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Errata and Addendum 

1. On page 36, we mention that most of the good linear trellis codes in the literature 

are feedback codes. However, the feedfoward codes are used in all the simulations 

presented in chapter 6. The reason for using the feedfoward codes is given as follows. 

Unlike the convolutional-convolutional concatenated codes, for block-convolutional 

concatenated codes we find that either feedfoward or feedback codes yield the similar 

performance. But it is difficult to find tail-biting cycles for the feedback codes. In 

fact, many feedback codes cannot form a tail-biting cycle. 

2. On page 70 , for equivalent TWL graph shown in Fig. 5-4 (b), the similar illustration 

can also be found in Wiberg's dissertation (77] and Forney's paper (38]. 

3. In section 6.3 , we can see that, comparing with the modified min-sum algorithm with 

10 iterations, a better performance is achieved by using the MLD rule in proposition 

1 with proper d and only two iterations at high SNRs. 

4. On page 26 , replace "· · · near-ML decoding algorithms · · ·" with "· · · near-ML de-

coding algorithm · · ·". 

5 0 3 3 1 
" . h d2 < d2 " . h " . . n page , rep ace · · · 1n many cases we ave parallel _ free,c · · · wit · · · 1n 

many cases we have d~arallel < 2d}ree,c · · ·" . 

6. On page 50, replace c, . · · the ith codeword · · •" with "· · · the i
th 

symbol · · ·" . 

7. On page 66 , replace "there are many the smallest cycles" with "there are many 

small cycles" . 

8. On page 109, we find that the parity-concatenated 4-D 16-state Wei trellis codes 

with the IVA can achieve about more 0.47 dB gain than v == 18 linear trellis codes 

with Wei 4-D constellation at a BER of 3.7 x 10-
6

. 

9. On page 140, reference (7] has been published as 

B. Vucetic and J. H. Yuan, Turbo Codes: Principles and Applications. Kluwer 

Academic, 2000. 
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Abstract 

The objective of this thesis is to develop a novel coding/ decoding scheme suitable 

for current communications systems for providing superior bit error rate perfor

mance over existing systems at a high bandwidth efficiency with low complexity 

and without significant system modifications. 

In this thesis, we construct parity-concatenated two-dimensional and multi

dimensional trellis coded modulation (TCM) schemes in which a trellis code is 

used as the inner code and a simple even parity code is applied as the outer 

code. Single-parity-check and double-parity-check structures suitable for contin

uous transmission as well as packet transmission with short, medium and long 

block lengths are designed. In addition, shaping techniques are combined with 

parity-concatenated trellis codes to achieve a better bit error rate (BER) perfor-

mance. 

In the receiver, firstly, the iterative Viterbi algorithm (IVA) is developed and 

new metric functions which take into account extrinsic information are derived. 

Then, based on the Tanner-Wiberg-Loeliger (TWL) graph representations, the 

iterative two-way algorithms (ITWAs) are derived. To deal with small cycles 

in parity-concatenated trellis codes, we present modified min-sum/sum-product 

algorithms in which a normalization function is applied. From the perspective 

of the TWL graph, the IVA actually is shown to be a simplified version of the 

ITWAs. Compared with the standard VA, the ITWAs and IVA can achieve 

significant performance improvement for the parity-concatenated trellis codes. 

Based on the ITWAs and IVA, five iterative decoding algorithms (ID As) are 

developed. We compare their performance and complexity through the simu-
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lations. For the continuous transmission or packet transmission with long ( say 

ten thousands of symbols) or medium ( say thousands of symbols) block length, 

the ITWAs can get slightly better performance than the IVA. However, for short 

( say hundreds of symbols) packet transmission, the IVA often outperforms the 

ITWAs. In addition, no matter whether packet or continuous transmission is 

used, the complexity of ITWAs is much higher than that of the IVA, especially 

for multi-dimensional trellis codes. Therefore, considering the tradeoff between 

the computational complexity and BER performance, the IVA is preferable. Due 

to its low complexity, the IVA can be applied to many current standard systems, 

such as in high-rate voice band modems or ADSL modems, without or with very 

little modification. 

In simulations, with the trellis shaping, the performance of 1.25 dB away 

from the Shannon limit at a BER== 3.0 x 10-5 can be achieved by the IVA for 

parity-concatenated Ungerboeck 256-state trellis codes, but the error floor occurs. 

Further, using a simple binary BCH code, the error floor can be reduced to 10-9 

with very little additional cost. For the popular 4-D 16-state Wei code, the 

numerical results show that about 2.2 dB net gain can also be obtained using the 

IVA. All these designs have been achieved with low complexity and computation. 

Finally, a robust Viterbi algorithm and robust iterative decoding algorithm are 

studied for conventional trellis codes and parity-concatenated trellis codes under 

an uncertain noisy environment. Using the minimax technique, a simple and 

effective robust decoder is devised. The numerical simulations show that these 

robust VA and IVA decoders always outperform the worst mismatched standard 

decoders and generally perform close to the optimal matched decoder in various 

mismatched noise environments. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

In today's telecommunications market there are dramatically increasing demands 

for capacity, high date rates, and service quality, which have to be achieved with 

spectrum utilization efficiency and low complexity of technologies. Meanwhile, 

error control coding plays a key role in the design of digital communication sys

tems. The aim of error control is to ensure that the received information is as close 

as possible to the transmitted information, with as low as possible complexity. 

A well known result from Information Theory is that a randomly chosen code of 

sufficiently large block length is capable of approaching channel capacity [Shan

non, 1948]. However, the optimal decoding complexity increases exponentially 

with block length up to a point where decoding becomes physically unrealisable. 

During the past half century, the problem of efficient data communications over 

a transmission medium impaired by noise and interference has driven much of 

communication and coding research. 

As the landmark developments in coding area, the invention of turbo er

ror control codes [15] and the rediscovery of low-density parity-check (LDPC) 

codes [87] [16] have created tremendous excitement since the gap between the 

Shannon capacity limit and practically feasible channel utilization is essentially 

closed. Since then, much attention has being drawn to theoretically understand 

1 



1.2. THESIS OUTLINE 2 

the essence of turbo codes and LDPC codes. Motivated by the principle of turbo 

codes , people have developed a wide range of codes , so called compound codes , 

which are composed of a collection of interacting constituent codes. Examples 

of such compound codes include turbo codes , LDPC codes , serially concatenated 

codes [96] and various product codes [57]. 

Along with the great success of binary turbo codes , a similar idea to turbo 

codes can be naturally extended to the bandwidth-limited regime. Some powerful 

schemes , such as turbo trellis coded modulation [80] [81] [95] and multilevel coding 

with binary turbo codes [107] , were proposed, and the superior performance close 

to the Shannon limit have also been achieved. 

However, after investigating the existing turbo-style coding/ decoding schemes, 

we find that the popular Forney 's conventional concatenated code [35] (i.e , using 

a simple trellis inner code, a powerful block outer code and a block table-like 

interleaver) and the famous Viterbi algorithm (VA) [1], which have been widely 

used over last 40 years , are not considered. Therefore , the main motivation 

of this thesis is to develop a novel coding/ decoding scheme based on current 

communications systems for providing superior BER performance over existing 

systems at a high bandwidth efficiency with low complexity. Without or with 

very little modification to these existing systems , this coding/ decoding scheme 

may be employed in many current applications , such as telephone , satellite and 

microwave digital radio channels. 

1.2 Thesis Outline 

The thesis is organized as follows. In chapter 2, previous work on various TCM 

schemes, such as Ungerboeck's TCM [31)[32], multi-dimensional TCM [42][67] 

and large constraint length TCM [26] [28], are first briefly presented. A relevant 

technique called shaping [4][5][36] is also reviewed. We then introduce LDPC 

codes and turbo codes which can achieve the near-Shannon limit performance 

and, therefore, have drawn much attention from coding theory researchers re-



1.2. THESIS OUTLINE 3 

cently. As a natural extension of binary turbo codes, several turbo trellis coded 

modulation (TTCM) schemes have been developed for bandwidth-limited com

munication systems, and the remarkable error performance close to the Shannon 

capacity limit has been able to be achieved. From a different perspective, the iter

ative Viterbi algorithm (IVA) is developed for concatenated convolutional codes, 

and competitive performance to turbo codes is obtained [62][63][64]. This mo

tivated the issue about how to apply the IVA for concatenated TCM addressed 

later in this thesis. The possible applications of concatenated TCM are also sug

gested. Finally, robust decoding algorithms for convolutional codes and turbo 

codes are reviewed. 

In chapter 3, the encoding methods for the Ungerboeck 2-D TCM and Wei 

multi-dimensional TCM schemes are described first, and then we present the 

parity-concatenated trellis codes in which a simple even parity check code is se

rially concatenated with conventional 2-D or M-D trellis codes. For both packet 

and continuous transmissions, the corresponding single-parity-check and double

parity-check structures are designed, respectively. Packet transmission with long, 

medium and short block lengths are also considered. In addition, shaping tech

niques and multilevel codes are combined with the parity-concatenated trellis 

codes for further performance improvement. As an effective tool for code in

terpretation, graph representations of the parity-concatenated trellis codes are 

presented. In this thesis, we focus on the Tanner-Wiberg-Loeliger (TWL) graph. 

Based on the graph representations, the iterative decoding algorithms for parity

concatenated trellis codes can be derived. 

In chapter 4, we present the iterative Viterbi algorithm for decoding the parity

concatenated 2-D trellis codes as well as M-D trellis codes. The new branch 

metric functions are derived, respectively. It can be seen that the only difference 

between the IVA and the standard VA is the calculation of branch metrics. Due to 

a nonlinear operation in the encoding procedure of M-D trellis codes, some extra 

efforts with negligible additional computation is made in the IVA for decoding the 

parity-concatenated M-D trellis codes. Some relevant issues on the IVA, such as 
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packet size selection, the manner of incorporating extrinsic information feedback, 

the value setting of scaling parameter used in the IVA, stop criteria in the IVA 

and a "pre-decision" method used in the IVA, are also discussed. 

In chapter 5, firstly, the conventional iterative two-way algorithms (ITWAs) 

based on graph representations are presented for parity-concatenated trellis codes. 

Then we show the modified iterative two-way algorithms in which a normalization 

function is applied. We can see that the modified version is an effective solution for 

graphs with many small cycles. From the perspective of graph interpretation, the 

IVA discussed in chapter 4 can be viewed as a simplified version of the modified 

iterative min-sum algorithm. Based on the graph representations, five iterative 

decoding algorithms are then developed, and their computational complexity are 

compared. For the parity-concatenated trellis codes at a high spectral efficiency, 

error floors would be appeared at the region close to the Shannon capacity limit 

due to the parallel transition errors in trellis codes. The upper bound on the 

error floor is analytically determined, and an appropriate multilevel BCH code is 

then selected to dramatically bring down the error floor to a very low level. 

In chapter 6, extensive simulation results for parity-concatenated trellis codes 

are reported. Firstly, the scaling parameter used in the IVA is determined for a 

specific example. Then we present and compare the performance of the IVA for 

two types of parity-concatenated 2-D trellis codes with partial and full protection, 

respectively. The performance of the trellis codes with trellis shaping and multi

level codes are also given. We then compare the conventional ITWA and modified 

ITWA. Finally, several iterative decoding algorithms are compared according to 

the error performance and computational complexity for parity-concatenated 2-

D trellis codes and 4-D trellis codes. Both continuous transmission and packet 

transmission with long, medium and short block lengths are considered. 

In chapter 7, a robust Viterbi algorithm and robust iterative decoding algo

rithms emphasizing the IVA are studied for conventional trellis codes and parity

concatenated trellis codes respectively, under an uncertain noisy environment. 

Using the minimax technique, a simple but effective robust decoder is devised. 



1.3. CONTRIBUTIONS 5 

The problem of selecting the scaling parameter is also studied for the robust IVA. 

Finally, in chapter 8, a brief summary of the accomplished work, with an 

emphasis on the contributions to the area of the iterative decoding algorithms for 

parity-concatenated trellis codes , is presented. Also, promising areas for further 

research are discussed. 

1.3 Contributions 

Here we summarize the key contributions of this thesis as follows: 

(1) Parity-concatenated TCM schemes with single-parity-check and double

parity-check structures are investigated for various packet length( s), and 

superior performance can be achieved with both structures; ( chapter 3) 

(2) The TWL graph representations for parity-concatenated trellis codes are 

given. They provide an effective way for investigating the graph-based 

decoding algorithms; ( chapter 3) 

(3) The IVA is extended for decoding the parity-concatenated trellis codes , 

which thus can be applied to many current systems without or with very 

little modification; ( chapter 4) 

( 4) Modified min-sum and sum-product algorithms are studied for the TWL 

graphs with many small cycles. It can be seen that significant performance 

improvement is made over conventional min-sum and sum-product algo

rithms; ( chapter 5) 

(5) Five iterative decoding algorithms (ID As) are developed for the parity

concatenated TCM, and their complexity and performance are compared; 

( chapter 5) 

(6) The IDAs are extended for decoding the parity-concatenated multi-dimensional 

TCM schemes, and the significant performance is achieved; ( chapters 4 

and 5) 
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(7) It is shown how to apply the trellis shaping technique to the parity-concatenated 

TCM system; ( chapter 3) 

(8) Multilevel coding and multistage decoding are introduced for parity-concatenated 

TCM to reduce the error floor level; ( chapters 3 and 4) 

(9) The upper bound on the error floor is analytically determined; ( chapter 5) 

(10) The parity-concatenated TCM schemes are extended for parallel continuous 

transmission; ( chapter 3) 

(11) Robust ID As are studied for parity-concatenated trellis codes under an 

uncertain noise environment; ( chapter 6) 

(12) The possible applications of parity-concatenated TCM on current standard 

systems are suggested. ( chapter 2) 
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Chapter 2 

Literature Review 

2.1 Trellis Coded Modulation and Shaping Tech-
• n1ques 

Trellis coded modulation (TCM) has been widely used as a combined coding 

and modulation technique for digital transmission over band-limited channel. 

In [31 ][32], Ungerboeck has shown that significant coding gains can be achieved 

using trellis coded modulation with the Viterbi decoding over uncoded modula

tion without increasing the transmitted power or sacrificing bandwidth efficiency 

on a band-limited channel. This makes TCM a popular choice for digital trans

mission over band-limited channels. 

Since the 1980's, more powerful multi-dimensional (M-D) trellis codes have 

been discovered and introduced into the telecommunications industry due to a 

number of potential advantages, such as more coding gain, more robustness to 

signal-dependent impairment, smaller constellation expansion, etc. As the most 

attractive selection, 4-D Wei TCM schemes [67] have been widely accepted due 

to the modest tradeoff between complexity and coding gain improvement. Nowa

days they have been used in many applications such as the high-rate voice band 

modem [115] and the ADSL modem [117]. 

From a different perspective for achieving more coding gains, Wang and 

8 
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Costello constructed and searched out large constraint length two-dimensional 

and multi-dimensional trellis codes [26] [27] [28]. With the sequential decoding al

gorithm, the cutoff rate bound at a bit error rate (BER) of 10-5-10-6 could be 

achieved with the reasonable computational complexity. 

In the late 1980's, constellation shaping was recognized as a separable part 

of the high-SNR coding problem [36][40]. In [36][5][4], it has been shown that 

shaping gain can be achieved by using nonuniform, Gaussian-like signalling. An 

efficient shaping algorithm called shell mapping has been proposed by Khandani 

and Kabal [5] and several others, and it has been used in V.34 modems. It is also 

possible to use block shaping codes to achieve non-equipro bable signalling [ 4]. 

Another approach, called trellis shaping, was proposed by Forney [36]. It was 

shown that a simple 4-state shaping code can achieve about 1.0 dB shaping 

gain, which is about 2/3 of the full 1.53 dB ultimate shaping gain. This leads 

to fundamental questions: (1) If a shaping scheme is used along with parity

concatenated trellis codes, will the full shaping gain still be achieved? (2) Will 

iterative decoding algorithms with shaping decoding operate reliably at signal

to-noise ratio (SNR) close to the Shannon limit? In this thesis, we try to answer 

these questions. 

2.2 Low-Density Parity-Check Codes 

Low-density parity-check (LDPC) codes, proposed by Gallager [86] [87], are now 

seen as the grandfather of all the graph codes and decoding algorithms [41 ]. Due 

to the limitation of computational power at the time, Gallager's excellent work 

was neglected until being re-discovered by MacKay in 1997 [18] [16]. 

The major attractiveness of the LDPC is its excellent performance built upon 

a simple structure. The original Gallager's LDPC codes are defined in terms of 

a very sparse random parity check matrix with uniform weight per column and 

per row [86][87]. These codes are asymptotically good, and can be practically de

coded. Gallager in his thesis provided two decoding algorithms, one simpler ver-
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sion which flip-flops bits until all the parity checks can be satisfied, the other one 

is flooding version which is a certain variation of the sum-product algorithm [25]. 

Recently, it was shown that the belief propagation (BP) algorithm [51] provides 

a powerful tool for iterative decoding of LDPC codes, by noting that the original 

Gallager's iterative probabilistic decoding of LDPC codes is a particular BP-based 

decoding approach [24][18][16][91]. Results presented in [18] showed LDPC codes 

have near-Shannon limit performance when decoded using the BP algorithm. 

To further enhance the performance of Gallager's binary LDPC codes, some 

variations have been proposed, such as LDPC codes over finite fields G F( q) ( q > 

2) [73] and irregular Gallager codes [19]. These codes can yield very good perfor

mance on the binary symmetric channel (BSC) as well as on the additive white 

Gaussian noise ( A WG N) channel. 

2.3 Turbo Codes 

Turbo codes, first presented to the coding community in 1993 by Berrou, Glavieux, 

and Thitimajshima [15], represent the most important breakthrough in coding 

theory since Ungerboeck introduced trellis codes in 1982 [31]. Whereas Unger

boeck's work eventually led to coded modulation schemes capable of operation 

near capacity on band-limited channels [7 4], the original turbo codes offer near

capacity performance for deep space and satellite channels. Many of the struc

tural properties of turbo codes have now been put on a firm theoretical foot

ing [97][20][57][102][69][91], and several innovative variations on the turbo theme 

have appeared in [6][96][102][69][89]. 

A turbo encoder is showed in Fig. 2-1, which is formed by parallel concate

nation of two recursive systematic convolutional (RSC) encoders separated by 

a pseudo-random interleaver [90]. Unlike the classical interleaver (e.g., block or 

convolutional interleaver), which rearranges the bits in some systematic fashion, 

the interleaver in turbo coding is a pseudo-random block scrambler defined by 

a permutation of N elements with no repetitions. The first reason for using an 
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interleaver in turbo coding is to generate a concatenated code with large block 

length which leads to a large coding gain [7]. Secondly, it de-correlates the inputs 

to the two decoders so that an iterative suboptimum decoding algorithm based 

on information exchange between the two component decoders can be applied. 

C Vo 
-

Convol u tional V1 
-

Encoder 1 

I Interleaver I 

~ Convolutional C V2 
:: Encoder 2 

Figure 2-1: Turbo encoder 

For a turbo code, a maximum-likelihood (ML) sequence decoder would be far 

too complex due to the presence of the interleaver. However, the sub optimum 

iterative decoding algorithm offers near-ML performance. The turbo decoder 

consists of two concatenated decoders of the component codes separated by the 

same interleaver. The component decoders are based on a maximum a posteri

ori (MAP) probability algorithm or a soft output Viterbi algorithm (SOVA) [56] 

generating a weighted soft estimate of the input sequence. The iterative process 

performs the information exchange between the two component decoders. By in

creasing the number of iterations in the turbo decoding, the bit error probability 

as low as 10-5-10-7 can be achieved at a SNR close to the fundamental limits 

established by Shannon. 
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2.4 Turbo Trellis Coded Modulation 

Turbo codes can achieve remarkable error performance at a low SNR close to the 

Shannon capacity limit. However, the powerful binary coding schemes are not 

suitable for bandwidth limited communication systems [40]. In order to achieve 

simultaneously large coding gains and high bandwidth efficiency, a natural exten

sion of the turbo concept is to combine turbo codes with trellis coded modulation. 

For Gaussian channels, turbo coded modulation techniques can be broadly 

classified into binary schemes and turbo trellis coded modulation [7]. The first 

group can further be divided into "pragmatic" schemes with a single component 

binary turbo code and multilevel binary turbo codes. Turbo trellis coded mod

ulation schemes can be classified into two cases puncturing either parity symbol 

or information symbol. 

A. Binary turbo coded modulation 

In pragmatic turbo coded modulation design [95] a single binary turbo code of 

rate 1 / n is used as the component code. The output of the turbo encoder is then 

simply mapped onto an M-ary modulator. Decoding is done by calculating the 

log-likelihood function for each encoded binary digit based on the received noisy 

symbol and the signal subsets in the signal constellation specified by each binary 

digit. The stream of the bit likelihood values is then passed to the binary turbo 

decoder which can be based either on MAP or soft output Viterbi algorithms 

(SOVA). 

The pragmatic approach is simple, as only one turbo encoder and one turbo 

decoder are used. By modifying the puncturing function and modulation signal 

constellation, it is possible to obtain a large family of turbo coded modulation 

schemes. However, although this system utilizes a bandwidth efficient modulation 

scheme, the encoder and modulator are not designed cooperatively as in TCM 

systems. 

In [107] [108], multilevel turbo codes are constructed by using binary turbo 

codes as the component codes. The transmitter for an M-ary signal constellation 



2.4. TURBO TRELLIS CODED MODULATION 13 

consists of l = log!j parallel binary encoders as shown in Fig. 2-2. 

Cl Vl -- Turbo Encoder l -

Serial/ Signal 
X C 

Parallel 
Mapper c2 v2 Converter 

Turbo Encoder 2 

Cl Vl 

Turbo Encoder 1 -
~ 

Figure 2-2: Multilevel turbo encoder 

A message sequence is split into l blocks. Each message block c ,i is then en

coded by an individual binary turbo encoder. The output digits of the encoders 

form a binary label (v1 , v 2 , · · · , vz) , which is mapped onto an M-ary signal con

stellation. 

The maximum likelihood decoder operates on the overall code trellis. In 

general , however, this decoder is too complicated to implement. Alternatively, a 

suboptimum technique , called multistage decoding [47], can be used , resulting in 

the same asymptotic error performance as the maximum likelihood decoding. 

An important issue in the code design is the choice of component codes and 

their code rates. Wachsmann and Huber [107] [108] proposed a technique for 

selecting the component code rates. In this design , the component code rate at a 

particular modulation level , is chosen to be equal to the capacity of the equivalent 

binary input channel associated with that level. For infinite code lengths , in 

theory, as the overall channel capacity is equal to the sum of the channel capacities 

for all levels, this design results in error free coding. Turbo codes come close to 

the Shannon capacity limit and provide almost error free coding. Therefore , they 

are suitable candidates for components codes in a multilevel scheme. Another 

good property is that due to their good performance it can be assumed that 

there is negligible error propagation between the modulation levels [108]. This 

is an important conclusion which enables the use of multistage decoding, as it 
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asymptotically leads to the optimum results. However, for small block sizes, there 

can be significant loss in terms of the signal-to-noise ratio needed to achieve a 

certain error rate. For example, for block sizes of the order of several hundred, 

the loss of a multilevel coding with multistage decoding is about 1 dB relative 

to random coding [107]. In this example of multistage decoding there are no 

iterations between levels and only hard decisions are passed from one stage to 

the next one. 

B. Turbo trellis coded modulation 

In [80] [81], a turbo trellis coded modulation (TTCM) system was presented 

1n which two recursive U ngerboeck type trellis codes with rate k / ( k + 1) are 

concatenated in parallel. Fig. 2-3 shows the encoder structure comprising of two 

recursive convolutional encoders linked by a symbol interleaver and followed by 

a signal mapper. 

k bits k + I bits Xu 
/ 

Encoder 1 
/ ... Mapper 1 -/ / 

C 
Xl 

X 

~ , 

Symbol Symbol 
Interleaver Deinterleaver 

·~ 
~z 

/ X / 

Encoder 2 Mapper 2 k bits k +,,I bits-

Figure 2-3: Turbo TCM encoder with parity symbol puncturing 

It is noted that the interleaver is constrained to interleave symbols. That is, 

the ordering of k information bits arriving at the interleaver at a particular instant 

remains unchanged. For the component trellis code, some of the input bits may 

not be encoded. In practical implementations these inputs do not needed to be 

interleaved, but are directly used to select the final point in a signal subset. At 

the receiver the values of these bits are estimated by subset decoding [31]. 

The output of the second encoder is de-interleaved. This ensures that the k 
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information bits which determine the encoded ( k + l) binary digits of both the 

upper and lower encoder at a given time instant are identical. The selector then 

alternately connects the upper and lower encoder to the channel. Thus, the parity 

symbol is alternately chosen from the upper and lower encoder. Each information 

group appears in the transmitted sequence only once. 

