564 research outputs found

    Biosensing by “Growing” Antennas and Error-correcting Codes

    Get PDF
    Food-borne disease outbreaks not only cause numerous fatalities every year but also contribute to significant economic losses. While end-to-end supply chain monitoring can be one of the keys to preventing these outbreaks, screening every food product in the supply chain is not feasible considering the sheer volume and prohibitive test costs. Fortunately, two converging economic trends promise to make this end-to-end supply chain monitoring possible. The first trend is that passive radio-frequency identification (RFID) tags and quick response (QR) codes are now widely accepted for food packaging. The second trend is that smartphones are now equipped with the capability to interrogate RFID tags or to decode QR codes. Together, they have opened up the possibility of monitoring food quality by endowing these tags and error-correcting codes with the capability to detect pathogenic contaminants. This dissertation investigates a biosensing paradigm of growing\u27\u27 transducer structures, such as RFID tags and QR codes, which is triggered only when analytes of interest are present in the sample. This transducer growth or self-assembly process relies on a silver enhancement technique through which silver ions reduce into metallic form in the presence of a target analyte, which in turn leads to changes in electrical or optical properties. By exploiting this, we first demonstrate two remote biosensor platforms, a RFID tag-based biosensor and a QR code-based biosensor, respectively. For the RFID-based biosensor, a chain of silver-shelled particles is assembled during the analyte detection process, which directly modulates the antenna\u27s effective impedance, and hence leads to an improvement in the tag\u27s reflection efficiency. For the QR code-based biosensor, the operating principle relies on the optical absorption changes resulting from silver enhancement. The target detection process assembles an invalid code-word into a valid QR code. This self-assembly sensing approach should produce few false positives since it is a process which transits from a high entropy state (disassembled transducer) to a low entropy state (assembled transducer). While there can be numerous states of a disassembled transducer structure, there are only a few configurations representing the assembled transducer state. Given that there are no active power sources on the RFID tag or the QR code, it is challenging for the proposed biosensors to perform sample acquisition and pre-processing since they are envisioned to be embedded inside food packages eventually. Paper-based microfluidics have been explored and integrated on the biosensors to provide a self-powered approach for reagent sampling and processing. One use case is to trigger target detection remotely by an end consumer. Thermal absorption properties of graphite have been exploited such that the end user can initiate the process of analyte sampling in paper-based biosensors by shining a beam of light on the sensor

