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Abstract

Fuzzy inference systems work through manipulating fuzzy if-then rules. Amongst the

various existing fuzzy inference systems, the adaptive network based fuzzy inference

system (ANFIS) has become one of the most powerful and popular tools for finding

solutions to highly non-linear problems. Whilst promising for practical applications,

most existing research related to ANFIS focuses on how to learn such an inference

system with sufficient training data. However, in some real situations it is very

hard or even impossible to get sufficient data for the required learning process. The

shortage of training data significantly degrades the performance of such learned

ANFIS models.

In light of this, the concept of ANFIS interpolation is proposed in the thesis, to

deal with the problem of ANFIS construction with insufficient training data. It works

by interpolating two well trained ANFISs in neighbouring domains where sufficient

training data is available, in an effort to improve the performance of the constructed

ANFIS in the current problem domain where there is only limited (or sparse) training

data. Two types of ANFIS interpolation method are developed, including: 1) An

initial method via group based rule interpolation, working through interpolating

a group of fuzzy rules with the help of a rule dictionary; 2) An improved method

via evolutionary process, in which the interpolated rules act as an initial population

and are updated subsequently through the use of a genetic algorithm. Experimental

results demonstrate the significantly improved performance of the proposed methods

over the original non-interpolation ANFIS model, with the averaged root mean

squared error (RMSE) reduced to 1.63 ± 0.39 from the original 3.71 ± 0.98.

Having recognised the capability of ANFIS in producing effective non-linear

mappings, it is applied to address the problem of image super resolution in this thesis,

in an effort to learn the non-linear mapping between a low resolution image and a

high resolution one. Firstly, a natural image super resolution method with full training

data is developed by learning multiple ANFIS mappings, showing the effectiveness of

ANFIS model when sufficient training data is provided. A hyperspectral image super

resolution method with sparse training data through the use of the proposed ANFIS

interpolation methods is then developed, validating the efficacy of the interpolated

ANFIS model when only sparse training data is available.
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Chapter 1

Introduction

W Ith the rapid development of computer hardware and software technologies,

machine learning has become one of the most attractive topics in the field of

computer science in recent years. There is no doubt that the world we live in today

is full of all types of data (such as text data, image data, video data and so on), the

fast growth of available data makes the management and analysis of data at hand

ever more important and also ever more difficult. The machine learning theory is

proposed aiming at extracting useful knowledge from those raw data instead of the

human brain with higher speed and larger scale, which brings extreme convenience

to human life. Different machine learning techniques, representative algorithms

including the evolutionary computation, the neural networks, deep learning and

fuzzy inference systems etc., are developed with different mechanisms and have

different characteristics.

Evolutionary computation [9, 10] is one of the most popular machine learning

methods, which offers a set of optimisation algorithms by analogy to natural evolu-

tion processes (e.g. crossover, mutation, and survival of the fitness evaluation for

genetic algorithms). It provides an effective and efficient way for searching optimal

solution in poorly understood and irregular problem spaces. Typically, evolutionary

algorithms work with a population of individuals, in which each individual may

be one or a set of potential solutions in the solution space. Whilst implemented

in a stochastic manner, such algorithms perform a highly effective search in the

problem hyperspace, iteratively directing the solution to promising regions. Typical

evolutionary algorithms such as genetic algorithm (GA) [121], genetic programming

1



(GP) [1] and particle swarm optimizer (PSO) [175], have been widely employed for

a variety of theoretical and practical applications [87, 143, 148, 161].

Another branch of the machine learning methods is the artificial neural network

[54, 117]. The first neurocomputer, Dr. Robert Hecht-Nielsen, defined it as a

computing system made up of a number of simple, highly interconnected processing

elements, which process information by their dynamic state response to external

inputs. Although neural networks are an old topic, they have achieved significant

breakthrough in recent decades. With the increase of storage capacity and calculation

speed of computers, deep learning [40] technique has been developed as an extension

of traditional artificial neural networks, with much more network layers and much

more complex network structures. It can better extract and represent the features

from data, especially for those multi-dimensional complex data (e.g. image data

and voice data). Deep learning algorithms have been applied to various real word

applications since proposed (such as classification, tracking, recognition, just to name

a few), generating the state of the art results [53, 86, 127]. Different from traditional

neural network methods, the layers of network in deep learning methods are much

deeper with much more parameters. This gives the network more learning capacity,

but increases the required storage space at the mean time.

Apart from the high accuracy of the deep learning algorithms, they suffer from

having a huge amount of parameters in a network, which requires a large storage

space and long running time in the network training process. Another argued issue in

deep learning methods is the interpretability and transparency. Deep neural networks

work as a black box, making the physical meaning of the resulting network structures

not easy to explain. Different from deep learning, fuzzy inference systems provide

an interpretable way for solving machine learning problems [115, 139]. They work

by the use of a rule-base containing a set of fuzzy ‘if-then’ rules, in which each fuzzy

set is described by a membership function. The interpretability and transparency

of fuzzy inference systems is reflected in two aspects: 1) The fuzzy ‘if-then’ rules

record the logical representation of the intuitive expert knowledge. 2) The fuzzy

sets as well as the underlying membership functions preserve the linguistic meaning

of the given label. Fuzzy inference systems have achieved significant successes in

performing many real world tasks, such as classification, regression and prediction

[4, 23, 48, 72, 114].
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1.1. Fuzzy Inference Systems(FIS)

1.1 Fuzzy Inference Systems(FIS)

Fuzzy inference systems transform human knowledge to mathematical models (rep-

resented by a set of fuzzy rules), and conduct inference in a systematic manner. They

are developed based on the fuzzy set theory [168, 177] and the fuzzy logic theory

[167]. Based on the fact that the crisp description of the real world information

is always imprecise and is easily affected by the subjective factors, fuzzy inference

systems handle imprecision, a form of uncertainty to better describe the observations

in the real world. The general framework of a fuzzy inference system is shown in

Figure 1.1. There are four key components in such an FIS, including the fuzzification

interface, the inference engine, the defuzzification interface and the knowledge base.

These key components are introduced respectively as follows.

Figure 1.1: General structure of a fuzzy inference system

• The fuzzification interface transforms crisp values obtained from the real world

measurements into fuzzy representations through the use of fuzzy sets. The

definition of fuzzy set makes it possible to represent an input value with linguist

meaning, which is implemented by the use of a membership function related

to the fuzzy set. Take the representation of a person’s height (say, 6 feet) as an

example, if using the crisp representation, it is only a fixed value, while in terms

of fuzzy representation, it can be interpreted as "This person is high with a

high degree of truth". Theoretically any continuous or piecewise differentiable,

convex and normal functions can be utilized as Membership Function (MF),

commonly used MFs include triangular, trapezoidal, Gaussian and bell-shaped

ones.
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• The inference engine processes the incoming fuzzy values from the fuzzification

interface and then makes the decision together with the knowledge base. The

most commonly used inference engine is the compositional rule of inference

[166]. It works by firing or matching rules in the rule-base, and the final

decision is made by composing the consequences of all the fired rules.

• The defuzzification interface performs the inverse operation to the fuzzification

interface. Usually in real world tasks, the output of a fuzzy inference system

should be real values, keeping the same as its input, so the defuzzification

interface is designed to map the fuzzy values obtained from the inference

engine into crisp values. Generally, the choice of the defuzzification method

depends on what kind of decision the fuzzy inference system is going to make.

One of the most commonly used defuzzification methods is using the centre of

the area, e.g. the centre of gravity (COG) of a triangular fuzzy set.

• The knowledge base contains two components, the rule-base, containing the

collection of fuzzy ‘if-then’ rules, and the data base, containing the parameters

in rules (e.g. membership functions of the fuzzy partitions associated to the

linguistic variables).

Fuzzy ‘if-then’ rules are the most important components in a fuzzy inference

system. Different types of fuzzy rule have been developed in the literature.

According to whether the consequence of a fuzzy rule is associated with its

rule antecedent or not, the fuzzy rules can be classified into two categories,

the mamdani-type rules and the Takagi-Sugeno-Kang (TSK)-type rules. In the

mamdani-type rules [108], the input variables only appear in the antecedent

parts, while in the TSK-type rules [131] those variables also appear in the

consequent parts as a linear function of the input.

Based on the two types of fuzzy rule, there are accordingly two forms of

knowledge representation in fuzzy inference systems: Mandani-type models

and TSK-type models. Mandani models are classical fuzzy systems which have

been popular in many real world applications [19], while TSK representatives

have also played an increasingly important role in such applications, including

for example, stock market prediction [23] and EGG signals recognition [72].
The success of TSK-type fuzzy inference systems is largely owing to their

capability of approximating complex non-linear functions [36].
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Generally, there exist two ways to construct the knowledge base of a fuzzy

inference system. One way is to translate expert knowledge into fuzzy rules

directly, and the corresponding fuzzy inference systems are also called fuzzy

expert systems [18, 103, 107]. It offers very good fuzzy representation of

expert knowledge. But for large real-world problems, it may be very hard to

ensure the efficiency and accuracy of the resulted knowledge base when such

strategy is utilised. The other way for building an effective knowledge base is

to use data-driven methods. In such FISs, the fuzzy rules are obtained from

data by using machine learning techniques rather than obtained from expert

knowledge directly [19, 30, 33, 34, 78].

1.2 Training Data Shortage Issues

Owing to the simplicity and explainability in representing human knowledge, fuzzy

inference systems have become one of the most popular tools for finding solutions to

various real world problems (e.g., [4, 30, 124]). They have been studied for many

years, in both the design of the inference engine [136, 159, 166] and the induction

of the rule-base [2, 163]. Amongst such research, how to construct an effective FIS

from data is becoming a more and more attractive topic. For such data-driven based

fuzzy inference systems, it is necessary to get sufficient training data for the required

learning process in order to train a useful model. Most existing studies on fuzzy

inference system construction assume that sufficient training data is available [116].
This assumption can hold for many cases in this age with sufficient well-distributed

data, however, in some special situations, it is really hard or even impossible to obtain

enough data for the required training procedure (such as some remote sensing tasks,

or medical problems). In such cases, the shortage of data will severely restrict the

potential of the learned fuzzy inference systems.

In the relevant literature, a typical way to solve this practical issue (of training

data shortage) is to conduct the learning process through a so-called transfer learning

procedure [41, 116, 128, 178, 179]. Such techniques exploit the knowledge accumu-

lated from data in an auxiliary domain (termed source domain) to support predictive

modelling in the problem domain at hand (termed target domain). Particularly,

transfer learning usually works, by constructing non-linear mappings between the

target and the source domain and transferring the data or the model parameters
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between a certain source domain and a target domain via learned mappings. In

so doing, it is feasible to utilise the knowledge regarding a given source model to

approximately perform fuzzy inference in the target domain.

An alternative solution to this challenging problem is through the use of Fuzzy

Rule Interpolation (FRI) technique [12, 84, 133]. Conventional fuzzy inference

methods [136, 159, 166] must work with dense rule-base, in which the input region

is completely covered. However, under the data shortage situations the resulting

rule-base will be a sparse rule-base with ‘gaps’, therefore the conventional fuzzy

inference methods cannot drive a conclusion. The FRI technique is developed to

enable fuzzy inference to be performed on sparse rule-bases. In general, for a given

observation that does not match any rule of a sparse rule-base, FRI techniques work

by interpolating new rules from the existing ones. Typically, FRI interpolates a

fuzzy rule by selecting and averaging given rules that are the closest to an unfired

observation, thereby enabling fuzzy systems to perform inference even if no rules can

be fired by pattern matching. Based on the general FRI idea, transformation based

FRI (T-FRI) [58, 59] has been proposed for improved performance through scale and

move transformations. This greatly increases the accuracy of the interpolated rules

and has led to a number of advanced theoretical and applicational developments over

the past decade (e.g., [24, 26, 27, 73, 93, 113, 155, 156]). However, the existing

literature of FRI is mainly focussed on Mandani-type models, apart from limited

initial attempt as reported in [95, 152, 172, 173], the research on FRI with TSK-type

models is still rather rare.

1.3 Research Objectives and Contributions

Considering the data shortage problem mentioned above, the main goal of this thesis

will focus on how to construct an effective fuzzy inference system with insufficient

training data (termed as sparse data in this thesis). Among the various fuzzy inference

systems, the ANFIS (Adaptive Network-based Fuzzy Inference System) which is

implemented within the framework of a network structure, has become one of the

most popular FISs due to its simplicity and effectiveness. Therefore, how to construct

an ANFIS with insufficient training data (or sparse training data) is chosen as a key

research objective in this thesis, although other fuzzy inference systems can also be

studied in the same way.
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In particular, the main research objective in the thesis can be achieved from the

following three perspectives:

1. Inspired by the observation in transfer learning theory that knowledge accumu-

lated from neighbouring domains (with sufficient data) may help the inference

of the current problem domain of interest (with sparse data), in this thesis, the

concept ‘ANFIS interpolation’ is proposed, which is defined as the construction

of a new ANFIS in the target domain, by the assistance of two source ANFISs

in the source domains. Reflecting the fact that an ANFIS is a set of fuzzy rules,

an initial ANFIS interpolation method is proposed by interpolating a group of

fuzzy rules, which is an extension of the popular fuzzy rule interpolation (FRI)

technique.

2. The initial ANFIS interpolation method will terminate when a group of rules

have been interpolated. How to further optimise these interpolated rules

presents the second challenge that is addressed in the thesis. Evolutionary

computation is introduced to iteratively update the interpolated rules by en-

coding those rules into specific chromosomes, in an effort to obtain improved

performance.

3. Apart from the theoretical studies, another important goal of the thesis is to

investigate how the proposed techniques may perform in dealing with real

word problems. Particularly, the proposed methods are applied to the problem

of image super resolution. Both full training data and sparse training data are

used to evaluate the performance of the learned and the interpolated ANFIS

models respectively.

Following these initial objectives, the main contributions of this thesis include

ANFIS interpolation and its application to image super resolution problems, are listed

as follows:

• An initial ANFIS interpolation technique via group rule interpolation is proposed,

which is implemented by interpolating a group of fuzzy rules. Experimental results

on benchmark data sets indicate that the proposed approach significantly improves

the performance of ANFIS in data shortage situations. The proposed approach has

been published in the Proceedings of the 18th annual UK workshop on Computational

Intelligence and the journal of IEEE Transactions on Cybernetics.
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• An improved ANFIS interpolation technique via evolutionary computation

is proposed, which is implemented by using the interpolated rules as an initial

population and updating the system via a genetic algorithm. This work is validated

against a number of benchmark data sets, the results indicate that it further improves

the performance of the initial ANFIS interpolation method. The work has been

published in the journal of IEEE transactions on Fuzzy Systems.

• An image super resolution method via ANFIS is proposed, with full training data.

It works by learning non-linear mappings from the low resolution image space to

the high resolution image space using learned ANFIS models. Experiments indicate

that ANFIS works very well for this practical image super resolution problem when

sufficient training data is provided. This proposed approach has been published in

the Proceedings of the 2017 IEEE International Conference on Fuzzy Systems.

• A hyperspectral image super resolution method via the proposed ANFIS inter-

polation technique is proposed, with sparse training data. Different from the natural

RGB images, the hyperspectral images are special images which are much harder to

obtain, so in such cases, the training data could be sparse. The experimental results of

this real world application suggest that the proposed ANFIS interpolation techniques

can not only significantly improve the poor performance caused by training data

shortage on benchmark data sets, but also have promising application prospect. This

work is currently being prepared for journal submission.

1.4 Structure of Thesis

This section outlines the structure of the remainder of this thesis. The relationship

among the main chapters of this thesis is illustrated in Figure 1.2. In summary,

Chapter 2 provides the background knowledge of ANFIS, image super resolution

together with the review of typical fuzzy rule interpolation methods. Based on this,

Chapters 3 and 4 present the theoretical part of this thesis and Chapters 5 and 6 give

the application part of the thesis on image super resolution problems. Particularly,

Chapter 3 presents an initial ANFIS interpolation method via group rule interpolation;

Chapter 4 presents an improved ANFIS interpolation scheme via an evolutionary

process; Chapter 5 provides the application of ANFIS on the image super resolution

problem with full training data; Finally, Chapter 6 extends this application problem
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using a special type of image (hyperspectral image), and applies the techniques

developed in Chapters 3 and 4 for hyperspectral image super resolution with sparse

training data.

Figure 1.2: Relationship among main thesis chapters

Chapter 2: Background

This chapter provides the background knowledge that is relevant to the proposed

work in this thesis. Primarily, a formal introduction of ANFIS including its network

structure and the parameter learning strategy is presented, which forms a key basis

upon which to develop the main research of the thesis. A brief introduction to the

fuzzy rule interpolation technique is then followed in this chapter, which provides

the fundamental knowledge for the proposed ANFIS interpolation. Finally, this

chapter also introduces the basic knowledge of the image super resolution problem,

forming the basis of the application part of the proposed work. The image super

resolution (ISR) is a classical task in the field of image processing, and various classes

of algorithms have been proposed in the literature, among which the most popular

one in the recent decades is the learning based super resolution (SR) approaches,

giving the state of the art results, on which the establishment of the proposed SR

method in Chapter 5 is based.

9



1.4. Structure of Thesis

Chapter 3: ANFIS Interpolation - A Group Rule Interpolation

Based Approach

To deal with the data shortage situations in the construction of an ANFIS, this

chapter proposes an initial ANFIS interpolation approach to improve the performance

of the original ANFIS model trained with sparse training data using group based

rule interpolation. In particular, it works by interpolating a group of fuzzy rules

in a certain given problem domain with the assistance of existing ANFISs in its

neighbouring domains. The construction process involves a number of computational

mechanisms, including a rule dictionary which is created by extracting the rules

from the existing ANFISs; a group of rules which are interpolated by exploiting

the local linear embedding algorithm to build an intermediate ANFIS; and a fine-

tuning method which refines the resulting intermediate ANFIS. The experimental

evaluation on both synthetic and real world data sets is reported, demonstrating that

when facing the data shortage situations, the proposed approach helps significantly

improve the performance of the original ANFIS modeling mechanism.

Chapter 4: ANFIS Interpolation - An Evolutionary Approach

This chapter presents an extension of the method in Chapter 3, improving the inter-

polated ANFIS model through the use of evolutionary computation. The proposed

approach takes the interpolated rules as an initial population, and updates these

candidate rules via a genetic process. The crossover and mutation operations over

these candidate rules are then executed in an effort to attain candidates of improved

performance. When this genetic learning process terminates the chromosomes in

the final population either collectively form or each individually represent a learned

ANFIS, depending on whether a single fuzzy rule or a set of fuzzy rules representing

an entire ANFIS is implemented with a chromosome within the evolving population.

Comparative experimental evaluations on both synthetic and real world data sets are

carried out, demonstrating that in spite of data shortage, the proposed interpolation

approach is able to produce ANFIS models that significantly outperform those trained

using existing learning mechanisms.
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Chapter 5: Image Super Resolution with Full Training Data via

Multiple Learned ANFIS Mappings

This chapter provides an application of ANFIS on the image super resolution prob-

lem. The proposed approach aims to generate a high resolution image using a low

resolution one, using multiple learned ANFIS mappings. It presents an implemented

learning system that captures the relationship between a high resolution image

space and a low resolution one using an external image database. In particular, a

collected large number of low resolution and high resolution image patch pairs are

divided into different groups with a clustering method. For each clustered group

of the training samples, an ANFIS mapping is learned for super resolution. The

post processing techniques (including a non-local means filter and an iterative back

projection operator) are subsequently employed to suppress the displeasing artefacts

of the resulting reconstructed high resolution image. The proposed approach is

evaluated using a range of natural images and compared with a number of existing

popular ISR algorithms, demonstrating its effectiveness.

Chapter 6: Hyperspectral Image Super Resolution with Sparse

Training Data via ANFIS Interpolation

Given the promising results achieved with ANFIS interpolation generated from

Chapters 3 and 4 on benchmark data sets, in this chapter, the proposed ANFIS

interpolation techniques are applied to a real-world hyperspectral image super

resolution problem. Hyperspectral images are a special image type, in which there

are dozens or hundreds of image bands while some of the image bands are very

hard to obtain. This characteristic means that the training data in some image bands

are sparse. The proposed super resolution approach uses the learned ANFIS models

over the image bands with sufficient training data as source ANFISs, to assist the

construction of the target ANFIS models over the image bands with sparse training

data. Experimental results show that compared with the original ANFIS model, the

interpolated ANFIS model gives remarkable improvements over the data shortage

bands.
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Chapter 7: Conclusion

This chapter summarises this thesis and lists the key contributions, together with a

discussion of topics which set up the basis for future research.

Appendices

Appendix A lists the publications arising from the work presented in this thesis, in-

cluding the published journal papers and conference papers. Appendix B summarises

the abbreviations employed throughout the thesis.
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Chapter 2

Background

F UZZY inference system enables the tolerance of imprecision when dealing with

real life inference problems, which is closer to human reasoning. Among the

various types of existing fuzzy inference systems, those implemented in an adaptive

network structure (ANFIS) have gained more and more attention in the recent

decades, owing to their simplicity and effectiveness.

This chapter reviews the background knowledge relevant to the work to be

presented in the later part of this thesis, the remainder of this chapter is structured

as follows. ANFIS, which is the main research topic of the thesis, is firstly introduced

in Section 2.1, with its network structure and associated parameter learning method.

Section 2.2 introduces the basic idea and the typical algorithms of the fuzzy rule

interpolation method, which will form the base of the interpolation of ANFISs. A

brief introduction to image super resolution and the most popular representative

method (the learning based image super resolution) is presented in Section 2.3.

Finally Section 2.4 summarizes this chapter.

2.1 Adaptive Network based Fuzzy Inference System

(ANFIS)

ANFIS [66] is a fuzzy inference system that implements approximate reasoning within

the general framework of an adaptive network. It works by equivalently extracting
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useful (interpretable) knowledge in terms of a set of fuzzy rules directly from training

data, and has proven to be very suitable for highly non-linear problems. Thanks to

its simplicity and effectiveness, it has been widely applied to various kinds of real

world problems (e.g., [11, 47, 135, 144]). The following gives a formal introduction

to the basic concepts of ANFIS, including an illustrative network structure and the

associated data-driven process for learning the parameters of such networks.

2.1.1 Network architecture

For easy understanding, a simple ANFIS with two input variables (x1 and x2) and

one output variable (y) is used here for illustration (whilst more complex structures

can be readily expanded from this basic form). In particular, suppose that there are

two fuzzy if-then rules of Takagi-Sugeno-Kang’s type [130] in the rule base of this

example ANFIS, as follows:

Rule 1: If x1 is A1 and x2 is B1, then y1 = p1 x1 + q1 x2 + r1

Rule 2: If x1 is A2 and x2 is B2, then y2 = p2 x1 + q2 x2 + r2

Figure 2.1 shows the corresponding TSK-type fuzzy reasoning process (a) and the

equivalent ANFIS structure (b). As shown in Figure 2.1(a), in the TSK-type fuzzy

reasoning, the output of each rule is a linear combination of all the input variables,

and the overall output is the weighted average (w̄1 y1 + w̄2 y2) of each rule’s output.

The network structure of a general ANFIS contains five layers of computing elements,

as shown in Figure 2.1(b), In this figure, the square nodes stand for adaptive com-

puting units with modifiable parameters, and the circle nodes represent those fixed

units without parameters. Further details of the individual layers within this ANFIS

are outlined below.

Layer 1: Each node i in this layer is a square unit defined by a fuzzy set Oi j of the

membership function: µOi j
(x i), i, j ∈ {1,2}, where x i denotes the input variable to

node i, and Oi1 ∈ {Ai|i = 1,2} and Oi2 ∈ {Bi|i = 1,2} denote the fuzzy sets defined

on the domains of x1 and x2, respectively. Such a membership function can be

specified as any continuous or piecewise differentiable, convex and normal functions

such as trapezoidal, triangular, bell-shaped ones. For example, a triangular fuzzy set

is defined as follows in general terms,
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Figure 2.1: (a) TSK-type fuzzy reasoning. (b) Equivalent ANFIS structure represent-
ing two TSK rules

µO(x) =











k1 x + b1 a0 ≤ x ≤ a1

k2 x + b2 a1 ≤ x ≤ a2

0 otherwise

(2.1)

where a0 and a2 are the two extreme points delimiting the fuzzy set with a member-

ship value of 0, and a1 stands for the normal point of the set whose membership value

is 1. k1 = 1/(a1− a0), b1 = −a0/(a1− a0), k2 = 1/(a1− a2), and b2 = −a2/(a1− a2).
In ANFIS terms, k1, k2, b1, b2 are called premise parameters as they are associated
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with the underlying input variable (which appears in the antecedent part of a rule).

Incidentally, the notion of representative value that is often used in FRI for such a

triangular-shaped fuzzy set O(a0, a1, a2) can be simply defined as:

Rep(O) = (a0 + a1 + a2)/3 (2.2)

The Gaussian-shaped and bell-shaped functions are also commonly used mem-

bership functions, which are defined in Equation (2.3) and (2.4) respectively:

µO(x) = ex p[−(
x −m
σ
)2] (2.3)

µO(x) =
1

1+ [(
x − c

a
)2]b

(2.4)

where m,σ, a, b, c are the corresponding premise parameters.

Layer 2: Each node in this layer is a circle unit which multiplies the incoming

membership of each attribute and gives the product as its (local) output, denoted by

wi. wi is also the firing strength of the ith rule (i = 1,2):

wi = µAi
(x1)×µBi

(x2) (2.5)

Layer 3: Each node in this layer is also a circle unit, calculating the relative

proportion of the ith rule’s firing strength to the total of both rules’ firing strengths:

w̄i =
wi

w1 +w2
(2.6)

where again, i = 1,2. To reflect the underlying semantics, the outputs of this layer

are termed as normalised firing strengths.

Layer 4: Each node i in this layer is a square unit implementing the following

linear function:

w̄i(pi x1 + qi x2 + ri) = w̄i yi (2.7)

where w̄i is the output of the previous layer, and pi, qi, ri are the parameters associated

with the rule consequents and hence, are termed consequent parameters hereafter.
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Layer 5: This layer is the (global network) output layer, which consists of a single

circle unit, computing the overall output in response to the current input to the

network, defined as the summation of all its incoming values from the previous layer,

namely,

y =
∑

i

w̄i yi = w̄1 y1 + w̄2 y2 (2.8)

Each layer within a general ANFIS is summarised in Table 2.1.

Table 2.1: Functionality of individual layers in ANFIS

Layer Activity Parameter

1 Fuzzifying crisp value Premise parameter

2 Computing firing strength of each rule No

3 Normalising firing strength No

4 Computing local output Consequent parameter

5 Computing global output No

2.1.2 Hybrid learning algorithm

Given the network structure, the only uncertain part of an ANFIS concerns the

parameters in the first layer (premise parameters describing the fuzzy sets) and the

fourth layer (consequent parameters specifying the linear functions). In the original

work reported in [66], these parameters are trained using a hybrid learning method

[67] combining gradient descent and Least Square Estimation (LSE).

