, in terms of the average number
of iterations, the mismatched decoder with v = 2.0 is worse than the matched

decoder, and the robust decoder performs close to the matched decoder.

7.5 Discussion

In this chapter, the robust Viterbi algorithm and iterative decoding algorithms
emphasising the IVA were studied for conventional trellis codes and parity-concat-
enated trellis codes under an uncertain noise environment. Using the minimaz
technique, a simple and effective robust decoder was devised. The scaling pa-
rameter was also studied for the robust [IVA. The numerical simulations showed
that the robust VA and IVA decoders always outperform the worst mismatched
standard decoders and generally perform close to the optimal matched decoder

in various mismatched noise environments.
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APPENDIX A. CONVENTIONAL ITERATIVE MIN-SUM
ALGORITHM FOR A PARITY-CONCATENATED TRELLIS
CODE 154

Output Input/Output
Symbol 01 10 01

O O O O

packet 1

Via Via Vis
(2.0,0.5,3.1,1.0) / (42,06,02,27) / (18,2.1,1.9,0.6)

(1.8,1.1,2.7,1.0) \ (3.7,15,058,2.2) \_(1.2,0.8,23,2.9)

packet 2 V2, Vo Vas
@, O O O
Output
Symlt))ol U = ol Trellis diagram for
the 4-state trellis encoder
(a) (b)

(X, X, X, x) denotes the local likelihood weights corresponding to four possible values

00, 01, 10 and 11 of coded symbol node, respectively.

Figure A-1: TWL graph representation for the parity-concatenated trellis

codes on a single-parity-check structure with m =2 and [ = 3

Figure A-2 illustrates the process of iterative decoding for the codes proposed
in Fig. A-1. In the first iteration, two packets are decoded independently using

the min-sum algorithm, as illustrated in Fig. A-2 (a).

. Initralization:

For each of leaf node, the symbol weights, which can be viewed as the
upstream weights w(V ) of each symbol node, are simply transferred to
the neighbouring edge (as illustrated with solid arrows in Fig. A-2). No
computations are required. The local weights of parity check node are set
zero. The local weights (state metrics) of state nodes in both ending are
initialised as appropriate. Here, [x, X, X, x| in Fig. A-2 denotes the state

metric of states 00, 01, 10 and 11, respectively.

Updating:

For each of packets, based on the incoming weights into the parity check

nodes, the min-sum (Viterbi algorithm) are performed first from left to right
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Figure A-2: Iterative min-sum algorithm for decoding the parity-concatenated

trellis codes on a single-parity-check structure with m = 2 and [ =3
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