22 research outputs found

    Curvature-based sparse rule base generation for fuzzy rule interpolation

    Get PDF
    Fuzzy logic has been successfully widely utilised in many real-world applications. The most common application of fuzzy logic is the rule-based fuzzy inference system, which is composed of mainly two parts including an inference engine and a fuzzy rule base. Conventional fuzzy inference systems always require a rule base that fully covers the entire problem domain (i.e., a dense rule base). Fuzzy rule interpolation (FRI) makes inference possible with sparse rule bases which may not cover some parts of the problem domain (i.e., a sparse rule base). In addition to extending the applicability of fuzzy inference systems, fuzzy interpolation can also be used to reduce system complexity for over-complex fuzzy inference systems. There are typically two methods to generate fuzzy rule bases, i.e., the knowledge driven and data-driven approaches. Almost all of these approaches only target dense rule bases for conventional fuzzy inference systems. The knowledge-driven methods may be negatively affected by the limited availability of expert knowledge and expert knowledge may be subjective, whilst redundancy often exists in fuzzy rule-based models that are acquired from numerical data. Note that various rule base reduction approaches have been proposed, but they are all based on certain similarity measures and are likely to cause performance deterioration along with the size reduction. This project, for the first time, innovatively applies curvature values to distinguish important features and instances in a dataset, to support the construction of a neat and concise sparse rule base for fuzzy rule interpolation. In addition to working in a three-dimensional problem space, the work also extends the natural three-dimensional curvature calculation to problems with high dimensions, which greatly broadens the applicability of the proposed approach. As a result, the proposed approach alleviates the ‘curse of dimensionality’ and helps to reduce the computational cost for fuzzy inference systems. The proposed approach has been validated and evaluated by three real-world applications. The experimental results demonstrate that the proposed approach is able to generate sparse rule bases with less rules but resulting in better performance, which confirms the power of the proposed system. In addition to fuzzy rule interpolation, the proposed curvature-based approach can also be readily used as a general feature selection tool to work with other machine learning approaches, such as classifiers

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    HEDGE ALGEBRAS, THE SEMANTICS OF VAGUE LINGUISTIC INFORMATION AND APPLICATION PROSPECTIVE

    Get PDF
    The report aims to show that hedge algebras model actually the proper qualitative semantics of words of linguistic variables based on the argument that the inherent qualitative semantics of words should be expressed through the order relationships, induced by the word semantics, between the words in their respective variable domains, as required by decision making of human daily lives. This makes the hedge algebra based approach to the word semantics quite different from the existing approaches and become the only approach that can immediately deal with the natural qualitative semantics of words. We explain clearly and systematically distinguished features and properties of this approach to show that these seem to make the approach to be sound and ensure its effectiveness in applications. This approach seems to be promising for development of hedge algebra-based method to solve problems in various application fields. For illustration, we will give a short overview of effective results some of the initial applications of hedge algebras in the fields of knowledge based systems and in fuzzy control

    The use of computational intelligence for security in named data networking

    Get PDF
    Information-Centric Networking (ICN) has recently been considered as a promising paradigm for the next-generation Internet, shifting from the sender-driven end-to-end communication paradigma to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based design- plays the central role in the communications. This change from host-centric to content-centric has several significant advantages such as network load reduction, low dissemination latency, scalability, etc. One of the main design requirements for the ICN architectures -since the beginning of their design- has been strong security. Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing research effort that aims to become the way Internet will operate in the future. Existing research into security of NDN is at an early stage and many designs are still incomplete. To make NDN a fully working system at Internet scale, there are still many missing pieces to be filled in. In this dissertation, we study the four most important security issues in NDN in order to defense against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e., anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can make intelligent -and real-time- decisions to enable network entities to behave in an adaptive and intelligent manner. In this context, the characteristics of Computational Intelligence (CI) methods such as adaption, fault tolerance, high computational speed and error resilient against noisy information, make them suitable to be applied to the problem of NDN security, which can highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for the future Internet.Information-Centric Networking (ICN) ha sido recientemente considerado como un paradigma prometedor parala nueva generación de Internet, pasando del paradigma de la comunicación de extremo a extremo impulsada por el emisora un paradigma de obtención de contenidos impulsada por el receptor. En ICN, el contenido (más que los nodos, como sucede en redes IPactuales) juega el papel central en las comunicaciones. Este cambio de "host-centric" a "content-centric" tiene varias ventajas importantes como la reducción de la carga de red, la baja latencia, escalabilidad, etc. Uno de los principales requisitos de diseño para las arquitecturas ICN (ya desde el principiode su diseño) ha sido una fuerte seguridad. Named Data Networking (NDN) (también conocida como Content-Centric Networking (CCN) o Data-Centric Networking (DCN)) es una de estas arquitecturas que son objetode investigación y que tiene como objetivo convertirse en la forma en que Internet funcionará en el futuro. Laseguridad de NDN está aún en una etapa inicial. Para hacer NDN un sistema totalmente funcional a escala de Internet, todavía hay muchas piezas que faltan por diseñar. Enesta tesis, estudiamos los cuatro problemas de seguridad más importantes de NDN, para defendersecontra nuevas formas de ataques (incluyendo los potencialmente desconocidos), asegurar la privacidad, lograr una alta disponibilidad, y bloquear los tráficos de red maliciosos o al menos limitar su eficacia. Estos cuatro problemas son: detección de anomalías, ataques DoS / DDoS, control de congestión y ataques de contaminación caché. Para solventar tales problemas necesitamos sistemas de defensa flexibles, adaptables y robustos que puedantomar decisiones inteligentes en tiempo real para permitir a las entidades de red que se comporten de manera rápida e inteligente. Es por ello que utilizamos Inteligencia Computacional (IC), ya que sus características (la adaptación, la tolerancia a fallos, alta velocidad de cálculo y funcionamiento adecuado con información con altos niveles de ruido), la hace adecuada para ser aplicada al problema de la seguridad ND

