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1 I N T R O D U C T I O N

1.1 present

The world of sports is a world on its own. Everyday, thousands of
athletes compete professionally against one another, millions play on
a lower level for fun, to stay fit, and to be with friends, while hun-
dreds of millions show up or tune in online or on TV to support their
favorite athletes.

With great participation comes great responsibility. All around the
globe, sports unions and clubs are tasked with hosting competitions
and tournaments for their members and spectators. They cannot just
copy paste the work done by others, since every sport, country and
club has its own perks.

It matters if matches involve two sides, like football, or any number of
participants, like athletics or golf. It matters if teams are expected to
play at home or away, or just anywhere. It matters how many matches
one can play within a short period of time, or how many matches
there can be played at one specific location.

Besides these practical issues regarding the scheduling of matches,
there is also the competition format itself that needs to be decided in
advance. Do all the participants play each other in a big competition
like the Premier League, do they play in a knock-out tournament like
at Wimbledon, or do they play in a hybrid form with group stages
leading to a knock-out, like the FIFA World Cup?

These are just some of the many choices that need to be considered.
For every sport, every set of players and teams, every country, there
is a new instance of a sport scheduling problem that is worth solving.

1.2 background

The mathematical world of sport scheduling is old and vast. Thomas
Kirkman can be regarded as pioneer in this field, searching - in true
combinatorial fashion - mid nineteenth century for nice ways to dis-
tribute persons over groups and stages. Most famous is perhaps the
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2 introduction

Kirkman schoolgirl problem, posed in 1851:

Fifteen young ladies in a school walk out three abreast for seven days in suc-
cession: it is required to arrange them daily so that no two shall walk twice
abreast. (Kirkman, 1851)

Though walking at school might be far away from what we call com-
petitive sports nowadays, the nature of the question is what makes
this an early example of competition scheduling. Think of the ladies
as players and walking abreast as meeting to play against each other.
This transforms the problem from walking hand in hand with your
best friends, to having everyone meet 2 opponents every day to play
a match.

Eventually, after solving the sportified schoolgirl problem, you would
get a set-up where every player meets every other player exactly once;
there are 7 days and a player meets 2 different players every day,
meeting a total of 14 players during the week. This is exactly the
number of opponents any player has within the set of 15 players.

That is a very nice property, having everyone meet everyone, and a
schedule in which this occurs is called a Single Round Robin (SRR).
This is a very popular way of scheduling competitions, as is the re-
lated Double Round Robin (DRR). The latter is used abundantly to
schedule leagues for football, volleyball, handball, etcetera. The bene-
fit of the DRR compared to the SRR, is that it is possible to have every
team meet every other team once at home.

The idea of playing either at home or away is rooted deeply in the
mind of the players and audience, especially in team sports. The
Double Round Robin competition feels so natural and common, that
for instance in Dutch, the term hele competitie (entire/proper competi-
tion) is reserved for a DRR rather than a SRR, which is dubbed halve
competitie (a half competition), clearly indicating the perceived incom-
pleteness of such a set-up.

1.3 making a schedule

Although there are twice as many matches in a DRR compared to
an SRR, this does not necessarily lead to more complicated problems.
Phasing the competition is often desired, implying that every pair
of teams meets once in the first half of the season, and once in the
second half - meaning that both halves can essentially be seen as a
SRR.
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Figure 1: Visualization of the circle method on 8 teams

And that is a good thing, as there is a very natural way of scheduling
a SRR, for any number of players or teams: the Circle Method (CM).
Said to be invented by Kirkman - although this is disputed - the Circle According to

Siemann (2020) and
Lucas (1883) the CM
originates from Félix
Walecki.

Method is the basic, go-to solution to get a schedule. The attractive-
ness of the CM lies with its simplicity and general applicability.

Algorithm 1 The Circle Method
Input: A set of N players.

1: Pick a player to be the ’central’ player and put a dot representing
this player in the middle.

2: Place all the other players evenly distributed on a circle around
the center, starting at 12 o’clock.

3: Draw a base-line between the central player and the player di-
rectly above.

4: Draw lines perpendicular to the base-line to pair all the remaining
players.

5: Every player is now connected to exactly one other player. This is
the first round.

6: Create round r by rotating the lines r steps clockwise.
Output: A SRR of N− 1 rounds.

Matches

07 16 25 34

17 20 36 45

27 31 40 56

37 42 51 60

47 53 62 01

57 64 03 12

67 05 14 23

Table 2:
CM Schedule on
8 teams

Applying algorithm 1 ensures that every player meets every other
player exactly once, thus creating the desired Single Round Robin.
Figure 1 illustrates the origin of the name, as well as the procedure.

Besides general applicability, the Circle Method has another positive
feature: the possibility to assign home/away to the matches, in an
alternating and balanced fashion for the teams. Instead of lines, we
draw arrows in step 4 of Algorithm 1, alternating their orientation
left-to-right and right-to-left. A team at the head of the arrow, plays
at home, the team at the tail plays away. We also replace the base line
by an arrow, but contrary to the other arrows, it has its orientation
flipped after every turn of the clock.

Figure 2 shows the extended procedure.
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Figure 2: Home/Away-assignments per match per round

1.4 complexity
Team HAP

0 AHAHAHA

1 AHHAHAH

2 HAAHAHA

3 AHAHHAH

4 HAHAAHA

5 AHAHAHH

6 HAHAHAA

7 HAHAHAH

Table 3:
HAP-set by CM

The Home/Away-assignments generated by the CM, are not just any
assignment. The structure and choices are such that each individ-
ual team has its own Home/Away-Pattern (HAP), and in this HAP, a
Home match is generally followed by an Away match, and vice versa.
Only in the odd rounds there are two teams for which this rhythm is
broken. In Figure 2 we see that in the third round, teams 1, 2 have the
same assignment as they had in the second round.

This otherwise alternating rhythm is a property that those involved
usually like in a schedule - every break in the rhythm is hence called
exactly that in the literature, a break. The set of HAPs, called HAP-set,
generated by the Circle Method has all of its breaks in the odd rounds,
and every team has only one break - the pattern-set that has these
properties is referred to as the Canonical Pattern Set (CPS).

So there exists a procedure that generates a SRR with a seemingly nice
pattern of Home/Away’s per team, what is left to study? As it turns
out, a lot. For numerous reasons, we want methods that can handle
more input than just the number of teams.

We distinguish two types of input that we want to see in the resulting
schedule: hard constraints and soft constraints. The hard constraints are
non-negotiable, for example that the schedule is a SRR, or that teams
can only play at home if their venue is available at that time.

The soft constraints, on the other hand, require the organizers to point
out favourable parts of a schedule, like minimized travel distance, not
too many breaks per team, not playing the same opponent twice in a
short period of time. These are elements in a schedule that one would
like to have as good as possible.

Where the Circle Method might satisfy the hard constraints for a spe-
cific problem, it is not clear whether it scores good on the soft con-
straints. To get any insights on this, we need to compare it to other
schedules. But, how do we make other schedules?
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Besides the Circle Method, there is no other known easy method of
creating a schedule for any number of players. And especially if there
are additional hard constraints to take into account, a tailor-made
approach is needed to find schedules feasible with respect to the de-
mands - even though the number of SRR grows super exponential in
terms of the number of players N, it can be extremely difficult to find
even a single schedule that satisfies all the constraints, or prove that
it doesn’t exist.

To find good schedules that can be used to organize tournaments, a
popular approach is to create an Integer Program (IP). An Integer Pro-
gram is a mathematical formulation of the constraints that is suitable
for solving by specialized solvers. The hard constraints can be for-
mulated as constraints, the soft constraints can be reshaped as hard
constraints or become part of an objective function, which the solver
tries to optimize. For example,

minimizing breaks is
a soft constraint. It
can be implemented
as hard constraint:
no team has more
than, say, 3 breaks.

A promising characteristic of solving an IP with modern solvers, is
that it is guaranteed to find a feasible solution if there exists one,
and even an optimal solution. The downside, however, is that this
guarantee doesn’t say anything about the time needed to solve, or
the computational resources needed.

Solving an IP to find an optimal solution can practically take forever,
thus making good choices in the implementation are crucial in find-
ing acceptable solutions quickly. Which parameters to fix, which parts
to optimize first, are all choices you can make to speed up the pro-
cess of arriving at a good schedule. Any decision you make in the
beginning, limits the potential solutions you get later on, hence the
importance of choosing wisely.

This thesis discusses which choices to make, and when, while schedul-
ing sports tournaments.

1.5 set-up

The chapters are divided into two parts, Flexibility and Fairness.

Flexibility

The first part, Flexibility, focuses on the flow of scheduling itself, and
in particular, around the Home/Away-Patterns. The Home/Away-
Pattern of a team, indicates in which order it plays Home and Away.
As said earlier, it is often desired that this pattern has few breaks.
When a team is scheduled to play at Home, it is important that it can
use its home venue, so not every HAP is suitable for all the teams.
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A way to ensure that both these constraints are satisfied to an ac-
ceptable degree, is to first pick a favourable Home/Away-Pattern
Set (HAP-set), and after this pick, start scheduling the matches per
team. By fixing the HAP-set, matches can no longer be scheduled in
any round - some HAP-sets give more flexibility than others.

chapter 2 the flexibility of home away pattern sets dives
into the scheduling approach called First-Break-Then-Schedule (FBTS).
After fixing the HAP-sets and the breaks, one might still have the
problem that certain matches cannot take place in specific rounds, or
the objective of optimizing the schedule regarding traveled distance
per team.

However, by fixing the HAP in advance, possibilities are lost, and per-
haps some unwanted outcomes are enforced. Teams can only play
teams with opposing Home/Away-assignment, which severely limits
the scheduling possibilities of individual matches. To foresee and pre-
vent this from happening, we introduce three measures that indicate
the flexibility that is left after choosing the HAP-set, calculate the per-
formance of some of these sets regarding these measures, as well as
show some theoretical bounds.

chapter 3 maximum orthogonal schedules builds upon a spe-
cific measure introduced in Chapter 2, namely the width.

When analyzing the CPS constructed with the Circle Method in Fig-
ure 2, we showed it had a width equal to 1. This means there are
matches that are fixed to a specific round after fixing the HAP-set,
which is not good. The benefit of using a HAP-set with a large width,
is that every match has some flexibility, as no match fixed to certain
rounds.

We construct schedules that work on the same HAP-set and are orthog-
onal, meaning that no match is scheduled in the same round in any
of the schedules. We show that when the number of teams N equals a
power of 2, a HAP-set exists for which there are N

2 orthogonal sched-
ules - every match has N

2 rounds in which it can be scheduled.

chapter 4 the multi-league sports scheduling problem is
on the problem of scheduling a lot of leagues (hence the name) at
the same time. When the organizer is not only responsible for just
one competition, but a multitude of similar competitions, regarding
different levels or age ranges, one cannot just schedule every com-
petition separately. As different teams might use the same venue -
because they are part of the same club, for instance - there are capac-
ity constraints that need to be considered. On the other hand, clubs
might have a preference of which teams they want to jointly play on
their venue on the same day.
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We show that using an FBTS-approach, we can deal with the capacity
constraints optimally in linear time.

Fairness

The second part, Fairness, looks at ways to find schedules that are
optimal with respect to different objectives, that are all related to a
measure of fairness. Contrary to the first part, where all discussed
schedules are classic round robin tournaments, different types of com-
petitions are analyzed in this part and specific instances of real-world
examples.

chapter 5 minimizing the carry-over effect
In many round robin competitions, the matches are scheduled per
round. This means that every team or player can expect to play one
match per round, and that the rounds follow each other sequentially.
For every match one plays, there is a next match with a new oppo-
nent. What happens if the performance of a player is influenced by
its opponent in the previous round?

The effect of a previous match influencing the upcoming match, is
called the Carry Over Effect (COE). If one player tends to follow an-
other player opponent wise, this player receives more Carry Over Ef-
fect from that player than from other players. This leads to an imbal-
ance and possible (dis)advantage. Finding schedules with balanced
COE for all pairs of players is difficult, and except for a few instances,
no balanced schedules are known. We introduce a way of finding
schedules that are (almost) balanced quickly, by exploiting specific
features that the known balanced schedules have.

chapter 6 balanced serial knock-out tournaments
A potential downside to round robin competitions as a way to deter-
mine who is the best, is that some players lose interest as they are
out of contention for the main prizes. This may lead to underper-
forming in the latter stages of the competition and skewed results.
To tackle this, the Professional Darts Corporation (PDC) introduced a
new type of competition that we call a Serial Knock-Out (SKO) where
every round consisted of a knock-out tournament among the 8 play-
ers. The additional incentive of winning the knock-out tournament
and earning money, should motivate the players near the end of the
season.

The draws of the knock-out tournaments are scheduled in advance.
Just as in the original DRR, the players are still paired to every other
player exactly twice in the first stage of the knock-out tournaments.
After that stage, in the semi-final and final, the distribution of who
can meet who, is less evenly spread out. Some players can only meet
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in the finals, while others are set to meet in the majority of their semi-
finals, given that they reach that stage.

This is unfair to some as it is unbalanced. We show how to construct
a perfectly balanced SKO on 8 players, and how to construct them on
any set of 2k players.

chapter 7 how to schedule the volleyball nations league
In competitions with teams that are geographically far apart, travel
times become an important issue to take into account. International
competitions may require the participating nations to have their teams
fly all around the world to play, and this has been shown to impact
their peak performance.

Hence, a competition with a high travel load, should try to evenly
distribute this among the competitors. An example of such a compe-
tition is the Volleyball Nations League, which has teams travel from
continent to continent for 5 weeks in a row.

Usually, traveling problems tend to be hard to solve. The format of
the Volleyball Nations League (VNL) however, allows us to use a short-
cut to calculate the traveled distance and the fairness of the schedule,
without scheduling the entire competition. This allows us to opti-
mally solve the instances, by merely deciding where teams need to
play before deciding who plays where.

chapter 8 fairness in penalty shootouts
Sport scheduling does not stop with scheduling matches and compe-
titions. Even on the pitch, choices need to be made in advance. Who
kicks off at half time, who shoots first in a penalty series, for exam-
ple. Usually, these decisions are made by a coin toss, and a fair coin
should make for a fair choice.

Empirical evidence suggests that the team shooting first in the penalty
shootout, has an advantage caused by the psychological pressure for
the other team that has to catch up in the score. With this First Mover
Advantage (FMA) as a starting point, we look for fairer sequences, by
mixing the order in which the teams take their penalties.

We show that within our model for the psychological pressure, every
finite repeated order will have an advantage for one of the teams,
and give an algorithm that produces a fair sequence for any set of
parameters that describe the FMA.
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2 T H E F L E X I B I L I T Y O F H O M E
A W AY PAT T E R N S E T S

The highest Dutch football league, the Eredivisie, publishes its
entire playing schedule in July, before the start of the season
a few weeks later. The clubs then have the option to push for
small corrections, before the schedule is finalised.
At the start of the 2021− 2022 season, the club FC Twente par-
ticularly complained after the corrections. The first half of the
season was altered in such a way that they would only play one
of their eight home matches at their preferred time, Saturday
evening. Due to conflicts other teams had with international
duties, and subsequent changes across the schedule, most of
their home matches were moved to Sunday.
It is natural to wonder why the KNVB did not just move some
other matches, not involving FC Twente, to fix the problem they
faced. However, scheduling a competition is a tough task, and
not all matches can just be moved to any round. As they try
to make all teams have an alternating Home-Away Pattern as
much as possible, together with a pretty strict notion of rounds
in which each team is supposed to play, after releasing a draft
schedule, there is little room to play around.
Deciding upon a Home/Away Pattern early on is a popular
scheduling approach, as it is regarded one of the most impor-
tant features of any schedule. Building a schedule step-by-step
based on the input received by the stakeholders, it is important
to choose a HAP that allows for flexibility in the latter stages
of the scheduling.
This chapter discusses some ways how to indicate which HAP-
sets give more flexibility and which less, when choosing them
in advance.’
This chapter is based on Lambers, Goossens, and Spieksma (2022).

11
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2.1 introduction

Round robin tournaments are abundantly used in all kinds of sport
competitions, both in professional leagues, as well as in amateur
leagues. The setting where each pair of teams meets once (Single
Round Robin (SRR)), or twice (Double Round Robin (DRR)) has proven
to be a very popular format to arrive at a ranking of the participating
teams (Goossens and Spieksma, 2012).

Deciding which matches are played in which round of a single or
double round robin tournament is known to be of great practical im-
portance in scheduling professional leagues such as soccer competi-
tions. Hence, scheduling a round robin tournament has attracted a
lot of attention in the scientific literature (Kendall, Knust, et al., 2010;
Van Bulck et al., 2020).

It is very common for a round robin competition to have teams that all
have their own venue, and a match between two teams takes place at
the venue of one of the two teams, meaning that one team plays home
(H), while the other team plays away (A). In competitions where this
is the case, the difference between playing matches at home or away is
often regarded significant (Pollard, 2008; Schwartz and Barsky, 1977).
To have all teams play evenly at home - and consequently away -
throughout the season, is generally preferred by those involved.

A popular practice when scheduling such competitions, is known as
a First-Break-Then-Schedule approach (Nemhauser and Trick, 1998).
This hierarchical approach consists of two phases, that we now infor-
mally describe (see Section 2.2 for more precise terminology).

In the first phase of the First-Break-Then-Schedule, each team re-
ceives a Home/Away-Pattern (HAP), i.e. it is specified for each round
whether the team plays at its home venue, or not. In the second
phase, the matches are scheduled: given a match between two teams,
a round is chosen where it is scheduled. Of course, for such an assign-
ment of matches to be feasible it must hold that each team plays at
most one match in each round, and that the assignment is compatible
with the patterns obtained in the first phase.

In such a hierarchical approach, it is clear that the scheduling deci-
sion (which matches to play in which round) crucially depends on
the HAP-set that is chosen in the first phase. For instance, it is conceiv-
able that in the second phase, a set of constraints is revealed that are
incompatible with the given HAP-set. This would need to be solved by
either changing the HAP-set, or by putting energy into mitigating the
effects of violating that specific set of constraints.

The theme of this chapter is that not all HAP-sets have the same risk
of leading to incompatible constraints. Indeed, some HAP-sets are
more flexible than others. In Section 2.2, we give a number of defini-
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tions, and in Section 2.4 we introduce our measures for the flexibility
of a HAP-set. We also show how single-break HAP-sets, in particular
the Canonical Pattern Set (CPS), behave with respect to these mea-
sures. In Section 2.5, we describe how to compute these measures
using integer programming; we conclude in Section 2.6.

2.2 preliminaries

We consider the scheduling of an SRR with an even number of teams
N = 2n,n ∈ N. To avoid trivialities, we assume 2n ⩾ 4. When n = 1, an

SRR consists of only
1 match.A match between two distinct teams i and j is denoted by an un-

ordered pair {i, j}, 1 ⩽ i ̸= j ⩽ 2n. Every team plays every other team
exactly once. We assume that the SRR consists of 2n− 1 rounds, where
in each round every team plays exactly one match - this is called time-
constrained. A schedule is a specification of all

(
2n
2

)
matches spread

out over the 2n − 1 rounds, including a team playing at home for
each match. Thus, in the schedules we consider, every match {i, j} is
assigned to a specific round, the venue of the match is specified, and
every team plays exactly one match in every round. For a survey of
round robin scheduling, we refer to Rasmussen and Trick (2008) and
Drexl and Knust (2007).

Although we restrict our analysis to SRRs, we claim that many of the
ideas presented can be generalized to DRRs as well (or k-round robin
settings with k ⩾ 2). In particular, the definitions of the measures (see
Section 2.4) can be generalized to DRRs.

However, we want to point out that a match in a DRR tournament is
generally seen as an ordered pair (i, j), rather than an unorderd pair
{i, j}. Contrary to a single round robin tournament, where the home
advantage is to be decided in the schedule, a double round robin tour-
nament typically assumes that each team plays at home against each
other team exactly once. Moreover, very often it is required that one
encounter between a pair of teams occurs in the first half, whereas the
other encounter occurs in the second half of the schedule; and these
two encounters should be separated by a given number of rounds.
Taking such issues into account would impact the corresponding def-
initions of the measures for DRR tournaments.

We now proceed with defining our terminology.

Definition 1 (based on Rasmussen and Trick (2008)). A Home/Away-
Pattern (HAP) is a vector h = (h1,h2, . . . ,h2n−1), where hr ∈ {H,A}

specifies whether a team that plays according to pattern h plays Home or
Away in round r, with r = 1, 2, . . . , 2n− 1.
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An important property of a HAP is given by the occurrence of so-
called breaks: the presence of two consecutive symbols that are iden-
tical (see De Werra (1981) and Goossens and Spieksma (2011)). To
simplify notation, we take a circular view of a HAP, i.e., we define
h0 ≡ h2n−1.From a practical

perspective, the
circular HAP seems

useless. However,
mathematically this

definition is
aesthetically

pleasing.

Definition 2 (based on (Rasmussen and Trick, 2008)). A Home/Away-
Pattern h has a break in round r if hr−1 = hr, with r = 1, 2, . . . , 2n− 1.
In case hr−1 = hr = A we call the break an away-break, when hr−1 =

hr = H we call it a home-break.

Notice that, since the number of rounds 2n− 1 is odd, and given our
circular view of a HAP, any HAP has at least one break. Even the
HAP h that purely consists of alternating H’s and A’s has a single
break in round 1, as h1 = h2n−1 = H. In fact, the number of breaks
of a HAP on an odd number of rounds, is bound to be odd as well.

Motivated by practice, we are interested in breaks present in a HAP. It
is important to see that an entire HAP is in fact defined by the rounds
in which its breaks occur, and by its value in the final round (or any
other round). Thus, we introduce a break-representation that defines
a HAP by exactly those two properties.

Definition 3. HAP h is denoted as h = PH(r1, . . . , rb) with 1 ⩽ r1 <

· · · < rk ⩽ 2n− 1 if:

1. h2n−1 = H.

2. For all i ⩽ k, h has a break in ri, i.e. hri−1 = hri .

When h2n−1 = A instead of H, h is denoted as h = PA(r1, . . . , rb).

The break-number of h is given by bn(h) = b. The pattern h is called
single-break if bn(h) = 1.

Two patterns h,h ′ with h = PH(r1, . . . , rb) and h ′ = PA(r1, . . . , rb),
are called complementary. We formalize this definition:

Definition 4 (based on (Rasmussen and Trick, 2008)). Two Home-Away
patterns h,hc are called complementary if and only if hr ̸= hc

r for each
r = 1, 2, . . . , 2n− 1.

We sometimes omit the distinction between PH,PA and simply use
P. When discussing complementary pairs of patterns, we use Pc to
denote the complement of HAP P.In a chess

tournament, playing
with white (black)
can be regarded as
home (away). See

(LNS, 2020) for an
analysis of the Wijk

aan Zee schedule.

To illustrate this terminology, consider the HAPs used by the pro-
fessional Dutch tennis competition for teams in 2019, organized by
the Royal Dutch Tennis Association. This is a competition between 8

teams who play a Single Round Robin, according to the HAPs given
in Table 5 (for the precise schedule, we refer to the (KNLTB, 2019)).
The first column shows the team’s names, and the next 7 columns
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Round 1 2 3 4 5 6 7

Team 1

Lewabo
A H A H A H H PH(7)

Team 2

Spijkenisse
A H A H H A H PH(5)

Team 3

Suthwalda
H A H A H A H PH(1)

Team 4

Nieuwekerk
H A H A A H A PA(5)

Team 5

Arnolduspark
H A H A H A A PA(7)

Team 6

Leimonias
A H A H H A A PA(5,7)

Team 7

Naaldwijk
A H A H A H A PA(1)

Team 8

Kimbria
H A H A A H H PH(5,7)

Table 5: HAPs for the 2019-2020 top Dutch male tennis league

describe the Home-Away Patterns. The final column gives the corre-
sponding description of the particular pattern.

We now turn our attention to sets of HAPs and their schedules; we
define a HAP-set as follows:

Definition 5. A HAP-set H = {hi : i ⩽ 2n} for 2n teams is a set of 2n
HAPs hi. We say 2n is the order of H.

Next to the HAP-sets, we define a schedule S:

Definition 6. A schedule S = (Sr)r⩽2n−1 for an SRR on 2n teams, con-
sists of a set of 2n − 1 rounds Si, where each round is a partition of the
teams into n pairs. To make the schedule satisfy that it is an SRR, for each
pair of teams {i, j}, there should be a round r such that {i, j} ∈ Sr.

We define the following notions on HAP-sets, schedules, and their
relations. As we have enumerated 2n teams in a schedule, and we
have enumerated 2n HAPs in a HAP-set, for simplicity we assume
that team i in schedule S, is linked to the i-th HAP-set, unless stated
otherwise.

Definition 7. Given a HAP-set H on 2n teams, we say:

• Schedule S is compatible with HAP-set H if for all scheduled matches
{i, j} ∈ Sr, the corresponding HAPs obey hi

r ̸= h
j
r.

• For HAP-set H, we define S(H) to be the set of all schedules that are
compatible with H.

• A HAP-set H is feasible if there exists a schedule compatible with H,
i.e. S(H) ̸= ∅, and infeasible otherwise.

• A HAP-set H is complementary if for every HAP h ∈ H with
h = P(r1, . . . , rb) ∈ H, there is a h ′ ∈ H with h ′ = Pc(r1, . . . , rb).
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• A HAP-set H is called single-break if each pattern h ∈ H is a single-
break pattern, i.e. bn(h) = 1 for all h ∈ H.

The HAP-set given in Table 5 is an example of a complementary HAP-
set; it is, however, not single-break, as only 6 of the 8 HAPs are single-
break and the patterns of team 6 and 8 both have three breaks (for
both, one of these breaks is the break between round 7 and ’consecu-
tive’ round 1).

2.3 feasible single-break hap-sets

Identifying whether a given HAP-set is feasible is known as the pat-
tern set feasibility problem. As far as we are aware, the complexity
status of this problem is not settled; Miyashiro, Iwasaki, and Mat-
sui (2002) describe a necessary but not sufficient condition for fea-
sibility. See also Briskorn (2008) and Horbach (2010) for a LinearIt is an open

question whether the
condition set in

Miyashiro, Iwasaki,
and Matsui (2002)

is sufficient for
feasibility of a single

break HAP-set.

Programming-formulation that they project to be sufficient.

We do not go into detail regarding the feasibility question, but we do
note a few simple truths. When given a schedule compatible with a
certain HAP-set for an SRR, one can (i) interchange any two rounds,
and (ii) change in a single round each H to an A, and vice versa, and
arrive at another HAP-set that must be feasible.

Definition 8. On 2n teams, the space of feasible HAP-set is denoted with
H2n. Subspaces H2n,k for k ⩽ 2n− 1 consist of the feasible HAP-sets with
break-number less than k, for any k ⩽ 2n− 1:

H2n,k = {H2n : bn(h) ⩽ k for each h ∈ H2n, H2n ∈ H2n}

H2n = {H2n : H2n feasible}.

We are primarily interested in feasible HAP-sets that consist of pat-
terns with a limited number of breaks. In particular HAP-sets that
are elements of H2n,1, the collection of single-break HAP-sets of or-
der 2n.As any HAP on

2n− 1 rounds has
an odd number of

breaks, in fact
H2n,2k =

H2n,2k−1.

By De Werra (1981), we know that H2n,1 ̸= ∅. For example, the HAP-
set generated by the CM shown in Figure 2 is single break and this
method is applicable for all sets of 2n teams.

Besides existence, more can be said about elements in H2n,1 and how
they are characterized. We state this characterisation in the following
theorem.

Theorem 1 (De Werra (1981)). For any element H ∈ H2n,1, the following
is true:

• H is complementary.
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• H is defined by 1 ⩽ r1 < · · · < rn ⩽ 2n− 1, indicating rounds in
which breaks occur.

Thus a feasible single break hap-set H ∈ H2n,1 can be written as H =

{P(ri),Pc(ri) : i ⩽ n}

Proof. The HAP-set H can only be feasible if in every round, n teams
are assigned to play at home, and n away. Thus, for every home-
break in round r, there must be an away-break in the same round to
maintain the balance. Since all HAPs h ∈ H have at most one break,
H must therefore be complementary to be feasible.

As two teams with identical HAPs can never play against each other
in a compatible schedule, in any feasible H there cannot be two com-
plementary pairs with a break in the same round. This means there
must be exactly n distinct rounds where a complementary pair of
HAPs have a break.

By Theorem 1, we know that any feasible HAP-set H ∈ H2n,1 is
defined by (r1, . . . , rn), indicating the rounds ri for which there exist
HAP h ∈ H with a break in ri. With r1 < . . . rn = r0, we define the
break-gaps of this HAP-set H to be di = ri − ri−1. Value di equals the
number of rounds between the two breaks in round ri−1 and round
ri.

We define the break-gap representation or D-notation of a single-break
HAP-set h, to be D = (d1, . . . ,dn) - see also De Werra (1981) and
Knust and Lücking (2009). Notice that H can only be feasible, if di ⩾
1 for all i ⩽ n. When there is no ambiguity, we may refer to D =

(d1, . . . ,dn) as simply D = d1, . . . ,dn.

Any single-break HAP-set H has a unique D-notation, but several
HAP-sets can have the same D-notation. Consider for example two
HAP-sets on four teams, so n = 2: {HAA,HHA,AHH,AAH} and
{HAH,HHA,AHA,AAH}. The former has r1 = 2 and r2 = 3 lead-
ing to D = (1, 2) while the latter has r1 = 1 and r2 = 2, also leading
to D = (1, 2).

Not only can a feasible, single-break HAP-set H2n be represented by
a sequence (d1,d2, . . . ,dn), it is also true that any set of n positive in-
tegers that sum to 2n− 1, corresponds to a (set of) single-break HAP-
sets (which is not necessarily feasible). Although a HAP-set, when
specified in terms of ri values, uniquely determines a corresponding
D sequence, a D sequence can correspond to multiple HAP-sets with
different ri’s.

As permuting the rounds in a cyclic manner has no effect on fea-
sibility, for any sequence D = (d1, . . . ,dn) there exists a HAP-set
H ∈ H2n,1 with break-gap representation D, if the same is true for
all cyclic permutations of (d1, . . . ,dn). Also, reversing the order of
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the rounds does not impact feasibility. We can thus always assume to
deal with a HAP-set for which the D-notation is lexicographic largest
among its cyclic permutations and reversions.

It is not trivial which D-sequences result in a feasible HAP-set. It
is known however that the CM generates a feasible, single break
HAP-set, and this HAP-set, referred to as the CPS, has a particular
D-notation,

Definition 9. The Canonical Pattern Set of order 2n - denoted CPS2n -
is the following single-break HAP-set:

CPS2n = {PA(2i− 1),PH(2i− 1) : i = 1, . . . ,n}

Its break-gap representation is D = (2, 2, . . . , 2, 1) or just D = 22 . . . 1.

For small values of n, there are only a limited number of feasible
single-break HAP-sets.

Team HAP

0 AHAHAHA

1 AHAAHAH

2 HAHHAHA

3 AHAHHAH

4 HAHAAHA

5 AHAHAHH

6 HAHAHAA

7 HAHAHAH

Table 6:
HAP-set with
D = 3121.

Example 1. For 2n = 4,6,. . . ,14, all the feasible HAP-sets are given in
Table 8.

2n 4 6 8 10 12 14

CPS 21 221 2221 22221 222221 2222221

3121 31221 312221 3122221

312212 3122212

313121 3131221

3213121

Table 8: Feasible HAP-sets on 4,6,8,10,12,14 teams.

Finally, we make the following observations regarding schedules com-
patible with single break HAP-sets.

Observation 1. If two patterns h,h ′ in a single-break HAP-set H start
with the same symbol (i.e., h1

1 = h1) and have their break in rounds r, r+ 1

respectively, then in any compatible schedule S where teams t, s follow HAP
h,h ′ respectively, the match {t, s} is played in round r.

To see why this observation holds, consider the following: As h,h ′

start with the same symbol, until round r− 1, we have hj = h ′
j, j =

1, . . . , r − 1. Then, since h has a break in round r, we get hr ̸= h ′
r.

However, as h ′ has a break in round r+ 1, we see that hr+1 = h ′
r+1

and as both patterns are single break, hj = h ′
j for r+ 1 ⩽ j ⩽ 2n− 1.

Ergo, h,h ′ can only play each other in round r.

Observation 2. If three patterns h,h ′,h ′′ in a single-break HAP-set H

start with the same symbol (i.e., h1 = h ′
1 = h ′′

1 ) and have their break in
rounds r, r+ 1, r+ 2 respectively (so their breaks are consecutive), there is
no schedule S compatible with H and H is thus infeasible.
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Suppose a compatible schedule S exists, assigning t, s,u to h,h ′,h ′′

respectively. Then, by Observation 1, within S we must have matches
{t, s} ∈ Sr and {s,u} ∈ Sr+1. However, match {t,u} can only be sched-
uled in either round r or r+ 1, which conflicts either match {t, s} or
{s,u}. Ergo, such a schedule S cannot exist. Observation 2 can

be deduced from the
upcoming
Condition 1 on
feasibility as well.

Observation 3. If there is no team with a break in round r+ 1, then round
r + 1 is opposite to round r, i.e., for each h ∈ H, we have hr ̸= hr+1.
Thus, for every compatible schedule S = (Si)i⩽2n−1, we can create a new
schedule S ′ by setting S ′

r = S ′
r+1, S ′

r+1 = Sr and S ′
i = Si otherwise.

2.4 measuring the flexibility of a hap-set

Given a HAP-set H on 2n teams, we are interested in the diversity of
the schedules in S(H), the schedules compatible with H. The problem
is that there is no clear way to determine S(H) or even |S(H)|. To
be able to say something about the diversity within this S(H), we
introduce three distinct measures called the width (Section 2.4.1), the
fixed part (Section 2.4.2), and the spread (Definition 16). We analyze
how the CPS and other single break HAP-sets fare on these measures.

2.4.1 Measure 1: the width

First, we introduce two notions to distinguish two schedules from one
another, distinct and match-distinct.

Definition 10. Two schedules S,S ′ are distinct when there exists a match
{t, s} played in round r in S and another round r ′ in S ′.

Two schedules S,S ′ are match-distinct or orthogonal when for each round
r and for each match {t, s} ∈ Sr, there is an r ′ ̸= r such that {t, s} ∈ S ′

r.
This is denoted with S ⊥ S ′.

Clearly, two schedules that are match-distinct are also distinct. Using
Definition 10, we define the width of a HAP-set:

Definition 11. The width of a HAP-set H, denoted by width(H), is the
number of pairwise match-distinct schedules compatible with H. In a formal
notation:

width(H) = max
P⊂S(H)

#{s ∈ P : ∀S,S ′ ∈ P,S ⊥ S ′}| (1)
Chapter 3 deals with
constructing
HAP-sets with a
very high width.

When a HAP-set H is infeasible, we know that width(H) = 0. If
a HAP-set has width 2 (or higher), then there exist two schedules
S,S ′ ∈ S(H) such that each match occurs in different rounds in the
two schedules.

The width of the HAP-set given in Table 5 equals 1, implying that no
pair of match-distinct schedules compatible with that HAP-set exists.
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Further, we refer to Table 9 (right) for an example of a HAP-set on 4

teams with width 2.One can generalize
the definition of

width from SRR to
DRR by making a

distinction between
(i, j) and (j, i).

Single-break HAP-sets do not allow large width; in fact, for any single
break HAP-set, there are matches that must be played in a particular
round, as witnessed by the following theorem.

Theorem 2. For each single break HAP-set H ∈ H2n,1 we have width(H) =

1.

Proof. Consider the break-gap representation D = (d1, . . . ,dn) of any
feasible single-break HAP-set H ∈ H2n,1; as discussed in Section 2.3,
it follows that the corresponding entries must have

∑
i di = 2n− 1.

Clearly, when choosing n positive integers that sum up to 2n − 1,
there must be at least one ‘1’ among them. Thus, there must be two
pairs of complementary HAPs (h,hc), (h ′,h ′c) ∈ H such that they
have their break in consecutive rounds r, r+1. Then, by Observation 1,
we see that in any schedule S compatible with H, the match between
h,h ′ must be scheduled in round r. Thus width(H) = 1.

The argument above can even be extended to say something about the
width of HAP-sets that are not single break. It is not difficult to see
that any feasible HAP-set H which contains two patterns that differ
in only one round, have a width equal to 1 as well.

Theorem 2 is tight in the following sense: even when all patterns
except one are single-break patterns, HAP-sets of width 2 exist. In
fact, even for a very small SRR on just 2n = 4 teams, it is possible to
find a HAP-set H∗ with width equal to 2 containing only one pattern
that is not single-break. This HAP-set H∗ is given in the following
Table 9, together with the CPS on 4 teams.

Team R1 R2 R3

1 H A H

2 H A A

3 A H A

4 A H H

Team R1 R2 R3

1 H H H

2 H A A

3 A H A

4 A A H

Table 9: Left: CPS4. Right: HAP-set H∗.

The HAP-set on the right differs from CPS4 in only two entries, and
is given by H∗ = {PH(1, 2, 3),PA(3),PA(1),PH(2)}.

