53 research outputs found

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    Noise-Shaping SAR ADCs.

    Full text link
    This work investigates hybrid analog-to-digital converters (ADCs) that combine the phenomenal energy efficiency of successive-approximation (SAR) ADCs with the resolution enhancement strategies used by noise-shaping converters. Because charge-redistribution SAR ADCs contain few active components and rely on highly digital controllers, SAR ADCs demonstrate the best energy efficiencies of all low bandwidth, moderate resolution converters (~10 bits). SAR ADCs achieve remarkable power efficiency at low resolution, but as the resolution of the SAR ADC increases, the specifications for input-referred comparator noise become more stringent and total DAC capacitance becomes too large, which degrades both power efficiency and bandwidth. For these reasons, lower resolution, lower bandwidth applications tend to favor traditional SAR ADC architectures, while higher bandwidth, higher resolution applications tend to favor pipeline-SARs. Although the use of amplifiers in pipeline-assisted SARs relaxes the comparator noise requirements and improves bandwidth, amplifier design becomes more of a challenge in highly scaled processes with reduced supply voltages. In this work, we explore the use of feedback and noise-shaping to enhance the resolution of SAR ADCs. Unlike pipeline-SARs, which require high-gain, linear amplifiers, noise-shaping SARs can be constructed using passive FIR filter structures. Furthermore, the use of feedback and noise-shaping reduces the impact of thermal kT/C noise and comparator noise. This work details and explores a new class of noise-shaping SARs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113647/1/fredenbu_1.pd

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Low Noise, Jitter Tolerant Continuous-Time Sigma-Delta Modulator

    Get PDF
    The demand for higher data rates in receivers with carrier aggregation (CA) such as LTE, increases the efforts to integrate large number of wireless services into single receiving path, so it needs to digitize the signal in intermediate or high frequencies. It relaxes most of the front-end blocks but makes the design of ADC very challenging. Solving the bottleneck associated with ADC in receiver architecture is a major focus of many ongoing researches. Recently, continuous time Sigma-Delta analog-to-digital converters (ADCs) are getting more attention due to their inherent filtering properties, lower power consumption and wider input bandwidth. But, it suffers from several non-idealities such as clock jitter and ELD which decrease the ADC performance. This dissertation presents two projects that address CT-ΣΔ modulator non-idealities. One of the projects is a CT- ΣΔ modulator with 10.9 Effective Number of Bits (ENOB) with Gradient Descent (GD) based calibration technique. The GD algorithm is used to extract loop gain transfer function coefficients. A quantization noise reduction technique is then employed to improve the Signal to Quantization Noise Ratio (SQNR) of the modulator using a 7-bit embedded quantizer. An analog fast path feedback topology is proposed which uses an analog differentiator in order to compensate excess loop delay. This approach relaxes the requirements of the amplifier placed in front of the quantizer. The modulator is implemented using a third order loop filter with a feed-forward compensation paths and a 3-bit quantizer in the feedback loop. In order to save power and improve loop linearity a two-stage class-AB amplifier is developed. The prototype modulator is implemented in 0.13μm CMOS technology, which achieves peak Signal to Noise and Distortion Ratio (SNDR) of 67.5dB while consuming total power of 8.5-mW under a 1.2V supply with an over sampling ratio of 10 at 300MHz sampling frequency. The prototype achieves Walden's Figure of Merit (FoM) of 146fJ/step. The second project addresses clock jitter non-ideality in Continuous Time Sigma Delta modulators (CT- ΣΔM), the modulator suffer from performance degradation due to uncertainty in timing of clock at digital-to-analog converter (DAC). This thesis proposes to split the loop filter into two parts, analog and digital part to reduce the sensitivity of feedback DAC to clock jitter. By using the digital first-order filter after the quantizer, the effect of clock jitter is reduced without changing signal transfer function (STF). On the other hand, as one pole of the loop filter is implemented digitally, the power and area are reduced by minimizing active analog elements. Moreover, having more digital blocks in the loop of CT- ΣΔM makes it less sensitive to process, voltage, and temperature variations. We also propose the use of a single DAC with a current divider to implement feedback coefficients instead of two DACs to decrease area and clock routing. The prototype is implemented in TSMC 40 nm technology and occupies 0.06 mm^2 area; the proposed solution consumes 6.9 mW, and operates at 500 MS/s. In a 10 MHz bandwidth, the measured dynamic range (DR), peak signal-to-noise-ratio (SNR), and peak signal-to-noise and distortion (SNDR) ratios in presence of 4.5 ps RMS clock jitter (0.22% clock period) are 75 dB, 68 dB, and 67 dB, respectively. The proposed structure is 10 dB more tolerant to clock jitter when compared to the conventional ΣΔM design for similar loop filter

    Successive-approximation-register based quantizer design for high-speed delta-sigma modulators

    Get PDF
    High-speed delta-sigma modulators are in high demand for applications such as wire-line and wireless communications, medical imaging, RF receivers and high-definition video processing. A high-speed delta-sigma modulator requires that all components of the delta-sigma loop operate at the desired high frequency. For this reason, it is essential that the quantizer used in the delta-sigma loop operate at a high sampling frequency. This thesis focuses on the design of high-speed time-interleaved multi-bit successive-approximation-register (SAR) quantizers. Design techniques for high-speed medium-resolution SAR analog-to-digital converters (ADCs) using synchronous SAR logic are proposed. Four-bit and 8-bit 5 GS/s SAR ADCs have been implemented in 65 nm CMOS using 8-channel and 16-channel time-interleaving respectively. The 4-bit SAR ADC achieves SNR of 24.3 dB, figure-of-merit (FoM) of 638 fJ/conversion-step and 42.6 mW power consumption, while the 8-bit SAR ADC achieves SNR of 41.5 dB, FoM of 191 fJ/conversion-step and 92.8 mW power consumption. High-speed operation is achieved by optimizing the critical path in the SAR ADC loop. A sampling network with a split-array with unit bridge capacitor topology is used to reduce the area of the sampling network and switch drivers
    corecore