920 research outputs found

    An SVM-Based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis

    Get PDF
    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Similarity-based methods for machine diagnosis

    Get PDF
    This work presents a data-driven condition-based maintenance system based on similarity-based modeling (SBM) for automatic machinery fault diagnosis. The proposed system provides information about the equipment current state (degree of anomaly), and returns a set of exemplars that can be employed to describe the current state in a sparse fashion, which can be examined by the operator to assess a decision to be made. The system is modular and data-agnostic, enabling its use in different equipment and data sources with small modifications. The main contributions of this work are: the extensive study of the proposition and use of multiclass SBM on different databases, either as a stand-alone classification method or in combination with an off-the-shelf classifier; novel methods for selecting prototypes for the SBM models; the use of new similarity functions; and a new production-ready fault detection service. These contributions achieved the goal of increasing the SBM models performance in a fault classification scenario while reducing its computational complexity. The proposed system was evaluated in three different databases, achieving higher or similar performance when compared with previous works on the same database. Comparisons with other methods are shown for the recently developed Machinery Fault Database (MaFaulDa) and for the Case Western Reserve University (CWRU) bearing database. The proposed techniques increase the generalization power of the similarity model and of the associated classifier, having accuracies of 98.5% on MaFaulDa and 98.9% on CWRU database. These results indicate that the proposed approach based on SBM is worth further investigation.Este trabalho apresenta um sistema de manutenção preditiva para diagnóstico automático de falhas em máquinas. O sistema proposto, baseado em uma técnica denominada similarity-based modeling (SBM), provê informações sobre o estado atual do equipamento (grau de anomalia), e retorna um conjunto de amostras representativas que pode ser utilizado para descrever o estado atual de forma esparsa, permitindo a um operador avaliar a melhor decisão a ser tomada. O sistema é modular e agnóstico aos dados, permitindo que seja utilizado em variados equipamentos e dados com pequenas modificações. As principais contribuições deste trabalho são: o estudo abrangente da proposta do classificador SBM multi-classe e o seu uso em diferentes bases de dados, seja como um classificador ou auxiliando outros classificadores comumente usados; novos métodos para a seleção de amostras representativas para os modelos SBM; o uso de novas funções de similaridade; e um serviço de detecção de falhas pronto para ser utilizado em produção. Essas contribuições atingiram o objetivo de melhorar o desempenho dos modelos SBM em cenários de classificação de falhas e reduziram sua complexidade computacional. O sistema proposto foi avaliado em três bases de dados, atingindo desempenho igual ou superior ao desempenho de trabalhos anteriores nas mesmas bases. Comparações com outros métodos são apresentadas para a recém-desenvolvida Machinery Fault Database (MaFaulDa) e para a base de dados da Case Western Reserve University (CWRU). As técnicas propostas melhoraram a capacidade de generalização dos modelos de similaridade e do classificador final, atingindo acurácias de 98.5% na MaFaulDa e 98.9% na base de dados CWRU. Esses resultados apontam que a abordagem proposta baseada na técnica SBM tem potencial para ser investigada em mais profundidade

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Novelty detection based condition monitoring scheme applied to electromechanical systems

    Get PDF
    This study is focused on the current challenges dealing with electromechanical system monitoring applied in industrial frameworks, that is, the presence of unknown events and the limitation to the nominal healthy condition as starting knowledge. Thus, an industrial machinery condition monitoring methodology based on novelty detection and classification is proposed in this study. The methodology is divided in three main stages. First, a dedicated feature calculation and reduction over each available physical magnitude. Second, an ensemble structure of novelty detection models based on one-class support vector machines to identify not previously considered events. Third, a diagnosis model supported by a feature fusion scheme in order to reach high fault classification capabilities. The effectiveness of the fault detection and identification methodology has been compared with classical single model approach, and verified by experimental results obtained from an electromechanical machine. © 2018 IEEE.Postprint (author's final draft

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Unbalance failure recognition using recurrent neural network

    Get PDF
    Many machine learning models have been created in recent years, which focus on recognising bearings and gearboxes with less attention on detecting unbalance issues. Unbalance is a fundamental issue that frequently occurs in deteriorating machinery, which requires checking prior to significant faults such as bearing and gearbox failures. Unbalance will propagate unless correction happens, causing damage to neighbouring components, such as bearings and mechanical seals. Because recurrent neural networks are well-known for their performance with sequential data, in this study, RNN is proposed to be developed using only two statistical moments known as the crest factor and kurtosis, with the goal of producing an RNN capable of producing better unbalanced fault predictions than existing machine learning models. The results reveal that RNN prediction efficacies are dependent on how the input data is prepared, with separate datasets of unbalanced data producing more accurate predictions than bulk datasets and combined datasets. This study shows that if the dataset is prepared in a specific way, RNN has a stronger prediction capability, and a future study will explore a new parameter to be fused along with present statistical moments to increase RNN’s prediction capability

    FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN) based Ball-Bearing Failure Detection Method

    Full text link
    Failure detection is employed in the industry to improve system performance and reduce costs due to unexpected malfunction events. So, a good dataset of the system is desirable for designing an automated failure detection system. However, industrial process datasets are unbalanced and contain little information about failure behavior due to the uniqueness of these events and the high cost for running the system just to get information about the undesired behaviors. For this reason, performing correct training and validation of automated failure detection methods is challenging. This paper proposes a methodology called FaultFace for failure detection on Ball-Bearing joints for rotational shafts using deep learning techniques to create balanced datasets. The FaultFace methodology uses 2D representations of vibration signals denominated faceportraits obtained by time-frequency transformation techniques. From the obtained faceportraits, a Deep Convolutional Generative Adversarial Network is employed to produce new faceportraits of the nominal and failure behaviors to get a balanced dataset. A Convolutional Neural Network is trained for fault detection employing the balanced dataset. The FaultFace methodology is compared with other deep learning techniques to evaluate its performance in for fault detection with unbalanced datasets. Obtained results show that FaultFace methodology has a good performance for failure detection for unbalanced datasets
    • …
    corecore