In the receiver, the log-MAP decoding or SOVA decoding algorithms are used 

to decode the turbo trellis codes [7] [8] [58]. The decoding process is very similar to 

the binary turbo codes except that the symbol probability is used as the extrinsic 

information rather that the bit probability. 

As a different type of turbo TCM scheme, parallel concatenation of two recur

sive trellis codes with puncturing of systematic bits was proposed by Benedetto, 

Divsalar, Montorsi and Pollara [100]. The basic idea of the scheme is to puncture 

the output symbols of each trellis encoder and select the puncturing pattern such 

that the output symbols of the parallel concatenated code contains the input 

information only once. In contrast to the scheme with symbol interleaving and 

puncturing of parity bits, this scheme uses multiple bit interleaving and punc

tures systematic bits of both component trellis codes. Fig. 2-4 shows an example 

of its encoding structure [100]. 

Mapper 1 
I-Channel 

Interleaver 1 

Q-Channel 

Figure 2-4: Turbo TCM encoder with systematic symbol puncturing 

Here each encoder forms a modulation symbol from the parity stream pro

duced by the encoder and a subset of the systematic information. These symbols 
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are then sent, as depicted in Fig. 2-4 , using in-phase and quadrature modulation 

to form a composite symbol or by serializing the symbols for transmission , e.g. 

sequentially sending two trellis symbols. Since two modulated signals are gener

ated in every encoding interval , this scheme is equivalent to a multi-dimensional 

M-PSK or M-QAM trellis code. 

Decoding this type of turbo TCM is a straightforward application of the it

erative symbol-by-symbol MAP algorithm for the binary turbo codes. The only 

differences are that 1) the extrinsic information computed for a symbol needs to 

be converted to a bit level since they are carried out on a bit level, and 2) after 

the interleaving/ de-interleaving operations, the bit a priori probabilities need to 

be converted to a symbol level since they will be used in the branch transition 

probability calculation in the symbol MAP algorithm [58] [7]. 

2.5 Iterative Decoding Based on Graph Repre

sentations 

One of the key techniques in turbo decoding , also a main reason for the success 

of turbo codes , is the adoption of iterative decoding, which actually has been 

invented long before the discovery of the turbo codes but unfortunately ignored 

for 40 years. Nowadays, it has been seen that the iterative decoding techniques 

have widespread applications not only in error control, but also in detection , 

interference suppression and equalisation [7]. 

On the other hand, some leading researchers have made significant progress 

in generalising the iterative decoding algorithms. It is now well-known as the 

iterative decoding on graphs. In [88] , Tanner generalized Gallager 's LDPC codes 

to codes on general bipartite graphs , known as Tanner graphs, with two types of 

nodes representing symbols and parity checks , respectively. In a Tanner graph, 

each symbol is represented by a symbol node , and each parity check is represented 

by a check node. Each check node is connected by an edge to the symbols that 

it checks. A Tanner graph is thus a bipartite graph in which symbol nodes are 
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connected only to check nodes and vice versa. 
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In [77] [78], Wiberg et al. made a key extension of Tanner graphs to include 

a third type of nodes, representing invisible "state" nodes, thus establishing a 

bridge to the trellis diagrams. Such graphs are known now as Tanner- Wiberg

Loeliger (TWL) graphs [38]. Using Tanner graphs and/or TWL graphs, all the 

iterative decoding algorithms can be classified as one of two types of generic 

algorithms: min-sum and sum-product algorithms. From this point of view, the 

famous v·iterbi algorithm and the backward-forward algorithm (BFA) can be seen 

as special cases of the min-sum and sum-product algorithms that arise when the 

underlying graph is trellis. In [38] Forney gave a description of the history of 

various "two-way" algorithms (TWA) and their connections with coding theory. 

In [16][18), MacKay and Neal firstly connect Gallager's LDPC codes with 

Pearl's "Belief Propagation" algorithm in a Bayesian network [51], which has 

been developed in the past decade in the fields of expert systems and artificial 

intelligence. Extensive simulation results of MacKay and Neal show that LDPC 

codes are competitive with turbo codes, and that they can reach channel capac

ity [16]. In [91] McEliece et al. have also independently observed that turbo 

decoding is an instance of "belief" propagation. They provide a description of 

Pearl's algorithm, and make explicit the connection to the basic turbo decoding 

algorithm described in [15]. 

After reviewing a variety of graphical models, Kschischang and Frey presented 

a unified graphical model, known as /actor graph, for describing compound codes 

and deriving iterative decoding algorithms [24]. A factor graph is a bipartite 

graph that expresses how a "global" function of many variables factors into a 

product of "local" functions [25]. Factor graphs subsume many other graphical 

models including Bayesian networks, Markov random fields, and Tanner graphs. 

From this general framework, a wide variety of iterative decoders can be devel

oped for parallelly and serially concatenated coding systems [15][102), product 

codes [59][57), and LDPC codes. 

Tanner has proved that the min-sum and sum-product algorithms can con-
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verge on finite cycle-free graphs [88], and Pearl's BP ( or probability propagation) 

algorithm also only gives exact answers when there are no loops in Bayesian net

works [51]. However, it has been discovered that the most powerful codes known, 

namely turbo codes and LDPC codes, are naturally represented by graph with 

cycles. Empirically, iterative decoding algorithms using probability propagation 

often work very well in graphs with cycles, provided that the cycles are long 

enough that cyclical dependencies die out as they propagate around a cycle [38]. 

Theoretically, however, it is still not well understood why these decoders work so 

well. Frey, Mackay [11] and Weiss [113] have made efforts toward this direction. 

In this thesis, we will investigate the parity-concatenated trellis codes in which 

lots of small cycles exist. As the effective methods dealing with small cycles, 

the iterative Viterbi algorithm (IVA) and modified iterative two-way algorithm 

(ITWA) are developed. 

2.6 Iterative Viterbi Algorithm for Forney's Con

catenated Systems 

During the last 7 years, much work has been done in the area of iterative decoding 

for concatenated compound codes, such as turbo codes and LDPC codes. Until 

now, there are two key results on iterative decoding of those compound codes: 

(1). The sum-product type of algorithms (i.e., soft-in/soft-out decoders includ

ing the Gallager's APP [87], BCJR [70] and SOVA [56]) are favoured over 

the min-sum type of algorithms (including bi-directional VA and the stan

dard VA). 

(2). Random interleavers with large minimum girth are favoured over block in

terleavers, except block-block component codes in [57] in which both ran

dom and block interleavers result in a similar error performance. Here the 

minimum girth is defined as the length of minimum cycle in the TWL graph. 
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Obviously, these results rule out the popular Forney's conventional concate

nated code [35] and the well known Viterbi algorithm. Inspired by Jelinek and 

Cocke's work [22][23] in 1970s, Cabral, Costello and Chevillat [45] noted signifi

cant similarity between the turbo decoding method and the bootstrap iterative 

decoding method. Bootstrap decoding [23][62] is a method which imposes alge

braic constraints on streams of convolutionally encoded information sequences 

so as to gather extrinsic information from other streams when one stream is de

coded. In [62] Wei extended the results of [23][45] to near optimally decode the 

bootstrap case using long convolutional codes. One of the simplified bootstrap 

algorithms, which only uses the Viterbi algorithm, was given in [62] and named as 

BIVA in [63], now called iterative Viterbi algorithm (IVA) [64]. It is showed that 

the IVA can achieve near the Shannon limit performance for a modified Forney's 

concatenated convolutional code in which the powerful block code is replaced by 

a simple parity check code [62][63][64][61]. How to apply the IVA in concatenated 

TCM is the open problem which will be addressed in this thesis. 

2. 7 Robust Decoding Algorithms 

It has been known that turbo codes can achieve the highest performance for mem

oryless channels, provided an iterative decoding algorithm, such as APP, MAP or 

BCJR algorithm, is applied. However, unlike traditional minimum distance de

coders which typically implement the Viterbi algorithm, turbo decoders require 

knowledge of the channel SNR and the noise distribution (probability density 

function (PDF)). In [75][106][112], the authors investigated the sensitivity of the 

turbo decoder to SNR mismatch, and proposed several methods of estimating the 

variance which is necessary for turbo decoding. 

Different from those variance estimation techniques, Wei et al. presented a 

probabilistic minimax decoding algorithm [66][114] in which the minimax concept 

is used to minimize the worst possible error performance over a family of possible 

channel noise PDFs. It is shown that the minimax decoder is robust to the 
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mismatch between the channel noise model and the noise model used for receiver 

design. The robust VA and robust two-way APP decoders are devised in [66] 

and always outperform the worst mismatched standard decoders and generally 

perform very close to the optimal matched decoder in various mismatched noise 

environment. 

In chapter 7 of this thesis, the minimax concept is extent for trellis codes and 

parity-concatenated trellis codes. We will see some interesting results when the 

minimax decoders are applied in decoding the parity-concatenated trellis codes. 

2.8 Possible Applications of Parity-Concatenated 

TCM 

Parity-concatenated TCM can be potentially applied in the same application 

domains where TCM is used. TCM has been widely used in the areas of digital 

communications. Some typical applications are as follows: 

(1) V.34 high-rate voice-band modem [115]; 

V.34 modem employs the 4-D 16-/32-/64-state Wei trellis codes for different 

rate; 

(2) Cable modem [116]; 

A concatenated coding method with outer Reed-Solomon (RS) coding and 

inner trellis coded modulation is applied in the cable modem standard. 

(3) ADSL modem [117]. 

As a new high-speed digital access line technology, ADSL modem has be

come a main solution for the high rate Internet access in the world. In 

the ADSL system, in terms of the characteristic, the channel is divided as 

the N (generally N = 256) sub-channels. Various information symbols are 

allocated into each sub-channel to maximize the transmission capability. In 

each sub-channel, the 4-D Wei trellis codes can probably be applied with 
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the DMT (Discrete Multi-Tone) modulation, depending on the channel sit

uation. 

Using the iterative Viterbi decoding algorithm, we can employ the parity

concatenated trellis codes in some applications , such as ADSL modem and V.34 

modem, with very few changes in current systems. To cable modem, the only 

modification is to replace the powerful outer RS code by a simple pctrity code, 

and then the IVA can be applied. 

2.9 Discussion 

In this chapter, previous work on various TCM schemes and relevant shaping 

techniques has been briefly presented. Compound codes such as LDPC codes 

and turbo codes were introduced. As combinations of turbo codes with TCM , 

several turbo trellis coded modulation schemes have been described. Then we 

mentioned the IVA which will be presented in this thesis for decoding the parity

concatenated trellis codes. Finally, robust decoding algorithms for convolutional 

codes and turbo codes were reviewed . 



Chapter 3 

Encoder Structures for 

Parity-Concatenated Trellis 

Codes 

3.1 Introduction 

Concatenation is a specific method of constructing long codes from shorter codes [35]. 

In this chapter, we will present the encoder structures for parity-concatenated 

trellis codes in which a simple even parity check code is serially concatenated 

with trellis codes including the 2-D trellis codes and multi-dimensional trellis 

codes. To be suitable in packet transmission with short, medium and long block 

lengths, the corresponding single- and double-parity-check encoding structures 

are built up respectively, and their graph representations based on TWL graph 

are presented. In addition, since shaping techniques have been used with the 

conventional TCM schemes, in this chapter we also consider shaping with the 

parity-concatenated trellis codes. First, let us introduce conventional trellis coded 

modulation. 

22 
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3.2 Trellis Coded Modulation 

3.2.1 Ungerboeck's trellis coded modulation 

Trellis coded modulation has been widely used in the industry since U ngerboeck's 

papers published in the 1980 's [31] [32]. A general TCM scheme is shown in Fig. 3-

1. 

Ul 
-

Vl 
'"'t - Convolutional Subset 

Uk; Encoder 
k+ l : 

Selector V . t - t -- -

k/(k+l) 
k+l v k: +2 ' ut t -

Signal s 
-Uk: vn -

Selector t t 
~ 

-

Figure 3-1: Schematic representation of a typical trellis code 

In the trellis encoder , the k information bits utu; · · · u} of each symbol Ut are 

divided into two parts at time t. One part Ui • · • u} is encoded by a rate k/(k + 1) 

convolutional encoder whose output is used to select one subset from the whole 

constellation; the other part u;:+l • • • u;: comprises uncoded bits which are used 

to determine one signal point within that selected subset. It is noted that the 
~ 

convolutional codes can be viewed as a special case of trellis codes in which k == k , 

namely, there are no uncoded bits. 

In TCM, the key concept is mapping by set partitioning [31] [32] which conveys 

the idea of combined design of coding and modulation. Let the minimum Eu

clidean distance between pairs of signal points in the constellation Ao be denoted 

by dmin ,(Ao). Through the set partitioning, a M-ary constellation Ao is succes

sively partitioned into 2, 4, 8, · · · subsets with size M /2 , M / 4, M /8 , · · · , having 

progressively larger minimum distances dm·in ,(Ai ), dmin ,(A2 ), dm·in ,(A 3 ), • • • • Here a 

partition Ai/ A-i+l of A,i is defined as a collection of Ai+l and its non-overlapping 

cosubsets. Fig. 3-2 ( a) displays a set partition of a 16-QAM constellation, in 
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Figure 3-2: Set partition and trellis representation for a trellis code (h0 , h1 ) = 

(2, 5) [31) 
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which four subsets B0 , B 1 , B 2 and B3 are obtained. The encoding process of trel

lis codes can be represented by the trellis diagram. Fig. 3-2 (b) shows the trellis 

representation of a 4-state Ungerboeck code (h0 , h1) = (2, 5) (31] with 16-QAM. 

The thicker line in Fig. 3-2 (b) represents an error event. Note that each tran

sition, from the current state to the next state, actually comprises four parallel 

transitions resulting from two uncoded bits. 

To decode the trellis codes, the Viterbi algorithm is normally applied. This 

is done by calculating the "branch metric" of each branch, and then looking for 

the path whose total metric, called "state metric" , is minimum. This path often 

corresponds to the transmitted signal sequence. 

When the TCM is employed for transmission over the AWGN channel, and 

the SNR is large enough, the BER performance of TCM is mainly determined 

by the minimum squared Euclidean distance d}ree which is the minimum value of 

the squared parallel transition distance d;arallel and the coded minimum squared 

Euclidean distance d2 1· e d2 - m1'n(d2 d2 ) If d2 < d2 
fr ee,c ' · ·' fr ee - parallel, fr ee,c · fr ee,c - parallel, 

we can say that the bit errors caused by parallel transition errors can be ignored 

at high SNRs, and hence the BER is dominated by d}ree,c (21]. It can be seen 

that most of the Ungerboeck codes belong to this category. 
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3.2.2 Multi-dimensional TCM 

In the past two decades, many powerful multi-dimensional (M-D) trellis codes 

have been discovered due to a number of potential advantages over the usual 

2-D schemes. One of them is the M-D Wei codes [67] which have been the most 

attractive selection for many applications such as the high-rate voice band modem 

and the ADSL modem. 

In [67], Wei has constructed several M-D trellis codes with the 4-D and 8-

D constellations. One of them is the well known 4-D 16-state Wei trellis code. 

Fig. 3-3 shows the encoder structure for the 4-D 16-state Wei trellis code [67]. 
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Figure 3-3: Encoder structure for the 4-D 16-state Wei trellis code 

During the encoding process, two 2-D symbols are simultaneously applied to 

a 4-D trellis encoder at two successive time intervals t and t + 1. Three bits 

are encoded via a trellis and differential encoder , while the rest of the bits from 

the two 2-D symbols remain uncoded. (In the Wei code design, three of those 

uncoded bits are encoded via a 4-D block encoder which actually implements the 

shell mapping presented in [5].) Four output bits YOt, 11 t, 12t' and J3t' are then 

converted by a bit converter to produce two groups of coded bits which correspond 

two 2-D sub-constellations in one 4-D constellation. Finally, combining these 

with the uncoded bits, we can obtain a 4-D trellis code comprising two 2-D trellis 

codes. In the receiver, the VA is used to decode the received 4-D signals. The 

only difference with decoding the 2-D trellis codes is the calculation of branch 
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metrics for 4-D subsets. The detailed decoding procedures can be found in [ 67). 

3.2.3 Forney's concatenated code 

As a popular choice in digital communications, Forney's concatenated code con

sists of two separate codes which are combined to form a large code [35]. Gen

erally, Forney's concatenated coding system includes a moderate-strength trellis 

inner encoder, a powerful algebraic block outer encoder and a conventional block 

table-like interleaver, as illustrated in Fig. 3-4. 

Block Block Trellis . ;. ; 

Encoder Interleaver Encoder 
- Modulator 

Channel 

Block Block Viterbi 
Decoder 

~ i.- ~ Demodulator ~ Deinterleaver Decoder 

Figure 3-4: Forney's Concatenated Coding System 

In the decoder, firstly a maximum-likelihood (ML) or near-ML decoding al

gorithms is used to achieve a moderate error rate like 10-2-10- 3 at a code rate 

as close to capacity as possible, and then a block decoder is applied to drive the 

error rate down to as low an error rate as may be desired [ 40). With such a 

"separated" decoding scheme, it was shown in [35) that the error rate could be 

made to decrease exponentially with block length at any rate less than capacity, 

while the decoding complexity increases only polynomially. 

Next we will present a novel serial concatenation scheme involving a simple 

parity check outer code, block interleaving, and a TCM inner code. We will see 

that such coding scheme can be viewed as an example of Forney's concatenated 

coding system. 
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3.3 Encoder Structures for Parity-Concatenated 

TCM 

3.3.1 Encoding parity-concatenated 2-D trellis codes 

In the encoding process of parity-concatenated TCM, a block of packets can be 

formed by organising ( m-1) x l information symbols Uj,,;, (j == 1, 2, · · · , m-1; i == 

1, 2, · · · , l) into a block of ( m - 1) rows and l columns, as illustrated in Fig. 3-5. 

Each symbol Uj ,i includes k bits u},iuJ,,i · · · uj,i in which k bits u},i · · · u},,i will be 

encoded by a k/(k + 1) convolutional encoder, and the rest of bits· uy,t1 
• • • uJ,·i 

will be left intact as uncoded bits, where k < k. We then can generate the m th 

packet in such a way that the bits of each symbol Um ,·i ( i == 1, · · · , l) satisfy the 

following equation: 

b b b b um,·i == ul,i EB u2 ,·i EB ... EB um-1,i, b== 1,2,··· ,k, (3.1) 

where EB denotes modulo-2 addition. It is clear that m bits in a column follow 

the parity-check (PC) constraint, and hence m symbols in a column also follow 

the parity-check constraint ( and therefore the symbols Um,i are referred to as the 

parity symbols), as shown in Fig. 3-5. The m th packet is then called the parity 

packet. 

Since each bit in a symbol is related to a parity-check constraint, we refer to 

this kind of code as a full-parity protected code. However, if only coded bits of m 

symbols in a column satisfy the parity-check constraint, i.e, 

b b b b Q ul ,·i EB u2 ,·i EB · · · EB um-1 ,i EB um ,·i == , 
~ 

b==l,2,··· ,k, (3.2) 

then we refer to this kind of code as a partial-parity protected code, since only 

part of symbols are protected by the parity bits. 

Next, as usual, we will encode each packet with l symbols into codewords 

of length l through the same S-state trellis encoder. It was shown in [62] that 

the free distance of such a block code is doubled relative to the free distance of 

the original code. Let ½,i denote the output symbol corresponding to the input 
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packet 1 I U11 , I U1 2 , I I U1 l , 
f 

I I 
,----:. 

packet 2 I U2 1 U2 2 ' ... I U2 l , , , 

packet m - 1 U m -1 1 I U m -1 2 , , I U m-1,l 

parity packet m 

parity-check constraint 

Uj ,i Information symbol Parity symbol 

j = 1, ··· , m, -1; i = 1, ··· ,l . 

Figure 3-5: Parity-check structure for one block symbols 

symbol Uj ,i, and ½,i consist of n bits v},i · · · vJ,f 1vJf 2 
· · · v?,i, in which the ( k + 1) 

bits vJ,i · · · v}f 1 are the output from the convolutional encoder with rate k / (k + 1), 

and the remaining bits vJf2 • · · v?,i are uncoded. Lastly, the output symbol ½,i is 

mapped ( according to Ungerboeck's set-partition rule) into a signal constellation 

to produce a modulated signal. 

Due to the linearity of convolutional encoding1
, for the full-parity protected 

code, we then have 

b b b 0 vl,i EB v2,i EB · · · EB vm,i = , b = 1,2,· · · ,n. (3.3) 

For the partial-parity protected code , we have 

b b b 0 V1 i EB V2 i EB · · · EB Vm i = , ) ) , 
-

b = 1, 2, · · · , k + 1. (3.4) 

Hence , all m packets are in principle decodable by applying the VA to each 

packet. Clearly, the encoding process for parity-concatenated trellis codes can be 
1 All the convolutional ( or trellis ) encoders considered in this thesis are assumed to be linear 

which guarantee that the parity-check constraints among the symbols of packets still exist for 

coded sy1nbols after the encoding process. 
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represented by a m x ( m - 1) matrix G ( the generator matrix), such that the 

( m - 1) x l information symbol vector matrix [U] is encoded as a m x l matrix 

[VJ == G · [U]. Note that the generator matrix is in "systematic form" and it can 

be written as 

G == 
Im-1 

p 

where Im-l is a (m - 1) X (m - 1) identity matrix, and P is a 1 x (m - 1) row 

vector of ones. 

Fig. 3-6 shows the encoder structure for parity-concatenated TCM, which 

actually is a special case of the well-known Forney's concatenated coding sys

tem [35]. Note that, unlike the turbo-style TCM schemes in which a pseudo

random interleaver is applied, here only a conventional block interleaver is em

ployed. 

~ Parity r---1\ Block r---1\ Trellis ~ 
~ Encoder ~ Interleaver ~ Encoder ~ 

Figure 3-6: Representation of Forney's coding structure for parity-

concatenated trellis codes 

Now we know that the key idea of parity-concatenated trellis codes is to 

produce one packet which follows the PC constraint using the ( m -1) information 

packets. When used with a convolutional code, the parity packet is produced 

based on all the information bits in (m - 1) packets [63]. But for trellis codes, 

if same strategy is applied, potential gains will be lost due to the high degree of 

redundancy involved. 

In section 3.2.1, we have mentioned that the error performance of TCM at 

high SNRs is mainly determined by dJree == min( d;arallel, dJree,J. Therefore, for 

TCM systems in which dJree,c < d;a:rall el, the performance of parity-concatenated 

trellis codes should not be dramatically affected if we only introduce the parity

check property to the coded bits u},-i · · · u],,i and the uncoded bits u}t1 
· · · u}, ,i are 

left intact, i.e, with the partial protection format. It can be seen that most of 
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the Ungerboeck codes belong to this category. The benefit of such an operation 

is obvious - the reduction of information transmission rate due to the parity

check bits is minimised. However, for trellis codes in which d}ree,c > d;arallel, full 

protection should be employed, namely, the parity-check constraints are imposed 

on all the bits of trellis codes. In this case, if only coded bits are protected, 

performance can be expected to be much worse than the one when the whole 

symbol is protected because parallel transition errors will dominate the error 

performance. In section 6.2, the simulation results will show this phenomenon. 

3.3.2 Encoding parity-concatenated M-D trellis codes 

In this section, we extend the idea of parity-concatenated 2-D TCM to construct 

a parity-concatenated multi-dimensional TCM in which a M-D trellis code is used 

as the inner code and a simple even parity check code is used as the outer code. 

First, let us describe the encoding part of the parity-concatenated M-D TCM 

schemes. 

In this thesis , we will use the popular 4-D 16-state Wei trellis code [67] as an 

example to illustrate how to construct the parity-concatenated M-D TCM and 

how to derive the corresponding decoding algorithms. In addition, only a contin

uous transmission format is considered when building up the parity-concatenated 

Wei M-D TCM schemes. 

In Fig. 3-7, there are ( m - 1) information streams organized into a block 

of ( m - 1) rows. Similar to the case in the previous section , the m th stream, 

called the parity stream, is generated in such a way that the trellis-encoded bits 

in the m th stream will be the parity bits of the trellis-encoded bits of the ( m - 1) 

information streams , i.e. , 1:-n ,c == L 7°-;_1 EB I}c· The non-trellis-encoded bits in the 

m th stream are intact. 