    Automated color correction for colorimetric applications using barcodes

    Get PDF
    [eng] Color-based sensor devices often offer qualitative solutions, where a material change its color from one color to another, and this is change is observed by a user who performs a manual reading. These materials change their color in response to changes in a certain physical or chemical magnitude. Nowadays, we can find colorimetric indicators with several sensing targets, such as: temperature, humidity, environmental gases, etc. The common approach to quantize these sensors is to place ad hoc electronic components, e.g., a reader device. With the rise of smartphone technology, the possibility to automatically acquire a digital image of those sensors and then compute a quantitative measure is near. By leveraging this measuring process to the smartphones, we avoid the use of ad hoc electronic components, thus reducing colorimetric application cost. However, there exists a challenge on how-to acquire the images of the colorimetric applications and how-to do it consistently, with the disparity of external factors affecting the measure, such as ambient light conditions or different camera modules. In this thesis, we tackle the challenges to digitize and quantize colorimetric applications, such as colorimetric indicators. We make a statement to use 2D barcodes, well-known computer vision patterns, as the base technology to overcome those challenges. We focus on four main challenges: (I) to capture barcodes on top of real-world challenging surfaces (bottles, food packages, etc.), which are the usual surface where colorimetric indicators are placed; (II) to define a new 2D barcode to embed colorimetric features in a back-compatible fashion; (III) to achieve image consistency when capturing images with smartphones by reviewing existent methods and proposing a new color correction method, based upon thin-plate splines mappings; and (IV) to demonstrate a specific application use case applied to a colorimetric indicator for sensing CO2 in the range of modified atmosphere packaging, MAP, one of the common food-packaging standards.[cat] Els dispositius de sensat basats en color, normalment ofereixen solucions qualitatives, en aquestes solucions un material canvia el seu color a un altre color, i aquest canvi de color és observat per un usuari que fa una mesura manual. Aquests materials canvien de color en resposta a un canvi en una magnitud física o química. Avui en dia, podem trobar indicadors colorimètrics que amb diferents objectius, per exemple: temperatura, humitat, gasos ambientals, etc. L'opció més comuna per quantitzar aquests sensors és l'ús d'electrònica addicional, és a dir, un lector. Amb l'augment de la tecnologia dels telèfons intel·ligents, la possibilitat d'automatitzar l'adquisició d'imatges digitals d'aquests sensors i després computar una mesura quantitativa és a prop. Desplaçant aquest procés de mesura als telèfons mòbils, evitem l'ús d'aquesta electrònica addicional, i així, es redueix el cost de l'aplicació colorimètrica. Tanmateix, existeixen reptes sobre com adquirir les imatges de les aplicacions colorimètriques i de com fer-ho de forma consistent, a causa de la disparitat de factors externs que afecten la mesura, com per exemple la llum ambient or les diferents càmeres utilitzades. En aquesta tesi, encarem els reptes de digitalitzar i quantitzar aplicacions colorimètriques, com els indicadors colorimètrics. Fem una proposició per utilitzar codis de barres en dues dimensions, que són coneguts patrons de visió per computador, com a base de la nostra tecnologia per superar aquests reptes. Ens focalitzem en quatre reptes principals: (I) capturar codis de barres sobre de superfícies del món real (ampolles, safates de menjar, etc.), que són les superfícies on usualment aquests indicadors colorimètrics estan situats; (II) definir un nou codi de barres en dues dimensions per encastar elements colorimètrics de forma retro-compatible; (III) aconseguir consistència en la captura d'imatges quan es capturen amb telèfons mòbils, revisant mètodes de correcció de color existents i proposant un nou mètode basat en transformacions geomètriques que utilitzen splines; i (IV) demostrar l'ús de la tecnologia en un cas específic aplicat a un indicador colorimètric per detectar CO2 en el rang per envasos amb atmosfera modificada, MAP, un dels estàndards en envasos de menjar.