Both HAP-sets are compatible with two distinct schedules, |S(H∗)| =

|S(CPS4)| = 2. For both HAP-sets, the schedules in S(·) are shown in
Table 10. We see that the two schedules compatible with HAP-set H∗

are orthogonal, while this is not the case for CPS4.
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Round S1 S2

1 (1, 3),(2, 4) (1, 4),(2, 3)

2 (4, 1),(3, 2) (3, 1),(4, 2)

3 (1, 2),(4, 3) (1, 2),(4, 3)

Round S3 S4

1 (1, 3), (2, 4) (1, 4), (2, 3)

2 (1, 4), (3, 2) (1, 2), (3, 4)

3 (1, 2), (4, 3) (1, 3), (4, 2)

Table 10: S1, S2 are compatible with CPS4; S3, S4 are compatible with H∗.

2.4.2 Measure 2: the fixed part

As can be seen in Theorem 2, the width is a measure that does not dif-
ferentiate between feasible single-break HAP-sets - all have a width
of 1. However, that does not mean that all single-break HAP-sets are
equal. Although all H ∈ H2n,1 have at least one match that is fixed
to a specific round, they don’t necessarily have the same number of
matches fixed among all compatible schedules. Therefore, we intro-
duce a more refined measure that captures how many matches are
fixed for a given HAP-set.

Definition 12. The fixed part of a feasible HAP-set H, denoted by FP(H),
consists of the matches that are scheduled in the same round for every sched-
ule compatible with H.

FP(H) = {{i, j} : ∃r s.t. ∀S ∈ S(H){i, j} ∈ Sr} (2)

The measure fp(H) equals the order of the fixed part fp(H) = |FP(H)|.

We often refer to fp(H) as simply the fixed part of H.

When there is just a single schedule compatible with H, we see that
FP(H) = {{i, j} : {i, j} ⊂ [n]} and fp(H) =

(
2n
2

)
. Notice also that if the

width of a HAP-set H equals 2, it follows that FP(H) = ∅ and thus
fp(H) = 0. It turns out that the fixed part of the HAP-set given in
Table 5 is of order 4. In particular, the fixed part FP of that HAP-set
H consists of

FP(H) = {(1, 7), (2, 6), (3, 5), (4, 8)}

All these matches need to be scheduled in round 7.

The following lemma provides an easy to obtain lower and upper
bound on fp(H) when H is single break.

Lemma 1. For any HAP-set H ∈ H2n,1, where H consists of patterns
hi,hi+n that have breaks in ri, and with D-notation (d1,d2, . . . ,dn), let I
be the set of indices where di = ri − ri−1 = 1, thus I = {i : di = 1}. Then
the following two statements must hold:

1. The fixed part consists of at least the following subset:

{{i, i− 1}, {n+ i,n+ i− 1} : i ∈ I} ⊂ FP(H)
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2. The order of the fixed part is bounded by:

2|I| ⩽ fp(H) ⩽ n|I|

Proof. The first statement is true, since we know from Observation 1

that {i, i − 1} must be scheduled in round ri−1 when di = 1, thus
{i, i− 1} ∈ FP(H), and that H is complementary.

For the second statement, the lower bound follows directly from the
first part, as 2|I| elements are guaranteed to be part of FP(H).

To see why the upper bound is correct for any H ∈ H2n,1, consider
a round r in which no team has a break. Then round r is opposite
to round r − 1, thus for any schedule S = (Sr) ∈ S(H), we find a
new schedule S ′ = (S ′

r) ∈ S(H), with S ′
r−1 = Sr and S ′

r = Sr−1, as
observed in Observation 3. Thus, none of the matches in Sr,Sr−1 are
fixed - Sr−1,Sr ∩ FP(H) = ∅.

The only rounds that are not opposite to any of the neighboring
rounds, are the rounds ri−1 with i ∈ I, as both ri−1 as the next round
ri are rounds with a break. In any schedule, we have |Sri−1

| = n, thus
for every i ∈ I, at most n matches are fixed.

We know that the CPS on 2n teams has D-notation D(2, 2, . . . , 2, 1),
thus |I| = 1, hence 2 ⩽ fp(CPS) ⩽ n. We now proceed to investigate
the FP of the CPS into detail. We start by recalling the following def-
inition and insights that come from Miyashiro, Iwasaki, and Matsui
(2002).

Definition 13. Let U ⊆ H be a subset of patterns of order 2n. We define,
for each r ∈ {1, . . . , 2n− 1}:

Hr(U) = |{h ∈ U : hr = H}| Ar(U) = |{h ∈ U : hr = A}|,

m−
r (U) = min {|Hr(U)|, |Ar(U)|} m+

r (U) = max{Hr(U),Ar(U)},

M−
r (U) = arg min{Hr(U),Ar(U)}

In any schedule S, the teams of a set U all have to play each other once,
thus resulting in a total amount of

(
|U|
2

)
=

|U|(|U|−1)
2 matches between

the teams of U. We introduce functions a(U) that upper bounds how
many matches between teams in U can be scheduled, and α(U), the
difference between this upper bound and the required

(
|U|
2

)
sched-

uled matches.

a(U) =
∑
r

m−
r (U) α(U) = a(U) −

|U|(|U|− 1)

2

When the upper bound a(U) falls short of the required
(
|U|
2

)
matches

that need to be scheduled, no schedule compatible with H can exist.
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This is captured in the following necessary condition on feasibility of
HAP-set H.

Condition 1 (Miyashiro, Iwasaki, and Matsui (2002)). Let H ∈ H2n

be a HAP-set. Then:

H is feasible =⇒ α(U) ⩾ 0 ∀U ⊂ [2n] (3)

If there exists a U ⊂ [2n], with α(U) < 0, H is infeasible.

If α(U) = 0, we say that U is tight. When U is tight, this implies that
in any compatible schedule, in every round the maximum possible
number of matches within U need to be scheduled; that is, in every
round r, a total of m−

r (U) matches {t, t ′} with t ∈ M−
r (U), t ′ ∈ U \

M−
r (U) need to be scheduled.

In particular for the CPS, we can identify a lot of tight subsets. We
identify these subsets first and then prove their tightness in Lemma 2.

Definition 14. For i = 1, . . . , ⌊n2 ⌋, index sets I+i , I−i are defined as:

I+i = {1, 3, . . . , 2i− 1} I−i = {2n− 1, 2n− 3, . . . , 2n− (2i− 1)}

Subsets Ui,Uc
i ⊂ CPS are then defined as:

Ui = {PA(j) : j ∈ I−i }∪ {PH(j) : j ∈ I+i }

Uc
i = {PH(j) : j ∈ I−i }∪ {PA(j) : j ∈ I+i }

And subsets Ri ⊂ R of the 2n− 1 rounds R are defined as:

Ri = {j : 2n− 2i ⩽ j < 2n− 1}∪ {2n− 1}∪ {j : 0 < j < i}

Notice that subsets U1, . . . ,U⌊n
2 ⌋ are nested, i.e. {PA(2n− 1),PH(1)} =

U1 ⊂ U2 ⊂ . . . ⊂ U⌊n
2 ⌋, and that |Ui| = |Uc

i | = 2i. As notation sug-
gests, Ui and Uc

i are complementary in the sense that for every com-
plementary pair h,hc ∈ CPS, h ∈ Ui if and only if hc ∈ Uc

i .

The sets of rounds R1, . . . ,R⌊n
2 ⌋ are nested, as {2n− 1} = R1 ⊂ R2 ⊂

. . . ⊂ R⌊n
2 ⌋, and |Ri| = 4i− 3. Round r = 2n− 1 is contained in all Ri,

and with each unit increase of index i four rounds are added, two to
the “left” of round 2n− 1 and two to the “right” of round 2n− 1.

Now that we defined Ui,Uc
i , we can formulate Lemma 2, stating that

all Ui,Uc
i are tight.

Lemma 2. Ui,Uc
i is tight for each i = 1, . . . , ⌊n2 ⌋.

Proof. As Ui,Uc
i contain complementary HAPs, it is sufficient to show

that Ui is tight to see that Uc
i is tight. We do this by determining the

values a(U) and α(U).

Notice that Ui is connected to set of rounds Ri in the sense that all
patterns in Ui, have their breaks in rounds contained in Ri. Moreover,
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for all r ̸∈ Ri, and all h,h ′ ∈ Ui, we have hr = h ′
r - all HAPs in Ui are

indistinguishable outside the rounds in Ri.Example
In Tables 11 and 12,

the resp. two and
four HAPs of U1

and U2 are shown
around round

2n− 1.

Round: 2n−
2

2n−
1

1

hn A A H

hn+1 A H H

Table 11:
Partial HAP-set
of U1

The line drawn in
both tables gives the

division between
M+

r and M−
r

2n−
3

2n−
2

2n−
1

1 2

A H A H A

H A A H A

H A H H A

H A H A H

Table 12:
Partial HAP-set
of U2

We enumerate the rounds in Ri from left to right as in Definition 14,
starting with round r = 2n− 2i+ 1. In this round, there is only one
HAP h ∈ Ui with a different {H,A} allocation compared to the rest of
Ui, namely h = PA(2n− 2i+ 1); this is the pattern with a break in
round 2n−2i+1. Thus, m−

2n−2i+1(Ui) = 1. Since CPS has D-notation
D(2, 2, . . . , 1), when i > 1, there will be no break in round 2n− 2i+ 2,
thus m−

2n−2i+1(Ui) = m−
2n−2i+2(Ui) = 1.

In the next two rounds, 2n− 2i+ 3, 2n− 2i+ 4, we see that m−
r (Ui) =

2, where PA(2n− 2i+ 3) is the additional HAP in Ui.

Continuing this way, we see m−
2n−2i+j = ⌈ j

2⌉, which eventually re-

sults in m2n−1(Ui) =
|Ui|
2 . Using symmetry, we see that m−

2n−1−j =

m−
j for j = 1, 2, . . . , 2i− 2. Thus:

a(Ui) =

2i−2∑
r=2n−2i+1

m−
r (Ui)

= 2

(
1+ 1+ 2+ 2+ . . .+

|Ui|− 2

2
+

|Ui|− 2

2

)
+

|Ui|

2

=
|Ui|(|Ui|− 1)

2

Clearly, α(Ui) = a(Ui) −
|Ui|(|Ui|−1)

2 = 0, thus Ui is tight.

We are now in a position to prove that, for all schedules S compatible
with CPS2n, exactly n matches have precisely one round in which
they can be played.

Theorem 3. Let CPS2n be the CPS on 2n teams, with CPS = {hi,hi+n : 1 ⩽
i ⩽ n}, where hi = PA(2i− 1) and hi+n = PH(2i− 1) form complemen-
tary pairs.

The fixed part FP(CPS2n) is given by:

FP(CPS2n) = {{hi,h2n+1−i} : 1 ⩽ i ⩽ n} (4)

Moreover, for any feasible schedule S = (Sr)1⩽r⩽2n−1 compatible with
CPS2n, S ∈ S(CPS2n), we have FP(CPS2n) = S2n−1. The order of the
fixed part equals fp(CPS2n) = n.

Proof. To prove this theorem, we first show by induction that (4) is
correct. To do so, we first prove the following:

Claim 1. In any schedule S compatible with CPS2n, for i = 1, . . . , ⌊n2 ⌋,
the match {PA(2n− (2i− 1)),PH(2i− 1)} is played in round 2n− 1.

Proof: We prove this claim by induction.
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induction base Clearly, the statement is true for i = 1 as the set
U1 = {PA(2n− 1),PH(1)} is known to be tight by Lemma 2. The only
round in which these two teams can meet, is round 2n − 1, hence,
they must meet in that particular round.

induction step Suppose the claim is true for i = 1, 2, . . . ,k − 1

(k− 1 < ⌊n2 ⌋). As Uk is tight by Lemma 2, we see that h = PA(2n−

(2k − 1)) has to be scheduled against a team in Uk in every round
where h ∈ M−

r (Uk). This is the case in all rounds 2(k−1)−1, . . . , 2n−

1.

Notice that in round 2n− 1, by the induction hypothesis, all teams
in Uk−1 are already scheduled against teams from Uk−1; thus t has
to be scheduled against a team in Uk \Uk−1 = {t,PH(2k− 1)}. There-
fore, the match {PA(2n− (2k− 1)),PH(2k− 1)} has to be scheduled in
round 2n− 1. ■

By symmetry, it follows that a similar analysis for the teams from
the sets Uc

i , 1 ⩽ i ⩽ ⌊n2 ⌋ implies that all teams from these sets play
a match that can only be played in round 2n− 1. Together with the
claim this means that we have shown that ⌊n2 ⌋ + ⌊n2 ⌋ matches can
only be played in round 2n− 1.

If n is odd, for two teams we have not yet shown that there is a fixed
match between them: PA(n) and PH(n) are not contained in any set
Ui. However, with these two teams having to play some match in It is remarkable that

a match between
teams with
complementary
HAPs, can still be
fixed to a single
round for any
compatible schedule.

round 2n− 1, and as all other teams are already paired, they have to
play each other - fixing their match to round 2n− 1.

Thus, in any feasible schedule compatible with the CPS, the entire
round 2n− 1 consists of matches that can only be scheduled in this
round.

Finally, we point out that, due to Observation 3, in any feasible sched-
ule compatible with CPS2n, the matches in round r can be inter-
changed with the matches in round r + 1 (r − 1) if r is odd (even),
for r = 1, . . . , 2n− 2. This proves the theorem.

The analysis of the fixed part of the CPS is not only valid for the
CPS. We can use the knowledge of fixed matches on tight, nested
subsets like Ui, in any HAP-set that contains such sets. We can find
these sets in a single break HAP-set, by using its D-notation. As stated
earlier, every 1 in the D-notation indicates 2 fixed matches. But we can
say more, as every sub-sequence 212 indicates 4 fixed matches, 22122
indicates 6 fixed matches, and so forth. To formalize this knowledge,
we introduce the following concept of nests:

Definition 15. Let H ∈ H2n,1 be a feasible HAP-set, with H ̸= CPS, and
D-notation D = d1 . . . dn. An index i indicates a center at i if di = 1.
The nest N(i) around i is defined as the maximum set of indices N(i) =
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{i − k, . . . , i + k} for which dj = 2 for all j ∈ N(i) \ i. A nest N(i) =

{i− k, . . . , i+ k} is said to be nest of order k - the order of the nest around
i is given by Ni = k.

The fixed part FP(N(i)) of a nest is defined as:

FP(N(i)) : ={{hj,hj ′} : {hj,hj ′} ∈ FP(H), j, j ′ ∈ N(i)} (5)

=FP(H)∩ (N(i)×N(i)) (6)

And the order of the fixed part of N(i) is subsequently given by fp(N(i)) =

|FP(N(i))|.

Any H ∈ H2n,1 that is not the CPS will have at least two nests. It isThe definition of
nests is not

ambiguous as
d1 ⩾ 3 when H not

CPS.

also important to remark that for two different centers i, j with nests
N(i),N(j), we have N(i) ∩N(j) = ∅. Any single break HAP-set that
violates this property, is infeasible as it violates Condition 1.

Recall that the center of the nest i, where di = 1, indicates a round ri
where the match {hi,hi+1} has to be scheduled, as HAP hi+1 has a
break in round ri+1 = ri + di = ri + 1 - we showed this earlier to get
the lower bound in Lemma 1. Using the nests around such center i,
we can improve on this lower bound for fp(H) for any H ∈ H2n,1.

Theorem 4. Let H ∈ H2n,1 \ CPS2n with D-notation D(H) = d1 . . . dn.
Let I = {i : di = 1} the set of indices where the break-gap equals 1, where
each i hence indicates the center of a nest N(i) of order Ni.

Then the following statements are true:

1. {{hi−j,hi+1+j} : 0 ⩽ j ⩽ Ni} ⊂ FP(N(i)).

2. fp(N(i)) ⩾ 1+Ni.

3. fp(H) ⩾ 2
∑

i∈I (1+Ni).

Proof. Clearly, 1 implies Item 2, as the subset that is part of of FP(N(i))

is of size 1+Ni.

Also, 2 implies 3, as the order of the fixed part of HAP-set H is at
least as big as the sum of the order of disjoint subsets of the fixed part.
Moreover, for each fixed match between teams in N(i), the match be-
tween its complementary pairs must be fixed as well, which explains
the factor 2 in front of the summation term.In Section 2.5,

HAP-sets are
observed for which
the lower bound in

Theorem 4 is not
tight.

The only thing left to prove, is that 1 is correct. Let N(i) be a nest
of order Ni = k centered around i. As di−k = · · · = di−1 = 2 and
di+1 = · · · = di+k = 2, the set N(i) is tight. This implies that, by
the same reasoning used in the proof of Theorem 3, that matches
{hi−j,hi+1+j} must be scheduled in round ri - and are thus fixed.
This finishes the proof.

Using Theorem 4, we can refine some lower bounds. For instance, the
HAP-set H with D = 312 . . . 21 still has FP(H) ⩾ 4, as both nests
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are of order 0. On the other hand, HAP-set H ′ with D = 312212 has
two nests, one of order 0 and one of order 1. Thus, FP(H ′) ⩾ 6 - an
improvement on the original lower bound given by Lemma 1, which
was 4.

2.4.3 Measure 3: the spread

The fp of HAP-set H indicates how many matches are fixed to specific
rounds, in any compatible schedule S. However, as we have seen in
Observation 3, the matches in many if not most of the rounds, can
be changed with at least one other round, making them not fixed.
Hence, for most of the matches in a schedule, fp(H) does not indicate
anything, except that they have two rounds in which they can at least
be scheduled.

We want a measure that says something about the flexibility of all
matches in a schedule, instead of the lack of flexibility of some. The
spread of a match {i, j} in HAP-set H, is the number of different rounds
it can be scheduled in. The spread of HAP-set H, is given as the sum
of the spread of all matches. A formal definition is given below.

Definition 16. Given a HAP-set H and a match {h,h ′}, the spread of this
match is given by:

spread(h,h ′) = #{r : ∃S ∈ S(H) s.t. {h,h ′} ∈ Sr} ∀{h,h ′} ⊂ H

The spread of HAP-set H is given by:

spread(H) =
∑

{h,h ′}⊂H

spread(h,h ′) (7)

A higher value of the spread, indicates more flexibility in scheduling
individual matches. Any match {h,h ′} that is fixed, has a spread equal
to 1. It is important to remark here that spread(h,h ′) is not necessarily
equal to the rounds where they have oppositie HAPs, #{r : hr ̸= h ′

r}.
As we’ve seen with the fixed part of the CPS, even complementary
HAPs can have a spread equal to 1.

The HAP-set from Table 5 has a spread of 84 (16 matches can be
played in 4 rounds, 8 matches have 2 possible rounds, and the fixed
part consists of 4 matches, all with spread 1).

It is not immediately intuitive which values of the spread indicate
particularly high flexibility and which indicate low flexibility, higher
spreads naturally points to a higher flexibility. Some rather trivial
bounds can be obtained. For any feasible HAP-set H on 2n teams, we
have: In Chapter 3

schedules are
constructed that
attain the upper
bound.

1. A lower bound spread(H) ⩾ 2n(2n−1)
2 ≈ 2n2.

2. An upper bound spread(H) ⩽ n2(2n− 1) ≈ 2n3.
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The lower bound is correct, as in any schedule S, 2n(2n−1)
2 matches

are scheduled, all having a spread of at least 1. The upper bound is
a result from the fact that in every round, n teams have a home as-
signment, and n teams away. Thus, in any round, at most n2 different
matches can be scheduled. As there are 2n− 1 rounds, this leads to
the upper bound.

It is possible to refine the bounds of HAP-sets by studying their struc-
ture. In particular, we tighten the upper bound for the CPS2n in the
following theorem.

Theorem 5. The spread of the CPS on 2n teams is bounded from above by:

spread (CPS2n) ⩽
n

6

(
10n2 − 9n+ 11

)
− ⌈n

2
⌉ (8)

Proof. To prove this, we first derive an upper bound for the spread of
each individual match; then, we sum these upper bounds to obtain
the result.

As we identify each team with a pattern PH(2i+ 1) or PA(2i+ 1) for
0 ⩽ i, j ⩽ 2n− 1, we can distinguish three types of matches:

1. Type 1-H are matches of the form

{PH(2i+ 1),PH(2j+ 1)} 0 ⩽ i < j ⩽ n− 1. (9)

2. Type 1-A are matches of the form

{PA(2i+ 1),PA(2j+ 1)} 0 ⩽ i < j ⩽ n− 1. (10)

3. Type 2 are matches of the form:

{PH(2i+ 1),PA(2j+ 1)} i, j ∈ {0, . . . ,n− 1}. (11)

Since the CPS is complementary, any result obtained regarding the
spread of a match of Type 1-H, is valid for Type 1-A as well, and vice
versa. We can partition the spread of the CPS as a sum of spreads of
each of the three type of matches:

spread (CPS2n) =
∑
i<j

spread(PH(2i+ 1),PH(2j+ 1))+

∑
i<j

spread(PA(2i+ 1),PA(2j+ 1))+

n−1∑
i=0

n−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)).

We proceed to separately upper bound the spread of the matches per
type. We start by bounding the ’easy’ Types, 1-H and 1-A.



2.4 measuring the flexibility of a hap-set 29

Consider a match of Type 1-H. Given two teams PH(2i+1), PH(2j+1)

with 0 ⩽ i < j ⩽ n− 1, their HAPs differ in the rounds Ri,j := [2i+

1, 2j]. As two teams can only be scheduled in rounds where they have
different HAPs, it follows immediately that, for each 0 ⩽ i < j ⩽ n− 1

spread(PH(2i+ 1),PH(2j+ 1)) ⩽ |Ri,j| = 2(j− i) (12)

Using (12), we are able to bound the sum of the spreads of the corre-
sponding matches:∑

i<j

spread(PH(2i+ 1),PH(2j+ 1)) ⩽

n∑
j=1

j−1∑
i=0

2(j− i) =

n−1∑
j=1

j(j+ 1)

=
1

6
(n− 1)n(2n− 1) +

n(n− 1)

2

=
1

6
((n− 1)n(2n− 1) + 3n(n− 1)) =: Z1,2n. (13)

By symmetry, the spread of the matches of Type 1-A are also upper
bounded by Z1,2n.

So far we did nothing new compared to the trivial upper bound given
earlier. For matches of Type 2, we will see that we can find more re-
strictions on the possible rounds in which matches can be scheduled.

For any match of Type 2, the two teams PH(2i+ 1),PA(2j+ 1) have
different HAPs in rounds Rc

i,j := [1, 2min(i, j)] ∪ [2max(i, j) + 1, 2n−

1]. Hence, for each i, j = 0, . . . ,n− 1: Combining (12) and
(14) results in the
trivial upper bound.spread(PH(2i+ 1),PA(2j+ 1)) ⩽ |Rc

i,j| (14)

To improve on this bound, we analyse the matches op Type 2 {h,h ′} =

{PH(2i+1),PA(2j+1)} by distinguishing three cases. We assume i ⩽ j

- the analysis is similar when i ⩾ j.

case 1 i = n− j− 1.
From the proof of Theorem 3, we see that any match {h,h ′} = {PH(2i+

1),PA(2j + 1)} can be scheduled in round 2n − 1 if and only if i =

n− j− 1; thus, {h,h ′} is fixed to round 2n− 1 and the the spread of
this match is equal to 1.

spread(PH(2i+ 1),PA(2(n− i) + 1)) = 1 (15)

∀0 ⩽ i ⩽ n− 1
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case 2 i < n− j− 1.
Recall sets Ui from Definition 14, with h = PH(2i + 1) ∈ Ui and
Ui tight by Lemma 2. This means that in rounds 1, . . . , 2i, h has to
be scheduled against 2i teams from Ui. As h ′ = PA(2j + 1) ∈ Ui

only if n − j − 1 ⩽ i, and we assumed the negation, we have h ′ ̸∈
Ui. Therefore, {h,h ′} cannot be scheduled in rounds 1, . . . , 2i. As we
also know that this match cannot be scheduled in round 2n− 1, the
only rounds left where {h,h ′} can be scheduled are 2j+ 1, . . . , 2n− 2.
Hence:

spread(PH(2i+ 1),PA(2j+ 1)) ⩽ 2(n− j− 1) (16)

i, j ∈ {0, . . . ,n− 1} with i < n− j− 1.

case 3 i > n− j− 1.
We apply a similar argument as in Case 2. Only this time, we observe
that Un−j−1 is tight, which means that h ′ = PA(2j+ 1) can only play
teams from Un−j−1 in rounds 2j+ 1, . . . , 2n− 2, and h = PH(2i+ 1) ̸∈
Un−j−1 as we assumed i > n − j − 1. Therefore, {h,h ′} cannot be
scheduled in 2j+ 1, . . . , 2n− 1, and must be scheduled in one of the
rounds 1, . . . , 2i. Hence:

spread(PH(2i+ 1),PA(2j+ 1)) ⩽ 2i (17)

i, j ∈ {0, . . . ,n− 1} with i > n− j− 1.

We combine all these bounds to get to one upper bound for the sum
of the spreads of matches of Type 2. Let ⌊n2 ⌋ = k, so n = 2k if n is
even, and n = 2k+ 1 if n is odd. Implementing the right-hand sides
of the expressions (15), (16), and (17) we find:
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k−1∑
i=0

n−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)) =

=

k−1∑
i=0

n−1∑
j=i

spread(PH(2i+ 1),PA(2j+ 1))+

k−1∑
i=0

i−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)) =

=

k−1∑
i=0

spread(PH(2i+ 1),PA(2(n− i− 1) + 1))+

k−1∑
i=0

∑
j:j<n−i−1

spread(PH(2i+ 1),PA(2j+ 1))+

k−1∑
i=0

∑
j:j>n−i−1

spread(PH(2i+ 1),PA(2j+ 1))+

k−1∑
i=0

i−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)) ⩽

⩽
k−1∑
i=0

[1+

n−i−2∑
j=i

2(n− j− 1) +

 n−1∑
j=n−i

2i

+

i−1∑
j=0

2(n− i− 1)] =

=

k−1∑
i=0

[1+n(n− 2i− 1) + 2i · i+ 2i(n− i− 1)] =

=

k−1∑
i=0

[1+n2 −n− 2i]

= k(n2 −n+ 1) − k(k− 1) =: Z2,2n.

The value Z2,2n is the result of the sum of the upper bounds of the
spreads corresponding to the matches (PH(2i+ 1),PA(2j+ 1)), where
i < k. By symmetry, Z2,2n is also equal to the sum of the spreads
corresponding to matches (PH(2i + 1),PA(2j + 1)) where i ⩾ n − k

(recall that k = ⌊n2 ⌋). If n is even, this would mean k = n− k and the
sum over all upper bounds is equal to Z2,2n, leading to:

n−1∑
i=0

n−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)) ⩽ 2Z2,2n. (18)

If n is odd, we still need to bound the spread of the matches {PH(2k+

1),PA(2j+ 1)} where j ⩾ k, and {PA(2k+ 1),PH(2j+ 1)} where j > k.
It is not difficult to see that the sum of the spread of these matches is
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bounded from above by Zodd = 2k · k+ 1+ 2k · k = 4k2 + 1. Thus we
get:

n−1∑
i=0

n−1∑
j=0

spread(PH(2i+ 1),PA(2j+ 1)) ⩽ 2Z2,2n +Zodd. (19)

For even n, combining the spreads of matches of all types results in
an upper bound of:

spread (CPS2n) ⩽ 2Z1,2n + 2Z2,2n

=
1

6
(2(n− 1)n(2n− 1) + 6n(n− 1)) + 2k(n2 −n+ 1) − 2k(k− 1)

=
1

6
(4n3 − 6n2 + 2n+ 6n2 − 6n+ 6n3 − 6n2 + 6n− 6n(k− 1))

=
1

6
(10n3 − 6n2 + 8n− 6nk)

=
1

6
(10n3 − 9n2 + 8n).

For odd n, combining the spreads of matches of all types results in
an upper bound of:

spread (CPS2n) ⩽ 2Z1,2n + 2Z2,2n + 4k2 + 1 =

=
1

6
(2(n− 1)n(2n− 1) + 6n(n− 1)) + 2k(n2 −n+ 1)

− 2k(k− 1) + 4k2 + 1

=
1

6
(2(n− 1)n(2n− 1) + 6n(n− 1) + 6(n− 1)(n2 −n+ 1)

+ 12k(k+ 1) + 6)

=
1

6
(10n3 − 12n2 + 8n+ 6(n− 1)(k+ 1) + 6)

=
1

6
(10n3 − 6n2 + 8n− 6(nk− k+n))

=
1

6
(10n3 − 9n2 + 8n+ 3).

Some rewriting can be done to combine the two outcomes into one.
When n is even, 3n = 6⌈n2 ⌉, and when n is odd, 3n = 6⌈n2 ⌉− 3. Thus,
for any n, we see that:

spread (CPS2n) ⩽
1

6
(10n3 − 9n2 + 11n) − ⌈n

2
⌉.

This finishes the proof.

The improved upper bound we get from Theorem 5 tells us that the
spread(CPS2n) ≈ 5

3n
3. The old bound was spread(CPS2n) ≈ 2n3.

This implies that approximately for one sixth of the rounds where
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h,h ′ have an opposite Home/Away-assignment, the match {h,h ′}

cannot be scheduled. An interesting
question would be
how ’bad’ a spread
can get, i.e., how
small can q be in
spread(H) ≈ q ·n3.

Although we only have an upper bound for the value of the spread of
the CPS, we can calculate the actual values using the integer program-
ming approach as described in the upcoming Section 2.5. In Table 15,
we explicitly list the values of the spread of CPS2n as calculated and
its upper bound for values of 2n up to 22, and note that this bound
is tight. In fact, we conjecture that this bound is tight for any number
of teams 2n.

2n 4 6 8 10 12 14 16 18 20 22

Bound 10 35 88 177 314 507 768 1105 1530 2051

spread(CPS) 10 35 88 177 314 507 768 1105 1530 2051

Table 15: Values for the spread and the upper bound for CPS with 2n teams

Conjecture 1.

spread (CPS2n) =
n

6

(
10n2 − 9n+ 11

)
− ⌈n

2
⌉.

2.5 computing the measures

Indicators like the width, fixed part and spread are only of value, if
we can compare the measures for different HAP-sets. To do this, we
introduce integer programs that, when solved for any particular HAP-
set, give the value of the wanted measure.

In Section 2.5.1, we introduce these IPs and in Section 2.5.2 we present
computational results for single-break HAP-sets.

2.5.1 Exact formulations

We build the IP in a modular way; each measure has its own perks
and constraints, but they all come down to solving a SRR, either once
or multiple times.

We want to find schedules on T = {1, . . . , 2n} teams, that each have a
HAP from HAP-set H = {hi : i = 1, . . . , 2n}. The elements of the HAP-
set H are hi ∈ {0, 1}2n−1, thus hi = (hi

r)1⩽r⩽2n−1, where hi
r = 1

indicates a Home game in round r, and 0 otherwise. We assume that
i plays according to HAP hi. We use R to denote the set of rounds
R = {1, 2, ..., 2n− 1}, indexed by r.

We let W denote the number of schedules we try to create simultane-
ous, and w ∈ {1, . . . ,W} be the index of the schedule. The program
has binary decision variables xwi,j,r, indicating whether i plays j ̸= i in
round r in schedule w.
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The following constraints are all that are needed to find a SRR sched-
ule S compatible with H.

xwi,j,r = xwj,i,r ∀{i, j} ⊂ T ∀r ∈ R ∀w ∈ {1, . . . ,W} (20)∑
r∈R

xwi,j,r = 1 ∀{i, j} ⊂ T w ∈ {1, . . . ,W} (21)∑
j∈T\i

xwi,j,r = 1 ∀i ∈ T r ∈ R w ∈ {1, . . . ,W} (22)

xwi,j,r ⩽ |hi
r − hj

r| ∀{i, j} ∈ T, r ∈ R,w ∈ {1, . . . ,W} (23)

xwi,j,r ∈ {0, 1} ∀{i, j} ∈ T, r ∈ R,w ∈ {1, . . . ,W} (24)

With (20), we fix the notational issue that both xi,j,r and xj,i,r refer to
the match {i, j} in round r. This is more convenient later on. By (21),
we ensure that every match between i and j ̸= i is scheduled once.
By (22) we get that every team has a match scheduled in every round.
To make the schedule compatible with H, we have (23), that upper
bounds the value of xwi,j,r to 0 when hi

r = h
j
r - thus xwi,j,r = 1 is only

possible when hi
r ̸= h

j
r.

We refer to (20)-(24) as the basic IP.

width To determine whether a HAP-set H has width at least W,
we need to add the following constraint to the basic IP, namely:

∑
w

xwi,j,r ⩽ 1 ∀{i, j} ∈ T ∀r ∈ R (25)

For any of the W schedules to be orthogonal, none of the matches can
be scheduled in the same round for different w,w ′, which is captured
by (25).

Notice that solving this IP for a given value of W, can only have
two possible outcomes: either width(H) ⩾ W or width(H) < W, de-
pending whether the IP has a solution or is infeasible. In order to
determine the width of H, one has to search for a W where the IP is
feasible, whereas it is unfeasible for W + 1.

fixed part To determine the fixed part, we use the basic IP, with
W = 2. Then, for each match {i, j} we run this IP with the following
constraint added:∑

w

xwi,j,r ⩽ 1 ∀r ∈ R (26)

This constraint makes sure that the two different schedules w = 1, 2,
have a different round in which {i, j} is scheduled.

This IP has to be solved for all pairs of teams {i, j} - for each pair, if
the IP is feasible, this implies that {i, j} ̸∈ FP(H) is not an element of
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the fixed part, whereas infeasibility proves that {i, j} is an an element
of the fixed part.

This IP has to be run O(n2) times. Although in practice, the solving
time per IP is limited to milliseconds, one could choose to take a
somewhat smarter approach. When solving the IP for a particular
match {i, j}, one could take the feasible solution - if found - containing
two schedules, and check which matches are scheduled in different
rounds. All these matches are excluded from being elements of the
fixed part, and it is of no use to run the algorithm again for these
particular matches.

In fact, a more direct approach can be executed. Fix W and instead of
(26), add the following constraint:

W∑
w=1

xwi,j,r ⩽ 1+ (W − 1) · yi,j,r ∀{i, j} ∈ T ∀r ∈ R (27)

yi,j,r ∈ {0, 1} ∀{i, j} ∈ T ∀r ∈ R

Contrary to just trying to find a feasible solution to the IP, add the
following objective:

min
∑

{i,j}∈T

∑
r∈R

yi,j,r (28)

The newly introduced binary variable yi,j,r serves as a penalty - by
constraint (27), in any feasible solution it equals 1 if in all W sched-
ules, the match {i, j} is scheduled in round r. We denote the outcome
of this IP by fpW(H). As we try to minimize the sum of the penalties,
we see that:

fp2(H) ⩾ fp3(H) ⩾ fp4(H) ⩾ · · · fpn(2n−1)(H) ∀H

and

lim
W→(|T|

2 )
fpW(H) = fp(H).

This might not look like much of a win compared to the original
formulation. Instead of solving several IP’s that creates 2 schedules
O(n2) times, we need to solve an IP that creates W = O(n2) schedules
simultaneously. However, the convergence of the fpW(H) → fp(H)

goes quick - all HAP-sets for which we calculated the order of the
fixed part, had fp2(H) = fp(H). Besides that, we also remark the That

fp2(H) = fp(H)

does not need to be
true in general.

following:

Observation 4. Let H be a HAP-set on 2n teams and let fpW(H) denote
the solution of the IP that is the basic IP together with (27) and objective
(28), for a particular value W. Then:

fpW(H) = fpW+1(H) ⇐⇒ fpW(H) = fp(H) (29)
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Indeed, suppose (29) is not true. That implies that given a solution S∗

to the IP on W schedules that attains fpW(H), there is a yi,j,r = 1 for
which {i, j} ̸∈ FP(H). This means there must be a schedule S = (Sr)

such that {i, j} ̸∈ Sr. As solution to the IP on W + 1 schedules, one
could simply take S∗ and add S as W + 1-th schedule, to construct a
feasible solution that has an objective value strictly less than fpW(H).

spread To compute the value of the spread of HAP-set H, we
again start with the basic IP. Set W = 1. For each match {i, j} and
round r, run the IP with the following added constraint:

x1i,j,r = 1 (30)

The spread equals the total number of IPs that are feasible - roughly
O(n3) of such IPs need to be solved, one for each combination of
matches and rounds.The IP to calculate

the spread can also
be applied to

calculate the FP(H).
If for a match {i, j}
the IP is infeasible
with every round

except for one,
{i, j} ∈ FP(H).

Obviously, this procedure can be sped up in the same way as done
for the fixed part. Namely, after finding a feasible solution to the
IP for a specific match {i, j} in round r, we have a schedule in which
n(2n−1) matches are scheduled in rounds. For all these match-round
combinations, we know there will be a feasible schedule, so we do not
need to solve the IP anymore.

An alternative approach can also be taken, where only a single IP
needs to be solved to calculate the spread, and this is similar to the
alternative IP to calculate the order of the fixed part. Take the basic
IP for a value W and add constraints:

zi,j,r ⩽
W∑

w=1

xwi,j,r ∀{i, j} ∈ T ∀r ∈ R (31)

zi,j,r ∈ {0, 1} ∀{i, j} ∈ T ∀r ∈ R

Together with objective:

max
∑

{i,j}∈T

∑
r∈R

zi,j,r (32)

Variables zi,j,r can only attain 1 if there is a w ∈ {1, . . . ,W}, for which
xwi,j,r = 1, implying that match {i, j} can be scheduled in round r.