As shown in section 3.3.1 , for parity-concatenated 2-D trellis codes the PC 

property remains after the trellis encoding procedure. However , this is not al

ways true in constructing the parity-concatenated M-D trellis codes. In the M-D 

Wei trellis code design , to remove the phase ambiguities of the constellation, a 
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Figure 3-7: Parity-concatenated 4-D trellis codes on a single-parity-check 

structure consisting of m streams 

differential encoder is necessary in the transmitter ( see Fig. 3-3). We note that 

the differential encoder is a nonlinear operator (i.e., a modulo four addition; refer 

to [67]). Therefore, to prevent the PC property being violated after the differ

ential encoding, we impose the PC property on the trellis-encoded bits of all m 

streams only after the differential encoding, i.e., 1J,c (j == 1, · · · , m) consists of 

three bits llj, 12f and 13f rather than 11}, 12} and 13}, (see Fig. 3-3). Then 

we have 

m m ·m 
~ t ~ t 1 ~ t 1 
6 EBlli == 6 EB12i == 6 EB13i == 0. (3.5) 
j=l j=l j=l 

Next all m streams are then encoded by the same 4-D trellis encoder indepen

dently. Due to the linearity of the trellis encoder, the output bits of the trellis 

encoder also follow the PC property at time t, i.e., ~"; 1 EBlJ == 0, where 1J in

cludes the four bits Y0t, Jl}, 12}' and 13}'. Then, as for the operations in the 

conventional 4-D Wei encoder, Y0t, 11}, 12}
1 

and 13}
1 

are converted by a bit con

verter, and then (with those uncoded bits) mapped into a 4-D signal constellation 
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to produce modulated signals. 

3.3.3 Trellis shaping with parity-concatenated trellis codes 

It has come to be recognized that shaping and coding are two separable and com

plementary components of the TCM systems. In [4][5][36], it has been shown that 

shaping gain can be achieved by using nonuniform, Gaussian-like signalling. An 

efficient shaping algorithm called shell mapping has been proposed by Khandani 

and Kabal [5] and several others, and it has been used in the V.34 modem. It 

acts on N consecutive 2-D constituent constellations (A) and selects a subcon

stellation of AN that approximates the 2N-D spherical constellation. It is also 

possible to use block shaping codes to achieve non-equiprobable signalling [4]. 

In this approach, the 2-D constellation is divided into subregions that have dif

ferent average signal energies and a block code is used to specify the subregions 

such that the regions with small average energy are used more often. Another 

approach, called trellis shaping, was proposed by Forney [36]. Trellis shaping 

is a method of selecting a minimum-weight sequence from an equivalence class 

of possible transmitted sequences by searching through the trellis diagram of a 

shaping convolutional code and it results in "spherical constellations" that can 

be described only in infinite-dimensional sequence space [36]. It was shown that a 

simple 4-state shaping code can achieve about 1.0 dB shaping gain, which is about 

2 /3 of the full 1.53 dB ultimate shaping gain [36]. In this section, we concen

trate on trellis shaping combined with the parity-concatenated 2-D TCM systems 

(Shell mapping is self-contained in the M-D Wei TCM schemes and hence also 

self-contained in the parity-concatenated M-D TCM). It is expected that similar 

results can be obtained when the two other approaches to shaping are combined 

with parity-concatenated TCM schemes. 

A general schematic diagram of a parity-concatenated 2-D TCM system with 

shaping is shown in Fig. 3-8. A 2n-point 2-D constellation is used to transmit 

k == kc+n,u,+rs information bits/T, where kc, n ,u and r 8 are the number of channel 

coded bits Xt, uncoded bits Wt and shaping coded bits St, respectively. The 2-D 
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Figure 3-8: Trellis coded modulation system with trellis shaping 

constellation is first partitioned into 2nc subsets using set parti tioning [31]. The 

n c coded bits Yt produced by the channel encoder G c at time t specify one of the 

2nc subsets. The 2-D constellation is also divided into 2ns subregions. The n 8 

shaping bits Zt produced by the shaping encoder at time unit t specify one of the 

2ns subregions. The n 'U, uncoded bits Wt at time t specify a point a== M(yt , Wt , Zt ) 

in the constellation for a given subregion and a given subset. 

It was shown in [62] that the free distance of the parity concatenated code 

could be twice of the free distance of the inner code. We note that the free 

distance is just determined by the coded bits Xt for such TCM schemes in which 

d ;a:ra.ll el is larger than d}ree,c Therefore , the shaping codes S t should not affect 

the distance property and the full shaping gains should be achieved when shaping 

techniques are combined with the parity-concatenated TCM systems. This has 

been confirmed by simulations presented in Chapter 6. 

3.3.4 Multilevel code with parity-concatenated trellis codes 

We have known that in the TCM scheme the errors caused by parallel transitions 

can be ignored at high SNRs, if d2
1,. < d~ , zz z· However , when we apply partial ree,c pa.ra.,,e . 

parity checking to protect the coded bits, the dfree,c for a parity-concatenated code 

could be doubled. Thus, we may find that in many cases we have d ;a.ra.ll el < d1 ree,c 

and errors among the uncoded bits become dominant , which results in an error 

floor. The question now is how to reduce the parallel transition errors in parity-
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concatenated TCM systems. Here, we show that the multilevel coding technique 

based on the set partitioning rule [47][43] can be utilised to reduce the parallel 

transition errors. 

In the TCM encoding process, the constellation Ao is first partitioned into 

2nc cosubsets in terms of Ungerboeck's binary set partitioning Ao/ A1/ · · · / Anc, 

where n c is the number of output bits of the trellis encoder. The minimum 

squared Euclidean distance d~in ,(AnJ between two points within one of the co

subsets of Anc is therefore increased to 2nc times the minimum squared Euclidean 

distance d~ ,- , (A ) . For instance, if n c == 3, then d2 
·, (A ) / d2 

,. (A ) == 8, namely, m1,n 1 o min , n c min , o 

about 9.0 dB gain is obtained for parallel transition bits (i.e., uncoded bits) after 

set partitioning. However, such a gain is still not big enough to protect those 

uncoded bits in the low SNR regions. Therefore, an error floor dominated by 

the uncoded bits will be formed even though errors in the coded bits have been 

totally eliminated. 

Following the concept of the multilevel scheme proposed by Imai and Hirakawa 

[4 7], the cosubsets formed by Ungerboeck's set partitioning rule can be further 

binary partitioned, with one bit associated with such a partition. Obviously, 

another 3.0 dB gain is achieved for uncoded bits after the partitioning. If we treat 

trellis codes as the first-level code, then a binary BCH block code ( nb, kb, qb) can 

be selected as the second-level component code, where nb is the BCH codeword 

length, kb is the number of information bits and qb is the number of error bits that 

the code can correct. (In [49], a similar scheme was proposed for turbo codes. By 

extending them with an outer BCH code which would correct a few bit errors, 

the error floor could then be lowered significantly.) 

Here, two basic requirements should be considered for the selection of the 

second-level code. First, the redundancy introduced by the proposed code should 

be as small as possible, since we have noted that even a small redundancy can 

cause a dramatical loss in coding gain, which may offset the gain achieved by 

introducing the parity check code. Second, the proposed code need not to be a 

very powerful code. The encoder structure combining a concatenated TCM with 
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a binary BCH block code is illustrated in Fig. 3-9, in which the convolutional 

encoder is associated with the partitioning A0/ A1/ · · · / Anc and the BCH encoder 

is associated with the partitioning Anc / Anc+l. The shaping bits and the uncoded 

bits can then be viewed as a third-level code. 
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Figure 3-9: Encoder structure of multilevel concatenated code 

Due to the introduction of a BCH code, it is clear that ( nb - kb) redundant 

bits every kb trellis symbols are produced. Then the question is how to deal with 

those redundant bits. In the TCM scheme, the normal method is to expand the 

constellation size to settle in the redundant bits. But in our case, the average 

number of redundant bits for each symbol is ( nb / kb - 1). If the error-correct 

capability tb is small, then nb/ kb will be very close to one for long BCH codes. 

Therefore, expanding the constellation size is not appropriate here. Instead, we 

just simply replace ( nb- kb) bits in parity-concatenated trellis codes with ( nb - kb) 

redundant bits. Moreover, such bits should belong to the trellis coded bits because 

the coded bit errors on the error floor are pretty infrequent and the uncoded bit 

errors dominate the error floor. 
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3.4 Single-Parity-Check and Double-Parity-Check 

Structures 

In this section, we will focus on packet transmission formats which have been 

widely used in telecommunications and data transmission. With short ( say hun

dreds of symbols), medium ( say thousands of symbols) and long ( say ten thou

sands of symbols) block lengths, the corresponding single-parity-check and double

parity-check structures are built up, respectively. 

In packet transmission, there are two methods to terminate the encoder for the 

block given in Fig. 3-5. The first one is to terminate the encoder to a known state. 

If the encoder is comprised of v (v denotes the number of shift registers in trellis 

encoder) shift registers connected in a feed-forward form ( called the feed-forward 

encoder), then v zero bits at the coded k-bit positions of the Uj ,i symbols at the 

end of the block can be used to flush the contents of shift registers to zero, i.e., 

push the encoder into all zero state. One of the advantages is that the decoder 

knows the terminal state, and thus it can achieve a better performance [65]. The 

significant disadvantage is the rate loss due to the tail bits. 

The second method is to terminate the encoder at its starting state. This 

technique is known as tail-biting [44] which can make the decoding of the last 

several ( depending on the decoding depth) coded symbols reliable. With tail

biting, the encoder is first initialised by inputing the last v bits into the encoder 

and ignoring the output. Therefore, the start and end encoder states are con

strained to be identical; that is, a trellis codeword starts from the state at which 

it will eventually end. The encoding path can be viewed as a trace around a 

circular trellis. 

We know that the trellis codes can be described either in feedback (FB) form 

or feed-forward (FF) form although almost all good linear trellis codes proposed 

in the literature are FB codes. It has shown that for convolutional codes every 

FF code has an equivalent FB code and vice versa, i.e., they generate the same 

set of codewords (48]. Fig. 3-10 displays the structure of a FF encoder with two 
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encoded bits. However, we note that in TCM schemes tail-biting technique can 

always be used with the FF form and any packet length, but not for FB form 

and all packet lengths. 
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Figure 3-10: Structure of the feed-forward trellis encoder 

Suppose there are l symbols U1, · · · , Uz in one packet. From Fig. 3-10, the 

states of shift registers at time ( t + l) are updated by the previous states and the 

input symbol Ut == ( u}, u;) at time t, namely, 

So _ u1 
t+l - t, 

1 
St+l 

'/, 

St+l 

2 
ut' 
i-2 

st ' 

(3.6) 

i == 2, · · · , V - l. 

It is obvious that the ending states ( sP, · · · , sr-1) of the packet just depend on 

the last v /2 input symbols Ut, · · · , Ut-v /2+1 and are not affected by earlier input 

symbols. Therefore, to implement tail-biting, we select the last v /2 symbols as 

the initial states and the ending states will always "bite" the beginning states. 

As to the FB form of codes, however, the ending states are decided by all sym

bols of the packet as well as the initial states, namely, the ending states satisfy 

(sP) ... ) sr-1) == F(U1, ... ) Uz; s~, ... ) sa-1), where Fis the appropriate function 

defined by the encoder structure. Hence, tail-biting can be implemented only if 

all the symbols U1, · · · , Uz in the packet satisfy the given condition determined 

by the encoder structure. Otherwise, tail-biting will fail for some cases. 
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Now the problem is how to convert a FB code into a FF code? In [48], an 

algorithm for converting a FB code to a FF code was proposed based on the 

definition that the impulse responses (IRs) of a code are the coder outputs, and 

FF codes have finite IRs and FB codes have infinite IRs. The FF codes can be 

found by tracing paths through the trellis of the FB codes which correspond to the 

IRs of the FF code. This method is effective for small memory length codes, but 

it seems to be toilsome when v is larger than about eight. We know that the FB 

and FF codes can be represented by parity check polynomial H(D) or generator 

polynomial G(D), where G(D) and H(D) satisfy the equation G(D)HT (D) == 0. 

Thus, the FF code corresponding one FB code can be searched out by computer 

depending on such a relation. It is noted that generally one FB code has more 

than one equivalent FF code. 

3.4.1 Single-parity-check structure with tail-biting 

With the FF trellis encoder, we can use tail-biting technique to encode all the 

symbols in each packet, as illustrated in Fig. 3-11. We refer to the codes as 

parity-concatenated trellis codes based on single-parity-check structure, since 

each symbol in one packet is just protected by single parity-check constraint. 

In the receiver, the VA can be applied to decode each "unwrapped" packet ( see 

Fig. 3-12). In Fig. 3-12, Rj,i (j == 1, 2, · · · , m; i == 1, 2, · · · , l) denotes the received 

signal corresponding to the coded symbol ½,i, and p means the decoding depth. 

Generally, p is 5 rv 7 times v. 

We note that, in order to achieve near optimal decoding for the VA on the 

"unwrapped" trellis, the length of each packet often needs be no less than about 

5 times v. Thus the block length could be more than 5v x m. In this subsection, 

we will present a modification which will cut down the block length without 

significant affecting its error performance [ 63]. We refer to such a modification 

as the modified single-parity-check structure. 

The key concept of the modified single-parity-check structure is to connect 

all m packets into one super packet. In other words, instead of terminating each 
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Figure 3-11: Single-parity-check structure with tail-biting for each packet 

5v rv 7v l 5v rv 7v 

R j,l+l-p . . . R j,l -1 R j,l R · 1 R j,2 . .. R · l R j, 1 R· 2 ... J, J, J, 

J. == 1 2 · · · m 
' ' ' 

Figure 3-12: Illustration of "unwrapped" packet for the VA decoding 
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R i,P 

packet, the symbols of all m packets will continue to be fed into the encoder until 

the last symbol. Figure 3-13 illustrates this modification. 

We know that the PC constraint is essential in the encoding structure of the 

parity-concatenated trellis codes. After connecting all m packets into one super 

packet, we found that the PC constraint in this super packet still holds. (The 

detailed proof can be found in [64]). The modified single-parity-check structure 

will be applied in the rest of the thesis unless otherwise mentioned. 

3.4.2 Double-parity-check structure 

In the last subsection, parity-concatenated trellis codes have been constructed 

based on a single-parity-check structure, namely, a symbol of each packet is just 

parity checked by a group of m symbols in column. We can re-apply the parity-
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check constraint on several single-parity-check structures to build up a double

parity-check structure, which is applicable to packet transmission with medium or 

long block lengths. The main motivation is to build up a block code with a larger 

minimum free distance, but remain decodable with low complexity. A double

parity-check structure is illustrated in Fig. 3-14. It is shown that there are q super 

packets, and each of them comprises m packets. Therefore a total of ( m + q - 1) 

parity packets are included in this double-parity-check structure. From Fig. 3-14, 

we can see that each symbol of each packet now is parity checked by both a group 

of q symbols in the symbol's column and a group of m symbols in the symbol's 

row, which correspond to the horizontal and vertical parity-check constraints, 

respectively. In general, m is set to q since equal parity protection can then be 

provided by both types of constraints. In addition, it is worth mentioning here 

that the strategy of either partial protection or full protection discussed for the 

single-parity-check structure is also suitable for the double-parity-check structure. 
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So far, we have got two types of parity-check structures for different block 

sizes of codes. It is clear that connecting all packets into one super packet in 

packet transmission can reduce the block size. Obviously, such an operation is 

not necessary in continuous transmission. Fig. 3-15 shows how the double-parity

check structure can be employed for the continuous transmission format. 
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Figure 3-15: Double-parity-check structure for continuous transmission 
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It can be seen that there are m x q parallel streams in the structure of Fig. 3-

15. Fig. 3-15 (b) is the side elevation of Fig. 3-15 (a). Clearly, each stream in this 

structure is also related to both horizontal and vertical parity-check constraints. 

3.5 Graph Representations of Parity Concate

nated Trellis Codes 

In this section, we will use TWL graphs to represent the parity-concatenated trel

lis codes based on the single- and double-parity-check structures. From the TWL 

graph representations, the corresponding decoding algorithms will be derived in 

the following chapters. 

First we will explain how a trellis code can be represented by a TWL graph. 

Here a simple example is given to establish the connection between trellis codes 

and TWL graph representations. Fig. 3-16 illustrates both the trellis representa

tion and the TWL graph representation for a simple 4-state Ungerboeck trellis 

code. In Fig. 3-16 (b), a state node denotes a 4-state space (i.e., 00, 01, 10 and 

11), a coded symbol node represents four types of outputs (Bo, Bi, B2 and B3 ) 

of the trellis encoder (i.e., the size of the symbol node is four), and a parity check 

node corresponds to the parity-check constraint between two state nodes. It can 

be seen that the TWL graph greatly simplifies the trellis code representation. 

Based on the TWL graph representation of trellis codes, Fig. 3-17 illustrates 

the TWL graph of the parity-concatenated trellis codes on a single-parity-check 

structure without tail-biting, where l == 4 and m == 4. 

It is shown in Fig. 3-17 that apart from three types of nodes mentioned in 

Fig. 3-16, there is another type of node. Here we refer it to as partial (or full) par

ity check node, which results from the partial ( or full) parity-check constraints in 

parity-concatenated trellis codes. Since many trellis codes have d}ree,c < d~a:rall e, 

and for these codes a partial protection can achieve a better performance in terms 

of approaching the Shannon limit, in this thesis we will focus on partial parity 

check node unless otherwise mentioned. 
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Figure 3-18 illustrates the TWL graph of the parity-concatenated trellis codes 

with a modified single-parity-check structure (i.e., with tail-biting), in which m == 

4 and l == 4. It is clear that Fig. 3-18 (b) is another form of Fig. 3-18 (a). 

Figure 3-19 illustrates the TWL graph of the parity-concatenated trellis codes 

with tail-biting on a double-parity-check structure, in which m == 2, q == 3 and 

l == 2. From Fig. 3-19, it is clearly shown that a symbol node is parity checked 

by two partial parity check nodes. 
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In this chapter , the encoding principles for the U ngerboeck 2-D TCM and Wei 

multi-dimensional TCM schemes were described first , and then we presented the 

parity-concatenated trellis code in which a simple even parity check code was 

serially concatenated with a conventional 2-D or M-D trellis code. We saw that 

a parity-concatenated trellis code could be viewed as a special case of a Forney 's 

concatenated code. The only difference is that a powerful block outer code is 

replaced by a simple parity code. Compared with turbo-style TCM schemes , 

one significant difference is that a conventional block interleaver rather than a 

pseudo-random one is employed in the encoder. 

For both packet and continuous transmissions , the corresponding single- and 

double-parity-check structures were designed , respectively. Packet transmission 

with long, medium and short block lengths were considered. In addition, shap

ing techniques and multilevel codes were combined with the parity-concatenated 
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(a) 
m=4 l=4 ) 

m=4 l=4 ) 

(b) 

Figure 3-18: TWL graph representation for parity-concatenated trellis codes 

on a single-parity-check structure with tail-biting 

trellis codes for further performance improvement. As an effective tool for code in

terpretation, TWL graph representations for the parity-concatenated trellis codes 

were presented. Based on the TWL graph representations, the iterative decod

ing algorithms for the parity-concatenated trellis codes will be presented in the 
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Chapter 4 

Iterative Viterbi Algorithm for 

Parity-Concatenated TCM 

4.1 Iterative Decoding Algorithms 

Iterative decoding is a generic term for decoding algorithms whose basic oper

ation is to modify some internal state in small steps until a valid codeword is 

reached [77]. In our framework, the decoder utilises the parity-check constraints 

among the parity-concatenated trellis codes to "collect" extrinsic information 

which will be fed back into the decoder for the next iteration. Fig. 4-1 illustrates 

the fundamental idea of this type of iterative decoder. 

feedback for the next iteration 

I 

Calculating 
extrinsic 

information 

i~~~:~~~n bDecoder of- ~J~::~~~~~er 
1 > Trellis Codes 1 > 

Received signals Output at the 
and/or final iteration 

channel information 

Figure 4-1: Block diagram of the iterative decoder 
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In this chapter and the following chapters we will study several iterative de

coding algorithms for decoding the trellis codes and calculating the extri nsi c 

information for the iterative decoding. First let us study the iterative Viterbi 

algorithm (IVA) for decoding the parity-concatenated trellis codes. 

4.2 Iterative Viterbi Algorithm 

In [62][63][64], Wei has presented the IVA for decoding the concatenated convo

lutional codes , and excellent performance close to the Shannon limit has been 

achieved. However , we find the IVA developed for convolutional codes cannot be 

simply extended to the trellis codes. The difficulty is due to the complexity of 

computation of Aij ,pa:rit y [ 62] which is an essential parameter in the IVA. In this 

section, we will modify the IVA [62][63] for decoding the parity-concatenated 2-D 

and M-D TCM schemes. 

4.2.1 IVA for parity-concatenated 2-D trellis codes 

First let us consider the IVA based on a single-parity-check structure without tail

biting. As shown later, the only difference between the IVA and the standard VA 

is the calculation of branch metric. Therefore we will derive the new branch metric 

function which takes into account the parity-check constraint for the IVA. We will 

focus on a code in which only the coded bits are protected by the parity-check 

constraint (i.e. , partial protection). The IVA for the code with full protection can 

be obtained in a similar way. 

Let R j ,,i (j = 1, 2 · · · , m; i = 1, 2, · · · , l ) denote the ith received signal of the j th 

Packet in the receiver and V · · (V-~) · v .(7:p) ) = (v~ . • • • v~f 1 · v~f 2 • • • v'': .) denotes ) J,1, J,'I, ) J,i J,i J,i ) J,'l J,'l 

the i th coded symbol of the j th packet , where V -~) = (v~. • • • v~f 1
) is the output J,i J,i J,i 

from the convolutional encoder with rate k / (k + 1) , and v .(7:p) = (vJ~i 2 
.. · vJ7:\ ) is J,i ) ) 

the uncoded part of the input symbol U j ,i · If only the coded bits are protected, 

then only ½~) satisfies the parity-check constraint in the coded symbol. Suppose 

that the 1st
, 2n d

, • • • , ( m - 2) th packets have been successfully decoded by the 
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standard VA in the first iteration, and now we are going to decode the (m - l) th 

packet using the updated (new) branch metrics. The original PC constraint on 

the ith symbols in one block ( m packets) is 

Wm,i == V1~) EB V{~) EB · · · EB V!,] == 0, i == 1, 2, · · · , l. ( 4.1) 

Let Wm-2,i == v/~) EB·· · EB V~2 2 ,,;,· The receiver replaces the j th (j == l, 2, ... , m-2) 

received packets by the estimated j th transmitted packets. So we can get the 

estimated PC constraint 

----- - (p) - (p) 
Wm-2,i == V1 ,,;, EB · · · EB Vm-2 ,1:, (4.2) 

where V}f) is the decision of ~;f). Now if considering the parity-check constraint 

an1ong the received signals R1,,;,, · · · , Rm-l,i and Rm,i, we can get the likelihood 

function for decoding the ( m - 1 )th packet as follows, 

A~,-lJ == -log [P(R1,i, ... 'Rm-1,i, Rm,ilV~21 ,,;,; vl
11!(J]' (4.3) 

where v~21 ,,;, and vl~ti, are coded part and uncoded part of symbol Vm-1, ,;,, re

spectively. Assuming R 1,i, · · · , Rm-l ,i and Rm,i are independent of each other1, 

we then have 

A~-1,i ~ -log [P(Rm-1 ,,;,IV~21,i; vi~l,J] 
- log [P(R1,i, · · · , Rm-2,i, Rm,,;,/V!21,i; V!~l,,J], 

(v) (p) 
Am-1 ,i + Am-1 ,,i,· (4.4) 

where ,\,~~l,i denotes the branch metric value which is identical to the metric used 

in the VA, and ,\,~~1 ,,;, denotes the extrinsic metric value introduced by the PC 

constraint from the other packets. With the IVA, computing ,\~~ 1 ,;, for high-rate 
) 

TCM can be significantly simplified. 

If Wm-2,i == w m-2,1:, where Wm-2,i == vl~) EB ... EB v:22 i, then we have 
) ) 

-----w v(p) v(p) m-2,,i, EB m-l,1: EB m,i == 0, (4.5) 
1 Actually, R1,i, · · · , Rm,i are weakly dependent due to the PC constraint a111ong the111. 
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or 

v:21 ,,i == v:,l E:B w m-2,,i· (4.6) 

Therefore, v:L the coded part of the ith codeword in the m th packet , can be 
) 

obtained through the PC constraint and ( m-2) decoded received packets as well. 

However, there is no PC property among the uncoded part v}7P) of symbols, so 

the question is how to determine the uncoded part vlnr) of the ith codeword for 
) 

the m th packet. 