Considering a simple adaptive network structure in which there is only one output

variable:

output = F(
→
I , S) (2.9)

where F(·, ·) denotes the function of the fuzzy inference system,
→
I denotes the set of

the input variables, and S denotes the set of parameters. If there exists a function H

such that the composite function H ◦ F is linear in a part of the parameters of S, then

these parameters can be identified by the LSE. Suppose that S can be decomposed

into two sets S1 and S2:

S = S1 ⊕ S2 (2.10)
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where ⊕ denotes direct sum, and H ◦ F is linear in the elements of S2. Applying H to

Equation (2.9), it can be written as:

H(output) = H ◦ F(
→
I , S) = H ◦ F(

→
I , S1 ⊕ S2) (2.11)

Since H ◦F is linear for S2, when giving the values of parameters in S1, and specifying

the training data into Equation (2.11), a linear matrix equation AX = B can be

obtained, where X denotes the unknown vector whose elements are the parameters

in S2. By minimizing the squared error ||AX − B||2 using LSE, the solution of AX = B

(denoted by X ∗) can be expressed as:

X ∗ = (AT A)−1AT B (2.12)

where (AT A)−1AT is the pseudo-inverse of A. Since Equation (2.12) is a concise

solution, it is computational expensive for doing the matrix inverse. So instead of

solving Equation (2.12) directly, a sequential formula [8] is employed to iteratively

compute the LSE of X :






X i+1 = X i + Si+1ai+1(bT
i+1 − aT

i+1X i)

Si+1 = Si −
Siai+1aT

i+1Si

1+ aT
i+1Siai+1

(2.13)

where i = 0, 1, · · · , P − 1, P denotes the number of training data pairs, aT
i is the i th

row vector of A, bT
i is the i th element of B, Si is called the covariance matrix with

S0 = γI (γ is a positive large number and I is the identity matrix), X0 is set to be

X0 = 0, and the least square estimate X ∗ is equal to XP .

Based on the above analysis, the parameters in S2 can be calculated by Equation

(2.13), then the gradient descent and LSE can be combined to update the parameters.

Each loop of the hybrid learning algorithm is composed of a forward pass and a

backward pass. In the forward pass, the input training data go through each node

of the network until matrices A and B are obtained, then the parameters in S2 can

be identified using the sequential least square formulas in Equation (2.13). After

that, the function signals keep going forward to get the estimated output of the

current loop, which will be used to calculate the output error together with the

desired output. Then, in the backward pass, with the identified parameters in S2,

the parameters in S1 is computed by the gradient descent algorithm.

From the above ANFIS architecture (see Figure 2.1(b)), it is observed that given

the values of premise parameters, the overall output can be expressed as a linear
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combinations of the consequent parameters. More precisely, the output y in Figure

2.1(b) can be rewritten as:

y =
w1

w1 +w2
y1 +

w2

w1 +w2
y2

=w̄1 y1 + w̄2 y2

=(w̄1 x1)p1 + (w̄1 x2)q1 + (w̄1)r1

+ (w̄2 x1)p2 + (w̄2 x2)q2 + (w̄2)r2

(2.14)

which is linear in the consequent parameters (p1, q1, r1, p2, q2 and r2). Define S, S1, S2

in Equation (2.10) as follows:










S → set o f total parameters

S1→ set o f premise parameters

S2→ set o f consequent parameters

(2.15)

and define H(·) in Equation (2.11) as the identify function, then the composite

function H ◦ F satisfies the condition that H ◦ F is linear in a part of parameters in S

(i.e. the parameters in S2), therefore the hybrid learning algorithm (the combination

use of LSE method and gradient descent method) can be applied directly. More

specifically, in the forward pass, the input values of the training samples are fed

forward to compute the output with the premise parameters being fixed, and the

consequent parameters are optimised by LSE. Then, in the backward pass, the

consequent parameters are set to be fixed, while the error rates between the computed

output and the expected ones (as part of the given training samples) are propagated

backward, with the premise parameters updated using the gradient descent method.

Table 2.2 summarizes the activities in each pass.

Table 2.2: Two passes in the hybrid learning procedure for ANFIS

- Forward pass Backward pass
Premise parameters Fixed Gradient descent

Consequent parameters LSE Fixed
Signals Node Outputs Error Rates

2.2 Fuzzy Rule Interpolation (FRI)

Fuzzy systems utilise a fuzzy rule-base to perform the inference. For most fuzzy

inference systems, it is assumed that the rule-bases are complete. The complete
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rule-base (or dense rule-base) ensures that for any possible input, there exists at

least one fired fuzzy rule whose antecedent part overlaps the input data. Therefore,

the conclusion can be drawn by combining the consequences of all the fired rules.

However, in certain problems, the rule-base can be incomplete (or sparse) in which

some rules are missed. For a sparse rule-base, the input space is not fully covered,

there may exist an empty space between the membership functions of two rule

antecedents. In this case, for the observations that fall into the ‘empty space’, the

conventional fuzzy reasoning methods are highly likely to conclude nothing. Figure

2.2 shows the difference between a dense rule-base and a sparse rule-base. Note that

there is a subtle nuance between the concepts of ’sparse data’ and ’sparse rule-base’.

A sparse rule-base is generated from sparse data, but sparse data does not necessarily

lead to a sparse rule-base. Even sparse data can result in a dense rule-base with

badly generated rules.

Figure 2.2: Dense and sparse rule-base

Fuzzy rule interpolation (FRI) techniques are proposed to overcome this challag-

ing issue, which enable a fuzzy inference system with a sparse rule-base to perform
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inference [85, 94]. The basic idea of FRI is to interpolate a rule at the place where

no rule can be fired with the given observation, by combining the information of the

neighbouring rules. A number of FRI methods have been developed in the literature

[75, 76, 120], which can be approximately classified into two categories, the single

step rule-based interpolation and the intermediate rule based interpolation. The most

representative approaches for these two categories are the KH (Kóczy and Hirota)

method and the T-FRI (transformation based FRI) method respectively, which will

be reviewed in the following sections. Most existing FRI techniques in the literatures

are with Mamdani-type rules, while the development of TSK-type FRI is still rather

rare. Some initial work has been reported most recently [31, 95, 173], which will

be reviewed later.

2.2.1 The KH approach

The KH (Koczy and Hirota) method [83, 84] is the very first and classic FRI technique,

which is based on the α-cuts theory. The α-cut Aα of a fuzzy set A is defined as:

Aα = {x |A(x)¾ α,α ∈ [0, 1]} (2.16)

where A(x) is the membership function of fuzzy set A. Theoretically, every fuzzy set

can be approximated by the use of the family of its α-cuts.

For a given observation A∗ that does not match with any rule in the rule-base,

the KH method selects a few (usually two) neighbouring rules and then conducts

the linear combination to obtain the inference result. For simplicity, suppose that

both of the two selected flanking rules (R1 and R2) are with only one input variable,

formatted as follows:

R1 : I f x is A1, then y is B1

R2 : I f x is A2, then y is B2

The KH method produces the conclusion using the assumption that the ratio of

distances between the conclusion and the rule consequents should be identical with

that of distances between the observation and the rule antecedents. The required

conclusion B∗ is determined by the following equation:

21



2.2. Fuzzy Rule Interpolation (FRI)

d(A∗, A1)
d(A∗, A2)

=
d(B∗, B1)
d(B∗, B2)

(2.17)

where d(., .) denotes the fuzzy distance between the two fuzzy sets. According to

the resolution principle [125, 165], every fuzzy set can be represented as a family of

its α-cuts. Therefore the Equation (2.17) can be written as:

d(A∗
α
, A1α)

d(A∗
α
, A2α)

=
d(B∗

α
, B1α)

d(B∗
α
, B2α)

(2.18)

where α ∈ [0, 1]. Define the lower and upper distances between α-cuts A∗
α

and A1α

as follows:

dL(A
∗
α
, A1α) = d(in f {A∗

α
}, in f {A1α}) (2.19)

dU(A
∗
α
, A1α) = d(sup{A∗

α
}, sup{A1α}) (2.20)

Figure 2.3: Lower and upper distances between two α-cuts.

The lower and upper distances are illustrated in Figure 2.3. Using the lower and

upper distances, Equation (2.18) is transformed into:

dL(A∗α, A1α)

dL(A∗α, A2α)
=

dL(B∗α, B1α)

dL(B∗α, B2α)
(2.21)

dU(A∗α, A1α)

dU(A∗α, A2α)
=

dU(B∗α, B1α)

dU(B∗α, B2α)
(2.22)

From Equation (2.19), Equation (2.21) can be written as:
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dL(A∗α, A1α)

dL(A∗α, A2α)
=

dL(B∗α, B1α)

dL(B∗α, B2α)

=
d(in f {B∗

α
}, in f {B1α})

d(in f {B∗
α
}, in f {B2α})

=
in f {B∗

α
} − in f {B1α}

in f {B2α} − in f {B∗
α
}

(2.23)

Then it can be solved as follows:

in f {B∗
α
}=

in f {B1α}dL(A∗α, A2α) + in f {B2α}dL(A∗α, A1α)

dL(A∗α, A1α) + dL(A∗α, A2α)

=

in f {B1α}
dL(A∗α, A1α)

+
in f {B2α}

dL(A∗α, A2α)
1

dL(A∗α, A1α)
+

1
dL(A∗α, A2α)

(2.24)

sup{B∗
α
} can be calculated using the same way by combining Equation (2.20)

and (2.22), resulting in

in f {B∗
α
}=

in f {B1α}
w1L

+
in f {B2α}

w2L

w1L +w2L
(2.25)

sup{B∗
α
}=

sup{B1α}
w1U

+
sup{B2α}

w2U

w1U +w2U
(2.26)

where

w1L =
1

dL(A∗α, A1α)
, w2L =

1
dL(A∗α, A2α)

(2.27)

w1U =
1

dU(A∗α, A1α)
, w2U =

1
dU(A∗α, A2α)

(2.28)

From this, B∗
α

can be obtained by B∗
α
= [in f {B∗

α
}, sup{B∗

α
}]. Then the conclusion

fuzzy set B∗ can be constructed by the resolution principle of fuzzy set, as follows:

B∗ =
⋃

α∈[0,1]

B∗
α

(2.29)

Theoretically, all possible α-cuts (which is an infinite number) should be con-

sidered to interpolate an approximate conclusion. However, in order to reduce the
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complexity in practice, only a finite number (usually 2, 3 or 4) of α-cuts are taken into

consideration. The KH approach forms the base of the FRI theory, based on this fun-

damental KH method, many extended versions have been proposed [132, 137, 146].
For instance, the modified α-cut based interpolation method [132] solves the ‘abnor-

mal fuzzy set problem’ in the original KH approach through coordinate modification,

and reference [146] extends the classical KH approach to more complex version

involving multiple rules with multiple antecedent variables.

2.2.2 The T-FRI approach

Apart from the earliest linear FRI method (KH method), a number of FRI methods

have been proposed to improve the performance of interpolative reasoning. The most

popular group will be the transformation-based approaches, termed as scale and move

transformation-based fuzzy rule interpolation (T-FRI) [58, 59]. It can handle both

interpolation and extrapolation, and guarantees the normality as well as convexity

of the interpolated fuzzy sets. The T-FRI is valid for multiple variables involved in

multiple fuzzy rules with various types of membership functions (e.g. triangular,

trapezoidal, Gaussian and bell-shaped MFs). Due to the simplicity and popularity

of the triangular-shaped membership function, here only the T-FRI approach with

triangular-shaped MF is introduced as a representative.

2.2.2.1 Representative value

An important concept in the T-FRI is the representative value (Rep) of a fuzzy set that

must be defined first. This value captures the important information (such as the

overall location) of a fuzzy set, and will guide the scale and move transformations

later. For an arbitrary polynomial fuzzy set with n odd points A= (a0, . . . , an−1), its

general Rep is defined as below:

Rep(A) =
n−1
∑

i=0

wiai (2.30)

with wi is the weight assigned to point ai. Different calculation methods of these

weights can result in different representative value. The simplest way to specify the
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weights is called the ‘average Rep’ method, where all points take the same weight

value:

Rep(A) =
1
n

n−1
∑

i=0

ai (2.31)

For example, if A denotes a triangular-shaped fuzzy set with three points a0, a1 and

a2, the average Rep is computed as: Rep(A) =
(a0 + a1 + a2)

3
.

2.2.2.2 Main steps in T-FRI

Based on the definition of Rep value, the T-FRI approach can be implemented as three

key steps. For a given unfired observation, firstly, K closest rules is selected from the

sparse rule-base. Then an intermediate rule is generated by weighted averaging the

chosen closest rules. Finally, the scale and move transformation is applied on the

intermediate rule to obtain the final result. These three steps will be described in

detail as follows.

A. K closest rules selection

Without losing generality, a fuzzy rule Ri in the sparse rule-base and an unfired

observation O∗ is represented as follows:

Rule Ri : i f X1 is Ai1 and . . . and Xm is Aim, then Y is Bi (2.32)

O∗ : X1 is A∗1 and . . . and Xm is A∗m (2.33)

where Ai j denotes the jth antecedent fuzzy set in rule Ri, Bi is the consequent fuzzy

set of rule Ri, A∗j denotes the jth fuzzy set in observation O∗, and m is the number of

input variables.

The fuzzy distance di j between two fuzzy sets is defined as the distance of their

corresponding representative vales:

di j = d(Ai j, A∗j) = d(Rep(Ai j), Rep(A∗j)) (2.34)

Since different variables may have different ranges, each distance measure related

to one variable is normalised to [0, 1], as follows:
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d ′j =
d(Ai j, A∗j)

max j −min j
=

d(Rep(Ai j), Rep(A∗j))

max j −min j
(2.35)

where max j and min j denote the maximal and minimal values of variable X j re-

spectively. Then the distance di between rule Ri and observation O∗ is computed

as:

di =

√

√

√

m
∑

j=1

(d ′j)2 (2.36)

After calculating the distances {di} between a given observation and all the fuzzy

rules in the sparse rule-base, the K rules that have the minimal distances will be

chosen as the K closest rules, and will be used for constructing the intermediate rule

subsequently.

B. Intermediate rule construction

By combining the K closest rules selected from the sparse rule-base, the interme-

diate rule will result, which has the following format:

i f X1 is A′1 and . . . and Xm is A′m, then Y is B′ (2.37)

where A′j, j = 1,2, . . . , m is calculated as:

A′j = A′′j +δ j(max j −min j) (2.38)

A′′j is the weighted average of the K selected rules:

A′′j =
K
∑

k=1

w′k jAk j (2.39)

where each w′k j = wk j/
∑

k=1,...,K wk j denotes the normalized weight, so that the

sum of all the weights will equal to one. The weight wk j is computed according to

the fuzzy distance between O∗j and Ak j, generally, a larger distance will result in a

smaller weight. Usually wk j can be simply defined as (2.40), although alternative

non-increasing functions (such as wk j = ex p−d(O∗j ,Ak j)) can also be adopted to assign

the weights.

wk j =
1

d(O∗j , Ak j)
(2.40)
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In (2.38), δ j is a constant defined by:

δ j =
Rep(A∗j)− Rep(A′′j )

max j −min j
(2.41)

In doing so, the Rep value of A′j will keep the same with that value of A∗j. By analogy

to the antecedent part, the consequent part B′ of the intermediate rule is obtained

by:

B′ = B′′ +δa(max −min) (2.42)

where max , min are the maximal and minimal value of the output variable Y respec-

tively, and B′′ and δa are computed as:

B′′ =
K
∑

k=1

w′ka
Bk (2.43)

δa =
1
m

m
∑

j=1

δ j (2.44)

where K denotes the number of closest rules selected from the sparse rule-base,

w′ka
= (1/m)
∑

j=1,...,m w′k j is the mean value of w′k j, j = 1, . . . , m. The subscript a in

δa and w′ka
means ’average’.

C. Scale and move transformation

The construction method of the intermediate rule can only insure that the Rep

value of A′j and O∗j as close as possible, but the shapes of these two fuzzy sets can be

rather different, so the scale and move transformation is then introduced to solve

this problem. This process is implemented in two stages: scale transformation and

move transformation.

• Scale transformation: For a given fuzzy set A′j = (a
′
j0, a′j1, a′j2) of the intermedi-

ate rule, the scale factor sA j
is defined by:

sA j
=

a∗j2 − a∗j0
a′j2 − a′j0

(2.45)

where a∗j0 and a∗j2 are the two extreme points of fuzzy set A∗j = (a
∗
j0, a∗j1, a∗j2).

Then, the scaled fuzzy set Ā′j = (ā
′
j0, ā′j1, ā′j2) can be calculated as follows:



























ā′j0 =
(1+ 2sA j

)a′j0 + (1− sA j
)a′j1 + (1− sA j

)a′j2
3

ā′j1 =
(1− sA j

)a′j0 + (1+ 2sA j
)a′j1 + (1− sA j

)a′j2
3

ā′j2 =
(1− sA j

)a′j0 + (1− sA j
)a′j1 + (1+ 2sA j

)a′j2
3

(2.46)
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According to the intuition that a similar rule antecedent will lead to a similar

rule consequent, the scaled consequent fuzzy set B̄′ = (b̄′0, b̄′1, b̄′2) can be

obtained by using the same scale factor:























b̄′0 =
(1+ 2sB)b′0 + (1− sB)b′1 + (1− sB)b′2

3

b̄′1 =
(1− sB)b′0 + (1+ 2sB)b′1 + (1− sB)b′2

3

b̄′2 =
(1− sB)b′0 + (1− sB)b′1 + (1+ 2sB)b′2

3

(2.47)

where sB = (1/m)
∑

j=1,...,m sA j
is the average value of all sA j

.

• Move transformation: The move factor is defined as:

mA j
=



















3(a∗j0 − ā′j0)

ā′j1 − ā′j0
a∗j0 ≥ ā′j0

3(a∗j0 − ā′j0)

ā′j2 − ā′j1
a∗j0 ≤ ā′j0

(2.48)

Given mA j
, the conclusion B∗ can be estimated as:

































































































b∗0 = b̄′0 +mB

b̄′1 − b̄′0
3

b∗1 = b̄′1 − 2mB

b̄′1 − b̄′0
3

b∗2 = b̄′2 +mB

b̄′1 − b̄′0
3

i f mB ≥ 0



























b∗0 = b̄′0 +mB

b̄′2 − b̄′1
3

b∗1 = b̄′1 − 2mB

b̄′2 − b̄′1
3

b∗2 = b̄′2 +mB

b̄′2 − b̄′1
3

otherwise

(2.49)

where mB = (1/m)
∑

j=1,...,m mA j
.

Based on this fundamental T-FRI approach, a series of advanced improvements

have been developed over the past decades [24, 73, 74, 112, 155, 156], including

the backward fuzzy rule interpolation [73], the rough fuzzy rule interpolation [24],
the dynamic fuzzy rule interpolation [112] and the adaptive fuzzy rule interpolation

[155, 156], just to name a few.
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2.2.3 The TSK-type rule interpolation

Most existing FRI techniques in the literatures are the Mamdani-type rule interpola-

tion, while the development of TSK-type FRI is still rather rare, although some initial

work has most recently been reported in [31, 95, 173]. As mentioned previously,

different from the Mamdani-type rules in which the consequent part is a fuzzy set, in

the TSK-type rules the consequent is usually a crisp polynomial function. A typical

TSK-type rule Ri can be represented as follows:

Ri : i f x1 is Ai1 and . . . and xm is Aim, then yi =
m
∑

j=0

pi j x j (2.50)

where x0 = 1 is the constant term of the polynomial function. Therefore, the TSK-

type fuzzy rule interpolation methods are also slightly different as compared with the

classical Mamdani-type fuzzy rule interpolation methods. This section summarizes

the main steps of the existing representative TSK-type FRI methods reported in

[31, 95, 173].

For a given observation O∗(i f x1 is A∗1 and . . . and xm is A∗m) and the rule Ri in

the sparse rule-base represented as Equation (2.50), the TSK-type rule interpolation

approaches (with triangular-shaped membership functions) are implemented as the

following steps:

Step 1: Compute the similarity measure between the observation O∗ and each rule

Ri in the sparse rule-base;

The similarity measure can be defined using various ways. The simplest and also

the most popular method to define the similarity measure is using the fuzzy distance

between two fuzzy sets, which is wildly adopted in the literature (such as reference

[31], and the T-FRI approaches [58, 59]). Alternatively in the TSK+ approach [95], a

new similarity measurement between two triangular fuzzy sets is developed , taking

both the similarity and the distance between the two fuzzy sets into consideration.

Suppose that A= (a0, a1, a2) and A′ = (a′0, a′1, a′2) are two fuzzy sets in a normalized

variable domain, their similarity degree S(A, A′) is defined as follows:

S(A, A′) = (1−

∑2
i=0 |ai − a′i|

3
) · d (2.51)
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where d is called the ‘distance factor’ that is calculated by:

d =

(

1 a0 = a1 = a2 & a′0 = a′1 = a′2
1−

1
1+ e(−s·||A,A′||+5)

otherwise
(2.52)

where ||A, A′|| denotes the fuzzy distance between A and A′ (which is defined as the

distance between their representative values), s(s > 0) is a sensitive factor, where

smaller s will result in the similarity degree S(A, A′) more sensitive to the distance

between the two fuzzy sets. The constant 5 in the equation ensures that the distance

factor d is close to one when the fuzzy distance between A and A′ is zero.

The proposed similarity measure has the following properties:

1) A lager S(A, A′) indicates higher similarity degree between A and A′;

2) A and A′ are identical if and only if S(A, A′) = 1;

3) S(A, A′) > 0 unless (a0 = a1 = a2 = 0 and a′0 = a′1 = a′2 = 1) or (a0 = a1 =
a2 = 1 and a′0 = a′1 = a′2 = 0).

Step 2: Choose K closest rules according to the similarity measure;

Similar with the Mamdani-type rule interpolation, the TSK-based approaches also

choose a portion of closest rules to contribute to the interpolation result according

to the calculated similarity measures. The choice of K can be various in different

approaches: In the TSK+ method [95], all the rules in the sparse rule-base are

utilized without selection; in reference [173], K is set to be a fixed small value to

avoid the bad influence of the rules with low similarity; while in the weighted T-FRI

approach [93], it has been proven that only two chosen rules can achieve the best

performance.

Step 3: Construct an intermediate rule;

The intermediate rule is constructed by weighted averaging all the selected K

closest rules. Suppose that the constructed intermediated rule has the following

format:

R′ : i f x1 is A′1 and . . . and xm is A′m, then y ′ =
m
∑

j=0

p′j x j (2.53)

where

A′j =
K
∑

k=1

wkAk j, j = 1, . . . , m. (2.54)
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p′j =
K
∑

k=1

wkpk j, j = 0, . . . , m. (2.55)

The weights wk are calculated according to the similarity between the observation

O∗ and the K closest rules Rk. Generally, a higher similarity between O∗ and Rk will

result in larger weight wk, although different methods can be designed to calculate

the weights. For instance, in TSK+ [95] the weights are computed using the proposed

similarity measure:

S(O∗1 , Ak1)∧ S(O∗2 , Ak2)∧ · · · ∧ S(O∗m, Akm) (2.56)

where S(O∗j , Ak j), j = 1, · · · , m is defined by Equation (2.51), ∧ is a t-norm that is

usually implemented by minimum operator. An alternative way to obtain the weights

proposed in [31] is through solving a linear equation group with the constraint that

Rep(O∗j ) = Rep(Ak j):






























Rep(A∗1) =
∑K

k=1 wkRep(Ak1)
...

Rep(A∗j) =
∑K

k=1 wkRep(Ak j)
...

Rep(A∗m) =
∑K

k=1 wkRep(Akm)

(2.57)

In comparison with the possible alternatives that typically use the Euclidean

norm and usually rely on an extra move operator when constructing the intermediate

rule [58, 59], such constraints directly assess how much contribution of each se-

lected rule may make to the resulting intermediate rule, avoiding more complicated

computation.

Step 4: Inference using the intermediate rule.

Finally, the inference result will be obtained by using the constructed interme-

diate rule. In summary, the overall process of several existing TSK-type fuzzy rule

interpolation is very similar with the intermediate rule based Mamdani-type FRI

approaches, they all have the K closest rule selection and the intermediate rule

construction steps. However, there are also some new techniques introduced to the

TSK-type interpolation methods (e.g. the computation methods of the similarity

measure, and different ways of identifying weights). Of course, the TSK-based FRI

methods are still at their infancy with rare existing approaches, more promising

methods will be developed in the future.
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2.3 Image Super Resolution

High resolution (HR) images are desired in many real world applications, such as

medical diagnosis, remote sensing problems and so on [164] (shown as Figure 2.4).

However, due to hardware and communication channel limitations as well as budget

constraints, images are sometimes obtained with low resolution (LR). To increase the

spatial resolution of an image can be accomplished by either reducing the pixel size

by sensor manufacturing techniques or increasing the chip size of the sensors, both of

which are severely constrained by the physical limitation of imaging systems and also

lead to huge budget burden. Therefore, image super resolution (SR) reconstruction

algorithms [118] have been developed in order to efficiently improve the spatial

resolution of a given image using computer software, and also to provide clear images

for the subsequent image processing tasks (such as recognition, classification and

detection).

Figure 2.4: Application examples of image super resolution reconstruction. Source
images are obtained from [134, 147].

Image super resolution techniques aim to generate an HR image from one or

more given LR images. This section firstly gives a general description of the image

super resolution problem, then the most popular super resolution algorithm (the

learning based SR) is introduced in detail.

2.3.1 Problem description

Image resolution reflects how much detail is contained in an image, an image with

higher resolution means that more details are captured. An illustration of HR image

and LR image of the same scene is shown in Figure 2.5.
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Figure 2.5: Illustration of LR and HR images. Source images are obtained from
[141].

Image super resolution techniques, also termed as image zooming or image

enlargement, aim to generate an HR image using one or multiple input LR images.

According to the number of the input LR images used, the existing SR approaches

can be broadly categorized into two classes: 1) single-frame approaches using only

one LR input image, and 2) multi-frame approaches using multiple LR input images

of the same scene(shown as Figure 2.6).

Figure 2.6: Single-frame and multi-frame SR. Source images are obtained from
[141].

Muti-frame images SR approaches [97, 99, 170] usually need geometrical regis-

tration of sub-pixel level over the multiple input LR images, and then the registered

images are fused to obtain an HR image. The accurate sub-pixel level registration

can be very time consuming, and inaccurate registration will seriously effect the

super resolution results. Also, images of the same scene are sometimes very hard to

obtain due to the weather changes, light limitation or the noise affect. Therefore,

the single-frame SR algorithms are getting more and more popular as they do not
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need to collect various LR images of the same scene as input. In single-frame SR

problems, the observed LR image X is assumed to be the down sampled version of

the desired HR image Y:

X= HY (2.58)

Here, H represents the down sampling operator. Single-frame SR is therefore, the

inverse problem of the above image degradation equation. For a given LR input

X, infinitely many HR images Y satisfy Equation (2.58), thus super resolution is

an extremely ill-posed inverse problem. In order to handle such a problem, extra

information is needed.