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Politiek

    No full text

    A consistent neuro-fuzzy inference system

    Get PDF
    Велики број аутора сматра да велике могућности експертских система леже у хибридним моделима, што су ови системи и доказали у пракси. Мотивисан тиме, предложени модел система у основи представља интеграцију неуронских мрежа и фази система, чиме се боље користе добре стране оба приступа. Полазна основа овог рада је да понашање система, кроз скуп лингвистичких правила, треба да описују управо они који систем највише познају и разумеју (насупрот аутоматски генерисаним правилима која су најчешће рогобатна и неразумљива). Знање експерата из било које области лако се може формулисати вербалним исказима, а теорија фази скупова и фази логике омогућава превођење оваквих исказа у одговарaјуће математичке изразе. Класична теорија фази скупова не задовољава све Булове аксиоме. Из овог разлога у раду је примењена конзистентна реално-вредносна [0,1] логика, која се заснива на интерполативној Буловој алгебри (ИБА). Свака логичка функција може се једнозначно трансформисати у одговарајући генерализовани Булов полином (ГБП) коришћењем ИБА при чему се чувају сви Булови закони. Оправданост коришћења конзистентног приступа најпре је илустрована на примеру конзистентног фази система закључивања (КФИС). Сврха приказаног КФИС-а је да процени могућност да је пацијент на дијализи трбушне марамице (лат. peritoneum) оболео од перитонитиса. Добијени резултати указују на чињеницу да класичан ФИС и конзистентан приступ не воде увек ка истим резултатима, а разлика је најуочљивија када правила укључују негацију. Како би се КФИС даље унапредио, коришћена је неуронска мрежа, тј. њен алгоритам учења, који, на основу скупа улазно-излазних података, подешава параметре тако да више одговарају реалном систему. На тај начин, предложени конзистентан неуро-фази систем (КНФИС) користи знање садржано у подацима и унапређује закључивање. Такође, елиминише се субјективност коју експерти у некој мери изражавају приликом дефинисања параметара система...A number of authors find that the greatest potential of expert systems lies in hybrid models, and such models have proven this viewpoint in practice.Therein lies the motivation for introducing a new system model, integrating neural networks and fuzzy systems, thus building on the best features of each of these approaches. The main premise of this thesis is that the behavior of a system should be described, through a set of linguistic rules, by those who know and understand the system the best (as opposed to the automatic generation of rules that are often cumbersome and incomprehensible). Expert knowledge in any domain can be easily expressed in the form of verbal statements, and fuzzy set theory and fuzzy logic enable the transformation of such verbal statements into mathematical expressions. Conventional fuzzy set theory does not satisfy all Boolean axioms. For this reason, the consistent real-valued [0,1] logic, based on the Interpolative realization of Boolean algebra (IBA), is applied in this thesis. Any logical function can be uniquely transformed into a corresponding generalized Boolean polynomial (GBP) using IBA thereby preserving all Boolean laws. The justification for using a consistent approach is first illustrated on an example of a consistent fuzzy inference system (CFIS). The purpose of the described CFIS is to estimate the likelihood that a patient undergoing peritoneal dialysis, has peritonitis. The obtained results demonstrate that conventional FIS and the Boolean consistent approach do not always lead to the same results, and this discrepancy is most pronounced when the established rules include negations. In order to further enhance CFIS a neural network, or, more precisely, its learning algorithm, is used to fine-tune the parameters, in accordance with a set of input-output data, so that the parameters better suit the real system. Consequently, the proposed consistent neuro-fuzzy system (CNFIS) uses the knowledge contained in the data to improve the inference process. In addition, it eliminates the subjectivity incorporated into the system by experts when defining the parameters of the system..
    corecore