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ

    Kaistan ulkopuolisten todennuskanavien arviointi

    Get PDF
    One of the challenges in entirely wireless communication systems is authentication. In pervasive computing and peer-to-peer networks, it is often not possible to rely on the existence of a trusted third party or other infrastructure. Therefore, ad hoc verification of keys via an out-of-band (OOB) channel is often the only way to achieve authentication. Nimble out-of-band for EAP (EAP-NOOB) protocol is intended for bootstrapping security between IoT devices with no provisioned authentication credentials and minimal user interface. The protocol supports a user-assisted OOB channel to mutually authenticate the key-exchange performed over an insecure wireless network between the peer and the server. The protocol allows peers to scan for available networks and, based on the results, generate multiple dynamic OOB messages. The user then delivers one of these messages to the server to register the device and authenticate the key-exchange. We implemented the OOB channels using NFC, QR codes and sound with EAP-NOOB as the bootstrapping protocol. The implementation requires an auxiliary device such as the user's smartphone. We evaluated the usability and security as well as the benefits and limitations of the OOB channels. Our results show that NFC and QR codes are capable in displaying multiple OOB messages while the sound-based channel is suitable for one or two messages due to its lower bandwidth. When the peer device generates multiple OOB messages, the process becomes more complex for the user who needs to browse through them and identify the correct server. However, we showed that this cumbersome step can be removed with the help of a mobile application. Furthermore, we identified vulnerabilities in each technology when used as an OOB channel. While some of these vulnerabilities can be mitigated with the mobile application, some require more refined solutions.Yksi täysin langattomien järjestelmien haasteista on todennus. Sulautetussa tietotekniikassa sekä vertaisverkkoissa ei usein voida luottaa maailmanlaajuisesti luotettavan kolmannen osapuolen olemassaoloon. Siksi salausavainten ad hoc-varmennus erillistä tiedonsiirtokanavaa (OOB) käyttäen on usein ainoa ratkaisu turvallisen kommunikaation käynnistämiseksi. Se luo resilienssiä eri hyökkäyksiä vastaan tuomalla järjestelmään toisen, itsenäisen tiedonsiirtokanavan. EAP-NOOB protokolla on tarkoitettu IoT-laitteille, joilla on minimaalinen käyttöliittymä eikä esiasennettuja avaimia. EAP-NOOB tukee käyttäjäavustettua OOB-tiedonsiirtokanavaa, jota käytetään todentamaan suojaamattomassa verkossa suoritettu laitteen ja palvelimen keskinäinen salausavainten vaihto. Protokolla sallii laitteiden kartoittaa käytettävissä olevia verkkoja ja tuottaa sen perusteella dynaamisia todennusviestejä, jotka käyttäjä toimittaa palvelimelle laitteen rekisteröimiseksi. Tässä työssä tutkittiin EAP-NOOB protokollan OOB kanavaa käyttäen NFC:tä, QR-koodeja ja ääntä. Todennusviestin lukeminen laitteelta vaatii käyttäjältä älypuhelimen. Työssä arvioitiin toteutettujen todennuskanavien käytettävyyttä, tietoturvaa, hyötyjä sekä näitä rajoittavia tekijöitä. Työn tulokset osoittavat, että NFC ja QR-koodit soveltuvat näyttämään useita OOB-viestejä. Sen sijaan äänipohjainen kanava soveltuu vain yhdelle tai kahdelle viestille hitaamman tiedonsiirron johdosta. Kun IoT-laite tuottaa useita OOB-viestejä, käyttäjäkokemus muuttuu monimutkaisemmaksi, koska käyttäjän on tunnistettava oikea viesti ja palvelin. Työssä osoitetaan, että tämä käyttäjälle hankala vaihe voidaan välttää erillisellä mobiilisovelluksella. Lisäksi työssä tunnistettiin toteutettujen tiedonsiirtomenetelmien haavoittuvuuksia, kun niitä käytettiin OOB-kanavana. Vaikka osa näistä haavoittuvuuksista voidaan eliminoida mobiilisovelluksen avulla, jotkut niistä vaativat tehokkaampia ratkaisuja