Existing single-frame SR methods [13, 14, 50, 150] typically adopt three different

types of techniques: the interpolation based methods, the reconstruction based

methods and the learning based methods. The interpolation based methods [56, 96]
are the oldest image SR algorithms which are implemented by simply interpolating

the image pixels. For example, as shown in Figure 2.7, images are seen as matrices

of pixels in computer (the A, B, C denote image pixels). When an image is enlarged,

the number of pixels will increase, so the task of image SR is to estimate the missing

pixels. Interpolation based approaches aim to interpolate the existing pixels to fill

in the blanks. The most commonly used interpolation methods include the nearest

interpolation, bilinest interpolation and the bicubic interpolation, which are already

proven techniques and have been wildly used in computer software or web pages for

zooming pictures.

Figure 2.7: Interpolation based image SR. Source images are obtained from [141].

However, researchers have pointed out that large size is not the only meaning of

high resolution, the term ‘high resolution’ also means more information and clearer

details. Also, the interpolation based approaches usually utilise a base function that

only considers the correlations of neighbouring pixels to approximate the missing

pixels in HR images, therefore tending to cause blurred edges and generating overly
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smoothed images. So the resulting image generated by the interpolation methods is

still a low resolution image to some extent, and they are often be used as the initial

step during the whole super resolution process in the improved approaches. After

that, the interpolated large size image will be sequentially enhanced to get the real

high resolution one, and this enhancement process is also what the recent super

resolution researches focus on.

To further improve the image resolution, the reconstruction based methods

[77, 98] are proposed, in which prior knowledge is introduced in an attempt to

restraint the solution. For instance, the sparse representation base image SR [150]
uses the image sparsity in the frequency domain as an extra constraint added in the

reconstruction process, improving the quality of the enlarged image significantly; the

similarity based image SR algorithms [22, 25] add the similarity constraint among

image patches in an effort to eliminate the artefacts or noise in the reconstructed

HR images; and in [35], the heavy-tail distribution property of image histogram

is utilized as an extra prior knowledge to improve the super resolution accuracy.

Although such strategies may offer much better performance than interpolation

based techniques, important problems such as missing details remain.

More recently, the learning based methods have been proposed to tackle the

challenging ISR problem via learning dictionaries [158] or relationships [122, 149,

171] from an external image database. Empirical results have shown that these

approaches generally lead to improved visual outcomes, thereby forming the state of

the art results in single frame ISR. The following section will give a brief introduction

of the learning based ISR and review some typical literatures.

2.3.2 Learning based image SR

The learning based super resolution approaches collect a large amount of image

pairs of both resolutions as the training data set, which will be subsequently utilised

to learn the relationship between the high resolution image and the low resolution

image. And once the relationship is learned, it can be applied on new testing images.

So when it comes a new low resolution image, the corresponding high resolution

image is estimated using the learned relationship ‘R’, with patch-by-patch or pixel-by-

pixel strategy. This is illustrated in Figure 2.8. Typical examples of learning based SR

are listed in references [43, 122, 171]. In particular, the learning based SR methods
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mainly include the learning of linear mappings, the learning of deep convolutional

neural networks and the learning of fuzzy rules. These three representative types of

learning based approaches are briefly introduced as follows.

Figure 2.8: Learning based image SR

A. Learning of linear mappings

The type of relationships or mappings R can be various. Generally, they can be

classified into two classes: the linear class, and the non-linear class. Linear mappings

are first proposed and commonly used in the literatures due to their simplicity

[14, 149, 171]. For example, the method proposed in [171] works by learning

multiple linear mappings from the LR feature space onto the HR feature space, in

order to perform single-frame image SR. And in [149], the feature space is split into

numerous subspaces, and exemplars for each subspace are collected to learn the

effective linear mapping functions.

But in more cases, linear mappings are too simple to describe the complex

relationship between the low resolution image and the high resolution image, so

the non-linear mappings are proposed to achieve better performances. Existing

literatures mentioned two types of non-linear mappings: the deep convolutional

neural network, and the fuzzy rule.

B. Learning of deep CNNs

As the rapid increasement of the computer storage capacity and the calculation

speed, the traditional neural network can be designed much deeper than ever before,
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which greatly improves the network ability in capturing accurate features and has

been wildly utilized in a range of image processing tasks [53, 86, 101, 142]. The

deep convolutional neural network (CNN) is one of the most powerful network

structures in deep learning. For deep CNN based image super resolution problems,

different CNNs are designed and utilised to extract image features and construct an

end-to-end non-linear mapping between LR and HR images [43, 52, 88]. Owing

to the powerful capacity in capture deep level image features, these approaches

represent the state of the art techniques in image SR.

However, such a strategy usually requires a large amount of network parameters

to work successfully, and may consume a lot of time for training despite their accuracy.

A possible alternative is to explore fuzzy rule based approaches [122] which can

produce non-linear mappings through the use of a set of fuzzy rules, resulting in

lightweight models and making the training process faster.

C. Learning of fuzzy rules

As an LR image patch can be generated from any of the many possible HR image

patches, this uncertainty of the image SR problem makes it natural to introduce

fuzzy technique into the learning based approaches, which is well demonstrated in

reference [122]. The image SR methods based on learning of fuzzy rules work by

transferring the image pixels (or image features) of a given image into corresponding

fuzzy representations and using fuzzy ‘if-then’ rules to describe the non-linear rela-

tionship between the LR and the HR images. Given a pixel (or an extracted image

feature) in the low resolution image as an input, the corresponding pixel in the high

resolution image will be the output of the fuzzy rule inference.

The work of [122] addresses the ISR problem through fuzzy clustering and

fuzzy rule learning, updating the desired HR pixels as a linear combination of the

input LR pixels and the relevant cluster centroid. In particular, the fuzzy clustering

technique approximately classifies the given image pixels into different types firstly,

assuming there exist a set of fuzzy rules concluding each type. Then, for each type

of image pixels, a non-linear mapping consisting of a set of fuzzy rules is learned. A

number of learning methods can be adopted for learning the relevant parameters

in the fuzzy rules, such as the LSE, evolutionary algorithms. Amongst the various

learning methods, the ANFIS has been proven to be a popular tool for generate a set

of effective fuzzy rules through an adaptive neural network structure, this ANFIS

based ISR approach is developed in this thesis and will be detailed described later in

Chapter 5.

37



2.4. Summary

2.4 Summary

In this chapter, a number of background techniques have been introduced, forming

the fundamental knowledge required to develop the work of this thesis. In particular,

the basic concepts of ANFIS are reviewed in the first place. The typical fuzzy rule

interpolation techniques are systemically outlined. These FRI techniques include the

original KH approach and the popular T-FRI approach with Mamdani-type rules, and

several existing TSK based rule interpolation approaches. Finally, the background

knowledge of image super resolution is briefly introduced, and some recent popular

image super resolution methods are reviewed.

Based on the background material presented in this chapter, Chapter 3 studies

the problem of how to extend the traditional fuzzy rule interpolation to ANFIS

interpolation, resulting in a group rule based interpolation approach.
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Chapter 3

ANFIS Interpolation - A Group Rule

Interpolation Based Approach

A LTOUGH ANFIS models have been widely used in various real world problems,

the way to drive an effective ANFIS model with sparse training data still remains

a challenging problem, similarly to many other algorithms. As reviewed previously

in Section 1.2, the transfer learning and the FRI techniques may provide potential

solutions to this important practical issue. Inspired by the basic ideas of transfer

learning (that the knowledge obtained from the source domain can be transferred

and used in the target domain) and fuzzy rule interpolation (that a new fuzzy rule

can be constructed by interpolating two neighbouring rules), this chapter focusses

on the introduction of a transfer-learning based approach to fuzzy rule interpolation

for ANFIS construction. It combines the aforementioned ideas underlying the two

distinct approaches to learn ANFISs for situations where there is only limited training

data available in the given target domain. Particularly, to construct a new ANFIS in

a target domain, the proposed approach seeks the assistance of two neighbouring

ANFISs that have been generated from two source domains (where sufficient training

data is available).

Because the proposed approach is ANFIS based, it has the following features:

1. Traditional FRI methods are concerned with individual rule interpolation within

one fixed problem area, and are designed to interpolate a rule for an unmatched
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observation, with just one rule interpolated using its closest neighbouring rules.

While ANFIS interpolation focuses on the interpolation of an entire fuzzy

inference system for a certain area, using ANFISs learned in the neighbourhood

areas.

2. Traditional FRI methods work with a sparse rule-base, from which the closest

rules are selected. But in ANFIS interpolation problem, there is no existing

explicit sparse rule-base for use.

With these differences, how to extend the traditional rule interpolation to ANFIS

interpolation? In order to cope with this problem, this chapter proposes a novel

group rule interpolation based approach for ANFIS interpolation, established by

exploiting the relationships between a target domain and its neighbouring source

domains. This process is aided by a rule dictionary that acts in the similar role as a

sparse rule-base, and a locally linear embedding (LLE) algorithm [126] that captures

the hidden relationship between target domain and source domains in a certain

rule antecedent space and then translates it into the rule consequent space. This

group based work shows a radical departure from the conventional approach of FRI,

offering a new FRI mechanism with improved abilities in non-linear adaptation and

rapid learning.

The rest of this chapter is structured as follows. Section 3.1 gives an overall

description of the ANFIS interpolation problem and the proposed method. In Section

3.2, the proposed approach for ANFIS construction is described in detail. The

complexity for implementing the proposed approach is analysed in Section 3.3.

Experimental results are presented and analysed in Section 3.4. Finally, Section 3.5

concludes this chapter.

3.1 The Framework for the Proposed Approach

In this section, the main idea underlying the proposed approach and the overall

procedures implementing the idea are presented. At the highest level, this approach

can be stated as follows. Without losing generality, suppose that sparse training

data (not sufficient for learning an effective ANFIS) in the target domain T is given,

expressed in a collection of input-output pairs {(x, y)}, and that two ANFISs (denoted
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asA1 andA2 respectively) are already trained over the source domains S1 and S2.

Then, the goal of this work is to generate a new ANFIS Aint over T , through an

innovative way of group-based rule interpolation. Note that here, x stands for the

vector of all input variables.

Algorithm 3.1: ANFIS Interpolation - A group rule interpolation based
approach.

Input:
Two source ANFISs in source domains: A1,A2;
Sparse training data in target domain: {(x, y)};
Number of closest atoms: K
// Stage 1:Rule Dictionary Generation

1 Extract fuzzy rules {Ri} fromA1 andA2;
2 Construct antecedent part of rule dictionary Da via Equation (3.3);
3 Construct consequent part of rule dictionary Dc via Equation (3.4);
// Stage 2:Intermediate ANFIS Construction

4 Divide {(x, y)} into C clusters, C is decided by Equation (3.5);
5 for each cluster centre c(k) do
6 Select K closest atoms in Da;
7 Compute weights w(k) for chosen atoms using Equation (3.8) and (3.9);
8 Create rule antecedent using chosen atoms with index set K in Da by

Equation (3.11);
9 Create rule consequent using atoms in Dc with the same index set K by

Equation (3.12);
10 end
11 Integrate all interpolated rules to form the intermediate ANFISA ′;

// Stage 3:ANFIS Fine-tuning
12 Use sparse training data {(x, y)} to fine tuneA ′.

Output:
Interpolated ANFIS in target domain: Aint .

To be concise, the overall algorithm implementing the proposed approach is

shown in Figure 3.1, with detailed steps summarised in Algorithm 3.1. The entire

process of constructing an effective ANFIS with sparse data over target domain

involves three stages:

1. Rule dictionary generation,

2. Intermediate ANFIS construction,

3. ANFIS fine-tuning.
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In stage 1, a rule dictionary is firstly generated by separating and reorganising rules

extracted from source ANFISs A1 and A2. After that, in stage 2, an intermediate

ANFIS is interpolated by the following procedure: a) clustering the sparse data of

target domain into C clusters; b) interpolating a new rule for each cluster using

LLE; and c) integrating all the newly generated rules in a network (to form the

intermediate ANFIS). Finally in stage 3, the sparse training data is reused to refine

the resulting intermediate ANFIS through retraining. The specifications for these

three stages are further described in the following section.

3.2 Implementation of Proposed Approach

This section details the three stages that have been outlined in the framework of the

proposed approach, including the rule dictionary generation stage, the intermediate

ANFIS construction stage and the ANFIS fine-tuning stage.

3.2.1 Rule dictionary generation

To support interpolation of (groups of) fuzzy rules that are to be subsequently used

for building an intermediate ANFIS, a rule dictionary (RD) is firstly constructed.

Such a dictionary consists of an antecedent unit Da and a consequent unit Dc, which

are designed as two separate memories devised to respectively store collected rule

antecedent parts and consequent parts that are extracted from given ANFISs. In

general, it can be assumed thatA1 andA2 consist of n1 and n2 rules respectively.

Thus, the extracted rules can be expressed in the following format:

RA1
i : i f x1 is AA1

i1 and . . . and xm is AA1
im , then yi =

m
∑

j=0

pA1
i j x j (3.1)

RA2
i : i f x1 is AA2

i1 and . . . and xm is AA2
im , then yi =

m
∑

j=0

pA2
i j x j (3.2)

where m denotes the number of input variables, and pAt
i0 , t ∈ {1,2} is a coefficient

within the linear combination in a consequent part (with a set value of x0 = 1 for

the representation to meet the eye).
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The rule dictionary D = {Da, Dc} is generated by separating and reorganising the

rule antecedents and rule consequents of the aforementioned rules. In particular,

Da ∈ Rm×n, consisting of all the rule antecedent parts:

Da =[d
a
1 da

2 · · · da
n]

=













AA1
1,1 AA1

2,1 · · · AA1
n1,1 AA2

n1+1,1 · · · AA2
n,1

AA1
1,2 AA1

2,2 · · · AA1
n1,2 AA2

n1+1,2 · · · AA2
n,2

...
...

...
...

...

AA1
1,m AA1

2,m · · · AA1
n1,m AA2

n1+1,m · · · AA2
n,m













(3.3)

where each column da
i = [A

At
i,1 AAt

i,2 · · ·A
At
i,m]

T , t ∈ {1,2}, (each AAt
i, j , j = 1,2, . . . , m,

contains a fuzzy set value for a given input variable within a certain rule) forming

an atom of the dictionary unit Da. n1 is the number of rules inA1, n2 is the number

of rules inA2, and n= n1 + n2 denotes the number of atoms in the rule dictionary.

Similarly, the consequent unit Dc ∈ R(m+1)×n, consisting of the consequent parts of

each and every rule (of the source domains), which can be expressed by

Dc =[d
c
1 d c

2 · · · d c
n]

=













pA1
1,0 pA1

2,0 · · · pA1
n1,0 pA2

n1+1,0 · · · pA2
n,0

pA1
1,1 pA1

2,1 · · · pA1
n1,1 pA2

n1+1,1 · · · pA2
n,1

...
...

...
...

...

pA1
1,m pA1

2,m · · · pA1
n1,m pA2

n1+1,m · · · pA2
n,m













(3.4)

with each atom d c
i = [p

At
i,0 pAt

i,1 pAt
i,2 · · · p

At
i,m]

T , t ∈ {1, 2}.

3.2.2 Intermediate ANFIS construction

An intermediate ANFIS is a set of new rules interpolated with the assistance of the

rule dictionary created as above. The construction of an intermediate ANFIS is

completed by three sub-steps: clustering sparse training data; interpolating rules;

and integrating interpolated rules.

3.2.2.1 Clustering sparse training data

The sparse training data given in the form of {(x, y)} within the target domain are

firstly partitioned into C clusters on a variable by variable basis by using K-means
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clustering algorithm [105]. Clustering is utilised in order to minimise the derivation

of any redundant rules, so that similar training data which belong to one cluster

will (eventually) only lead to one rule. It is implemented in a ‘variable by variable’

fashion. That is, clustering is iteratively applied to all training data according to the

first variable of the domain (with variables ordered in any preferable order), and

then, for each resulting cluster, it is applied again to the data within the current

cluster according to the second variable, etc. Following this ‘variable by variable’

clustering strategy, the resulting clusters will cover all possible regions of the input

variables. The number of clusters C , which is also the expected number of rules in

the intermediate ANFIS, is decided by Equation (3.5) below:

C =
m
∏

j=1

b
n( j)1 + n( j)2

2
c (3.5)

where n( j)1 is the number of fuzzy sets of the jth variable inA1, n1 =
∏m

j=1 n( j)1 ; and

similarly, n( j)2 is that of A2, n2 =
∏m

j=1 n( j)2 . Note that here Equation (3.5) is not

looking for the smallest C .

3.2.2.2 Interpolating rules

With respect to the resulting centroid of each cluster, a single newly interpolated

rule is generated by exploiting the locally linear embedding algorithm (LLE) [126].
This is due to the recognition that LLE is one of the most classical and promising

manifold learning methods, which is originally developed for tackling dimensionality

reduction problems and has now been widely utilised in performing different types

of machine learning task (e.g., [22, 70]). LLE generates a neighbourhood preserving

mapping between a D-dimensional data space and a d-dimensional data space,

assuming that the data of these two spaces lie on or near the same manifold. Without

losing generality, suppose that each data point X i in the D-dimensional data space

is expected to be reconstructed by its K nearest neighbours {X j}, and that the

reconstruction error is measured by the following cost function:

ε(w) = |X i −
∑

j

w jX j|2 (3.6)

where the weight w j modifies the contribution of the jth neighbour to the current

data point X i.
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For each data point X i in the D-dimensional data space, LLE involves the following

implementation steps in an effort to construct the corresponding data point Yi in

the d-dimensional data space (thereby reducing the data dimensionality). Firstly,

find the K nearest neighbours {X j} to X i in D-dimensional data space. Secondly,

compute the weights {w j} of the selected neighbours by minimising the cost function

Equation (3.6) subject to: 1) that X i is reconstructed only from its neighbours, while

setting w j = 0 if X j does not belong to the set of neighbours; 2) that
∑

j w j = 1.

Finally, compute the corresponding data point Yi regarding X i in d-dimensional data

space using weights {w j} and corresponding neighbours {Yj} regarding X j such that

Yi =
∑

j w jYj. Further details regarding this algorithm can be found in [126].

Similar to the LLE algorithm, the rule antecedent space and the rule consequent

space are seen as the two spaces lying on the same manifold, and a new rule is

interpolated for each cluster following the three steps, as outlined in Figure 3.2.

Here, the first two steps are conducted in the antecedent RD space, while the third

step is conducted in the consequent RD space. These three steps are described as

follows.

Figure 3.2: Illustrative implementation of single rule interpolation: (a) Choosing K
closest neighbours. (b) Calculating weights of chosen neighbours. (c) Generating
new rule.

A. Choosing the K closest atoms

To interpolate a new rule for a given cluster, the first step is choosing K closest

atoms in Da. For each cluster Ck, its centroid regarding the m antecedent attributes

is denoted by c(k) = (c1, c2, · · · , cm)T . With the previously obtained antecedent rule

dictionary Da, the K closest atoms (a column in Da denotes an atom) to c(k) are

selected using the Euclidean distance metric (though any other distance metrics can

be utilised as an alternative if preferred):
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di = d(da
i , c(k)) =

√

√

√

m
∑

j=1

d(AAt
i j , c j)2 (3.7)

where di is the distance between da
i and c(k), d(AAt

i j , c j) = |Rep(AAt
i j )− c j|, t ∈ {1, 2}.

Rep(AAt
i j ) stands for the representative value of the fuzzy set AAt

i j . m is the number

of input variables. The K atoms {da
i } in Da which have the smallest distances are

chosen as the closest neighbours, whose index set is denoted byK . That is, ∀i ∈K ,

max i{d({da
i }, c(k))}< d({da

j }, c(k)), j /∈K and |K |= K .

B. Calculating the construction weights

Based on the obtained closest atoms {da
i |i ∈ K }, the aim of step 2 is to find

the best construction weights that indicate the relative significance of each selected

atom. This process can be seen as the reconstruction of c(k) using {da
i }. Thus, the

weights required for rule interpolation can be obtained by minimising the following

reconstruction error:

w(k) =min
w(k)
||c(k) −
∑

i∈K

Rep(da
i )w

(k)
i ||

2, s.t.
∑

i∈K

w(k)i = 1 (3.8)

where w(k)i is the relative weighting of da
i as compared to the rest, Rep(da

i ) =
[Rep(AAt

i,1) Rep(AAt
i,2) · · ·Rep(AAt

i,m)]
T , t ∈ {1,2}. Essentially it is a constrained least

square optimisation problem which has the following solution:

w(k) =
G−11

1T G−11
(3.9)

where G = (c(k)1T − X )T (c(k)1T − X ) is a Gram matrix, 1 denotes a column vector

of ones, and X denotes an m × K matrix whose columns are the chosen atoms

{da
i |i ∈K }.

C. Generating the new rule

Fundamentally speaking, FRI techniques are developed by performing similarity-

based analytic reasoning, assuming that if the rule conditions are similar, then the

consequents should also be similar. Reflecting this intuitive presumption in the view

of LLE is that the underlying assumption for generating a new rule is: its antecedent

part and consequent part lie on the same manifold. That is, if the centroid c(k) can

be represented as a linear combination of the K selected atoms indexed by K in the

antecedent rule dictionary Da, then the corresponding consequent can be expressed
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as the linear combination of the atoms (whose locations are also indexed by K ) in

the rule consequent dictionary Dc. Based on this (practically working) presumption,

a newly interpolated rule RA
′

k in response to cluster Ck is generated by applying

the weight w(k) on both the antecedent and the consequent part, with the following

format:

RA
′

k : i f x1 is AA
′

k1 and . . . and xm is AA
′

km, then yk =
m
∑

j=0

pA
′

k j x j (3.10)

where the antecedent part is obtained by

AA
′

k j =
∑

i∈K

w(k)i AAt
i j , j = 1,2, · · · , m, k = 1,2, · · · , C . (3.11)

t ∈ {1,2}, and similarly the consequent part is obtained by

pA
′

k j =
∑

i∈K

w(k)i pAt
i j , j = 0,1, 2, · · · , m, k = 1, 2, · · · , C . (3.12)

3.2.2.3 Integrating the rules

The above completes the process of producing a newly interpolated rule. By in-

tegrating all such interpolated rules, the intermediate ANFIS A ′ results. This is

implemented by putting all the newly generated rules into an ANFIS network, which

is an inverse operation of extracting rules from a given network. A simple and generic

example is given here to show this procedure.

Suppose that there are two input variables x1 and x2, and that a small number

of training data associated with each variable is divided into two clusters. Thus, the

sparse training data can be divided into 2× 2= 4 clusters as follows:

Cluster 1: {(x1)1, (x2)1}
Cluster 2: {(x1)1, (x2)2}
Cluster 3: {(x1)2, (x2)1}
Cluster 4: {(x1)2, (x2)2}

where {(x1)u, (x2)v} represents the cluster including the u-th portion of x1 and the

v-th portion of x2, with u, v ∈ {1st, 2nd}, e.g., {(x1)1, (x2)1} represents the cluster
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including the first portion of x1 and the first portion of x2. From these clusters, the

following four rules are newly generated according to the above three steps:

Rule 1: If x1 is A1, x2 is B1, then y = p11 x1 + p12 x2 + p10

Rule 2: If x1 is A1, x2 is B2, then y = p21 x1 + p22 x2 + p20

Rule 3: If x1 is A2, x2 is B1, then y = p31 x1 + p32 x2 + p30

Rule 4: If x1 is A2, x2 is B2, then y = p41 x1 + p42 x2 + p40

These rules form the specification for a new (intermediate) ANFIS network to be

constructed, by assigning the premise parameters {Aq, Br}, q, r ∈ {1,2} in Layer 1,

and the consequent parameters {pi j} in Layer 4, as shown in Figure 3.3.

Figure 3.3: Integrating newly generated rules as an (intermediate) ANIFS

3.2.3 ANFIS fine-tuning

In the final stage, the intermediate ANFISA ′ is employed as an initial network here to

train the final interpolated ANFISAint , using the sparse training data provided. The

training procedure is basically the same as the traditional ANFIS training algorithm

summarised in Section 2.1, with just one exception as described below.

The traditional procedure for ANFIS learning takes ‘zeros’ or ‘random values’ as the

initial parameters of the network. This is practically acceptable for problems where
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a large amount of training data is available. However, this is a rather inefficient

strategy under the data shortage situations as for the present consideration. In

general, a good initial setting is very important to the performance of a learning

algorithm. Thus, instead of using random initials, the parameters embedded in the

interpolated intermediate ANFIS are herein utilised to populate the initial network

setting. In so doing, the final interpolated ANFIS in the target domain is one that is

obtained through a fine-tuning procedure over the intermediate ANFIS that is derived

from source domains. As such, the entire ANFIS construction can be performed with

little training data.

3.3 Complexity Analysis

The time complexity of Algorithm 3.1 is estimated here. There are totally three stages

listed in Algorithm 3.1. As Stage 3 is the same as that for conducting traditional

ANFIS training, only the complexity of the procedures regarding rule interpolation

(i.e., that of Stages 1 and 2) is addressed. As indicated before, for computational

simplicity, triangular fuzzy sets with three characteristic points each are used for

implementation. Note that the following notations are employed for the complexity

analysis:

m : number of antecedent attributes

n : number of fuzzy rules in rule dictionary

K : number of chosen closest rules

C : number of clusters in training data

N : number of sparse training data points

In Stage 1 (rule dictionary generation, lines 1-3), the main task is to extract

all the parameters from the given ANFIS networks (in the source domains). All

the parameters of an ANFIS appear in either the first layer or the forth layer, with

the premise parameters in layer one and the consequent parameters in layer four.

Premise parameters are fuzzy sets, each of which contains three sub-parameters

(say, a0, a1, and a2), so the number of premise parameters is 3m. Similarly, the

50



3.4. Experimentation

number of consequent parameters is m+ 1. Thus, the time complexity for extracting

one rule is O(4m+ 1), and the time complexity for computing the entire Stage 1 is

n×O(4m+ 1) = O(4mn+ n).

In Stage 2 (intermediate ANFIS construction, lines 4-11), line 4 for clustering

using K-means algorithm takes O(NCm). The sequence of lines 6-9 repeats C times.

Particularly, line 6 involves two operations: 1) computing the Euclidean distances, of

a complexity O(n); and 2) sorting the distances, of a complexity O(n2). Then, in line 7,

the weight is calculated once for each chosen rule, thereby being of a complexity O(K).
Finally, lines 8-9 take a complexity of O(4m+ 1), in which the weighted average is

calculated once for each parameter. Thus, the time complexity for Stage 2 is estimated

to be O(NCm) + C × [O(n) +O(n2) +O(K) +O(4m+ 1)] = O(NCm) +O(Cn2).