When spreadW(H) is the value of this IP for a particular W on HAP-
set H - similar to fpW(H) - we get that:

spread2(H) ⩾ spread3(H) ⩾ · · · spreadn2(2n−1)(H) ∀H

And

lim
W→n2(2n−1)

spreadW(H) = spread(H) ∀H
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Contrary to the convergence of the the fixed part fpW → fp, there
seems to be no clear value W∗ for which spreadW∗(H) = spread(H).

2.5.2 Results

We have used the formulations in Section 2.5.1 to compute the spread
and the fixed part for all D-notations corresponding to feasible single-
break HAP-sets of 2n ⩽ 16. Recall that each such D-notation repre-
sents a family of HAP-sets with the same value for the flexibility
measures. All computations were done using IBM Ilog Cplex 12.8 on
a Dell Latitude 7490 with Intel Core i7-8650 @ 1.9 GHz and 16 GB
RAM. The basic model together with the relevant simple constraints,
were all solved in less than one second; all flexibility measures were
computed in less than 1 minute for up to 16 teams. Recall that we
know that the width equals one for all single-break HAP-sets from
Section 2.4.1.

The results are summarized in Table 16. For 4 and 6 teams, only
1 single-break HAP-set exists, the Canonical Pattern Set. This is no
longer the case when the number of teams is 8 or more.

On 8 teams, there are two elements in H8,1. The popular canonical
pattern set is the best choice with respect to the spread and scores as
good as the other single-break HAP-set when we focus on the fixed
part.

For 10 to 16 teams, however, the canonical pattern set is clearly dom-
inated by another type of schedule, all indicated by the D-notation
312...21. Moreover, for all values of 2n that we considered, this single-
break HAP-set shows the highest spread as well as the lowest fixed
part.

We also point out the following: if some match {P(r),P(s)} in a sin-
gle break HAP-set is in the fixed part, then its complementary match,
given by {Pc(r),Pc(s)}, is also in the fixed part. Ergo, the set of matches
in the FP can be seen as pairs. Interestingly, for 2n ∈ {10, 14}, there
exist multiple feasible single-break HAP-sets with an odd number of
matches in the FP. This can only happen when the complement of a
match is the match itself, as in the match is of the type {PH(r),PA(r)}.
Thus, this implies that for such HAP-sets there is a match between
two teams with complementary HAPs (and hence could, seemingly,
play in each round), that can only be played in one round.
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2n D-notation spread fp

4 21 (CPS) 10 2

6 221 (CPS) 35 3

8 2221 (CPS) 88 4

3121 76 4

10 22221 (CPS) 177 5

31221 161 4

12 222221 (CPS) 314 6

312221 332 4

321221 266 6

313121 254 6

14 2222221 (CPS) 507 7

3122221 557 4

3212221 471 6

3131221 439 6

3213121 423 7

16 22222221 (CPS) 768 8

31222122 686 8

31222212 796 6

31222221 864 4

32122212 632 8

31223121 672 8

31231221 690 6

31312212 614 8

31312221 838 6

32123121 684 8

31313121 640 8

41213121 552 8

Table 16: Flexibility measures for single-break HAP-sets, up to 16 teams

2.6 conclusion and outlook

In a first-break-then-schedule approach, it is important to have free-
dom to schedule the individual matches after the Home-Away Pat-
terns have been chosen. We have proposed three measures that in-
dicate the amount of freedom associated with a particular HAP-set,
namely width, FP and spread. We have given some theoretic insights
into how the most popular HAP-set, the CPS, fares on these measures.
Using an integer programming approach, we also determined the val-
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ues of the FP and the spread of all single-break HAP-sets up to order
16.

From a practical point of view, it is interesting to see that when the
number of teams exceeds 10, the CPS is not the most flexible HAP-set
by any measure. When intending on scheduling competitions with a
single-break HAP-set, we would advise to go for the 32 . . . 21 HAP-set
instead - it has higher spread and a much smaller fixed part.

From a theoretical point of view, many questions can still be asked
and perhaps even answered. With a similar approach as given in the
proof of Theorem 5, it is doable to find tighter upper bounds for dif-
ferent generic pattern sets. One can wonder whether upper bounds
constructed in such a way, are all tight. This would however partly co-
incide with finding a general way of scheduling feasible single break
HAP-sets, for which no generic method is known to date.

Also, some other quirks are nice to figure out. In Chapter 3, we search
for HAP-sets with very large width. One could also try to construct
HAP-sets with a relatively large Fixed Part. So far, all single break
HAPs we have encountered have FP ⩽ n - it might be that this bound
is tight, which would be nice to prove.





3 M A X I M U M O R T H O G O N A L

S C H E D U L E S

When scheduling a competition, choices have to be made. As
seen in the previous chapter, the choices made in the begin-
ning, can result in unwanted limitations and even infeasibility
later on. What if you schedule a tournament among some clubs,
have all clubs reserve their stadiums, and after publishing the
full schedule, it turns out that one match is wrongly sched-
uled?
It would be nice, if the individual matches can be rearranged
in a way, such that the Home/Away-Pattern can be maintained
for all clubs, and this ’poisoned’ match is moved to another
round. However, as a scheduler, one can only guarantee this
in advance if it is possible for every possible match. And to be
able to guarantee this, the HAP-set that is used must have a
width of at least two. But can we even guarantee such a thing,
for any number of teams?
And if we can guarantee that two orthogonal schedules exist
on the same HAP-set, why stop there? Can we do more, say,
construct HAP-sets with 3 orthogonal schedules that are com-
patible? Or 4? And how should these HAP-sets and schedules
look like?
In this chapter we look at HAP-sets and schedules in a more
theoretical way. We examine orthogonal schedules, where all
matches are played in different rounds compared to each other,
which relates it to the popular research topic of finding orthog-
onal Latin squares. We construct HAP-sets for which we know
that two such schedules exist, and even better ones when the
number of teams is a power of 2.
This chapter is based on joint work with Mehmet Akif Yıldız, Jop
Briët, Viresh Patel and Frits Spieksma (Lambers, Yıldız, et al., 2022).

41
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3.1 introduction

A basic and popular format for a competition is the well-known Sin-
gle Round Robin (SRR). Given a set of teams T, with |T| = 2n even,
an SRR has every pair of teams play each other once, and when the
SRR is tight, this is done in |T|− 1 rounds, such that each team plays
once in each round. Typically, in each match, one team plays at home,
while the other team plays away - abbreviated with H,A respectively.

When faced with the task of deciding upon the fixtures, i.e., to come
up with a schedule that specifies which match is played in which
round, and which team plays home and away in each match, various
strategies have been described in literature; we simply refer to survey
papers describing these, see Rasmussen and Trick (2008) and Kendall,
Knust, et al. (2010). We also mention Knust and Lücking (2009) as an
important source of references.

In this chapter we focus on a question that is relevant for a set of
strategies that are known as First-Break-Then-Schedule (FBTS). These
are strategies that follow a 2-phased approach: in the first phase, de-
cide upon the home/away designation of each team in each round
(thereby specifying a Home/Away-Pattern (HAP) for each team). In
the second phase, schedule all the matches in a way that is compat-
ible with these HAPs; see Schreuder (1992) and Russell and Leung
(1994) for early references. A key question is to what extent specify-
ing the HAP-set in Step 1 impacts the set of possible schedules in Step
2. Or in other words, what is the diversity of schedules compatible
with a given HAP-set?

This issue has been investigated in the previous chapter (see also
Lambers, Goossens, and Spieksma (2022)) where various measures
for the flexibility of a HAP-set are proposed and analyzed. One such
measure is called the width. Informally, the width of a HAP-set equals
the number of schedules such that each pair of these schedules has
no match in the same round (see Section 3.2 for precise definitions).
Clearly, a HAP-set with a larger width, has more flexibility. As al-
ready deduced in the previous chapter, the width of the popular
HAP-set known as the Canonical Pattern Set equals 1. This means
that there exists at least one match that, in every schedule compatible
with this canonical HAP-set, is always scheduled in the same round.

In this chapter we will focus on the following questions: Do there
exist HAP-sets that have large width? And how large can the width
of a HAP-set be?

Section 3.2 gives the preliminaries and precise definitions, in Sec-
tion 3.3 we give upper and lower bounds for the width. In Section 3.4,
we prove that the upper bound on the width from Section 3.3 can
be achieved for a particular HAP-set when the number of teams is a
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power of 2. Section 3.5 details a construction that allows one to com-
bine HAP-sets and their corresponding schedules on a small number
of teams, in a way that preserves the width. We close with describing
an extension in Section 3.6.

3.2 preliminaries and notation

We consider a set of teams T, with 2n := |T|. To avoid trivialities, we
assume n ⩾ 2. On these teams, we want to schedule a SRR compe-
tition in 2n − 1 rounds denoted by the set R. For each team t ∈ T,
its Home-Away Pattern (HAP) is given by H(t) = (Hr(t))r∈R, with
Hr(t) ∈ {0, 1}, where Hr(t) = 0 indicates team t playing Home and
Hr(t) = 1 indicates team t playing Away in round r ∈ R. We define
a HAP-set H to be a H = {(Hr(t))r∈R : t ∈ T}, containing a HAP
for every team t ∈ T. Given two teams t, t ′, we define ∆(t, t ′) =

#{r : Hr(t) ̸= Hr(t
′)} to be the number of rounds where t, t ′ differ in

Home/Away-allocation.

A schedule S is a partition of the set of all matches
(
T
2

)
on 2n teams

into 2n− 1 rounds, such that every round is a matching. We denote
this with S = ∪r∈RSr, where each Sr is a round. As we partition all
matches, for every match between t, t ′, there exists a round r ∈ R such
that {t, t ′} ∈ Sr. A schedule S can be generated from such a partition by
assigning a Home-team and Away-team in any match in the partition.
As notation, we write S(t, t ′) = r to indicate that in schedule S, the
match between teams t, t ′ is scheduled in round r ∈ R.

Thus, to any schedule S we can associate a corresponding HAP-set
H(S). Two distinct schedules can have equal HAP-sets. We say a HAP-
set H is feasible if there exists a schedule S such that H = H(S).

We define Hn to be the set of all feasible HAP-sets on 2n teams.
As stated earlier, we define H(S) to be the HAP-set generated by
schedule S. We also define S(H) = {S : H(S) = H} to be the set of all
schedules S that have HAP-set H. We say that schedule S is compatible
with HAP-set H if S ∈ S(H).

Definition 17. Two schedules S,S ′ are orthogonal - S⊥S ′ - if for every
pair of distinct teams t, t ′ ∈ T, the round S(t, t ′) ̸= S ′(t, t ′).

In words, schedules S,S ′ being orthogonal means that no match is
scheduled in the same round for S,S ′.

Definition 18. Two schedules S,S ′ are rotational orthogonal - S⊥rotS
′ -

if there is a permutation of the rounds σ : R → R without fixed elements,
such that Sr = S ′

σ(r) ∀r ∈ R.
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Clearly, any two schedules S,S ′ that are rotational orthogonal are
also orthogonal. Using these definitions of orthogonality, we define
the following properties of a given HAP-set H.

Definition 19. (Lambers, Goossens, and Spieksma, 2022) Given a HAP-set
H for a set T of 2n teams, we define:

• opp(H) = mint,t ′∈T |{r : Hr(t) ̸= Hr(t
′)}|,

• width(H) = maxS⊂S(H) |{S : S⊥S ′ ∀S,S ′ ∈ S}|,

• rotw(H) = maxS⊂S(H) |{S : S⊥rotS
′ ∀S,S ′ ∈ S}|.

In words, for a given H ∈ H, the properties opp(H), width(H),
rotw(H) are defined as:

• opp(H): The minimum number of rounds over distinct pairs
of teams t,t ′ such that teams t, t ′ have a different (or opposite)
Home/Away-assignment in H - i.e., mint,t ′ ∆(t, t ′).

• width(H): The maximum number of schedules compatible with
HAP-set H that are pairwise orthogonal, thus were every match
(t, t ′) is played in a different round in a different schedule.

• rotw(H): The maximum number of schedules with HAP-set H
that are pairwise rotational orthogonal.

It is not difficult to see that opp(H) ⩾ width(H) ⩾ rotw(H) for each
feasible H ∈ H.

Remark 1. For notational purposes, we can refer to the rotational width
of a schedule S = (Sr)r compatible with H, so widthrot(S) instead of
widthrot(H). This should be interpreted as the largest set of pairwise or-
thogonal schedules that can be obtained by permuting the rounds Sr in a
way that preserves the HAP-set. Obviously widthrot(S) ⩽ widthrot(H).

In Definition 19, we have defined three properties of a given HAP-set
H. Our main goal here is to find HAP-sets with extremal values for
these properties. Therefore, for each of these properties, we define
on,wn, xn as follows:

Definition 20. For each 2n ⩾ 4, we define:

• on = maxH∈Hn
opp(H),

• wn = maxH∈Hn
width(H),

• xn = maxH∈Hn
rotw(H).

Simply put, on,wn, xn equal the value of the HAP-set that scores best
on the respective measure for a given n.

With these definitions, we get to the following fundamental question:

Question 1. For a given value of n, what is wn? And what is on, xn?



3.3 upper and lower bounds for the width 45

3.3 upper and lower bounds for the width

We establish the following lower and upper bounds on the width:

Theorem 6. For each n ⩾ 2:

2 ⩽ xn ⩽ wn ⩽ on ⩽ n.

Proof. The inequalities xn ⩽ wn ⩽ on are imminent, as for each
H ∈ Hn, we have opp(H) ⩾ width(H) ⩾ rotw(H).

We now argue that on ⩽ n. Consider any HAP-set H ∈ Hn. As
H is feasible, it follows that in every round, there are n2 pairs of
teams with a different Home/Away-allocation, leading to a total sum
of different Home/Away-allocations equal to

∑
(t,t ′)∈(T2)

∆(t, t ′) =

(2n− 1)n2 . As there are
(
2n
2

)
= n(2n− 1) pairs of teams, there must

be a pair of teams t, t ′ ∈ T with ∆(t, t ′) ⩽ n. Thus, for any HAP-set
H ∈ Hn, we have opp(H) ⩽ n, which implies on ⩽ n.

Next, we show that 2 ⩽ xn. We prove this inequality by first consid-
ering a partition of the set of all matches into 2n − 1 rounds; next,
we construct a HAP-set such that there exist two schedules compat-
ible with it, such that all matches in round r in one schedule, are
scheduled in round r+ 1 in the other schedule, r mod 2n.

There are many ways to partition the set of
(
2n
2

)
matches into 2n−

1 rounds S1, . . . ,S2n−1 such that each round consists of n matches
featuring each team exactly once. One possibility is the well-known
Circle Method, see eg Lambrechts et al. (2018), Siemann (2020). Thus,
we can assume we are given a set of rounds S1, . . . ,S2n−1; notice that
the Home/Away assignment for the matches in these rounds has not
been specified. We will give a procedure that constructs a HAP-set
H in a round-by-round fashion, in such a way that there exist two
schedules compatible with H that are rotational orthogonal.

Fix a round r ∈ R, and construct a simple undirected graph Gr,r+1 =

(V = T,Er,r+1), where (t, t ′) ∈ Er,r+1 iff match (t, t ′) is played in
round r or r+ 1 (indices are read modulo 2n− 1, thus 2n = 1). Clearly,
Gr,r+1 is a regular graph of degree 2, where every node (team) is
incident to an edge corresponding to its match-up in round r and to
an edge corresponding to its match-up in round r+ 1. As Gr,r+1 is
of degree 2, it can be seen as a collection of cycles. For every cycle,
define an orientation (clockwise or counter-clockwise), loop through
every cycle, and for every edge (match) that is scheduled in round
r+ 1, assign the first node (with respect to the orientation) to be the
Home playing team and the second node the team that plays Away
in round r+ 1.

Notice that this Home/Away assignment accommodates the matches
in Sr+1 as the nodes corresponding to each pair of teams that are
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matched in Sr+1 are connected in Gr,r+1, and the construction en-
sures that these nodes receive a different Home/Away assignment. It
is also true that this Home/Away assignment simultaneously accom-
modates the matches in Sr. Indeed, again the nodes corresponding
to each pair of teams that are matched in Sr are connected in Gr,r+1,
and hence receive a different Home/Away assignment.

When we perform this procedure sequentially for r = 1, 2, . . . , 2n−

1, we thereby specify a HAP-set H. Obviously, by construction, this
HAP-set accommodates the matches in the rounds Sr for each r ∈ R,
thereby specifying a schedule S that is compatible with this HAP-set
H.

Consider now a set of rounds that is specified by S ′
r = Sr−1, r ∈ R.

Thus the matches in round r− 1 in S are played in round r in S ′
r, per-

haps with a different Home/Away assignment. We claim that there is
a schedule S ′ consisting of the rounds S ′

r, r ∈ R as follows. Consider
a pair of teams that meet in S ′

r for some r ∈ R. By construction of
the graph Gr−1,r the nodes corresponding to this pair of teams are
connected. But that means that their Home/Away assignment is dif-
ferent, which implies the existence of a schedule S ′ that is compatible
with H. Further, it is evident that S⊥rotS

′.

Concluding, we have constructed a HAP-set H, and we have shown
that there exist two schedules S and S ′ that are compatible with it
while S⊥rotS

′. This concludes the proof.

Remark 2. Notice that, if n is odd, the upperbound from Theorem 6 can
be improved. Indeed, any feasible HAP-set H on 2n teams has exactly
n(2n−1) Home assignments, which is an odd number when n is odd. When
two teams t, t ′ both have an even number of Home’s assigned, they have a
different Home/Away-allocation in an even number of rounds, ∆(t, t ′) is
even. Also, when two teams t, t ′ both have an odd number of Home’s as-
signed, ∆(t, t ′) is even. When there are more than 2 teams, there must be a
pair of teams t, t ′ that have the same parity number of Home games, so they
will have ∆(t, t ′) even. As n is presumed odd, and the only way to make a
HAP-set with opp(H) = n is if every pair of teams t, t ′ has ∆(t, t ′) = n,
we see that opp(H) < n.

Notice also that the procedure sketched in the second part of the
proof of Theorem 6 starts from any feasible partition of the matches
into rounds. In case one would start from the partition that is gener-
ated by the well-known circle method, we can, using this procedure
identify an explicit HAP-set. In fact, we claim that the HAP-set from
Table 17 arises, and it follows that this HAP-set has rotational width
at least 2. One might comment that this HAP-set is unbalanced in the
sense that Team 0 only has Away matches, whereas each other team



3.4 hap-sets with maximum width 47

Team Round 1 2 3 4 . . . Round 2n− 1

0 A A A A . . . A

1 H H A H . . . A

2 A H H A . . . H

3 H A H H . . . A
...

...
...

...
. . . . . .

...

2n− 1 H A H A . . . H

Table 17: A HAP-set with rotational width at least 2

plays only n− 1 away matches. However, as the operation of invert-
ing all Home/Away assignments in a single round does not impact
the (rotational) width, one can improve this balance by inverting the
Home/Away assignments in n

2 rounds, leading to a HAP-set such
that no team plays more than 3

2n− 1 matches away.

3.4 hap-sets with maximum width

In this section, we identify a family of HAP-set whose width equals
the upper bound established in Section 3.3 in case the number of
teams is a power of 2.

Theorem 7. When n = 2ℓ (ℓ ∈ N), there is a HAP-set H∗ ∈ Hn with
width(H∗) = n.

Proof. We prove this by constructing the HAP-set H∗ and providing
n orthogonal schedules that are compatible with H∗.

constructing H∗

We have a set of 2n teams T indexed by 0, . . . , 2n − 1 and let the
rounds be indexed by 1, . . . , 2n − 1. Let bi(j) be the i-th bit of the
binary representation of j, thus j =

∑
i=1 bi(j)2

i−1. Then, we choose
for each r = 1, . . . , 2n− 1 and for each t = 0, . . . , 2n− 1:

Hr(t) :=

ℓ∑
i=1

bi(r)bi(t) mod 2. (33)

In case Hr(t) = 0, this implies a Home match for team t ∈ T in round
r ∈ R, otherwise Hr(t) = 1 implying an Away match. In other words,
if the number of bits in the same position for r and t that are equal
to 1, is even, then Hr(t) = 0, otherwise Hr(t) = 1. We claim that the
HAP-set H∗ = {(Hr(t))r∈R : t ∈ T} generated this way, is a HAP-set
with width n, which we will prove later on.

This HAP-set has the following properties which we state without
proving them (it is not a difficult exercise to do so):
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• Hr(0) = 0 ∀r - thus, Team 0 plays Home in every round.

•
∑

rHr(t) = n ∀t ∈ T \ {0} - thus, Team 1, . . . , 2n − 1 play at
Home in n− 1 rounds, and Away in n rounds.

•
∑

r |Hr(t) −Hr(t
′)| = n ∀{t, t ′} ⊂ T - for every pair of teams,

there are n rounds in which their assignment differs.

As an example, the HAP-set for N = 2 · 22 = 8 teams is given in
Table 18.

Round 1 2 3 4 5 6 7

Teams 001 010 011 100 101 110 111

0 000 0 0 0 0 0 0 0

1 001 1 0 1 0 1 0 1

2 010 0 1 1 0 0 1 1

3 011 1 1 0 0 1 1 0

4 100 0 0 0 1 1 1 1

5 101 1 0 1 1 0 1 0

6 110 0 1 1 1 1 0 0

7 111 1 1 0 1 0 0 1

Table 18: HAP-set on 8 teams

generating the schedules Our next task is to show that H∗

allows for n orthogonal schedules. We do this by first constructing
2n− 1 rounds of n matches each, that partition all the

(
T
2

)
matches

that need to be scheduled. Next, we show that all these rounds can be
rotated in n different ways, thus leading to n orthogonal schedules.

Recall the construction of the HAP-set H∗. Given two teams s, t, we
define R(s, t) = {r : Hr(s) ̸= Hr(t)}, the set of rounds in which teams
s, t can potentially meet each other - note that |R(s, t)| = ∆(s, t) = n

as stated earlier. Furthermore, we define the equivalence class [·, ·],
where [s, t] = {(s ′, t ′) ∈

(
T
2

)
: R(s, t) = R(s ′, t ′)} to be the set of

matches that can be scheduled in the same rounds as (s, t), namely
R(s, t). We also define the index-set I(s, t) for teams s, t, where I(s, t) =
{i ⩽ k : bi(s) ̸= bi(t)}. By construction of the HAP-set, we see that
R(s, t) = {r :

∑
i∈I(s,t) bi(r) = 1 mod 2}. We denote binary addition

with the operator ·, implying s · t =
∑

i(bi(s)+bi(t) mod 2)2k−i - as
example, 6 · 5 = 4(1+ 1 mod 2) + 2(1+ 0 mod 2) + (0+ 1 mod 2) =

3. Remark that by construction, s · t · t = s.

Claim 2. The classes [0, t] have [0, t] = {(s, s · t) : s ⩽ 2n − 1} and
∪t[0, t] =

(
T
2

)
- that is, all matches are part of one of the classes [0, t].



3.4 hap-sets with maximum width 49

Proof. Clearly ∪t{(s, s · t) : s ∈ [1, 2n− 1]} is a partition of
(
T
2

)
, so we

only need to prove that [0, t] = {(s, s · t) : s ∈ [1, 2n− 1]} for all t.

To do this, we need to show that R(s, s · t) = R(0, t) for all s. Recall
that R(0, t) = {r :

∑
i∈I(0,t) bi(r)} with I(0, t) = {i : bi(0) ̸= bi(t)}.

However,

I(s, s · t) = I(0 · s, t · s) = {i : bi(0 · s) ̸= bi(t · s) = I(0, t)

Thus, R(s, s · t) = R(0, t) and P(0, t) = {(s, s · t) : s ∈ [0, 2n− 1]}

To illustrate how this partition looks, we show [0, 1], . . . , [0, 7] for 8

teams in the Example 2

Example 2. When N = 2n = 8, we have sets P(0, 1), . . . ,P(0, 7), where:

[0, 1] = {(0, 1), (2, 3), (4, 5), (6, 7)} R(0, 1) = {1, 3, 5, 7}

[0, 2] = {(0, 2), (1, 3), (4, 6), (5, 7)} R(0, 2) = {2, 3, 6, 7}

[0, 3] = {(0, 3), (1, 2), (4, 7), (5, 6)} R(0, 3) = {1, 2, 5, 6}

[0, 4] = {(0, 4), (1, 5), (2, 6), (3, 7)} R(0, 4) = {4, 5, 6, 7}

[0, 5] = {(0, 5), (1, 4), (2, 7), (3, 6)} R(0, 5) = {1, 3, 4, 6}

[0, 6] = {(0, 6), (1, 7), (2, 4), (3, 5)} R(0, 6) = {2, 3, 4, 5}

[0, 7] = {(0, 7), (1, 6), (2, 5), (3, 4)} R(0, 7) = {1, 2, 4, 7}

Now that we’ve established that the elements of the class [0, t] form
a matching of all teams, for all different t which can be scheduled
in n different rounds, it remains to be shown that we can create n

different schedules. It is not difficult to see that this is possible.

Construct the bipartite graph G = (V1 × V2,E), with V1 = [0, t] for
t ∈ {1, . . . , 2n− 1} representing the classes and V2 = {1, . . . , 2n− 1}

representing the rounds, and (v1t , v2r) ∈ E with v1t ∈ V1 and v2r ∈ V2

if v2r ∈ R(0, t). This is a regular bipartite graph of order n, for which
we know that a 1-factorization exists. For any 1-factorization into n

color classes, every color class implies a schedule. As there are n

color classes there are n different schedules which are all orthogonal
by construction.

Example 3. Using the above construction, we find the following four sched-
ules when the number of teams N = 8 and the HAP-set is as in Table 18.
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Schedule Round 1 2 3 4 5 6 7

S1 0− 1 0− 2 0− 5 0− 6 0− 3 0− 4 0− 7

2− 3 1− 3 3− 6 1− 7 2− 1 1− 5 3− 4

4− 5 4− 6 4− 1 2− 4 5− 6 6− 2 5− 2

6− 7 5− 7 7− 2 3− 5 7− 4 7− 3 6− 1

S2 0− 3 0− 6 0− 2 0− 7 0− 1 0− 5 0− 4

2− 1 1− 7 3− 1 1− 6 2− 3 1− 4 3− 7

4− 7 4− 2 4− 6 2− 5 5− 4 6− 3 5− 1

6− 5 5− 3 7− 5 3− 4 7− 6 7− 2 6− 2

S3 0− 5 0− 7 0− 1 0− 4 0− 6 0− 3 0− 2

2− 7 1− 6 3− 2 1− 5 2− 4 1− 2 3− 1

4− 1 4− 3 4− 5 2− 6 5− 3 6− 5 5− 7

6− 3 5− 2 7− 6 3− 7 7− 1 7− 4 6− 4

S4 0− 7 0− 3 0− 6 0− 5 0− 4 0− 2 0− 1

2− 5 1− 2 3− 5 1− 4 2− 6 1− 3 3− 2

4− 3 4− 7 4− 2 2− 7 5− 1 6− 4 5− 4

6− 1 5− 6 7− 1 3− 6 7− 3 7− 5 6− 7

Table 19: Four orthogonal schedules for 8 teams

3.5 general schedules

Maximum opposing HAP-sets

In this section we introduce a procedure to create HAP-sets H that
have maximum opp(H) = n, provided that we have two other HAP-
sets, H1,H∈ on 2n1, 2n2 teams with opp(Hi) = ni, and n = 2n1n2.

Suppose we have HAP-sets H1,H2 given by:

H1 =
{
(H1

r(t))r⩽2n1−1 : t ∈ [1, . . . , 2n1]
}

(34)

H2 =
{
(H2

r(t))r⩽2n2−1 : t ∈ [1, . . . , 2n2]
}

(35)

We will create a HAP-set on 2n = 4n1n2 teams and 4n1n2− 1 rounds
by gluing the smaller HAP-sets together, which is described in the
following Algorithm 2. Recall that a Home-allocation is denoted with
a 0, and Away with a 1. The algorithm uses +2, addition modulo 2.

In Table 20, a block-structured overview of the newly created HAP-
set is given.

Theorem 8. Let H1,H2 be HAP-sets on 2n1, 2n2 teams and opp(Hi) =

ni for i = 1, 2 is maximum. Then, opp(G(H1,H2)) = 2n1n2 = 2n is
maximum as well.



3.5 general schedules 51

Algorithm 2 Gluing

Input: Two HAP-sets H1,H2 on 2n1, 2n2 teams with opp(Hi) = ni.
1: Let T be a set of 4n1n2 teams, and R a set of 4n1n2 − 1 rounds.
2: Partition T in subsets Ti, with:

T = ∪iTi Ti = {2n2(i− 1) + 1, . . . , 2n2i} 1 ⩽ i ⩽ 2n1

We say [j] ∈ Ti is the team j ∈ Ti with index j mod 2n2.
3: Partition the rounds R in subsets Rj with:

R = Rδ ∪
(
∪jRj

)
Rj = {(2n2 − 1)j+ 1, . . . , (2n2 − 1)(j+ 1)}

Rδ = {(2n2 − 1)2n1 + 1, . . . , 4n2n1 − 1}

We say [r] ∈ Rj is the round r ′ ∈ Rj such that r = r ′ mod 2n2 − 1

4: In rounds R0, assign to teams [j] ∈ Ti the HAP (H2
r(j))r∈R0

.
5: For rounds Rs, 1 ⩽ s ⩽ 2n1 − 1, assign to team [j] ∈ Ti the HAP

(H1
s(i) +2 H

2
r(j))r∈Rs

.
6: For the rounds s ∈ Rδ, assign H1

s(i) to all teams in Ti.
Output: A HAP-set G(H1,H2) on 4n1n2 teams with
opp(G(H1,H2)) = 2n1n2.

Teams/Rounds R0 Rj Rδ

T1 H2 H2 +2 H
1
j (1) H1(1)

Ti H2 H2 +2 H
1
j (i) H1(i)

T2n1
H2 H2 +2 H

1
j (2n1) H1(2n1)

Table 20: Structure of G(H1,H2)

Proof. We prove this by simply counting how many times a pair of
teams have a different allocation. It is important to recall that two
teams with HAPs from H1, have a different allocation in exactly n1

rounds, and an equal allocation in the other n1 − 1 rounds. Similarly,
this is true for two teams with HAPs in h2, they have opposite assign-
ment in n2 rounds and equal assignment in n2 − 1 rounds.

• Suppose t, t ′ ∈ Ti for some i. Then they have a different al-
location exactly opp(H2) = n2 times in each of the blocks Rj,
j = 0, . . . , 2n1 − 1. There are 2n1 such blocks, thus they have
opposite assignment ∆(t, t ′) = 2n1n2 times.

• Suppose t ∈ Ti, t ′ ∈ T ′
i for different i, i ′, and [t] ̸= [t ′]. They

differ n2 times in a block Rj when H1
i (j) = H1

i ′(j) with j =

0, . . . , 2n1 − 1, and they differ n2 − 1 times in the other blocks.
The number of blocks Rj where Hi(j) ̸= Hi ′(j) is n1, and in
n1 − 1 blocks, Hi(j) = Hi ′(j). In block Rδ, the teams differ in n1

rounds. Together, this means they differ in:
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∆(t, t ′) = n2 + (n1 − 1)n2 + (n2 − 1)n1 +n1 = 2n1n2

• Suppose t ∈ Ti, t ′ ∈ Ti ′ with i ̸= i ′ and [t] = [t ′]. Then they
have a different allocation in all the 2n2 − 1 rounds in block Rj

whenever H1
i (j) ̸= H1

i ′(j) - this occurs in opp(H1) = n1 blocks.
They also have different allocation in n1 rounds in block Rδ.
Combined, we see ∆(t, t ′) = (2n2 − 1)n1 +n1 = 2n1n2.

As in all three cases, teams t, t ′ have ∆(t, t ′) = 2n1n2, we can con-
clude that G(H1,H2) = 2n1n2

Corollary 1. When on = n, o2n = 2n.

Proof. If on = n, there must exist a H on 2n teams, such that opp(H) =

n. We know the trivial HAP-set on 2n = 2 teams, H∗, has opp(H∗) =

1 = n1. So both H,H∗ are maximum opposing HAP-sets, thus G(H,H∗) =

2n is maximum opposing as well. As G(H,H∗) is a HAP on 4n teams,
o2n = 2n.

Remark 3. Algorithm 2 is not applicable solely to HAP-sets H with max-
imum opp(H) = n. It is not difficult to find lower bounds on ∆(t, t ′) in
G(H1,H2), when opp(Hi) ⩽ ni for i = 1, 2. Doing so, and again using
that the HAP-set on two teams h∗ has opp(H∗) = 1 = n, one can even
prove a stronger version of Corollary 1, namely that o2n ⩾ 2on for all n.

Remark 4. In a similar way as gluing HAP-sets H1,H2 to form G(H1,H2)

on 4n1n2 teams via Algorithm 2, it is possible to glue schedules S1,S2

to form G ′(S1,S2) on 4n1n2 teams, where G ′(S1,S2) is compatible with
G(H1,H2). We do not show the exact algorithm, as it is very repetitive.
However, we like to point out that if rotw(S1) = n1 and rotw(S2) = n2

on H1,H2 respectively, then rotw(G ′(S1,S2)) = 2n1n2. This means that
if we have two schedules with perfect rotational width, we can create a new
schedule on 4n1n2 teams that also has perfect rotational width.

The algorithm that glues two HAP-sets together, preserves the prop-
erty of having maximum opposing rounds of two HAP-sets. How-
ever, so far we only showed for HAP-sets where the number of teams
equaled a power of two that they have maximum opposing rounds.
And in those cases, we can even explicitly construct the HAP-set,
without using smaller sized HAP-sets, as shown in Section 3.4.

However, having maximum opposing rounds, is not reserved for HAP-
sets on powers of two, as can be seen by the HAP-set H on 12 teams
in Table 21. It has opp(H) = 6, which is maximum. It is also the small-
est possible number of teams n for which n ̸= 2ℓ and the HAP-set is
maximum opposing.
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Round 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0

1 1 1 0 0 0 1 1 1 0 0

1 1 0 1 0 0 1 0 0 1 1

1 0 1 0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 0 1 1 1

0 0 1 1 1 0 1 0 1 0 1

0 0 1 1 0 1 1 1 0 1 0

0 1 0 1 1 0 0 1 1 1 0

0 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1 1 0

Table 21: HAP-set on 12 teams with opp = 6

The largest known set of orthogonal schedules compatible with the
HAP-set in Table 21, has size 4.
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3.6 extensions

It is clear that the width is a measure indicating to what extent a
particular HAP-set can accommodate distinct schedules where an in-
dividual match has different rounds to be played in. This is clearly
relevant in a first-break-then-schedule approach, see Section 3.1. An-
other property one might be interested in is the notion of match-pair
disjointness. Given a HAP-set, this property refers to the existence of
two schedules such that each pair of matches in the same round in
one schedule are not in the same round in the other schedule.

Notice that this property is different from orthogonality, i.e., a pair of
schedules may be match-pair disjoint or not, and they may be orthog-
onal or not. Although we have no theoretical results for this property
of match-pair disjoint, we provide, for 2n = 8 teams, two schedules
that are both match-pair disjoint, as well as orthogonal.

Teams/Rounds 1 2 3 4 5 6 7

0 H H H H H H H

1 A A A H A H A

2 H A H A H H H

3 A H A H H A H

4 A H H A H A A

5 H H H A A H A

6 H A A H A A H

7 A A A A A A A

Table 22: The HAP-set with two feasible match disjoint schedules

Rounds 1 2 3 4 5 6 7

Schedule 1 0− 1 0− 2 0− 3 0− 4 0− 5 0− 6 0− 7

2− 3 3− 1 2− 1 1− 5 2− 7 1− 7 2− 5

5− 4 4− 6 4− 7 3− 7 6− 2 3− 6 3− 4

6− 7 5− 7 5− 6 6− 2 4− 1 5− 3 6− 1

Schedule 2 0− 4 0− 1 0− 7 0− 2 0− 6 0− 3 0− 5

2− 7 3− 6 2− 3 1− 7 2− 1 1− 4 2− 4

5− 3 4− 7 4− 6 3− 4 3− 7 2− 6 3− 1

6− 1 5− 2 5− 1 6− 5 4− 5 5− 7 6− 7

Table 23: Two match disjoint schedules compatible with the same HAP-set.
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56 the multi-league sports scheduling problem

4 T H E M U LT I - L E A G U E S P O R T S

S C H E D U L I N G P R O B L E M

The Dutch field hockeyclub USHC, a club solely for students
in Utrecht, is very popular among them. Every summer more
people apply for membership than are able to join the club.
This is not because the club aims to be exclusive, but merely
because the capacity of their venue, with only two fields, does
not allow them to grow.
Hockey, like football, is a sport played in teams, eleven versus
eleven. Every member of USHC is part of such a team, and
during the season every team plays matches on Sundays - this
is non-negotiable. When and where they play is scheduled by
the Dutch Field Hockey Association KNHB, who schedules the
competitions for all hockey teams in the Netherlands.
On a Sunday, playing from roughly 9 in the morning till 7 in
the evening makes that approximately 6 − 7 matches can be
scheduled per pitch. Disregarding some small ’ifs’, on a very
good day, this means that USHC can host up to 14 matches.
As on average only half of the teams is expected to play at
home, USHC indeed has 26 teams registered, practically the
maximum given their venue size. Still, its teams have to play
home matches at neighbouring clubs from time to time.
Besides capacity issues, that are common within the sport, the
clubs expect more from the KNHB. Most of the clubs specifi-
cally value their Dames 1 and Heren 1 (Womens and Mens top
tier team), and try to get a supporting crowd when they play
at home. Thus, some clubs even prefer to have them play at
home on the same Sundays, as that brings something extra to
the stands.
These capacity issues and coupling preferences, are already dif-
ficult to grasp in one DRR, let alone when scheduling several
hundreds of competitions simultaneous.
This chapter is based on joint work with Morteza Davari, Dries
Goossens, Jeroen Beliën and Frits Spieksma that appeared as Davari
et al. (2020).
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4.1 introduction

Every sports competition needs a schedule, stating who will play
whom, when, and where. Depending on which constraints need to be
taken into account, scheduling a single league may already be quite
a challenge - see e.g. Alarcón et al. (2017), Goossens and Spieksma
(2009), Recalde, Torres, and Vaca (2013).