We know that the coded part V,;;) decides which subset will be selected in 

the constellation, and the parallel transition error in the subset can be ignored 

at high SNRs. Therefore , after v:i is determined , v!nf) can also be decided by 
) ) 

selecting one point (V:,i ; V!~f) ) which is the closest to the received signal Rm,i 
in this subset. Therefore , we have 

(p) 
Am- 1,,i, -log [P(R1 ,i, ... ' R m-2,,i,, Rm,ilV!21,i ; vl~(J]) 

-log [P(R1 ,i, ... ' R m- 2,,i,, Rm,i1 v:,l E:B W m- 2,i; v:,r) )]. (4.7) 

Here vl~ti, has been replaced by v:,r) . Exact calculation of ( 4. 7) is very com

putation expensive and almost practically impossible when m is large. Also , 

considering R1,,i , · · · , Rm- 2 ,,i: are just weakly dependent on Rm,,i, therefore , we 

approximate ( 4. 7) as 

A~~l ,i ~ - log[P(Rm,i 1v:,i E:B W m-2,i ; v!~f) )]. (4.8) 

Now the metric function ,\~~ 1 ,i, is approximately equal to the branch metric 
) 

used in the VA for the m th packet. Thus the computation of ( 4.4) is simply the 

sum of the VA branch metric functions of the (m - l) t h and m t h packets. It is 

worth mentioning here that ,\~~ 1 ,i will not be the correct metric and the error , 
-------pro pa g at ion will result if W m -2,'i # W m - 2 ,i . The effect of error propagation can 

be reduced by scaling down the value of ,\~~1 i with a scaling factor a , i.e , 
) 

\ I _ \ (v) \ (p) 
/\m-l i - /\m-l i + O'. • /\m- l i ' , ) ) 

(4.9) 

We will discuss a in more detail in section 4.2.3. 
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So far, we have considered the branch metric function on a single-parity

check structure. In the double-parity-check structure, there are two types of 

PC constraints which can produce two sorts of extrinsic metrics2 (see Figs. 3-14 

and 3-15). The horizontal PC constraint provides the extrinsic metric given in 

( 4.8) for each super packet, and the vertical PC constraint provides the extrinsic 

metric for each column in the structure given in Fig. 3-14. These two extrinsic 

metrics are almost independent each other. Therefore, for a double-parity-check 

structure, the updated branch metric function of one symbol will be the sum of 

its original VA branch metric value and two extrinsic metric values. For example, 

for the m th packet of the qth super packet, the updated branch metric functions 

A~-1 ,m- l ,i will be 

,\' -,\(v) (,\(p)(h) A(p)(v) ) 
q-1 m-1 -i - q-l m-1 -i + q-l m-1 i + q- l m-l i . a, 

' ) I ' } ' '/ ' ' 

i == 1, 2, · .. , l, (4.10) 

where a is a scaling parameter, ,\t~l ,m- l ,i is the original VA branch metric of 

the symbol, ,\~~i~~-l ,-i and ,\~~t~-l ,i are the extrinsic metric values introduced 

by the horizontal and vertical PC constraints, respectively. It is clear that the 

calculations of ,\r~i:~-l ,i and ,\r~i~~-l ,i are exactly the same. 

4.2.2 IVA for parity-concatenated M-D trellis codes 

In this section, we will extend the IVA discussed above for decoding the parity

concatenated 4-D Wei trellis codes. The cases of decoding the 8-D and higher 

dimensional concatenated trellis codes can be obtained through the similar way. 

Similarly, first let us derive the updated branch metric used in the IVA for de

coding the parity-concatenated 4-D trellis codes based on a single-parity-check 

structure (i.e., m streams). 

As mentioned in section 3.3.2, the outputs (four bits) from the 4-D trellis 

encoder follow the PC property due to the linearity of the 4-D Wei trellis encoder. 
2 A third type of parity-check constraint can be contemplated for the double-parity-check 

structure which is a combination of row and column check sums. However, it is found that 

this posed co1nputational and technical difficulties which did not significantly contribute to the 

perfonnance. 
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In the 4-D Wei TC M schemes, to make the schemes transparent to all phase 

ambiguities of the constellation, a bit converter converts the output bits YOt, II~, 

I2f and I3J,' into two pairs of selection bits zot Zl t and zot+i Zl t+1, see Fig. 3-3. 

Unfortunately, we found that such a conversion destroys the PC property of some 

output bits of bit converter. For the 4-D Wei code, we can see I:~1 EB Zl;,+1 i- 0 

(The conversion table is in [ 67].) Fortunately, this PC property can be preserved 

if bit conversion is viewed as a part of the 4-D constellation mapping. 

Let RJ (j == 1, 2, · · · , m) denote the received 4-D signals of m streams at 

time t, where Rj actually consists of two 2-D component signals: r} and rj+1 

which are resulted from two 2-D sub-constellations, respectively. Let ZJ 

(zJ(p); zJ(np)) == (ZOJ, Zli; Z2J, • • • , Zli) denote a 2-D encoded symbol of the 

j th stream in the first 2-D subconstellation at time t, where zJ(p) is the output 

from the bit converter to select a 2-D subset in the first 2-D subconstellation, 

zJ(np) is the non-trellis-encoded part of the input symbol, and l is the number 

of the bits in a 2-D input symbol. Similarly, let z;+1 (z;+l(p);z;+l(np)) == 

( zo;+1
' z1;+1; z2;+1, ... 'z l;+1

) denote a 2-D encoded symbol of the j th stream 

in the second 2-D subconstellation at time t. 

Suppose that the j th (j == 1, 2, • • • , m - 2) stream at time t has been success

fully decoded using the standard VA and now we are going to decode the ( m -1) th 

stream at time t. Obviously, the original PC constraint on them streams at time 

tis 

m 

w~ L EBIJ == 0, ( 4.11) 
j=l 

whe~e IJ comprises four encoded bits YOJ, II J, 12y and I3Y. Let W~_ 2 == 
I:;:--;_2 EB IJ. Then the receiver replaces the j th (j == 1, 2, • • • , m - 2) stream by 

the estimated j th transmitted stream at time t. So we can get the estimated PC 

constraint 

m-2 
----t 
wm-2 

~ " t 
~ EBIJ, (4.12) 
j=l 

where iJ is the decision of IJ. In generalizing, let (ZJ(p); z;+l(p)) == w(IJ), where 
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\Ji() is the bit conversion function determined by the bit converter. Now the 

updated likelihood function of the 4-D type3 in the ( m - 1) th stream at time t is 

,\~_1 == - log [P(Ri, R1, · .. , R~IZ;,._1, Z~!1)], ( 4.13) 

where Z,~,-l and z ,:n+!1 are the first and second 2-D symbols in the (m - l) th 

stream at time t, respectively. Assuming Ri, R1, · · • and R~ are independent of 

each other4
, we then have 

A~-1 ~ - log [P(R~-1IZ,:n_1, z;,t!1)] 

- log [P(Ri, · · · , R~-2, R~IZ,:n-1, z ,:n+!1)] 

,\t('u) + ,\t(p) 
m-1 m-1, (4.14) 

where ,\~~ 1 denotes the branch metric value ( of the 4-D type) which is identical 

to the branch metric ( of the 4-D type) used in the VA, and ,\~~1 denotes the 

extrinsic metric value introduced by the PC property from the other streams. 

If ----Wt - Wt h Wt - ~m-2 Jt h h m-2 - m-2, W ere m-2 - Dj=l EB j, t en we ave 

----w~-2 EB 1;,._1 EB 1:n == o. (4.15) 

Therefore, using the relationship between ( zJ(p); zJ+l(p)) and IJ, we can get 

At(p) - 1 [P(Rt Rt Rt 11Tr(Jt )· zt(np) zt+l(np))] m-1 - - og 1, · · · , m-2, m ~ m-1 , m-1, m-1 

1 [P(Rt Rt Rt I zt(p)'. zt(np) -og 1,···, m-2, mm, m-1, ( 4.16) 

z ,:n+l(p)'; Z,~+!lnp))]' 

t(p)' t+l( )1 I I ---. where (Zm ; Zm P ) == \J!(I:n) and I:n == I:n EB W,;._2• 

Similar with the IVA for 2-D trellis codes, the uncoded parts z ,~np) and 
t+l(np) ( t(p)' t(np)) ( t+l(p)' t+l(np)) Zm , can be determined by selecting two points Zm ; Zm , and Zm ; Zm , 

which are the closest to the received 2-D component signals r~ and r;;t 1 in the 

subset, respectively. In addition, exactly calculation of ( 4.16) is also computa

tionally expensive and almost practically impossible when m is large. Hence, we 
3 The definition of the 4-D type can be found in Wei's paper [67]. 
4 Actually, Rl, · · · , R~ are weakly dependent due to the PC property among then1. 
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approximate (4.16) as 

A~~l ~ - log [ P( R~ I z ,t;;)'; z~np)' z:n+l(p)'; z ,:n+l(np))]. ( 4.17) 

( ) 
t (rip) t+ l (np) t (np) t+ 1 (np) Here in 4.17 Zm-l and Zm-i have been replaced by Zm and Zm , 

respectively. 

Now the metric function A~~1 is equal to the branch metric of the 4-D type 

used in the VA for the m th stream. The computation of (4.14) is simply the 

sum of the VA branch metrics of the ( m - 1 lh and m th streams. The effect 

of error propagation can be reduced by scaling down the value of A~~ 1 with a 

scaling factor a. After A~_ 1 is obtained, the rest of the steps for decoding the 

4-D symbol are exactly the same as the procedures in [67]. 

For the codes based on a double-parity-check structure, calculation of branch 

metric function for the 4-D parity-concatenated trellis codes is the same as that 

for the 2-D trellis codes, namely, the extrinsic metric values in a double-parity

check structure is the sum of component metrics introduced by horizontal and 

vertical PC properties, respectively. 

Comparing the IVA for decoding the parity-concatenated 2-D and 4-D trellis 

codes, we can see that extra effort has to be made for updating the PC constraint 

in the latter case due to a nonlinear operation (bit converter). Since the conver-

. b (Y t I t t' t') d (Z t z t z t+l z t+l) ( . - ) s1ons etween oj, lj, I2j, I3j an oj, lj, oj , lj J - 1, · · · , m 

are able to be implemented through a table-looking, no extra computation actu

ally is consumed by this part. 

4.2.3 Some relevant issues on the IVA 

A. Block size of the parity check structures 

We have noted that the key concept in the IVA is the introduction of extrinsic 

metric value Af,] (j == 1, 2, • • • , m) based on the (m -1) packets when one packet 

is being decoded (here supposing the single-parity-check structure is used). Since 

the m th packet (parity packet) actually represents redundancy, then how to choose 

the value of m is an important issue. If we extend to the double-parity-check 
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structure, then the analogous question is how to select m as well as q. Now 

suppose the partial protection is employed in the parity-concatenated 2-D trellis 

codes, and the spectral efficiency is k bits/T. After deduction of redundant bits, 

the real rate kreal in a single-parity-check structure ( m packets) is 

kreal == k - k/m, ( 4.18) 

where k is the number of bits involved in the partial protection. Similarly, the 

real rate kreal in a double-parity-check structure ( m x q packets) is 

kreal == k - ( m + q - 1) -
mq k. (4.19) 

For the parity-concatenated 4-D Wei trellis codes, suppose each 2-D symbol 

includes l bits, and each 4-D symbol has Z trellis-encoded bits which are involved 

in the PC constraint, then the real rate lreal in a single-parity-check structure ( m 

streams) is 

-
l 

-lrea.l - l- 2m· 

And the real rate in a double-parity-check structure ( m x q streams) is 

(m+q-1)_ 
lreal == l - l. 

2mq 

( 4.20) 

(4.21) 

Figure 4-2 shows the rate loss and the Shannon limit left-shift due to the re

dundancy at a spectral efficiency of 6 bits /T (i.e., k == 6) for a parity-concatenated 

2-D trellis code. Here we suppose mis equal to q in the double-parity-check struc

ture, and two coded bits (i.e., k == 2) of each symbol are protected. 

From Fig. 4-2, we can see that the rate loss and the Shannon limit left-shift 

are substantially increased when m and/ or q is decreased. In a single-parity

check structure, if m is small, for example m == 5, then the rate reduction is 

large (20%). If m is large, say m == 40, then the rate reduction is small (2.5%). 

However, we note that the accuracy of extrinsic metric >.f} is determined by the 
----PC constraint W which is updated by the decoded values of ( m - 2) packets. If 

----m is large, generally W is more likely to be erroneous and consequently results in 
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Figure 4-2: Rate loss and the Shannon limit left-shift for the single- and double 

parity-check structures at a spectral efficiency of 6 bits/T 

error propagation. Therefore, the values of m and q should be properly selected 

to achieve a best BER performance in terms of approaching the Shannon limit. _ 

-----Next we consider how to update the PC constraint W in the IVA. Also the 

graphic interpretation of the IVA can be found in section 5. 3. 

-----B. Updating the parity-check constraint W 

(a). In the IVA, the Viterbi decoder progresses over the trellis for a certain 

depth (i.e., truncation length or decoding depth), it then produces its decision 

results. Ideally, updating for one packet/stream should be based on the decoding 

----history of the other packets/streams, namely, W should be updated based on the 

newest decoded values of the other packets/streams. However, in the IVA for 

packet transmission with tail-biting techniques on parity-check structures, the 

decision results of any packet cannot be determined until the whole super packet 

----is finished. Thus, for all packets, W is updated only once in every iteration. We 
----can see that the way W is updated has little effect on the performance of the 

IVA. 

(b). In the derivation of updated metric function used in the IVA, when the 

j th packet is decoded, the metric function ,\nl,i of the (j + 1 )ih packet is supposed 
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to be "combined" ( added) with the >-t/ of the j th packet. There is a drawback for 

such an operation, since we noted that the errors often occur consecutively in the 

Viterbi decoding for the trellis codes. That means the decoded errors often occur 

in the adjacent packets in the single- or double-parity-check structure, especially 

when the packet length is short. Therefore, if one packet is being decoded, and 

its adjacent packet is selected to "combine" with it, serious error propagation 

will possibly result if an error event goes through these two packets. To avoid 

this problem, we can randomly select a packet to be "combined" with the packet 

which is being decoded. Fig. 4-3 illustrates this random selection idea for the 

IVA on a single-parity-check structure (suppose the first packet is being decoded 

here). Through the simulations, we find that using the random selection can 

achieve more 0.1 dB-0.2 dB gain, and also make the convergence speed of the 

IV A faster as well. 

Packet 1 
A A A A A A A A 

Packet 2 

Packet 3 

Packet m, - 1 

Packet m, 

Figure 4-3: A simple case of random selection idea in the IVA on a single

parity-check structure 

Therefore, based on the updated metric functions for parity-concatenated 

trellis codes, the corresponding IVA can be summarized as follows. 

(The IV A for decoding the parity-concatenated trellis codes:) 

step (a) In the first iteration, decode all the packets/ streams in the single- or 

double-parity-check structures using the standard VA without consideration 

of the PC constraint among those packets/streams; 

----step (b) In the next iteration, first, update the PC constraint W based on the 
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decoded symbol values. Here the random selection mentioned in Fig. 4-3 is 

employed; 

step ( c) Then, update the branch metric for each symbol which is the sum of 

----original VA branch metric and extrinsic branch metric ( s) "selected" by W; 

step ( d) Finally, decode all the packets using the Viterbi algorithm except that 

the updated branch metrics given in step ( c) rather than original ones are 

employed; 

step ( e) Repeat steps (b), ( c) and ( d) for several iterations until a stop criterion 

(we will discuss it in part E) is satisfied or a pre-set maximum number of 

iterations is reached. 

C. Scaling parameter a in the IVA 

As we show in sections 4.2.1 and 4.2.2, the scaling parameter a is necessary 

in the IVA to mitigate the error propagation during iterative decoding. In the 

IVA, whether the extrinsic metric has a positive or negative impact to the symbol 
----being decoded depends on the "selector" W which is calculated from the decoded 
----symbols in previous iteration. Generally, W often incurs errors especially in first 

several iterations. Therefore, scaling down the fed-back information is essential 

to mitigate the negative impact. Otherwise serious error propagation will result 

in. However, we noticed that the positive impact is also reduced by the operation 

of scaling down at the same time. If a is too small, little positive information is 

fed back to assist the decoder to improve the performance. Therefore, the scaling 

parameter a should be elaborately selected. It is a hard task to determine a via 

mathematical derivation. In section 6.1, we will use an experimental method to 

roughly select a for obtaining the good performance of the IVA. 

D. Multistage decoding for multilevel codes 

As showed in section 3.3.4, a BCH block code is combined with the parity

concatenated trellis codes to deal with the parallel transition errors (i.e., the errors 
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caused by uncoded bits). In the receiver, the received signals are correspondingly 

decoded using multistage decoding [ 4 7]. A block diagram of the decoder structure 

is given in Fig. 4-4. The iterative decoder in each symbol interval decides upon 

the correct cosubsets of Anc. Using this decision, the BCH decoder in every kb 

symbol intervals finds the correct cosubsets of Anc+l. Finally, the shaping decoder 

and uncoded bits decoder decide on the parallel transition bits based on the result 

of BCH decoder. 

Shaping Decoder (n,1 + T 5 )bits I Delay I • I . 
& Uncoded Bits 

r+-
Decoder 

per symbol 

BCH kb bits -~ 

Decoder per kb symbols 

Iterative - k c bits --
Received Decoder 

per symbol 
Signals 

Figure 4-4: Multistage decoder of multilevel concatenated codes 

E. Stop criteria in the IVA 

The stop criteria in the IVA is quite straightforward. If the updated PC 

constraint W satisfies Wm 'i == "'"?1'_1 V-~) == 0 (i == 1, · · · , l) (for the single-parity-, L...JJ- J,1, 

check structure) or Wm q 'i == "'q -1 "'"?1'-1 v~) . == 0 (for the double-parity-check , , uy- UJ- Y,J,i 

structure), then the iterative decoding process will be terminated. However, in 

some cases, we can see that the decoding process is stopped with coded bit errors. 

This phenomenon is due to the same error events appearing at the same place in 

the even-number packets (see Fig. 4-5), especially for the small constraint length 

trellis codes. Obviously, this kind of error is more prone to occur in the single

parity-check structure than double-parity-check structure. Therefore, from this 

point of view, the codes on the double-parity-check structure is more robust than 

the codes on the single-parity-check structure. 

F. "Pre-decision" method used in the IVA on double-parity-check 

structure 
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0 0 
0 

0 

0 0 

1 

1 

1 

1 

0 0 
0 

0 

0 0 

Figure 4-5: An error pattern of block interleaver in double-parity-check struc

ture 
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Finally, aimed at the IVA on a double-parity-check structure , we discuss a 

"pre-decision" method which has been employed in our simulation programs and 

can dramatically reduce the computation. As we show in section 3.4.2 , there are 

horizontal and vertical parity-check constraints in a double-parity-check struc

ture. During the iterative decoding process, if a super packet (including m packets 

for packet transmission) or a horizontal ( or vertical) plane of streams (including 

m( or q) streams for continuous transmission) satisfy its own PC constraint , this 

super packet or horizontal (vertical) plane of streams will be excluded from the 

decoding during next iteration because the decoder "thinks" the errors in those 

packets or streams have been successfully wiped out with high possibility. Ob

viously, such a "pre-decision" can make the computation of iterative decoding 

cut down significantly. The other benefit is to avoid those packets/ streams in 

which the errors have already been removed being involved in errors again due 

to occasional error propagation. 

The "pre-decision" will be continued until all the super packets or horizontal 

( or vertical) planes of streams have been excluded from the decoding process . At 

this stage, if all the errors in a double-parity-check structure have really been 

corrected, the iterative decoding will be terminated in terms of the stop criteria 

W · - ""q ""m V- (p) - 0 B t t · h d d' ·11 b m ,q ,·,, - uy=l uj=l y ,j ,i - . u some 1mes, t e eco 1ng process w1 e 

continued because the PC constraint is satisfied in only one direction (horizontal 

or vertical) and failed in other direction. Since the errors cannot be located from 
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the other direction, we have to re-decode all the packets no matter whether the 

errors in them have been really corrected or not. Generally the remaining errors 

can be corrected quickly since the positive information is dominated in feedback 

at this stage. 

4.3 Discussion 

In this chapter, the iterative Viterbi algorithm was presented for decoding the 

parity-concatenated 2-D or M-D Wei trellis codes. The new branch metric func

tions used in the IVA were derived using some simplifying assumptions. We can 

see that the IVA decoder is identical to the standard VA except that the branch 

metric functions are updated according to the decisions of the Viterbi decoder in 

previous iterations, and the remaining parts are exactly same. If all the branch 

metrics of symbols in a single- or double-parity-check structure are able to be 

saved in the memory during the first iteration, then only few calculations are 

needed for updating new branch metrics used in next iteration. In addition, the 

computations of the IVA on a double-parity-check structure can be further re

duced through a "pre-decision" method which excludes some packets satisfying 

parity-check constraint being involved in the next iterative decoding process. For 

the parity-concatenated M-D trellis codes, due to a nonlinear operation in the 

encoding process, some extra effort, but with negligible additional computation 

has to be made in the IVA. 

Some relevant issues on the IV A have been discussed. Here we emphasised 

following three points: (a) the number of packet(s)/stream(s) (i.e., m and/or q) 
should be properly selected to minimize the gap between the decoding perfor

mance and the Shannon limit; (b) during the process of updating branch metric, 

we should randomly choose one symbol to feedback its extrinsic information; ( c) 

the scaling parameter a used in the IVA should be carefully determined. Both 

over-setting and under-setting scaling factor could degrade the error performance 

as well as convergence speed of the IV A. 



Chapter 5 

Graph-Based Iterative Decoding 

Algorithms 

In this chapter, the conventional iterative two-way decoding algorithms (ITWA) [38] 

will be first reviewed. Then we will show that for parity-concatenated trellis codes 

the two-way algorithms need to be modified in order to achieve a better perfor

mance. After that, we will give a graph interpretation of the IVA. Lastly, five 

iterative decoding algorithms will be proposed and their computational complex

ity are compared. 

5.1 Conventional Two-Way Algorithms 

It is convenient to represent the error control codes and describe the decoding 

algorithms using the language of graphs. In [38], Forney summarized the two-way 

algorithms (TWAs) which were applicable to decode the codes defined on general 

TWL graphs. It is shown that, with the TWL graph, all the standard decoding 

algorithms for turbo codes, LDPC codes, and other compound codes can be 

classified as one of two types of algorithms: min-sum and sum-product algorithms. 

In [38] [77], these two algorithms have been explicitly described through a simple 

binary code case. In this section, we will first introduce the min-sum and sum

product algorithms for trellis codes, and then show how the iterative two-way 

62 
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algorithms (include iterative min-sum and sum-product algorithms) work on the 

parity-concatenated TCM scheme based on its TWL graph representation. 

5.1.1 The min-sum algorithm 

In the TWL representation of trellis codes, each possible value x,i of each coded 

symbol node V;, can be assigned a weight w,i: (xi ); e.g. ; a log likelihood weight 

wi (xi ) == - log P(R,il ½ == x,i:) , (5.1) 

where R,i: is the received signal corresponding to the coded symbol V;, , and P(·) 

denotes the probability density function. The total weight w(V) of a valid con

figuration ( codeword) V is the sum of its symbol weights: 

w(V) == L wi (V;, ). (5.2) 
'l 

The min-sum algorithm is then used to find the most likelihood decision on 

the codeword V , i.e. , 

-V == min{w(V)IV EC}, (5.3) 

where C represents the overall possible codewords , w(V) are the log likelihood 

weights - log P(R/V), R denotes the received codeword corresponding to the 

codeword V. For a cycle-free graph, if we cut through any edge, the graph 

becomes two disjoint parts , say "upstream" and "downstream". The weigh 

w(V) of any codeword V may correspondingly be expressed as the sum w(V) == 
w(V+) + w(V-) of the upstream and downstream weights w(V+) and w(V- ) , 

respectively. The upstream and downstream weights can be computed separately 

by the min-sum algorithm (whence the name "two-way algorithm" [38]). 

There is an important issue that should be mentioned here. It is about updat

ing order of the graph. For a cycle-free graph, the flooding schedule and sequential 

updating schedule [38] are the two alternative methods. In the flooding schedule , 

each symbol node and check node are allocated one processing unit , and then 

all computations are simultaneously performed for all values of all edges at all 
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times, based on the currently available inputs. This approach may be attractive 

in hardware. But for software implementation, the sequential updating sched

ule is possibly a more natural choice. With the sequential updating order, the 

min-sum algorithm for a finite cycle-free graph can be summarized as follows [38]. 

(The min-sum algorithm for a finite cycle-free graph:) 

step ( a) Start at the "leaf" nodes, which are connected to the graph via a single 

edge; the upstream values of the edge connected to the leaf node are simply 

the values of that leaf node. 

step (b) At each interior node, update the weights of the values of each outgoing 

edge as soon as all incoming weights are known. The update rules are as 

follows. 

(1) For an edge downstream of a symbol or state node, for each possible 

value x ,i, the outgoing weight is simply the sum of the incoming weights 

into the node plus the local weight of the node itself. 

(2) For an edge downstream of a parity check node, for each possible value 

Xi, the outgoing weight is the minimum of the sum of the incoming weights 

over the set of all incoming configurations consistent with Xi. 

step ( c) Repeat step (b) until reaching every leaf node. 

step ( d) The sum of the upstream and downstream weights gives the final weights 

of each value of each edge, and thus of its associated symbol node. 