Together, the overall time complexity for group rule interpolation bar that required

by Stage 3 (for running the standard procedure to perform ANFIS fine-tuning with a

small number of training data) is estimated to be O(4mn+n)+O(NCm)+O(Cn2) =
O(NCm) +O(Cn2). Compared with the standard ANFIS learning method, the com-

plexity of ANFIS interpolation is slightly larger, but it is practically doable, since

usually m and C are fixed in advance and both n and N are not a very large number.

3.4 Experimentation

Both synthetic and real world data are considered in the experiments to qualitatively

and quantitatively evaluate the proposed ANFIS interpolation approach. Section

3.4.2 validates the approach by looking into two synthetic function modelling cases,

and in Section 3.4.3, the effectiveness of the proposed approach in dealing with

real world situations is shown. Section 3.4.4 discusses the model parameters, and

examines the robustness of the proposed approach in response to the use of different

amounts of training data.

3.4.1 Experimental setup

For all experiments carried out, triangular membership functions are employed

due to their popularity and simplicity. The number of selected closest atoms is
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empirically set to 3 unless otherwise stated (and a further investigation into the

potential impact of different settings for this value will be reported towards the

end of this section). To reflect the capability of the proposed approach in handling

different data, both normalised and unnormalised data are investigated. In particular,

for the experiments on synthetic data, the original data without normalisation is

used despite that the data involves significantly skewed distributions over different

magnitudes. In the experiments on the problem involving real world data, the input

variables are normalised to [0,1].

The RMSE (Root-Mean-Squared Error) index is chosen to evaluate the perfor-

mance of different ANFISs on both the source and the target data. Particularly, the

RMSE measured from the source ANFISA1 on the source domain data S1 is denoted

by EA1(S1); that from A2 on S2 by EA2(S2); and that from A1 and A2 on the target

domain data T by EA1(T ) and EA2(T ) respectively. These RMSEs are computed as

below:

EAt (∗) =

√

√

√

∑N∗
k=1(g

∗
k −At(x∗k))

2

N∗
(3.13)

where N∗ is the number of the testing data points {x∗k} in the domain S1, S2 or T ; g∗k
is the relevant ground truth of the kth data point;At(x∗k), t ∈ {1, 2, ori, int} stands

for the output value of an ANFIS on the data point x∗k. Obviously, smaller RMSEs

indicate better performance.

An original ANFIS developed using only the sparse training data in target domain

[66] is also generated here for comparison, denoted byAori. The RMSE ofAori on

the testing data T is denoted as EAori(T ), and the RMSE of the interpolated ANFIS

Aint using the proposed approach on T is denoted by EAint (T ).

3.4.2 Experiments on synthetic data

Two numerical functions are utilised here to test the proposed approach for working

on highly non-linear one and two dimensional data. Further experiments are also

included to show the case where absolutely no training samples are available for the

target domain.
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3.4.2.1 One dimensional input

As the first illustrative experimentation, a one-dimensional input function is used,

which is generated by sampling the non-linear function as given below:

y =
sin(2x)

e
x
5

(3.14)

where x ∈ [0,9], the shape of this function is plotted in Figure 3.4(a).

Figure 3.4: Illustration of data and source ANFISs. (a) Source data and target data
used. (b) Membership functions in each source ANFIS.

A. Illustrative example

In this experimentation, to illustrate the proposed approach, the input domain

x ∈ [0,9] is divided into three parts, representing two source domains and one

target domain. As indicated previously, samples read off the underlying non-linear

function are treated as the data as depicted in Figure 3.4(a). In particular, the left
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part x ∈ [0,3] is used as the first source domain for training the first source (or

given) ANFISA1, and the right part x ∈ [6, 9] is used as the second source domain

for training the second source ANFIS A2. The middle part data x ∈ [3,6] forms

the target domain, which is divided into two sub-parts, with a small portion (20%

randomly taken from the target domain, one fold training data is shown in triangles

as an example for illustration) as the sparse training data (which is to artificially

simulate the situation where little target domain data is available), with the rest

used as testing data (80%, shown in pentagrams).

The two source ANFISs are trained using the standard method for ANFIS model

learning as outlined in Section 2.1. The membership functions involved are illustrated

in Figure 3.4(b). Here, the numbers of membership functions are set to 5 and 6 for

A1 andA2, respectively. This is to demonstrate a case that is more complex than

the usual (where quantity spaces tend to be defined with an equal number of fuzzy

sets), making the experiments more challenging.

Rule dictionary generation: The rules embedded within the trained source ANFISs

A1 andA2, form the atoms of the rule dictionary. Table 3.1 lists the rule dictionary

constructed by extracting rules from trained ANFISsA1 andA2. There are totally

11 rules in the rule dictionary, with 5 fromA1 and 6 fromA2.

Table 3.1: Atoms in generated rule dictionary

Rule Source ANFIS Antecedent (a0, a1, a2) Consequent

1 A1 (−0.725,0.045, 0.684) 1.263x − 0.044

2 A1 (−0.040,0.733, 1.446) 0.141x + 0.760

3 A1 (0.768,1.440, 2.157) −0.609x + 1.057

4 A1 (1.465,2.166, 2.924) −0.075x − 0.451

5 A1 (2.201,2.874, 3.625) 0.658x − 2.151

6 A2 (5.400,6.002, 6.570) 0.250x − 1.665

7 A2 (5.999,6.599, 7.194) 0.195x − 1.127

8 A2 (6.605,7.196, 7.782) −0.098x + 0.936

9 A2 (7.234,7.801, 8.375) −0.223x + 1.765

10 A2 (7.815,8.389, 9.012) −0.083x + 0.531

11 A2 (8.401,8.983, 9.600) 0.120x − 1.205
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Intermediate ANFIS construction: A group of new rules are interpolated in the

target domain to form the intermediate ANFIS. The sparse training data in target

domain is firstly clustered into C clusters. The number of clusters C (also the number

of rules in the new ANFIS) is decided by Equation (3.5). In this illustrative example,

m = 1, n(1)1 = 5, n(1)2 = 6, so C = b(5+ 6)/2c = 5. The first column of Table 3.2 shows

the 5 resulting centroids. Take the first centroid (c = 3.90) for example, a new rule is

generated following the three steps (shown in the first row of Table 3.2): 1) choosing

K closest neighbours with K = 3, the 5th, 4th and 6th atoms of the rule dictionary are

chosen as shown in Table 3.2; 2) calculating the relevant weights for chosen atoms,

resulting in weights w1 = 0.313, w2 = 0.295, w3 = 0.392; 3) generating a new rule

by averaging the chosen closest rules, R′ = w1R5 +w2R4 +w3R6, the antecedent and

the consequent parts of the newly generated rule are shown in the last two columns

of Table 3.2. Repeating this process for all the 5 centroids, the intermediate ANFIS

results.

Table 3.2: Generated new rules for all cluster centroids

Centroids
Choosen

atoms
weights

new rules

Ant Con

3.90 (5,4, 6) 0.313, 0.295, 0.392 (3.237, 3.891, 4.572) 0.282x − 1.459

4.50 (6,5, 7) 0.264, 0.524, 0.212 (3.851, 4.489, 5.159) 0.452x − 1.805

5.55 (6,7, 5) 0.374, 0.404, 0.222 (4.932, 5.549, 6.169) 0.318x − 1.555

5.70 (6,7, 5) 0.389, 0.431, 0.179 (5.086, 5.700, 6.312) 0.299x − 1.519

5.90 (6,7, 5) 0.411, 0.468, 0.121 (5.293, 5.902, 6.505) 0.273x − 1.472

ANFIS fine-tuning: By combining all the new rules, an intermediate ANFIS is

constructed with 5 fuzzy rules. From this, the final output ANFIS is obtained by

retraining it using the given data. The resultant interpolated ANFIS is shown in Table

3.3.

B. Experimental results

5×5-fold cross validation (5-FCV) is utilised to evaluate the performance of

different approaches. Note that conventional 10×10-fold cross validation is not

adopted here due to the extremely small number of samples for training, especially

for the target domain. Note also that here the 5-FCV takes one piece of data for

training while the other four pieces of data for testing, which is slightly different
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Table 3.3: Rules in Interpolated ANFISAint

Rule Number Antecedent (a0, a1, a2) Consequent

1 (3.237, 3.891,4.572) 0.117x + 0.029

2 (3.852, 4.490,5.159) 0.027x + 0.006

3 (4.934, 5.579,6.167) −0.081x − 0.012

4 (5.085, 5.696,6.313) −0.062x − 0.009

5 (5.288, 5.903,6.504) −0.0038x −2.94×10−5

with the standard 5-FCV where one piece of data is for testing and four pieces of

data is for training. The mean and standard deviation values of different methods

compared are listed in Table 3.4, and the visual results of 5 folds within the total

5×5 folds are shown in Figure 3.5.

Table 3.4: Experimental results on one-dimensional function

Mean ± Standard deviation

EA1(S1) 0.003± 0.000

EA2(S2) 0.0006± 0.000

EA1(T ) 0.287± 0.013

EA2(T ) 0.255± 0.014

EAori(T ) 0.121± 0.067

EAint (T ) 0.089± 0.039

By examining the experimental results in both Figure 3.5 and Table 3.4, it can be

seen that the two source ANFISsA1 andA2 perform quite well in their corresponding

source domains (as EA1(S1) and EA2(S2) are quite small). However, these two ANFISs

do not work in the target domain (as EA1(T ) and EA2(T ) are rather large). This is of

course, not surprising since they have been trained using the data for the source

domains in the first place. Yet, if the standard training method is used to build an

ANFIS for the target domain, it does not work well either, as the performance of the

original ANFIS Aori is poor. Again, this may be expected due to data shortage of

the target domain. Fortunately, with the assistance of its two neighbouring source

ANFISs, the interpolated ANFISAint improves the results significantly. As shown in

the middle part of Figure 3.5(a)-(e), its outcome is much closer to the ground truth.
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3.4.2.2 Two dimensional input

The two-dimensional synthetic data used in this experimentation is sampled from

the following function:

y = sin(
x1

π
)sin(

x2

π
) (3.15)

where x1 ∈ [−30,30], x2 ∈ [−10,10]. Figure 3.6(a) displays the shape of this

function in one period. Similar to the previous experiments on one-dimensional data,

the entire underlying domain is divided into 3 parts. Without any particular bias,

this is implemented with respect to the first variable x1. That is, the region covered

by x1 ∈ [−30,−10], x2 ∈ [−10,10] (with step = 1 in each dimension, totally 441

data points sampled from the function) forms the first source domain, the region by

x1 ∈ [10,30], x2 ∈ [−10,10] (the amount of sampled data is the same as the first

source domain, 441 data points in total) forms the second source domain, and the

region covered by x1 ∈ [−10, 10], x2 ∈ [−10, 10] forms the target domain. There are

also 441 data points in the target domain, in which 88 data points (20%) are used

for training while 353 points (80%) are used for testing. Experiments on splitting

the data with respect to the second variable are also carried out, with similar results

achieved as to be reported later.

Table 3.5: Experimental results on two-dimensional function

Mean ± Standard deviation

splitting x1 splitting x2

EA1(S1) 0.024± 0.000 0.023± 0.000

EA2(S2) 0.023± 0.000 0.023± 0.000

EA1(T ) 1.176± 0.029 1.079± 0.030

EA2(T ) 1.331± 0.022 1.586± 0.035

EAori(T ) 0.372± 0.063 0.489± 0.264

EAint (T ) 0.070± 0.016 0.103± 0.087

The middle column of Table 3.5 lists the results of 5-FCV for this two dimensional

function approximation problem using different ANFISs. As an example, Figure 3.6

shows the visual result of one randomly picked fold, where Figure 3.6(a) displays the

ground truth view of this two-dimensional function in target domain; Figure 3.6(b)
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Figure 3.6: One fold of the two-dimensional function-approximation results: (a)
Ground truth. (b) Result based onAori. (c) Result based onAint .

illustrates the result based on the original ANFIS directly learned from the sparse

training data; and Figure 3.6(c) is that of the interpolated ANFIS.

As reflected by these experimental outcomes, the result of the interpolated ANFIS

is much more similar to the real view of the underlying highly non-linear two-

dimensional function. Without the assistance of group rule interpolation, the outcome

from running the ANFIS directly trained by the limited samples is rather different

from the ground truth. Again, these results indicate that the ANFIS learned by the

proposed interpolation method performs much better than the original ANFIS under

the situations where only highly restricted training data is provided.

Note that the above results are obtained using source domains and target domain

defined by splitting the domain of the first input variable x1. However, similar results

can also be obtained via specifying the source domains and target domain with regard

to the second variable x2 of this function, as listed in the third, i.e., the right-most

column of Table 3.5.

Consider a more general situation where both input variables x1 and x2 are

divided into three regions. As such there are totally nine subregions, as shown in

Figure 3.7. This gives rise to a general case in which there may be more than two

source ANFISs for use to interpolate an ANFIS within a given target domain. For

instance, if insufficient training data appears in the central subregion of Figure 3.7,

whilst an ANFIS is required to be constructed, then this will be a problem of interpo-

lating multiple ANFISs from given ANFISs within the neighbouring source domains.

It is straightforward to extend the proposed work to such a situation as the only

difference is regarding rule dictionary generation, where the rules are extracted
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from multiple source ANFISs. For this particular example, the result of taking the

central subregion as target domain and the other 8 subregions as source domains

can be computed, such that the average and standard deviation values of RMSE

(over 5-FCV) for the original ANIFS EAori(T ) is 0.215 ± 0.178, whilst that for the

interpolated ANFIS is EAint (T ) = 0.177± 0.081, showing a remarkable improvement.

Figure 3.7: Function approximation with more than two source domains

3.4.2.3 Situation with no target training data

Consider a further situation where no target training data is available in the target

domain, using the problem of approximating the function as expressed in Equa-

tion (3.14). In the area where x ∈ [0.5, 2], this one dimensional non-linear function

may be interpreted approximately as linear, as shown in Figure 3.8. Suppose that

the data covered within the left part delimited by x ∈ [0.5,1] is used to train the

first source ANFIS A1, and that the data within the right part x ∈ [1.5,2] is used

to train the second source ANFIS A2. The data of the middle part x ∈ [1,1.5]
is fully reserved for testing and hence, no training samples are available over the

target domain. Since no target training data is provided, each test data point is

seen as a centroid, and the new rule interpolated for this data point forms a special

intermediate ANFIS containing just one rule, which is then directly used for inference

without retraining. The visual result is also shown in Figure 3.8.

From the results shown, it can be seen that the proposed approach performs very

well over this particular problem, even though no target training data is available.

However, this should not be overly generalised since for the same underlying function,

if the source domains are [1.5,2] and [2.5,3], and no information is present in support

of the training of the target domain delimited by [2,2.5], the proposed approach will

only produce an approximate model as depicted in Figure 3.9. This does not seem to
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Figure 3.8: Function approximation with no target training data

perform well, due to the high non-linearity of the function to be approximated within

this region. As shown in the target domain of this figure, the interpolated outcome is

far away from the ground truth in the bottom area surrounding the minimum point,

around which the function shape of target domain and source domains are totally

different. Quantitatively, the mean value of RMSE is 0.0948, which is fairly large

for this problem. Nevertheless, as previously demonstrated, once there are a small

number of training samples provided for the target domain, the approach can result

in an accurate ANFIS.

3.4.3 Experiments on real world benchmark data

Twelve benchmark datasets taken from the KEEL data repository [5] are used here

to evaluate the performance of the proposed ANFIS construction algorithm on real

world problems. The datasets used in this experimentation are summarised in Table

3.6.

The generation of the source domains and target domain is similar to the cases

where the synthetic data are used, by dividing each dataset into three parts according

to one of the input variables. For example, the Quake Dataset has three input

variables: ‘Longitude’, ‘Latitude’ and ‘Depth’. This dataset is divided into three sub-

datasets using the values of the variable ‘Longitude’. In particular, those instances
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Figure 3.9: Performance with no target training data under non-linear situation

Table 3.6: Public dataset used

Dataset No.(Attributes) No.(Instances)

Diabetes 2 43

Plastic 2 1650

Quake 3 2178

Laser 4 993

AutoMPG6 5 392

Delta-ail 5 7129

Friedman 5 1200

Dee 6 365

Delta-elv 6 9517

AutoMPG8 7 392

Concrete 8 1030

Stock 9 950

with this variable value being smaller than -40 jointly form the first source domain

S1 (of a subtotal of 593 instances), instances with ‘Longitude’ value larger than 92

form the second source domain S2 (1253 instances), and instances with ‘Longitude’

value between [−40,92] form the target domain T (332 instances). Similar to the

experiments on synthetic data reported earlier, 20% (66 instances) of the data in the
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target domain are used as the training data, with the remaining 80% (265 instances)

used as the testing data. This is very different from the common choice that usually

takes a majority of data (often 80% or 90%) for training, and the remaining minority

of data for testing. Such a strategy makes the ANFIS construction a challenging

problem as only very limited data is available for training. Thus, the proposed

interpolation technique is introduced in an effort to generate an effective ANFIS

model.

5×5-fold cross validation results of this experimentation are shown in Table 3.7.

The average values of all twelve datasets are shown in the bottom row, with the

best results shown in bold. As reflected by these results as per Table 3.7, a similar

conclusion to what is previously learned from the experiments on synthetic data

can be drawn. Both EA1(T ) and EA2(T ) are very large, indicating that the ANFISs

trained in the source domains are not suitable for the regression problem in the

target domain. Again, this is not surprising. However, those target domain models

Aori trained over the limited amounts of data perform significantly better than their

counterparts. Since the the number of training data is so small for each of the twelve

cases, the resultant ANFIS Aori is still not very stable (as indicated by the large

standard deviation value in Table 3.7), though its mean RMSE is significantly better.

Despite this limitation, the interpolated ANFISs following the proposed approach

remarkably minimise the inference error caused by data shortage, as the mean values

and the standard deviation values of EAint (T ) are much smaller than those of EAori(T ).

Apart from the RMSE values, it is also important and necessary to test the statistic

significance of the interpolated ANFIS over the original ANFIS. The pairwise t-test

(p = 0.05) is employed here for such statistic analysis. The p-values of t-test of the

interpolated ANFIS (Aint) over the original ANFIS (Aori) are listed in Table 3.8, with

p < 0.05 representing thatAint performs significantly better thanAori. In this table,

signs (v) and (*) denote statistically better or not respectively. As can be seen from

the table, the p values are smaller than 0.05 for almost all datasets, indicating the

statistical improvements made by the interpolated ANFIS. In t-test, smaller p value

means better result. It can be noticed that the p value of the ‘AutoMPG6’ dataset is

quite small, demonstrating the superior performance of the interpolated model.
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Table 3.8: p values of pairwise t-test results

Dataset Aint v.s. Aori

Diabetes 0.0216 (v)

Plastic 0.0037 (v)

Quake 1.12×10−5 (v)

Laser 1.34×10−7 (v)

AutoMPG6 6.41×10−18 (v)

Delta-ail 1.90×10−8 (v)

Friedman 7.08×10−15 (v)

Dee 0.0065 (v)

Delta-elv 5.92×10−12 (v)

AutoMPG8 0.7832 (*)

Concrete 2.53×10−6 (v)

Stock 0.0013 (v)

3.4.4 Experiments with different settings

The parameter K controls the number of selected closest neighbours in running the

LLE algorithm. In the experimental results reported above, this number is empirically

set to be 3. In order to investigate the relationship between the parameter K and the

experimental outcome, the performance over different K using the ‘Quake’ dataset is

given, as shown in Figure 3.10. The conclusion is that for most cases, a smaller K

will lead to better result, this finding is similar to what is established in [92] (though

that piece of existing work is concerned with a weighted approach to FRI).

It may be expected that if the number of training data becomes smaller, the

performance of the trained ANFINs will generally become worse. To verify this

hypothesis with experimental investigation, Figure 3.11 shows the outomes under

the condition where a different percentage of training data is employed over the

‘Quake’ dataset.

It can be induced from examining this figure that: 1) independent of what

percentages of training data used, interpolated ANFISs outperform the original

ANFISs; 2) the less training data is involved the more improvement the interpolated

ANFIS makes over its counterpart which is trained just by the use of the sparse set of
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3.5. Summary

Figure 3.10: Performance vs. number of selected closest neighbours

training samples. It can be observed from the figure that when the percentage of

training data reaches 90%, the performance of the two algorithms are close. This

can be expected, because when sufficient training data is available, the superiority

of the interpolated ANFIS is not obvious. An interesting observation is that as

reflected by the triangular-marked line (which is the plot for interpolated ANFISs),

the performance using 30% data is very close to that using 90% data. This is very

different from the trend of the results attained using the ANFISs trained without the

aid of interpolation. In summary, through the use of the proposed approach, a much

improved inference outcome can be achieved while requiring much less training

data.

3.5 Summary

How to construct an effective fuzzy inference system with insufficient training data

is a practically important and challenging issue. This chapter has proposed a new

ANFIS construction method through the use of group rule interpolation. To the best

of our knowledge, this is the first time that the interpolation of ANFIS models is

proposed (using two source ANFISs to assist the construction of the target one).

It significantly differs from the general transfer learning methods in the literature

where only one source domain is involved; in this work there are at least two source
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3.5. Summary

Figure 3.11: Performance vs. amount of training data

domains. The work effectively resolves the data shortage problem for training ANFISs

in the target domain. Experiments on both synthetic data and real world data have

been carried out, including variations of the experimental background settings. The

results have consistently demonstrated that the proposed approach greatly improves

the performance in learning ANFIS models for problems where only sparse training

data is available.

In comparison with existing work on FRI involving the use of TSK-type represen-

tation, this wok exhibits the following distinct innovations:

1. As reflected above, rule interpolation is done at the level of a group of rules,

instead of at the individual rule level as per the existing techniques. That is,

unlike the existing FRI methods where only one intermediate rule is produced

at a time, here by one run of the algorithm a group of rules are interpolated.

This is because an ANFIS generally represents a set of TSK rules.

2. Learning is accomplished with the use of a dictionary purposefully introduced

to facilitate ANFIS interpolation. In existing FRI techniques, there exists a

sparse rule-base from which individual closest rules are directly selected for

interpolation, but this does not apply to interpolation of a group of rules in a

target domain. The rule dictionary is therefore designed for extracting rules

from source ANFISs, acting as a sparse rule-base for the selection of the closest

rules in the target domain.
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3. Weights required for performing interpolation are computed differently. For

instance, the active set algorithm [60] is employed in the existing work [31],
which is an iterative method; whilst the LLE algorithm is utilised here, which

is a one-step method without involving iterations. Different from traditional

techniques that rely on the use of Euclidian distance measures to work, the

proposed approach provides a theoretically well-formed and systematic method

for calculating the weights that are required to construct an intermediate ANFIS

during the interpolation process.

In this initial ANFIS interpolation approach, a group of fuzzy rules is interpolated.

Following this, Chapter 4 will further optimise these interpolated rules with an

evolutionary algorithm.
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Chapter 4

ANFIS Interpolation - An Evolutionary

Approach

B Ased on the aforementioned initial ANFIS interpolation approach, an improved

ANFIS learning method is proposed in this chapter to deal with the problem

of training data shortage. The proposal is to interpolate a number of candidate

fuzzy rules first, forming an initial population which is modified via an evolutionary

optimisation process subsequently.

In general, evolutionary computation [9, 10] offers a range of optimisation

algorithms by analogy to natural evolution processes. Such algorithms perform

optimisation with a set of chromosomes, which are able to search the problem

hyperspace efficiently and effectively. Applying an evolutionary computation method

to aid in building a fuzzy inference system injects learning capacity into the underlying

fuzzy systems, which is commonly referred to as evolutionary fuzzy systems (EFS)

in the literature (e.g., [7, 38, 39, 51, 129]). Considering genetic algorithms (GAs)

being the most popular technique for use in developing such systems, the present

work utilises a GA to implement the evolutionary process.

One of the key points of the proposed work is therefore, to examine how an ANFIS

may be encoded using a specific chromosome representation. Without prejudgement,

two alternative forms of representing fuzzy rules are considered in this chapter, using

either individual rule based representation or group of rules (equivalently an entire
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4.1. Genetic Algorithm

ANFIS) based representation to construct an initial population for further evolu-

tion. The initial population is iteratively updated through crossover and mutation

operations, subject to the use of a fitness function, in order to determine whether a

chromosome may enter into the next loop. The chromosomes of the highest fitness,

namely rules or ANFISs with the best performance, will then be returned when the

iterative process terminates. If the chromosomes represent individual rules, they

collectively form the required ANFIS; otherwise, each returned chromosome is a

learned ANFIS. Such a resulting ANFIS will be fine tuned to obtain the final improved

ANFIS model, appropriate to deal with approximate inference in the target domain

concerned. Both of the two chromosome representations are systemically evaluated

and compared. Experimental results demonstrate that the evolutionary approach

further improves the performance of the interpolated ANFIS while being competitive

to those popular machine learning methods.

The remainder of this chapter is organised as follows. Section 4.1 reviews the basic

knowledge of GA. Section 4.2 details the proposed evolutionary ANFIS interpolation

approach. Section 4.3 discusses the complexity for implementing the proposed

approach. Experimental results are discussed in Section 4.4. Finally, Section 4.5

concludes this chapter.

4.1 Genetic Algorithm

Inspired by observing natural evolution processes, evolutionary computation [9, 10]
is in general, proposed to provide an effective and efficient way for searching optimal

solution in poorly understood and irregular problem spaces. Typically, evolutionary

algorithms work with a population of individuals, in which each individual may

be one or a set of potential solutions in the solution space. Many evolutionary

algorithms have been proposed, including genetic algorithms (GAs) [121, 145],
genetic programming [1], and particle swarm optimisers [175]. Among these, GAs

may be the most commonly adopted and hence, are utilised in this work also.

Mainly owing to the conceptual simplicity and computational effectiveness, GA

becomes one of the most popular evolutionary algorithms. In a GA implementation,

each individual of the population is encoded as a chromosome, which may be

subsequently modified through crossover and mutation subject to a certain probability.
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4.2. GA for ANFIS Interpolation

A fitness function is utilised to evaluate the performance of every chromosome within

a population. The general implementation of a GA can be summarised in the following

steps:

(1) Initialize the population;

(2) Perform crossover and mutation on the population;

(3) Calculate the fitness of each chromosome;

(4) Select a portion of chromosomes to construct a new population;

(5) Loop to step (2) until a certain stopping criterion is met.

Applying GAs for fuzzy systems modelling leads to techniques for building a form

of genetic fuzzy learning systems. Typical approaches involve the development of

procedures for: 1) Parameter tuning – By assuming that the structure of a fuzzy

inference system is pre-defined, this procedure adapts the system’s parameters [55]
(such as those defining membership functions or the coefficients specifying the conse-

quent functions in a TSK model) with respect to changes in the model input. 2) Rule

selection – By encoding a rule-base as a fixed-length chromosome, this procedure

aims to control the complexity of a fuzzy inference system, leaving less room for

redundant, incorrect or badly defined rules to exist [64]. 3) Rule-base construction –

By encoding both the parameters and the structure of a fuzzy system within each

chromosome, this procedure performs parameter estimation and structure identifica-

tion at the same time [37, 106] (although often at the cost of significantly increasing

the problem complexity).