However, while professional sports usually have only a handful of
leagues, in amateur sports or youth competitions, the number of
leagues and matches can be very large. For instance, in the Dutch
field hockey association, each of the approximately 325 clubs belongs
to one of six regions. Most teams of a club, both in the youth and
senior divisions, play their matches within the region; Within one re-
gion, thousands of teams are distributed over hundreds of leagues,
yielding over tens of thousands of matches in one season.

Within these leagues, clubs typically have several teams (e.g. based
on age or skill of the players); however, all teams from the same
club share the same infrastructure. This creates a capacity problem
at each club: a club has a bound on the number of matches it can
host at each point in time (which typically follows from its number
of pitches). These capacity constraints create interdependencies be-
tween the leagues, making it a challenging problem to schedule all
leagues while taking these capacities into account.

With respect to scheduling multiple leagues simultaneously, the lit-
erature is sparse. Kendall (2008) considers the problem of simultane-
ously scheduling the matches in four different leagues of the English
soccer competition. However, the focus is only on two rounds, played
on Boxing day and New Year’s day. During these rounds, each team
must play one home match and one away match such that the two
opponents of each team are different, and that some pairs of teams
do not meet at all. In all leagues, the objective is to minimize the to-
tal distance traveled by the teams in those two rounds. The solution
offered, however, does not generalize to scheduling the entire season.

Grabau (2012) describes the scheduling of a recreational softball com-
petition with 74 teams, split over 8 leagues, and competing on 12

fields. The scheduler must adhere to several intertwined scheduling
rules, while simultaneously ensuring that the players play their allot-
ment of matches. Burrows and Tuffley (2015) describe a scheduling
problem for a competition played in two divisions. The authors try to
achieve a maximal number of so-called common fixtures between clubs,
which occur if their teams in division one and two are scheduled to
play each other in the same round.

Schönberger (2015) introduces the so-called championship timetabling
problem, which involves several leagues that are scheduled simulta-
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neously. Two types of inter-league constraints are considered: lim-
ited venue capacity as well as player substitution opportunities be-
tween several teams of a club. Computational experiments involving
a mixed-integer linear program illustrate that even finding a feasible
solution for a very small instance with only two leagues of six teams
each is a time-consuming task.

In this chapter, we study the multi-league scheduling problem as
faced by the league organizer. Clearly, when scheduling a single league
in professional sports, the precise round in which a particular match
takes place can be quite important. However, such matters are not rel-
evant when scheduling thousands of matches for hundreds of leagues.
In order to cope with this huge number of matches, typically, a league
organizer uses the following approach.

First, the teams are clustered into leagues of even size. Common prac-
tice is to (i) use a geographical clustering, ensuring that teams of the
same strength/age category are in a same league, and (ii) to avoid
teams of the same club to be present in the same league, see (Toffolo
et al., 2019) for a discussion of the problem of grouping teams into
leagues. Leagues of even size make sense, as they allow each team to
play on each round; and although the total number of teams may not
be an exact multiple of the league size, with an even league size the
vast majority of the teams will be still able to play each round.

Second, the league organizer no longer assigns individual matches
to individual rounds. Instead, using a prespecified set of Home-Away
patterns that is valid for each league, and the league organizer as-
signs teams to these HAPs. Next, combining this assignment with a
compatible specification of each team’s opponent for each round, the
schedule follows.

Rounds

r1 r2 r3 r4 r5

6-1 1-3 2-4 1-2 2-3

5-2 2-6 5-1 3-5 4-1

3-4 4-5 6-3 4-6 6-5

Rounds

r6 r7 r8 r9 r10

1-6 3-1 1-5 2-1 3-2

2-5 6-2 4-2 5-3 1-4

4-3 5-4 3-6 6-4 5-6

Table 24:
A schedule com-
patible with Ta-
ble 26

Rounds

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

h1 A H A H A H A H A H

h2 A H H A H H A A H A

h3 H A A H A A H H A H

h4 A H A H H H A H A A

h5 H A H A A A H A H H

h6 H A H A H A H A H A

Table 26: A HAP-set for a league consisting of 6 teams

As an illustration of the latter procedure, consider the HAP-set de-
picted in Table 26; it reflects a particular for a league consisting of
6 teams, where each team plays against each other team twice. Al-
though a priori, the given HAP-set may allow different schedules (or
none), Table 24 gives one such schedule compatible with the HAP-set
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from Table 26. The issue of deciding whether a schedule exists for
a given HAP-set is a well-researched topic (see Miyashiro, Iwasaki,
and Matsui (2002), Briskorn (2008), Horbach (2010), Goossens and
Spieksma (2011)); we do not go into details here.

This chapter focuses exclusively on assigning teams to HAPs. Since
such assignment dictates when each team plays home, it specifies for
each club how many matches are played at the club’s venue in each
round. This is important, since the capacity of a club in terms of the
number of matches it can host in a round is typically bounded. In
fact, a capacity is given for each club; in practice this number follows
from the number of available pitches, the set of possible starting times,
and the availability of material and referees. Our goal is to find, for
each league, an assignment of teams to HAPs minimizing the total
capacity violation over the clubs. We refer to the resulting problem as
the Multi-league Scheduling Problem (MSP) (see Section 4.2 for a
precise problem description).

We present a polynomial-time algorithm for the MSP (Section 4.4).
Further, we show that, for a league consisting of at least four teams,
the problem becomes difficult when all teams of each club must play
according to the same pattern, or when club capacities differ through-
out the season (Section 4.5).

4.2 terminology and assumptions

Each team belongs to a club, and each club has a venue. When a team
plays at its club’s venue, the team plays home, otherwise the team
plays away. A Double Round Robin (DRR) is a tournament where each
team meets each other team twice. This is a typical format in many
team sport competitions, such as soccer, basketball, volleyball, hockey;
each team meets each other team once home and once away.

When scheduling a tournament, the matches must be allocated to
rounds in such a way that each team plays at most one match in each
round (typically, a round corresponds to a weekend). Since, in our
case the number of teams k is even, at least 2(k− 1) rounds are re-
quired to schedule a DRR; if that number is attained, it is called a
compact DRR.

The sequence of home and away matches according to which a team
plays in a tournament, is referred to as a Home-Away pattern (in short,
HAP). A HAP is represented by a vector consisting of 2(k− 1) sym-
bols, k− 1 of which are an ‘H’, and k− 1 of which are an ‘A’; these ob-
viously refer to the home matches and away matches. A Home-Away
pattern set (HAP-set) corresponds to the set of HAPs, one for each
team in the tournament. We say that a HAP-set is feasible if there ex-
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ists at least one schedule that is compatible with the HAP-set (i.e. for
each match i vs. j in round r, team i has an ‘H’ in its HAP and team
j has an ‘A’).

Two HAPs h and h ′ are complementary if whenever the team assigned
to HAP h plays home, the team assigned to HAP h ′ plays away and
vice versa. A complementary HAP-set is a set that only consists of com-
plementary pairs of HAPs. For example, the HAP-set depicted in Ta-
ble 26 is a feasible, complementary HAP-set with three pairs of com-
plementary HAPs (pair 1: h1 and h6; pair 2: h2 and h3 pair 3: h4 and
h5).

In this work, we make a number of assumptions. We assume that
each league has the same even number of teams. We also assume
that the league organizer uses the same complementary HAP-set for
each league. This is common practice in competitions where there are
few considerations, besides capacity issues. In Section 4.4, it will be-
come clear that the choice of a particular (complementary) HAP-set
is irrelevant. Finally, we exclusively deal with compact DRRs for an
even number of teams. Consequently, all leagues are played simulta-
neously, and each team plays either home or away in each round.

We finish this section by formally describing the instances of the
Multi-league scheduling problem and its expected outcome.

Multi-league scheduling problem

Input An instance I of MSP consists of:

• Sets of teams T , leagues L and clubs C, with n = |T | and m = |L|.

• A partition of the teams TL = {T̄1, . . . , T̄m} with |T̄ℓ| = k for all
ℓ ∈ L.

• A partition of the teams TC = {T̂1, . . . , T̂|C|}.

• For each club c ∈ C, its capacity δc.

• A feasible complementary HAP-set H consisting of k HAPs of
length 2(k− 1).

Output An assignment g : T → H such that for each T̄ℓ ∈ TL and
for each h ∈ H, there exists a t ∈ T̄ℓ with g(t) = h. This assignment
should minimize the penalty-function PEN:

PEN(I) =
∑
c∈C

∑
r⩽2(k−1)

max

∑
t∈T̂c

g(t)r − δc, 0

 (36)

As can be seen in the description above, an instance I of Problem 4.2
of n teams T , clubs C and leagues L, with specification which teams
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play in which leagues (TL) and belong to which clubs (TC). Every
league is supposed to be of the same size k, so n = km. Clubs can be
of any size, where nc = |T̂c| denotes the size of club c ∈ C - again, it
holds that

∑
c nc = n. Furthermore, a feasible complementary HAP- Our solution method

does not depend on
the given HAP-set
H, as long as H is
feasible and
complementary, but
we do require it to
exist.

set H is given, with HAPs of length 2(k− 1), which is the number of
rounds in a DRR on k teams. In this HAP, we assume hr = 1 denotes
playing at home in round r, and hr = 0 otherwise. Also, for each club
c, its venue capacity δc is given - this corresponds to the number of
matches a club can host per round.

As output, we expect the assignment of teams to a HAP, in such a way
that the capacity violations are kept to a minimum. These violations
happen whenever for any club and any round the number of teams
of a club that play home exceeds the capacity of the club. The total
violation per club per round, is simply the exceedance of its capacity
if that number is positive. Minimizing capacity violation is equivalent
to minimizing function PEN(I).

In short, the multi-league sports scheduling problem (MSP) is to
find an assignment g of teams to HAPs, such that the total capacity vi-
olation (i.e. the summation of violations over all clubs and all rounds)
is minimized.

4.3 an ip-formulation of msp

The MSP is a problem suitable to be described as an IP. An Integer
Program consists of a set of variables, and constraints on these vari-
ables that need to be met, while the variables can only take integer
values.

4.3.1 The IP

To write the problem as an IP, we have to introduce new binary vari-
ables, xt,h. Variable xt,h is equal to one, if team t ∈ T is assigned Binary variables

xt,h lead to an
assignment g by
setting xt,h =

1 ⇐⇒ g(t) = h.

HAP h ∈ H, and zero otherwise. We also need auxiliary variables
zc,r that represent the amount of violation of club c ∈ C in round
r ∈ R. An assignment x is feasible if and only if the teams in each
league are assigned to different HAPs. Given the set of HAPs and the
set of rounds, we compute (in a pre-processing step) parameters Uh,r

which equal one if the team assigned to h ∈ H plays home in round
r ∈ R, and zero otherwise. The following integer program formulates
MSP.



62 the multi-league sports scheduling problem

vIP =min
∑
c∈C

∑
r∈R

zc,r (37)

s.t. ∑
t∈T̄ℓ

xt,h = 1 ∀ℓ ∈ L,h ∈ H (38)

∑
h∈H

xt,h = 1 ∀t ∈ T̄ℓ, ℓ ∈ L (39)

zc,r ⩾
∑
t∈T̂c

∑
h∈H

xt,hUh,r − δc ∀c ∈ C, r ∈ R (40)

zc,r ⩾ 0 ∀c ∈ C, r ∈ R (41)

xt,h ∈ {0, 1} ∀t ∈ T ,h ∈ H (42)

This formulation aims to minimize total capacity violation vIP, which
models the objective function PEN(I) of the problem instance.

Constraints (38)-(39) enforce an assignment of teams to HAPs, while
Constraints (40)-(41) determine the number of violations of each club
in each round. We point out that this integer program can be modified
to accommodate situations that are slightly more general than MSP;
for instance, situations where each league has its own (given) HAP-
set, or where not all leagues play in all rounds can be formulated
with minor modifications of (37)-(42).

4.3.2 LP-relaxation of the IP

When replacing constraints (42) by xt,h ⩾ 0 for each t and h, the LP-
relaxation of formulation (37)-(42) arises; we denote the correspond-
ing value by vLP. Solving an LP can usually be done quicker than
the IP, as there are no constraints on the integrality of the obtained
solution x̂.

However, one might wonder whether all extreme vertices of the poly-
tope corresponding to the LP-relaxation of (37)-(42) are integral. That
is not the case, as witnessed by the following example.

Example 4. We have n = 20 teams, distributed over m = 5 leagues of
size k = 4, and belonging to six clubs: in this instance, T = {t1, ..., t20},
C = {c1, ..., c6} and L = {ℓ1, ..., ℓ5}. The partition of teams into clubs, as
well as the club’s capacities, are given in Figure 3a, and the partition of
teams into leagues is given in Figure 3b. The HAP-set is as follows:

H =


h1 = {H,A,H,A,H,A},

h2 = {A,H,A,H,A,H},

h3 = {H,A,A,A,H,H},

h4 = {A,H,H,H,A,A}

 .
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T̂c δc

c1 : {t1, t2, t3, t4} 2

c2 : {t5, t6, t7} 1

c3 : {t8, t9, t10} 1

c4 : {t11, t12, t13, t14} 2

c5 : {t15} 1

c6 : {t16, t17, t18, t19, t20} 1

(a) Clubs: teams and
capacity

T̄l

ℓ1 : {t1, t6, t13, t16}

ℓ2 : {t2, t9, t12, t17}

ℓ3 : {t3, t5, t14, t20}

ℓ4 : {t7, t8, t11, t18}

ℓ5 : {t4, t10, t15, t19}

(b) Leagues

Figure 3: The data associated with Example 4

For this instance, provided in Figure 3, we find an optimal basic so-
lution to the LP-relaxation of (37)-(42). In this solution, the following
variables equal 1:

x∗1,2, x∗2,1, x∗7,2, x∗8,3, x∗9,4, x∗11,4, x∗12,2, x∗14,3,

x∗13,1, x∗15,1, x∗17,3, x∗18,1, x∗19,2, x∗20,4

,

while the following equal 0.5 (thus are non-integral):

x∗3,1, x∗3,2, x∗4,3, x∗4,4, x∗5,1, x∗5,2,

x∗6,3, x∗6,4, x∗10,3, x∗10,4, x∗16,3, x∗16,4

.

The remaining x∗t,h variables are zero; the values of the z∗c,r variables
follow easily. The objective value of this solution to the linear pro-
gramming relaxation is vLP = 15.

4.3.3 A combinatorial lower bound

Instead of raw calculations, we now look into the structure of the
problem to derive a lower bound on the objective value vIP.

Observe that, in any HAP, there are k− 1 ‘H’s. Hence, the total num-
ber of home matches of teams belonging to a club c ∈ C must equal
(k − 1)nc in any assignment g. The total capacity of a club during
the season equals (2k− 2)δc, namely δc in every of the 2k− 2 rounds.
Clearly, if (2k− 2)δc < (k− 1)nc, or equivalently, when δc < nc

2 , there
will be violations for club c. Define C− = {c ∈ C| δc < nc/2}.

We claim that for each c ∈ C− the difference between the number of
home matches to be played by teams of club c, and the total capacity
of club c is a lower bound for the number of violations of club c,
i.e., club c ∈ C− will have at least (k − 1)nc − (2k − 2)δc = (2k −

2)(nc

2 − δc) violations. To capture this number of violations we define
the following quantity:
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Q ≡ 2 (k− 1)
∑
c∈C−

(nc

2
− δc

)
. (43)

The discussion above implies the following lemma.

Lemma 3. Q ⩽ vIP.

We will show in Section 4.4 that Q = vLP = vIP; in the next theorem,
we prove the first of these equalities.

Theorem 9. Q = vLP.

Proof. Consider a solution (x∗, z∗) that is optimal with respect to the
LP-relaxation of (37)-(42). For each club c ∈ C, we have (by summing
constraints (40) over the rounds):

∑
r∈R

z∗c,r ⩾
∑
t∈T̂c

∑
h∈H

x∗t,h

(∑
r∈R

Uh,r

)
− 2(k− 1)δc

= (k− 1)(nc − 2δc).

This implies

∑
r∈R

z∗c,r ⩾

{
0 if c ∈ C \C−

2 (k− 1)
(
nc

2 − δc
)

if c ∈ C−

Thus, the following inequality holds:

vLP =
∑
c∈C

∑
r∈R

z∗c,r ⩾
∑
c∈C−

2(k− 1)(
nc

2
− δc) = Q. (44)

Next, consider solution (x̂, ẑ) where x̂t,h = 1
k , ∀t ∈ T ,h ∈ H. Due to

the fact that the HAP-set is feasible, it follows that in each round k
2

HAPs have an ‘H’, while the remaining k
2 HAPS have an ‘A’. Thus, for

each t ∈ T , we have that
∑

h∈H x̂t,h = 1
k · k

2 = 1
2 , and hence the (frac-

tional) number of home matches of a club c ∈ C in each round equals
nc

2 , leading to a violation in a round equaling: max
{
1
2nc − δc, 0

}
.

Thus, the objective value of this solution is exactly Q, which implies
vLP ⩽ Q. Together with (44), the result follows.

In light of Theorem 9, one may wonder whether it is possible to round
an optimal, fractional LP-solution into an optimal integral solution.
That, however, cannot be achieved by straightforward rounding.

To see that this is indeed not trivial, consider the LP-solution dis-
cussed in Example 4, a solution in which there are no violations for
club c1. The non-zero variables associated to teams of club c1 are
x∗1,2 = x∗2,1 = 1 and x∗3,1 = x∗3,2 = x∗4,3 = x∗4,4 = 0.5, indicating the
assignment of each team to any of the four HAPs h1, . . . ,h4.
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A straightforward rounding of this solution would imply that teams t1
and t2 are assigned to complementary HAPs h2 and h1 respectively.
Therefore teams t3 and t4 should also be assigned to complementary
HAPs; otherwise, the club c1 will have violations in some rounds.
Unfortunately, this cannot be achieved by any simple procedure that
rounds the fractional assignment of team 3 and team 4, as both h1,h2

are not complementary to any of h3,h4.

This example shows us that we cannot directly expect the LP to con-
tain integer values. The following section on the other hand, describes
an algorithm that is guaranteed to solve the MSP in polynomial time,
and gives insight into what an optimal solution looks like.

4.4 a polynomial-time, exact algorithm for
msp

In this section, we exhibit Algorithm 3 that outputs an optimal solu-
tion to MSP in polynomial time. Interestingly, the values of the capac-
ities δc do not impact the solution; in other words, the solution found
by this algorithm is optimal for any capacities δc. Informally, this so-
lution is one where the home matches of teams from the same club
are as balanced over the rounds as possible. Before proving correct-
ness of Algorithm 3, we first illustrate how it works on the instance
given in Example 4.

Algorithm 3
Input: An instance I of MSP.

1: Create a new instance of MSP as follows. Partition, arbitrarily,
each club c into ⌊nc/2⌋ arbitrary pseudo clubs of size two, and
add the remaining team (if there is one) to a new club c ′.

2: Partition club c ′ into nc ′/2 arbitrary pseudo clubs of size two.
Set the capacity of all pseudo clubs in the new instance to one.
Notice that in the new instance the assignment of teams to leagues
remains unchanged.

3: Construct the following graph G based on the new instance: there
is a vertex for each league ℓ ∈ L and there is an edge for each
pseudo club that links the two vertices/leagues where the two
teams of that pseudo club play. Note that G will be a multi-graph
with m vertices and km/2 edges.

4: Consider a 2-factorization of G. Associate each 2-factor with a
pair of complementary HAPs. This leads to a feasible assignment
g: in each 2-factor, each edge is associated with two teams from
a pseudo club, and each vertex is associated with two teams in a
league that follow the associated pair of complementary HAPs.

Output: An assignment g of teams to HAPs: g.
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Example 5. Following steps 1 and 2 of Algorithm 3, we first create a new
instance.

step 1 & 2 The clubs c1 and c4 consist of an even numbers of teams
and thus we can split them into four clubs (so-called pseudo clubs) of two
teams as follows:

T̂c1a
= {t1, t4} T̂c4a

= {t11, t12}

T̂c1b
= {t2, t3} T̂c4b

= {t13, t14}

The remaining clubs all consist of an odd numbers of teams. For instance
club c6 consists of five teams, therefore we split it into two clubs of size two
and add the remaining team to the new club c ′. Hence, T̂c6a

= {t16, t17}
and T̂c6b

= {t18, t19} and team t20 is added to club c ′.

We repeat the process for the other clubs with odd numbers of teams and we
finally, we split club c ′ as follows: T̂c ′

a
= {t7, t9} and T̂c ′

b
= {t15, t20}.

All in all, we have 10 ’new’ clubs, with two teams each:

T̂c2a
= {t5, t6} T̂c3a

= {t8, t10}T̂c6a
= {t16, t17}

Tc ′
a
= {t7, t9} T̂c ′

b
= {t15, t20}T̂c6b

= {t18, t19}

step 3 & 4 We now construct the graph G = (V = L,E = T) with as
vertices the leagues and the clubs T̂ of size two as edges. On this graph, we
then identify a 2-factorization, see Figure 4b.A 2-factor is a

collection of cycles
spanning all vertices

of G; a
2-factorization is a
partitioning of the

edges of G into
2-factors.

Pick one of the 2-factors and associate it with pair (h1,h2) and the other
2-factor with pair (h3,h4). To assign teams to HAPs we start with one
arbitrary team that is visited in the first 2-factor, for instance team t1, and
assign it to h1.

We traverse the 2-factor in an arbitrary direction (starting from the edge
containing team t1) and enforce the two teams associated to each edge to
HAPs h1 and h2 (see Figure 4b). Thus, if t1 → h1 (t1 is assigned to h1),
t4 → h2, t10 → h1, t8 → h2, t11 → h1, t12 → h2, t2 → h1, t3 → h2,
t14 → h1 and t13 → h2. Similarly we assign the teams in the other 2-factor
to HAPs h3 and h4 (t7 → h3, t9 → h4, ...).

The capacities of clubs c1, c4 and c5 are never violated. Club c2 has one-unit
violations at rounds 1, 5 and 6; club c3 has one-unit violations at rounds 2,
3 and 4; club c6 has one-unit violations at rounds 2, 3 and 4 and two-unit
violations at rounds 1, 5 and 6. The total violation for this solution is 15.

Theorem 10. Algorithm 3 solves MSP in O(nm)-time.

Proof. We first comment on the different steps in Algorithm 3. Clearly,
since the league size k is even, the construction in Steps 1 and 2

implies that each pseudo club contains exactly two teams. Further,
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Figure 4: The graphs and 2-factors associated with Example 4

the construction in Step 3 implies that G is k-regular, and thus 2-
factorable (since k is even). Notice that the case where two teams of
the same club play in the same league amounts to a loop in G, and
will result in these two teams receiving complementary HAPs. We re-
fer to Lovász and Plummer (2009) for details regarding finding such
a 2-factorization.

We now show correctness of Algorithm 3. Consider a solution ob-
tained by the algorithm. Each pair of teams that make up a pseudo
club use complementary patterns, and hence, they jointly play one
home match in each round. Thus, if δc ⩾ nc

2 , i.e., if club c ∈ C \C−,
there are no violations for club c. In addition, if δc < nc

2 , i.e., if c ∈ C−

then the number of violations of club c equals:

2 (k− 1) (nc/2− δc) .

Using (43), it follows that the value of the solution found by the al-
gorithm equals Q, and is thereby necessarily optimal. Note that this
implies the second equality of Theorem 9.

To establish the complexity of Algorithm 3, observe that in the first
step, a new instance is generated where each club consists of exactly
two teams. This is done in O(n)-time. In the second and third step,
a graph G is constructed which is done in O(n)-time and then a 2-
factorization of G is computed which is done in O(nm)-time.

Finally, the 2-factorization is mapped to a solution for the original
instance, which is done in O(n)-time. Therefore, the algorithm runs
in O(nm)-time.

As mentioned earlier, in the proof of Theorem 10, the given HAP-
set H (as long as it is complementary) has no impact, neither on the
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optimal solution nor on the minimum violation. Further, the proofs
of Theorems 9 and 10 imply the following corollary.

Corollary 2. Q = vLP = vIP.

4.5 two generalizations of msp

In this section, we investigate two generalizations of MSP. In Sec-
tion 4.5.1, we consider an extension of MSP where all teams from
the same club must play according to the same HAP; we refer to
this generalization as MSPidHAP. Next, in Section 4.5.2, we deal with
an extension of MSP in which capacities are not necessarily constant
over the rounds, which we call MSPwVC. We motivate both general-
izations, and we show that both problems are NP-hard for k ⩾ 4, and
give polynomial-time algorithms for the case k = 2, when, in case of
MSPwVC, each club consists of two teams. Observe that a league size
of k = 2 may occur in knock-out tournaments, or play-offs, where
two matches decide upon the winner of a pair of teams.

4.5.1 MSP with identical HAPs (MSPidHAP)

In a setting where the capacity of clubs is not an issue, clubs may want
that all their teams play home in the same round. There can be various
reasons for this wish: for instance to create a lively atmosphere at the
club’s venues, or to minimize the number of times a venue is used,
or, when clubs have two or more teams in one particular category
(for instance a club has two amateur teams in the under 21-years-old
age category), teams following the same HAP allow these teams to
exchange players whenever they play home.

The input defining an instance of MSPidHAP consists of the set of
teams, its two partitions (one into leagues, and one into clubs), and
a feasible, complementary HAP-set. The question is: does there exist
a feasible assignment, i.e., does there exist an assignment of teams to
HAPs such that (i) all teams from a club receive the same HAP, and
(ii) all teams from a league receive a different HAP? Of course, in an
instance of MSPidHAP, it should not happen that two teams from a
same club are in the same league, since this would clearly lead to a
no-instance.

It is not difficult to see that, in case k = 2, this question can be an-
swered efficiently as follows: build a simple undirected graph G =

(V ,E) with a vertex for each club (V = C), and connect two vertices
iff the corresponding clubs have a team in a same league (E = L). The
existence of a feasible 2-coloring of the vertices of G decides whether
the instance of MSPidHAP with k = 2 is a yes-instance or not. It is a
fact that all teams of clubs corresponding to nodes colored with one
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color play according to HAP HA, and all teams of clubs correspond-
ing to nodes colored with the other color play according to HAP AH.
We record this observation formally.

Observation 5. For k = 2, MSPidHAP is solvable in polynomial time.

It is possible to extend Observation 5 to a situation where a set of
pairs of teams that need the same HAP is given. However, when k ⩾ 4,
MSPidHAP becomes more difficult.

Theorem 11. MSPidHAP is NP-hard for each k ⩾ 4.

Proof. We reduce edge coloring a 4-regular graph to MSPidHAP. In
this reduction, we do not explicitly construct a feasible, complemen-
tary HAP-set. In fact, we assume that some HAP-set is specified; the
proof works for any given HAP-set.

Consider now the following question: given a simple 4-regular graph
G = (V ,E), does there exist a coloring of the edges using 4 colors such
that no two adjacent edges receive the same color? This problem is
known to be strongly NP-complete (Holyer, 1981; Leven and Galil,
1983).

Given a simple 4-regular graph G = (V ,E), we construct an instance
of MSPidHAP as follows. There is a league ℓ ∈ L for each vertex in V ,
i.e., L = V . There is a club c ∈ C for each edge e = (v, v ′) ∈ E, i.e., C =

E; each club consists of two teams (nc = 2), one playing in the league
corresponding to node v, one playing in the league corresponding to
node v ′. Thus, there are n = 2|E| teams. We claim that the existence
of a 4-coloring of G corresponds to a feasible assignment of teams to
HAPs and vice versa.

Suppose that a 4-coloring exists. Let each color correspond to a HAP.
By assigning the two teams of a club to the HAP that corresponds to
the color of the edge corresponding to those two teams, it becomes
clear that the feasibility of the coloring implies that the four teams
in each league received pairwise different HAPs, hence a feasible as-
signment exists.

Suppose a feasible assignment exists. Then all teams that play accord-
ing to HAP i receive color i, i = 1, . . . , 4; this results in a 4-coloring of
G.

4.5.2 MSP with variable capacities (MSPwVC)

Another generalization of MSP is the problem where clubs’ capacities
differ throughout the season. We refer to this problem as MSP with
variable capacities (in short MSPwVC). In this generalization, instead of
having a constant capacity δc for a club, we are given capacities δc,r

that represent the number of matches that can be hosted by club c
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in round r. The resulting problem can be formulated as an integer
program by replacing Constraints (40) by:

zc,r ⩾
∑
t∈T̂c

∑
h∈H

xt,hUh,r − δc,r ∀c ∈ C, r ∈ R. (45)

The resulting formulation of MSPwVC becomes:{
min

∑
c∈C

∑
r∈R

zc,r

∣∣∣∣∣ (38), (39), (41) − (42), (45)

}
.

In Section 4.5.2, we provide, for the case where k = nc = 2, a
polynomial-time algorithm based on finding a min-cost circulation,
and in Section 4.5.2 we show that the problem becomes NP-hard for
k ⩾ 4.

MSP with variable capacities: the case k = 2

Consider an instance of MSPwVC consisting of clubs C, leagues L,
teams T , capacities (δc,1, δc,2), that features k = nc = 2 for all c ∈ C.
Note that for this specific setting m = |L| = |C|.

First, we argue that we can restrict our attention to instances that are
“connected”, as explained hereunder. Indeed, we can represent such
an instance by building a bipartite graph H = (V1 ∪ V2,E), where
V1 = C, V2 = L and E = T ; thus, an edge (v1, v2) ∈ E represents
that a team from the club represented by v1 ∈ V1 plays in the league
represented by v2 ∈ V2.

As k = nc = 2 for all c ∈ C, the degree of each node in H equals 2, and
hence the graph H consists of a collection of disjoint cycles. Clearly,
we can restrict our attention to instances where H is a single cycle;
we assume, without loss of generality, that by rearranging indices we
have a set of clubs C = {c1, c2, . . . , cm} such that each club ci, i =

1, . . . ,m− 1 has a team in league ℓi and a team in league ℓi+1 and
club cm has a team in league ℓm and a team in league ℓ1.

As the league size is k = 2, there are only two different HAPs a
team can have, either HA or AH. As every club has only 2 teams, the
capacity δi,r of club ci, 1 ⩽ i ⩽ m, in round r = 1, 2 can be seen as
either 0, 1 or ⩾ 2. In fact, capacities whose value exceeds 2 can be set
to 2 without any consequences; we thus assume δi,r ∈ {0, 1, 2} for all
i = 1, . . . ,m, r = 1, 2. It follows that for a particular club ci there are
nine possibilities for (δi,1, δi,2).

A solution to MSPwVC with k = 2 can be described as an occupa-
tion (oi,1,oi,2) specifying how many teams of club ci play home in
rounds 1 and 2 respectively; clearly (oi,1,oi,2) ∈ {(2, 0), (1, 1), (0, 2)}.
We say that an occupation is ideal for club ci when it results in a min-
imum number of violations over the two rounds given its capacities
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δi,1, δi,2 0 1 2

0 {(2, 0), (1, 1), (0, 2)} {(1, 1), (0, 2)} {(0, 2)}

1 {(2, 0), (1, 1)} {(1, 1)} {(1, 1), (0, 2)}

2 {(2, 0)} {(2, 0), (1, 1)} {(2, 0), (1, 1), (0, 2)}

Table 27: Ideal occupations (oi,1,oi,2) of club i when given capacities
δi,1, δi,2

δi = (δi,1, δi,2). Table 27 gives, for each of the nine possibilities for
(δi,1, δi,2) the set of ideal occupations.

From Table 27, we see that the occupation (oi,1,oi,2) = (1, 1) is ideal
for all capacities except when (δi,1, δi,2) = (2, 0) or (0, 2), 1 ⩽ i ⩽ m.
This observation forms the basis of our approach which, informally
said, will use the occupation (oi,1,oi,2) = (1, 1) for each club ci as
a baseline solution, and next will find a maximum number of saved
violations by modifying the occupation of appropriately chosen clubs
to (2, 0) or (0, 2).

We now describe the construction of a directed graph G = (V ,A) that
is instrumental in our procedure to solve the problem. The vertex set
consists of V = L∪ {v0}, where vertex vi corresponds to league ℓi ∈ L,
(i = 1, . . . ,m). The arc set A = A1 ∪A2 ∪A3 is defined as follows:

A1 = {(vi → vi+1) : i = 1, . . . ,m− 1}∪ {(vm → v1)},

A2 = {(v0 → vi) : i = 1, . . . ,m} and

A3 = {(vi → v0) : i = 1, . . . ,m}.

To each arc a ∈ A, we associate a capacity cap(a), and a cost-coefficient
cost(a). We set cap(a) = 1 for each a ∈ A. The costs are defined as
follows:

• for each a ∈ A1, cost(a) = 0,

• for each a0,i = (v0 → vi) ∈ A2 (1 ⩽ i ⩽ m),

cost(v0 → vi) =


−1 if δi = (2, 0),

0 if δi ∈ {(0, 0), (1, 0), (2, 1), (2, 2)},

1 if δi ∈ {(0, 1), (0, 2), (1, 1), (1, 2)}.

• for each ai,0 = (vi → v0) ∈ A3 (1 ⩽ i ⩽ m),

cost(vi → v0) =


−1 if δi = (0, 2),

0 if δi ∈ {(0, 0), (0, 1), (1, 2), (2, 2)},

1 if δi ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}.

We claim that this particular definition of the cost-coefficients for arcs
in A2 (respectively, A3) captures the number of violations saved when
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Figure 5: Directed graph G in Section 4.5.2

instead of using occupation (1, 1) occupation (2, 0) (respectively, (0, 2))
is used for club ci with capacity δi = (δi,1, δi,2) - this claim can be ver-
ified using the entries given in Table 27. Indeed, as an example, if the
capacity of some club ci equals (2, 0), then the number of violations
saved when using occupation (2, 0) instead of occupation (1, 1) equals
1; this is reflected in the −1 value of cost(v0 → vi) when δi = (2, 0).
Figure 5 depicts the above-described graph G.

We now state Algorithm 4 that computes a minimum cost circulation
in graph G. Obtaining a minimum cost circulation can be done inA circulation is a

flow such that for
each node, the

amount of flow
entering and leaving

are equal.

polynomial time, see Ahuja, Magnanti, and Orlin (1988).

Algorithm 4
Input: Clubs C, Teams T , Leagues L, capacities (δi,1, δi,2)

1: Build graph G as described above.
2: Solve a min-cost circulation problem on G, getting flow y(a) ∈

{0, 1} for each arc a ∈ A.
3: Set xi := 1 for i = 1, . . . ,m.
4: For each arc (v0 → vi) = a ∈ A2 for which y(a) = 1: (i) xi :=

0, j := i (ii) WHILE y(vj → vj+1) = 1 DO xj := 0, j := j+ 1.
Output: (x1, . . . , xm), where xi := 0 (1) indicates that in league ℓi the
team from club ci (ci−1) first plays at home.

Theorem 12. Algorithm 4 solves MSPwVC in polynomial time when k = 2

and nc = 2 for c ∈ C.
The minimum cost
circulation q is at

least 0 since there is
always a circulation

with no flow, i.e.
y(a) = 0 for all a.

Proof. The value of a solution to an instance of MSPwVC with k = 2

and nc = 2 for c ∈ C, is nothing else but the total number of vio-
lations induced by the occupations of the clubs. Consider a solution
where each club has occupation (1,1) - we will refer to this solution
as the baseline solution, and we denote its value by B. Further, let the
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value of a minimum cost circulation in G (found in Step 2 of Algo-
rithm 4) be denoted by q.

We prove the theorem by showing an equivalence between a mini-
mum cost circulation in G with value q, and the existence of a solu-
tion with value B+ q.

⇒ Consider an optimum solution to the circulation problem in G.
Since, for each i = 1, . . . ,m:

cost(v0 → vi) + cost(vi → v0) ⩾ 0,

it follows that there exists an optimum solution that does not have
a unit flow using the two arcs (v0 → vi) and (vi → v0). Hence, an
optimum circulation consists of cycles in G, each cycle carrying one
unit of flow, such that each node of G, except v0, occurs in at most one
cycle; such a cycle can be expressed as follows: v0, vi, vi+1, . . . , vj, v0.

The cost of an individual cycle depends solely on the costs of the two
arcs (v0, vi) and (vj, v0). Notice that these costs represent, by defini-
tion, the savings in the number of violations when the occupation of
club ci (cj) becomes (2,0) ((0,2)) instead of (1,1). Thus, a circulation in
G with cost q leads to a solution of the problem with cost B+ q.

⇐ In this step we show that any solution of our problem corre-
sponds to a circulation in the graph G. As described before, a solution
can be seen as the set of occupations for the clubs; associate the occu-
pation of club ci to node vi in G. We claim that a solution is feasible if
and only if occurrences of occupations (2, 0) and (0, 2) alternate along
the cycle defined by the arcs in A1. Given this fact, we can associate
a circulation to each solution in the following way.