When the min-sum algorithm is applied to a graph corresponding to a finite

length trellis ( see Fig. 3-16 (b)), the natural updating schedule is started first 

from left to right and then from right to left, which yields the backward-forward 

algorithm (BFA) [38]. Furthermore, if the computation in one direction is re

placed by a simpler backtracking procedure, the standard Viterbi algorithm will 

result. It is clear that the complexity of the BFA is approximately twice the VA 

decoding complexity for the same trellis, but the BFA can deliver the soft-output 

information for each symbol. 
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In practical implementation, it is important to handle numerical issues prop

erly. Typically, the incoming or outgoing values of a node may grow out of range 

quickly. To overcome this, it is necessary to include an arbitrary normalization 

factor in the updating process. Since the min-sum algorithm only involves ad

dition and minimization, the normalization factor does not influence the final 

performance. 

5.1.2 The sum-product algorithm 

The sum-product algorithm is exactly the same as the min-sum algorithm, except 

that the "min" is replaced by "sum", and the "sum" is replaced by "product" 

and the weights are replaced by P(R/V). In particular, the update rules are as 

follows. 

(1) For an edge downstream of a symbol or state node, for each possible value 

x ,i, the outgoing weight is simply the product of the incoming weights into the 

node plus the local weight of the node itself. 

(2) For an edge downstream of a parity check node, for each possible value x ,i, 

the outgoing weight is the sum of the product of all incoming weights over the 

set of all incoming configurations consistent with x ,i. 

When the weights are proportional to likelihoods, the sum-product algorithm 

1s alternatively called the APP ( a posteriori probability) decoding algorithm. 

When and only when the decoding algorithm goes on to make symbol decisions 

based on the maximum APP, the MAP (maximum a posteriori) decoding algo

rithm results [38]. Compared with the VA which provides optimum performance 

in the sense of minimizing the sequence error probability, the MAP algorithm is 

optimal in the sense of minimizing the probability of a symbol error. 

The properties of the sum-product algorithm are just the same as the prop

erties of the min-sum algorithm. In particular, it converges in the same time 

on a finite cycle-free graph, and the number of computations is the same [38]. 

But the complexity of sum-product is a bit of higher due to the requirement for 

multiplications. 
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The problem of numerical overflow also exists in the sum-product algorithm. 

Therefore, an arbitrary normalization factor should be included in the decoding 

process. 

5.1.3 Iterative two-way algorithms (ITWAs) for parity con

catenated trellis codes 

Based on the TWL graph representation of the parity-concatenated trellis codes, 

the ITWA is a straightforward solution. Fig. 5-1 shows a TWL graph correspond

ing to the codes based on a single-parity-check structure without tail-biting, in 

which m == 3 and l == 4. The definitions of four types of node appearing in 

Fig. 5-1 have been explained in section 3.5. 
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,,,' 0 .. o-- - 0 .. 0 .. 0 ,,' , ,/ 2~27: / / -~~~:4 / -" - - - - - - - - - - - - - - _,,_ - - - - - - - - - - - J _ - - - - - - - - - - - j - - - - - - - - - - - - ;. - - - - - - - - - .., / 
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-------1> the smallest cycle 
-----------------------7 
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/ 
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/ 
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/ 

________________________________________________________________ .., 

Figure 5-1: TWL graph representation for the parity-concatenated trellis codes 

on a single-parity-check structure with m = 3 and l = 4 

0 bviously, the TWL graphs corresponding to each trellis diagram are cycle

free. But after concatenating them via partial parity check nodes, there are 

many the smallest cycles in the TWL graph (see Fig. 5-1). Suppose the coded 

symbol V2 ,2 will be decoded, then all the extrinsic information about V2,2 , spread 
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throughout the symbol nodes in other packets, is "collected" through the two-way 

algorithm. The arrows shown in Fig. 5-1 illustrate how the extrinsic information 

flows to the coded symbol ½,2 . The conventional ITWAs for decoding the parity

concatenated trellis codes are summarized as follows. 

(The conventional ITWAs for parity-concatenated trellis codes:) 

step ( a) In the first iteration, cut all partial parity check nodes and apply the 

min-sum ( or sum-product) algorithm to an "unwrapped" trellis1 [41 ][60] ( an 

example is shown in Fig. 5-2). The weight of each possible value of symbol 

node is then obtained; 

step (b) In the next iteration, first update the weight of each symbol node using 

the min-sum ( or sum-product) algorithm based on the extrinsic information 

collected from the other symbol nodes, as shown in Fig. 5-1. (Fig. 5-3 (b) 

illustrates the updating procedure, which will be discussed in detail late.) 

Then repeat step ( a); 

step ( c) Repeat step (b) for several iterations until a stop criterion is satisfied or 

a pre-set maximum number of iterations is reached. 

Only the partial parity check node is new here. Thus, we go through an 

example to illustrate how to update the weight of a symbol node via its partial 

parity check node. (A more detailed example, including steps (a), (b) and (c), 

is given in Appendix A.) Since the min-sum algorithm is exactly the same as 

the sum-product algorithm, except that the "min-of-sum" is replaced by a "sum

of-product" operation, here we just use the min-sum algorithm to illustrate the 

updating procedure. 

Consider a parity-concatenated trellis code defined in Fig. 5-1, i.e., m == 3. 

Assume that 2 bits of each symbol are inputted into a linear rate 1 /2, 4-state 
1This is for the parity-concatenated trellis codes based on a single-parity-check structure 

with tail-biting (see Fig. 3-13). For the codes defined in Fig. 3-11, the "unwrapped" packet, as 

shown in Fig. 3-12, is employed. 
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v3,4 v3 ,3 

V1 ,1 V1 ,2 V1 ,3 V1 ,4 

V2 ,1 V2 ,2 V2 ,3 V2 ,4 

v3 ,1 v3 ,2 v3 ,3 v3 ,4 

V1 ,2 V1 ,1 

Figure 5-2: An "unwrapped" trellis for a single-parity-check structure with 

tail-biting 
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trellis encoder (i.e., k == 2, k == 1 and v == 2), and the output symbols are mapped 

into an 8-PSK constellation (see Fig. 5-3 (a)). Three coded symbol nodes V1,2 , 

V2,2 and V3,2 are connected via a partial parity check node. Therefore, each 

coded symbol node V consists of four possible values 00, 01, 10 and 11. In the 

receiver, the local weights w(V) of symbol V, i.e., - log P(R/V) can be obtained 

by selecting the smallest weight in each of four subsets. Suppose that w(V1,2) == 

(0.1, 1.0, 3.0, 1.3), w(V2,2) == (1.3, 0.1 , 1.0, 3.0) and w(V3,2) == (1.3, 0.1, 1.0, 3.0) 

for four subsets 00, 01, 10 and 11 , respectively, as shown in Fig. 5-3 (b). Now let 

us focus on updating the weights for symbol node ½,2 . 

According to Fig. 5-3 (b), the updating procedure can be divided into three 

stages. 

stage 1 List all subsets and their corresponding weights for all starting symbol 

nodes, i.e., V1,2 and V3,2 . Then simply transfer their weights to the neigh

bouring edge; 

stage 2 The weight for every subset after the partial parity check node is com

puted via the min-sum algorithm. For example, for subset v1 v2 == 01, we 
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(b) Update the weight for V2,2 

Figure 5-3: Illustration of the updating procedure for the min-sum algorithm 

on a finite cycle-free graph 

have w' == min{0.1 + 0.1, 1.0 + 1.3 , 3.0 + 3.0, 1.3 + 1.0} == 0.2; 
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stage 3 List all subsets and their corresponding weights for updating symbol 

node , i.e, V2,2- Then, the updated weight w' (V2,2) for each subset is equal to 

the sum of its local weight w(V2,2 ) and the extrinsic weight w'. For example, 

for subset v 1v2 == 00, w'(V2,2) == 1.3 + 1.1 == 2.4. 
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Clearly, the updated weights for coded symbol nodes V1,2 and ½ ,2 can be 

obtained through the similar way. 

There is an issue about how to deal with a graph in which a partial parity check 

node combines several (i.e., m > 3) symbol nodes. For the structure illustrated in 

Fig. 5-1, in which m == 3, the conventional method for information transmission 

discussed in [38][77) (i.e., min-sum or sum-product) can be employed. However, 

if m > 3, then the conventional way will not be suitable due to high complexity 

involved. For example, Fig. 5-4 (a) displays a graph in which eight (m == 8) 

symbol nodes are parity checked by one partial parity check node. 

a 

h 
b 

~ 
~ 

g• A;: - •c 
t' ~ 

f d 

e 

(a) 

a 

C 

e 

g 

h 

(b) 

b 

d 

f 

Figure 5-4: Equivalent TWL graphs for a multi-connected parity check node 

Suppose the information on symbol nodes a, b , · · · , g is passed to symbol 

node h simultaneously. Directly calculating the weights of each symbol node 

is quite computation expensive if based on the structure of Fig. 5-4 (a). Note 

that the local weights of parity check nodes are assumed to be zero. Therefore, 

a variant of the graph in Fig. 5-4 (a) is shown in Fig. 5-4 (b) which does the 

same work as Fig. 5-4 ( a) but has much lower complexity. (It is clear that the 

complexity of Fig. 5-4 (b) is proportional to the number and size of symbol nodes. 

With regard to Fig. 5-4 (a), however, the complexity is exponentially increased 

with the number and size of symbol nodes.) The min-sum algorithm is then be 

able to be conducted in each parity check node. For this case, if each symbol 



5.2. MODIFIED ITERATIVE TWO-WAY ALGORITHMS 71 

node represents a four-symbol space (00,01,10 and 11), we can see that 6 x 16 

addition operations and 6 x 12 comparison-selection operations are required if the 

information on the symbol nodes a, b, · · · ,g is passed to the symbol node h. 

5.2 Modified Iterative Two-Way Algorithms 

The two-way algorithms in section 5.1.3 are sub-optimal. But for many codes 

such as turbo codes and LDPC codes without small cycles, their performance 

can closely approach the Shannon limit. The key problem for parity-concatenated 

trellis codes is a large number of short cycles in the TWL graph. In turbo codes 

and LDPC codes, such short cycles should be avoided in code construction. Con

sequently, the "spread" interleaver [58) was proposed. However, for the parity

concatenated codes we can do nothing to change the code structure. Thus, it was 

not surprising that when we apply the conventional min-sum and sum-product 

algorithms to decode the parity concatenated trellis codes, their error perfor

mances are much poorer compared with the IVA (as we will show in Chapter 6). 

Can we find a way to fix the conventional ITWAs? In this section, we will study 

asymptotical behaviour of the min-sum and sum-product algorithms, which will 

indicate how to fix the algorithms. Similar analysis for the parity-concatenated 

convolutional codes can be found in [ 62). 

When the SNR is large, error events with minimum free distance will com

monly dominate the error performance. Here, the error event is defined in the 

traditional way such that it starts when the error path differs from the correct 

path and ends when the two paths agree again for the first time. Now let us study 

the ML and APP decoders for a simple parity-concatenated code which involves 

a single error event. 

Proposition 1 Considering a simple parity-concatenated code given 

in Fig. 5-5, where all m packets transmit either paths 1 or 2 of an iden

tical error event and the number of packets selecting path 2 is even, 

we can then construct a ML or APP decoder as follows. 
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Figure 5-5: A simple parity-concatenated code 

Step 1 In the first iteration, apply the ML or APP algorithm to 

compute the metric ( which is related to the ML value) of two 

paths in each packet ; 

Step 2 Set m' = l; 

Step 3 All packets other than packet m' will contribute their extrin

sic information - the ML metrics or APP values obtained in step 

1 - to packet m'. The extrinsic information is computed using the 

same procedure as in the conventional min-sum or sum-product 

algorithm, except that the extrinsic ML metrics have to be scaled 

down by a factor of 1/ d or the extrinsic APP values have to pass 

through ad-th root device before being sent to packet m' , where 

d is the number of time units in which the symbol in the er

ror path is different from the symbol of the correct path. In 

other words , d is the length of the error event with minimum 

distance minus the number of symbols in the error path which 
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agree with the correct path. For example, suppose the symbols 

in the correct path are 0-0-0-0-0, and the symbols in the error 

path with minimum distance are 1-0-4-1-2, then d = 5 - 1 = 4. 

For parity-concatenated convolutional codes, d equals the Ham

ming distance of the error event [ 62]. Fig. 5-6 illustrates these 

operations; 

Step 4 Re-apply the ML or APP algorithm to packet m' after the 

extrinsic information is sent to packet m' and make the final 

decision; 

Step 5 Set m' = m' + 1, and repeat steps 3 and 4 until m' = m. 

Ill special parity check node with normalization 

X X X X 

Y•' y ~ or y ~ or ... 

r I \ 

y - l ~• z 
LJ ... 

f(x) = (x)l /d for APP 

J(x) = x/d forML 

Figure 5-6: A TWL graph with information normalization 

Proof 1 Delete the time units in which two paths have the same 

symbols, since they have no contribution to the decision. Let w( Pf) 
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· l : : 2 
denote the metric of path i in packet j, where w( Pf) == I:t=l ( Rf - s~ ,i ) , 
R1 == [ R{, ... , Rf] denotes the received signal sequence of packet j, 

. . . 

s: == [ s{,i, ... , sf.,J denotes the transmitted signal sequence of path i in 

packet j. Then the ML decoder for packet m' is 

im, == arg:r;nin (w(P;m') + Ai,m') , 
iE l ,2 

(5.4) 

where 

( 

m ) A1 ,m1 == . . m~n . """"' w(P!_) 
{ 'll 'l 'l • } ~ 7,J ' , ... , 'rn 1 - 1' ·m.' +1 , .. . ,1,m. . . 

con ta ins an e1Jen nnrnber of 2' s J = 1,J :pm' 

(5.5) 

( 

m ) A2,m' == . . m~n L w( pj) 
{ 'll , .. . ,im1 - 1 >1,m / +1 , ... ,im } . . 1,j 

contains a.n odd numb er of 2' s J=l,J=pm' 

(5.6) 

The extra metric for every branch of the error event is { Ai,m', A 2 ,m'} . 

For d branches the extrinsic information has been added to packet m' 

d times; thus without normalization, the decision for packet m' will 

be 

im, == arg :r;nin (w( Pim') + dAi,m' ) , 
'lE l ,2 

(5.7) 

which is not the ML rule. But , after normalization the decision of the 

algorithm is the ML decision. 

Following a similar procedure , we can also prove that the normal

ized APP algorithm given in proposition 1 is optimal. 

There are three key differences between the conventional min-sum or sum

product algorithm and those given in proposition 1: (1) using a normalization 

function; (2) only two iterations are required; (3) extrinsic information is based on 

the first iteration decoding, i.e., in step 4, the extrinsic information is not updated. 

In section 6.3 we will show that the first modification (i.e., normalization) is very 

important for near optimal iterative decoding. Thus, for a TWL graph containing 

many short cycles, we can also achieve near optimal iterative decoding using the 

min-sum/ sum-product algorithms, except that the extrinsic information in the 
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short cycles has to be normalised. We will also show that asymptotically the 

modified min-sum/sum-product algorithms only need two iterations, which is a 

very surprising result. Consequently, we consider the iterative min-sum and sum

product algorithms with the information normalization in the rest of the thesis. 

If the ITWAs are applied to decode the parity-concatenated 4-D trellis codes , 

the procedure is similar with that of decoding the parity-concatenated 2-D trellis 

codes. The only difference is that the symbol nodes in TWL graph are treated 

as 4-D symbols which consists of two 2-D symbols , and hence the computational 

complexity will be dramatically increased due to the high diversity of the coded 

symbol. (This is because the PC constraint should be considered only based on 

the 4-D symbols, and cannot be separately considered based on two 2-D sym

bols.) For the 4-D 16-state Wei code, each symbol node contains 16 possible 

combinations (values) of YOt, II L I2j' and I3f. For the 4-D 64-state Wei code , 

64 possible combinations are included in each symbol node. 

5.3 A Special Case of ITWA - IVA 

For a TWL graph with cycles, the conventional two-way algorithms are not op

timal. In order to obtain the optimal min-sum and sum-product algorithms, we 

have to convert graphs with cycles to graphs without cycles. For example , a 

single cycle graph, say a tail-biting trellis , can be decomposed into 2v cycle-free 

trellises. the optimal decoding algorithms are then obtained by applying the 

two-way algorithms to each of 2v cycle-free trellis [92]. Thus, the complexity of 

the optimal algorithms for a tail-biting trellis is 2v times the complexity for the 

cycle-free trellises. If a graph contains two cycles ( say an oo length trellis) , then 

it is easy to show that the complexity of the optimal decoders is about (2v) 2 

times of that for the cycle-free trellises [64]. A powerful code like Turbo codes or 

LDPC codes often contains a large number of cycles , thus the optimal decoder 

has a prohibitive large complexity. Consequently, the ITWA is often used as 

an alternative suboptimal decoding algorithm. If the girth of the cycle is large 
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enough ( say larger than 5v), then the error performance of ITWA is very close 

to the optimal decoders [53] [ 60]. However, when a TWL graph has many small 

cycles, the ITWA often performs poorly. By modifying the ITWA to avoid the 

effect of small cycles, we might improve its performance. The IVA is one such a 

modification. 

Actually, the IVA can be viewed as a simplification of the iterative min-sum 

algorithm. It is clear that the IVA follows the same procedure as the iterative min

sum algorithm, except that the VA during trellis decoding process is replaced by 

the min-sum algorithm, and the updating procedure (i.e., calculation of extrinsic 

information) is simplified significantly. Therefore, the IVA can also be interpreted 

through a TWL graph. 

Fig. 5-7 shows the procedures in the IVA using the TWL representation. For 

the sake of simplicity, in this case m == 3. First, in Fig. 5-7 (a), the VA is applied 
-in the trellis to get the estimated value ½,2 (j == 1, · · · , 3) of each symbol node. In 

the next iteration, the PC constraint within the symbol nodes is considered, see 

Fig. 5-7 (b). In Fig. 5-7 ( c) , when decoding one symbol node (here suppose V1,2) , 

we cut down the connections between all other symbol nodes (V2,2 and V3,2) which 

are connected by their parity check nodes with the graph. In Fig. 5-7 ( d), one 

of the symbol nodes is randomly selected (here suppose V3,2) , and then the PC 
----constraint W1,2 can be calculated based on the estimated values of the remaining 

---- - ----symbol node V2 ,2, i.e. , W1,2 == V2,2 - Here W1,2 can be viewed as a "selector" which 

chooses the appropriate local weights (branch metrics) of symbol node V3,2 to pass 

through the partial parity check node to update the branch metrics of symbol 

node V1 2 . 
) 

To compare the IVA with the iterative min-sum algorithm, we go through the 

example given in Fig. 5-3 to illustrate how to update extrinsic information (i.e. , 

branch metrics) in the IVA. Again , as shown in Fig. 5-8 , we focus on updating 

the branch metrics for the symbol node V2,2 . 

stage 1 Randomly select one symbol (say V1,2 ) from the set comprised of all 

starting symbols, i.e. , V1,2 and V3,2 , in this example. List all subsets and 
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Figure 5-7: TWL graph interpretation for the IVA on a single-parity-check 

structure 
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their corresponding local weights (branch metrics) for this selected symbol. 

----Computer the "selector" W2 ,2 based on the VA decision of the rest of starting 

symbols. In this example, the decision for V3 ,2 is v 1 v2 == 01 after the VA in 

----previous iteration, and hence W2,2 == 01; 

----stage 2 There are two parts in stage 2. First, in stage 2 ( a), we calculate W2 ,2 EB 

v1 v2 ( of symbol V1,2), and then copy the weights from the selected symbol 

----V1 ,2- For example, we have W2 ,2 EB v1 v2 == 01 EB 00 == 01 and weight w' == 0.1 

for the first row of the weight table in stage 2 (a). In stage 2 (b), the 

weights w' are scaled down by a factor a (here suppose a == 0.25), which is 

introduced to control error propagation; 

stage 3 This stage is identical to stage 3 in the min-sum algorithm ( see sec

tion 5.1.3). 

From Figures 5-7 and 5-8, we can see that in the IVA, only the branch metrics 
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(local weights) of one symbol controlled by the decisions of the other symbol 

values are transmitted to the symbol node which is being decoded. Unlike the 

iterative min-sum algorithm, the sum of upstream and downstream weights of 

one symbol are passed. 

Finally, it is worth mentioning here that the issues A, B, D, E and F discussed 

in section 4.2.3 for the IVA are also applicable to the ITWAs. 
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5.4 Comparison of Several Iterative Decoding 

Algorithms 

So far, we have studied the ITWAs and IVA for decoding the parity-concatenated 

trellis codes. In this section, we summarize and extend them as the following five 

types of iterative decoding algorithms (ID As). The computation complexity of 

these five IDAs will also be quantitatively compared. 

IDA 1 is the IVA. In the IVA, the local likelihood weights of one symbol 

node are fed back as the extrinsic information for another symbol node 

which is being decoded, see Fig. 5-7 ( d). Since only modulo-2 addition is 

-----involved in calculating W, the computation of the IVA in one iteration is 

almost the same as the VA decoding computation. 

IDA 2 is the iterative min-sum algorithm. In this algorithm, bi-directional 

VA (min-sum) is applied to decode each packet/stream. Therefore, the 

complexity of this part is approximately twice the VA decoding complexity. 

To obtain the extrinsic information, the weight w (sum of the upstream 

weight w+ and downstream weight w-) of all the symbol nodes except one 

which is being decoded are concentrated on the parity check node using 

the min-sum algorithm, see Fig. 5-1. As we mentioned in section 5.1, the 

complexity of calculating w is proportional to the number and size of the 

symbol nodes. 

IDA 3 is the iterative sum-product algorithm, which is exactly the same 

as IDA 2, except the "min-sum" is replaced by the "sum-product". The 

number of computation of IDA 3 is the same as that of IDA 2. But the 

complexity of IDA 3 is higher due to the requirement for multiplication. 

IDA 4 is the mixture of IDA 1 with IDA 2. In IDA 4, the bi-directional 

VA is still used to decode each packet/ stream. But the "selection" idea in 

the IVA is employed to obtain the extrinsic information which is the weight 
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w rather that the local weight of one symbol node. It is clear that the 

computation complexity of IDA 4 is approximately twice that of IDA 1. 

IDA 5 is the mixture of IDA 1 with IDA 3. We can see that IDA 5 is the 

same as IDA 4, except the "sum-product" is applied on each packet/stream. 

Therefore, its complexity is a bit of higher than that of IDA 4. 

We have described in section 4.1 that the procedure in the IDAs includes 

two parts: decoding the trellis codes and calculating the extrinsic information. 

In accordance with the single-parity-check structure ( m packets x l symbols) 

defined in Fig. 3-5 (i.e., without tail-biting) and 2-D trellis codes described in 

section 3. 3 .1, in Table 5 .1 we list the types of operation and their numbers involved 

in the trellis code decoding and extrinsic information calculation for one packet 

in five IDAs. The parameter N in Table 5.1 is equal to 2k+l which means each 

symbol node in TWL graph comprises N possible values. 

For the codes on a double-parity-check structure with m x m packets (i.e., 

q == m), we can see that the level of calculation in decoding the trellis codes 

is exactly same as the one in Table 5.1. But the numbers of calculating the 

extrinsic information will be doubled due to the horizontal and vertical parity

check constraints involved. Roughly, for the same trellis codes and same m ( and 

q), the computation complexity of these five IDAs can be ordered as follows: IDA 

3 > IDA 2 > IDA 5 > IDA 4 > IDA 1, i.e., the iterative sum-product algorithm 

has the highest complexity, and the IVA has the lowest complexity. 

It is worth mentioning here that the re-encoding of the decoded symbols may 

----be necessary to produce the "selector" W in IDA 1, IDA 4 and IDA 5. However, 

in IDA 2 and IDA 3, the re-encoding procedure can be avoided since they are 

totally "soft-in/ soft-out" algorithms. 

5.5 Performance Analysis 

Performance analysis for iterative min-sum and sum-product algorithms is a dif

ficult task, even for a simple single cycle trellis. Many leading researchers are 
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IDA 

IDA 1 

IDA 2 

IDA 3 

IDA 4 

IDA 5 

Decoding the trellis code 

Addition: NSl/2 

Comparison-Selection: 

NSl/2-Sl 

Addition: 

3NSl/2 - NS+ Nl 

Comparison-Selection: 

(N - 2)S(l - l)+[(N/2)S - l]l 

Addition: (N - 2)S(l - 1) 

Multiplication: 

NS(l - l)+[(N/2)S - l]l+Nl 

Comparison-Selection: 

[(N/2)S - l]l 

same as that of IDA 2 

same as that of IDA 3 

alncluding (m, - 3)l modulo-2 addition 
bDue to the scaling down operation 
cDue to the normalization operation 

dDue to the normalization operation 

Calculating the extrinsic 

information 

Additiona: [(m-3)+N]l 

Multiplicationb: Nl 

Addition: [N2(m- 2) + N]l 

Comparison-Selection: 

(N - l)N(m - 2)l 

Multiplicationc: Nl 

Multiplication: 

[N2 (m - 2) + N]l 

Addition: 

(N - l)N(m - 2)l 

Root-dd: Nl 

same as that of IDA 1 

same as that of IDA 1 

Table 5.1: Comparison of the computational complexity of five IDAs on a 

single-parity-check structure with m packets x l symbols 

currently focussing on this problem [11][41][54][105]. 
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In this section, we will calculate the upper bounds for the error floors of the 

parity-concatenated trellis codes with and without trellis shaping. The premise 

is to suppose that the coded bits of trellis codes have been successfully decoded. 