4.2 GA for ANFIS Interpolation

This section presents the proposed novel ANFIS interpolation approach, which is

supported by a GA. The problem addressed in this chapter is the same with that in

chapter 3, which can be outlined as follows: With only a small number of training

data in the target domain T , expressed in the form of input-output pairs {(x, y)},
ANFIS interpolation is to construct an effective ANFISAint over T , by interpolating

two neighbouring ANFISs, A1 and A2, defined on two source domains S1 and S2,

respectively. Figure 4.1 summarises the entire interpolation process, consisting of
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4.2. GA for ANFIS Interpolation

three main stages: i) population initialisation via observation-guided interpolation

of rules embedded in the source ANFISs, based on the method in Chapter 3; ii)

interpolation via a GA over the initial population; and iii) ANFIS fine-tuning via

the standard ANFIS learning method as described in Section 2.1 (using the given

small number of training data in the target domain). The entire evolutionary process

will of course depend upon how individuals are to be encoded in a population of

chromosomes and how each chromosome may be evaluated. Details of this process

are described below.

4.2.1 Chromosome representation: two strategies

How to encode a potential solution with a chromosome is a critical point in GAs.

To reflect the fact that an ANFIS is essentially a set of fuzzy rules, there are two

strategies that may be taken to represent an ANFIS model within a GA: 1) Encode

each underlying rule of the ANFIS as a chromosome, and 2) Encode the entire ANFIS

as a chromosome. Both types of chromosomes are introduced here.

4.2.1.1 Rule-based chromosome representation

This representation strategy encodes each rule of an ANFIS as a vector of rule

parameters, in the form of (antecedent parameters, consequent parameters). For

example, suppose that a rule involving m antecedent variables that take triangular

fuzzy sets as values is expressed by:

I f x1 is A1 and x2 is A2 . . . and xm is Am,

then y = p0 + p1 x1 + p2 x2 + · · ·+ pm xm

(4.1)

where each fuzzy set Ai (i = 1,2, · · · , m) contains three parameters (ai0, ai1, ai2)
that respectively denote the three vertices of the triangle. Then, the rule based

chromosome can be expressed such that

((a10, a11, a12), (a20, a21, a22), · · · , (am0, am1, am2), p0, p1, · · · , pm) (4.2)

In general, using triangular fuzzy sets, if a rule contains m antecedent variables,

there will be 3m premise parameters and m+ 1 consequent parameters. Thus, the

length of the corresponding chromosome will be 3m+m+ 1= 4m+ 1.
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4.2. GA for ANFIS Interpolation

4.2.1.2 ANFIS-based chromosome representation

In this representation, an entire ANFIS containing C rules is encoded as one chro-

mosome. Suppose that a certain ANFIS contains m input variables x1, x2, · · · , xm,

and that the ith variable may take one of the c i triangular fuzzy sets Ai1, Ai2, · · · , Aic i

as its value. Then, totally there will be C = c1 × c2 × · · · × cm rules captured in this

ANFIS, and all these rules are collectively encoded as one vector like the following:

(rule 1, rule 2, · · · , rule C) (4.3)

where each single rule is coded exactly the same as Equation (4.2). In so doing,

the length of an ANFIS based chromosome will be C × (4m+ 1) =
∏m

i=1 c i(4m+ 1),
which is much longer than that of a rule based one.

4.2.2 Population initialisation

An initial population, composed of a number of interpolated rules in the target

domain, needs to be generated first, in order to start the evolutionary process. This

is accomplished by adopting the group-based FRI mechanism of Chapter 3, over the

given (sparse) training data, with the assistance of a rule dictionary constructed by

extracting rules from the two source domain ANFISsA1 andA2 (as shown in Figure

4.1(b)). Details are as follows.

A rule dictionary D = {Da, Dc} with an antecedent part Da and a consequent part

Dc is generated firstly, to separately store collected rule antecedents and consequents,

by extracting and then storing rules from the given source ANFISs. This process is

the same with the rule dictionary generation procedure described in Section 3.2.1,

so is omitted here.

4.2.2.1 Interpolating candidate rules

In order to form an initial population, a number of rules in the target domain are

required. Traditional means for generating the initial population in a GA usually

use randomly set parameters in the rules. Whilst this is practical for situations with

sufficient training data it becomes a significant challenge for the current case, where
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4.2. GA for ANFIS Interpolation

only highly restricted sparse data is available. To address this challenge, FRI is

employed to interpolate rules in target domain, in an effort to set up an improved

initial network, so as to be able to produce a more effective model with less training

data. Given the above rule dictionary, a number of candidate rules in the target

domain can indeed be obtained through interpolation by running the following

procedure.

To start with, the given training data {(x, y)} in the target domain is divided into

C clusters. C stands for the number of the rules in the ANFIS to be interpolated and

is determined by Equation (3.5).

Having obtained the clusters, for each cluster, a set of candidate rules are interpo-

lated to create the initial population. However, the number of training data in each

cluster may be very different, and in certain clusters there may be just one datum.

For extreme cases where the number of training samples is smaller than C , certain

clusters are simply empty, covering no data at all, though such situations may be

rare. Therefore, instead of just utilising the raw training data contained within the

clusters, individual instances are also artificially generated in an effort to enrich the

original sparse training data. For this, the centre of each cluster is used as the seed

to generate more individuals. In particular, for those clusters without any training

data, the seeds are set to be the same as their neighbouring clusters (of course, such

initially identical settings will become different through the evolutionary process).

For each cluster Ck, the centroid is denoted by c(k) = (c1, c2, · · · , cm)T with regard

to the m attributes. Use c(k) as a seed, a number of artificial data (denoted by

{O = (o1, o2, · · · , om)T}) can be generated by adding Gaussian white noise with the

seed itself being the mean and a small value (δ) being the standard deviation for

each attribute. This method borrows practical ideas often adopted in the field of

electrical engineering. The number of the individual instances in each cluster is

set subject to the constraint in which the sum of cluster sizes will be the size of

the required initial population. For implementational simplicity, in this work, all

clusters are set to be of an equal size. Such an individual generation process can be

illustrated as per Figure 4.2.

From the resulting data enriched clusters, for each individual instance within a

given cluster, a candidate rule can be generated through interpolation that involves

the same steps with Section 3.2.2.2. Firstly, selecting K closest rules in rule dictionary

75



4.2. GA for ANFIS Interpolation

Figure 4.2: Individual generation from a seed.

by computing the Euclidian distance as defined by Equation (4.4), between the

current individual O and every column of Da:

di = d(da
i , O) =

√

√

√

m
∑

j=1

d(AAt
i j , o j)2 (4.4)

where d(AAt
i j , o j) = |Rep(AAt

i j )− o j|, t ∈ {1,2}. The index set associated with the K

selected columns {da
i } in Da is denoted by K .

Next, with the obtained closest columns {da
i ; i ∈K }, the candidate rule for the

current individual can be interpolated as the weighted average of the selected rules.

The weights required for rule interpolation are obtained by solving the optimization

problem described as: w = min
w
||O −
∑

i∈K Rep(da
i )wi||2, s.t.
∑

i∈K wi = 1, where

Rep(da
i ) = [Rep(AAt

i,1) Rep(AAt
i,2) · · ·Rep(AAt

i,m)]
T , t ∈ {1, 2}, and wi denotes the relative

weighting of the column da
i . As mentioned previously in Section 3.2.2.2, the solution

of this constraint optimisation problem is: w(k) = (G−11)/(1T G−11), where G =
(O1T − X )T (O1T − X ), 1 is a column vector of ones, and the columns of X are the

selected {{da
i }, i ∈K }. Following the principles of FRI which performs reasoning by

analogy, the weights wi derived for the antecedent part are applied to the consequent

part to attain similarity. Thus, the newly interpolated rule for the current individual

has the following format:

R : I f x1 is A1 and . . . and xm is Am, then y =
m
∑

j=0

p j x j (4.5)

where
¨

A j =
∑

i∈K wiA
At
i j , j = 1,2, · · · , m, t ∈ {1, 2}

p j =
∑

i∈K wi p
At
i j , j = 0,1, 2, · · · , m, t ∈ {1,2}

(4.6)
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4.2.2.2 Generating initial population

By collecting all the interpolated candidate rules, the initial population will be set

up. Depending on which of the two chromosome representation strategies is used,

there are slightly differences when forming the initial population. Using rule based

chromosome representation, all the candidate rules within one cluster form an initial

sub-population for this cluster. Therefore, there are C initial sub-populations in total,

each of which will initiate an independent evolutionary learning process, as shown in

Figure 4.3. While using ANFIS based chromosome representation, all the candidate

rules are collected to form a global initial population, as shown in the Figure 4.4.

Therefore, there is just one initial population in this case.

4.2.3 Crossover and mutation

For an evolutionary process, from the initial sub-population or the entire population

(depending upon which coding style is used for chromosome representation), a subset

of chromosomes (of an even cardinality) are randomly selected to perform crossover

with a pre-specified crossover probability (denotes by pc). The chosen chromosomes

are then, randomly paired up. For each (so-called parent) pair (ch1, ch2), the

standard ‘two-point’ crossover is applied, in which a start position and an end position

are randomly determined and subsequently, the genes between them are exchanged.

In so doing, two child chromosomes are generated per pair. This procedure is

illustrated in Figure 4.1(c).

After crossover, mutation operation follows. Similar to the crossover operation,

a subset of the (sub-)population is selected for mutation with a pre-determined

probability (denotes by pm). For each chosen chromosome, a mutation position is

randomly generated. Then, the mutated chromosome is created by randomly adding

or subtracting a small value ε to the gene at that position. The mutation procedure

is illustrated in Figure 4.1(d).

Note that as with common approaches in the literature, a larger crossover proba-

bility and a smaller mutation probability are empirically assumed.
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4.2.4 Fitness function

Fitness function is used to evaluate the performance of the chromosomes so that

better performers can be maintained to enter the next iteration. Designing an

appropriate fitness function is important for any evolutionary algorithm. How to

define a fitness function however, depends on the application problem at hand. For

prediction and estimation tasks, functions that compute the mean square error or the

absolute difference error are the most commonly adopted. In this work, the fitness

function is implemented on the basis of the RMSE (Root-Mean-Squared Error), which

is defined per chromosome as follows:

E =

√

√

√

∑N
i=1(gk −A (xk))2

N
(4.7)

where N is the number of training data, gk and A (xk) are the kth expected and

estimated output over the evolutionary process, respectively. Suppose that the

maximum error permitted is Emax , then such a fitness function may be specified by

F = Emax − E (4.8)

For the present application, a meaningful fitness measure should be given for

an entire ANFIS instead of a single rule. Thus, further consideration may be due,

depending upon which chromosome representation is utilised. For ANFIS based

chromosome representation, the fitness of each chromosome can be directly obtained

using the fitness function above, as per Equation (4.8). However, if individual rule

based chromosome representation is employed, the fitness of such a chromosome is

obtained using a score table that evaluates and records the performance of every

candidate rule, as per Table 4.1, where scorei j denotes the evaluated (fitness) value

of the jth candidate rule in the ith cluster and S is the size of candidates in each

cluster.

Note that to capture and reflect the essence of the fitness of a candidate rule,

computationally, scorei j is calculated as the averaging performance of the jth candi-

date rule in the ith cluster across a certain number of randomly generated possible

ANFISs. This is necessary because in dealing with practical problems, the number

of possible ANFISs can be rather large. For example, suppose that there are 10

rules in the rule-base of an ANFIS, and that there are 5 candidates per underlying
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4.2. GA for ANFIS Interpolation

Table 4.1: Score table

Candidate

Cluster
1 2 · · · C

1 score11 score21 · · · scoreC1

2 score12 score22 · · · scoreC2
...

...
...

. . .
...

S score1S score2S · · · scoreCS

rule. Then, the number of possible ANFISs will be 510, which is a huge figure that

requires substantial storage and computation power. Thus, in implementation, just

a portion of the possible ANFISs are randomly chosen for evaluation. To balance

effectiveness and efficiency, the number of chosen possible ANFISs, denoted by Amax ,

may be set empirically (and in this research, Amax = 500). This practice (of only a

randomly selected portion of possible ANFIS chromosomes being used for evaluation)

is common in the literature of applied evolutionary algorithms.

The evaluated ANFISs are subsequently sorted according to their RMSEs in de-

scending order. For individual rule-based representation, the score table is initialised

with each cell set to zero and, for the kth sorted ANFIS (k ∈ {1, 2, . . . , Amax}), record

the candidate rules used, and the scores of those relevant candidate rules are added

by k. After doing this for all those created possible ANFISs, the score table results.

The procedure for computing the score table is summarised as given in Algorithm 4.1.

4.2.5 Summary of GA-based ANFIS interpolation

The proposed evolutionary ANFIS interpolation algorithms are summarised as Algo-

rithm 4.2.

4.2.6 ANFIS Interpolation: contrasting two algorithms

The two algorithms, implemented depending upon which chromosome representation

is employed, have already been illustrated in Figures 4.3 and 4.4 respectively. There

exist three major differences between these two implementations: 1) The objects
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4.2. GA for ANFIS Interpolation

Algorithm 4.1: Calculation of score table.
Input:
Candidate rules;
C – Number of clusters;
S – Number of candidate rules in each cluster;
Amax – Number of ANFISs for evaluation.

1 Make a zero Score Table of S rows and C columns;
2 Make a zero Counting Table of S rows and C columns;
3 Make Amax possible ANFISs randomly and record candidate rules used;
4 Evaluate ANFISs and sort them according to RMSE in descending order;
5 for k = 1 to k = Amax do
6 for i = 1 to i = C do
7 record the candidate rule number j used;
8 Score Table: scorei j ← scorei j + k;
9 Counting Table: count i j ← count i j + 1;

10 end
11 end
12 for i = 1 to i = C do
13 for j = 1 to j = S do
14 Score Table: scorei j ← scorei j/count i j;
15 end
16 end

Output:
Score table of all candidate rules.

that are evolved during the evolutionary process are different. One using rule

based chromosome (termed ‘Method 1’ hereafter) conducts one evolutionary process

per cluster, whilst the other using ANFIS based chromosome (termed ‘Method 2’)

initialises the population directly with ANFISs, conducting the evolutionary process

only once. This is of course, the fundamental reason for all the differences between

these two algorithms. 2) The population initialisation methods are different, as

discussed previously in Section 4.2.2.2. 3) The fitness measurement means are

different, as described in Section 4.2.4.

Both algorithms have their own advantages and disadvantages, as summarised

below. In particular, the individual rule-based approach requires less storage – Each

chromosome only represents one rule, meaning that it is generally much shorter

than a chromosome in ANFIS based method. This also leads to less running time,

as to be indicated in an illustrative example later. However, the entire ANFIS-based

representation offers a more convenient means for evaluation – The process of
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Algorithm 4.2: ANFIS Interpolation - An evolutionary approach.
Input:
Source ANFISs in source domains: A1,A2;
Sparse training data in target domain: {(x, y)};
Population size (ANFIS chromosome): Q.
// - Population Initialization

1 Extract fuzzy rules {Ri} fromA1 andA2;
2 Construct rule dictionary D by Equations (3.3) and (3.4);
3 Divide sparse training data into C clusters, with respect to Equation (3.5);
4 for each cluster do
5 Use centre of each cluster as seed, generate a set of individuals;
6 for each individual do
7 Interpolate one candidate rule;
8 end
9 end

10 if chromosome is rule type then
11 for each cluster do
12 Collect candidate rules within the current cluster, to form an initial

sub-population;
13 end
14 end
15 else if chromosome is ANFIS type then
16 for i = 1 to i =Q do
17 for each cluster do
18 Choose one candidate rules in the current cluster;
19 end
20 Form an ANFIS chromosome by all chosen rules;
21 end
22 Collect all ANFIS chromosomes as initial population;
23 end
24 repeat

// - Crossover and Mutation
25 Choose chromosomes for crossover with probability pc;
26 Do two-point crossover for chosen chromosomes;
27 Choose chromosomes for mutation with probability pm;
28 Do mutation for chosen chromosomes;

// - Evaluation
29 if chromosome is rule type then
30 Evaluate chromosomes using Score Table;
31 end
32 else if chromosome is ANFIS type then
33 Evaluate chromosomes using Equation (4.8);
34 end
35 Update population by roulette selection;
36 until stop criteria is met;

Output:
Interpolated ANFISAint in target domain.
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assessing the quality of chromosomes to decide whether any of them will enter the

next iteration can be directly evaluated in this approach, whilst the evaluation step

of rule based chromosomes involves a much more complex procedure (using a score

table and using an additional parameter of Amax).

4.2.7 Fine-tuning of GA-learned ANFIS model

A GA-learned network (through the process as described above) is used as an in-

termediate network for further fine-tuning with the sparse training data in target

domain through the standard ANFIS learning algorithm. Compared with the use

of the original standard ANFIS training procedure, which initialises the network

parameters as ‘zeros’ or ‘random values’, the proposed ANFIS learning mechanism

employs both fuzzy rule interpolation and GA-based evolutionary procedure, in an

effort to produce higher quality initial network parameters. In so doing, the sparse

training data is used more efficiently in the fine-tuning procedure for generating

ANFIS of improved performance.

4.3 Complexity Analysis

The time complexity of the proposed methods (for both the rule based and ANFIS

based chromosome representation) is analysed here. According to Algorithm 4.2,

there are generally three stages in performing evolutionary ANFIS interpolation:

population initialisation, crossover and mutation, and chromosome evaluation. As

indicated previously, triangular fuzzy sets are utilised in implementing both methods

and hence, the complexity analysis only involves the use of such fuzzy sets. The

notations used are listed as follows:

m : number of antecedent attributes

n : number of fuzzy rules in rule dictionary

N : number of sparse training data points

C : number of clusters in training data
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P : number of individuals in each cluster

Q : population size for ANFIS based chromosomes

Amax : number of ANFISs used in calculating score table

4.3.1 Rule-based chromosome representation

In the ‘Population Initialisation’ step, lines 1-2 extract all the rule parameters from

sources ANFISs to construct the rule dictionary. There are totally n rules, with 4m+1

parameters in each rule. Thus, running lines 1-2 costs O(4mn+ n). Following this,

line 3 for clustering takes O(NCm). Lines 4-9 repeat C × P times implementing

candidate rule interpolation, each of which includes three sub-steps: (1) selecting

K closest rules (at the cost of O(n2)), (2) calculating weights (at O(K)) and (3)

generating new rules (at O(4m+ 1)). Therefore, the complexity for computing lines

4-9 is C × P × [O(n2)+O(K)+O(4m+1)] = O(C Pn2). Next, lines 10-14 jointly lead

to C initial populations, costing O(C). Hence, the sub-total complexity for this step

is O(4mn+ n) +O(NCm) +O(C Pn2) +O(C) = O(NCm) +O(C Pn2).

In the ‘Crossover and Mutation’ step, the crossover and mutation operation repeats

C times. Line 25 selects pc P rules for crossover, costing O(pc P). In line 26, there are

b(pc P)/2c pairs of chromosomes. For each pair, in the worst case, all the parameters

within the two chromosomes are exchanged, taking O(4m+ 1). Then, in performing

the mutation operation, lines 27-28 take O(pmP). Thus, the sub-total complexity is

C × [O(pc P) + b(pc P)/2c ×O(4m+ 1) +O(pmP)] = O(mC P).

The rule based chromosome uses a score table to implement the ‘Chromosome

Evaluation’ step. In running Algorithm 4.1, lines 1-2 take O(SC). Line 3 makes Amax

ANFISs with C rules in each, costing O(Amax C). Line 4 costs O(A2
max) for sorting the

Amax RMSEs. Following this, lines 5-11 repeat Amax C times, costing O(Amax C). Lines

12-16 repeat SC times with a complexity of O(1) each time. Thus, the sub-total

complexity for the ‘Chromosome Evaluation’ step is O(SC) +O(Amax C) +O(A2
max) =

O(A2
max).

In summary, the overall complexity for the proposed approach with rule based

chromosome is: O(NCm) +O(C Pn2) +O(mC P) +O(A2
max).
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4.3.2 ANFIS-based chromosome representation

For the method that exploits ANFIS based chromosome representation, the ‘Popula-

tion Initialisation’ step is almost the same as that for the method using rule based chro-

mosomes, expect for its final population construction process as given in lines 15-23,

which costs O(QC). Thus, running this ‘Population Initialisation’ step is at the cost of

O(4mn+n)+O(NCm)+O(C Pn2)+O(QC) = O(NCm) +O(C Pn2)+O(QC). Different

from the method with rule based chromosome representation, here, the crossover and

mutation operation are only implemented once within the population of the size Q.

Line 25 takes O(pcQ). In line 26 the crossover operation repeats for b(pcQ)/2c times,

and in the worst case, each crossover incurs exchanges across all the C(4m+1) param-

eters in each ANFIS based chromosome, thereby costing O(C(4m+1)). Following this,

lines 27-28 take O(pmQ). The sub-total complexity for the ‘Crossover and Mutation’

step is therefore, O(pcQ)+b(pcQ)/2c×O(C(4m+1))+O(pmQ) = O(mCQ). Finally in

the ‘Chromosome Evaluation’ step, line 33 evaluates all the Q chromosomes by sorting

the related RMSEs, costing O(Q2). Hence, the overall complexity for the method with

ANFIS based chromosome representation is: O(NCm)+O(C Pn2)+O(mCQ)+O(Q2).

Table 4.2: Summary of complexity analysis

Main steps Rule-based chromosome ANFIS-based chromosome

Population
Initialization

O(NCm) +O(C Pn2) O(NCm)+O(C Pn2)+O(QC)

Crossover and
Mutation

O(mC P) O(mCQ)

Chromosome
Evaluation

O(A2
max) O(Q2)

Overall
O(NCm) +O(C Pn2) +

O(mC P) +O(A2
max)

O(NCm) +O(C Pn2) +
O(mCQ) +O(Q2)

For clarity, the outcomes of the above computational complexity analysis are sum-

marised in Table 4.2. Comparing the overall complexity of running the method using

rule based chromosome representation and that using ANFIS based chromosome

representation, it can be seen that the first two items (O(NCm) +O(C Pn2)) in each

are the same. Moreover, in implementations, Amax and Q are usually set as the same

number because both denote the number of ANFISs to be evaluated. Thus, the only

difference between the complexities of these two methods lies in their respective
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third items: (O(mC P) vs. O(mCQ)). From this analysis, it can be concluded that

the complexities of the two proposed methods do not differ very much. The time

complexity of using the ANFIS based chromosome representation is slightly higher

than that of using the rule based one, because that the value of Q is typically larger

than that of P. This is verified experimentally later.

4.4 Experimentation and Validation

This section presents a systematic experimental evaluation of the proposed approach.

Section 4.4.1 provides the general experimental set-up, including the parameters

used, comparative methods employed, and performance index measured. Section

4.4.2 validates the two proposed algorithms by looking into a few synthetic function

modelling cases, while Section 4.4.3 shows the effectiveness of the proposed approach

in performing TSK regression over ten benchmark datasets.

4.4.1 Experimental setup

In the experimental studies, triangular membership functions are used in imple-

menting the first layer of an ANFIS due to their popularity and simplicity. Both

normalised and unnormalised data are used, reflecting the capability of the proposed

approach in dealing with different data representations. Particularly, original data is

used without normalisation in the synthetic data experiments for the convenience

of result illustration. While in the experiments involving benchmark datasets, all

input domains of the original data are normalised to [0,1]. The classical roulette

algorithm is employed for chromosome selection when updating the population in an

evolutionary process. Following the common practice in the literature, the crossover

and mutation probabilities are chosen as pc = 0.8 and pm = 0.2, respectively, unless

otherwise stated. In setting up the initial population, the number of candidate rules

of each cluster is set to P = 5. Note that P is the number of candidate rules per

cluster in the very original population before any crossover and mutation, which

differs in principle from the figure S in Table 4.1, that stands for the number of

candidate rules in each cluster in the evaluation step.

Regression results using different ANFISs are compared, including: 1) An original

ANFIS trained with the classical ANFIS learning method [66], using the sparse data
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in the target domain only, named as ‘Original ANFIS’ hereafter; 2) An interpolated

ANFIS obtained by the first ANFIS interpolation method described in Chapter 3,

named as ‘Method 0’ (which interpolates one rule with respect to the centre of

each cluster without involving evolutionary computation); 3) An interpolated ANFIS

obtained by the proposed ‘Method 1’ (via rule based chromosome representation);

and 4) An interpolated ANFIS obtained by the proposed ‘Method 2’ (via ANFIS based

chromosome representation).

RMSE is taken to evaluate the performance of different ANFISs, as per the

definition of Equation (4.7), where N now represents the number of the testing data

points {xk} in the target domain; gk denotes the corresponding ground truth of the

kth data point; and A (xk) stands for the output of different ANFISs on the data

point xk. Obviously, a smaller RMSE indicates a better performance, given otherwise

the same conditions while performing statistical analyses.

4.4.2 Experiments on synthetic data

In this experimental study, synthetic data is created by sampling three non-linear func-

tions, including two 1-D functions and one 2-D function, these function relationships

used in the experiments are listed in Table 4.3.

Table 4.3: Functions used

No. Function x range

1 cos(x) · x x ∈ [−10,10]

2 sin(2x)/ex/5 x ∈ [−10,10]

3 sin(x1/π)sin(x2/π) x1 ∈ [−30,30], x2 ∈ [−10, 10]

4.4.2.1 Illustrative example

This is presented in order to show the main working procedures of the proposed ANFIS

interpolation approach and the differences between the two types of chromosome

representation. The first one dimensional non-linear function [ y = cos(x) · x ]
is used for giving the illustrative example, the underlying function is plotted for

illustration in Figure 4.5.
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As shown in Figure 4.5, the input domain [−10, 10] is divided into three parts to

simulate the source data and the target data. In particular, there are totally 201 data

points sampled from this continuous function (with a sampling step of 0.1), in which

the data in the left part (67 data points, shown in dashed line) forms the first source

domain, which is used for training the first source ANFIS A1, and the data in the

right part (67 data points, shown in dotted line) forms the second source domain for

training the corresponding second ANFIS A2. These two source ANFISs (A1 and

A2) are pre-trained using the standard ANFIS learning algorithm as described in

Section 2.1, with 4 and 5 fuzzy rules resulted, respectively. The remaining data of

the middle part (also 67 data points, shown in real line) forms the target domain,

unlike the two source domains, it will be subsequently divided into two sub-parts

with a small portion (20%, 13 data points) for training and the rest 80% (54 data

points) for testing.

Figure 4.5: Illustration of source data and target data.

Following the proposed approach, the fuzzy rules embedded within the two well

trained ANFISsA1 andA2 are extracted, forming the columns of the rule dictionary,

with 4+ 5= 9 rules in total, as shown in Table 4.4. Note that the rule dictionary is

the same for either the rule chromosome based method or the ANFIS chromosome

based one.