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Evaluation and analysis of the orbital maneuvering vehicle video system

    Get PDF
    The work accomplished in the summer of 1989 in association with the NASA/ASEE Summer Faculty Research Fellowship Program at Marshall Space Flight Center is summarized. The task involved study of the Orbital Maneuvering Vehicle (OMV) Video Compression Scheme. This included such activities as reviewing the expected scenes to be compressed by the flight vehicle, learning the error characteristics of the communication channel, monitoring the CLASS tests, and assisting in development of test procedures and interface hardware for the bit error rate lab being developed at MSFC to test the VCU/VRU. Numerous comments and suggestions were made during the course of the fellowship period regarding the design and testing of the OMV Video System. Unfortunately from a technical point of view, the program appears at this point in time to be trouble from an expense prospective and is in fact in danger of being scaled back, if not cancelled altogether. This makes technical improvements prohibitive and cost-reduction measures necessary. Fortunately some cost-reduction possibilities and some significant technical improvements that should cost very little were identified

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Efficient Lattice Decoders for the Linear Gaussian Vector Channel: Performance & Complexity Analysis

    Get PDF
    The theory of lattices --- a mathematical approach for representing infinite discrete points in Euclidean space, has become a powerful tool to analyze many point-to-point digital and wireless communication systems, particularly, communication systems that can be well-described by the linear Gaussian vector channel model. This is mainly due to the three facts about channel codes constructed using lattices: they have simple structure, their ability to achieve the fundamental limits (the capacity) of the channel, and most importantly, they can be decoded using efficient decoders called lattice decoders. Since its introduction to multiple-input multiple-output (MIMO) wireless communication systems, sphere decoders has become an attractive efficient implementation of lattice decoders, especially for small signal dimensions and/or moderate to large signal-to-noise ratios (SNRs). In the first part of this dissertation, we consider sphere decoding algorithms that describe lattice decoding. The exact complexity analysis of the basic sphere decoder for general space-time codes applied to MIMO wireless channel is known to be difficult. Characterizing and understanding the complexity distribution is important, especially when the sphere decoder is used under practically relevant runtime constraints. In this work, we shed the light on the (average) computational complexity of sphere decoding for the quasi-static, LAttice Space-Time (LAST) coded MIMO channel. Sphere decoders are only efficient in the high SNR regime and low signal dimensions, and exhibits exponential (average) complexity for low-to-moderate SNR and large signal dimensions. On the other extreme, linear and non-linear receivers such as minimum mean-square error (MMSE), and MMSE decision-feedback equalization (DFE) are considered attractive alternatives to sphere decoders in MIMO channels. Unfortunately, the very low decoding complexity advantage that these decoders can provide comes at the expense of poor performance, especially for large signal dimensions. The problem of designing low complexity receivers for the MIMO channel that achieve near-optimal performance is considered a challenging problem and has driven much research in the past years. The problem can solved through the use of lattice sequential decoding that is capable of bridging the gap between sphere decoders and low complexity linear decoders (e.g., MMSE-DFE decoder). In the second part of this thesis, the asymptotic performance of the lattice sequential decoder for LAST coded MIMO channel is analyzed. We determine the rates achievable by lattice coding and sequential decoding applied to such a channel. The diversity-multiplexing tradeoff under such a decoder is derived as a function of its parameter--- the bias term. In this work, we analyze both the computational complexity distribution and the average complexity of such a decoder in the high SNR regime. We show that there exists a cut-off multiplexing gain for which the average computational complexity of the decoder remains bounded. Our analysis reveals that there exists a finite probability that the number of computations performed by the decoder may become excessive, even at high SNR, during high channel noise. This probability is usually referred to as the probability of a decoding failure. Such probability limits the performance of the lattice sequential decoder, especially for a one-way communication system. For a two-way communication system, such as in MIMO Automatic Repeat reQuest (ARQ) system, the feedback channel can be used to eliminate the decoding failure probability. In this work, we modify the lattice sequential decoder for the MIMO ARQ channel, to predict in advance the occurrence of decoding failure to avoid wasting the time trying to decode the message. This would result in a huge saving in decoding complexity. In particular, we will study the throughput-performance-complexity tradeoffs in sequential decoding algorithms and the effect of preprocessing and termination strategies. We show, analytically and via simulation, that using the lattice sequential decoder that implements a simple yet efficient time-out algorithm for joint error detection and correction, the optimal tradeoff of the MIMO ARQ channel can be achieved with significant reduction in decoding complexity

    Dual-layered and wavelength-multiplexed optical barcode for high data storage

    Get PDF
    A novel barcode system design to achieve high data storage using more than one layer is introduced theoretically and tested partially in the laboratory. Compared to other existing barcode systems, diffraction gratings are used as core elements in the barcode symbol. As any other barcode system, the novel model requires a source of light, the barcode symbol and photodiode detectors. Theoretical background from optics has been used to design the entire system along with all the positioning of its components. After part-testing the design in laboratory, the barcode system design has been changed to achieve better results. Experiments have showed that the initial proposed Light Emitting Diode (LED) source light cannot deliver 5mm spot light over a range of 50cm and therefore, white Light Amplification by Stimulated Emission of Radiation (LASER) light has been adopted as replacement. The diffractions from the barcode symbol are captured by detectors built with SI photo diodes, which are designed to detect this range of wavelengths. The barcode symbol is composed of small 5mm by 5mm grating modules and the largest possible symbol size defined is 80 modules (5cmx5cm). Experimental works have proved that intensity of the light can be used to uniquely identify each grating rather than the entire spectrum diffracted. A better design is proposed where the detectors are positioned under the barcode symbol and capture the light intensity of the first diffracted order. Theoretical investigations state that diffraction gratings with different lines per mm diffract different sets of wavelengths spectrum. This characteristic allows a set of unique gratings to be used in the barcode symbol which hence allow data to be represented or stored. Character (Char) sets are defined to help encode and decode data in the barcode symbol. High data storage has been achieved through the use of two layers. Multiple layers offer the possibility to increase the number of unique sets of gratings which in turn increase the data representation capacity. Using two layers with 16 unique sets of gratings has proved to be able to store around 100 bytes of data. The system has the potential to use more than two layers and using 4 layers with 16 unique gratings per layer will achieve 200 bytes. The thesis has proved through theoretical and experimental work that diffraction gratings can be used in barcode system to represent data and multiple layers adds the benefit of increasing data storage. Further work is also suggested
    corecore