Based on the calculated upper bound, the proper BCH code can then be selected 

to lower error floor level. 

The upper bound for the error floor of the parity-concatenated trellis codes 
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without shaping can be obtained through the union bound technique since the 

cosubsets of constellation A0 generally are non-rectangular constellations. As

suming a signal point a in the constellation Ao is transmitted and decoded as 

a' in the same cosubset with a. Suppose a' is one of the closest points with a 

and the squared distance between a and a' is d; a'. Then the probability of the 
) 

correct decision in x or y coordinate is [50] 

Pc~; == Pcy > 1 - 2 Q 
d; a' n · Eb 

) 

Eav 2No 
(5.8) 

where Eav is the average energy of the constellation, n is the number of bits 

in one symbol, and Eb/ No is the average SNR per bit , where Eb is the energy 

per bit, and N0 denotes the ( one-sided) noise power spectral density. Thus , the 

probability of the correct decision is 

2 

Pc == Pc~; . Pcy > 1-2Q 
d; a ' n · Eb 

) 

Eav 2No 

Therefore, the probability of a symbol error is upper-bounded as 

PM == 1 - Pc 
2 

< 1 - 11- 2Q 
d; a' n · Eb 

) 

Eav 2No 

4Q 
d; a ' n · Eb 

) 

Eav 2No 
-4Q2 

d;a, n · Eb 
) 

Eav 2No 

The average bit error probability is upper-bounded as 

Pb(e) < Nav . 4Q 
n 

d; a' n · Eb 
) 

Eav 2No 

(5.9) 

(5 .10) 

(5.11) 

where Nav is the average number of error bits per symbol over all cosubsets. 

If trellis shaping is combined with the parity-concatenated trellis codes, then 

the bit error rate will be slightly effected by the trellis shaping decoder, which 

can be chosen to be feedback free syndrome-former [36] and therefore only limited 
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error propagation will be caused for shaping coded bits. So after the trellis shaping 

decoding, the error bit rate is rectified as 

P~ ( e) == Pb( e) · Lav (5.12) 

where Lav is the average length caused by the error propagation. It is also worth 

mentioning here that the effect of trellis shaping should be considered when cal

culating the Ea:v value in (5.12). 

According to the calculated upper bound, we can then derive the error prob

ability when a BCH code ( nb, kb, qb) is combined with the parity-concatenated 

trellis codes to lower the error floor level. For a BCH code with hard-decision 

decoding, the probability of a code word error is upper-bounded by the expression 

(50] 

nb ( ) PM < Pt;ax) = L ~b p\l - Pt'-i 

and lower-bounded by (50] 

PM > p(m'in) 
M 

't=q+l 

drn in, b (d ) L m;n,b pi(l _ p )drnin,b-i 

d . b 
't=[ rn;n, ]+1 

(5.13) 

(5.14) 

where dmin ,b is the minimum distance of the code words, and pis the probability 

of binary digit error. In our case, p is the probability of binary digit protected 

by the BCH code. It is clear that a more powerful code needs more redundancy. 

Therefore, if the specified error level is given, according to the formulae (5.12)

(5.14), we can then select the appropriate BCH code to significantly reduce the 

error probability, with the proper tradeoff between redundancy and performance. 

5.6 Discussion 

In this chapter, firstly, the conventional iterative two-way algorithms based on the 

TWL graph representations were described for decoding the parity-concatenated 
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trellis codes. A simple example was given accordingly. Then we showed the mod

ified iterative two-way algorithms in which a normalization function was applied, 

and the normalization factor d was determined by the number of time units in 

·which the symbol in the error path is different from the symbol of the correct 

path. It can be seen that the modified two-way algorithm is an effective solution 

for graphs with many small cycles. From the perspective of graph interpretation, 

the IVA discussed in Chapter 4 can be viewed as a simplified case of the iterative 

min-sum algorithm in which the local weights (branch metrics) of one symbol 

node rather than sum of upstream and downstream weights are fed back as the 

extrinsic information. 

Based on the graph representations, five iterative decoding algorithms, in

cluding the IVA and modified iterative min-sum/sum-product algorithms, were 

developed, and their computational complexity were compared. We can see that 

the iterative sum-product algorithm has the highest computational complexity, 

and the IV A has the lowest one. 

For the parity-concatenated trellis codes at a high spectral efficiency, error 

floors would be appeared at the region close to the Shannon capacity limit due 

to the parallel transition errors in trellis codes. The upper bound on the error 

floor was analytically determined, and an appropriate multilevel code (BCH code) 

could be selected to dramatically bring down the error floor to a very low level. 



Chapter 6 

Numerical Results for 

Parity-Concatenated TCM 

In this chapter, we present extensive simulation results for several parity-concaten

ated trellis codes. The 2-D trellis codes used for simulations are typical Unger

boeck codes and the notation is in octal form following that of [31]. For all cases 

the rate loss due to the redundancy has been deducted from the Eb/ N 0 compu

tation. Each simulation trial was terminated if 100 block errors were obtained, 

or if the total number of bits processed reached 6 x 108. In addition, the only 

disturbance in the channel is AWG N. 

6.1 Scaling Parameter a in the IVA 

First, let us investigate the scaling parameter a used in the IVA. As we discussed 

in section 4.2.3, a is an important parameter in mitigating error propagation 

during iterative decoding. Different values for a could affect the bit error perfor

mance and convergence speed significantly. Since it is a hard task to determine 

a mathematically, we have to apply the experimental method to tune a. 

Here we define x as the number of cases in which the received signal R is 

mostly close to the subset which includes a transmitted symbol corresponding to 

R. Generally if x is larger, then better performance can be achieved. If all the 

85 
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transmitted signals are mostly close to the constellation points of transmitted 

symbols compared with other points in the constellation, then there will be no 

errors in the output of the decoder. In the IVA, if a can be properly selected, X 

should increase when the number of iterations increases. Therefore, we may use 

x as an index to roughly compare the error performance and convergence speed 

of the IVA when different a values are used. With a 256-QAM constellation, a 

16-state trellis code ( h0 , h1 , h2 ) = (23, 04, 16) [31] and 16-state trellis shaping are 

employed on a double-parity-check structure in which m = q == 20 and l == 50. 

Figures 6-1 ( a) and 6-1 (b) show the relationship between x and the number of 

iterations when SNR is 11.2 dB and 11.6 dB, respectively. 

In Fig. 6-1, it is shown that due to error propagation x dramatically decreases 

with an increasing number of iterations when a = 1.0. If a is fixed during all 

iterations, we can see that a = 0.125 and a = 0.25 are the best values for 

SNR=ll.2 dB and 11.6 dB, respectively. However, if a is below those values, x 
will increase but too slowly to be practically useful. This is because the positive 

feedback information is becoming weak. Generally, if a is selected properly, 

more positive information can be fed to the next iteration, and then less error 

propagation occurs. Therefore , we may increase a with the number of iterations. 

In Fig. 6-1, we can see that if we gradually increase a by a small value after 

each iteration, better performance than using a fixed a can be obtained. In the 

following simulations, the gradually increased scale will be applied in the IVA. 

It is worth mentioning here that the scales suitable for the above codes prob

ably are not exactly appropriate for other codes. According to our extensive 

simulations, we find that the scale is related to many factors such as the particu

lar trellis code, the size of the block (i.e., the values of m, q and l) and the SNR 

value. However, although it is very difficult to determine an optimal scale for dif

ferent trellis codes with different packet sizes at various SNR, we find that near 

optimal scales are generally good enough for achieving satisfactory performance. 
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Figure 6-1: Comparison of x with different a values in the IVA 
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6.2 Performance of the IVA and error floor 

6.2.1 Partial and full protection in parity-check structures 

In section 3. 3 .1, we have mentioned that different protection strategies should 

be applied for different type of trellis codes, namely, if d}ree,c < d;arallel, we can 

impose the parity-check constraint only on coded bits of trellis codes (i.e., partial 

protection). However, for trellis codes in which dJree,c > d;arallel, we must protect 

all the bits of the symbol. Otherwise , significant performance degradation could 

result. In this section, we will study two types of trellis codes to verify this 

phenomenon. 

The codes used in simulations are the Ungerboeck 4-state code (h0
, h1

) == (5, 2) 

with an 8-PSK constellation and a 16-state code (h0 , h1 , h2 ) == (23, 04, 16) with 

a 16-QAM constellation [21], respectively. It can be seen that for 4-state trellis 

codes dJ,,.ee,c is larger than d;arallel while for 16-state trellis codes d}ree,c is smaller 

than d;a:rallel· We use a double-parity-check structure in which m == 20, q == 20 

and l == 20, and hence there are a total of 8,000 symbols in each block. The peak 

number of iterations is set to 50. 

Figures 6-2 ( a) and (b) show the BER performance of the parity-concatenated 

4-state 8PSK-TCM and 16-state 16-QA-TCM with partial and full protection, 

respectively. We can see that the parity-concatenated 4-state trellis code with 

partial protection perform much worse than the one with full protection. Through 

simulation, we find that over 95% of the errors occur in parallel transitions with 

partial protection. In contrast , the parity-concatenated 16-state trellis codes with 

partial protection can perform almost as well as the one with full protection. 

In Fig. 6-2 (b), we can see the code with partial protection actually achieves 

slightly better performance than the one with full protection. This small gap is 

caused by the difference of rate loss between the two types of protection. In this 

example, after reduction for the redundancy bits, the real rates are 2.805 bits/T 

for partial protection and 2. 7075 bits/T for full protection , respectively. Therefore 

the difference of rate loss is about 0.154 dB. Apart from the rate loss, the Shannon 
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Figure 6-2: Comparison of BER performance for parity-concatenated 4-state 

8PSK-TCM and 16-state 16-QA-TCM with partial and full protection , respec

tively (m = 20 , q = 20 and l = 20) 
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capacity limit is also left-shifted due to the redundant bits which actually offsets 

a part of the gains achieved. For the case of Fig. 6-2 (a) , the Shannon limits are 

1.582 dB and 1.405 dB for partial and full protection, respectively. Therefore , a 

performance of about 2.2 dB away from the Shannon limit at a BER== 1.9 x 10- 5 

is achieved by the parity-concatenated 2-D 4-state trellis codes with an 8,000-

symbol block length at a spectral efficiency of 1.805 bits/T. 

Similarly, for the codes in Fig. 6-2 (b) , the Shannon limits are 3.294 dB and 

3.103 dB for partial and full protection, respectively. Therefore , a performance 

of about 2.1 dB away from the Shannon limit at a BER== 1.9 x 10- 5 is achieved 

by the parity-concatenated 2-D 16-state trellis codes with 8,000-symbol block 

length at a spectral efficiency of 2.805 bits/T. However , for the codes with full 

protection, we can see that the performance is about 2.4 dB away from the 

Shannon limit. That means that protecting the full symbols is not suitable in 

this case because the additional non-information bits (i.e , uncoded bits of trellis 

codes) do not provide effective protection for trellis codes. 

6.2.2 Performance of the IVA 

In the last section, we have simulated for types of parity-concatenated trellis 

codes in the low SNR region. Here we will study cases in the relatively high SNR 

region. Figure 6-3 shows the performance of the IVA on a double-parity-check 

structure in which 2-D 16-state and 256-state parity-concatenated trellis codes 

with a 256-QAM constellation are used respectively at a spectral efficiency of 6 

bits/T, with and without the trellis shaping. In this case , there are 20 x 20 packets 

in the double-parity-check structure , i.e. , m == 20 and q == 20 , and each packet 

includes l == 50 symbols. Therefore , there are a total of 20 ,000 symbols in each 

block. A 16-state shaping code is applied in the simulation. The peak iteration 

number is set to 50. The 16-state and 256-state trellis codes are the FF form of 

the Ungerboeck codes (h0
, h1

, h2
) == (23 , 04 , 16) and (h0 , h1

, h2
) == (401 , 056 , 304) 

[21]. Their dJ,,. ee are 6d~in ,(Ao) and 8d~,in ,(Ao), respectively. After set partitioning, 

d;a.rall el ( d~,;,n ,(A
3
)) is 8d~in ,(Ao) in one of cosubsets of A3 . Therefore , protecting 
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the trellis-coded bits is enough to achieve almost all of the expected gains. For 

comparison, the performance of a 256-state TCM scheme using the standard VA 

is also reported in Fig. 6-3. The results show that for the v == 8 codes about 2.0 

dB gross gain can be achieved by the IVA beyond the VA without shaping and 

about 2. 7 dB gross gain with shaping. However, note that the shaping gain is 

smaller at low SNRs and only about 0. 7 dB shaping gain was obtained in this 

case (asimilar example can be found in [104]) if 16-state trellis shaping was used 

(assuming that the baseline constellation is a 128-point cross constellation) . In 

Fig. 6-3, we also noted that the performances of the v == 4 and v == 8 codes are 

pretty close. This may be explained by the same reason that the performance of 

the v == 8 codes is worse than the v == 4 codes at low SNRs if only the VA is used 

as the decoding algorithm. 

I I i - 3 I I 
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Figure 6-3: BER performance of the 16-state and 256-state trellis codes using 

the IVA based on a double-parity-check structure at a spectral efficiency of 

5.805 bits/T with partial protection 

Similar to the two codes in Fig. 6-2 , the results shown in Fig. 6-3 are not the 

ultimate gains because each block includes some non-information bits which cause 
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the real transmission rate to be lower than the nominal rate. In this example, the 

real rate now is 5.805 bits/T rather than 6 bits/T. The Shannon capacity limit 

for this rate is 9. 76 dB. Therefore, a performance of about 1.25 dB away from 

the Shannon limit at a BER == 3.0 x 10-5 is achieved by the parity-concatenated 

2-D 256-state trellis codes using the IVA on a double-parity-check structure at a 

spectral efficiency of 5.805 bits/T. 

6.2.3 Performance of the error floor and multilevel code 

We can see the error floors in Fig. 6-3. These error floors are mainly dominated 

by the parallel transition errors at relatively low SNRs. In our simulation, we find 

that over 95% of the errors belong to the parallel transition bits (i.e., uncoded 

bits) in the v == 8 codes when the SNR equals 11.1 dB. The error floors, after 

taking away the coded bit errors and the uncoded bit errors caused by coded bit 

errors, are illustrated in Fig. 6-4. We can see that the error floors of the v == 4 

codes and the v == 8 codes are pretty close. We also show upper bounds on error 

floors in terms of the formulae (5.11) and (5.12). Here we suppose d~,in ,(Ao) == 4. 

If trellis shaping is applied, in our case Eav equals 65.8 through simulation, and 

Lav is 2.3 based on the simulation and specific mapping. 

According to the calculated upper bounds, the appropriate BCH code can 

be selected to decrease the error floor to a specified low level. Figure 6-5 shows 

the performance of the parity-concatenated 16-state and 256-state trellis codes 

combined with a (511,493, 2) binary BCH code at a spectral efficiency of 5.805 

bits/T. 

We can see that the error floor at a BER of 10-5 must have moved to a very 

low level. Due to the prohibitive length of the simulation involved, we could 

not determine the next error floor level through simulation. However, we can 

compute the next error floors in terms of the formulae (5.11) and (5.12) with a 

new d~,in ,(Ai). It is shown in Fig. 6-6 that the error floors have been reduced to 

the level of BER == 10-9
. It is obvious that d~'in ,(Ai ) has doubled after the set 

partitioning corresponding to the BCH code. 
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Figure 6-5: BER performance of the parity-concatenated 16-state and 256-

state trellis codes ( the case of Fig. 6-3) combined with a (511,493,2) BCH 

code 
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Figure 6-6: Upper bounds of the new error floors after introduction of a BCH 

code 

Due to the introduction of the BCH code , some additional redundancy is in

volved. Using the binary BCH code (511 , 493 , 2) to protect one bit per symbol , 

the redundancy is very low ( only about 0. 5 % ) . Therefore , in this case a perfor

mance of 1.35 dB away from the Shannon limit at a BER == 1.0 x 10- 9 can be 

achieved by the parity-concatenated 2-D 256-state trellis codes combined with 

the trellis shaping as well as the binary BCH code for packet transmission with 

long block length (20 ,000 symbols per block) . 

6.3 Conventional ITWAs and Modified ITWAs 

In sections 5.1 and 5.2 , we have described the conventional ITWAs and modified 

ITWAs. It is shown that the modified ITWAs can achieve asymptotically near 

optimal decoding for the parity-concatenated trellis codes . Here , firstly, let us 

verify the results of proposition 1 in section 5.2. In Fig. 6-7 we compare the bit 

error rate performances of conventional iterative min-sum algorithm and modified 



6.3. CONVENTIONAL ITWAS AND MODIFIED ITWAS 95 

iterative min-sum algorithm for decoding the parity-concatenated 2-D 256-state 

trellis codes on a double-parity-check structure in which m == 20, q == 20 and 

l == 50. Therefore a total of 20,000 symbols per block are transmitted and the 

over-all spectral efficiency is 5.805 bits/T. A 16-state shaping code is applied in 

the simulation. The 256-state trellis code is the FF form of the U ngerboeck code 

(h0 ,h1,h2
) == (401,056,304) [21]. 

From Fig. 6-7, we can see that the conventional iterative min-sum algorithm 

(i.e., without information normalization and hence d == 1) performs much worse 

( about 0.8 dB) than the modified iterative min-sum algorithm. The figure also 

shows the conventional iterative min-sum algorithm (i.e., d == 1) with 5 iterations 

performs worse than the one with only 2 iterations, which is due to the error 

propagation caused by the too heavily weighted extrinsic information. For the 

256-state trellis code, the length of the error events with minimum distance is 5, 

but some of the error events with minimum distance have the same symbols at 

one time unit. For these error events, we have d == 5 - 1 == 4. In the other error 

events with minimum distance, all symbols of the error paths are different from 

the symbols of the correct path. Therefore, we have d == 5 for these error events. 

Thus, we expect that the modified iterative min-sum algorithm with d == 4 or 

5 will achieve the best asymptotic performance. This figure shows that. When 

d == 2, error propagation is still severe. As d approaches 4, error propagation 

becomes less a problem. When d reaches 7, the performance becomes worse 

again due to the under-fed extrinsic information. 

In Fig. 6-8, we compare the modified iterative min-sum algorithm and the 

iterative ML algorithm given in proposition 1. We use the parity-concatenated 

2-D 16-state trellis codes with (h0 , h1
, h2

) == (23, 04, 16) [31] based on a single

parity-check structure, in which m == 10 and l == 40. Therefore a total of 400 

symbols are transmitted in each block and the over-all spectral efficiency is 5.800 

bits/T. A 256-QAM constellation and 16-state trellis shaping is employed. Since 

the length of the error event with minimum distance is 3 in this case, and the 

symbols of two paths at all time units are different, we set d == 3. In the modified 
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Figure 6-7: Comparison of BER performance between conventional and mod

ified iterative min-sum algorithms with different values of d 

iterative min-sum algorithm the extrinsic information is updated following every 

application of the bi-directional VA algorithm to each packet. 

Figure 6-8 shows that the iterative ML algorithm given in proposition 1 is 

very close to the modified iterative min-sum algorithm at high SNRs and the 

number of iterations required is only 2. At high SNRs the performance of the ML 

algorithm with d = 3 and 2 iterations is close to the modified iterative min-sum 

algorithm. For low SNRs, a larger number of iterations is needed for near-optimal 

decoding. 

6.4 Performance and Complexity Comparison 

of Several Iterative Decoding Algorithms 

We have discussed five IDAs in section 5.4 for the parity-concatenated trellis 

codes. Here we simulate and compare their performance and computational com

plexity for these IDAs under various circumstances. 
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Figure 6-8: Comparison of BER performance between the modified iterative 

min-sum algorithm and the iterative ML algorithm at high SNRs 

6.4.1 Packet transmission with long block length 

In Figures 6-9 (a) and (b) , with various maximum iterations , we compare the 

performances of five IDAs for the same 256-state trellis codes used in Fig. 6-3 

with long packet transmission. Here still m == 20 , q == 20 and l == 50. The 

peak iteration number was set to 20 for the modified iterative min-sum and sum

product algorithms (d == 4) and 50 for IDA 4, IDA 5 and the IVA, since the 

IVA often converges much more slowly than the modified iterative min-sum or 

sum-product algorithm. 16-state trellis shaping is combined with all the five 

IDAs. 

In Fig. 6-9 (a) , we can see that IDA 3 (iterative sum-product algorithm) 

achieves the best performance and IDA 1 (IVA) gives the worst performance , 

but the difference in performance achieved by these five IDAs is not substantial 

(less than 0.1 dB). Compared with the performance of a 256-state TCM scheme 

using the VA reported in Fig. 6-3, the results show that at a BER == 4.0 x 

10-5, about 2.8 dB coding gain can be achieved by the parity-concatenated code 
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Figure 6-9: Comparison of BER performance of the v = 8 trellis codes at a 

spectral efficiency of 5.805 bits/Tusing the IDAs for packet transmission with 

long block length (m = 20, q = 20 and l = 50, 20,000-symbol in each block) 
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decoded using the modified sum-product algorithm with 16-state trellis shaping. 

Therefore , performance 1.15-1.25 dB away from the Shannon limit at a BER's 

of 3.0 - 4.0 x 10- 5 is achieved by the 256-state parity-concatenated trellis code 

using these iterative decoding algorithms. Thus , we can claim that these iterative 

decoding algorithms are nearly optimal. 

In Fig. 6-9 (b) , we can find that for IDA 1, the decoder with at most 10 

iterations has achieved most of gain: its performance is just 0.2 dB worse than 

the performance with up to 50 iterations. For IDA 2 and IDA 3, a maximum of 

5 iterations is enough for obtaining a performance 0.15 dB worse than the one 

with a maximum of 20 iterations. 

In Fig. 6-10 , we report the simulation results about the average number of 

iterations at several SNRs for each algorithm, when the peak number of iterations 

is set to 20/50. 
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Figure 6-10: Average number of iterations of five IDAs for the case of Fig. 6-9 

From Fig. 6-10 : we note that IDA 3 uses the lowest number of iterations , and 

IDA 1 uses the largest number of iterations. For IDA 1, when the SNR increases 

from 11.0 dB to 11.2 dB , the average number of iterations drops dramatically 
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from 27.8 to 5.5. However, if considering the computational complexity of these 

five IDAs and taking into account the additional "sum" and "product" opera

tions needed for updating each symbol node, we found that the computational 

complexity of the modified iterative sum-product algorithm is still much higher 

than that of the IVA, especially at high SNRs. 

6.4.2 Packet transmission with short block length 

In Fig. 6-11, we present the performances of five ID As with various maximum 

iterations for the v == 8 trellis codes with short packet transmission. Here we use 

a single-parity-check structure in which m == 10 and l == 20 (i.e., 200 symbols in 

each block, hence the real rate is 5.800 bits/T). The peak number of iterations is 

set to 50. We can see from Fig. 6-11 (a) that a performance of about 2.1 dB away 

from the Shannon limit is achieved by IDA 1. With a maximum of 10 iterations, 

performance is 0.4 dB worse than achievable by IDA 1. However, for IDA 2 and 

IDA 3, this difference is reduced to about 0.2 dB with at most 5 iterations. 

Similarly, in Table 6.1, we report the simulation results about the average 

number of iterations at several SNRs for each IDA. We can see that the average 

number of iterations is very low and the values of five IDAs are very close. 

IDA SNR=11.7 dB 11.8 dB 11.9 dB 12.0 dB 12 .1 dB 

IDA 1 1.75 1.40 --- --- ---

IDA 2 --- 1.35 1.20 --- ---

IDA 3 --- 1.30 1.18 --- ---

IDA 4 --- --- 1.25 1.16 1.10 

IDA 5 --- --- 1.20 1.15 1.10 

Table 6.1: Average number of iterations for five IDAs in the case of Fig. 6-11 

Different from the case of Fig. 6-9 (a), in Fig. 6-11 (a) we notice that IDA 

1 performs slightly better than IDA 2 and IDA 3. The performance difference 

is within 0.15 dB. IDA 4 and IDA 5 achieve the worst performance. This may 
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Figure 6-11: Comparison of BER performance of the v = 8 trellis codes at a 

spectral efficiency of 5.800 bits/Tusing the IDAs for packet transmission with 

short block length(m = 10 and l = 20, 200-symbol in each block) 

14 
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be explained according to the TWL graph (see Fig. 3-19). For short packet 

lengths ( say less than 5v), the errors may be seriously propagated in one packet 

through the tail-biting cycle. The errors also can be propagated among the 

packets through the smallest cycles ( see Fig. 5-1). If the weight w ( the sum of 

"upstream" and "downstream" weights) of one symbol node is fed back to the 

decoder for the next iteration (in the cases of IDA 4 and IDA 5), the errors in one 

symbol node can be horizontally and vertically passed to its neighboring symbol 

nodes, and then be quickly transmitted back to itself. Therefore, serious error 

propagation will result. In addition, since the tail-biting cycle in each packet is so 

small, some packets may easily be trapped in the same error pattern in IDA 2 and 

IDA 3 due to the feedback which is always the same "concentration of values" 

at each iteration. In IDA 1, however, the problems occurring in IDA 2-IDA 

5 are partially avoided. Namely, since the local weight rather than the "sum" 

weight w of one symbol node is fed back to the decoder, the error propagation 

caused by the smallest cycles can be reduced, and also the random selection of the 

local weight of a symbol node may avoid the packets being trapped in the same 

error patterns. In packet transmission with a long block length or continuous 

transmission format, however, the error propagation in each packet/ stream is not 

dominant since the girth of tail-biting cycle is tending towards infinity. Therefore, 

when more extrinsic information is fed back, better performance can be achieved. 