Next, the sparse training data (13 data points) is clustered into C clusters, C =
b(4+5)/2c = 4, as determined with respect to Equation (3.5). Details of each cluster

are listed in Table 4.5, from which it can be seen that the number of raw data in each
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Table 4.4: Rule dictionary

Rule Source ANFIS Antecedent (a0, a1, a2) Consequent

1 A1 (−12.2,−10.02,−7.83) 14.09x + 149.33

2 A1 (−9.95,−7.82,−5.55) 7.16x + 55.41

3 A1 (−7.79,−5.59,−3.39) 13.83x + 72.83

4 A1 (−5.62,−3.39,−1.2) 10.99x + 40.84

5 A2 (1.75, 3.39,5.09) 7.16x − 27.67

6 A2 (3.39,5.05, 6.7) 10.02x − 48.99

7 A2 (5.01,6.7, 8.33) 6.36x − 36.38

8 A2 (6.71, 8.35,9.96) 3.30x − 31.56

9 A2 (8.36, 10.01,11.65) 9.81x − 106.53

cluster is different, particularly in Cluster 1 there is only one data point. Thus, it can

be very difficult to control the size of the initial population while scaling up, if the

raw data is directly used. This issue is remedied with artificially generated individual

instances, using the cluster centre as the seed by adding Gaussian white noise from

it, with the seed itself being the mean and a small number δ (here δ = 0.2) acting

as the standard deviation. For example, the individuals of Cluster 3 are generated,

consisting of the cluster centre itself (1.26) and the four randomly generated data

points (1.13, 1.37, 0.89 and 1.05). Thus, the number of individuals P in each cluster

become the same.

For each generated individual, a candidate rule is interpolated. As such, there

are totally 4× 5= 20 interpolated rules (namely, number of clusters times that of

individuals in each cluster), which are subsequently used to construct the initial

population. For the method using rule based chromosome representation, the initial

population contains 4 initial sub-populations, each with 5 chromosomes. For the

method with ANFIS based chromosome representation, one candidate rule in each

cluster is chosen and used for constructing possible ANFISs. There are 5 different

choices in each cluster, so the number of possible ANFISs is 54 = 625, which is also

the size of the initial population. This is a doable number for the current simple

illustrative case, however, for more complex problems with tens of clusters, this

number will become excessively large and therefore, will require a huge storage

space. In order to keep this under control, only a portion of all possible ANFISs

are randomly selected as the chromosomes in implementing the initial population.
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Denote the number of possible ANFISs to take as Q, then, as stated previously,

Q = 500 is empirically set in the present experimental studies.

In this illustrative example, the length of the individual rule-based chromosome is

(4m+1) = 5 (m = 1), while that of the entire ANFIS-based chromosome is 5×4 = 20

(with 4 rules in each ANFIS). From this setup of the initial population, the crossover

and mutation operations are followed. The changes incurred to the number of the

chromosome during and after one evolutionary iteration is shown in Table 4.6. Of

course, for rule based chromosome representation, this number is counted within one

sub-population. Taking the method running on the entire ANFIS-based chromosome

representation as an example, the population is initialised as Q = 500 chromosomes

at the beginning. Then 400 chromosomes are chosen as parents for crossover with a

crossover probability pc = 0.8, resulting in 400 children. After crossover, the number

of chromosomes becomes 500+400=900. Similarly, 100 chromosomes are chosen for

mutation with a mutation probability pm = 0.2, resulting in 100 new chromosomes,

and the number of chromosomes after mutation becomes 900+100=1000. Finally,

the evaluation process will select 500 chromosomes out of these 1000 to enter into

the next iteration, ensuring that the population size remains the same.

Table 4.6: Number of chromosomes in one (sub-)population during different pro-
cesses within one evolutionary iteration

Initial
Population

After
Crossover

After
Mutation

After
Evaluation

Rule
chromosome

5 9 10 5

ANFIS
chromosome

500 900 1000 500

As mentioned previously, the methods for fitness evaluation of the two types of

chromosome encoding are different. For the entire ANFIS-based representation, the

evaluation is simply done using Equation (4.8) and hence, its illustration is omitted.

Only is the evaluation of the individual rule-based chromosomes explained below.

Having produced four sub-populations (each with 10 chromosomes), a score

table of size 10× 4 is computed according to Algorithm 4.1. Figure 4.6 presents

four instances of computed tables during one iteration. Firstly, the score table is

initialised as a zero table of size 10×4, as illustrated in Table (a) of this figure. Then,
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500 (Amax) possible ANFISs are randomly generated, with the rules used in these

ANFISs recoded. The resulting ANFISs are evaluated using Equation (4.7) and are

sorted in descending order according to their RMSEs. In this illustrative example,

the first ANFIS (with the largest RMSE) is composed of 4 candidate rules indexed

by candidates [3, 10, 6, 4]. That is, the first rule of this ANFIS is the third candidate

rule (or chromosome) in cluster 1, the second rule is the tenth candidate in cluster

2, the third rule is the sixth candidate in cluster 3, and the last rule is the forth

candidate rule in cluster 4. The value in each of the four corresponding locations (or

cells) in the score table is therefore, added by 1, resulting in Table (b) of Figure 4.6.

Next, given the ordered indices [1, 7, 6, 10] of the second ANFIS, the values in their

corresponding locations are added by 2, leading to Table (c) of Figure 4.6. This

process is repeated for all of the 500 ANFISs. Averaging over such 500 tables results

in the final score table that consists of the scores or fitness of all candidate rules, as

shown in Table (d) of Figure 4.6, where the candidate rule with the largest average

score in each cluster is shown in bold. Of course, here, the scores are the averages

of how many times a certain candidate rule is utilised by the randomly generated

(500) ANFISs.

4.4.2.2 Accuracy and runtime performance

The classical 5×5-fold cross validation is applied in the experiments to statistically

evaluate the performance of different ANFISs. The mean and standard deviation

values of RMSE using different ANFISs are listed in the first half of Table 4.7, while

the visual result of one randomly selected fold regarding the first function modelling

problem is shown in Figure 4.7.

As can be seen from the results, the ‘Original ANFIS’ gives the worst outcomes

(which is not surprising due to data shortage in the target domain). While ‘Method

0’ (proposed in Chapter 3) shows an already significantly improved performance

over the ‘Original ANFIS’, the GA-based algorithms produce further enhanced results.

Quantitatively, running either ‘Method 1’ or ‘Method 2’ leads to smaller RMSE values

with a narrower standard deviation, as shown in Table 4.7. Qualitatively, the shape

of the estimated function by either of the proposed methods is much closer to that of

the ground truth, as depicted in Figure 4.7.

Comparing the two proposed algorithms themselves, the results demonstrate that

‘Method 1’ (which represents individual rules as chromosomes) performs slightly
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Figure 4.6: Example for score table computation

better than ‘Method 2’ (which expresses an entire ANFIS as one chromosome), for

this function modelling problem. The likely reason for this is that, as the rule based

chromosomes are shorter than the ANFIS based ones, there are more opportunities

for crossover and mutation operations to take effect under the same probabilistic set

up.

Both implementations for the proposed ANFIS interpolation approach are also

compared with five conventional machine learning methods: linear regression (LinR),

support vector regression (SVR), classification and regression tree (CART), random

forest (RF), and an evolutionary ANFIS method (E-ANFIS [111]) in which the genetic

algorithm is used to learn the network parameters (without interpolation). The
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Table 4.7: Accuracy (Mean ± Standard deviation) and running time (seconds) of
different methods on synthetic data

Methods Function 1 Function 2 Function 3 Run time

Original
ANFIS

0.913±
1.184

1.329±
1.153

0.468±
0.244

0.32±
0.21

Method 0
0.364±
0.406

0.905±
0.743

0.351±
0.148

0.65±
0.26

Method 1
0.294±
0.401

0.691±
0.461

0.334±
0.147

40.21±
27.33

Method 2
0.317±
0.441

0.794±
0.552

0.325±
0.096

55.42±
29.70

LinR
1.243±
0.055

0.772±
0.022

0.471±
0.007

3.04±
2.52

SVR
1.234±
0.064

0.789±
0.030

0.470±
0.007

3.44±
2.13

CART
1.302±
0.329

1.394±
0.235

0.393±
0.037

3.32±
1.75

RF
0.547±
0.133

0.805±
0.167

0.408±
0.024

3.61±
0.78

E-ANFIS
1.552±
0.478

0.836±
0.048

0.476±
0.012

359.21±
126.42

evaluation results are listed in the second half of Table 4.7. From the accuracy over

the three function modelling case studies, it can be observed that the proposed ANFIS

interpolation methods (‘Method 1’ or ‘Method 2’) perform better in terms of mean

error values. Although the classical machine learning methods (especially the LinR

approach) may give better standard deviation values, their overall accuracy is lower

than what is achieved by the proposed methods.

The average running time (also showing in the ‘Mean ± Standard deviation’ form)

of different methods over the three function modelling cases is shown in the last

column of Table 4.7. Comparing the two proposed methods with other approaches,

as can be expected, they run faster than ‘E-ANFIS’ but incur more computation than

the rest. However, the considerably improved accuracy they gain over the other

approaches justifies this increase in computational cost. Comparing the two proposed

methods themselves, it can be seen that the method employing individual rule-based
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Figure 4.7: Visual illustration of one-fold result by different ANFISs

chromosome representation consumes less time, this conforms to the theoretical

analysis presented in Section 4.3.

4.4.3 Experiments on real data

A number of investigations are carried out here, looking into the issues regarding

accuracy, amount of training data and key GA parameters (namely, crossover and

mutation rates).

4.4.3.1 Datasets and experimental environment

Table 4.8 lists the ten popular benchmark real-world regression datasets, taken

from the KEEL data respository [5], which are used here to further evaluate the
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performance of both GA-based ANFIS interpolation algorithms.

Table 4.8: Datasets used in experimental study

Dataset Attribute No. Instance No.

Diabetes 2 43

Plastic 2 1650

Quake 3 2178

Laser 4 993

AutoMPG6 5 392

Delta-ail 5 7129

Friedman 5 1200

Dee 6 365

Delta-elv 6 9517

ANACALT 7 4052

To conduct this set of experimental investigations, the source domains and target

domain are created in a similar manner to the synthetic data experiments, by splitting

each entire dataset into three parts according to one of the input variables.

4.4.3.2 Accuracy analysis

The 5×5-fold cross validation results over the ten datasets are shown in Table 4.9,

with the average RMSE values listed in the last row and the best results indicated in

bold. Similar observation can be made from Table 4.9 to those results obtained from

the synthetic data experiments. The ‘Original ANFIS’ gives the poorest performance

as expected, and the other three interpolated ANFISs improve the inference results

obviously. Amongst the three interpolation-based methods, both GA-based imple-

mentations outperform ‘Method 0’ for most cases, though there is no clear winner

between the two themselves.

The p-values of the pairwise t-test (p = 0.05) over different methods are listed in

Table 4.10. In this table, sign (v) (p < 0.05) represents that the improvement is of

statistic significance, while sign (*) denotes that the improvement is not significant

statistically. From the results, it can be seen that both ‘Method 1’ and ‘Method 2’
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provide improvements of statistical significance compared with the original ANFIS

model. However, as shown in the last column of Table 4.10, all p values are larger

than 0.05, indicating that there is no statistical improvements between the two

algorithms with different chromosomes. This can be expected as the experimental

results on RMSEs also shown that this is no clear winner between ‘Method 1’ and

‘Method 2’.

Table 4.10: p values of pairwise t-test results

Dataset Method 1 v.s.
Original ANFIS

Method 2 v.s.
Original ANFIS

Method 1 v.s.
Method 2

Diabetes 0.0043 (v) 0.0108 (v) 0.6948 (*)

Plastic 0.0035 (v) 8.3728e-04 (v) 0.5797 (*)

Quake 1.36e-06 (v) 2.52e-06 (v) 0.3557 (*)

Laser 7.96e-10 (v) 9.67e-10 (v) 0.4834 (*)

AutoMPG6 1.17e-18 (v) 1.46e-18 (v) 0.0558 (*)

Delta-ail 1.27e-08 (v) 1.73e-08 (v) 0.1894 (*)

Friedman 9.61e-15 (v) 6.22e-16 (v) 0.4926 (*)

Dee 0.0046 (v) 0.0033 (v) 0.5649 (*)

Delta-elv 2.10e-12 (v) 1.52e-12 (v) 0.6828 (*)

ANACALT 0.0165 (v) 0.0111 (v) 0.1954 (*)

4.4.3.3 Comparison with other machine learning methods

As with the experiments on synthetic data, the proposed approach is also compared

with five conventional machine learning methods: LinR, SVR, CART, RF, and E-ANFIS.

Different from those earlier experiments (where triangular membership functions and

a very simple clustering method were used), to enrich the experimental investigation,

Gaussian membership functions and fuzzy c-means clustering are utilised here, in

implementing the proposed ANFIS interpolation methods. The results are listed in

Table 4.11 with the best highlighted in bold.

The proposed approach outperforms the others in a substantial majority of cases.

For the three particular cases (of LinR on the Quake dataset, SVR on Dee, and RF on

AutoMPG6) where an existing method shows the best outcome, the accuracy of the

proposed approach is close. In particular, the proposed approach with ANFIS based
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chromosome representation gives by far, the best mean value of the overall RMSE

averaged across the ten datasets, and the proposed with rule based chromosome

representation achieves the second best (as shown in the last row of Table 4.11).

This superiority in performance remains to be true taking into consideration the

standard deviations. Note however, that in terms of the overall averaged standard

deviation measure, the classical SVR has the least value, demonstrating its excellent

stability.

Table 4.12 shows the running time performance of different methods (given in the

‘Mean ± Standard deviation’ form), in which each line is obtained by averaging the

running time over different datasets. It can be observed that the standard deviations

of the two proposed methods (’Method 1’ and ’Method 2’) and the ’E-ANFIS’ method

are relatively larger than that of the rest. The running time of an algorithm on

different dataset with different numbers of input variables may vary, and for the

ANFIS-based approaches, the running time is more sensitive to the change of the

number of input variables. For datasets with more input variables, these algorithms

will produce a large rule-base in the resulting ANFIS, and operating on this large rule-

base will consume much more time than coping with datasets containing less input

variables. This leads to the relatively larger standard deviation of the ANFIS-based

methods.

From Table 4.12, similar observations as per those on the synthetic data case

studies can be drawn: The proposed methods are faster than E-ANFIS, but slower

than the rest, since the evolutionary process incurs more computation. Between the

two proposed methods themselves, it is clear that the implementation with ANFIS-

based chromosome representation consumes more time. Again, this is expected,

reflecting the result of theoretical analysis on computational complexity.

4.4.3.4 Effects of sparsity in training data

This particular experimentation is conducted to investigate the performance of differ-

ent ANFISs in response to the use of different percentages of training data, instead

of just the 20% and 80% split. To focus on the discussion about the performance

of varying the amount of training data, only the results on the ‘Quake’ dataset are

shown here, as given in Figure 4.8.
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Table 4.12: Average running time (seconds) of different methods on real data

Methods Running time

LinR 1.46 ± 0.15

SVR 13.34 ± 15.57

CART 2.38 ± 1.85

RF 3.47 ± 2.5

E-ANFIS 225.3 ± 171.65

Method 1 35.15 ± 20.2

Method 2 64.91 ± 36.55

It can be seen that in general, the RMSE values decrease as the percentage of

training data increases, independent of which learning method is used. Importantly,

also independent of what percentage of training data is utilised, the three interpolated

ANFISs all remarkably outperform the ‘Original ANFIS’ (until training data reaches

90%). Furthermore, the RMSE values of the three interpolated ANFISs generally

decline much less rapidly than the RMSE of the ‘Original ANFIS’, indicating that the

interpolated ANFISs are less sensitive to the decrease of training data. Indeed, the

performances of these three methods using 30% data are very close to those using

90% data. When the available data percentage is 20%, the results are of course

the same as discussed in the preceding sub-section, with the three interpolated

ANFISs significantly beating the ‘original ANFIS’ and the two GA-based methods

outperforming ‘Method 0’. When only 10% of data is available for training, the

performances of the interpolated methods degrade but still beat the ‘Oriainl ANFIS’

trained with the conventional method substantially. Most interestingly, even in this

case, either of the two proposed methods retains its superior performance over

‘Method 0’, especially when rule based chromosome representation is used. Overall,

the proposed ANFIS interpolation algorithms via evolutionary computation achieve

a much better result while using less training data than the existing techniques.

4.4.3.5 Effects of crossover and mutation probability

The crossover probability pc and mutation probability pm are two important pa-

rameters in the evolutionary process. Generally, larger crossover probability and

smaller mutation probability are a common choice for most evolutionary problems.
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Figure 4.8: Performance vs. percentage of training data used

In the above-reported experimental investigations, these two parameters are set

to pc = 0.8, pa = 0.2 respectively. In order to examine the effects on performance

of using different pc and pm, these probabilities are varied from 0.1 to 0.9 (with

step=0.1) in this experimentation. This part of the experimental studies is focussed

on the use of the entire ANFIS based chromosome representation since the number of

the individual rule-based chromosome in each sub-population is very small (only 5 in

the experiments, so the results of using different pc and pm do not differ much in the

first place). The resulting box-plot over the ‘Quake’ dataset is shown in Figure 4.9 and

Figure 4.10. In conformation with common knowledge in evolutionary computation

the results reveal that larger pc as well as smaller pm give a better value for both the

median and the interquartile range.

4.5 Summary

This chapter has presented a new ANFIS interpolation approach via evolutionary

computation (implemented with GAs), in an effort to improve the learning of ANFIS

when there is significant shortage of training data for the problem concerned. The

concept of ‘ANFIS interpolation’ means the interpolation of an entire inference system,

or a whole group of rules in the target region. This is enabled with the assistance

of well-trained ANFISs in the neighbouring regions. Two forms of chromosome
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4.5. Summary

Figure 4.9: Performance vs. crossover rate.

Figure 4.10: Performance vs. mutation rate.

representation are considered: one encoding individual rules and the other expressing

an entire possible ANFIS. The proposed approach has been tested on both three

function modelling problems with synthetic data and real world regression problems

involving 10 benchmark datasets, demonstrating its ability in significantly improving

the inference performance when compared with existing techniques.
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Compared with the ANFIS interpolation approach proposed in Chapter 3 (based

on group-based rule interpolation), this evolutionary approach has the following

new contributions:

1. Unlike the initial approach which terminates when a group of rules are interpo-

lated, this improved ANFIS interpolation is implemented within the framework

of a genetic algorithm which iteratively updates the interpolated rules. This

is the fundamental contribution from which the following two innovative

technical developments have been made.

2. Two types of chromosome representations are designed to perform the GA

process, resulting in two slightly different evolutionary algorithms that have

been systemically compared in this chapter.

3. As an ANFIS can be equivalently interpreted as a set of fuzzy rules, the fitness

of each single rule based chromosome is very hard to measure. In order to

solve this problem, the concept of ‘score table’ has been developed in this

chapter, from which the performance of all rule type chromosomes are clearly

exhibited.

Further to the above systematic evaluation with benchmark datasets, the proposed

approaches are also applied to dealing with the problem of image super resolution.

Particularly, Chapter 5 will use full training data to test the performance of the learned

ANFIS mappings under the condition where sufficient training data is available.
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Chapter 5

Image Super Resolution with Full

Training Data via Multiple Learned

ANFIS Mappings

I N most existing learning based super resolution algorithms, the mappings from

low resolution space to its corresponding high resolution space is learned using

non-fuzzy techniques [43, 149, 171]. However, image super resolution is a highly ill-

posed problem where an observed low resolution (LR) image patch can be generated

from any of the many possible high resolution (HR) patches. Therefore, it would be

intuitive to introduce imprecision (or fuzzy) techniques to the learning based image

super resolution (ISR) tasks. Hither to little work in this direction has been developed

[6]. However, an interesting approach has been proposed recently for fuzzy rule

based ISR [122] whose basic idea is to develop a set of fuzzy rules describing the

required non-linear mappings. These fuzzy rules are learned from the low resolution

and high resolution (LR-HR) image pairs of a given training data set, and in this

learning process, the most important part is how to decide the rule parameters.

Based on the fact that ANFIS has been proven to be a powerful tool for generating

effective fuzzy rules, it would be interesting to investigate its potential to help resolve

the image super resolution problem. This chapter introduces the work for an ANFIS to

learn its parameters to perform the ISR task with full training data. A new algorithm

for single frame image super resolution using multiple learned ANFIS mappings is
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developed. In particular, a large number of LR-HR patch pairs from a collection

of natural images are generated and used as training data, from which multiple

ANFIS mappings from LR space to HR space can be formulated. Those learned

ANFIS mappings are tested against a range of natural images and over different scale

factors.

The rest of this chapter is organised as follows. Section 5.1 outlines the framework

of the proposed ANFIS based image SR approach. Section 5.2 details the proposed

approach, performing ISR by an integrated use of the learned ANFIS mappings and

a number of pre-processing and post-processing techniques. Experimental results

against a number of natural images are shown in Section 5.3, demonstrating the

effectiveness of the proposed method. Section 5.4 provides a summary of the reported

work in this chapter.

5.1 Framework of Proposed Approach

This section describes the framework of the proposed image super resolution al-

gorithm, which involves two phases: (1) Offline learning, where multiple ANFIS

mappings are learned via a large amount of LR-HR image patch pairs. (2) Online

application, where the learned multiple ANFIS mappings are used to generate the

corresponding HR image from an input LR image.

The flowchart of the proposed algorithm is shown in Figure 5.1. At the learning

stage, an external database of LR and HR image pairs is used as the training set.

Then each image pair in the training set is divided into small LR-HR patch pairs with

a fixed size. Next, the resulting patch pairs are grouped into different clusters using

a K-means clustering method, and for each cluster, an ANFIS mapping is learned

using the standard ANFIS learning process. When in use (after training), a given

input LR image is firstly divided into image patches with the same size as the patches

in training stage. For each patch, the most relevant ANFIS mapping is then selected

to perform SR, resulting in its corresponding HR patch. By combining all the HR

patches, a reconstructed image is obtained. Following this, a non-local means (NLM)

filter (which works by exploiting the image’s non-local self similarity) and a iterative

back projection (IBP) operator are employed to refine the reconstructed image. This

process will be repeated for several times and will finally output the estimated HR

image.
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5.2 Implementation of the Proposed Approach

This section presents the implementation details of the framework outlined in Section

5.1. The learning process is introduced in 5.2.1, while the testing process as well as

the pre-processing and post-processing techniques utilized in this work are presented

in 5.2.2.

5.2.1 Learning of multiple ANFIS mappings

5.2.1.1 Training set generation

At the beginning of the training stage, the training data set, which is a set of image

patch pairs of both HR and LR resolutions, is generated. A (prescribed) large number

of sharp natural images {Yh} are firstly collected and used to form the training

database, including various types of scenes (e.g. people, animals, buildings and

plants) with fine textures. Some representative images are shown in Figure 5.2.

Figure 5.2: Example images used for training.

Those sharp images are considered as HR images in the training set, and the

corresponding LR version {Xl} of the HR images {Yh} are simulated by implementing

the following steps for each HR image: 1) Down sample the HR image with a scale

factor of s; 2) Up scale the down sampled images to a certain desired size by bicubic

interpolation, so that the LR and the desired HR images are of the same size but

the former are of lower resolution (which may mean they contain less information).
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Then, the LR-HR image pairs {(Xl ,Yh)} are divided into overlapping patch pairs with

a size of q× q, denoted as Q = {(xl ,yh)}. After vectorization, each patch is a column

vector xl ∈ Rq2
,yh ∈ Rq2

containing q2 pixels (each pixel is denoted by x i and y i

respectively). After that, the LR-HR image patch pairs Q can be used to train the

multiple ANFIS mappings.

5.2.1.2 Multiple ANFISs learning

The above resulting patch pairs Q = {(xl ,yh)} are subsequently partitioned into P

clusters with centroids V by the use of conventional K-Means clustering algorithm:

V= {v∗p = (v
l
p,vh

p), p = 1,2, · · · , P} (5.1)

For each cluster, a mapping from the LR image patch to the HR patch is trained

over an ANFIS network. The learning procedure is summarised as Algorithm 5.1.

Algorithm 5.1: Learning multiple ANFIS mappings.
Input:
A set of sharp HR natural images {Yh};
Scale factor s;
// Training set Generation

1 for each Yh do
2 Down sample Yh with scale factor 1

s , resulting in Yl;
3 Up sample Yl with scale factor s using bicubic interpolation algorithm,

resulting in Xl;
4 end
5 Generate LR-HR image pairs {(Xl ,Yh)};
6 Divide {(Xl ,Yh)} into q× q patch pairs Q= {(xl ,yh)} with overlaps;
7 Vectorize patch pairs to pixel pairs such that xl ∈ Rq2

,yh ∈ Rq2
;

// Multiple ANFISs Learning

8 Partition Q into P clusters by K-Means with centroids V= {(vl
p,vh

p)};
9 for each cluster do

10 learn an ANFIS mappingAp;
11 end

Output:
Learned multiple ANFIS mappings {Ap};
Centroids V= {(vl

p,vh
p)}.
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5.2.2 Image SR with learned ANFIS mappings

In the testing stage, a given new LR image can be reconstructed using the trained

ANFIS mappings. This process is implemented with the following three sub-stages:

pre-processing, inference with learned mappings and post-processing.

5.2.2.1 Pre-processing

Denote the given testing LR image as X ∈ Rm×n, where m is the image length and n is

the image width, and denote the desired HR image as Y ∈ RM×N , so there exists the

relationship that M = sm, N = sn. For training convenience, in the learning stage the

LR images of the LR-HR training image pairs are simulated by down sampling then

up sampling the HR image, so the resulting LR images are also of big size M × N .

However, the real input LR image is with smaller size m× n. Therefore, similar with

the training stage, the input testing LR image will be pre-processed using pixel based

interpolation method before inferencing using the learned ANFIS mappings.

Existing representative pixel based interpolation algorithms include the nearest

neighbour interpolation, the linear interpolation, the bilinear interpolation and the

bicubic interpolation [89]. Amongst them, the bicubic interpolation [56, 82] is the

most commonly used one that increases the image pixels by interpolating existing

ones using bicubic basic functions, so is employed in the proposed work.