Let xi denote the schedule of the league ℓi, where xi = 0 indicates
that league ℓi has a schedule in which the team from club ci first plays
at home, and xi = 1 if the league has a schedule in which the team
from club ci−1 will first play at home. Notice that the occupation of
a club ci can be expressed as (1− xi + xi−1, 1+ xi − xi−1).

Given any solution x = (x1, . . . , xn), we create index sets Ij, j = 1, 2, 3
and a flow y on the edges of the graph G in the following way:

I1 = {i : xi = 0, xi−1 = 1} y(v0 → vi) = 1 i ∈ I1

I2 = {i : xi = 0} y(vi → vi+1) = 1 i ∈ I2

I3 = {i : xi = 1, xi−1 = 0} y(vi → v0) = 1 i ∈ I3

The flow y created this way - where x0 = xn - has cost:∑
i∈I1

cost(v0 → vi) +
∑
i∈I3

cost(vi → v0).
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All clubs i ∈ I1 have occupation (2, 0), all clubs in I3 have occupation
(0, 2), while all other clubs have occupation (1, 1). By construction of
the graph, the cost of the circulation corresponds exactly with the
difference in capacity violation of the solution x compared to a sched-
ule in which all clubs have occupation (1, 1). Therefore, minimizing
the cost of the circulation minimizes the number of violations. Hence,
Algorithm 4 is an exact algorithm.

MSP with variable capacities: the case k ⩾ 4

In the previous section, we saw that MSPwVC is solvable in polyno-
mial time when league-size equals 2. We now show that MSPwVC is
NP-hard when k ⩾ 4.

Theorem 13. MSPwVC is NP-hard for each k ⩾ 4.

Proof. For our reduction we use a problem known as the restricted
timetabling problem (in short, RTT), proven to be NP-complete in Even,
Itai, and Shamir (1975).

We first describe the RTT using their terminology. We are given a set
of exactly three time slots (hours) Π = {π1,π2,π3}, a set of teachers T

and a set of classes V (a class refers to a group of students). Classes
are always available, whereas teachers have a given availability, i.e.,
for each teacher τ ∈ T, there is a set of available time slots Πτ ⊆ Π.

We are also given a set S of courses, each of which must be taught
by a specific teacher τ to a specific class ν during anyone of the three
time slots. We denote courses by pairs (τ,ν). At most three courses
are taught to each class and every teacher is either a tight 2-teacher or a
tight 3-teacher. A teacher is a tight α-teacher if he/she teaches exactly α

courses and is available for exactly α time slots, α ∈ {2, 3}. We denote
the number of courses taught to a class ν by ρ(ν), ν ∈ V .

The question is whether there exists an assignment of time slots to
each course (τ,ν) such that teachers’ availabilities are satisfied and
there are no overlaps (i.e., the courses taught by the same teacher are
assigned to different time slots and the courses corresponding to each
class are also assigned to different time slots).

Given an instance of RTT, we construct an instance of MSPwVC with
clubs C, leagues L, teams T and capacities δc,r as follows.

Each class ν ∈ V is associated with a league ℓ ∈ L and thus our
instance has m = |V | leagues.

Our instance has
∑

ν∈V(k− ρ(ν)) + |T| clubs: we associate a club of
α teams to each tight α-teacher τ ∈ T (the resulting set of clubs is de-
noted by C1); the remaining

∑
ν∈V(k− ρ(ν)) clubs each have exactly

one team (these clubs belong to subsets C2 and C3 such that |C2| =
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m(k− 3) and |C3| =
∑

ν∈V(3− ρ(ν)); note how C = C1 ∪ C2 ∪ C3).
Our instance thus has

∑
ν∈V(k− ρ(ν)) + |S| teams.

Each course (τ,ν) ∈ S represents a team t ∈ T that belongs to a club
in C1 which is associated with teacher τ ∈ T and plays in the league
corresponding to class ν ∈ V . We distribute the teams of clubs in
C2 by placing k− 3 teams of clubs in C2 in each of the leagues. The
remaining

∑
ν∈V(3− ρ(ν)) teams are members of clubs c ∈ C3; we

arbitrarily add these teams to leagues such that all leagues consist of
k teams.

Consider a given complementary HAP-set H = {h1, ...,hk} with com-
plementary pairs (h2j−1,h2j), j = 1, ..., k

2 . We determine the capacity
of clubs c ∈ C1 as follows: first, we associate the HAP hκ to time slot
πκ for κ = 1, 2, 3. Then for each club c ∈ C1, we identify the set of
HAPs which correspond to the time slots during which the teacher
(that gave rise to club c ∈ C1) is available. Recall that each teacher
is available either in time slots {π1,π2,π3}, or {π1,π2}, or {π1,π3}, or
{π2,π3}. The capacity of a club c ∈ C1 is determined by the available
time slots. We have, for each c ∈ C1, r ∈ R:

δc,r =
∑

h∈Hc

Uh,r, (46)

where Hc equals either {h1,h2,h3} or {h1,h2}, or {h1,h3}, or {h2,h3},
depending on the availabilities of the teacher giving rise to club c ∈
C1.

We determine the capacity of a club c ∈ C2 as follows. We partition
C2 into k− 3 subsets C1

2, ...,Ck−3
2 each containing m clubs such that

the teams belonging to the clubs of subset Ci
2, i = 1, ...,k− 3 all play

in different leagues. Next, we set for each club c ∈ Ci
2, i = 1, . . . ,k− 3,

and each round r ∈ R:

δc,r = Uhi+3,r.

Finally, for each club c ∈ C3, we set δc,r = 1 for each round r ∈ R.
This completes the description of an instance of MSPwVC.

We now show that a solution to MSPwVC without any capacity vio-
lations corresponds to a yes-instance of RTT and vice versa.

Suppose that the instance of MSPwVC admits a solution without any
capacity violation. In such a solution it must be the case that each
team from a club in C2 has been assigned the one HAP in the HAP-
set that yields no capacity violation for this club; in other words, each
team from club c ∈ Ci

2 is assigned to HAP hi+3 for i = 1, . . . ,k− 3.

Consider now the teams from a club c ∈ C1. This club has a capacity
given by (46) which must be fully utilized in order to have no capacity
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violations. Hence, the only set of patterns that satisfy this requirement
are those patterns in {h1,h2,h3} that correspond with club c ∈ C1,
and we assign the teams accordingly. Teams from clubs in C3 receive
any remaining pattern. Based on this assignment of teams to HAPs,
we can assign time slots to courses in RTT.

The resulting assignment is feasible since (1) each team in a league is
assigned to a different HAP, thus the courses taught to each class are
assigned to different time slots, (2) the teams from a single club are
assigned to different HAPs, thus the courses taught by the associated
teacher are assigned to different time slots.

If the instance of RTT is a yes-instance, we simply copy the existing
assignment of courses to time slots to the instance of MSPwVC, where
the assignment of teams of clubs in C1 to the given HAPs h1,h2,h3

follows directly from the solution to the RTT instance. Further, we
give each team of a club in C2 its corresponding pattern, and each
team in C3 any remaining pattern. This gives no capacity violations
in the instance of MSPwVC.

τ1

Πv1

{π1 ,π2 ,π3}

τ2
Πv2

{π1 ,π3}

τ3
Πv3

{π2 ,π3}

τ4
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{π1 ,π2}

ν1

ν2

ν3

(a)
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t11

t12

C1 C2

(b)

Figure 6: Graph representations for the proof of Theorem 12; (a) A graph
representation for the instance of RTT. (b) a graph representation
of the instance of MSPwVC.

As an illustration of the reduction in Theorem 12, consider the fol-
lowing instance of RTT: there are four teachers (τ1, τ2, τ3, τ4), three
classes (ν1,ν2,ν3) and three time slots (π1,π2,π3). Teacher τ1 teaches
different courses to all classes and is available on all time slots. Teacher
τ2 teaches only to classes ν1 and ν3 and is available on time slots π1

and π3. Teacher τ3 teaches only to classes ν1 and ν2 and is available
on time slots π2 and π3. Finally, teacher τ4 teaches only to classes ν2

and ν3 and is available on time slots π1 and π2. Figure 6a shows a
graph representation of this instance.

Assuming k = 4, we construct an instance of MSPwVC with 3 leagues,
7 clubs and 12 teams: L = {ℓ1, ℓ2, ℓ3}, C = {c1, ..., c7} and T = {t1, ..., t12}
where C1 = {c1, c2, c3, c4} and C2 = {c5, c6, c7}. The clubs and leagues
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T̂c δc

C1

c1: {t1, t2, t3} Figure 8a

c2: {t4, t5} Figure 8b

c3: {t6, t7} Figure 8c

c4: {t8, t9} Figure 8d

C2

c5: {t10} Figure 8e

c6: {t11} Figure 8e

c7: {t12} Figure 8e

(a) Club in I

T̄l

ℓ1: {t1, t4, t6, t10}

ℓ2: {t2, t7, t8, t11}

ℓ3: {t3, t5, t9, t12}

(b) Leagues
in I

Figure 7: The instance I associated with the example in Theorem 12
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Figure 8: Capacity of the associated clubs

are thus given in Figure 7a and 7b. Also, Figure 6b provide a graph
representation of the clubs, leagues and teams. The capacity pro-
files of clubs are given in Figure 8 and are based on the HAP-set
given in Example 4. As an example, the capacity profile of club c2
(that is associated with teacher τ2 for which Πτ2

= {π1,π3}) is δc =

(Uh1,1 + Uh2,1, ...,Uh1,6 + Uh2,6) = (1 + 1, ..., 0 + 1) = (2, 0, 1, 0, 2, 1)
(see Figure 8b).

There is a solution with objective value of zero for this instance which
is obtained by assigning h1 → t2, t4, t9, h2 → t3, t6, t8, h3 → t1, t5, t7,
and h4 → t10, t11, t12. Hence, the given instance of RTT is a yes-
instance.
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5 M I N I M I Z I N G T H E

C A R R Y- O V E R E F F E C T

When Fabian Caruana was on the way to win his maiden
crown at the Tata Steel Chess Tournament of 2020,
commentators and spectators noticed something peculiar
about his opponents. Of the 13 players he faced, 10 of them
had played world champion Magnus Carlsen the round before.
Being able to play against those who possibly had to give it all
just the day before to hold off Carlsen, might have been an
advantage for then world number 2 Caruana. As grand
master Peter Svidler stated it, the American was able to pick
up the opponents of Carlsen.
That Caruana was directly following Carlsen, was a
coincidence. That someone was following Carlsen, was not.
The scheme used by the Tata Steel Chess Tournament - one of
the most prominent annual chess tournaments - is generated
by the Circle Method. In the schedules created, all but one
player are following another player, meeting the opponent of
this other player in the subsequent round. The player Caruana
turned out to follow, just happened to be Carlsen.
Following anyone might not be an advantage to everyone, but
it can be to some. To prevent eventual unbalanced outcomes
or advantages caused, ideally one makes a schedule such that
players follow no particular player anymore than the others.
The COE is a measure for the lack of variety of opponents pre-
ceding a player. Schedules with high carry-over, have less vari-
ety and are thus more prone to unwanted effects. Finding good
schedules with low carry-over, is difficult. The Circle Method
generates the highest COE possible. However, modifying this
method, may yield schedules with the lowest COE possible.

81
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5.1 introduction

One of the nice properties of a Round Robin competitions, is that
every team or player, meets every competitor an equal number of
times. This ensures in a way, that a player cannot have too much
advantage of the draw, which could happen in for example a knock-
out tournament.

However, matches are not isolated events that have no impact on
those involved. When playing football for instance, facing a physical
opponent might lead to injuries of your players. As rounds typically
follow each other in quick succession, this can affect the squad and
line-up for the next match(es).

Of course, semi-random events are that what makes sports fun, so
if a team is lucky enough to gain some advantage because of the
opponents previous match, nothing is lost. It does get tricky when
this tends to happen structural, and to some teams more often than
others in the competition.

The dangers that such a thing could occur, are particularly large when
one team consistently plays the opponents of a specific other team in
the next round. Indeed, if that specific team regularly injures more
of the other sides players than other teams, over the season this ac-
cumulates to a significant advantage for the team that plays their
opponents the next round.

Therefore, when scheduling a competition, it would be nice if it is
possible to somehow evenly distribute the opponents previous op-
ponent, the carry-over pairs, over all pairs of teams. As a measure
of how even this distribution is, Russel (1980) introduced the Carry-
Over Effect. When the evaluation of this quadratic function is low, this
indicates that a lot of different carry-over pairs occur in the sched-
ule. On the other hand, when the COE is high, this indicates a more
monotonous schedule with a few pairs that are frequently occur, like
it was the case in the TATA Steel Chess Tournament.

After the introduction of the concept of carry-over scheduling, it has
been studied extensively. Since 1980, interesting results on finding bal-
anced schedules were shown by for example Anderson (1999), Trick
(2000) and Kidd (2010). Miyashiro and Matsui (2006) conjectured that
the Circle Method would be the schedule with the highest Carry-
Over Effect, and this was later proven by Lambrechts et al. (2018). It
has been studied and used in practical applications, see for instance
G. Durán, Guajardo, and Sauré (2017). Besides that, a lot of research
is conducted in the field of the latin squares, and most notably Keed-
well (2000) linked the search for particular latin squares to the search
of balanced schedules in sport scheduling.
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Different approaches to finding optimal - i.e. perfectly balanced sched-
ules with lowest COE - have been proposed. Integer programming as
well as constraint programming are popular methods, while Guedes
and Ribeiro (2011) introduced a heuristic approach. Tabu-search was
used by Kidd (2010).

The challenge of finding/creating schedules that have the lowest pos-
sible COE is still mostly unsolved, however. In fact, only for some
values 2n - most notably when n = 2k - a proven optimal solution
is known. For a schedule on as little as 12 opponents, it is still an
open question what the lowest COE is - it is somewhere between 132

and 160, where 132 is the natural lower bound given by 12 · 11 and a
schedule with a COE of 160 is mentioned to be found by Guedes and
Ribeiro (2011).

We apply and refine a method introduced by Anderson, using starters,
to generate schedules of a specific type. As nicely explained in Kidd
(2010), for these schedules the COE can be quickly evaluated. This
helps us in the search on relatively large competitions, where we
show that we can find (almost) balanced schedules quickly. Our re-
finement of the starters, is that we don’t look at any starter, but again
focus our attention to a specific subset of starters, we call mirrored.

By exploiting their structure we are able to find schedules for a large
number of teams, that are (almost) balanced.

5.2 definitions and terminology

We are dealing with SRR tournaments on N teams. The matches of
the SRR need to be scheduled over 2n− 1 rounds, where each team
plays one match per round. Hence, we can write any schedule as
S = (Sr)0⩽r⩽2n−2, with Sr the matches scheduled in round r. Notice
that we do not take into account any Home/Away-patterns or any
other constraints. In a feasible schedule S, every round Sr is a perfect
matching or 1-factor of the set of teams, and every pair of teams is an
element of exactly one Sr for some round r.

We are going to look at the rounds in a cyclic manner, thus following
round 2n− 1 is round 1. The teams and rounds are defined as follows:

T = ZN−1 ∪ {∞} R = ZN−1.

In this chapter we extensively use elements of ZN−1, which is the ad-
ditive group on {0, . . . ,N− 2}. In this group, we can add two elements
z, z ′ ∈ ZN−1 where the result is given by:

ZN−1 ∋ y = z+ z ′ mod (N− 1).

As we assume the number of teams to be equal to N and ZN−1 con-
tains N− 1 elements, we label the N-th team with ∞ to emphasize
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the special role it has in many of the constructions, and to avoid con-
fusion.

We say Team t gives carry-over to Team s in round r, if there exists a
Team u such that {t,u} ∈ Sr−1 and {s,u} ∈ Sr. For a schedule S, we
define the carry-over from t to s, denoted with c(t, s), to be:Notice that every

team gives exactly
one carry-over per
round, so the sum∑

t,s c(t, s) =
N(N− 1) for any

schedule S.

c(t, s) = # {r ∈ R : ∃u ∈ T s.t. {t,u} ∈ Sr−1, {s,u} ∈ Sr} .

The total carry-over effect of schedule S, is defined as sum of the
squares of all carry-overs.

COE(S) =
∑
t,s∈T

c(t, s)2. (47)

The COE of any schedule on N = 2n teams, has a natural lower
bound COE(S) ⩾ N(N − 1). When this lower bound is attained, it
implies that c(t, s) = 1 for all t ̸= s ∈ T if n ⩾ 2 - when n = 1, the
only possible schedule, that consists of one match, has c(t, t) = 1 for
both teams. We say a schedule is balanced if COE(S) = N(N− 1).

5.3 creating schedules

Since the introduction of COE, it has been a field of interest to find
schedules on 2n teams with minimal COE. When introducing the
measure in 1980, Russel showed that when 2n = 2k for an integer k,
it is possible to construct balanced schedules. Those were perceived
to be the only known schedules for a while, until Anderson (1999)
came up with balanced schedules for n = 20, 22. It turned out, how-
ever, that in another context these schedules where already found by
Tripke (1983).

Both Anderson and Tripke applied the method of clockwise scheduling
on something the former referred to as starters.

Definition 21 (Anderson (1999)). Define Z∗
N−1 as:

Z∗
N−1 := ZN−1 \ {0} = T \ {0,∞}.

A starter d is given by

d : Z∗
N−1 → Z∗

N−1. (48)

With d = (d1 . . . dN−2) it is implied that d(i) = di.

Schedule S(d) = (Sr(d))r∈R consists of rounds Sr(d) defined as:

Sr(d) := {{i, i+ d(i− r)} : i ∈ ZN−1 \ {r}}∪ {{r,∞}}. (49)

Lemma 4. For any starter d, the following are equivalent:
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1. S0(d) is a matching.

2. Sr(d) is a matching for all r ∈ R.

3. For all i ∈ Z∗
N−1:

d(i) + d(i+ d(i)) = N− 1 ≡ 0 (50)

Proof. Suppose S0(d) is a matching. Then for every {i, i ′} ∈ S0(d) with
i, i ′ ̸= 0, it must hold that {i, i+d(i)} = {i, i ′} and {i ′, i ′+d(i ′) = {i ′, i},
otherwise S0(d) would not be a matching. This means that {i+d(i) =

i ′ and i ′ + d(i ′) = i. Combining these expressions leads to:

i+ d(i) + d(i ′) = i =⇒ d(i) + d(i ′) = 0

=⇒ d(i) + d(i+ d(i)) = 0

Similarly, when Sr(d) is a matching, for any that {i, i ′} ∈ Sr(d) we
have i ′ = i+ d(i− r) and:

i+ d(i− r) + d(i ′ − r) = i =⇒ d(i− r) + d(i ′ − r) = 0

=⇒ d(i− r) + d(i− r+ d(i− r)) = 0

As this holds for all values i− r, we get d(j) + d(j+ d(j)) = 0.

Now suppose d(i) + d(i+ d(i)) = 0 for all i and let i ̸= r. We know
that {i, i+ d(i− r)} ∈ Sr(d). On the other hand, i+ d(i− r) is coupled
with

i+ d(i− r) + d(i+ d(i− r) − r) = i+ d(i ′) + d(i ′ + d(i ′)) = i

So Sr(d) is a matching, and S0(d) is a matching as well.

Given a starter d, we get a schedule S(d) on 2n− 1 rounds. However,
we are interested in the starters d for which the schedule S(d) is not
just any schedule, but an SRR. The following necessary and sufficient
condition on d states for which d schedule S(d) is an SRR.

Condition 2. Schedule S(d) = (Sr(d))r for a starter d : Z∗
N−1 → Z∗

N−1

is an SRR on teams T if and only if the following holds:

1. S0(d) is a matching and

2. d is one-to-one.

Proof. Obviously, for S(d) to be an SRR, S0(d) has to be a matching,
as any round in an SRR has to be a matching. By Lemma 4 we know
that for all r ∈ ZN−1, the round Sr(d) is in fact a matching. Vice
versa, when S(d) is an SRR, S0(d) is a matching too.

Suppose that Sr(d) ∩ Sr ′(d) ̸= ∅ for some r ̸= r ′. Then there is a
{i, i ′} ∈ Sr(d) that is also in Sr ′(d) and both i, i ′ cannot be ∞. This
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implies that i+ d(i− r) = i+ d(i− r ′) = i ′, thus d(i− r) = d(i− r ′)

and d is not one-to-one.

If Sr(d) ∩ Sr ′(d) = ∅ holds for all pairs r, r ′, we have N− 1 disjoint
matchings consisting of N

2 = n pairs - so in total, we have n(N− 1)

pairs. As there are exactly n(N− 1) disjoint pairs in
(
T
2

)
, S(d) must be

an SRR.

Definition 22. A good starter is a starter d for which S(d) is an SRR.

The definitions and lemma’s presented here so far were rather for-
mal. However, there is a very natural and intuitive way of expressing
the procedure of constructing S(d) when given a (good) starter d. For
instance, the schedule created with the Circle Method, can be con-
structed with a starter, for instance.

When there are 8 teams, the circle method coincides with starter
d = (531642) where S0(d) = {{0,∞}, {1, 6}, {2, 5}, {3, 4}}, as shown in
Figure 2. Every round Sr(d) of S(d), is equal to the round given in
Section 1.3. We see that constructing a schedule S(d) from a starter
d, is merely a generalisation of the Circle Method, where S0(d) can
be varied compared to the canonical S0(d) = {{0,∞}, {1,N− 2}, {2,N−

3}, . . . }.

In Figure 9, the round S0(d) is shown for three different d’s. The first
two, with d = (531642) and d = (416235), satisfy the conditions of
Condition 2, while the third one d = (225516) does not. Recall that
all additions are done modulo N− 1.

∞

0

1

2

34

5

6

∞

0

1

2

34

5

6

∞

0

1

2

34

5

6

Figure 9: Three first rounds S0(d) for different d.

One of the main benefits of using starters and schedules S(d), is that
with very little initial information, an entire schedule can be created.
All the information needed is encompassed in d. Moreover, derived
metrics such as the COE can quickly be calculated solely from d. The
following lemma gives an exact expression for the COE of S(d).Notice that all of i,

d(i) and ∆(i) are
elements of ZN−1. Lemma 5. Let d be a good starter. Define ∆i and Cj as:

∆i = d(i) − d(i− 1) ∀i ∈ ZN−1 \ {0, 1}, (51)

Cj = |{i : ∆i = j}| ∀j ∈ ZN−1. (52)
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The carry-over effect of schedule S(d) is then given by:

COE(S(d)) = (N− 1)

N−3∑
j=1

C2
j + 3(N− 1). (53)

Proof. We calculate the COE of S(d) by case-distinction on the carry-
overs between {i, i ′} ⊂ T.

Suppose i ∈ ZN−1 and i ′ = ∞, then both teams give carry-over to
each other exactly once, c(i, i ′) = c(i ′, i) = 1.

Team i gives carry-over to ∞ in a round r if {i, r} ∈ Sr−1(d), as {r,∞} ∈
Sr(d). This means that r = i+ d(i− r+ 1), or i− r+ d(i− r+ 1) = 0.
On the other hand, we know that d(j) + d(j+ d(j)) = 0, and d is one-
to-one. Combining this, we see that i gives carry-over to i ′ in round
r whenever i− r = d(−1), thus when r = i+ d(−1).

The other way around, the rounds r where ∞ gives carry-over to
i, can be determined in similar fashion. This only occurs in rounds
where {r− 1, i} ∈ Sr. For this, it must hold that r− 1 = i+ d(i− r)

or i − r + 1 + d(i − r + 1 − 1) = 0. From this, we can conclude that
r = i+ d(1).

For the next case, suppose i ∈ ZN−1 and i ′ = i + 1. Then, i gives
carry-over to i ′ in round Si ′ via ∞.

The last cases are when i, i ′ ∈ ZN−1, but i− i ′ ̸∈ {0,±1}. Then i gives
carry-over to i ′ in round r when there is a team j such that {i, j} ∈ Sr−1

and {i ′, j} ∈ Sr. For any team j, we know that it is matched to team
j+ d(j− r) in round r, thus this only occurs when:

i = j+ d(j− r+ 1) & i ′ = j+ d(j− r) =⇒
i− i ′ = d(j− r+ 1) − d(j− r) = δj−r+1

So for every r ′ ∈ Ci−i ′ , there is a round r where i gives carry-over to
i ′. Ergo, for every i ∈ ZN−1, we know the team gives carry-over to
team i ′ a total of Ci−i ′ times, for all i ′ ̸∈ {∞, i+ 1}.

Combining these three cases, we see that:

COE(S(d)) = N− 1+N− 1+N− 1+ (N− 1)

N−3∑
j=1

C2
j

= (N− 1)

3+

N−1∑
j=1

C2
j



With Lemma 5, we can quickly calculate what the COE of S(d) is - it
all depends on the values {∆i : i ∈ {2,N− 2}}.
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Definition 23. A schedule is balanced when for all pairs {i, i ′} ⊂ T, we
have c(i, i ′) = 1. We say a good starter is balanced if S(d) is a balanced
schedule. In such a balanced starter, is must hold that Cj = 1 for all j ∈
{1, . . . ,N − 3} or equivalently, that for all j ∈ {1, . . . ,N − 3} there is a
unique i ∈ {2, . . . ,N− 2} such that ∆i = j.

Not all good starters are balanced, in fact, most are not. When d is the
starter with S(d) equal to the one created by the Circle Method, we see
that ∆i = N− 3 for all i ∈ {2, . . . ,N− 2}, which leads to COE(S(d)) =
(N− 1)((N− 3)2 + 3). This is proven to be maximum by Lambrechts
et al. (2018).

The following example should give some intuition on how the ∆i can
be used to calculate the COE of a schedule S(d).

Example 6. Let d be given by d = (62571834), a good starter on 10 teams.
In Table 28, we see for every i ∈ Z∗

9 the value d(i) and when i ⩾ 2,
values ∆i = di − di−1 as well. For this starter, one value occurs twice,
namely ∆i = 3 when i = 3, 5. All other possible values {1, . . . , 7} all occur
once, except 6, which has no occurence. Thus, we see that COE(S(d)) equals
9(5 · 1+ 1 · 4+ 3) = 108.

i 1 2 3 4 5 6 7 8

d(i) 6 2 5 7 1 8 3 4

∆i − 5 3 2 3 7 4 1

Table 28: ∆ values of starter (62571834)

5.4 schedules with low coe

It is an open question for which values of N, balanced schedules exist.
The following is known:

Fact 1 ((Anderson, 1999; Russel, 1980)). For SRR schedules on N = 2n,
there exist balanced schedules when:

• N = 2k with k ∈ N.

• N = 20, 22

Furthermore, when N = 6 or N = 10, no balanced schedule exists. For all
values N where balanced schedules exist, there is a starter d on N teams that
generates a balanced schedule.

Especially encouraged by the last statement in Fact 1, it is a popu-
lar approach to look for schedules with low COE by trying to find
a starter d that gives the best COE(S(d)) among all starters. This ap-
proach is also beneficial in another way, namely that the COE of a
schedule S(d) can be calculated quickly. It is possible to formulate
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the search for the best starter as an IP, and attempt an exhaustive
search among all the starters.

Among others, Anderson and Kidd, tried to find starters with low
COE. The best known starters for small values of N are shown in
Table 29, together with the natural lower bound N(N − 1) and the
reportedly lowest known value of a schedule on N teams.

N N(N− 1) Best known Best Starter Value

4 12 12 (1, 2) 12

6 30 60 (3, 1, 4, 2) 60

8 56 56 (4, 1, 6, 2, 3, 5) 56

10 90 108 (6, 2, 5, 7, 1, 8, 3, 4) 108

12 132 160 (3, 4, 5, 8, 2, 7, 9, 6, 1, 10) 176

Table 29: Best known starters and their values

In Table 29 we see some balanced starters, having a COE equal to
N(N− 1). As they are of special interest to us, we enlist a few other
balanced starters in Table 30, where N = 16 and the peculiar N = 20.

N Starter

8 i 1 2 3 4 5 6

d(i) 4 1 6 2 3 5

16 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d(i) 3 6 11 12 5 7 2 9 13 10 1 14 8 4

20 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d(i) 3 7 15 16 8 5 10 6 12 2 14 17 11 13 1 18 9 4

22 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d(i) 8 3 16 6 18 11 7 12 13 15 4 1 20 14 17 2 10 19 5 9

Table 30: Perfectly balanced starters

5.5 mirrored starters

Searching for balanced schedules within starters is somewhat effi-
cient, as there are way fewer starters than there are schedules on
N teams. Using an IP-implementation, it is possible to look for the
starters with best COE for up to 30 teams within reasonable time. As
was already discovered by (Kidd, 2010), no new perfectly balanced
starters emerged within these numbers. Still, we would like to find
new schedules that are perfectly balanced. Since the number of good
starters grows exponentially with N, for larger values of N, we need
to look at a smaller selection of starters.

Lemma 6. For any balanced starter d, it must hold that:

d(N− 2) − d(1) = 1 (54)
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Proof. A starter d is balanced if every ∆i = d(i) − d(i− 1) is unique,
for i ∈ {2, . . . ,N− 2}, which means that for every j ∈ {1, . . . ,N− 3},
there must be a i such that ∆i = j. Hence:

N−2∑
i=2

∆i =

N−3∑
j=1

j =
(N− 2)(N− 3)

2
= 1 mod N− 1.

On the other hand we see:

N−2∑
i=2

∆i = d(N− 2) − d(N− 3) + d(N− 3) − · · ·+ d(2) − d(1)

= d(N− 2) − d(1).

From which we can conclude that d(N− 2) − d(1) = 1.

In line with property (54), we will now define a particular class of
starters that we call mirrored.

Definition 24. A starter d is mirrored when:

d(N− 1− i) − d(i) = i ∀i ∈ Z∗
N−1. (55)

The starters given in Table 30 are all mirrored. To see why mirrored
starters are called mirrored, we refer to Table 31 for the opponent
schedule (who plays who in which round) of the schedule gener-
ated by the balanced starter on 8 teams. The opponents of the teams
0, . . . ,N− 2 are mirrored over the diagonal axis.

Round/Team 0 1 2 3 4 5 6 ∞
0 ∞ 5 3 2 6 1 4 0

1 5 ∞ 6 4 3 0 2 1

2 3 6 ∞ 0 5 4 1 2

3 2 4 0 ∞ 1 6 5 3

4 6 3 5 1 ∞ 2 0 4

5 1 0 4 6 2 ∞ 3 5

6 4 2 1 5 0 3 ∞ 6

Table 31: Balanced schedule on 8 teams

Lemma 7. A starter d is good and mirrored if and only if for all x ∈ Z∗
N−1,

where x → y implies d(x) = y, we have:

x y

−x− y

−x −y

x+ y
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Proof. Suppose d is a good starter and mirrored, and let d(x) = y for
x ∈ Z∗

N−1. Then:

• As d is a good starter, d(x+ d(x)) = d(x+ y) = −d(x) = −y.

• As d is a mirrored starter, d(−x) = y+ x.

• As d is a good starter, d(−x+ d(−x)) = d(y) = −(y+ x)

• As d is mirrored, d(−(x+ y)) = d(x+ y) + x+ y = x.

• As d is a good starter, d(−(x+ y) + d(−(x+ y)) = d(−y) = −x

To see that the other way around is also true, notice that d(x) = y and
d(−x) = x+ y. Hence, d(−x) − d(x) = x, so d is mirrored.

When d is a mirrored starter and we know the value of d(x) for some
x ∈ ZN−1, by Lemma 7 we know the values d(x ′) for a set of other
x ′ ∈ ZN−1 as well. It is in our interest to collect these x ′.

Definition 25. Let d be a mirrored starter and x ∈ Z∗
N−1. Then P(x) ⊂

Z∗
N−1 is given by:

P(x) := {x,y, x+ y,−x,−y,−x− y}

Notice that when d is a mirrored starter and x ′ ∈ P(x), we see that
d(x ′) ∈ P(x) and ∀x ′ ∈ P(x), there is x ′′ ∈ P(x) such that (x ′, x ′′) ∈
S0(d).

In any mirrored starter d, teams in P(x) are matched among each
other in S0(d):

(x, x+ y), (−x,y), (−x− y,−y) ∈ P(x).

This is illustrated in Table 32.

i x y x+ y −x− y −y −x

d(i) y −x− y −x x −x x+ y

i+ d(i) x+ y −x x −y −x− y y

Table 32: Teams and opponents of P(x) in round 0.

Lemma 8. Let d be a mirrored starter and x, x ′ ∈ Z∗
N−1. Then:

1. If P(x)∩ P(x ′) ̸= ∅, then P(x) = P(x ′).

2. For all x ∈ Z∗
N−1 and P(x) we know that one of the following must

be true:

• |P(x)| = 6

• |P(x)| = 2 with 3x = 0 and d(x) = x.
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Proof. Notice that if d is a mirrored starter, d3(x) = x, and P(x) =

{di(x),di(−x) : 0 ⩽ i ⩽ 2}. If x ′ ∈ P(x), then either x ′ = di(x) or
x ′ = di(−x) for a specific 0 ⩽ i ⩽ 2. Thus P(x ′) = P(x).

We know that P(x) has at most 6 different elements. Suppose it has
less than 6. Then at least two of the pairs (x, x + y), (−x,y), (−x −

y,−y) ∈ S0(d) must be the same, and wlog we assume that (x, x+ y)

coincides with one of the other pairs. As x cannot equal −x and x+ y

cannot equal −x− y, either x = y or x = −x− y.

When x = y we get x+y = −x, implying 2x = −x thus 3x = 0, and all
three pairs are equal to (x, 2x). When x = −x− y we get x+ y = −y

implying x = y and again all three pairs are equal to (x, 2x).

So whenever |P(x)| < 6, it contains only two elements, P(x) = {x, 2x},
with 3x = 0. This finishes the proof.

Using Lemma 8, we see that d partitions the elements in Z∗
N−1 in a

certain way that we will define as P(d).

Definition 26. Given a mirrored starter d, partition P(d) of Z∗
N−1 is given

by:

P(d) = {P(x) : x ∈ ZN−1}

A partition P for which there is a d such that P = P(d), is a mirrored
partition. The space of all mirrored partitions is denoted with PN:

PN = {P : ∃d mirrored starter on N teams with P(d) = P}

By Lemma 8 we see that P(d) can only partition Z∗
N−1 if it contains

6k or 6k+ 2 elements. We formalize this in the following lemma:As all balanced
starters thus far

have been mirrored,
this may suggest

that when N = 6k,
no balanced starter

can exist.

Lemma 9. Let d be a mirrored starter. Then N = 6k+ 2 or N = 6k+ 4.
When N = 6k no mirrored starter exists, P6k = ∅.

Notice that a mirrored starter d has a unique P(d), but different
starters d,d ′ can have P(d) = P(d ′). Indeed, given x,y ∈ Z∗

N−1, with
y ̸= ±x, we can either set d(x) = y or d ′(x) = −x− y. Then:

(x, x+ y), (−x,y), (−y,−x− y) ∈ S0(d)

or

(x,−y), (−x,−x− y), (y, x− y) ∈ S0(d
′)

And P(x) ∈ P(d),P(d ′).

For any P(d), we have 2k different d ′ such that P(d ′) = P(d). How-
ever, we can enumerate the elements in PN P quick and efficient,
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and there are significantly less mirrored starters than regular good
starters.

The following algorithm, Algorithm 5, can be used to list all P ∈ PN.

Algorithm 5 Partitioning
Input: Order N and an ordered set of teams T =

{t1, . . . , t|T |}.
1: Set x = t1, and create empty list L.
2: For every ti = y ∈ T such that ti ′ = −y with i ⩽ i ′, set:

P(x,y) = {±x,±y,±(x+ y)}.

When P(x,y) ⊂ T , P(x,y) is a valid set.
3: For every valid set P(x,y), run the algorithm on teams T ′ =

T \ P(x,y) to get L ′, all partitions of T ′. Add set P(x,y) to every
element of L ′ to get partitions of T and add these to L.

Output: List L containing all mirrored partitions of set T .

For any mirrored partition P of teams containing k sets of size 6 (thus
N = 6k+ 2 or N = 6k+ 4), there are 2k mirrored starters that corre-
spond to that partition - |D(P)| = 2k; as noticed earlier, per element
P ∈ P of size 6, there are two ways to connect the teams for the first
starting round for any mirrored starter d - P is either in state 0 or 1. When d ∈ D(P) is

the complement of d,
COE(S(d)) =
COE(S(d)).

Lemma 10. Given a mirrored partition P on N = 6k+ 2 or N = 6k+

4 teams, for each Pi ∈ P, there are two matchings m0(i),m1(i) on the
elements of Pi such that either m0(i) ⊂ S0(d) or m1(i) ⊂ S0(d) among all
d ∈ D(P). Given a choice m, distinguishing m1(i),m0(i) for all i, for each
d ∈ D(P) there is a unique c(d) = (ci(d))i⩽k ∈ {0, 1}k such that:

ci(d) = j where mj(i) ∈ S0(d)

And for each c ∈ {0, 1}k, there is a d ∈ D(P) such that c = c(d).

Recall that our main goal is to find d for which COE(S(d)) is minimal.
Clearly:

min
d mirrored starter

COE(S(d)) = min
P∈PN

min
d∈D(P)

COE(S(d))

With Lemma 10 we see that we can enumerate all elements d ∈ D(P)

as bits of length k. Moreover, when we want to calculate COE(S(d ′))

when we know COE(S(d)), we only need to alter for the teams in Pi
where c(d)i ̸= c(d ′)i. It is possible to sort all 2k k-bits in such a way
that two consecutive terms only differ in 1 bit - such an ordering is
known as a Gray code.

