659 research outputs found

    A Comparative Analysis of Application of Genetic Algorithm and Particle Swarm Optimization in Solving Traveling Tournament Problem (TTP)

    Get PDF
    Traveling Tournament Problem (TTP) has been a major area of research due to its huge application in developing smooth and healthy match schedules in a tournament. The primary objective of a similar problem is to minimize the travel distance for the participating teams. This would incur better quality of the tournament as the players would experience least travel; hence restore better energy level. Besides, there would be a great benefit to the tournament organizers from the economic point of view as well. A well constructed schedule, comprising of diverse combinations of the home and away matches in a round robin tournament would keep the fans more attracted, resulting in turnouts in a large number in the stadiums and a considerable amount of revenue generated from the match tickets. Hence, an optimal solution to the problem is necessary from all respects; although it becomes progressively harder to identify the optimal solution with increasing number of teams. In this work, we have described how to solve the problem using Genetic algorithm and particle swarm optimization

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    PYCSP3: Modeling Combinatorial Constrained Problems in Python

    Full text link
    In this document, we introduce PYCSP33, a Python library that allows us to write models of combinatorial constrained problems in a simple and declarative way. Currently, with PyCSP33, you can write models of constraint satisfaction and optimization problems. More specifically, you can build CSP (Constraint Satisfaction Problem) and COP (Constraint Optimization Problem) models. Importantly, there is a complete separation between modeling and solving phases: you write a model, you compile it (while providing some data) in order to generate an XCSP3 instance (file), and you solve that problem instance by means of a constraint solver. In this document, you will find all that you need to know about PYCSP33, with more than 40 illustrative models

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Fairness and Flexibility in Sport Scheduling

    Get PDF

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Optimization of Thermo-mechanical Conditions in Friction Stir Welding

    Get PDF

    LEED I/V determination of the structure of a MoO<sub>3</sub> monolayer on Au(111): Testing the performance of the CMA-ES evolutionary strategy algorithm, differential evolution, a genetic algorithm and tensor LEED based structural optimization

    No full text
    The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED
    corecore