5.2.2.2 Inference with learned ANFIS mappings

After pre-processing, the resulting large size image (also denoted by X here) will

be subsequently enhanced using the learned ANFIS mappings obtained from the

learning stage. More specifically, the large size image X is firstly divided into image

patches of size q× q with overlaps. Here, the patch size q is the same as that used

during the training process, and the image patches x ∈ Rq×q are also vectorized

for computation convenience. Then, for every vectorized image patch x ∈ Rq2
, an

appropriate ANFIS mapping is selected subject to the following constraint:

p =min
p
‖ x− vl

p ‖
2
2 (5.2)
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where vl
p is the first part of the centroid v∗p in Equation (5.1). And the pth ANFIS

mapping Ap is selected to estimate the corresponding HR image patch. For each

image patch x, the basic idea for inferencing can be expressed by:

I f x is close to vl
p then y=Ap(x). (5.3)

where y ∈ Rq2
is the corresponding HR patch. The behaviour of the functionAp(.) is

inference using the pth ANFIS mapping from input LR patch to HR patch. Now, as

the LR patch is q2-dimensional (x is a vector with q2 pixels), the antecedent part of

Equation (5.3) can be viewed as a conjunction of q2 atomic clauses:

I f x is close to vl
p ≈



















I f x1 is close to v l1
p

I f x2 is close to v l2
p

· · · · · ·
I f xq2

is close to v lq2

p

(5.4)

Similarly, the consequent part of Equation (5.3) can be rewrite as:



















y1 =Ap(x1)
y2 =Ap(x2)
· · · · · ·
yq2
=Ap(xq2

)

(5.5)

where y i denotes arbitrary pixel in patch y. EachAp(x i) is expressed by:

Ap(x
i) =

C
∑

j=1

w j · y i
j , p = 1, 2, · · · , P, i = 1,2, · · · , q2. (5.6)

where C stands for the number of rules in an ANFIS. Each ANFIS mappingAp(x i) is

composed of a set of linear rules, with the following format: If x i (the input pixel) is

A j, then y i
j = p j x + r j. As with the work of [122], the Gaussian function defined as

Equation (2.3) is herein chosen as the membership function to describe A j and to

obtain the firing strength of the fuzzy rules in each ANFIS network under training.

By combining all the estimated HR image patches, a potential HR image results.
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5.2.2.3 Post-processing

Two post-processing techniques are employed in the testing stage, including a non-

local means filter that aims to suppress the artefacts and noise caused in the inference

process, and a iterative back projection algorithm that ensuring the fidelity of the

obtained HR image with the LR image.

A. Non-Local Means (NLM)

To smooth the combination process, the NLM filter is used to suppress undesirable

artefacts, as well as to reduce the noise in the ANFIS-constructed HR image. The non-

local means algorithm is first developed in [17] for the purpose of image denoising.

Generally, the denoised pixel yi is updated as the weighted average of the similar

pixels {y j} whose neighbourhoods are similar to its neighbourhood. The denoising

process can be expressed as follows:

yi =
∑

j∈S

wi j y j (5.7)

where S denotes a certain searching window centred at yi, the weight wi j is defined

as follows:

wi j =
1
Z

ex p(− ‖ pi − p j ‖2
2,a /h

2) (5.8)

where pi and p j are two image patches centred at yi and y j respectively. Such design

of the weight relies on the similar degree between pi and p j, larger similar degree

will lead to larger weight. a > 0 denotes the standard deviation of the Gaussian

kernel function, and the parameter h controls the decay of the exponential function.

Z is a normalisation constant defined as:

Z =
∑

j

ex p(− ‖ pi − p j ‖2
2,a /h

2) (5.9)

The underlying idea of NLM can be illustrated as shown in Figure 5.3. In the

simple example shown in this figure, the central pixel of patch pi is updated as the

weighted average of itself and its similar pixels. Here, ‘similar pixels’ are identified

as the central pixels of patches p j1,p j2 and p j3. As can be observed in the figure,

patches p j1 and p j2 are very similar with patch pi, so are assigned with larger weights

(w1 and w2), while patch p j3 which is rather different to pi is assigned with a small

weight (w3).
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5.3. Experimentation and Validation

Figure 5.3: Basic idea of NLM – Similar pixel neighbourhoods lead to a large weight
(w1 or w2), and different neighbourhoods result in a small weight (w3).

B. Iterative Back Projection (IBP)

Finally, the iterative back projection method [62] is employed to ensure the

fidelity with the LR image, contributing to the reduction of the reconstruction error.

The IBP is implemented as the following iterative equation:

Yt+1 = Yt +λ ∗ I(X− D(Yt)) (5.10)

where t ∈ 0,1, · · · , T , T is the maximum number of iterations. Y0 is initialized as

Y0 = Y. λ is the step size, I(·) and D(·) are interpolation operator and down sample

operator, respectively.

By iteratively implementing the inference and post-processing sub-stages de-

scribed above, the final output HR image is obtained. The steps of the proposed

testing stage can be summarised as given in Algorithm 5.2.

5.3 Experimentation and Validation

To verify the effectiveness of the proposed approach, experimental comparative stud-

ies are carried out and the results are analysed both qualitatively and quantitatively.
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5.3. Experimentation and Validation

Algorithm 5.2: Image super resolution via multiple ANFIS mappings.
Input:
Low resolution image X;
Scale factor s;
Learned ANFIS mappings {Ap};
Centroids V= {(vl

p,vh
p)}.

// Pre-processing
1 Do Bicubic interpolation for X;
2 repeat

// Inference with learned ANFIS mappings
3 Divide X into q× q patches {x} with overlaps;
4 for each patch x in X do
5 Select an ANFIS mappingAp with minimum cost using

Equation (5.2);
6 Estimate corresponding HR patch y=Ap(x);
7 end
8 Integrate {y} to get Y;

// Post-processing
9 Apply NLM method, for every pixel yi in Y: yi =

∑

j∈S wi j y j;
10 Apply iterative back projection: Yt+1 = Yt +λ ∗ I(X− D(Yt));
11 X← Y;
12 until maximum iteration reached;

Output:
Estimated high resolution image Ŷ.

5.3.1 Experimental setup

In this experiment-based investigation, 6 typical natural images each with a size of

256×256 are used as the original HR images (ground truth), and the corresponding

testing LR images are simulated by down-sampled HR ones using a scale factor of

2 and 3. Parameters in the implemented system are empirically set as follows: the

image patch size q = 9; the number of clusters P = 6, which is also the number of

the ANFIS mappings; the number of fuzzy rules in each ANFIS is set to C = 9; and

in the training of ANFIS, 10,000 data samples (image patch pairs) are used. All the

experiments are performed on a laptop with an Intel Core i7-6700 CPU @ 2.6 GHz

and 16GB RAM, using MATLAB R2015a.

The performance of the proposed approach is compared with the bicubic inter-

polation [56], the standard fuzzy rule based method [122], and the popular sparse
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5.3. Experimentation and Validation

representation method [150]. The results of only using the ANFIS mappings with-

out post-processing are also provided. For the colour images used, they are firstly

converted into the YCbCr space from the original GRB space, and since the human

eyes are more sensitive to the intensity channel (Y), the proposed approach is only

applied on the intensity channel.

5.3.2 Evaluation index

To quantitatively access the performance of the proposed work, the Peak Signal-

to-Noise Ratio (PSNR) and the Structure SIMilarity (SSIM) indexes are computed.

PSNR assesses the reconstruction performance through calculating the Euclidean

distance between the original HR image Y and the estimated HR image Ŷ, in which

the Mean Square Error (MSE) between them is firstly calculated:

MSE =
‖ Y− Ŷ ‖2

F

MN
(5.11)

PSNR= 10 log10(
2552

MSE
) (5.12)

where M , N are the image length and width respectively, and ‖ · ‖F stands for the

Frobenius norm of matrix. SSIM reflects the degree of structural similarity between

the original and the estimated HR image, which is defined by

SSI M =
4µYµŶσY,Ŷ

(µ2
Y +µ

2
Ŷ
)(σ2

Y +σ
2
Ŷ
)

(5.13)

where µY and µŶ are the mean value of the original and that of the estimated HR

image, respectively; σY and σŶ are their respective standard deviations; and σY,Ŷ is

the covariation of Y and Ŷ. A lager PSNR means a better result with the best being

+∞, while the range of the SSIM index is [0,1] with its best being 1.

5.3.3 Results and discussion

Visual comparisons on the use of different algorithms are shown in Figure 5.4 (s = 2)

and Figure 5.5 (s = 3), in which the detailed image of a small random patch is

provided in the second row of each. Qualitatively, these results show that the system

implementing the proposed approach produces images with less artefacts and sharper
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5.3. Experimentation and Validation

details, especially around content boundaries (such as those on the hat brims and

eyebrow). The reconstructed images by the proposed approach (in Figure 5.4(f) and

Figure 5.5(f)) appear to be closer to the original HR ones (in Figure 5.4(a) and Figure

5.5(a)). The results also illustrate that those resulting images using only multiple

ANFIS mappings without post-processing contain irregular artefacts and have block

effects, decreasing the visual quality. The joint use of the multiple ANFIS mappings

and the post-processing algorithms can effectively suppress or even eliminate such

displeasing artefacts, generating HR images with better visual effects.

The results of quantitative comparisons with scale factors 2 and 3 are given in

Table 5.1 and Table 5.2 respectively. Best results, corresponding to the maximum val-

ues in each line, are listed in bold. It can be observed that the system implementing

the proposed approach outperforms the rest in all but two or three cases. Further-

more, the mean value and standard deviation of the PSNR and SSIM indices show

the robustness of the proposed system. Additionally, the quantitative comparisons

once again illustrate that using multiple ANFIS mappings alone may lead to the

reconstructed images containing irregular artefacts and block effects. The integrated

use of both multiple ANFIS mappings and post-processing techniques can effectively

suppress or in certain cases, eliminate the displeasing artefacts.

It is known that for images, especially structured images with rich details, adopt-

ing one single and universal learned mapping for SR is impossible [171]. The above

experimental comparisons demonstrate that through K-Means clustering and learn-

ing relevant mapping on each cluster, the proposed approach is able to exploit the

advantage of selecting the most appropriate mapping with respect to different image

patches and hence, to reduce the possibility of introducing addition noise. This strat-

egy improves the system’s representation capability over different types of region,

thereby contributing to the increase in reconstruction accuracy.

The number of clusters (denoted by P) is an important parameter in the K-

means clustering algorithm, which is set to be P = 6 empirically in the above

experimentation. In order to investigate how the algorithm may behave when the

value of P varies, experiments with different P values (from 3 to 9) are conducted

here. The performance (PSNR) and training time are shown in Figure 5.6 and Figure

5.7 respectively. It can be seen from the curve of Figure 5.6 that the PSNR values

do not vary much when different numbers of clusters (P) are used (although the

PSNR value when P = 6 is slightly better), showing the robustness of the proposed
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5.4. Summary

algorithm. From Figure 5.7 it can be observed that the algorithm costs the longest

training time when P = 3. This is because it takes longer to train an ANFIS model

with more training data than to do so with less training data. Thus, despite the

number of clusters is small, it is more time consuming. At the beginning, the training

time reduces as the number of clusters increases. However, when this number

increases to a certain point (P = 6), the algorithm will involve the training of many

models, but consumes as much time as training a few models with a large amount

of data. As such, after that point the training time changes slowly. Therefore, by

trading off the reconstruction accuracy and the computational cost, the number of

clusters is set to be P = 6 in this work.

Figure 5.6: PSNR index of using different P (number of clusters in K-means algorithm)
on Lena image with scale factor being 2.

5.4 Summary

In this chapter, a single frame image super resolution approach using ANFIS has been

proposed, with sufficient training data provided. It works by employing multiple

ANFIS networks that learn the mappings between the LR patches and the HR patches.

Different ANFIS mappings are learned from an external database of a large number

of LR and HR image patch pairs. For each patch of a new input LR image, the
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5.4. Summary

Figure 5.7: Training time of using different P (number of clusters in K-means algo-
rithm).

most relevant trained ANFIS is selected to perform super resolution. The non-local

means filter as well as the iterative back projection algorithm are used to refine the

resulting image. Comparative experimental results presented have demonstrated

the effectiveness of the proposed approach.

Having shown the effectiveness of the learned ANFIS mappings in dealing with

the problem of image super resolution with full training data, the next chapter will

evaluate the performance of the interpolated ANFIS mappings, when solving the

hyperspectral image super resolution task with sparse training data.
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Chapter 6

Hyperspectral Image Super

Resolution with Sparse Training Data

via ANFIS Interpolation

T HE proposed ANFIS interpolation approaches have been proven to be success-

ful in dealing with regression tasks over benchmark datasets with insufficient

training data, as reported in Chapters 3 and 4. This current chapter presents a sys-

tematic application of the proposed ANFIS interpolation techniques for the problem

of hyperspectral image super resolution.

Hyperspectral image is wildly used in real world applications, such as terrain

detection [32, 45], military surveillance [46] and medical diagnosis [102], owing

to its multi-spectral property. The super resolution of hyperspectral images is also

very important for providing high quality images for those special applications. As

mentioned previously (in Section 2.3.2), the learning based SR methods require an

extra training dataset with large number of training images to learn an effective

model. However, the special imaging mechanism makes the acquire of sufficient

hyperspectral images for training a very difficult task in certain applications. This

practical training data shortage problem makes the hypersectral image super resolu-

tion a more difficult task compared with natural image super resolution. In order

to deal with this challenging problem, in this chapter, a new hyperspectral image

super resolution approach with sparse training data is developed by introducing the

proposed ANFIS interpolation techniques.
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6.1. Hyperspectral Image Super Resolution

The rest of this chapter is organised as follows. For academic completeness,

Section 6.1 presents a brief introduction to hyperspectral image and an overview

of hyperspectral image super resolution methods. Section 6.2 details the proposed

ANFIS Interpolation based hyperspectral ISR approach, along with its training and

testing phases. Experimental investigation is reported and discussed in Section 6.3,

including the experimental setup, performance criteria and the experimental results.

Section 6.4 concludes the chapter.

6.1 Hyperspectral Image Super Resolution

In this section, the background knowledge related to the work in this chapter is

presented. The concept of hyperspectral image is introduced firstly, then existing

typical hyperspectral image super resolution methods are reviewed.

6.1.1 Hyperspectral image (HSI)

Hyper-Spectral Image (HSI) is defined as an image cube with a number of image

channels (or image bands). Different with traditional single-channel black-and-

white image or three-channel RGB color image, an HSI usually contains dozens

or even hundreds of spectral bands (as shown in Figure 6.1). Another equivalent

interpretation of HSI is "the hyperspectral imaging sensor acquires a spectral vector

with dozens or hundreds of elements from every pixel in a given scene, the result is

the so called hyperspectral image" [15].

For a given HSI X ∈ RM×N×L, different forms of representation can be used:

• Spectral representation: each image pixel in an HSI X can be represented as a

vector with L elements: x ∈ RL, and there are totally M × N pixels.

• Spatial representation: each image band (or channel) is a two dimensional

image matrix X j ∈ RM×N , with L image bands in total.

Both of these two types of representation are commonly used in processing an

HSI, and when processing a single image band (or pixel), the neighbouring bands
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6.1. Hyperspectral Image Super Resolution

Figure 6.1: Hyperspectral Image (HSI).

(or pixels) are usually taken into consideration due to the high correlation among

neighbouring bands (or pixels).

Different from the traditional three-channel colour images that can be obtained

easily using optical cameras, the acquire of hyperspectal images is more complex.

HSIs are usually obtained through the use of special imaging equipments such as

hyperspectral cameras, which acquires each image band within a certain spectral

response interval, such that different image bands in an HSI are acquired with

different spectral responses. This special imaging mechanism makes different image

bands within the same HSI may show different information, which is very useful in

special real world applications. For example, Figure 6.2 shows three band images

(band 10, band 100 and band 200) of a terrain HSI named ’cuprite’, from which it

can be seen that the band images reflect different image details. In band 10, the

bottom-left part of the image is almost black, but some textures can be observed in

band 100 while in band 200 the image textures are much clearer. These different

information provided by different bands will be helpful for the subsequent terrain

detection tasks.

6.1.2 HSI super resolution (HSI SR)

Since the wide use of high quality HSIs, the super resolution of HSI is becoming one

of the most popular topics in the recent years. Due to the special property of HSI

as mentioned above, the HSI super resolution is more complex than the traditional

black-and-white images or the RGB ones. Generally, hyperspectral image super
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6.1. Hyperspectral Image Super Resolution

resolution (HSI SR) [3] refers to the techniques that enlarge each band of an given

low resolution HSI (LR HSI) to get a high resolution HSI (HR HSI) with HR images

in every bands.

The HSI SR approaches in the existing literatures can be approximately classified

into three categories: multi-frame HSI SR, single-frame HSI SR, and the fusion-

based HSI SR algorithms. In multi-frame HSI SR approaches, multiple low resolution

hyperspectral observations from the same scene are detected, geometrically registered

and combined to generate one image of high spatial resolution. These multiple

observations of the same scene can be obtained from overlapping flight lines, multi-

angle data [21], or multiple instances of different time [170]. Similar with the

traditional multi-frame image SR technique which is introduced previously in Section

2.3, multi-frame HSI SR approaches need sub-pixel level registration for every band,

which is much more time consuming than that of the traditional images. Fusion-

based approaches fuses the LR HSI with other available image sources of high

spatial resolution, acquired by other sensors (e.g. multi-spectral image sensors or

panchromatic image sensors mounted on satellites). A large majority of fusion-based

methods injects the high spatial information of the panchromatic image into the

hyperspectral image bands [100], which is also called HSI pan-sharpening. Another

branch of fusion-based approaches is to adopt spatial-spectral fusion between the LR

hyperspectral image and an HR multispectral image that can deliver the required

spectral information [151, 160, 174].

According to the two forms of HSI representation mentioned in Section 6.1.1,

there are generally three classes of approaches in single-frame HSI SR category.

1) Spatial based approaches [119, 123, 162]: These approaches use the spatial

representation of an HSI in which the given LR HSI is considered as L LR band images.

Those LR band images are then enlarged either independently or collaboratively. 2)

Spectral based approaches [109, 110]: The spectral based approaches also termed

as ‘hyperspectral unmixing’. In these approaches, the given LR HSI is decomposed

into a number of pixels according to the spectral representation of an HSI. Each

pixel is assumed as a linear mixture of several pure image pixels [61]. Therefore,

through the use of the spectral unmixing techniques [49, 81], the number of pixels

of an HSI will be increased such that the image is enlarged. Both of these two

kinds of approaches have their advantages and disadvantages. For instance, the

spatial based approaches don not take the spectral information into consideration,
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6.2. HSI SR with Sparse Data through ANFIS Interpolation

while on the contract, the spectral based approaches also do not consider the spatial

correlation among pixels. 3) Spatial-Spectral based approaches [57, 176]: In order to

overcome these disadvantages in the spatial or spectral based methods, the third class

of HSI SR approaches is proposed, by combining both the spatial and the spectral

approaches. These approaches always iteratively conduct the spatial regulation step

and the spectral regulation step, in an effort to maintain both the spatial and spectral

information.

Current HSI HR approaches usually assume that there exit sufficient training HSIs.

However, different from the natural images that usually can be obtained very easily

in the daily life by using optical cameras, the hyperspectal images are obtained using

special imaging equipments that leads to the process of getting an image very time

consuming. Also, usually hyperspectral cameras are carried on special machines such

as satellite, aircraft or medical device, resulting in that the acquirement of images

are often effected by the weather, noise or other random factors. All these reasons

make the acquire of sufficient hyperspectral images a very difficult task. Therefore

the proposed ANFIS interpolation method is used in this chapter to perform HSI SR

task under sparse training data situations. In this chapter, the spatial based single

frame super resolution strategy is employed in the proposed work.

6.2 HSI SR with Sparse Data through ANFIS

Interpolation

In this section the proposed approach for HSI SR is described in detail. The whole

process is divided into two stages: the training stage and the testing stage. In the

training stage, as the same with the image SR with full training data described

in Chapter 5, the whole training set are grouped into a small number of sub-sets.

Among these subsets, some are with full training data while some are with sparse

data. An individual ANFIS mapping is then learned for each subset with full data,

while for those with sparse data, the corresponding ANFIS mapping is constructed

using the ANFIS interpolation method. In the testing stage, the estimated HR image

is obtained by inferencing using these learned or interpolated ANFIS mappings.
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6.2.1 Training stage

The proposed training process is shown in Figure 6.3, and the outline of the training

process is shown in Algorithm 6.1.

Figure 6.3: Flowchart of the training process
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Algorithm 6.1: Training stage for HSI SR with sparse data.
Input:
Training HSI dataset: {Xl ,Yh};
Scale factor: s;
Interpolation method mode: Method;

1 S =∅;
2 Divide training dataset into P sub-sets {Pi; i = 1, 2, · · · , P} with centroids
{Vi; i = 1, 2, · · · , P};

3 for i = 1 to i = P do
4 if Pi contains sufficient data then
5 Train ANFISAi with standard training method;
6 else
7 S← {S, i};
8 end
9 end

10 for each i ∈ S do
11 Choose 2 closest ANFISsAi1 andAi2 as source ANFISs;
12 Generate rule dictionary D by extracting rules fromAi1 andAi2;
13 switch Method do
14 case 0 do
15 Interpolate ANFISAi using ‘Method 0’;
16 case 1 do
17 Interpolate ANFISAi using ‘Method 1’;
18 case 2 do
19 Interpolate ANFISAi using ‘Method 2’;
20 end
21 end

Output:
Multiple learned ANFIS mappings {Ai};
Centroids {Vi}.

6.2.1.1 Training dataset generation

The training dataset consists of a number of low resolution and high resolution

hyperspectral image pairs {Xl ,Yh}, with a scale factor s. Here each Xl ∈ Rm×n×L, each

Yh ∈ RM×N×L, the length of LR-HSI Xl and that of HR-HSI Yh have the relationship

M = sm, and similarly the relation between the width of Xl and that of Yh is N = sn.

The training dataset can be generated as the following steps: 1) A number of high

quality HR HSIs are collected, forming the {Yh}; 2) For each Yh, its corresponding

low resolution image pair Xl is constructed as follows: every band of Yh (denoted as

Y h
j , j = 1, . . . , L) is firstly down sampled with the scale factor s, and then up sampled
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using the bicubic interpolation method; 3) Combine all the image pairs to form the

training dataset.

6.2.1.2 Train ANFIS mappings for source domains

In the training stage, the previously generated training dataset is firstly divided into

several subsets according to the different characteristics of band images. However,

the number of training samples between different subsets can be rather imbalanced.

That is, for certain subsets there may be sufficient training samples available whilst

for others there may not. For those with sufficient training samples, it is easy to

learn effective ANFIS mappings. Yet, for those without sufficient samples, it can

be rather difficult to derive quality models. Denote the subsets with full training

data as source domains, the subsets with sparse training data as target domains.

The proposed approach adopts different strategies for source domains and target

domains. In source domains, the ANFIS mappings are directly trained. While in

target domains, the relevant mappings are interpolated by the support of two source

ANFIS mappings in source domains.

Suppose that the given training dataset is divided into P subsets {Pi}, and the

index set of the subsets with sparse training data is denoted by S. For the subsets

with sufficient training data (i.e. {Pi; i /∈ S}), the learning of ANFIS mappings adopts

the standard ANFIS learning method which is described in Chapter 5, so is omitted

here.

6.2.1.3 Interpolate ANFIS mappings for target domains

For those subsets with sparse data, the interpolation procedure of ANFIS mappings

is described in detail as follows. For an arbitrary subset with sparse data Pi, i ∈ S,

two closest ANFISs is selected firstly as source ANFISs according to the distances d j

between the center of the sparse training data Vi, i ∈ S and the center of the subsets

with full training data Vj, j 6∈ S. The distance d j is calculated as:

d j =
q

(Vi − Vj)2 (6.1)

where the ANFISs related to the two subsets with the smallest distances d j are chosen

as the two source ANFISs, denoted as Ai1 and Ai2. With the two source ANFISs,
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and the sparse training data in Pi, the ANFIS mappingAi can be interpolated using

the proposed ANFIS interpolation method.

Rule dictionary generation

According to the proposed ANFIS interpolation method, the first step is to generate

a rule dictionary, which is used to store the extracted fuzzy rules from the source

ANFISsAi1 andAi2. For the present application of HSI SR, assuming that the ith

rule can be expressed in the following format:

Ri : i f x is Ai, then yi = pi x + ri (6.2)

where x denotes an input pixel from an arbitrary band of the LR HSI, Ai is the

corresponding fuzzy set, yi represents the output of the ith rule (which contributes to

the final outcome of the HR HSI being constructed). The rule dictionary D = {Da, Dc}
is generated by reorganising the above extracted fuzzy rules, with the antecedent part

Da and the consequent part Dc each collecting all the antecedents and consequents

of those rules. Thus, Da consists of the antecedent parts of all the rules:

Da = {A1 A2 · · · An} (6.3)

where n is the number of rules in the rule dictionary. And the consequent part

Dc consists of the consequents of the rules, where each column denotes the linear

coefficients in the consequent part of a certain rule:

Dc =





p1 p2 · · · pn

r1 r2 · · · rn



 (6.4)

Interpolation using three ANFIS interpolation methods

There are totally three ANFIS interpolation methods proposed in this thesis,

including the initial one described in Chapter 3 (termed as ‘Method 0’), and the GA

based two methods introduced in Chapter 4 with either the rule type chromosome

(termed as ‘Method 1’) or the ANFIS type chromosome (termed as ‘Method 2’).

For ‘Method 0’, the small number of training data in Pi is divided into C clusters

using the K-means algorithm. For the centre of each cluster, a new fuzzy rule is

interpolated by exploiting the LLE algorithm. Then, by aggregating all interpolated
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rules, an intermediate ANFIS results. Finally the intermediate ANFIS is fine-turned

to get the final interpolated output.

Similar with ‘Method 0’, in ‘Method 1’ and ‘Method 2’, the small number of

training data in Pi are also divided into C clusters using the K-means algorithm. The

centre of each cluster is used as a seed for generating a number of individuals, which

are utilized as observations for interpolating a number of new rules subsequently.

Those interpolated rules form the initial population, either in individual rule form

(Method 1) or in gathered form (Method 2). Then the initial population will be

evolved through a GA process and finally output the interpolated ANFIS mapping.

6.2.2 Testing stage

Given a test LR HSI X ∈ Rm×n×L, the testing stage is to test the performance of the

learned or interpolated ANFIS mappings {Ai}. At the beginning, a preprocessing

step is conducted to up scale the LR HSI to the same size with the desired HR HSI

using bicubic interpolation, resulting in X ∈ RM×N×L. Next, the image details will

be enhanced by the ANFIS mappings. Particularly, each image band X j ∈ RM×N is

firstly vectorized as a vector format, which is also denoted by X j and here X j ∈ RMN .

A corresponding ANFIS mapping is then selected to perform inference for this band,

by solving the following optimization formula:

i =min
i
‖ X j − Vi ‖2

2 (6.5)

where {Vi} denotes the centroids of the subsets from the training stage, and the ith

ANFISAi is chosen as the relevant mapping for inference. Therefore the correspond-

ing HR image band Yj can be obtained by:

Yj =Ai(X j) (6.6)

Finally, the post-processing technique (Iterative Back Projection, IBP) is used here

to finish the testing stage and then produce the estimated HR HSI. Note that different

with the post-processing process in Chapter 5 where a NLM filter is also employed,

here only the IBP operator is utilized to perform the post-processing. This is in order

to avoid that the details of the resulting images are over-smoothed by the NLM filter,

so that the differences between the results of the interpolated and non-interpolated

ANFIS models can be clearly shown. The testing stage is summarized as Algorithm

6.2.
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Algorithm 6.2: Testing stage for HSI SR with sparse data.
Input:
Learned and interpolated ANFIS mappings {Ai};
Testing LR image X;
Scale factor s;
Centroids {Vi}.