If we have such an ordering and d,d ′ are ordered consecutive to each
other, we can calculate the carry-over of S(d ′) from the carry-over of
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S(d) in a constant time. We determine the COE of all d ∈ D(P), and
find mind∈D(P) COE(S(d)) in O(2k)-time, as |D(P)| = 2k.

Together with Algorithm 5, we ran this to find all mirrored starters
on N teams and find the lowest COE value among them. The results
are shown in Table 33.Checking for the

existence of balanced
schedules, can even

be done quicker than
looping through all

possible starters.

N(k) Number of partitions N(N-1) Best mirrored

8(1) 1 56 56

10(1) 0 90 −

14(2) 1 182 234

16(2) 1 240 240

20(3) 4 380 380

22(3) 4 462 462

26(4) 15 650 750

28(4) 9 756 864

32(5) 64 992 992∗

34(5) 50 1122 1254

38(6) 445 1406 1554∗

40(6) 282 1560 1716∗

44(7) 3091 1892 2064

46(7) 2178 2070 2250

50(8) 25760 2450 2646

52(8) 17477 2652 2856

56(9) 236520 3080 3300

58(9) 165376 3306 3534

62(10) 2482621 3782 4026

64(10) 1741131 4032 4032

Table 33: Best COE of mirrored starters.
∗ indicates improvement on Kidd (2010) (up to N = 40).

When looking at all
starters, the lowest
COE a starter can

have that is not
balanced is

(N− 1)(N+ 2).

We see in Table 33 that we found no new balanced starters. However,
the alternative best starters we found for N all were imbalanced in the
same way - they all had COE(s) = (N− 1)(N+ 4). This indicates that
every non-central team i ∈ {0, . . . ,N− 2} has two teams it gives carry-
over to twice, and two teams it misses completely. It is not difficult to
see that within mirrored starters that are not balanced, this is the best
one can do.
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5.6 generating mirrored starters

In the previous section, we introduced mirrored starters as subgroup
of the starters, to look for schedules that are balanced. When enumer-
ating them all, it turns out the number of mirrored starters grows
exponentially in N, limiting our extensive search for balanced sched-
ules for larger values of N. In this section, we present a more direct
way to construct a partition, that looks promising when trying to find
balanced schedules.

Let’s recall the mirrored starter on N = 16, 20, 22 teams. As we know,
for all these mirrored starters d there is a partition P(d) of the ele-
ments in Z∗

N−1, and these partitions contains k sets Pi of size 6. For
these N, the partitions P \ P∗ consisting of sets Pi are shown in Ta-
ble 34, where the elements of Pi are sorted in a specific way and we
omitted the P ∈ P of size 2.

N P

16 1 3 4 11 12 14

2 6 8 7 9 13

20 1 3 4 15 16 18

7 2 9 12 17 10

11 14 6 13 5 8

22 1 8 9 12 13 20

2 16 18 3 5 19

4 11 15 6 10 17

Table 34: Partitions P of balanced starters

Looking at the consecutive rows per N in Table 34, each time there
is a factor α by which two elements in consecutive rows differ. When
N = 16 α = 2, when N = 20 α = 7, and when N = 22 α = 2. For
all these partitions, we see that if we know one of the parts P ∈ P,
together with α, we can generate P in its entirety.

Definition 27. Let N be the number of teams. Let P = {±x,±y,±x +

y} ⊂ Z∗
N−1 be a set suitable to be in a mirrored partition of Z∗

N−1. Let
α ∈ Z∗

N−1 be an element of order ℓ, i.e., αℓ = 1. The generator Gα(·)
generates the following set of sets:

Gα(P) = {Pj
α : 0 ⩽ j < ℓ}

=
{
{±αjx,±αjy,±αj(x+ y)} : 0 ⩽ j < ℓ

}
We say Gα(·) is a clean generator on P when Gα(P) consists of disjoint
sets:

Pj
α ∩ Pj ′

α = ∅ ∀P ′ ̸= P ′′ ∈ Gα(P).
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When P ∈ PN can be written as:Set
P = {2k+ 1, 4k+ 2}

when N = 6k+ 4,
has clean generator

G2(P).

P =
⋃

{α,P}

Gα(P),

that is, when P is a union of clean generators, then P is said to be generated.

One can check that all mirrored starters on N = 16, 20, 22, 32, 64 teams,
have a partition that is generated, as was already partially shown
in Table 34. Below, the decomposition of P into clean generators is
shown, where we refer to P by a triple T containing the three smallest
elements of P - P = {±x : x ∈ T }. For notational purposes, we’ve
omitted the clean generator G2({2k+ 1}) if it was part of the partition:

N = 16 G2({1, 3, 4})

N = 20 G7({1, 3, 4})

N = 22 G2({1, 8, 9})

N = 32 G2({1, 11, 12})

N = 32 G2({1, 12, 13})

N = 32 G2({1, 13, 14})

N = 64 G2({1, 5, 6})∪G2({7, 19, 26})∪G2({9, 18, 27})

N = 64 G2({3, 10, 13})∪G2({7, 1, 8})∪G2({9, 18, 27})

N = 64 G2({1, 24, 25})∪G2({7, 10, 17})∪G2({9, 18, 27})

We see that not only are all the P generated, but some even coincide
with a single Gα(P) and perhaps the special G2({2k+ 1}). Any gener-
ator that generates an entire partition P this way is said to be a proper
generator. Enumerating all possible proper generators, can be done
quickly compared to going through all possible (mirrored) starters.

For any value in α ∈ Zn−1, one can check the order ℓ for which
αℓ = 1 mod N−1. When N = 6k+2 or N = 6k+4, and n = 3k+1 or
3k+2, this order must be a multiple of k. For any suitable α found, for
every set P = {±1,±x,±(x+ 1)}, with x ∈ {2, . . . ,n− 1}, we can check
if Gα({1, x, x+ 1}) is a clean generator. If this is the case, we found a
proper generator and we set P = Gα(P) together with G2({2k+ 1}) if
N = 6k+ 4. All is left is to calculate the COE for all starters in D(P).

The above procedure finds all proper generators in roughly O(N3),
hence polynomial time, and this is by no means optimal. Finding
the best starter that is created by a proper generator on N teams,
can be done significantly faster than finding the best among all mir-
rored starters, without losing any of the balanced starters of N =

16, 20, 22, 32.

After enumerating all proper generators up until N = 120, no new bal-
anced schedules were found unfortunately. Of course, we limited our
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search to these specific proper generators. It might very well be pos-
sible that within all the generated partitions, better or even optimal
starters can be found for these values of N. However, enumerating all
generated partitions will take more time.

5.7 conclusion

A lot of work has been done on researching Carry-Over Effect and a
big portion of the most recent work has been in the realm of optimiz-
ing (positive or negative) the Carry-Over Effect for given number of
teams.

We examined a popular way of constructing schedules on N teams,
for which the Carry-Over Effect can quickly be calculated, namely
starters. These starters create schedules only using the configuration
of the first round. As a lot of starters exist, in the quest to find bal-
anced schedules, we look at a specific subset of starters, that are
mirrored. These mirrored starters come with an additional structure
which makes it easy to enumerate them and their resulting schedule
looks nice.

For N up to 40, some improvements were found on earlier best known
COE-schedules. Unfortunately, no new balanced schedules were found
however among all mirrored starters for team sizes reaching 64. And
even with another method that looked at a specific type of mirrored
schedules, no new balanced schedules were found up until N = 120

teams.

Although we have not found new balanced schedules - if they exist
- a likely way to do so is by exploiting and extrapolating structures
found in starters with low COE. By doing this, we managed to find
almost balanced starters for large N in a reasonable time consistently.
Constructing mirrored starters on even bigger N, by for example com-
bining good generators that together partition all teams, might be an
even more effective way of getting to (almost) balanced schedules.





6 B A L A N C E D S E R I A L
K N O C K- O U T TO U R N A M E N T S

Round robin competitions are used in abundance, as they are
regarded a fair way to determine the best players or teams. A
participant has to beat as many of the others, to get high up
the ranking. However, when the end of the season nears, not
all players have something left to play for.
When titles, play-offs and relegation are no longer within
reach, for some motivation might be lacking for the remainder
of their games. This can favor their opponents yet to come -
they have the opportunity to score points with more ease,
helping them to achieve whatever goals they might still have.
This is not only unfavorable from a perspective of fairness,
but also from a viewer’s perspective - who wants to see a
match involving non-motivated players? Hence, the darts
association PDC came up with an alternative for their
originally DRR Premier League of Darts. Instead of each
round consisting of a pairing and one match per player, the 8

players would contest a knock-out tournament every week.
The incentive for players to win, even though their place in
the ranking is irrelevant, should come from the fact that
winning the tournament on its own is rewarded with more
prize money.
But who the players meet, and when, partially depends on the
bracket and the results in the knock-out. Some players may
never meet in the semi-finals, while others could meet each
other twelve out of fourteen times in that stage of the
tournament. This imbalance is unnecessary, as it is very well
possible to balance the opponents of each player perfectly
across the knock-out tournaments.
This chapter is based on Lambers, Pendavingh, and Spieksma (2022).

99
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6.1 introduction

Two popular tournament formats are the round-robin format and the
knock-out format. In a round-robin format, each pair of players (or
teams) meet a given number of times. In a knock-out tournament,
starting from a so-called bracket, each stage of the knock-out tour-
nament sees matches between all remaining players, and a player is
removed from the tournament after losing a match; in this way, af-
ter logn stages a winner is determined (where n is the number of
players).

Each of these formats has been studied intensely from very different
viewpoints. In particular, deciding upon a bracket of the players in a
single knock-out tournament has attracted a lot of attention; we refer
to Vu (2010), Groh et al. (2012), Aziz et al. (2014) for more information
on this subject. Most of this literature assumes that probabilities are
given that denote the chance of one player beating the other.

It is not uncommon to design a tournament combining both formats:
for instance, first have a number of round-robin tournaments in par-
allel, and then let the winners of the round robins participate in a
knock-out tournament. The FIFA World Cup has such a set-up, as doThe UEFA

Champions League
starts with a
knock-out for

qualifiers, then goes
to group stages, and

ends again with a
knock-out phase.

many of the highest national leagues in various sports.

In this chapter we study a format that is an alternative combination
of a knock-out tournament and a round-robin tournament. Let the
number of players n be equal to 2k for some k ⩾ 2, allowing us to
focus exclusively on knock-out tournaments where each player has
to play the same number of matches to win the tournament, which is
k. Observe that such a knock-out tournament consists of k successive
stages, where in stage i the remaining 2k+1−i players compete, i =

1, . . . ,k. In tennis, the grand slam singles tournaments have 27 = 128

players, thus the final equals stage 7.

The entire competition then consist of 2k − 1 rounds, where each
round is a knock-out tournament on n players. We will call this for-
mat a Serial Knock-Out tournament, or SKO for short. The problem
is to specify, for each of the individual knock-out tournaments, the
bracket; the bracket specifies the leaf node of the underlying knock-
out tree to which each player is assigned, see Figure 10. Once the
brackets are specified, the rounds of the SKO can unfold - no other de-
cisions in the design of the tournament need to be taken. As far as we
are aware, this particular format has not been studied before. Related
(but different) formats are the so-called quasi-double knockout tour-
nament (Considine and Gallagher, 2018) and the multiple-elimination
knockout tournament (Fayers, 2005).

When scheduling a knock-out tournament, it is very common to seed
the players in advance, see for example the major tennis tournaments.
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The bracket is then filled by taking this seeding into account. How-
ever, in the SKO, we treat all players equally - we make no prior
assumptions on the strength of the players.

Clearly, deciding upon the bracket in a knock-out tournament also
determines the possible matches that can be played in the next stages.
From a fairness perspective, one may wish not to discriminate be-
tween different players, leading to the question whether one can en-
sure that each pair of players meets potentially equally often in each
of the stages of the SKO. Thus, our interest is in obtaining the brack-
ets such that any match between a pair of players can occur equally
often throughout the stages of the tournament. We refer to this as the
stability of an SKO tournament.

6.1.1 Motivation: The Premier League of Darts

The motivation for investigating this particular tournament design
comes from the Professional Darts Corporation (PDC). We now de-
scribe this motivation in more detail.

The Premier League of Darts, organized by the PDC, and which
started February 3rd 2022, is an annual competition where the best 8
darts players of the world compete over several months for the title,
and the prize of £275.000. The concept of the league changed drasti-
cally compared to the previous years – in this edition, every one of
the 16 rounds is a knock-out tournament on its own. Every round,
there will be a winner and importantly, in every single match there is
something to play for, which should cause excitement.

The 16 rounds are structured in the following way: each of the first
7 rounds have predetermined brackets, then there is a special round,
again 7 rounds with predetermined brackets, and a last special round.
The draws in the special rounds depend on the standings at that time.
The other (regular) rounds have a fixed bracket that is determined in
advance by the PDC. Our analysis focuses on the brackets in these
regular rounds. The first 7 regular rounds, as well as the second 7

regular rounds each correspond to an SKO.

As a final remark, we like to point out that the SKO of the Premier
League is constructed in such a way, that every player is set to meet
every other player once in the first stage during the 7 rounds. To-
gether, the first stages of the first 7 rounds thus form a SRR. Although
we do not have this as a requirement for SKOs in general, we will be
looking at schedules that showcase this property as well.
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6.2 definitions

In this section, we formally describe the knock-out tournaments, the
Serial Knock-outs, and the concept of stability.

We start with the knock-out tournament and the bracket s that sched-
ules the tournament.

Definition 28. A bracket s is a permutation of n = 2k players. A knock-
out tournament T(s) on these n players, is given by placing, from left to
right, the elements of s on the leaves on the balanced binary tree of order 2k.
Every node that is not a leaf, represents a match. Each match has one player
that wins and one that loses - the winner is scheduled to play at the next
node.

In Example 7 it is shown how to attach the bracket s = 01452367 to
knock-out tree on 8 players. Although the permutation itself holds
all the information needed, we may place hyphens as a visual aid
separating the left and right halves of the tree: 0145− 2367 instead of
01452367.

Example 7. Bracket 0145− 2367 places the players in the tree as shown in
Figure 10.

0 1 4 5 2 3 6 7

Figure 10: Knock-out T(s) with bracket s = 0145− 2367.

A tournament on for instance 8 players has 3 stages, stage 1, 2, 3 - pop-
ularly referred to as quarter final, semi-final and final. Every player
has one possible opponent in stage 1, two in stage 2, etcetera.

Definition 29. Given a knock-out tournament T for n = 2k players, we
say that vT (x, x ′) = i if players x, x ′ can meet in stage i of that tournament,
i = 1, . . . ,k.Two brackets s ̸= s ′

can have
vT(s)(x, x ′) =

vT(s′)(x, x ′) for all
pairs x, x ′.

The phrase ‘can meet’ in the above definition refers to the assumption
that players x and x ′ win their matches in the stages prior to their
encounter. For instance, in Example 7, players 1 and 4 can meet in
Stage 2, while players 0 and 3 can meet in stage 3, the final.
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Definition 30. A set of knock-out tournaments T on n = 2k players is
stable in stage i if there is a number ci so that

#{T ∈ T : vT (x, x ′) = i} = ci

for all pairs of distinct players x, x ′. The set T is stable if it is stable in all
stages i = 1, . . . ,k.

Definition 31. A Serial Knock-Out (SKO) is a competition on n = 2k

players over n − 1 rounds, where every round r consists of a knock-out
tournament Tr = T(sr) among all players. The SKO is stable if T = {Tr : r ⩽
n− 1} is stable. From a players

perspective, one
might also be
interested in the
probability of
meeting certain
opponents in later
stages.

Notice that in any knock-out tournament T , a player has 2i−1 possible
opponents in advance when reaching stage i, i.e., for each player x,
we have #{x ′ : vT (x, x ′) = i} = 2i−1, i = 1, . . . ,k. As an SKO consists
of 2k − 1 knock-out tournaments, the number of meetings that are
possible in stage i for any player is given by (2k − 1)2i−1. With the
number of opponents of any player x equal to n− 1 = 2k − 1, an SKO
is stable in stage i if ci = 2i−1, i = 1, . . . ,k.

We can rephrase this to the following condition:

Condition 3. An SKO T on n = 2k players and n− 1 rounds is stable if
for every pair of players x, x ′:

#{T ∈ T : vT (x, x ′) = i} = 2i−1 ∀1 ⩽ i ⩽ k

We point out that the SKOs used in the Premier League of Darts are
not stable. More precisely, the two SKOs that correspond to the first
7 regular knock-out tournaments and to the second 7 regular knock-
out tournaments, are stable in stage 1 - each pair of players is bound
to meet each other once in the first round of a knock-out tournament.
However, for the other two stages, the SKOs are not stable.

6.3 constructing a stable sko tournament
for 8 players

We are going to construct a stable SKO tournament T = {Tr : r ⩽ 7}

for 8 players; the result will be applicable to the PDC Premier League
described in Section 6.1.1. A stable SKO on these 8 players can be any
selection of 7 brackets s1, . . . , s7 for which the set T = {T(si) : i ⩽ 7}

is stable.

The construction uses a geometric entity called the Fano plane, see
Figure 11. The plane consists of 7 points, 1, . . . , 7, and 7 lines. These
lines all go through exactly 3 points - one of the lines is the circle
going through 2, 5, 7. Every line has a color we use to refer to a specific
line - the colors are (light) blue, (light) green, red, purple and orange.
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3 5 6

2 7

1

4

Figure 11: The Fano-plane used to construct Table 35

The following Algorithm 6, takes as input a point x and line ℓ through
x on the plane, and produces a bracket s.Constructing

s = 0145− 2367

from Algorithm 6
with x = 1 and the
red line.
Step 1. x = 1 is
chosen, so

s = 01 . . .

Step 2. The red line
through x goes
through 4, 5.

s = 0145 . . .

Step 3. 2, 3 are on
the light green line
through 1. And 6, 7
on the light blue line
through 1.

s = 0145− 2367.

Algorithm 6 Line-point
Input: A set of 8 players, a point x and a line ℓ ∋ x in Fig-
ure 11.

1: Player x meets 0 in stage 1.

s = 0x . . .

2: Line ℓ = {x,y, z}. Players y, z meet in stage 1.

s = 0xyz . . .

3: For every line ℓ ′ ̸= ℓ through x, let y ′, z ′ ∈ ℓ ′ meet in stage 1.

s = 0xyz− y ′z ′y ′′z ′′

Output: Bracket s on 8 players.

Algorithm 6 gives one bracket, whereas we need a set of 7 brackets
to create a stable SKO. However, the brackets constructed by the algo-
rithm have a particular structure, stated in the following lemma.

Lemma 11. Let T be the knock-out tournament that arises from the node-
line pair x, ℓ, and let y be a node of the Fano plane. Then

• vT (0,y) = 1 if and only if y = x,
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• vT (0,y) = 2 if and only if y ∈ ℓ and y ̸= x, and

• vT (0,y) = 3 if and only if y ̸∈ ℓ.

Moreover, if ℓ ′ = {y, x, x ′} is any line of the Fano plane containing the node
y, then vT (x, x ′) = vT (0,y).

We use this lemma to get to Table 35, a set of 7 point-line inputs
together with their resulting brackets are shown. Together, they form
a stable SKO on 8 players.

Round Bracket Node Line

1 0145− 2367 1 Red

2 0426− 1537 4 Purple

3 0213− 4657 2 Light green

4 0356− 1247 3 Blue

5 0527− 1436 5 Orange

6 0734− 1625 7 Green

7 0617− 2435 6 Light blue

Table 35: Brackets for a stable SKO.

Notice that in Table 35, each node and each line of the Fano plane
occur exactly once, and each node is on the corresponding line. This
is sufficient to obtain a stable SKO, as is stated in the next theorem.

Theorem 14. Let x1, . . . , x7 be an enumeration of the nodes and ℓ1, . . . , ℓ7
be an enumeration of the lines of the Fano plane, such that xr ∈ ℓr for
r = 1, . . . , 7. Let Tr be the knock-out tournament that arises from the the
pair xr, ℓr. Then, the SKO defined by T := {T1, . . . , T7} is stable.

Proof. To show that T is stable, we need to show that

#{T ∈ T : vT (x, x ′) = i} = 2i−1

for each pair of distinct players x, x ′ and each stage i ∈ {1, 2, 3}. Notice
that T is stable in stage i = 3 if it is stable in both stage 1 and 2.

We first consider the case that one of x, x ′ is 0, say {x, x ′} = {0,y} for
some y ∈ {1, . . . , 7}.

• (0,y) is stable in stage i = 1, as ∃!ry such that y = xry , implying
#{T ∈ T : vT (0,y) = 1} = #{r : y = xr} = 1.

• (0,y) is stable in stage i = 2. This can be seen from the fact
that there are exactly three lines through y, thus there exist two
rounds r, r ′ ̸= ry such that y ∈ ℓr, ℓ ′r - meaning that (0,y) can
meet in stage 2 in those rounds.
#{T ∈ T : vT (0,y) = 2} = #{r : y ∈ ℓr,y ̸= xr} = 2.
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Next, suppose x, x ′ are distinct players, both not 0. Then, the Fano
plane contains a unique node y and line ℓ ′ = {y, x, x ′} through x, x ′.
By Lemma 11, we have vT (x, x ′) = vT (0,y) for each T ∈ T. As #{T ∈
T : vT (0,y) = i} = 2i−1 for all y, this holds for any distinct pair x, x ′.

The theorem follows.

6.4 constructing stable sko for n = 2k

In this section we will generalize the node-line construction used on
8 players to find a stable SKO for n = 2k players. We first describe
a basic idea on brackets in Section 6.4.1, which we connect to Galois
fields in Section 6.4.2. We use this connection in Section 6.4.3 to prove
our main result: Theorem 15.

6.4.1 The basic idea

The key idea that we will carry over from the n = 8 setting to the
general case, is that we will construct our knock-out tournaments in
a restricted way, so that for each pair of players x, x ′, there is a well-
defined player y such that

vT (x, x ′) = vT (0,y)

in all knock-out tournaments T of this specific form. Showing that an
SKO T is stable, where each tournament T ∈ T is of this special form,
then reduces to verifying that

#{T ∈ T : vT (0,y)} = 2i−1

for each player y and each stage i, i = 1, . . . ,k.

To define the representative y of a pair of players x, x ′ and to create
the special tournaments T , we need additional structure on the set
of players. For the case n = 8, we identified the non-zero players
with nodes of the Fano plane and used its geometry to define the
tournaments. In what follows, we will identify the n = 2k players
with the 2k elements of the Galois field GF(2k).

As GF(2k) is a field, both addition and multiplication are possible
operations on its elements. We construct a single tournament T such
that for x, x ′ ∈ GF(2k), we have

vT (x, x ′) = vT (0,y)

when y := x− x ′.

After we constructed a base model for our knock-out tournament, we
use the multiplication in GF(2k) on T , to create tournaments T(z) for
each nonzero element z of GF(2k), and argue that

T := {T(z) : z ̸= 0}
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is a stable SKO.

6.4.2 The connection to Galois fields

To exploit the structure of Galois field GF(2k), we first have to de-
scribe GF(2k). Although we do not go into too much detail, we point
out the main properties that we use. For an accessible introduction to
finite fields, see Chavez and O’Neill (2022).

A polynomial q ∈ Z2[X] is irreducible, if for any pair r, s ∈ Z2[X] of
polynomials such that q = r · s, at least one of r, s is a constant.

Given any irreducible polynomial q ∈ Z2[X] of degree k, it is known
that GF(2k) ∼= Z2[X]/(q) - this is the space of polynomials where
polynomial q = qkX

k + . . . q1X+ q0 and any multiple of q is consid-
ered equal to 0. In addition, we know that for this q, there exists an
element α ∈ GF(2k), such that q(α) = 0.

For any value of k, such polynomial q and α are guaranteed to exist.
For example, when k = 3, the polynomial q[X] = X3 + X2 + 1 is ir-
reducible over Z2[X]. Other irreducible polynomials of small degree
are X2 +X+ 1,X4 +X+ 1,X5 +X2 + 1 for k = 2, 4, 5 respectively.

Using any fitting combination of q,α, we can express an element
x ∈ GF(2k) as linear combination of 1,α,α2, . . . ,αk−1 over the field
Z2, i.e. x =

∑α
i=0 xiα

i, where xi ∈ Z2.

We work with coefficients xi in Z2, where 1+ 1 = 0+ 0 = 0, addition
x+ x ′ of two elements x, x ′ ∈ GF(2k) is given by:

x =

k−1∑
i=0

xiα
i x ′ =

k−1∑
i=0

x ′
iα

i x+ x ′ =

k−1∑
i=0

(xi + x ′
i)α

i.

For an element x =
∑

i xiα
i ∈ GF(2k), we define the degree of x ∈

GF(2k) to be d(x) = max{i : xi ̸= 0}. The value of d(x) depends
on our choice of q and corresponding α we used for expressing the
elemenets in GF(2k), but as we assume to have chosen and fixed q,α,
the degree d is well-defined.

This degree leads us to the following lemma on the existence of a
tournament T with the nice property that vT (x,y) = vT (0, x− y) =

1+ d(x− y).

Lemma 12. There is a knock-out tournament T whose players are the ele-
ments of GF(2k), so that vT (x,y) = 1+ d(x− y) for all x,y ∈ GF(2k).

Proof. We construct tournament T by inductively constructing Tm for
incremental values m = 1, . . . ,k, where each Tm is a knock-out tour-



108 balanced serial knock-out tournaments

nament on the set Pm = {x ∈ GF(2k) : d(x) < m}, and all the Tm have
the property that vTm

(x,y) = 1+ d(x− y) for x,y ∈ Pm. Then T = Tk
proves the lemma.

When m = 1, the set P0 = {0, 1} contains only two players, and the
unique tournament T1 one can construct on these two players has
vT1

(0, 1) = 1 = 1+ d(1− 0).

As induction step, assume that Tm exists such that vTm
(x,y) = 1+

d(x− y) for all x,y ∈ Pm. Let T ′
m arise from a copy of Tm by adding

αm to each player. Then T ′
m has players P ′

m = {x+ αm : x ∈ Pm} and
for any two players x ′,y ′ ∈ P ′

m we have

vT ′
m
(x ′,y ′) = vTm

(x,y) = 1+ d(x− y) = 1+ d(x ′ − y ′)

where x ′ = x+αm and y ′ = y+αm with x,y ∈ Pm.

We construct Tm+1 for players Pm+1 = Pm ∪ P ′
m as the combination

of tournaments Tm, T ′
m, where at stage m+ 1, the winner of Tm plays

the winner of T ′
m. For this Tm+1, we see that for x,y ∈ Pm+1:

vTm+1
(x,y) = vTm

(x,y) = 1+ d(x− y) if x,y ∈ Pm

vTm+1
(x,y) = vT ′

m
(x,y) = 1+ d(x− y) if x,y ∈ P ′

m

vTm+1
(x,y) = 1+m = 1+ d(x− y) if x ∈ Pm,y ∈ P ′

m

or x ∈ P ′
m,y ∈ Pm

This finishes the induction step. Taking T = Tk gives the desired tour-
nament.

The construction of T with elements in GF(23) is given in Figure 12.

0 1 α α+ 1 α2 α2 + 1 α2 +αα2 +α+ 1

Figure 12: A knock-out tournament T so that vT (x,y) = 1+ d(x− y)

6.4.3 The result

By Lemma 12, we know there exists a knock-out tournament T on
the elements of GF(2k) such that vT (x,y) = vT (0, x− y) = 1+ d(x,y)
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for all x,y ∈ GF(2k). In the following section, we argue that for each
non-zero z ∈ GF(2k), the tournament T(z) obtained from T by re-
placing each player x by zx maintains the property that vT(z)(x,y) =
vT(z)(0, x− y). Then we show that

T = {T(z) : z ∈ GF(2k) \ {0}}

is a stable SKO.

To properly define T(z), we need to multiply x, z ∈ GF(2k) such that
xz ∈ GF(2k). As normal multiplication would lead to polynomials
of degree potentially higher than k− 1, we use q(α) = 0 to reduce
higher order terms (degree k or higher) to a lower degree (k− 1 or
lower). To illustrate this, suppose we have k = 3, with q = X3+X2+ 1

as irreducible polynomial. Then multiplying x = α2 + 1, z = α2 + α

leads to:

x · z = (α2 + 1)(α2 +α) = α4 +α3 +α2 +α

= α2

The degree of the polynomial was reduced from 4 to 2, using α4 =

α ·α3, and substituting α3 = α2 + 1, as q(α) = α3 +α2 + 1 = 0.

Let T be a tournament satisfying Lemma 12, thus vT (x,y) = 1+d(x−

y) for all x,y ∈ GF(2k). Let z ∈ GF(2k) be non-zero and thus invert-
ible. We construct T(z) from T by replacing each player x with zx.
As the map x 7→ zx is one-to-one, T(z) is again a tournament whose
players are the elements of GF(2k). Evidently we have vT(z)(x,y) =

vT (z
−1x, z−1y) for all x,y ∈ GF(2k). It follows that

vT(z)(x,y) = vT (z
−1x, z−1y) = vT (0, z−1(x− y)) = vT(z)(0, x− y)

for all x,y ∈ GF(2k) and

vT(z)(0,y) = vT (0, z−1y) = 1+ d(z−1y)

for all y ∈ GF(2k).

Theorem 15. T := {T(z) : z a nonzero element of GF(2k)} is a stable SKO.

Proof. We need to show that #{T ∈ T : vT (x, x ′) = i} = 2i for each pair
of distinct players x, x ′ ∈ GF(2k) and each stage i = 1, . . . ,k.

If one of x, x ′ is 0, say {x, x ′} = {0,y} with y ̸= 0, then, for each
i = 1, . . . ,k,

#{T ∈ T : vT (0,y) = i} = #{z ∈ GF(2k) : z ̸= 0, 1+ d(z−1y) = i}.

Substituting z by r−1y this equals

#{r−1y ∈ GF(2k) : r ̸= 0, 1+ d(r) = i} =

#{r ∈ GF(2k) : r ̸= 0, 1+ d(r) = i} = 2i
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since the map r 7→ r−1y is one-to-one.

The general case reduces to the above special case, since each of the
tournaments T ∈ T has vT (x, x ′) = vT (0, x− x ′). Then

#{T ∈ T : vT (x, x ′) = i} = #{T ∈ T : vT (0, x− x ′) = i} = 2i,

as required.

We close this section with an example that constructs a stable SKO on
8 players using the Galois group.

Example 8. For the Galois group, we choose q(X) = X3 + X + 1 as the
irreducible polynomial over Z2 and set q(α) = 0. The corresponding multi-
plication table is shown in Table 36.

Round: 1 2 3 4 5 6 7

z: 1 α α+ 1 α2 α2 + 1 α2 +α α2 +α+1

1 1 α α+ 1 α2 α2 + 1 α2 +α α2 +α+1

α α α2 α2 +α α+ 1 1 α2 +α+1 α2 + 1

α+ 1 α+ 1 α2 +α α2 + 1 α2 +α+1 α2 1 α

α2 α2 α+ 1 α2 +α+1 α2 +α α α2 + 1 1

α2 + 1 α2 + 1 1 α2 α α2 +α+1 α+ 1 α2 +α

α2 +α α2 +α α2 +α+1 1 α2 + 1 α+ 1 α α2

α2 +α+1 α2 +α+1 α2 + 1 α 1 α2 +α α2 α+ 1

Table 36: Multiplication on GF(23)

Table 36 essentially gives the bracket for the SKO, since the row for multi-
plication by z presents the bracket for T(z). Upon replacing each polynomial
with the number specified in the following table, we get the SKO of Table 37

Row Bracket Row Bracket

1 0145− 2367 5 0312− 4756

2 0426− 5173 6 0671− 3542

3 0563− 7214 7 0734− 1625

4 0257− 6431

Table 37: SKO constructed from Table 36

6.5 conclusion and discussion

We have analyzed a novel tournament design that is used in practice,
and that can be seen as a combination of a knock-out tournament and
a round robin tournament; we call it a Serial Knock-Out tournament
(SKO). From the viewpoint of fairness an attractive property of an
SKO is stability: whether or not pairs of players can meet equally
often in the stages of the SKO. We have shown using a connection to
Galois fields that this is always possible.
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We like to remark here that the construction to create stable SKOs
does not generate a unique tournament - for example, the order of
the rounds can be changed without hurting the stableness of the SKO.
And within each tournament, a tournament T(s) with bracket s can
be replaced by T(s ′) as long as vT(s) = vT(s ′). Not all stable SKOs are
equal and from an organizers point of view, there might be additional
constraints, that distinct some stable SKOs from others.

For example, in the PDC Premier League, all matches are played on
one night, stage by stage, one match after the other. If a player plays
the first match of first stage, he has to wait at least 3 games before
his potential semi-final match is scheduled. Whether this is a benefit
or not, the organizers might want to schedule the matches in the
individual nights in such a way that the matches of a player are evenly
spread over the timeslots - it could be that some SKOs cater better to
this need than others.





7 H O W TO S C H E D U L E T H E

V O L L E Y B A L L N AT I O N S
L E A G U E

Traveling days are not rest days.

Swedish Nils van der Poel wrote these words in his unique
self-study of the training regime that led him to win two
speed skating olympic gold medals in Beijing. As he
distinguishes only two types of days, training days and rest
days, it is clear that to him, traveling is exercising.
And he is not alone in that assessment. Many of his peers
made similar statements how traveling hampered their
performance. Not only that, many statistical reviews
investigating the impact of travel fatigue on an athletes level,
found the correlation as well. Hence, in sport scheduling, the
Traveling Tournament Problem is a well studied problem of
scheduling competitions where traveled distance is part of the
objective.
The international Volleyball Nations League in 2018/2019 can
be regarded as one of the most travel-intense tournaments. In
the span of five weeks, teams have to travel across the globe
and back, to meet all their 15 opponents. Each week, groups
were hosted somewhere on earth, making several teams travel
from continent to continent, while others were lucky enough
to stay close to their home country for most of their matches.
Designing a schedule such that each team has similar and
near minimum disadvantage of its travel scheme, is a hard
problem in general. However, exploiting the structure of the
tournament improves the solution times as well as insights in
how fair schedules look like.
This chapter is based on Lambers, Rothuizen, and Spieksma (2021).

113
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7.1 introduction

The Volleyball Nations League is a tournament organized every year
by the FIVB (Fédération Internationale de Volleyball), for both men
and women (see https://www.volleyball.world/en/vnl/2021). The
tournament was first organized in 2018 to replace the World League/-
World Grand Prix as annual volleyball tournament. There are 16 teams
participating in the tournament which consists of multiple phases. In
the first phase, lasting for five weeks, all 16 teams play a single round
robin, i.e., each team meets each other team once. The 6 teams that
perform best qualify for the second phase, where out of two groups
of three, four teams emerge to play cross finals. Our interest is exclu-
sively on the first phase.

In the first phase of the VNL tournament, teams play in rounds. In
each round, each team is in a group consisting of 4 teams, and each
team in a group plays a match against its three fellow group members.
After 5 rounds, each of the 16 teams has played all the other teams
exactly once, and a ranking is made based on the results in this single
round robin tournament. All 6 matches in a single group are held at
the same venue, however, every round has its 4 groups played out in
different venues. As it is a disadvantage to have traveled more than
the opponent going into a match, our main interest lies in minimiz-
ing a measure that captures the imbalance in travel times between
opposing teams.

That the distribution of travel times can be skewed within a tourna-
ment, was showcased for instance in the Men’s 2018 tournament. TheThe Italian team

won their first 3
matches in Serbia,

but failed to finish in
the top 6 losing 7

out of their
remaining 12

matches.

Italians started in Serbia, then had to travel to San Juan in Argentina,
Osaka in Japan, Seoul in South Korea to finish with a group stage in
Rome, Italy. Contrary to traveling around the world in 30 days, the
winners of that years regular competition, France, only had to move
between cities in Europe.

This travel burden was also noted by Dutch captain Anne Buijs, who
noted in an interview (see Volkskrant (2021)) regarding the revised
COVID-proof schedule of the 2021 VNL that “It is quite an advan-
tage to play all VNL matches at the same location. In the original
schedule we would have travelled from Serbia to Canada to Korea,
which makes the schedule very hard for us.“ This is in line with state-
ments from the literature, for instance Samuels (2012) who concludes:
“Jet lag and travel fatigue are considered by high-performance athletic
support teams to be a substantial source of disturbance to athletes.”

Traveling during tournaments has been extensively studied and it is
well established within the scientific literature that travelling has a
negative impact on sport performance. Although we do not intend
to survey the literature on this subject, this finding is reported for
various sports ranging from rugby (Lo et al. (2021)) to baseball (Song,
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Severini, and Allada (2017), and Winter et al. (2009)) and from basket-
ball (Huyghe et al. (2018)) to triathletes (Stevens et al. (2018)); see also
the references contained in these papers.

7.2 mathematical background

We briefly described the set-up of the Volleyball Nations League in
the previous section, with 4 groups of 4 teams for 5 weeks in a row,
that jointly form an SRR over 16 teams. A priori, it is not clear how
to obtain a round robin schedule that can be decomposed in such
groups. In fact, finding a schedule that fits this VNL-format is related
to the well known Social Golfer Problem (SGP).