This may explain the result that IDA 2 and IDA 3 can achieve better performance 

than IDA 1 in Fig. 6-9. 

6.4.3 Packet transmission with medium block length 

Figures 6-12 and 6-13 show the BER performance and average number of itera

tions for the v == 8 trellis codes with medium packet transmission. For this case, 

there are two possibly alternative encoding structures. One is a single-parity

check structure in which m == 10 and l == 200 (the real rate is 5.800 bits/T), and 

the other one is a double-parity-check structure in which m == 10, q == 10 and 

l == 20 ( the real rate is 5. 620 bits /T). The peak number of iterations is set to 
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30 for both cases. We present and compare their performance in Figures 6-12 

and 6-13, respectively. 

From Fig. 6-12 (a), we can see that, based on the single-parity-check structure, 

a performance of about 1.85 dB and 1. 75 dB away from the Shannon limit at a 

BER == 1.5 x 10-5 is achieved by the IVA and iterative min-sum algorithm, 

respectively, with a maximum of 30 iterations. With a maximum of 10 iterations, 

the gain achieved by the IVA is reduced by about 0.4 dB. However, for the iterative 

min-sum and sum-product algorithms with a maximum of only 5 iterations, the 

gain losses are just 0.1 dB and 0.025 dB, respectively. 

As a comparison, in Fig. 6-13 (a), we can see that, based on the double-parity

check structure, a performance of about 1.67 dB away from the Shannon limit at 

a BER == 3.5 x 10-5 is achieved by both the IVA and iterative min-sum/sum

product algorithms with a maximum of 30 iterations. With a maximum of 10 

iterations, the gains achieved by the IVA are reduced by about 0.2 dB. For the 

iterative min-sum and sum-product algorithms with a maximum of 5 iterations, 

the gain losses are 0.2 dB and 0.1 dB, respectively. 

Comparing the gains obtained in Fig. 6-12 (a) and Fig. 6-13 (a), we find 

that similar BER performance has been achieved by both single-parity-check and 

double-parity-check structures, in this example. In [62], a similar conclusion 

has been made for parity-concatenated convolutional codes, namely, a better 

performance can be achieved by using the double-parity-check structure than 

single-parity-check structure provided packet transmission with long block length 

is applied. However, as the packet length becomes short, the gains achieved 

by using the double-parity-check structure will be consequently reduced to one 

"point" which can be obtained by using the single-parity-check structure as well. 

However, even though the same gains could be achieved by both structures, 

there are still some other aspects worthy of consideration. The first one is the 

scaling parameter in the IVA. According to the simulations, we find the perfor

mance of the IVA is more sensitive to the scale in the single-parity-check structure 

than in double-parity-check structure. That means it is more difficult to select an 
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Figure 6-12: Comparison of BER performance of the v = 8 trellis codes at 

a spectral efficiency of 5.800 bits/T using the IDAs for packet transmission 

with medium block length (single-parity-check structure, m = 10, l = 200, 

2,000-symbol in each block) 
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Figure 6-13: Comparison of BER performance of the v = 8 trellis codes at 

a spectral efficiency of 5.620 bits/T using the IDAs for packet transmission 

with medium block length ( double-parity-check structure, m = 10, q = 10 and 

l = 20, 2,000-symbol in each block) 
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appropriate scale to obtain the achievable performance in the single-parity-check 

structure. The second one is about the stop criteria in the IDAs. As we discussed 

in section 5.4, the iterative decoding process will be terminated if parity-check 

constraints are satisfied in parity-check structures. But in case of a pathological 

error pattern (see Fig. 4-5) , the decoder will be stopped "deceitfully" and then 

errors will remain. To avoid such a situation happening, it is obvious that a 

single-parity-check structure is less effective than a double-parity-check structure 

due to the double parity checks in it. The third one is about average number 

of iterations. From Fig. 6-12 (b) and Fig. 6-13 (b) , we can see that IDA 1 the 

average number of iterations in the single-parity-check structure is generally a 

bit of greater than that in the double-parity-check structure. But for IDA 2 and 

IDA 3, the situation is reversed, i.e. , the single-parity-check structure is slightly 

better than the double-parity-check structure in terms of the average number 

of iterations. Therefore , according to these three aspects discussed above, the 

double-parity-check structure is preferable. 

6.5 Performance of the Parity-Concatenated 4-

D TCM 

For the parity-concatenated 4-D 16-state Wei trellis codes with continuous trans

mission, we present in Fig. 6-14 the performance using the ITWAs ( d == 3) and 

IVA with various maximum iterations on a double-parity-check structure in which 

there are 20 x 20 parallel streams (i.e. , m == 20 , q == 20), and each 2-D symbol 

includes 7 bits. The length of decoding window is six 4-D symbols long . The peak 

number of iterations is set to 30. In addition, a (255 ,239,2) BCH code is used to 

lower the error floor dominated by the parallel transition errors. Therefore , the 

real rate now is 6.7871 bits/T. 

In Fig. 6-14 (a) , it is shown that at a BER== 3.7 x 10-6 about 2.7 dB gross 

gain or 2.2 dB net gain (2.4 dB away from the Shannon limit) is obtained. (If 

the 16-D shell mapping is applied, an additional 0.3-0.4 dB gain is expected.) It 
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is noted that both the ITWAs and IVA can achieve quite similar performance in 

this case. In Fig. 6-14 (b), we can see IDA 1 with a maximum of 10 iterations 

outperforms by about 0.2 dB at a BER== 3.5 x 10-6 IDA 2 and IDA 3 with a 

maximum of 5 iterations. This is opposite to the cases in Figures 6-9, 6-11, 6-12 

and 6-13. 

Similarly, in Table 6.2, we report the simulation results about the average 

number of iterations at several SNRs. Due to the high diversity (16 possible 

values) of a 4-D coded symbol node, the computational complexity of IDA 2 

and IDA 3 is much higher than that of the IVA. Such a difference will be more 

significant for higher dimensional parity-concatenated trellis codes. Therefore, 

according to Fig. 6-14 and Table 6.2, we can see that the IVA is the best choice 

for decoding the parity-concatenated M-D TCM systems in terms of the tradeoff 

between BER performance and complexity. 

IDA II SNR=14.4 dB I 14.5 dB 14.6 dB 

IDA 1 9.1 6.0 4.3 

IDA 2 6.5 4.8 3.6 

IDA 3 5.8 4.4 3.4 

Table 6.2: Average number of iterations for the case of Fig. 6-14 

In Fig. 6-15, we present the performance of the parity-concatenated 4-D 16-

state Wei trellis codes using the IVA with a smaller block size, in which m == 

q == 10. It is shown that at a BER== 4.0 x 10-5 about 2.9 dB gross gain or 2.1 

dB net gain has been obtained, which is similar with the case of Fig. 6-14. In 

Fig. 6-15, we also give the performances of the IVA with a maximum of 2, 3 and 

5 iterations. It is shown that most of the gains can be achieved with 5 iterations. 

In [26], Wang and Costello studied linear and nonlinear trellis codes for 4-D 

constellations at high spectral efficiencies with constraint lengths up to 19. Sim

ulation results were presented showing that the "channel cutoff rate bound" [26] 

can be achieved using these new trellis codes with sequential decoding algorithm 
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Figure 6-14: Comparison of BER Performance of the parity-concatenated 4-D 

16-state Wei trellis codes at a spectral efficiency of 6. 7871 bits/T using the 

IVA and ITWAs (m = q = 20) 



6.6. DISCUSSION 109 

a: 
w 
co 

1 o-3 ~.-. -.. -.-. -. . -. -. -.----.. -.-. -.. -. '· -.. -. -. . -.-. -.. -. -. ---i-.- . -. :--'. ·"-~· .:--:-.-:-. -:--: . . --:-. r. ::========r=========r=========i'i 
-- VA 

1 o-4 

10-S 

. . . . . . . . . . . 

. . . . . . . . . . . . 

. . . . . . . . . . 

-e-- IV A with maximum 2 iterations 
--e- IV A with maximum 3 iterations 
-e-- IV A with maximum 5 iterations 
~ IVA with maximum 20 iterations 

'' .... . .. . . . ......... . 

....... ;\ :: ::::::::::::: :::· ·· 

... : . . .... . . .. ... . : ...... . ..... . . '. .. .. .. . ..... \; ........... . 
. . . . •:-......... . :- . . . . . . . . . : .... . . .. ... 

. . . . . . . . . . . . . . . . . ..... '..... . ., .. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · '- .. 

. . . . . . . . . . . . . . . 

10-
6 L __ __i__ __ ~--~~--~--~5-~~---:;-:;; 
14 14.5 15 15.5 16 16.5 17 17.5 

Eb/No 

Figure 6-15: Performance of the parity-concatenated 4-D 16-state Wei trellis 

codes at a spectral efficiency of 6.6483 bits/T using the IVA with vanous 

maximum iterations (m = q = 10) 

at BER's of 10-5-10-6 . Here, it is interesting to compare the BER performance 

achieved by parity-concatenated 4-D 16-state Wei trellis codes with the results 

presented in [26]. We find that the parity-concatenated 4-D 16-state Wei trellis 

codes with the IVA can achieve about more 0.35 dB gain than 218-state (i.e. , 

v == 18) linear trellis codes with Wei 4-D constellation at a BER of 10-6. 

6.6 Discussion 

In this chapter, extensive simulation results were reported. Firstly, the scale 

parameter a used in the IVA was determined for a specific example. We can see 

that a should be carefully tuned to prevent the negative feedback from being 

enhanced and positive feedback from being weakened. We then presented and 

compared the performance of the IVA for the parity-concatenated 2-D trellis 

codes with partial and full protection, respectively. It is shown that different 
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protection strategies should be applied for different type of trellis codes in terms 

of the distance property. 

The performance of the parity-concatenated trellis codes combined with trellis 

shaping and multilevel codes were given. It was seen that the full shaping gains 

could also be obtained with parity-concatenated trellis codes. With a multilevel 

BCH code, the error floor caused by parallel transition errors could be reduced 

dramatically. 

The performance of the conventional ITWA and modified ITWA were com

pared. It was shown that the modified ITWA outperformed the conventional ver

sion for decoding the parity-concatenated trellis codes which comprise many small 

cycles in the TWL graph. Several iterative decoding algorithms were compared 

according to the error performance and computational complexity for parity

concatenated 2-D trellis codes as well as 4-D Wei trellis codes. Both continuous 

transmission and packet transmission with long, medium and short block lengths 

were considered. Through simulations , we found that generally the IVA is the 

best decoding algorithm for the parity-concatenated trellis codes in terms of the 

tradeoff between error performance and complexity. 



Chapter 7 

Robust Decoding Algorithms for 

Parity-Concatenated TCM 

7.1 Introduction 

In previous chapters, five iterative decoding algorithms have been studied for 

decoding the parity-concatenated 2-D and M-D TCM schemes. Using the itera

tive Viterbi decoding algorithm, we can apply parity-concatenated trellis codes 

in many current applications in which the VA is used. 

When we studied the iterative decoding algorithms in previous chapters, the 

channel was disturbed by additive white Gaussian noise (AWGN) only. In reality, 

however, some other types of noise also exist simultaneously or during some time 

periods. In practice, the probability density function (PDF) of channel noises 

could change within a short time frame in an uncertain manner. This could be 

caused by either natural phenomenon such as lighting or man-made noises such 

as automotive noise and power-line noise. 

If the receiver knows the noise PDF at each time slot or its a priori probability, 

the standard Viterbi algorithm or the a posteriori probability algorithm (such as 

sum-product algorithm) can achieve optimal performance. However, if the actual 

channel noise distribution differs from the noise model used to design the receiver, 

there can be significant performance degradation due to the model mismatch. 

111 
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Several recent works have been developed for dealing with uncertainty in chan

nel noises. In [75][106][112], some estimation methods are investigated for turbo 

codes with unknown channel noise. From a different perspective, in [66] Wei 

et al. developed the minimax concept and proposed a robust decoder for con

volutional and turbo codes. The major difference between the methods in [66] 

and [75][106][112] is that in [66] inherently robust decoders are designed while the 

works in [75][106][112] focus on the algorithmic study of estimating the channel 

noise parameters. Therefore, the works in [66] and [75][106][112] are complemen

tary. The noise model estimation can be used for the whole block, and then the 

minimax robust decoder is applied to fight further uncertainties within the block. 

In this chapter, we aim to extend the minimax concept of [66] to deal with the 

robust decoding problem for trellis codes and parity-concatenated trellis codes in 

an uncertain noise environment. The situations where there is mixed noise within 

one symbol block as well as across several blocks are taken into account. 

When the VA is used to decode trellis codes , it is clear that no knowledge 

about noise variance ( channel SNR) is needed. Thus we just consider the robust 

decoding for various types of noises. Since the IVA has been developed for the 

parity-concatenated trellis codes, the procedure of estimating the noise variance 

can be omitted in the IVA as well. 

7.2 System Model 

We consider an additive noise channel in which the noise distribution is unknown. 

Fig. 7-1 shows the system block diagram with TCM. 

A u V R Trellis s u 
~ Modulation f\ Decoder ;;.. 

Encoder \_ ~ 

n 

Figure 7-1: System block diagram for TCM 
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Let the input and output symbols of the trellis encoder be Ui and ½ respec

tively at time i. After modulation, we have the transmitted symbol si. The 

received symbol Ri at time i can then be expressed as 

R ,. == s,; + n i . 1, ,, (7.1) 

where n ,i is the channel noise whose PDF can change. In this thesis, we assume 

that the noise variables ni are mutually independent for all time. 

Let the noise model at time slot i depend on a parameter vector Ai, which in

dicates the noise type and variance. The noise PDF of the channel ( characterised 

by f3c) and the noise PDF used for decoder design (/3d) are then able to written 

as p( n ,i; Af c) and p( ni; Af d), respectively. For purpose of simulation, we will use 

a class of generalised noise density functions, namely, 

p(ni; Ai) p( n ,i; a-;) ri) (7.2) 

ri exp {-_l_ni_l'i_· -} 
2o-,ifo@r(l/,i) [a(,i)],i/2a;i 

where the parameter vector A ,i equals ( o-;, , ,i), r( ·) denotes the Gamma function, 

o-; is the variance of the noise and a( ri) == ~gj~:j, at time i. This class of 

distributions is chosen because it is a large class which contains several commonly 

used distributions as special cases. When , == 2, p( n) is the Gaussian distribution 

function; when , == 1, p(n) given in equation (7.2) is the Laplace distribution 

function; when , == 0.5, p(n) denotes the square-root noise; when , == 4, p(n) 

represents the generalised Gaussian noise. 

The PDF p( ni; A fd ) is used to derive various branch metrics for optimal trellis

based decoding algorithms such as the standard VA and APP algorithms. If the 

decoder knows exactly the channel noise model, namely Af c == Af d, then the 

VA and APP decoders are optimal. When the actual channel noise is unknown 

to the decoder, we have Af c i- Af d, and the standard VA and APP decoders 

are no longer optimal due to the mismatch of noise parameters between channel 

and decoder. Therefore, to achieve optimal performance for the decoder, we need 

to know the exact noise PDF, in our case, the parameter vector f3c• In reality, 
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however , this is often difficult because of the existence of impulsive environmental 

noise such as lighting and man-made noise such as power-line noise , automotive 

noise, etc. The impulsive noise often lasts a short period of time , which makes 

noise estimation a very difficult task. 

7.3 Robust Decoder Design for Trellis Codes 

The decoder design clearly depends on how much information the receiver has 

about the channel noise. Before we start to discuss the robust decoding algorithm 

for trellis codes , let us first review the following two cases: (a) the decoder knows 

the exact noise type for each time slot , and (b) the decoder just knows the a priori 

probability of each noise type. Similar analyses for convolutional and turbo codes 

have been reported in [ 66]. 

7.3.1 Optimal decoder with perfect knowledge of channel 

• noise 

If we have perfect knowledge of the channel noise , i.e. , the exact noise PDF 

parameter vector Af d == Af c at time slot i is known, then the optimal maximum 

likelihood decision (MLD) rule is to select the information symbol sequence -01,z == 

(U1 , U2 , · · · , Uz) , which minimises the state metric: 

-0 l ,l == arg min { t- log [p(Ri - Si; A fd ) l } . 
1,1 . 1 

'l= 

(7.3) 

The conventional Viterbi algorithm can be used to find the best path. Suppose 

R,i == R,i 1+J·R,i Q and s,i == s,i 1+J·si Q, where R i I , Si I and R i Q, Si Q denote the real 
, ' ' ,, ' , , ' , 

and imaginary parts of the complex-valued R i and Si respectively, then the only 

modification of (7.3) will be replacing - log [p(Ri - Si; Af, )] by IRi,I - Si,r l'' + 
I R-i,Q - s,i,Q l' i, where r i denotes the noise type . Obviously, if , == 2 ( Gaussian 

noise) , the branch metric will be IRi - si l2 . To obtain this optimal decoder , we 

need to estimate the PDF of the noise from symbol duration to symbol duration , 

which could be very difficult in practice. 
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7.3.2 Optimal decoder with knowledge of channel noise a 

priori probability 

If we know the a priori probability of the noise PDF parameter vector Afc, 

denoted as P( Afc), but we do not know the exact noise PDF at each time slot i , 

then the optimal decoder can be obtained as follows. 

The optimal maximum likelihood decision rule is to select the information 
A 

symbol sequence U 1,z which minimises the state metric: 

where 

U 1,z == arg 1l}in { t- log [Pave (R; - S;)]} , 
1 ,1 . 1 

i= 

Pa:ue (ni) == L P(Afc )p(n,i ; Afc ). 
A /3c 

t 

(7.4) 

(7.5) 

The VA can also be used to select the best path, with the branch metric 

replacing -log[Pave (Ri - si)] by IRi,1 - s,i,I ,,i + IRi,Q - si,Ql' i . 

If we do not know the above a priori probability P(Afc), and use a fixed 

noise PDF parameter vector A fd for all time slots , we end up with a mismatched 

decoder which could perform much worse that the matched one, as will be shown 

in the numerical results. Therefore , the key task of this chapter is to design a 

robust decoder to prevent significant performance loss due to the noise model 

mismatch. To achieve this , the minimax concept [66][94] is extended from binary 

cases ( convolutional codes , turbo codes) to non-binary cases ( trellis codes , parity

concatenated trellis codes). 

7.3.3 Minimax robust decoder 

The minimax criterion is to minimise the worst possible error performance over 

a family of possible noise PDFs [94]. In this section, we will present the minimax 

robust decoder design based on two types of criterion: path likelihood ratio and 

branch likelihood ratio [ 66]. 
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A. Minimax robust decoder based on path likelihood ratio 

First let us get through a simple example to see how the m inimax concept is 

applied based on the path likelihood ratio. Fig. 7-2 shows a 4-state trellis code 

with a single error event. 

Transmitted 
Symbols 

Received Signals 

Bo B2 

B1 B3 @ 

B2 Bo @ 

B3 B1 @ 

V1 

R1 

BM1
1 

(Vi) 
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R 2 
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V3 

R3 
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, 
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Figure 7-2: Single error event with two types of noise in a 4-state trellis code 

Suppose that there is a transmitted symbol vector V == (V1 , V2 , V3 ) and re

ceived signal vector R == ( R 1 , R2 , R3 ) , as shown in Fig. 7 -2. For this single error 

event case, there are two possible symbol vectors V 1 and V 2 corresponding to 

path 1 and path 2, respectively. At each transmitted symbol, the channel noise 

Afc could be either A 1 or A 2 . We can calculate two branch metrics ( the loga

rithm of the likelihood function) based on both noise parameter vectors. Thus , 

we have branch metric 1 (BM1 ) and branch metric 2 (BM2 ) for each branch, as 

shown as the dashed and solid lines in Fig. 7-2. 

Similar to [66], we define the Likelihood Separation Metric {LSM) for path 

metrics of path 1 and path 2. 

LSMP == 
P(RIVl. A 'i ) 

1 ' I · - 1 2 og r> / ~ l"I" T0 A ,; \ ) 1,) J := l ' (7.6) 

We find that the decoder matched to the noise model which has minimum LS M p 
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will be more likely to have poorer performance. This intuitive observation is 

generally true for the VA and APP decoders under realistic channel noise en

vironments. Therefore, according to the minimax concept, we need to select 

a possible noise pattern corresponding to the worst case which has minimum 

separation between the likelihood of the two paths, since it is more difficult to 

distinguish between the two paths. Then, based on the likelihood separation 

metric of path metrics, the minimax robust decoder can be designed through the 

following 3-step procedure [ 66]. 

step ( a) Calculate the LSM for each pair of paths 

S (A) == llo P(Rlpath 1; A) 
L Mp g P(Rlpath 2; A) 1

' 

(7.7) 

for all possible noise parameter vector A. 

step (b) Select the worst LS Mp: 

A == argmin(LSMP(A)), 
A 

(7.8) 

step ( c) Decode based on the likelihood ratio test using the noise model A from 

step (b ). 

To compute equation (7.8) we need to evaluate all possible Ai combinations, 

which could be very complicated. For the example given in Fig. 7-2, we need to 

calculate LS Mp for 4 3 == 64 cases. 

Furthermore, in a VA or APP decoder, normally there are many possible error 

events. Thus one set of A which minimises the likelihood separation for one error 

event often cannot minimise the likelihood separation for other error events. This 

makes the calculation even more complicated. 

B. Minimax robust decoder based on branch likelihood ratio 

In this subsection, a sub-optimal, practically feasible minimax robust decoder 

based on the theories from the previous subsection will be proposed. This is the 

key algorithm which will be discussed extensively. 
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In trellis-based decoding algorithms, if we select the minimum likelihood sepa

ration for each time instance, then it will likely minimise the likelihood separation 

of most error events. Based on this intuitive observation, the following algorithm 

was proposed in [ 66]: 

First, for the case of Fig. 7-2, we define the LSM for each pair of branch metric 

that start from or stop at the same state: 

LSMb(A,;,) == 1 
P(Ril¼ E Bo (or B1); A,;,) 

og 
P(Ril¼ E B2 (or B3); A,i) 

The decoder then makes a decision based on the following procedure: 

(7.9) 

step (a) Calculate the LSMb(Ai) for all possible noise parameter vectors Ai. 

step {b) Select the parameter vector A,i with minimum LS Mb for each received 

signal: 

Ai == arg min[ LS Mb( Ai)], 
A · i 

(7.10) 

step { c) Use the above parameter vector to compute the branch metric in a stan

dard decoding algorithm. In the VA, just replace the branch metric calcu

lation by - log P(R,il¼; Ai)-

The important implication of step ( c) is that we do not need to change the 

trellis optimisation part of traditional decoders; all we need to change is the 

branch metric, or in most systems, a metric table in the decoder. If we know the 

possible noise types beforehand, this metric table can be calculated off-line so 

there will be no additional complexity. Therefore, the minimax robust decoders 

will be an easy extension to current decoder implementation. 

For the half rate convolutional code [66] or the case of Fig. 7-2, we note that 

the LS Mb can be straightforwardly calculated from a pair of branch metrics that 
-

start or stop in the same state. In the trellis codes , however, if there are k > 2 

encoded bits, then there are r; == 2k transitions that start or stop in the same 

state. A case with r; == 4 is shown in Fig. 7-3. 
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BM1 i. 

Bo B1 B 2 B3 

3 
BMA i 

Figure 7-3: Trellis diagram with four transitions from one state 

For this case , we may calculate the average LSM of these 7J branch metrics as 

( ) 1 ~ P(R-i l¼ E Bz; Ai) I ( ) 
Ai = -(r') D log P(R ·I½ E B ,- · A:) , 7.11 

2 l ,. - l ·l -1-,. i 
2 J ' i , ,J - '· rJ 

which can then be used to determine the noise parameter vector. It is clear 

that the computational complexity of calculating LSMb(Ai) is exponentionally 

increasing with 7J. Therefore, as a simplification, we can use the following LSMb 

to detect the noise pattern. 