1 Pre-processing: Upscale the testing LR HSI X by bicubic interpolation;
2 for each band of upscaled image X j do
3 Choose relevant ANFIS modelAi;
4 Inference using corresponding ANFIS: Yj =Ai(X j);
5 end
6 Integrate HR image bands {Yj} to form HR image Y;
7 Post-processing: Apply IBP Yt+1 = Yt +λ ∗ I(X− D(Yt))

Output:
HR image Ŷ.

6.3 Experimentation and Discussion

This section presents and discusses the results of experimental comparison. Section

6.3.1 gives the basic experimental settings, Section 6.3.2 introduces the performance

criteria for hyperapectral image SR used in the thesis, and Section 6.3.3 presents the

experimental results over the CAVE HSI dataset.

6.3.1 Experimental setup

The CAVE dataset [20] is used here for the HSI SR experiments. The CAVE dataset

contains 31 HSIs of a wide variety of real-world materials and objects, each of which

consists of 31 image bands, coving the range of wavelength from 400nm to 700nm.

In the experiments, 26 HSIs are used as the training dataset, and the remaining 5

images are used for testing. The training dataset is manually divided into P = 5 sub-

datasets based on the fact that different image bands of HSIs usually have different

characteristics, and the characteristics of the neighbouring bands are usually similar.

The division of the 5 sub-datasets is as follows, the first 1 to 6 bands of all HSIs

in the training dataset form the first sub-dataset (P1), then every 6 neighbouring

bands of all HSIs in the training dataset form a sub-dataset (Pi, i = 2, 3, 4), the last

sub-dataset (P5) contains the remaining 7 image bands.
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Assume that the second and the fourth sub-datasets are with sparse data, the

other 3 sub-datasets are with full training data. The simulation of the sparse sub-

datasets is done by manually delete a large portion of randomly selected image pixels.

So in this experiments the ANFIS mappingsA1,A3,A5 are learned by the standard

ANFIS learning method with full training data, while the ANFIS mappingsA2,A4

are interpolated with sparse training data. The partition of bands that forms the 5

subsets are illustrated in Figure 6.4.

Figure 6.4: Illustration of the 5 subsets

In the experiments, the LR HSIs are enlarged with the scale factor s = 2 and s = 3

respectively. Similarly with the proposed ANFIS interpolation method described

in Chapter 3 and Chapter 4, the triangular membership function is employed in

this super resolution problem. Some parameters used in the experiments are set as

follows. The number of rules in each ANFIS is set to C = 6. In the interpolation

process, the number of closest rules is set to K = 3.

Five methods are compared in the experiments: 1) Experiments with full training

data for all the subsets, which is used as a reference model denoted as ‘M-full’

hereafter; The other four methods are with sparse training data in some of the

subsets. 2) Experiments with sparse training data using the original ANFIS learning

method without interpolation, denoted as ‘M-sparse’ hereafter; 3) Experiments

with sparse training data using the initial ANFIS interpolation method, denoted
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as ‘Method 0’ hereafter; 4) Experiments with sparse training data using the rule

chromosome based evolutionary ANFIS interpolation method, denoted as ‘Method 1’

hereafter; 5) Experiments with sparse training data using the ANFIS chromosome

based evolutionary ANFIS interpolation method, denoted as ‘Method 2’ hereafter.

6.3.2 Performance criteria

Different from the two-dimensional natural images used in Chapter 5, the HSIs are

image cubes. Therefore the commonly used measures (PSNR and SSIM) can not be

directly used. Instead, the average PANR (A-PSNR), the average SSIM (A-SSIM), as

well as the RMSE indices, which are designed for evaluating performance of the HSI

SR methods, are employed to quantitatively evaluate the performance of different SR

methods. The RMSE (Root-Mean-Squared Error) for this HSI SR problem is defined

as:

RMSE =

√

√

√ ‖ Ȳ− ˆ̄Y ‖2
F

M × N × L
(6.7)

where M , N , L are the image length, image width and number of image bands

respectively, and ‖ · ‖F stands for the Frobenius norm of matrix. Ȳ ∈ RL×MN and
ˆ̄Y ∈ RL×MN denotes the transformed two dimensional matrices of the ground truth

HR image Y and the estimated HR image Ŷ respectively. The A-PSNR index assesses

the model results by computing the average PSNR among all image bands, which is

calculated as follows:

A− PSNR=
1
L

L
∑

j=1

PSNR j (6.8)

where L denotes the number of image bands, PSNR j is the PSNR value of the jth

band that is computed using Equation (5.11) and (5.12). Similarly, the A-SSIM

(Average Structure SIMilarity) index is the average SSIM among all image bands,

which is defined by the following:

A− SSI M =
1
L

L
∑

j=1

SSI M j (6.9)

where SSI M j denotes the SSIM of the jth image band which is calculated using

Equation (5.13). The range of the A-SSIM index is [0, 1]. Generally, a smaller RMSE

and a lager A-PSNR or A-SSIM means a better result.
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6.3.3 Results and discussion

The experimental results of scale factor being 2 are listed in Table 6.1, and that of

scale factor being 3 are listed in Table 6.2. The average performance of the 5 testing

images are shown in the last row, represented by the ‘Mean ± Standard Deviation

(SD)’ form.

Table 6.1: HSI SR results of different algorithms with scale factor = 2

Image Index

Algorithm

M-full M-sparse Method 0 Method 1 Method 2

Balloons

RMSE 1.482 4.102 1.700 1.547 1.743

A-PSNR 44.711 35.871 43.520 44.343 43.304

A-SSIM 0.9898 0.9839 0.9876 0.9877 0.9879

Toy

RMSE 4.431 7.448 4.751 4.519 4.773

A-PSNR 35.201 30.689 34.595 35.029 34.555

A-SSIM 0.9540 0.9400 0.9508 0.9507 0.9517

Flowers

RMSE 2.126 2.154 2.146 2.154 2.129

A-PSNR 41.578 41.467 41.499 41.465 41.568

A-SSIM 0.9755 0.9737 0.9744 0.9740 0.9751

Painting

RMSE 3.349 3.624 3.316 3.251 3.275

A-PSNR 37.632 36.947 37.719 37.891 37.827

A-SSIM 0.9338 0.9265 0.9271 0.9285 0.9296

Peppers

RMSE 1.906 1.959 1.879 1.908 1.876

A-PSNR 42.531 42.287 42.655 42.520 42.664

A-SSIM 0.9856 0.9831 0.9841 0.9838 0.9851

Average

RMSE
2.659

±1.209

3.857

±2.208

2.758

±1.279

2.675

±1.211

2.759

±1.277

A-PSNR
40.333

±3.846

37.452

±4.689

39.997

±3.745

40.249

±3.748

39.983

±3.702

A-SSIM
0.9677

±0.0234

0.9614

±0.0264

0.9648

±0.0255

0.9649

±0.0249

0.9658

±0.0247

The average RMSE values are herein taken as the basis upon which to analyse

the results. The ‘M-full’ model in Table 6.1 is trained with sufficient training data,
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Table 6.2: HSI SR results of different algorithms with scale factor = 3

Image Index
Algorithm

M-full M-sparse Method 0 Method 1 Method 2

Balloons

RMSE 4.457 5.396 4.671 4.453 4.461

A-PSNR 35.151 33.489 34.742 35.157 35.143

A-SSIM 0.9641 0.9500 0.9485 0.9584 0.9578

Toy

RMSE 10.511 12.916 10.699 10.714 10.619

A-PSNR 27.698 25.908 27.543 27.532 27.609

A-SSIM 0.8712 0.8516 0.8557 0.8630 0.8633

Flowers

RMSE 3.649 3.931 3.804 3.704 3.689

A-PSNR 36.887 36.240 36.527 36.757 36.794

A-SSIM 0.9313 0.9247 0.9233 0.9235 0.9232

Painting

RMSE 4.597 5.076 4.915 4.798 4.799

A-PSNR 34.881 34.021 34.301 34.509 34.508

A-SSIM 0.8790 0.8136 0.8578 0.8609 0.8615

Peppers

RMSE 3.016 3.356 3.179 3.137 3.104

A-PSNR 38.543 37.616 38.084 38.202 38.291

A-SSIM 0.9619 0.9517 0.9467 0.9505 0.9507

Average

RMSE
5.246

±3.012

6.135

±3.880

5.453

±3.013

5.361

±3.061

5.334

±3.027

A-PSNR
34.632

±4.147

33.455

±4.537

34.239

±4.034

34.431

±4.116

34.469

±4.109

A-SSIM
0.9215

±0.04438

0.8983

±0.06240

0.9064

±0.04641

0.9112

±0.04684

0.9113

±0.04648

and is used as a reference model. From the the last row of Table 6.1, it can be

observed that the ‘M-full’ model gives the best result, with the smallest ‘RMSE’ value.

The best average results of the other four ANFIS models that are constructed with

insufficient training data (‘M-sparse’, ‘Method 0’, ‘Method 1’ and ‘Method 2’) are

shown in bold. Compared with the outcome of running the ‘M-full’ model, the result

of the ‘M-sparse’ model degrades heavily due to the training data shortage. The

average RMSE value increased to 3.857 from the 2.659 of the reference model. Using

the same sparse training data, the initial ANFIS interpolation method proposed in

Chapter 3 (’Method 0’) gives much more improved result (with the RMSE value

139



6.3. Experimentation and Discussion

reduced to 2.758). The evolutionary ANFIS interpolation method with rule-typed

chromosome further improves the result. The RMSE value reduced to 2.675, which

is very close to that of the reference model trained with full data (2.659).

Similar conclusion goes to the standard deviation values. Due to the lack of

sufficient training data, the performance of the ‘M-sparse’ model is not stable. It

gives the largest and also the worst standard deviation (2.208), which is much larger

than the SD value of the reference model (1.209). The three interpolation based

models provide more stable results, with much closer standard deviation values to

the SDs of ‘M-full’ model.

The super resolution problem with scale factor being 3 is harder than that of scale

factor being 2, as more information will be needed to construct the high resolution

image. So compared with Table 6.1, the average performance in the last row of Table

6.2 is worse. By analysing the experimental results in Table 6.2, it can be concluded

that the ‘M-sparse’ method performs the worst, giving the largest RMSE values and

the smallest A-PSNR and A-SSIM values among the five methods. The three ANFIS

interpolation methods significantly improve the super resolution performance. This

is verified by the minor difference between the result of the interpolated ANFISs

and that of the reference model. For example, the average RMSE value of ‘Method

2’ (5.334 ± 3.027) is very close to that value (5.246 ± 3.012) produced by the

reference method. Comparing the performance among the three interpolated ANFISs

themselves (‘Method 0’, ‘Method 1’ and ‘Method 2’), the two evolutionary ANFIS

interpolation methods (especially the one with ANFIS-based chromosome) give better

results than the ‘Method 0’ model.

The visible results are shown in Figure 6.5 - Figure 6.8. In order to show the

details of the results using different methods, two randomly selected patches from

the resulting images are shown in the second row and third row respectively. It

can be observed from these patches that in the resulting image using the original

ANFIS with sparse data, there are obvious noise and bad edges, and that running

the interpolated ANFISs leads to significant improvement. For example, focusing on

the detailed patches of HSI ‘Balloons’ (as shown in the second and third rows of the

Figure 6.8), there are unpleasing circles in the results of ‘M-sparse’ (ANFIS trained

with sparse data). The three interpolation based methods (‘Method 0’, ‘Method 1’

and ‘Method 2’), especially the two evolutionary interpolation methods (‘Method 1’

and ‘Method 2’) obviously eliminate those circles, making the results much closer to

that of the ‘M-full’ model and even the ground truth.
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6.4 Summary

This chapter has presented a novel approach for hyperspectral image super resolution

with spare training data, via the use of the proposed ANFIS interpolation technique.

This study extends the prior work of Chapter 5 where multiple ANFISs were trained

over full training data and mapped with the patches of an LR image to obtain

the final HR image. According to the characteristics of different image bands, the

training sets are divided into subsets with sufficient or insufficient data. Subsets with

sufficient training data are referred to as source domains, where ANFIS models can

be produced directly and used as source ANFISs for the interpolation in the target

domains, where a large number of training data is missing. The performance of

all the three interpolation methods in dealing with the HSI SR problem has been

evaluated against five testing HSIs, showing that they provide similar results as those

attainable by the reference model with full data in all subsets, while significantly

improving upon the outcomes achieved by the ANFISs directly trained with sparse

data without interpolation. The next chapter will conclude this thesis and discuss

possible future work that may be developed to improve the work in the thesis.
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Chapter 7

Conclusion and Future Work

T HIS chapter presents a summary of this thesis as detailed in the preceding chap-

ters. In particular, Section 7.1 summarizes the main contributions made from

this research. Having reviewed the theoretical basis of a popular fuzzy inference

system (ANFIS), this thesis has proposed a number of improved techniques over it,

with both theoretical and practical promising results. The effectiveness of ANFIS

with full training data is verified by applying multiple learned ANFIS mappings in the

popular super resolution problem. The proposed approaches for interpolation with a

rule group and GA based ANFIS interpolation significantly improve the performance

of an ANFIS given sparse training data. The practical application of ANFIS interpola-

tion to hyperspectral image super resolution validates its efficacy in addressing real

world problems. Whilst the work is promising, Section 7.2 of this chapter points out

some initial thoughts for further improving this research, on both the theoretical

‘ANFIS interpolation’ aspect and the practical ‘image super resolution’ aspect.

7.1 Summary of Thesis

The core work presented in this thesis is the concept and implementation of group

based fuzzy rule interpolation, which is a novel extension of traditional single rule

based FRI approaches. It is able to make a fuzzy inference system (specified in ANFIS

within this thesis) to be learned over sparse training data. ANFIS interpolation as

having been presented in this thesis follows the general idea of FRI, while possessing

a number of specific characteristics:
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1. Unlike traditional FRI approaches, which interpolate one single rule to perform

fuzzy inference for an unfired observation, a group of fuzzy rules are collectively

interpolated covering the entire target domain.

2. Instead of using Mamdani type of rules [108] for knowledge representation,

which almost all existing FRI techniques (other than those reported in [31, 95,

153]) take, TSK type of rules [131] is utilised.

3. The proposed approach handles situations that are rather different from those

dealt with by traditional FRI techniques, where training data (or more generally

the rules) regarding the actual problem domain (namely, the target domain)

are extremely sparse, but there are sufficient data (or rules) in the neighbouring

domains (or the source domains). That is, the knowledge about the target

domain is so poor that traditional FRI methods simply fail to work (with few

rules available to carry out interpolation). Combining these characteristics

makes it a very difficult task to interpolate a set of accurate rules in an effort to

construct a required ANFIS. Of course, if there were a fair amount of training

data available in the target domain, then a traditional FRI that works for TSK

models would be sufficient to perform interpolation; that is, there would not

be a need for the separation of source domains from the target domain in the

first place.

Particularly, the main contributions of this thesis include a theoretical part on

‘ANFIS interpolation’ and an application part on ‘image super resolution’.

7.1.1 ANFIS interpolation methods

Chapter 3 has presented a primary ANFIS interpolation method, i.e., to use an

interpolation scheme based on a group of fuzzy rules to construct an ANFIS with

insufficient training data. In this approach, the concept of rule dictionary has been

proposed to restore the extracted rules, which acts in the same role as a sparse

rule-base in traditional fuzzy rule interpolation. Then a group of new rules are

interpolated by exploiting the LLE algorithm for the clustered sparse training data,

forming an intermediate ANFIS. It is subsequently used as an initial network, with

which the fine turning process can work more efficiently. Systematic experiments have

been conducted, demonstrating that the performance of ANFIS with sparse data can
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be significantly improved by this primary ANFIS interpolation method. Experiments

using different percentages of training data have also been conducted, showing

the effectiveness of the proposed interpolation method over extremely sparse data.

Furthermore, experiments over an approximate linear function modelling problem

have showed that the proposed approach may still work even no training data is

available in the target domain.

Based on this primary method, Chapter 4 has presented an alternative ANFIS

interpolation approach that implements the interpolation with a GA process. Two

strategies of chromosome representation (rule based one and ANFIS based one) have

been proposed, forming two different interpolation algorithms. The implementation

of algorithm with the ANFIS based chromosomes is easier as there are only one

global population involved. While for the algorithm with rule type chromosomes,

the whole population is initialized as several sub populations, and the GA process are

conducted within these sub populations. Also, a score table has been designed for

the convenience of evaluating the rule type chromosomes. Systematic experimental

examinations of the proposed approach have been carried out. Experimental results

have shown that the proposed method helps boost the regression performance

compared to both the original ANFIS and the primary interpolation method. This

improved approach has also been compared with several classical machine learning

methods, showing its competitiveness in dealing with regression problems.

7.1.2 Real world applications

ANFIS has been applied to perform the image super resolution task in Chapter 5,

with sufficient training data provided. The proposed approach can be divided into

a learning stage and a testing stage. Multiple nonlinear mappings from the low

resolution space to the high resolution space are implemented using ANFIS through

a training stage. While in the testing stage, a pre-processing technique is firstly

carried out to enlarge input images of a small size, through interpolating LR image

pixels. Each patch that is extracted from the pre-processed image is then enhanced

by choosing and employing one of the learned ANFIS mappings. Post-processing

techniques are finally performed to suppress the displeasing artefacts, resulting in

the required HR image as output. The proposed approach has been compared with

a number of popular image SR algorithms, and experimental results have revealed
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the outstanding performance of the proposed approach over the rest, indicating the

superiority of ANFIS in ISR problems when sufficient data is available.

Having shown the effectiveness of ANFIS in dealing with ISR using full training

data in Chapter 5, Chapter 6 has investigated the performance of three proposed

ANFIS interpolation methods in coping with the hyperspecral image super resolution

problem using sparse data. In the training stage, the image cubes are clustered

into several subsets according to the different characteristics of image bands. Some

bands are with sufficient data while some are with sparse data. The subsets with

sufficient training data are then used for learning ANFIS mappings using the same

way as in Chapter 5, and for each of the remaining subsets with sparse data, the

proposed ANFIS interpolation methods are applied, where two of the learned ANFISs

with sufficient data are selected as the source ANFISs. Experimental results have

demonstrated that all of the three interpolated models improve the super resolution

results for the bands with sparse data.

7.2 Future Work

Although promising, much can be done to further improve the work presented so far

in this thesis. The following addresses a number of interesting issues that may help

strength the current research.

7.2.1 On ANFIS interpolation

In the proposed ANFIS interpolation methods, some preliminary techniques are

employed due to their popularity and simplicity, which can be modified with more

sophisticated and more powerful alternatives. As stated throughout this thesis, the

simplest K-means algorithm is used for clustering; using an automated data clustering

method such as those proposed in [16]would help derive more accurate interpolative

results. Similarly, instead of using LLE, it is worth examining how other optimisation

mechanisms may be adapted for integrated use within the interpolation process. Also,

the simplest evolutionary process (genetic algorithm) is utilised, implementing the

underlying ideas with more advanced evolutionary algorithms may lead to further

strengthened interpolative results. Purely for convenience in implementation, in the
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evolutionary ANFIS interpolation method, the sizes of different clusters are herein

assumed to be the same, but there is no reason why an adaptive mechanism cannot

be introduced to form different cluster sizes, reflecting the amounts of training

data scales given per cluster. This may further improve the learning performance.

Furthermore, most implementations are based on the use of triangular fuzzy sets,

following the common practice in the FRI literature. Nonetheless, this is not necessary,

other forms of member functions can be exploited. Whilst it is not expected to

adversely affect the performance of the proposed approaches, verifications of this

postulation requires future experimental investigation.

Currently, the interpolation methods either terminate once an interpolated ANFIS

covering an originally sparse data area is obtained (for the initial ANFIS interpolation

approach presented in Chapter 3), or iterates with a fixed number of rules (for the

evolutionary ANFIS interpolation in Chapter 4). If the fuzzy rules can be updated

dynamically and adaptively with respect to both the rule parameters and the rule

numbers, it can be expected that more interpolated ANFIS models may be attained.

Thus, it would be very useful to consider extending the existing ideas on dynamic

generalization and promotion of interpolated rules as of [113] to create novel ANFIS

models on the fly, gaining overall inference efficiency as well as effectiveness. Also,

ANFIS is herein chosen as a representative fuzzy inference system to perform the

proposed interpolation of FISs. Yet, apart from ANFIS, other inference systems may

also suffer from the data shortage problem in the process of model development.

Thus, extending the present results of devising and running interpolation based on a

group of rules with other fuzzy inference systems would be another interesting piece

of further research.

Finally, the proposed approach has been evaluated with several function mod-

elling problems and a range of real world benchmark datasets, plus a practical

application for hyperspectral image super resolution. It would be interesting to

extend the experimental investigations with more real world tasks and more compli-

cated problems. A particular focus on the practical application of this research may be

for image modelling and analysis, especially in the areas of remote sensing [151, 169]
and medical diagnosis [91, 104].
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7.2.2 On image super resolution

The proposed image super resolution methods (either with full training data or

sparse training data) currently work on raw image pixels. However, much research

has shown that image features may be significantly more representative than raw

image pixels. The gradient and wavelet features which are commonly used in image

processing tasks are likely candidates for this. Therefore, extracting and using

appropriate image features to train more efficient ANFIS mappings is of great interest

to potentially improve the work. Furthermore, as widely recognised in the literature,

the use of less but more informative features may do better than utilising all extracted

features [68, 140], integrating feature selection techniques (e.g., [42, 69]) into such

further developments may boost their efficiency.

Also, all parameters used in the ISR methods are empirically preset in this thesis.

For example, the number of ANFIS mappings and the maximum number of fuzzy

rules in an ANFIS are set as pre-fixed values by trading off the algorithm’s accuracy

and efficiency. However, the best parameters for different images may be various,

affected by different image characteristics such as image size, image contents and

image types. Thus, how to determine the appropriate parameters adaptively is an

issue that needs further investigation, if this process is to be automated with minimal

human intervention. Besides, the proposed HSI SR approach has been evaluated

against the CAVE dataset only. Yet, there are various hyperspectral image datasets

that may have different characteristics from those currently employed in this thesis.

Therefore, modifying and testing the ANFIS interpolation aided HSI SR against other

representative datasets also forms an important future work.

151



Appendix A

Publications Arising from the Thesis

A number of publications have been generated from this research carried out within

the PhD project. The resultant publications that are in close relevance to the thesis

are listed below, including both journal and conference papers.

A.1 Journal Articles

1. Jing Yang, Changjing Shang, Ying Li, Fangyi Li and Qiang Shen, Construct-

ing ANFIS with Sparse Data through Group-Based Rule Interpolation: An

Evolutionary Approach. IEEE Transactions on Fuzzy Systems, 2021. DOI:

10.1109/TFUZZ.2021.3049949

2. Jing Yang, Changjing Shang, Ying Li, Fangyi Li and Qiang Shen, ANFIS Con-

struction with Sparse Data via Group Rule Interpolation. IEEE Transactions on

Cybernetics, vol. 51, no. 5, pp. 2773-2786, 2019.

3. Jing Yang, Ying Li, Jonathan Cheung-Wai Chan and Qiang Shen, Image Fusion

for Spatial Enhancement of Hyperspectral Image via Pixel Group Based Non-

Local Sparse Representation. Remote Sensing, vol. 9, no. 1, 2017.

4. Tianhua Chen, Changjing Shang, Jing Yang, Fangyi Li and Qiang Shen, A New

Approach for Transformation-based Fuzzy Rule Interpolation. IEEE Transac-

tions on Fuzzy Systems, vol. 28, no. 12, pp. 3330-3344, 2020.
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5. Fangyi Li, Changjing Shang, Ying Li, Jing Yang and Qiang Shen, Fuzzy Rule

Based Interpolative Reasoning Supported by Attribute Ranking. IEEE Transac-

tions on Fuzzy Systems, vol. 26, no. 5, pp. 2758-2773, 2018.

6. Fangyi Li, Changjing Shang, Ying Li, Jing Yang and Qiang Shen, Interpolation

with Just Two Nearest Neighbouring Weighted Fuzzy Rules. IEEE Transactions

on Fuzzy Systems, vol. 28, no. 9, pp. 2255-2262, 2020.

7. Fangyi Li, Changjing Shang, Ying Li, Jing Yang and Qiang Shen, Approximate

Reasoning with Fuzzy Rule Interpolation: Background and Recent Advances.

Artificial Intelligence Review, 2021. DOI: https://doi.org/10.1007/s10462-

021-10005-3

A.2 Conference Papers

8. Jing Yang, Changjing Shang, Ying Li, Fangyi Li and Qiang Shen, Generating

ANFISs Through Rule Interpolation: An Initial Investigation. Proceedings of

the 2018 UK Workshop on Computational Intelligence, 2018.

9. Jing Yang, Changjing Shang, Ying Li and Qiang Shen, Single Frame Image

Super Resolution via Learning Multiple ANFIS Mappings. Proceedings of the

26th International Conference on Fuzzy Systems, 2017.

10. Muhammad Ismail, Jing Yang, Changjing Shang and Qiang Shen, Single Frame

Image Super Resolution using ANFIS Interpolation: An Initial Experiment-

Based Approach. Proceedings of the 2019 UK Workshop on Computational

Intelligence, 2019.

11. Muhammad Ismail, Jing Yang, Changjing Shang and Qiang Shen, Image Super

Resolution with Sparse Data Using ANFIS Interpolation. Proceedings of the

29th International Conference on Fuzzy Systems, 2020.
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List of Acronyms

5-FCV 5-Fold Cross-Validation

ANFIS Adaptive Network-based Fuzzy Inference System

CART Classification And Regression Tree

CNN Convolutional Neural Network

CRI Compositional Rule of Inference

COG Centre Of Gravity

EC Evolutionary Computation

EFS Evolutionary Fuzzy System

FIS Fuzzy Inference System

FRI Fuzzy Rule Interpolation

GA Genetic Algorithm

GP Genetic Programming

HR High Resolution

HSI Hyper-Spectral Image

IBP Iterative Back Projection

ISR Image Super Resolution

KEEL Knowledge Extraction based on Evolutionary Learning
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KH Kóczy and Hirota

LinR Linear Regression

LLE Local Linear Embedding

LR Low Resolution

LSE Least Square Estimation

MF Membership Function

NLM Non-Local Means

PSNR Peak Signal-to-Noise Ratio

PSO Particle Swarm Optimisation

RD Rule Dictionary

RF Random Forest

RMSE Root-Mean-Squared Error

SD Standard Deviation

SSIM Structure SIMilarity

SVR Support Vector Regression

TSK Takagi-Sugeno-Kang

T-FRI Transformation-based Fuzzy Inference System
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