In this problem we are given gp golfers and w rounds (where g,p,w
are positive integers), and the SGP asks whether it is possible to let
the gp golfers play in g groups of p golfers in each of the w rounds,
in such a way that every pair of golfers plays in the same group in
at most one round, see Triska and Musliu (2012), Liu, Löffler, and
Hofstedt (2019), Dotú and Hentenryck (2005). This question is far
from innocent: only for restricted sets of values for g,p,w the answer
to this question is known. For instance, when g = p = w−1, solutions
are known to exist when g is a prime power - and no other solution
to these type of instances has been found, nor has it been proven that
these are the only instances for which a solution can exist (Warwick
and Winterer (2005)).

Of course, in the context of the Volleyball Nations League, each golfer
corresponds to a team (and groups remain groups and rounds remain
rounds). Since the Volleyball Nations League has g = p = 4 and
w = 5, it follows that the answer to the SGP-question is affirmative,
and hence a schedule for the VNL that consists of 5 rounds, each
round consisting of 4 groups, is known to exist - something that could
also be concluded from the very existence of the VNL-schedule in
the first place. In this paper, we introduce the Traveling Social Golfer
Problem (TSGP), as a generalization of the SGP; the TSGP allows us to
take fairness, as measured by the difference in travel times between
opposing teams each round, into account. Recent other variations of
the SGP are discussed in Miller et al. (2020) and Lester (2021).

A well-known problem related to the TSGP that also focusses on
distances is the Travelling Tournament Problem (TTP), see Easton,
Nemhauser, and Trick (2002) for a precise description. In contrast to
our problem, in the TTP pairs of teams meet in the venue of one
of the two opposing teams. Moreover, the objective in the TTP is to
minimize total travel distance; difference in travel time between op-
posing teams is not considered in the TTP. We refer to Goerigk and
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Westphal (2016) and G. Durán, S. Durán, et al. (2019) for an overview
concerning the TTP.

A number of studies has been devoted to the scheduling of national
volleyball leagues where mainly for cost reasons, the objective is to
minimize total travel time. We mention Bonomo et al. (2012) who
model the Argentine national volleyball league as an instance of the
Traveling Tournament Problem, and Cocchi et al. (2018) who investi-
gate the Italian volleyball league. Further, Raknes and Pettersen (2018)
study the Norwegian Volleyball League; one of their models, moti-
vated by a cost-objective, is devoted to minimizing total travel dis-
tance in that league. These leagues are organized in the format of a
Double Round Robin, and as such differ from the VNL.

7.3 the traveling social golfer problem (tsgp)

7.3.1 Definition of the TSGP

As described in Section 7.2, the Social Golfer Problem is a well
known combinatorial problem, where the task is to schedule golfers
in groups of size p over multiple rounds, such that no golfer plays
with another golfer in the same group twice or more. In the Trav-
eling Social Golfer Problem (TSGP), all groups have to play at
(different) venues, where the objective is to create a schedule that
minimizes the unfairness arising from golfers who play together but
have different travel times between the venues.

In order to give a precise formulation of the TSGP, we use the follow-
ing notation to describe the input:

• N: the number of participants,

• k: a group size,

• V : the set of venues,

• d(v,w): a distance between each pair of venues v,w ∈ V , and

• c(v): a multiplicity for each v ∈ V .

The multiplicity function c(v) indicates the exact number of times
venue v ∈ V must host a group; in the practical situation of the
VNL, it is not uncommon that a venue is host to different groups
in different rounds. The multiplicities allow us to accommodate such
situations.

Furthermore, we use the following notation to describe a solution:

• R: a set of rounds,

• Pr
i : the set of teams in group i in round r, 1 ⩽ i ⩽ N

k , r ∈ R,
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• vr(t): the venue of the group in which team t ∈ {1, . . . ,N} plays
in round r ∈ R.

Finally, we measure the value of a schedule S by its unfairness u(S)

as follows:

u(S) =
∑

r∈R\{1}

N
k∑

i=1

max
s,t∈Pr

i

|d(vr(s), vr−1(s)) −d(vr(t), vr−1(t))|. (56)

Let us elaborate on this expression. For every group Pr
i in every round

r ∈ R\ {1}, we consider the two teams (teams s and t) whose difference
in travel distance needed to arrive at the corresponding venue, is max-
imum over all pairs of teams in the group; this quantity is summed
over all groups, and all rounds except the first round (we assume
that all teams have ample time to arrive at their first venue). Thus,
a lower value of u(S) indicates that the difference in travel times be-
tween opposing teams was less and thus the schedule was more fair.
The measure u is applicable to any schedule for N teams that has a
group/round-structure.

Example 9. A tournament with N = 4, teams 1, 2, 3, 4, is organized over
three rounds, and groups of size k = 2. There are four venues, V = {A,B,C,D},
with multiplicities c(A) = c(D) = 2 and c(B) = c(C) = 1. Distances be-
tween venues are d(A,B) = d(A,C) = d(B,D) = d(C,D) = 1 and
d(A,D) = d(B,C) = 2.

Consider the schedule S depicted in Table 38.

Group Venue Group Venue

Round 1 P1
1 = {1, 2} A P1

2 = {3, 4} D

Round 2 P2
1 = {1, 3} A P2

2 = {2, 4} B

Round 3 P3
1 = {1, 4} D P3

2 = {2, 3} C

Table 38: A schedule S for the instance in Example 9.

Thus, according to (56), the unfairness of this schedule S equals:

u(S) = |2− 0|+ |1− 1|+ |2− 1|+ |2− 1| = 4.

We state the following optimization problem that we call the (N,k)-
Traveling Social Golfer Problem, or (N,k)-TSGP for short.

(N,k)-TSGP

Input. Instance I = (N,k,V , c,d) with the number of teams N ∈ N, a
group size k ∈ N, a set of venues V with multiplicity c(v) ∈ N⩾1 for
all v ∈ V , and a distance function d : V × V → R.
Output. A schedule S on R rounds such that:
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1. there is an equi-partitioning of N teams in groups Pr
1, . . . Pr

N
k

for
each round r ∈ R, with for each pair of distinct teams, a single
group containing both teams, i.e, for each s, t, (s ̸= t))∃! i, r
with s, t ∈ Pr

i ,

2. an allocation of groups to venues that results in venues vr(t)

(r ∈ R, t = 1, . . . ,N) such that venue v ∈ V is a host for a group
exactly c(v) times.

where S minimizes u(S).

Clearly, depending on input I, a feasible schedule to (N,k)-TSGP
need not exist; it is not difficult to find instances where there is no
schedule S that satisfies all the constraints. As the schedule asks for a
partitioning of the N teams in groups of size k in each round, we im-
mediately see that N should be a multiple of k: N ≡k 0. In addition,
the schedule should correspond to a single round robin tournament,
and as all teams play k− 1 matches per round, we conclude that N− 1

should be a multiple of k− 1: (N− 1) ≡k−1 0.

We can combine both findings to see:

N ≡k 0 & N− 1 ≡k−1 0 =⇒ ∃ρ ∈ N s.t. N = k((k− 1)ρ+ 1)

We can conclude that a solution to (N,k)-TSGP can only exist if there
is an integer ρ such that N = k · ((k− 1)ρ+ 1).

The above are necessary conditions that need to be satisfied, but are
not at all sufficient. The (N,k)-TSGP can only have a solution that
satisfies the single round robin format, if the corresponding instance
of the SGP is solvable. In general, solutions of the SGP are known to
exist when N = k2 and k is a prime power. Thus, for the Volleyball
Nations League, the underlying N = 16,k = 4-SGP problem will be
solvable. In the remainder of the chapter, we assume that N = k2

and |R| = k+ 1; this ensures that the above necessary conditions are
fulfilled (and observe that the VNL case arises when k = 4).

7.3.2 Decomposing the TSGP into Venue Assignment and Nation
Assignment

As we will show next, the solving of an instance of (N = k2,k) −
TSGP can be decomposed into two phases:

1. Venue Assignment. This is the first phase. In this phase, we
specify, for each round r ∈ R, which venues act as a host. This
results in set Ur ⊂ V , the set of hosts in round r. Obviously,
|Ur| = k for all r ∈ R.
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2. Nation Assignment. This is the second phase. In this phase, we
decide upon the composition of the groups, i.e., we choose the
sets Pr

i and allocate each of these groups to one of the venues
in Ur.

By going through these two phases, we find a schedule S. It is crucial
to observe that the unfairness of S, i.e., u(S), follows directly from the
venue assignment when N = k2. We record this observation formally
in the following theorem.

Theorem 16. For each schedule S of a given an instance of (N = k2,k) −
TSGP, u(S) is determined only by the Venue Assignment, for each integer
k ⩾ 2.

Proof. We claim that for each schedule S:

u(S) =
∑

r∈R\{1}

k∑
i=1

max
s,t∈Pr

i

|d(vr(s), vr−1(s)) − d(vr(t), vr−1(t))|

=
∑

r∈[1,...,k]

∑
u∈Ur+1

max
v,w∈Ur

|d(v,u) − d(w,u)|.

The latter equality follows from the fact that, independent of the com-
position of the groups, the k teams that play in a group in some
round, will not meet again in a next round, and hence these k teams
will travel to each of the k distinct venues in the next round.

The intuitive idea behind Theorem 16 is highlighted in Figure 13.
There are three groups of size 3 and two rounds. In the first round, we
see groups A,B,C, in the second round there are the groups X, Y,Z.
In X, Y,Z there is exactly one representative from each group A,B,C.

C

B

A

Z

Y

X

C

C
C

B

B
B

A

A
A

A

B
C

A

B
C

A

B
C

Figure 13: Distribution of teams in two different rounds

Theorem 16 allows us to compute the unfairness of a schedule S,
u(S), without specifying the schedule S. As a consequence, it becomes
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much easier in practice to find schedules for which u(S) is minimum.
The intuitive way to interpret Theorem 16, finding a Venue Assign-
ment suffices to know the unfairness of any schedule compatible with
the Venue Assignment. In fact, a similar statement can be made with
respect to some other possible objective functions, such as the total
travel time (see Section 7.6).

7.4 the complexity of venue assignment

In this section, we formally establish the complexity of Venue Assign-
ment. Given that feasible schedules to the (N = k2,k)-TSGP exist,
Theorem 16 implies that our task of finding an optimal solution to
(N,k)-TSGP is reduced to finding an optimal venue assignment.

In an extreme case, if only a single venue v is given (with multiplic-
ity c(v) = k(k+ 1)), then all matches in all groups in all rounds are
played in the same venue, and there is no travel distance. However, in
general, the set of venues V and their pairwise distances, are instru-
mental in finding good venue assignments. Of course, we assume that∑

v∈V c(v) = k(k+ 1). We now give a formal description.

Venue Assignment (VA)

Input. An instance I = (k,V , c,d) value k ∈ N, a set of venues V , a
multiplicity c(v) ∈ N>0 for v ∈ V , and a distance matrix d(v,w) for
each v,w ∈ V .

Output. For r ∈ {1, . . . ,k+ 1}, subsets Ur ⊂ V with |Ur| = k, such that
∀v ∈ V , c(v) = |{r : v ∈ Ur}| that minimizes:

∆ =
∑

r∈{1,...,k}

∑
u∈Ur+1

max
v,w∈Ur

|d(v,u) − d(w,u)| (57)

There is an obvious connection between instances of (N,k)-TSGP and
Venue Assignment. We can seemingly use the input of one to specifiy
the input of the other problem. When we want to distinguish that we
are dealing with an instance of either one, we write ITSGP and IVA

respectively.

In order to establish the hardness of Venue Assignment, we will do
a reduction from another decision problem, namely Longest Hamil-
tonian Path. This problem is well known to be NP-complete and is
defined as follows.
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Longest Hamiltonian Path on a Complete Graph (LHP)

Input. A complete graph G = (H,E), |H| = n with nonnegative, sym-
metric weights w(h1,h2) for each h1,h2 ∈ H, and an integer B.
Question. Does there exist a Hamiltonian Path (hi1 , . . . ,hin) in G such
that

∑n−1
j=1 w(hij ,hij+1

) ⩾ B?

Theorem 17. Venue-Assignment is NP-Hard.

Proof. We prove this statement by a reduction from Longest Hamil-
tonian Path on a Complete Graph.

Given an instance of LHP with vertex set H = {h1, . . . ,hn} and weights
w : H×H → R, we construct an instance of the decision problem cor-
responding to VA, using a parameter K, in the following way.

We choose k := n−1. Furthermore, the set of venues V consists of V =

V1 ∪ V2, where V1 := H and |V2| := n− 2. For each v ∈ V1, c(v) : = 1

and for each v ∈ V2, c(v) := n. Let D = maxh1,h2∈Hw(h1,h2) and
define a symmetric distance function d in the following way:

d(u, v) :=


w(u, v) u, v ∈ V1

2D u ∈ V1, v ∈ V2

0 u, v ∈ V2.

(58)

Notice that the resulting distances satisfy the triangle inequality when
the instance of LHP does. Finally, we set K := k2 · 2D− B, and ask
whether there exists a venue assignment with unfairness at most K.
We have now specified an instance of the decision version of VA.

Let us argue that if there exists a solution to VA with unfairness at
most K, LHP is a yes-instance, and vice versa.

To find a solution to any instance of VA, we need to find Ur ⊂ V

for each r ∈ {1, . . . ,k+ 1} such that ∀v ∈ V , c(v) = |{r : v ∈ Ur}|. As
we know that for all v ∈ V2, c(v) = k+ 1, we see that any feasible
solution must have V2 ⊂ Ur for each round r. Moreover, as c(v) = 1

for v ∈ V1, we get that any feasible solution must schedule every
venue v ∈ V1 exactly once. Thus, any feasible solution to VA consists
of Ur = V2 ∪ vir with vir ∈ V1 and vir = vi ′r ⇐⇒ r = r ′. In
other words, any feasible solution to VA corresponds to an ordering
(vi1 , . . . , vik+1

) of the venues in V1.



122 how to schedule the volleyball nations league

Given such an ordering, we obtain the following expression for the
unfairness of a schedule S that uses the ordering (vi1 , . . . , vik+1

):

u(S) =

k∑
r=1

(
(k− 1) · 2D+ (2D− d(vir , vir+1

)).
)

(59)

The first term in the summation results from the fact that there are
k − 1 venues from V2 in every round and one from V1, and since
d(v,w) − d(v, v ′) = 2D − 0 for all v, v ′ ∈ V2, w ∈ V1, we get k − 1

venues where the maximal travel difference is 2D. The second term
equals the difference in travel distance between the teams traveling
from any of the v ∈ V2 to the vir+1

∈ V1, and the team traveling from
vir ∈ V1.

Let us now assume that the instance of LHP is a yes-instance, imply-
ing the existence of a Hamiltonian Path such that

∑n−1
j=1 d(hij ,hij+1

) ⩾
B. We choose as the ordering of venues in V1 the sequence of nodes
in this Hamiltonian path. We find:

u(S) =

k∑
r=1

(
(k− 1) · 2D+ (2D− d(vir , vir+1

))
)

(60)

= k2 · 2D−

k∑
r=1

d(vir , vir+1
) (61)

= k2 · 2D−

n−1∑
j=1

w(hij , vij+1
) (62)

⩽ k2 · 2D−B = K. (63)

Hence, the unfairness of this schedule S is bounded by K.

For the other way around, suppose there exists a schedule S whose
unfairness is bounded by K. We obtain:

u(S) = k2 · 2D−

k∑
r=1

d(vir , vir+1
) ⩽ K, which is equivalent to

(64)
n−1∑
j=1

w(hij , vij+1
) ⩾ k2 · 2D−K = B. (65)

Thus, solving this instance of the decision version of VA is equivalent
with solving the corresponding instance of LHP, which implies that
VA is NP-Hard.
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7.5 the vnl in practice: about the home-
venue-property

Motivated by the current practice in the VNL, we incorporate the
following issue in our problem formulation: each venue has a team
that considers this venue as its home-venue; we refer to the team as
the home-team.. This implies that in any feasible schedule for the
VNL it must be the case that when a venue is hosting a group, the
group must contain the home-team. This means that when there are
multiple venues that have the same home-team, those venues can
never host a group in the same round.

Each venue has a home-team, however, a team can have multiple
home venues (or none). In the context of the VNL, the home-team of
a venue is the national team of the country where the venue is located
- literally the team that plays at home at that venue. The Chinese
Women had a total of four different home venues in the season of
2019, and the team played in all four groups hosted by these venues.

Any solution that satisfies that a home-team plays in the group hosted
by its venues, is said to satisfy the home-venue property.

Definition 32. A solution to the TSGP satisfies the home-venue property
when for each venue v, with home-team t, and each group P scheduled to be
played at venue v, we have t ∈ P.

A relevant question now becomes:

Do feasible schedules satisfying the home-venue property exist?

Whenever a venue is scheduled to host a group without its home-
team - and the schedule does not satisfy the home-venue property -
none of the teams can be expected to feel connected to the venue, nor
would it attract fans from within the country, as the national team
is playing somewhere else. Therefore, the schedule used by the VNL
always satisfies the home-venue property.

By no means did we ensure that solving the IVA instance of the
Venue Assignment problem, would lead to a feasible solution of the
ITSGP instance, satisfying the home-venue property. It is simply not
true that, when given any assignment of venues to rounds, a sched-
ule is guaranteed to exist such that every venue is a home venue. We
present a counter example on 4 teams in Example 10, where a feasible
solution on IVA cannot be extended to a solution of ITSGP satisfying
the home-venue property.
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Example 10. Let I = (N = 4,k = 2,V , c,d) be an instance of the TSGP,
where V = {v1, . . . , v4} is the set of venues, of which all countries t are the
home-team of venue vt ∈ V , for t = 1, . . . , 4.

Let multiplicity function c be defined as:

• When t = 1, 2, vt has multiplicity c(vt) = 2.

• When t = 3, 4, vt has multiplicity c(vt) = 1.

Let d be any distance function.

A feasible and solution to instance IVA of the VA-problem is presented in
Table 39.

Group Round 1 Round 2 Round 3

1 v1 v1 v3

2 v2 v2 v4

Table 39: Feasible solution to the VA-problem.

The venue assignment in Table 39 clearly satisfies the given multiplicities
c(v). However, it is impossible to schedule match {1, 2} in any round given
that all teams must be scheduled in the groups hosted by their home-venues.
Hence, there is no way to extend the solution of IVA to a solution of I.

We see that in practice, solving the Venue-Assignment alone is not
necessarily the same as solving the VNL-problem. Moreover, even
finding feasible solutions to the TSGP that satisfy the home-venue
property, is of an unknown complexity.

However, we are allowed to make life a little easier. Just as every
venue has a home-team, in the VNL we see that every team usually
has a home venue as well. This makes sense, both from a fairness
point of view (all teams want the benefit of a home crowd cheering)
and a fans perspective. An instance containing a home-venue for ev-
ery team, is said to be a hosting instance.

Definition 33. An instance I of the TSGP for which every team has at least
one home-venue v ∈ V is called a hosting instance.

As seen in
Example 10, when
N = 4,k = 2, the

VA cannot be
extended to a

schedule satisfying
the home-away
property, even

though the instance
is a hosting instance.

It is not difficult to see that in any hosting instance, there must be at
least N different venues v, one venue for each team. Perhaps surpris-
ingly, the following theorem shows that for the particular dimensions
of the VNL (N = 16,k = 4), if the given instance is a hosting instance,
an optimal solution that satisfies the home-venue property can be
found by first solving the Venue-Assignment problem.
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Theorem 18. Let I be a hosting instance of the (N,k)-TSGP, with N = 16

and k = 4. Then any solution of Venue Assignment instance IVA, can
be extended to a feasible solution of the TSGP satisfying the home-venue
property.

Proof. As I is a hosting instance, we know that |V | ⩾ N = 16, where
each venue v has multiplicity c(v), with

∑
v∈V c(v) = k(k+ 1) = 20.

A solution to the Venue-Assignment instance, would distribute these
venues over the 20 groups that need to be hosted.

We organize the proof as follows. First, we give a schedule specifying
the groups (called the ‘blueprint’) in each of the 5 rounds, and we
provide a partial designation of home venues. Next, we consider all
distinct functions c : V → N⩾1 that the instance could have, which
is all the input needed to solve the Venue-Assignment problem. For
each of these functions c, we consider the set of distributions that
could be the solution to the VA-instance. Finally, we outline how we
can use the introduced blueprint to find a solution to the TSGP prob-
lem that satisfies the home-venue property.

Consider Table 40, where column “Ri” stands for Round i, i = 1, . . . , 5,
and where each number from {1, . . . , 16} stands for a team. We refer
to this composition of groups as the ‘blueprint’, and we will argue
that, for any possible set of multiplicities, and for any distribution of
these multiplicities over the rounds, this blueprint can be turned into
a venue assignment satisfying the home-venue property, and hence
into a nation assignment.

R1 R2 R3 R4 R5

1, 5, 9, 13 1, 6, 11, 16 1, 4, 10, 15 1, 3, 12, 14 1, 2, 7, 8

2, 6, 10, 14 2, 5, 12, 15 2, 3, 13, 16 2, 4, 9, 11 3, 4, 5, 6

3, 7, 11, 15 3, 8, 9, 10 6, 7, 9, 12 5, 7, 10, 16 10, 11, 12, 13

4, 8, 12, 16 4, 7, 13, 14 5, 8, 11, 14 6, 8, 13, 15 9, 14, 15, 16

Table 40: Blueprint that specifies the composition of the groups.

Of course, Table 40 does not constitute a feasible solution, as it has
not been specified for each group which team plays at its home-venue.
This will depend on the function c; in Table 41, we provide a partial
specification of the teams that play at their home-venue.

Table 41 provides an initial assignment such that each team is the host
in exactly 1 group, as each of the numbers 1, . . . , 16 occurs once.

We will now identify all relevant possible functions c, the multiplic-
ity function, that may occur in a hosting instance. Without loss of
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R1 R2 R3 R4 R5

1 · · · ·
2 12 16 11 6

3 10 9 5 13

4 7 8 15 14

Table 41: Partial and provisional designation of teams that serve as host.

generality, we may assume that this function is non-increasing, so
c(1) ⩾ · · · ⩾ c(|V |). Define V+ as follows:

V+ := {v ∈ V : c(v) > 1}.

As there are 16 venues, |V+| ⩽ 4. We characterize a vector γ(c) in the
following way:

γ(c) := (c(v))v∈V+ .

There are 5 distinct values γ(c) can have, namely:

γ(c) ∈ {(5), (4, 2), (3, 3), (3, 2, 2), (2, 2, 2, 2)}. (66)

When we restrict a solution to the VA-problem to the rounds in which
v ∈ V+ are scheduled to host, several distributions can be the result
with the same γ(c) as input. All these distributions should be consid-
ered separately, as for all these solutions we want to create a solution
to the TSGP.All three distinct

distributions of
γ(c) = (3, 3):

v1 v2

{1, 2, 3} {1, 2, 3}

{1, 2, 3} {1, 2, 4}

{1, 2, 3} {1, 4, 5}
Where each row

gives the rounds in
which vi is

scheduled to host.

As an example, suppose γ(c) = (3, 3). A feasible venue-assignment
would be to let venues v1, v2 be a host venue in rounds 1, 2, 3. An-
other possibility would be to have v1 host in round 1, 2, 3 and v2 in
rounds 3, 4, 5. Each of these solutions can be identified by their dis-
tributions of V+ over the rounds. We say two distributions of the
venue-assignments of V+ are distinct when no combination of per-
muting the rounds or relabeling the venues, maps one distribution to
the other.

Given γ(c), it is not immediately clear how many pairwise distinct
distributions exist. Let D(γ(c)) denote how many of such distribu-
tions exists. It can be verified that:

D(γ((5))) = 1

D(γ((4, 2))) = 2

D(γ((3, 3))) = 3

D(γ((3, 2, 2))) = 11

D(γ((2, 2, 2, 2))) = 17

In Table 42, all distributions are listed.
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γ(c) VA-solution Labeled teams Altered Venues

(5) (A,A,A,A,A) A : 1

(4, 2) (AB,A,A,A,B) A : 1,B : 2

(AB,AB,A,A,−) A : 1,B : 4 R5 : 7

(3, 3) (AB,A,A,B,B) A : 1,B : 2 R1 : 11,R4 : 3

(AB,AB,A,B,−) A : 1,B : 2 R3 : 11,R4 : 12,R5 : 8

(AB,AB,AB,−,−) A : 1,B : 2 R1 : 16,R2 : 4,R4 : 12,R5 : 7

(3, 2, 2) (ABC,ABC,A,−,−) A : 1,B : 2,C : 4 R4 : 12,R5 : 7

(ABC,AB,AC,−,−) A : 1,B : 7,C : 8 R1 : 6,R4 : 3,R5 : 2,4

(ABC,AB,A,C,−) A : 1,B : 4,C : 3 R5 : 7

(AB,AB,AC,C,−) A : 1,B : 2,C : 12 R2 : 14,R5 : 7,9

(ABC,A,A,BC,−) A : 1,B : 14,C : 11 R4 : 6,R5 : 2,3,15

(ABC,A,A,B,C) A : 1,B : 3,C : 2

(AB,AC,A,BC,−) A : 1,B : 2,C : 12 R3 : 11,R5 : 8

(AB,AC,A,B,C) A : 1,B : 3,C : 7

(AB,AB,A,C,C) A : 1,B : 4,C : 14 R5 : 7

(AB,A,A,BC,C) A : 1,B : 4,C : 14 R3 : 11,R5 : 8

(A,A,A,BC,BC) A : 1,B : 7,C : 14 R2 : 5,13,R5 : 12

(2, 2, 2, 2) (ABCD,ABCD,−,−,−) A : 1,B : 2,C : 3,D : 4 R3 : 10,R4 : 12,R5 : 7

(ABCD,ABC,D,−,−) A : 1,B : 2,C : 3,D : 4 R3 : 5,R4 : 10,12,R5 : 8

(ABC,ABC,D,D,−) A : 1,B : 2,C : 4,D : 15 R4 : 12,R5 : 7

(ABCD,AB,CD,−,−) A : 1,B : 2,C : 3,D : 4 R3 : 5,R4 : 16,12,R5 : 8

(ABCD,AB,C,D,−) A : 1,B : 2,C : 4,D : 3 R2 : 13,R5 : 7,12

(ABC,ABD,CD,−,−) A : 1,B : 2,C : 4,D : 8 R2 : 13,R4 : 12,R5 : 7,10

(ABC,ABD,C,D,−) A : 1,B : 10,C : 4,D : 5 R4 : 12,R5 : 2

(ABC,AB,CD,D,−) A : 1,B : 2,C : 4,D : 11 R4 : 12,R5 : 8

(ABC,AB,C,D,D) A : 1,B : 3,C : 8,D : 14 R2 : 4,R3 : 10,R5 : 7

(AB,AB,CD,CD,−) A : 1,B : 4,C : 15,D : 16 R2 : 5,R4 : 12,R5 : 7

(AB,AB,CD,C,D) A : 1,B : 2,C : 15,D : 8 R4 : 12

(ABCD,A,B,C,D) A : 1,B : 4,C : 3,D : 2

(ABC,AD,BD,C,−) A : 1,B : 4,C : 3,D : 8 R1 : 10,R5 : 2

(ABC,AD,B,C,D) A : 1,B : 4,C : 3,D : 7

(AB,AC,BD,CD,−) A : 1,B : 4,C : 12,D : 11 R5 : 8

(AB,AC,BC,D,D) A : 1,B : 16,C : 4,D : 14 R5 : 7

(AB,AC,BD,C,D) A : 1,B : 4,C : 12,D : 8

Table 42: Extending the blueprint to a feasible schedule satisfying the home-
venue property.
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We now describe how Table 42 can be read such a solution to the IVA,
of which the main characteristics are given in the second column, to
a solution of ITSGP with equal unfairness u.

Each row contains a distinct solution to the VA expressed in labeled
teams A,B,C up to D for all teams with a venue v ∈ V+, and this
solution is given as a vector of length 5. The r-th entry of the vector
relates to round r, and when label X is part of the r-th entry, this
implies that X (and its venue) hosts a group in round r.Example

Initial venue
assignment is:

R1 R2 R3 R4 R5

1 · · · ·

2 12 16 11 6

3 10 9 5 13

4 7 8 15 14

Table 43: After
Step 1

We look at the fifth
row of Table 42.

Label A refers to 1,
B to 2. They host in

rounds 1, 2, 3 and
1, 2, 4 respectively:

R1 R2 R3 R4 R5

1 1∗ 1∗ · ·

2 2∗ 16 2∗ 6

3 10 9 5 13

4 7 8 15 14

Table 44: After
Step 3

In column ‘Altered
Venues’ we see the

rounds in which we
should let some

other teams host.
R1 R2 R3 R4 R5

1 1 1 12∗ 8∗

2 2 16 2 6

3 10 9 5 13

4 7 11∗ 15 14

Table 45: After
Step 4

Table 45 satisfies
constraints of c and

is compatible with
Table 40, satisfying

the home-venue
property.

To get from a solution of IVA to a solution of ITSGP, with equal ob-
jective uVA = uTSGP, Table 42 need to be read in the following way:

1. Use the group composition from the blueprint in Table 40 and
the partial venue assignment from Table 41 as a start. Notice
that the latter may be altered; the former will not change.

2. The second column in Table 42 denotes in which of the rounds
R1, . . . ,R5 the labeled teams/venues should host a group.

3. The third column assigns a specific team to each of the used
labels. As a consequence, this may induce a change to the partial
venue assignment specified in Table 41 - the hosting defined in
the second column overrules the partial venue assignment.

4. In the previous step, some teams/venues v ∈ V \ V+ have lost
the original group they hosted, and are now left empty-handed.
In the fourth column, “Altered Venues”, additional changes to
the schedule are denoted, all additional changes to the partial
venue assignment are denoted.

After executing the above steps, all ’special’ teams with venues in V+

are labeled and have been assigned rounds in which they host. All
is left is to link all remaining teams of instance ITSGP with venues
in V \ V+ to venues with multiplicity 1 in the solution of IVA. With
this, we have constructed a solution to the ITSGP instance from the
solution of IVA.

As we can do this for all instances of ITSGP that are hosting instances,
we are done.

The previous theorem is tight in the sense that, when k = 3 and
N = k2, it is not enough to have an hosting instance to be able to
extend any Venue-Assignment to a solution of the TSGP satisfying
the home-venue property - counter examples exist.

We like to point out that interestingly enough, in each of the sched-
ules created in the proof of Section 7.5, the composition of the groups
as specified in the blueprint from Table 40 is identical. It is also an
interesting question to see for which other, non-hosting instances I, a
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solution to IVA could be extended to a solution of the TSGP satisfying
the home-venue property, while retaining the objective value.

7.6 solving real-life instances of the vnl

In the previous section we have layed the theoretical groundwork that
help scheduling the VNL instances with respect to our objective. In
this chapter, we will apply what we know to find optimal schedules
for previous instances of the VNL. In Section 7.6.1, we give an in-
teger programming formulation of the Venue-Assignment Problem.
Section 7.6.2 presents the outcomes.

7.6.1 An Integer Programming Formulation

Let xv,r be the binary variables that indicate whether venue v ∈ V

hosts a group in round r ∈ {1, . . . , 5} = R. We use real variables sv,w,r

(capturing distances between venues v and w acting as host in rounds
r and r+ 1), mv,r (capturing the largest distance traveled to venue v

in round r), and Kv,r (capturing the difference in travel distance to
venue v in round r). Let ∆ = maxv,w d(v,w), and let W ⊂ V × V be
the set of pairs of venues that cannot both host a group in the same
round. The following IP minimizes u, the sum of the difference in
travel distances per group, over the groups.

min
∑
v∈V

∑
r∈R

Kv,r (67)

s.t.
∑
v∈V

xv,r = k ∀r ∈ R, (68)∑
r∈R

xv,r = c(v) ∀v ∈ V , (69)

xv,r + xw,r ⩽ 1 ∀r ∈ R, ∀(v,w) ∈ W,
(70)

sv,w,r ⩾ dv,w(xv,r + xw,r−1 − 1) ∀v,w ∈ V , ∀r ∈ R \ 1,
(71)

sv,w,r ⩽ min(dv,wxv,r,dv,wxw,r−1) ∀v,w ∈ V , ∀r ∈ R \ 1,
(72)

mv,r ⩾ sv,w,r ∀v,w ∈ V , ∀r ∈ R \ 1,
(73)

Kv,r ⩾ mv,r − sv,w,r −D(1− xw,r−1) ∀v,w ∈ V , ∀r ∈ R \ 1,
(74)

xv,r ∈ {0, 1},Kv,r ⩾ 0 ∀v ∈ V , r ∈ R. (75)
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First, observe that (67) captures the objective function, minimizing
u =

∑
v,r Kv,r. Next, constraints (68) ensure that in every round, k

venues are host; constraints (69) ensure that every venue hosts as of-
ten as required; constraints (70) ensure that two venues that should
not host simultaneously, will not host simultaneously. Auxiliary vari-
ables sv,w,r are at least as large as dv,w, the distance traveled between
venues w, v in rounds r− 1 and r if these venues host in the respec-
tive rounds, by constraints (71), but never larger than dv,w by con-
straints (72). The variables mv,r equal the maximum distances trav-
eled to venue v in round r (can equal zero 0 if v does not host in
round r), as defined by (73), and Kv,r resembles the difference in trav-
eled distances towards v in round r compared to the maximum travel
distance, where the terms −D · (1− xw,r−1) in (74) nullify any influ-
ence caused by distances between a venue that does not host in round
r− 1.

7.6.2 Results

As instances of VNL satisfy the conditions of Section 7.5, we can pro-
ceed applying the integer programming formulation Equation (67)-
(75) for the Venue-Assignment to the known instances of the Volley-
ball Nations League, and compare our solution to that of the sched-
ules used in practice. Formulation (67)-(75) is implemented in Python
3 using Gurobi 9.0. All computations have been done on a laptop
with an Intel Core i7-7700HQ CPU 2.8-GHz processor and 32 GB
RAM. The distances between venues are obtained via https://www.

distancecalculator.net/, and are divided by 100 and rounded down.
The four instances that we analyze are the Women’s and Men’s tour-
naments of 2018 and 2019, and all these tournaments can be sched-
uled independent of each other. All values resulting from solving
(67)-(75) are mentioned to be optimal by the solver and are found
within approximately 2 hours of computation time.

In Table 49 we give the unfairness corresponding to the optimal venue
assignment, u(Sopt), and we give the unfairness that corresponds to
the venue assignments used in practice, u(Sreal). Also we give the
total travel distance for the two corresponding solutions, d(Sopt) and
d(Sreal), where the distance is given in units of 100 km.

As is imminent from Table 49, the fairness of the schedules used in the
Volleyball Nations League can be much improved in comparison to
the schedules that have been used. Moreover, these improvements in
fairness do not come at the expense of the total travel distance; indeed,
total travel distance is similar for our schedules when compared to
the real life schedules.

We end this chapter by discusing one of the obtained optimal sched-
ules in more detail. In Table 50, the optimal schedule for the 2018

https://www.distancecalculator.net/
https://www.distancecalculator.net/
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Instance u(Sopt) u(Sreal) d(Sopt) d(Sreal)

M2018 233 1366 4272 4806

W2018 381 1541 4956 4169

M2019 347 1239 5237 4657

W2019 491 1288 4214 3708

Table 49: Unfairness u of VNL-instances compared to the optimal schedule,
and their total travel distance.

Men’s tournament is shown, and the schedule used in practice is
shown in Table 51. The optimal schedule with respect to fairness u is
also depicted in the map of Figure 14, where each number indicates
the rounds in which the venue located at that spot hosts a group.

Round 1 Round 2 Round 3 Round 4 Round 5

Melbourne (AUS) Goiânia (BRA) Katowicze (POL) Aix-en-Prov. (FRA) Hoffman Est. (USA)

Tehran (IRA Jiangmen (CHN) Kraljevo (SRB) Lodz (POL) Ningbo (CHN)

Ufa (RUS) Osaka (JPN) Rouen (FRA) Ludwigsb. (GER) Ottawa (CAN)

Varna (BUL) Seoul (KOR) Sofia (BUL) Modena (ITA) San Juan (ARG)

Table 50: Optimal nation assignment for Men’s VNL 2018, with European
venues in italics.

Round 1 Round 2 Round 3 Round 4 Round 5

Rouen (FRA) Goiânia (BRA) Ottawa (CAN) Seoul (KOR) Melbourne (AUS)

Ningbo (CHN) Sofia (BUL) Osaka (JPN) Ludwigsb. (GER) Jiagmen (CHN)

Katowicze (POL) Lodz (POL) Ufa (RUS) Hoffman Est. (USA) Tehran (IRA)

Kraljevo (SRB) San Juan (ARG) Aix-en-Prov. (FRA) Varna (BUL) Modena (ITA)

Table 51: Real-life nation assignment for Men’s VNL 2018, with European
venues in italics.

Figure 14: Optimal venues per round, VNL Men 2018

We can see that the optimal schedule creates two specific European
rounds, where all groups are played within Europe, and two rounds
without any group in Europe. In this way, all teams are gathered
relatively close to each other, thus in the next round, they will all have
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roughly the same travel burden, which diminishes the unfairness of
the schedule. In contrast to the optimal schedule, the schedule that
was used in practice had both European and non-European venues
in every round - thus leading to a high amount of unfairness.