LSMb(Ai) = 1 
max{P(Ril¼ E Bz; A,J } 

og . ( I )} 1 , min{ P Ri ~ : E B j ; Ai 
l, j = l, .. · , 7J, (7 .12) 

where the maximum and minimum branch metrics are selected to calculate the 

LS Mb. Through simulation, we find that such a simplification has negligible 

impact on the error performance. 

7.3.4 Scale consideration in the robust IVA 

In chapters 4 and 5, we have explained that the scale parameter a is crucial to the 

performance of the IVA. When the IVA is employed in the decoder corresponding 

to a different type of noisy channel (, is set to 0.5 , 1.0 , 2.0 , and 4.0 in this 

chapter) , should we adjust a according to the type of decoder? 

In a 1-D signal constellation, suppose the squared Euclidean distance be

tween the received signal and one signal point is d~ -in, then the branch met

rics used in the VA or IVA are ~' dmin, d~in, d':nin for the decoders with 
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, == 0.5 , 1.0 , 2.0 , 4.0 , respectively. Fig. 7-4 ( a) and (b) show the branch metrics 

for these four types of decoder. From Fig. 7-4 (b) we can see that the branch 

metrics of the decoders with , == 0.5 , 1.0 , 2.0 are relatively slowly increasing 

with the increase of d m -in · However , in contrast, the branch metric of the decoder 

with the , == 4.0 sharply increases with d min · 
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- Branch metric for y=0.5 

· - · Branch metricfor ·F-1.0 
141- · I · Branchmetricfor y:2.0 I ... · .......... : ...... .. 

Branch metric for y=4.0 

12 
~ 

~ 
m 
~ 101-- • 

t 
.s 

'=t,E 8 1- • 

3 
i 
E 51- . 
-li 
e 
a, 

4 ~ .. 

/ 
/ 

/ 

/ 

I 
·✓ · 

/ : 

.... ,. 
./ 
I 

... I ~ . 

.. I ·. 

I 
· 1 

? 
./. .:. 

I 

I 
I 

I 
I 

· / · 
I 

2 ~ · - · ; ·. ·_·:;_·::..;: :..:. : ~ ~ 

o~ 
-·- : -:- :.:--ca.-~-~~::_;. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Euclidean distance d mln between received signal and constellation points 

(a) Branch 1netrics with d min E 

(0.0 , 2.0) 

- Branch metric for y;:Q.5 

· - · · Branch metric for y= 1.0 

300 I- . I · Branch metric for y=2.0 
- - Branch metric for y= 4.0 

1"- 250 1-
c 
~ 
m 

;le 

" t 200 
C 

'=oE 

so~ . 

0 -

/ ,,. 
.. / .. . ,,. 

/ 

, : 
I 

. / . 
I 

/ : 

I 
I 

. / . 

I 

: / 
: / 
/ 

/'. 

0 0 .5 1 1.5 2 2.5 3 3 .5 4 
Euclidean distance dmln between received signal and constellation points 

(b) Branch 1netrics wit h dmin E 

(0.0 , 4.25 ) 

Figure 7-4: Branch metrics dJnin in the decoders with , = 0.5 , 1.0, 2.0 and 
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I 
I 

In the iterative decoding process of the IVA, we know that one branch metric 

(BM1 ) is updated by adding another scaled branch metric (BMs) to it. Whether 

the extrinsic information present in the B M s is positive or negative with respect 

---to B M 1 depends on the "selector" W which is calculated from the values of other 

------ ------decode d symbols. If W is wrong (i.e ., W i- W ), then B Ms has an adverse impact 

on B M 1 . Therefore , the scale parameter a is necessary. Suppose one updated 

branch metric is BM{ == B M 1 + a · B M s, and also suppose B M s has a negative 

impact on BM1 . For the decoder with , == 2.0 , an appropriate a is chosen to 

suppress such a negative impact. For the decoder with , == 4.0 , however , if the 

same scale is applied , the negative impact probably cannot be eliminated due to 

the rapid "amplification" of any negative impact (see Fig. 7-4). 

Table 7 .1 gives a simple example that illustrates amplification of negative 
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influence in the decoder with , == 4.0, compared with the decoder with , == 2.0. 

In this case, the two branch metrics B M1 and B M2 correspond to one received 

signal, and another two branch metrics BM; and BM? are fed back as extrinsic 

metrics to update BM1 and BM2, respectively. 

Decode1 a== 0.25 a== 0.05 
BM1 BM2 BM1 BM; 

BM' BM' BM' BM' s 
type 1 2 1 2 

, == 2.0 0.7 1.3 3.7 1.7 1.625 1.725 0.885 1.385 

, == 4.0 0.72 1.32 3.72 1.72 3.9125 2.4125 1.1745 1.8345 

Table 7.1: A simple case for illustrating the negative impact 

in the IVA decoders with,= 2.0 and ,=4.0 respectively 

In Table 7 .1, suppose B M 1 < B M 2 represents the correct decision for the 

received signal, and BM} > BM? means a negative impact on that received 

signal. In the decoder with , == 2.0, the relationship between BM{ and BMf 

remains unchanged with a equalling either 0.25 or 0.05, namely, BM{ is still 

smaller than BM~. In the decoder with,== 4.0, however, due to amplification of 

the negative impact (here it is about 5 times), BM{ is larger than BM~ if a equals 

0.25, which reverses the relationship between BM1 and BM2, and consequently 

will degrade the error performance of the IVA. Therefore, a must be decreased 

in this case. We can see BM{ is smaller than BM~ if a == 0.05. That means 

amplification of negative impact in the decoder with , == 4.0 has been reduced 

by using a smaller scale. 

However, if a is small, there is another problem arising in the IVA. As we 

mentioned in chapters 4 and 6, if the scale is too small and the extrinsic metrics 

B Ms contain positive information, the positive impact from extrinsic information 

will be too weak to assist the decoder. Just like the example in Table 7 .1, now 

suppose B M 1 < B M2 represents the wrong decision for the received signal, and 

BM; > BM; implies a positive impact on the received signal. If a equals 0.05, 

the extrinsic information contained in BM; and BM? will be too weak for B M 1 
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and BM2. 

With the power four operation in the decoder with , == 4.0, it is natural 

that amplification of positive impact can also result. Still using the example in 

Table 7.1 except exchanging the values of BM; and BM; (which now repre

sent positive information), we can get BM{ == 1.2125 and BM~ == 5.1125 with 

a == 0.25, respectively. However, due to the comparison-selection procedure (i.e., 

selecting the minimum value) in the IVA, amplifications of positive information 

tend to be suppressed. Therefore, in this case the decoder with , == 4.0 does not 

benefit much from amplification of positive information. 

From Fig. 7-4, we can see that the problem (i.e., amplification of negative 

impact through feedback of extrinsic branch metrics) is not significant in con

stellations with small size, such as 8-PSK or 16-QAM. However, in constellations 

with medium or large size, we have to consider the negative impact caused by 

amplification. Therefore, in terms of the discussion above and Fig. 7-4 (b), we 

can conclude that the scales in the decoders with , == 0.5 and , == 1.0 could 

be slightly larger than the one in the decoder with , == 2.0, but the scale in 

the decoder with , == 4.0 must be much smaller than that of the decoder with 

, == 2.0. 

Figure 7-5 illustrates an experimental result, in which the Ungerboeck 16-

state trellis code (h0 , h1, h2
) == (23, 04, 16) with eight subsets [32] are examined 

under four types of noise to show the distribution of branch metrics in a 256-QAM 

constellation. To be compatible with Fig. 7-4, the branch metrics presented in 

Fig. 7-5 are the minimum Euclidean distance in each subset. 

From Fig. 7-5, we can see that in the,== 4.0 channel more than 50% minimum 

Euclidean distances are located in the range between 3.0 and 4.25, which implies 

an amplification of 9 times and 18 times respectively, compared with the , == 

2.0 channel. Thus, we may anticipate that in the decoder with , == 4.0, the 

performance of the IVA could probably be worse than that of other decoders 

with , == 0.5, 1.0 and 2.0, even though it is matched to the , == 4.0 channel. It 

is hard to mathematically determine how much the amplification of negative or 
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Figure 7-5: Distribution of branch metrics with different type of noise at 

SNR=ll.2 dB 

9 

positive impact affects the performance of the IVA. In the following section, our 

simulation results will show how the performance of the IVA is affected jointly by 

the degree of mismatch between decoders and channel, as well as the amplification 

of negative or positive impact from fedback extrinsic information. 

In Chapter 5, we have studied the modified iterative min-sum algorithm. It 

contains a procedure of information normalisation which is used to scale down the 

extrinsic information fed into the same symbol node several times. The scaling 

parameter d in the modified iterative min-sum algorithm is determined by the 

length of the error event with minimum distance minus the number of symbols 

in the error path which agrees with the correct path. The extrinsic information 

fed back into a symbol node is calculated from the weights of other symbol nodes 

through the min-sum algorithm. The amplification of negative or positive impact 

in the weight of a symbol node has been greatly mitigated through the min

sum algorithm ( add-compare-select operation). Therefore , the phenomenon we 

discussed above for the IVA should not appear in the modified iterative min-sum 
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algorithm, and its performance is dominated by only matched or mismatched 

decoders. The simulation results in the following section will corroborate this 

assertion. 

7.4 Simulation Results 

In this section, we present simulation results for minimax robust decoders com

pared with matched and mismatched decoders under various uncertain channel 

conditions. A class of generalised noise density functions (7.13) will be used in 

the example system. The noise PDFs of different types are shown in Fig. 7-6. 

p( ni) == 

1 
0.3651a exp ( - ~ ) l 0.3021y1a , 

./2,a exp ( - ./2ini I ) 
a ' 

1 ./'Eia exp ( - nf ) 2a2 , 

1 · exp(- n; 
R 7.S~Q{T4 ) • 

'Y == 0.5 

'Y == 1.0 

'Y == 2.0 

'Y == 4.0 

(7.13) 
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Figure 7-6: Different types of noise with,= 0.5, 1.0, 2.0, 4.0 (a= 1.0) 

4 

The trellis code under study is a 16-state Ungerboeck code with (h0 , h1 , h2
) == 

(23, 04, 16) using a 128-QAM constellation. For the parity-concatenated trellis 
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code, a double-parity-check structure with m == 20, q == 20 and l == 50 (i.e., 

20,000 symbols per block) is employed. 16-state trellis shaping is also applied 

with the concatenated trellis codes. The peak number of iterations is set to 50, 

except the case of the "Y == 0.5 channel, in which the peak number of iterations is 

30. 

First, we study the robust VA decoder under different types of noise channels. 

In Fig. 7-7 and Fig. 7-8, we present the cases where the channel noise is fixed 

for all symbol durations. In Fig. 7-9, we present a case where the mixed types of 

noise affect the decoder. 

From Figures 7-7 and 7-8, we can see that the channel disturbed by the 

short-tail type of noise ( "Y == 4. 0) achieves better performance than the channel 

disturbed by the long-tail type of noise ( "Y == 0. 5). In addition, to the short

tail noise channel, the performance degradation is not significant when the mis

matched decoder is employed. 

We can also find in Figures 7-7, 7-8 and 7-9 that the robust decoder generally 

outperforms mismatched decoders under different channel noise conditions. In 

some cases, the mismatched decoder could perform better than the robust de

coder. Remember that the robust decoder is designed to minimise the worst-case 

error performance. The above figures show that the robust decoder is close to 

the optimal matched decoder, which knows exactly the channel information. 

Similar simulations are carried out for parity-concatenated trellis codes using 

the IVA under different types of noise channels. Comparing the error performance 

of the robust IVA with the robust VA, we can see an interesting phenomenon. 

In Fig. 7-7 (a), the difference of error performance between the decoders with 

"Y == 0.5 and "Y == 2.0 at a BER == 1.0 x 10-4 is over 2.0 dB. In Fig. 7-10 (a), 

however, the difference is negligible. Figure 7-10 (b) shows the average number of 

iterations for different types of decoder. It is clear that compared to the decoder 

with "Y == 0.5, the decoder with "Y == 2.0 takes many more iterations to converge, 

although it finally converges with almost same error performance as that of the 

decoder with "Y == 0.5. In addition, for the channel with "Y == 0.5, as the SNR 
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Figure 7-9: BER performance of the robust VA decoder in a channel with 

mixed type of noise, Pr(r = 2) = 80%, Pr(,= 0.5) = 20% 

increases, the difference of error performance between the decoders with , == 0.5 

and,== 2.0 becomes larger if the VA is used (see Fig. 7-7 (a)). By comparison, 

for the IVA at high SNRs, the error performance and average number of iterations 

are similar for the the decoders with , == 0.5 and , == 2.0. 

In the case of channel with , == 4.0 (see Fig. 7-13) , the simulation results show 

that the decoder with,== 4.0 performs worse than the three other decoders if the 

IVA is applied , even though the decoder with , == 4.0 is matched to the channel 

noise. This contradiction has been explained in section 7.3.4. In fact, we can 

also observe this phenomenon from Figs. 7-10 , 7-11 and 7-12 , in which the error 

performance of, == 4.0 is always much worse than that of the other decoders , 

relative to the performance difference with the VA. In addition, in Fig. 7-13 (b), 

we can find further evidence: namely, the average number of iterations in the 

decoder with , == 2.0 is larger than that in the decoder with , == 1.0 , even 

though the , == 2.0 decoder performs slightly better than the , == 1.0 decoder 

in term of bit error performance. This result is caused jointly by mismatched 
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decoders and amplification of the negative impact. For comparison, in Fig. 7-14 

the performance of the same codes using the modified iterative min-sum algorithm 

is reported. The peak number of iterations in this case is set to 30. We can see 

that the decoder with ry = 4.0 performs best according to BER performance. 

In Fig. 7-15 , we present the case where mixed types of noise affect the decoder 

and the IVA is employed. The matched and mismatched decoders perform sim

ilarly according to error performance. However, in terms of the average number 

of iterations, the mismatched decoder with ry = 2.0 is worse than the matched 

decoder, and the robust decoder performs close to the matched decoder. 

7.5 Discussion 

In this chapter, the robust Viterbi algorithm and iterative decoding algorithms 

emphasising the IVA were studied for conventional trellis codes and parity-concat

enated trellis codes under an uncertain noise environment. Using the minimax 

technique, a simple and effective robust decoder was devised. The scaling pa

rameter was also studied for the robust IVA. The numerical simulations showed 

that the robust VA and IVA decoders always outperform the worst mismatched 

standard decoders and generally perform close to the optimal matched decoder 

in various mismatched noise environments. 
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Chapter 8 

Conclusions 

8.0.1 Summary of Results 

A brief summary of the accomplished work is given in this chapter, with an 

emphasis on the contributions to the subject of iterative decoding algorithms for 

parity-concatenated trellis codes. 

In this thesis, we constructed the parity-concatenated 2-D and M-D Wei trellis 

codes in which a trellis code is used as the inner code and a simple even parity code 

is applied as the outer code. Compared with turbo TCM schemes, one significant 

difference is that a conventional block interleaver rather than pseudo-random one 

is employed. 

For both packet and continuous transmissions, the corresponding single- and 

double-parity-check structures have been designed, respectively. Packet trans

mission with long, medium and short block lengths have also also considered. 

In addition, shaping techniques and multilevel codes were combined with the 

parity-concatenated trellis codes for further performance improvement. As an 

effective tool for code interpretation, TWL graph representations of the parity

concatenated trellis codes were presented. 

To deal with serious error propagation caused by small cycles in TWL graphs, 

several iterative decoding algorithms have been proposed. One of them is the it

erative Viterbi algorithm (IVA). The only difference between the IVA and the 
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standard VA is the calculation of branch metrics. In the IVA the branch met

rics of symbols are randomly selected to be fed back as extrinsic information, 

which effectively avoids the negative impact from other symbols. Both parity

concatenated 2-D trellis codes and M-D Wei trellis codes can be decoded by the 

IVA. 

The other way to deal with small cycles in TWL graphs is the modified it

erative two-way algorithms, which were developed from conventional ITWAs. A 

normalisation function determined by the length of error event of trellis codes is 

employed in the modified ITWAs, and good results have been achieved. From the 

perspective of graph interpretation, the IVA can be viewed as a simplified case 

of the iterative min-sum algorithm in which the local weights (branch metrics) 

of one symbol node rather than sum of upstream and downstream weights are 

applied as extrinsic information. 

For the parity-concatenated trellis codes at a high spectral efficiency, error 

floors often appear at the region close to the Shannon capacity limit due to the 

parallel transition errors in trellis codes. The upper bound on the error floor has 

been analytically determined, and an appropriate multilevel code is selected to 

bring down the error floor to a very low level. 

Based on the graph representations, five iterative decoding algorithms, in

cluding the IVA and modified iterative min-sum/sum-product algorithms, have 

been developed, and their computational complexity and performance were com

pared. It can be seen that the iterative sum-product algorithm has the highest 

computational complexity, and the IVA has the lowest complexity. Compared 

with the standard VA, these IDAs can achieve significant gains for both parity

concatenated 2-D trellis codes and M-D trellis codes. 

In simulations, with trellis shaping, the performance of 1.25 dB away from the 

Shannon capacity limit at a BER== 3.0 x 10-5 can be achieved by the IVA for 

parity-concatenated Ungerboeck 256-state trellis codes with 20 , 000-symbol block 

length, but an error floor occurs. Further, using a simple binary BCH code, the 

error floor can be reduced to 10-9 with very little additional cost. For the same 
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trellis codes with 2, 000- and 200-symbol block length, the performances about 

1. 7 dB and 2.1 dB away from the Shannon limit have been achieved by the IVA, 

respectively. For the popular 4-D 16-state Wei trellis codes, the numerical results 

showed that about 2.2 dB net gain can be obtained using the IVA. All these 

designs have been achieved with low complexity and computation. 

Through simulations, we find that for continuous transmission or packet trans

mission with long block length, generally the modified iterative min-sum/sum

product algorithms can get slightly better performance than the IVA. However, 

for packet transmission with short block length, the IVA outperforms the modi

fied ITWAs. In addition, for both packet and continuous transmission, the com

plexity of the ITWAs is much higher than that of the IVA, expecially for the 

parity-concatenated M-D trellis codes. Therefore, according to the tradeoff be

tween computation complexity and performance, the IVA is preferable among 

five IDAs. Due to its low complexity, the IVA can be applied to many current 

standard systems, such as in high-rate voice band modems or ADSL modems, 

without or with very little modification. 

Several other important advantages of the IVA include: (a) the decoder knows 

the erroneous packets with high accuracy; (b) it does not require any noise vari

ance estimation; ( c) it can recover partial block data. The evident disadvantages 

of the IVA include: (a) high peak complexity value for some cases and (b) no soft 

output. 

Finally, a robust Viterbi algorithm and robust iterative decoding algorithms 

emphasising the IVA have been studied for conventional trellis codes and parity

concatenated trellis codes under an uncertain noisy environment. Using the mini

max technique, a simple and effective robust decoder was devised. The numerical 

simulations showed that these robust VA and IVA decoders always outperform the 

worst mismatched standard decoders and generally perform close to the optimal 

matched decoder in various mismatched noise environments. 
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8.0.2 Areas for Further Research 

In this thesis, we have investigated a class of iterative decoding algorithms, named 

the iterative Viterbi algorithm (IVA). We showed that it can achieve near Shannon 

limit performance with very low complexity. It can be potentially applied into 

many standards such as the ADSL modem, cable modem, etc. In the future, we 

will investigate how to apply it in these real systems. One of the key problems is 

to study how the convolutional interleaver affects the algorithm. The other one 

is to study how to implement the IVA with lowest hardware complexity. 

Regarding our work in the area of iterative decoding based on graphs, we 

will further investigate whether the scaling process is necessary for other types of 

codes such as short LDPC and short turbo codes. 
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Appendix A 

Conventional Iterative Min-sum 

Algorithm for a 

Parity-Concatenated Trellis Code 

In section 5.1.3, the iterative two-way algorithms are described for decoding the 

parity-concatenated trellis codes. This appendix gives an example to illustrate 

how the iterative min-sum algorithm works for the parity-concatenated trellis 

codes. 

Assume that one bit of each symbol is inputted into a linear rate 1/2, 4-

state trellis encoder (i.e., k == 1, k == 1 and v == 2), and the output symbols 

are mapped into a QPSK constellation. Figure A-1 ( a) shows the TWL graph 

representation for the parity-concatenated trellis codes on a single-parity-check 

structure without tail-biting, in which m == 2 and l == 3. The corresponding trellis 

diagram of the 4-state trellis encoder is displayed in Fig. A-1 (b). 

Due to output symbols in packet 1 and packet 2 satisfy the PC constraint, the 

outputs of two packets are the same in this example. In the receiver, the smallest 

branch metric of each of four subsets is calculated as the local likelihood weight 

of coded symbol node, which represents a four-symbol space: 00, 01, 10 and 11, 

as shown in Fig. A-1 (a). It will be helpful to regard each edge as having the 

same set of values as the symbol node to which it is connected. 
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Output 
Symbol 

packetl 

packet2 

Output 

Symbol 

01 10 

1- V1 1 , V1 2 , 

(2.0, 0.5, 3.1, 1.0) ( 4.2, 0.6, 0.2, 2. 7) 

(1.8, 1.1, 2.7, 1.0) (3.7, 1.5, 0.8, 2.2) 

• 
1 

V2 ,1 V2 2 , 

01 10 

(a) 

01 

V1 3 , 

(1.8, 2.1, 1.9, 0.6) 

(1.2, 0.8, 2.3, 2.9) 

V2 3 , 

01 

Input/Output 

Trellis diagram for 

the 4-state trellis encoder 

(b) 

(x, x, x, x) denotes the local likelihood weights corresponding to four possible values 

00, 01, 10 and 11 of coded symbol node, respectively. 

Figure A-1: TWL graph representation for the parity-concatenated trellis 

codes on a single-parity-check structure with m = 2 and l = 3 

Figure A-2 illustrates the process of iterative decoding for the codes proposed 

in Fig. A-1. In the first iteration, two packets are decoded independently using 

the min-sum algorithm, as illustrated in Fig. A-2 (a). 

Initialization: 

For each of leaf node, the symbol weights, which can be viewed as the 

upstream weights w(V+) of each symbol node, are simply transferred to 

the neighbouring edge ( as illustrated with solid arrows in Fig. A-2). No 

computations are required. The local weights of parity check node are set 

zero. The local weights ( state metrics) of state nodes in both ending are 

initialised as appropriate. Here, [x, x, x, x) in Fig. A-2 denotes the state 

metric of states 00, 01 , 10 and 11, respectively. 

• Updating: 

For each of packets, based on the incoming weights into the parity check 

nodes, the min-sum (Viterbi algorithm) are performed first from left to right 
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Figure A-2: Iterative min-sum algorithm for decoding the parity-concatenated 

trellis codes on a single-parity-check structure with m = 2 and l = 3 
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and then from right to left , which yields upstream and downstream weights 

(state metrics) for each of state nodes. Based on these state metrics , the 

downstream weights w(V-) of each symbol node are then obtained using 

the min-sum algorithm ( as illustrated with dashed arrows in Fig. A-2). For 

example, for symbol node V1,2, its downstream weights w(V1~2) equal to 

(3.8 , 2.6, 2.3, 1.1), which are resulted from its upstream state metrics [2.0 , 

0.5, 1.8, 0.6] and downstream state metrics [1.8 , 0.6 , 1.8, 0.6]. 

Termination: 

The weights w(V) of each symbol node are then expressed as the sum 

w(V) == w(V+) + w(v - ) of the upstream and downstream weights w(V+) 

and w(v-). Here in Fig. A-2 , {x, x , x , x} denotes the final weights of coded 

symbol 00, 01, 10 and 11 in each of symbol node, respectively. For example , 

for symbol node V2,2, its final weights w(V2,2) equal to w(V2~) + w(V2~2) == 

(3.7, 1.5, 0.8, 2.2) + (2.6 , 4.7 , 1.9 , 4.0) == {6.3 , 6.2, 2.7, 6.2}. Accord

ing to the calculated weights of each symbol node , we can get the decoded 

symbol corresponding to the smallest weight. 

After the first iteration, we note that errors occur in the first and third symbols 

of packet 1. That means the PC constraint among decoded symbols of packet 1 

and packet 2 can not be satisfied. Therefore , the decoding process will continue 

for the second iteration (see Fig. A-2 (b)). As we mentioned above, in the second 

iteration, the decoding steps are exactly the same as that of the first iteration, 

except that the extrinsic information collected from the other packet ( s) is taken 

into account. For example , to decode packet 1, the weights of symbol nodes in 

packet 2 are then passed to the symbol nodes of packet 1 through the full parity 

check nodes connecting two packets. In this case, since m equals to 2 and hence 

only two symbol nodes are checked by one full parity check node , the information 

on one symbol node is then able to be directly passed to the other one , as shown 

with dotted arrows in Fig. A-2 (b). After the second iteration, we can see that 

the errors occurred in packet 1 are corrected. 
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