The total distance that needs to be traveled by the teams, is more
or less the same for the optimal schedule and the schedule used in
practice, so the organizers could have gained a lot in making the
schedule more fair without additional harm to the environment or
the players

We again like to point out that, as the unfairness in travel times (as
well as total traveled distance) is completely determined by the venue
assignment, any nation assignment is equally good with respect to
these objectives. Thus, apart from satisfying the underlying SGP and
assigning teams to their designated home venues, there is complete
freedom to optimize the nations assignment to whatever other objec-
tives the organizers see fit; this can be done without compromising
on the original objectives.

7.7 conclusion

We have introduced the Travelling Social Golfer Problem (TSGP), gen-
eralizing the well-known Social Golfer Problem, to model the schedul-
ing of the Volleyball Nations League. Solving the TSGP allows us to
model the unfairness of a schedule that focusses on minimizing the
differences in travel time between opposing teams. We show that this
problem can be decomposed into two subproblems, Venue Assign-
ment and Nation Assignment, and we argue that solving the Venue
Assignment determines the amount of unfairness. We describe the
home-venue property that is present in real-life solutions, and we
show that, for the specific dimensions of the VNL, such solutions al-
ways exist. Finally, we model the problem as an integer program, and
solve the real-life instances of 2018 and 2019.

The results show that large improvements in fairness are possible,
without increasing total travel time. Moreover, it is possible to cal-
culate and compare travel dependent metrics of a schedule, without
knowing the entire schedule and just comparing venue assignment.
This could help organizers scheduling new tournaments in a fairer
way.



8 FA I R N E S S I N P E N A LT Y
S H O OTO U T S

As the final minutes of the football European Championships
final passed by, tensions grew, not only with the spectators on
the couch, but also in the stadium and on the pitch. None of
the teams wanted to be that team that made a fatal mistake
with mere seconds left to play, and see the other lift the trophy.
Thus, the game faded, with everyone waiting anxiously until
the moment the referee blew the final whistle. At which point,
the nerve-wrecking excitement only just started.
The penalties. In a best-of-5 series, with sudden death if that
resulted in a tie, both teams had to take penalties to decide a
winner. The Italians knew what they had to do, as they had
won the semi-finals after penalties.
It is an odd thing that some of the most influential moments
at major football tournaments have little to do with the regular
game. Penalty series are a discipline on its own, or a lottery, as
some less-gifted penalty takers have called it at times.
They are no lottery, you could and should practice them to
increase your chances, but they are meant to give both teams
an equal and fair chance of progressing to the next round or
even winning the tournament. And why wouldn’t they be fair?
Both teams get the same task - convert as many penalties as
possible - and thus have the same chance of winning. Right?
There is a catch. Both teams indeed have the same objective, but
they don’t have the same path. In a usual penalty series, there
is one team that starts the series and the other one has to catch-
up all the time. Surprisingly, statistical research has suggested
that this actually gives an advantage to the team starting first!
This knowledge and feeling is in fact so widely accepted that
most trainers will have their team shoot first if they win the
toss to determine the starting team.
This chapter is based on Lambers and Spieksma (2021).

133



134 fairness in penalty shootouts

8.1 introduction

8.1.1 Motivation
For those still in

suspense who won
the penalty series in

the final of the
European

Championships:
Italy

We consider the following situation. Two teams, called A and B, play
a match. To decide upon a winner of an otherwise tied game, a so-
called shootout takes place. This shootout has two phases. Phase 1

consists of k rounds, and in every round each of the teams shoots once
(what it means to shoot, depends on the particular sport). Shooting
leads either to success (scoring), or to failure (missing). The team
that has the most successes after Phase 1 (which we call a best-of-k)
wins the match. If both teams have the same number of successes,
the shootout continues with Phase 2 (which we call sudden death).
This phase consists of individual rounds, and ends only when in a
particular round one team scores, and the other does not.

Many popular sports use shootouts to identify a winner, though the
setup can differ per sport. For example, in football, FIFA rules (FIFA,
2020) prescribe that in each round the same team shoots first both
in Phase 1 as well as in Phase 2. The resulting sequence is denoted
as AB/AB/AB/AB/AB||(AB)∞, where the symbol “||” is used to sep-
arate Phase 1 from Phase 2, and where the symbol “/” is used to
separate the rounds. This sequence is called the penalty sequence.
Another example of a shootout is the tiebreaker in tennis - the serv-
ing player can be seen as the team shooting a penalty in football.
The rules of the tiebreak (see (ITF, 2019)) stipulate that Phase 1 is
a best-of-6, with the first serving player alternating in each round,
while in Phase 2 the first serving player also alternates in each round:
AB/BA/AB/BA/AB/BA||(AB/BA)∞; this sequence is called the ABBA
sequence. Other sports using shootouts are field hockey, ice hockey,
rugby, waterpolo (Wikipedia, 2020).

In a seminal paper by Apesteguia and Palacios-Huerta (2010), the
penalty sequence used in football is shown to give an advantage to
the team that starts, Team A. This is generally explained by the pres-
sure of lagging behind exercised on the second shooting team B, re-
sulting in a so-called First Mover Advantage (FMA). Indeed, the con-
secutive nature of the two penalties in a round gives an asymmetry
between the first shooting team and the second shooting team. Thus,
even when the two teams are equally strong, i.e., even when their
probabilities of scoring are the same in all situations, their chances
of winning the match may differ. This difference in win probabilities
depends on the particular sequence of the shootout. In this chapter
we investigate the existence of so-called fair sequences, both for the
best-of-k and for the sudden death.
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8.1.2 Related Literature

Wright (2014) gives an overview of rules in various sports that af-
fect fairness, see also Kendall and Lenten (2017), and Haigh (2009).
The subject of shootouts, and the possible presence of FMA in foot-
ball shootouts, is heavily debated in the literature. Since the work of
Apesteguia and Palacios-Huerta (2010), the presence of a FMA has
been confirmed in Palacios-Huerta (2014), Anbarci, Sun, and Ünver
(2015), Vandebroek, McCann, and Vroom (2018) and Rudi, Olivares,
and Shetty (2020), while it has not been found in Kocher, Lenz, and
Sutter (2012), and Arrondel, Duhautois, and Laslier (2019). We quote
Csató (2021): “To summarize, while the empirical evidence remains
somewhat controversial, it seems probable that the team kicking the
first penalty enjoys an advantage”.

Even for those that doubt the existence of an FMA in football, it is well
established that psychological factors have an impact on the probabil-
ity of scoring. This is shown by Jordet et al. (2007), and in Arrondel,
Duhautois, and Laslier (2019). In the latter study, they identify three
different situations (called “survival”, “catch-up”, and “break point”),
which are shown to have different impacts on the scoring probability.

Different models have been proposed to capture the FMA. A fre-
quently used model explains the existence of an FMA by using a
probability to score when trailing, and a probability to score when
not trailing (see the appendix of (Apesteguia and Palacios-Huerta,
2010)). They derive corresponding win probabilities, and Vandebroek,
McCann, and Vroom (2018) show that within this model, when using
the penalty sequence, the FMA is irrespective of the length of the
shootout. For a comprehensive analysis of win probabilities on vari-
ous (dynamic) sequences, see Csató and Petróczy (2022).

Brams and Ismail (2018) specifically focus on fairness in shootouts.
While accepting the existence of an FMA, they propose and analyze
rules where the first shooting team in a round is determined by the
outcomes of previous rounds. Among such dynamic sequences are
the Catch Up Rule and the Behind First Alternating Order Rule (An-
barci, Sun, and Ünver, 2015),(Csató and Petróczy, 2022). As a puzzle,

FiveThirtyEight
analysed a
hypothetical
basketball game with
a peculiar Second
Mover Advantage.

It is interesting to note that other sports than football, have other
scoring probabilities. For instance, the probability of scoring a penalty
in ice hockey equals around 33% (Kolev, Pina, and Todeschini, 2015).
In such a situation, as missing the penalty is the expected outcome,
the pressure moves to the goalie; one can view the goalie in ice hockey
as the one taking the penalty; the goalie “scores” when the goalie
stops the penalty. In line with the existence of an FMA, Kolev, Pina,
and Todeschini (2015) claim there is advantage in shooting second.
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A popular sequence in the scientific literature is the so-called Prohuet-
Thue-Morse (PTM) sequence. This sequence has many applications
in various branches of science, see Allouche and Shallit (1999) for an
overview. In the field of shootouts, it has for instance been studied in
Brams and Taylor (1999), Palacios-Huerta (2012), Rudi, Olivares, and
Shetty (2020) and Cohen-Zada, Krumer, and Shapir (2018).

8.1.3 Our contribution

We analyze a shootout with a prescribed format, i.e., we do not allow
the sequence to depend on outcomes during the shootout. Teams A
and B have the same scoring probabilities in the same situation, i.e.,
teams A and B are equally strong; these scoring probabilities remain
constant during the shootout. Following literature (see e.g. Brams and
Ismail (2018)), we define the concept of a fair sequence in Section 8.2.
We present the following results in this chapter:

• In Section 8.3.2, we show that a sudden death that is a repetition
of a finite sequence, is not fair.

• In the same section, we show that the PTM sequence is unfair.

• In Section 8.3.4 we give an algorithm that outputs a fair se-
quence for the sudden death.

• We show how to find the least unfair sequences for best-of-k in
Section 8.4.2.

• We compute least unfair sequences for relevant parameters when
k = 5 in Section 8.4.3 and for different values of k on a specific
set of parameters when Section 8.4.3.

We conclude in Section 8.5.

8.2 preliminaries

As sketched in Section 8.1, a shootout between teams A and B consists
of a best-of-k, followed by a sudden death. Each of these two phases
consists of rounds, and every round has one of the two teams shoot-
ing first. The problem is to specify, prior to the start of the shootout,
for each of the upcoming rounds both in the best-of-k, as well as
in the sudden death, which team will shoot first; a specification for
the sudden death will be referred to as a sequence, and as a finite se-
quence if it is only a specification for a finite number of rounds. For
instance, Phase 1 of the penalty sequence can be written as the fi-
nite sequence AAAAA, while Phase 2 of the ABBA sequence can be
written as ABAB · · · .
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From here on, we always assume Team A and Team B to be equally
strong. We say a team wins a round, if it scores in that round while
the other team does not. If neither of the teams wins the round, the
round is tied. The phenomenon of the first shooting team having
higher probability of winning the round than the second, is called
the First Mover Advantage (FMA).

To model the sudden death, we introduce the following probabilities:

• P+ = P(First shooting team wins round),

• P− = P(Second shooting team wins round),

• P± = P(The round is tied).

With P = {P+,P−,P±} we can refer to all the relevant probabilities.
The First Mover Advantage can be quantified as:

λ = P+ − P− > 0.

The length of a finite sequence is the number of rounds for which the
sequence specifies the first shooting team. We denote the set of finite
sequences of length n by Sn. We say that a sequence S is repetitive
if it consists of the concatenation of a finite sequence Sn ∈ Sn, i.e.,
S = SnSnSn · · · . A sequence S may or may not be a repetitive, in
any case, it should specify for all rounds r ∈ N which team shoots
first. For a given sequence, we define the concept of being fair in the
following way.

Definition 34. Let teams A and B be equally strong. Given P, a sequence
S is called fair, if:

P(Team A wins) = P(Team B wins). (76)

If S is not fair, it is unfair.

We will now investigate the existence of fair sequences for sudden
death in Section 8.3, and for best-of-k in Section 8.4.

8.3 sudden death

In this section, we consider sequences that specify the first shoot-
ing team in the sudden death phase of the shootout. We introduce
the characteristic polynomial of a sequence and we show that when
P± ∈ Q, no repetitive sequence is fair. We also show that the so-
called Prohuet-Thue-Morse sequence is unfair for all P+ > P−. In
Section 8.3.4, we introduce an algorithm that for a given P, returns a
fair sudden death sequence if it exists.
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8.3.1 The characteristic polynomial of a sequence

In a sudden death shootout, starting each round, the score is a draw
- if one team gains an advantage by winning a round, that team wins
the sudden death and the game is over. Thus, for a team to win Round
r, the first r− 1 rounds resulted in a draw. We can state the probability
of either team winning as:

P(Team A wins) =
∞∑

r=1

P(r− 1 rounds tied)P(Team A wins in r),

P(Team B wins) =
∞∑

r=1

P(r− 1 rounds tied)P(Team B wins in r).

The probability for team A to win in a certain Round r, depends on
who shoots first in that round. We take I to be the index set of all
rounds in which A is allowed to shoot first. In the popular AAAA-
series, this means I = N, while in the ABBA-series, this would mean
I = {1, 3, 5, . . . }. Of course, in the remaining rounds I = N \ I, team B

shoots first.

Recall that P+,P− are the probabilities that the first respectively sec-
ond shooting team wins a round, with P± as the probability the round
will be tied, and λ = P+ − P− as FMA. We present the following
lemma:

Lemma 13. Let P be given. Teams A and B, shooting first in rounds I, I
respectively, win the sudden death with equal probability if and only if:∑

r∈I

Pr−1
± =

∑
r∈I

Pr−1
± . (77)

Proof. We prove this by a straightforward calculation.

P(A wins) =
∞∑

r=1

P(r− 1 rounds drawn)P(A wins Round r)

=
∑
r∈I

Pr−1
± P+ +

∑
r∈I

Pr−1
± P−

=
∑
r∈I

Pr−1
± (P− + λ) +

∑
r∈I

Pr−1
± P−

=

∞∑
r=1

Pr−1
± P− + λ

∑
r∈I

Pr−1
±

=
P−

1− P±
+ λ

∑
r∈I

Pr−1
± .
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Similarly, we find for Team B:

P(Team B wins) =
P−

1− P±
+ λ

∑
r∈I

Pr−1
± .

Since the first term P−

1−P±
is equal for both teams, the lemma follows.

Definition 35. Given an index set I, define hI(x) =
∑

i∈I x
i−1. For a

(finite) sequence S, with team A shooting first in rounds I, define the charac-
teristic polynomial fS(x) = hI(x) − hI(x).

We state the following corollary to Lemma 13.

Corollary 3. Let P be given. A sequence S is fair if and only if fS(P±) = 0,
i.e., if P± is a zero of fS(x).

8.3.2 Repetitive sequences are unfair

Although Lemma 13 and Corollary 3 provide a necessary and suffi-
cient condition for a sequence to be fair, it is not clear when Equa-
tion (77) is satisfied. The following theorem clarifies the status for
repetitive sequences.

Theorem 19. Let P± ∈ P be rational, i.e., P± ∈ Q(0,1). Each repetitive
sequence S is unfair.

Proof. Consider a repetitive sequence S that is a concatenation of
some finite sequence Sn. Let In be the index set indicating when Team
A shoots first in this sequence Sn. The characteristic polynomial of Sn
is then given by fSn

(x) =
∑

i∈In
xi−1 −

∑
i∈In

xi−1, a polynomial of
degree n− 1. Since S is repetitive, it follows that:

fS(x) = fSn
(x) · (1+ xn + x2n + · · · ) = fSn

(x)

1− xn
.

Clearly:

fS(P±) = 0 ⇐⇒ fSn
(P±) = 0

The following claim states that, for x ∈ (0, 1), there is no rational
solution to fSn

(x) = 0.

Claim 3. Any finite degree polynomial u(x) with coefficients in {−1, 1} has
no rational zero’s in (0, 1).
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Proof. Consider u(x) =
∑n

i=0 cix
i with ci ∈ {−1, 1}, and let w

v ∈
Q(0,1) with gcd(w, v) = 1, be such that u(wv ) = 0. Then, it must hold
that vnu(wv ) = 0 mod v as well. However, vnu(wv ) = cnw

n mod v.
As gcd(w, v) = 1, this leads to cnw

n = 0 mod v and this is not
possible unless w = v = 1 or w = 0.

As P± ∈ Q, there are no P± that satisfy fSn
(P±) = 0 and we conclude

that S is unfair.

Remark. It follows easily from Theorem 19 that, given rational P,
no finite sequence will be fair. In addition, observe that the popular
AAAA- and ABAB-sequences are unfair for all real values of P when
λ = P= − P− > 0. Indeed, this follows as fAAAA(x) = 1

1−x > 0 and
fABAB(x) =

1
1+x > 0 for x ∈ (0, 1).

The relevance of Theorem 19 lies in the guaranteed presence of unfair-
ness; when picking/determining P from empirical data and deciding
upon a finite sequence to be repeated, any resulting sequence is un-
fair.

8.3.3 The Prouhet-Thue-Morse sequence is unfair

In order to mitigate the First Mover Advantage, the Prouhet-Thue-
Morse (PTM) sequence is suggested in (Brams and Taylor, 1999) The
Win-Win solution. It was also proposed in (Palacios-Huerta, 2012). For
the tennis tiebreak, it was discussed by Cohen-Zada, Krumer, and
Shapir (2018). In contrast to their observation, we show that in our
model, for any P± ∈ P, the PTM-sequence is an unfair sequence.The first steps of

constructing the
PTM-sequence:

Iter 0 1

Iter 1 10

Iter 2 1001

Iter 3 10010110

Definition 36. The Prouhet-Thue-Morse sequence is a sequence contain-
ing only zeroes and ones, and is obtained in the following way.

1. Start with sequence s = (1).

2. Given s = (si)i, construct s:

s := (si) s(i) = 1− s(i)∀i

3. Set s = (ss).

4. Go to Step 2.

When looking at this as a penalty sequence, one can let team A start
the Round n when PTM(n) = 1 and team B when PTM(n) = 0.

Theorem 20. The PTM-sequence is unfair for all P.
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Proof. We will construct the characteristic polynomial of the PTM-
sequence and show that is bounded away from 0 in the interval (0, 1).

Let Sn be the first n rounds of the PTM-sequence, and for notational
purposes, let fn(x) be its characteristic polynomial. Clearly, for n = 2,
f2(x) = 1− x. By construction, the first 2k terms of the characteristic
polynomial of the PTM-sequence are inverted to obtain the terms
2k + 1 up to 2k+1. For the characteristic polynomial, inversion of a
coefficient is just multiplication by −1, which leads to the following
expression:

f2k+1(x) = f2k(x)(1− x2
k

).

To explain this equality, notice that the first 2k terms of f2k+1 terms
are the same as f2k(x). The next 2k terms all have degree x2

k
or higher,

and are the inverse of f2k(x) - hence the multiplication of f2k(x) with
the term −x2

k
.

Applying this expression iteratively for 21, 22, 24 . . ., we get (Allouche
and Shallit (1999)):

fPTM(x) = (1− x)(1− x2)(1− x4) · · · =
∞∏

k=0

(
1− x2

k
)

. (78)

We now prove that there is no x ∈ (0, 1) for which fPTM(x) = 0,
implying there is no P± for which the PTM-sequence is fair.

Claim 4. fPTM(x) > 0 for x ∈ (0, 1).

Proof. Clearly, fPTM(x) is decreasing on (0, 1). Notice that fPTM(x) =

(1 − x)fPTM(x2), for all x. Suppose there is an x ∈ (0, 1) for which
fPTM(x) = 0. Consequently, as 1−x > 0, this implies that fPTM(x2) =

0. As x2 < x, this implies that if there is an x ∈ (0, 1) for which
fPTM(x) = 0, we can pick an arbitrarily small x ′ for which fPTM(x ′) =

0. As the function fPTM is decreasing on (0, 1), and attaining f(1) = 0,
either f(x) = 0 for all x ∈ (0, 1), or f(x) > 0 ∀x ∈ (0, 1).

Take x = 1
2 . Then:

fPTM

(
1

2

)
=

(
1−

1

2

)(
1−

1

22

)
· · · > 1−

1

2
−

1

4
−

1

16
. . .

> 1−
1

2
−

1

4
−

1

8
=

1

8
> 0.

Using Claim 4, we conclude that there are no values x ∈ (0, 1) for
which the PTM-sequence is fair, and hence the proof is complete.
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8.3.4 An algorithm generating a fair sequence

We established in Section 8.3.2 that, for given values P ⊂ Q, there
are no finite fair sequences. However, it is possible to construct infi-
nite sequences that are fair, for any value of P± ⩾ 0.5. Consider theNotice that if

P± < 0.5, the team
shooting first will

have an
insurmountable

FMA and no fair
sequence exists

following algorithm which takes P± ⩾ 0.5 as input.

Algorithm 7 Fair Shootout
Let Team A shoot first in Round 1 and set I1 = {1}. Starting from
n = 1, construct In+1 from In in the following way:
step 1: If hIn(P±) < hIn

(P±):
• In+1 = In ∪ {n+ 1} and In+1 = In.

Else:
• In+1 = In and In+1 = In ∪ {n+ 1}.

step 2: n:=n+1. Go to Step 1.

We prove the following theorem.

Theorem 21. Let P be such that P± ⩾ 0.5. Then Algorithm 7 returns a fair
sequence.

Proof. Define dn ≡ |fIn(P±) − fIn(P±)| and write dn = |fn − fn| By
induction on n, we will prove that dn ⩽ Pn−1

± ∀n if P± ⩾ 0.5.
When n = 1, dn ⩽ Pn−1

± = 1. Suppose that dk ⩽ Pk−1
± holds for k =

1, . . . ,n− 1 and suppose that fn−1 > fn−1. Then fn = fn−1 + Pn−1
±

and fn = fn−1. Either fn ⩾ fn, or fn > fn.
In the first case, clearly dn ⩽ Pn−1

± .
In the second case, dn = dn−1 − Pn−1

± ⩽ Pn−2
± − Pn−1

± ⩽ Pn−1
± as

P± ⩾ 0.5. In both cases, dn ⩽ Pn−1
± .

Thus, limn→∞ fIn(P±) − fIn(P±) = 0, and as a consequence Algo-
rithm 7 constructs a fair sequence.

We point out that Algorithm 7 can be criticized from the point of view
that it does not end. That property however, seems necessarily linked
to its goal, namely finding a fair sequence, which by Theorem 19

cannot be achieved by a sequence of finite length. In any case, when
one is prepared to specify P±, it is certainly possible to precompute a
very large number of entries, and use that as proxy for a fair sequence.

Of course, the resulting sequence depends on the chosen values for
P+,P−,P±. Thus, to decide which particular sequence to use in prac-
tice, one would have to decide on the values for these probabili-
ties. When choosing P+ = 1

4 ,P− = 3
16 (see Apesteguia and Palacios-

Huerta (2010), Vandebroek, McCann, and Vroom (2018)), this results
in a sequence that starts with: ABBBABABBAA . . .. Finally, we men-
tion that, even though the algorithm identifies a single fair sequence,
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the index set I is not necessarily a unique index set, i.e., multiple
distinct fair sequences may exist.

8.4 best-of-k series

As described in Section 8.1, the first phase of a shootout consists of a
best-of-k, where the winner is the team that scored the most penalties
after Round k. In case of a tie, there is a Phase 2 which consists of a
sudden death. Apesteguia and Palacios-Huerta (2010) model the exis-
tence of an FMA in a best-of-k by assuming that the pressure of being
behind affects the scoring probability negatively, see Section 8.4.1. In
Section 8.4.2 we show how to compute the degree of unfairness in
this model, and we apply this to the best-of-5 in Section 8.4.3, and to
the best-of-k when p = 3

4 ,q = 2
3 in Section 8.4.4.

8.4.1 Modeling psychological pressure

The main feature of the model is to encompass the added pressure
of shooting while lagging behind in a fitting and realistic way. Recall
that we assume Team A and B are equally strong. Next, we introduce
parameters p,q ∈ (0, 1) as the probability of a team scoring. A team
has probability p of scoring, if it is equal or ahead, and probability q

if the team is trailing. We assume p > q.

If the score, at the beginning of the round, is equal, and Team A

shoots first, Team B second, this results in the following possible out-
comes with probabilities:

P+ = P({A scores, B does not}) = p(1− q),

P− = P({B scores, A does not}) = (1− p)p,

P± = P({A and B score equally often}) = pq+ (1− p)2.

Notice that the probability that Team B scores after Team A scored,
is q. If Team A missed, however, the probability that Team B would
score is equal to p. This makes sense as in the first case, the score
would have been in favor of Team A, adding pressure to Team B to
catch up. As we assume that p > q, we immediately see that P+ > P−,
indicating the existence of (FMA) λ, where λ := P+ − P−.

If, at the start of a round, one team (say A) leads, the possible out-
comes with probabilities are slightly different:

Q+ = P({Team A extends lead with 1}) = p(1− q),

Q− = P({Team B decreases lead with 1}) = (1− p)q,

Q± = P({A and B score equally often}) = pq+ (1− p)(1− q).
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The values of p,q are, of course, not known, but they can be estimated
from real world results. In football, p = 3

4 ,q = 2
3 is a common pick in

the literature ((Brams and Ismail, 2018)) and (Csató, 2021)).

8.4.2 Degree of unfairness

Theorem 21 tells us that it is possible to create a sudden death se-
quence that is fair. Hence, when the shootout is tied after k rounds,
we can use Theorem 21 to construct a sequence such that both teams
have an equal probability of winning. That leaves us with only k

choices to be made, indicating who shoots first in the k rounds of
the best-of-k. To model our choice of who shoots first, we introduce
σi ∈ {−1, 1}, i = 1, . . . ,k, where σi = 1 indicates Team A shooting first
in round i, σi = −1 indicates Team B shooting first. We will derive for-
mulas for Wi (Wi), indicating the probability of team A (B) winning
the shootout given that there is a tie at the start of round i (1 ⩽ i ⩽ k).
We also define and calculate ∆i = Wi −Wi, the difference between
the probability of winning for team A and B, i = 1, . . . ,k. The ob-
jective is to find values for the σi that minimizes |∆1| which is the
difference in winning probabilities between Team A and Team B at
the start of the shoot out. Lastly, we define the auxiliary term Kj as
follows: given that one team is ahead by 1 at the start of the round, Kj

is the probability that the score will be leveled for the first time after
j rounds.

Suppose the score is tied at the beginning of Round i (1 ⩽ i ⩽ k). One
of the following three events occurs:

Event 1 The teams draw this round, and Round i+ 1 will start with a
tied score.

Event 2 One of the teams wins the Round, and somewhere between the
beginning of Round i+ 2 and Round k+ 1, the score is leveled
again.

Event 3 One of the teams wins the round and stays ahead for the rest of
the shootout.

The only advantage a team can have by shooting first in a specific
round, is when Event 3 happens in that round. Both Event 1 and 2

let the teams return to a tie at the beginning of a round later in the
shootout, thus no lasting advantage was obtained by either of the
teams.

We can see Team A’s winning probability Wi as the sum of the proba-
bility of winning in each of these events. For each of these events, we
list the probability of occurring and the winning probability for Team
A.



8.4 best-of-k series 145

Event 1 Clearly:

P({Event 1}) = P±

The probability of Team A winning in this setting is thus given
by:

P({Event 1, A wins}) = P±Wi+1

Event 2 The probability that a team wins Round i equals 1 − P±. The
score then levels again after exactly j rounds with probability
Kj, for j = 1, . . . ,k− i. Thus:

P({Event 2, A wins}) = (1− P±)

k−1∑
j=1

KjWi+1+j

Event 3 The only way for Team A to win in the case of Event 3, is to be
the team that wins the round. This happens with probability:

P({Team A wins round}) =
1

2
((1+ σi)P+ + (1− σi)P−)

The probability that a leading team stays ahead, is given by
1−

∑k−i
j=1 Kj. Thus:

P({Event 2, A wins}) =

1

2
((1+ σi)P+ + (1− σi)P−) ·

1−

k−i∑
j=1

Kj


Combining all cases leads to the following winning probability for
Team A:

Wi = P±Wi+1 + (1− P±)

k−i∑
j=1

KjWi+j+1

+

1−

k−i∑
j=1

Kj

 1

2
((1+ σi)P+ + (1− σi)P−) .

From this, we derive, with ∆i = Wi −Wi:

∆i = P±∆i+1 + (1− P±)

k−i∑
j=1

Kj∆i+j+1 +

1−

k−i∑
j=1

Kj

σi(P+ − P−)

= P±∆i+1 + (1− P±)

k−i∑
j=1

Kj∆i+j+1 +

1−

k−i∑
j=1

Kj

σiλ.
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Notice that we can write ∆i as a linear combination of terms λσj, with
j ⩾ i. Thus ∆i =

∑k
j=iDi,jλσj. Applying this iteratively, we find the

following expression for ∆i:

∆i =

k∑
j=i+1

(
P±Di+1,j + (1− P±)

j−i−1∑
ℓ=1

KℓDi+1+ℓ,j

)
λσj

+

1−

k−i∑
j=1

Kj

 λσi.

For ∆1, which represents the unfairness that we want to minimize,
we arrive at:

∆1 =

k∑
j=2

(
P±D2,j + (1− P±)

j−2∑
ℓ=1

KℓD2+ℓ,j

)
λσj

+

1−

k−1∑
j=1

Kj

 λσ1.

8.4.3 Results for the best-of-5

We can apply this general setting to the popular case of k = 5. This
results in:

i = 6 : ∆6 = 0.

i = 5 : ∆5 = λσ5.

i = 4 : ∆4 = P±λσ5 + (1−K1) λσ4.

i = 3 : ∆3 = (P2
± + (1− P±)K1)λσ5+

P±(1−K1)λσ4 + (1−K1 −K2)λσ3.

i = 2 : ∆2 = (P±D3,5 + (1− P±)K1D4,5 + (1− P±)K2)λσ5

+ (P±D3,4 + (1− P±)K1D4,4)λσ4

+ P±D3,3λσ3 + (1−

3∑
j=1

Kj)λσ2.

i = 1 : ∆1 =

(
P±D2,5 + (1− P±)K1D3,5+

(1− P±)K2D4,5 + (1− P±)K3

)
λσ5

+ (P±D2,4 + (1− P±)K1D3,4 + (1− P±)K2D4,4)λσ4

+ (P±D2,3 + (1− P±)K1D3,3)λσ3

+ P±(1−

3∑
j=1

Kj)λσ2 + (1−

4∑
j=1

Kj)λσ1.

All the unknowns that remain, are the terms Kj. These terms repre-
sent the probability that the leading team gives away the lead after
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exactly j rounds. In our model, the probabilities for these events are
given by:

K1 = Q−.

K2 = Q±Q−.

K3 = (Q2
± +Q+Q−)Q−.

K4 = (Q2
± + 2Q+Q−)Q±Q−.

The aim is to have an assignment that minimizes |∆1|, the unfair-
ness at the start of Round 1. We assume that Team A shoots first
in Round 1, which gives σ1 = 1. Given values for p,q, we com-
pute which of 16 possible assignments of σ2,σ3,σ4,σ5, minimizes
|∆1|. The corresponding sequences are presented in the following Ta-
ble 52, with equal colors for equal sequences. We choose a grid with
0.6 ⩽ q < p ⩽ 0.8 to reflect realistic probabilities in football.

Table 52: Least unfair sequences for given p and q in best-of-5

It is interesting to see the variety of preferred sequences, even when
fixing the value of p or q, or their difference. This can be explained as
the underlying calculation of the unfairness in a best of k shootout, is
a polynomial of degree 2k.
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8.4.4 Results for best-of-k with fixed p,q

The expressions obtained in Section 8.4.3 to calculate the unfairness
of a sequence of any length, given p,q, is used to calculate the fairness
of shootouts of another length than Best-of-5. The fairest sequences
for p = 3

4 ,q = 2
3 for shootouts of length k = 2, 3, . . . , 10 are shown in

Table 53.

We like to point out that the values reported in the column “measure
of unfairness” are the differences in winning chances between both
teams, assuming that in the event of a tie after k rounds, both teams
have an equal chance of winning the subsequent sudden death. It is
remarkable that comparing two fairest sequences of different length,
the longer penalty sequence is not automatically less unfair, even if
p,q are the same for both sequences.

k Sequence Measure of unfairness (10−3)

2 AB 16.93

3 ABB 7.62

4 ABBA 1.47

5 ABABB 0.21

6 AABBBB 0.24

7 ABBABAB 0.01

8 ABAABBBB 0.04

9 AABBBBBBA 0.03

10 ABABABBABB 0.002

Table 53: Least unfair sequence and their offset for various shootout lengths
with p = 3

4 ,q = 2
3

8.5 conclusion

Many sports use shootouts to identify a winner in an otherwise tied
game. Popular examples include football, field hockey, ice hockey,
tennis, rugby, and waterpolo. A shootout has rounds, where in each
round two teams, in an alternating fashion, have the possibility to
score a point. Such a shootout has two phases. Phase 1 is a best-of-k
(in soccer k = 5, the tie-break in tennis has k = 6), and if the shootout
is tied after Phase 1, it continues with Phase 2: a sudden death. It is
widely accepted that shooting when behind impacts the chances of
scoring a point compared to shooting when not behind. We consider
the problem to specify a sequence that determines which team shoots
first in each round of the shootout such that identical teams have
equal chance of winning the shootout; such sequences are called fair.
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Using a common way to model the discrepancy between scoring
chances for both teams, we show that in a sudden death, repetitive
sequences are not fair, for any choice of the parameters; we also show
that the PTM-sequence is not fair for any choice of parameters. There
is however, an algorithm that outputs a fair sequence.

For a shootout decided over best-of-k, we show that no fair sequence
exists. Using the popular choice p = 3

4 ,q = 2
3 (reflecting the probabil-

ities of scoring when not behind, and when behind, respectively), the
least unfair sequence in a best-of-5 is AB/BA/AB/BA/BA. More gen-
erally, we show that the degree of unfairness depends on the length of
the shootout: longer shootouts can be significantly fairer than shorter
ones.
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S U M M A R Y

The world of sports relies on competition, and every competition re-
lies on participants, as well as fans, broadcasters, you name it. Each of
these groups have different needs and demands regarding the com-
petition schedule, so as an organizer, there is the challenge to satisfy
everything that is desired. On the one hand, it is incredibly difficult
to find schemes that match all the needs, but on the other hand, the
amount of possible schedules to choose from quickly becomes mas-
sive - so finding the best schedule is a huge task.

In this thesis, several approaches to finding good/better/best sched-
ules - in several formats (Round Robin, Knock-Out, etc.) - are dis-
cussed. The most popular format is the Round Robin competition,
where every team/player plays every opponent a fixed number of
times. In chapters 2,3 and 5, constructive methods are discussed to
schedule these competitions, each catering to specific needs. Chap-
ter 2 and 3 focus on having high flexibility of scheduling individual
matches, without changing the Home/Away-pattern, and how to rec-
ognize patterns that have this flexibility. Chapter 5 discusses ways to
schedule the competition such that two players don’t meet the same
two opponents in consecutive rounds.

In the other chapters, competition scheduling is looked at both in a
constructive as a theoretical way. In chapter 4, the focus is on how
to schedule multiple leagues such that the capacities of clubs with
multiple teams are never violated. In chapter 6, a relatively new for-
mat is discussed, where rounds are complete knock-out tournaments
among all players. How to fix the draws of the knock-out in such a
way that each player has a priori the same opportunities.

Chapter 7 and 8 discuss the scheduling of an international competi-
tion, where travel distances are a crucial component, and the order in
which penalties are taken. In both chapters, methods and algorithms
are described to organize this in a fair way.
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S A M E N VAT T I N G

Sport is niets zonder competitie, en competities zijn weer niets zon-
der deelnemers en fans. Aan sportbonden en lokale organisatoren de
taak om de wensen en mogelijkheden van de sporters, toeschouwers,
tv-zenders, etc, in acht te nemen tijdens het opstellen van een wedstri-
jdschema voor een toernooi. Wie speelt wanneer uit, hoe vaak op rij,
tegen wie, in welke volgorde, alles kan worden meegenomen in de
overwegingen. Het kan ontzettend moeilijk zijn om vervolgens een
schema te vinden dat aan alle wensen voldoet, maar tegelijkertijd is
het aantal schema’s waar initieel uit gekozen kan worden dan ook
gigantisch - dus waar begin je met zoeken, en hoe moet je überhaupt
op zoek naar dat perfecte schema?

In dit proefschrift worden meerdere manieren besproken die, gegeven
bepaalde eisen, kunnen helpen bij het genereren van goede/betere
of zelfs optimale schema’s, en dat bij meerdere competitievormen.
De populairste competitievorm is misschien wel de Round Robin of
hele/halve competitie, zoals deze in het Nederlands heet. In hoofd-
stuk 2,3 en 5 worden schema’s hiervoor geproduceerd die verschei-
dene goede eigenschappen hebben. Denk dan bijvoorbeeld aan een
hoge mate van flexibiliteit voor het inroosteren van individuele wed-
strijden, waarbij het uit/thuis-patroon vaststaat, en hoe je deze patro-
nen kan herkennen. Ook voor het gelijkmatig verspreiden van tegen-
standers over het seizoen - in die zin dat twee verschillende spelers
de overige tegenstanders in andere volgorde ontmoeten - worden con-
structies gegeven.

In de overige hoofdstukken wordt ook op een constructieve als theo-
retische manier naar het produceren van schema’s gekeken. In hoofd-
stuk 4 wordt besproken hoe wedstrijden van ploegen over verschil-
lende competities kunnen worden ingedeeld, zodat de capaciteit van
de clubs waar de ploegen bij horen niet wordt overschreden. In hoofd-
stuk 6 wordt gekeken naar een competitie waarbij de speelrondes
bestaan uit een knock-out toernooi over alle spelers - hoe moet je de
loting van die individuele knock-out toernooien regelen, zodat elk
speler bij aanvang gelijke kansen heeft?

Hoofdstuk 7 en 8 kijken vervolgens naar het inroosteren van een in-
ternationale competitie waarbij reisafstanden cruciaal zijn, en de vol-
gorde waarin penalties genomen worden aan het einde van een voet-
balwedstrijd. Voor beide methoden worden algoritmen en methodes
gegeven om dit op een eerlijkere manier te organiseren.
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