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Abstract

The theory of lattices — a mathematical approach for representing infinite discrete points
in Euclidean space, has become a powerful tool to analyze many point-to-point digital
and wireless communication systems, particularly, communication systems that can be
well-described by the linear Gaussian vector channel model. This is mainly due to the
three facts about channel codes constructed using lattices: they have simple structure,
their ability to achieve the fundamental limits (the capacity) of the channel, and most
importantly, they can be decoded using efficient decoders called lattice decoders.

Since its introduction to multiple-input multiple-output (MIMO) wireless communica-
tion systems, sphere decoders has become an attractive efficient implementation of lattice
decoders, especially for small signal dimensions and/or moderate to large signal-to-noise
ratios (SNRs). In the first part of this dissertation, we consider sphere decoding algo-
rithms that describe lattice decoding. The exact complexity analysis of the basic sphere
decoder for general space-time codes applied to MIMO wireless channel is known to be
difficult. Characterizing and understanding the complexity distribution is important, es-
pecially when the sphere decoder is used under practically relevant runtime constraints. In
this work, we shed the light on the (average) computational complexity of sphere decoding
for the quasi-static, LAttice Space-Time (LAST) coded MIMO channel.

Sphere decoders are only efficient in the high SNR regime and low signal dimensions,
and exhibits exponential (average) complexity for low-to-moderate SNR and large signal
dimensions. On the other extreme, linear and non-linear receivers such as minimum mean-
square error (MMSE), and MMSE decision-feedback equalization (DFE) are considered
attractive alternatives to sphere decoders in MIMO channels. Unfortunately, the very
low decoding complexity advantage that these decoders can provide comes at the expense
of poor performance, especially for large signal dimensions. The problem of designing
low complexity receivers for the MIMO channel that achieve near-optimal performance is
considered a challenging problem and has driven much research in the past years. The
problem can be solved through the use of lattice sequential decoding that is capable of
bridging the gap between sphere decoders and low complexity linear decoders (e.g., MMSE-
DFE decoder).

In the second part of this thesis, the asymptotic performance of the lattice sequential
decoder for LAST coded MIMO channel is analyzed. We determine the rates achiev-
able by lattice coding and sequential decoding applied to such a channel. The diversity-
multiplexing tradeoff under such a decoder is derived as a function of its parameter—the
bias term. In this work, we analyze both the computational complexity distribution and
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the average complexity of such a decoder in the high SNR regime. We show that there
exists a cut-off multiplexing gain for which the average computational complexity of the
decoder remains bounded. Our analysis reveals that there exists a finite probability that
the number of computations performed by the decoder may become excessive, even at high
SNR, during high channel noise. This probability is usually referred to as the probability
of a decoding failure. Such probability limits the performance of the lattice sequential
decoder, especially for a one-way communication system. For a two-way communication
system, such as in MIMO Automatic Repeat reQuest (ARQ) system, the feedback channel
can be used to eliminate the decoding failure probability.

In this work, we modify the lattice sequential decoder for the MIMO ARQ channel,
to predict in advance the occurrence of decoding failure to avoid wasting the time trying
to decode the message. This would result in a huge saving in decoding complexity. In
particular, we will study the throughput-performance-complexity tradeoffs in sequential
decoding algorithms and the effect of preprocessing and termination strategies. We show,
analytically and via simulation, that using the lattice sequential decoder that implements a
simple yet efficient time-out algorithm for joint error detection and correction, the optimal
tradeoff of the MIMO ARQ channel can be achieved with significant reduction in decoding
complexity.
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Chapter 1

The Road to Channel Capacity: An
Introduction

THE main layering of a point-to-point communication system can be simply described
by the following block diagram

Data
Source

Channel
Encoder Channel

Channel
Decoder

Data
Sink

transmitter receiver

Figure 1.1: A simple communication system block diagram.

At the transmitter side, a message W , drawn from the index set {1, 2, · · · ,M}, is
first mapped into m-tuple sequence (word) xxx(W ) = [x1(W ), x2(W ), · · · , xm(W )] using
the channel encoder. The channel encoder introduces information redundancy in order
to ensure reliable communication and serves as a protection to the data from channel

1
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disruption. The set of all m-tuples or codewords C = {xxx(1),xxx(2), · · · ,xxx(M)}, is called the
codebook. The rate of the code, R, is given by

R =
1

m
log |C|,

where |C| =M represents the cardinality of the code.

The communication channel is the physical medium that is used to send the data from
the transmitter to the receiver. The channel introduces a source of noise that may cause
some error in the transmitted signal. As such, the channel noise sets up a fundamental
constant on how much data can be transmitted through the channel.

The channel decoder is designed to reconstruct the original information data from
the received noisy signal with as low error as possible.

The metric that is commonly used to evaluate the performance of such a communication
system is the probability of decoding error, Pe. Assuming that each codeword xxx(W) ∈
C, for 1 ≤ W ≤ M, is equally likely to be transmitted, then the (average) probability of
error can be expressed as

Pe = Pr(x̂xx 6= xxx), (1.1)

where x̂xx is the estimated word at the receiver.1

It is the dream of researchers to design low complexity encoding and decoding schemes
that are capable of achieving the fundamental-limits of the communication channel. How-
ever, the improvement in the error performance usually comes at the expense of increasing
the encoding/decoding complexity and/or reducing the transmission rate R. Therefore,
a performance-rate-complexity tradeoff exists in any communication system. Our
goal in this work is to introduce some interesting low encoding and decoding schemes that
have excellent performance–rate-complexity tradeoff when applied to many communication
systems of interest. Before doing that, we provide a brief introduction about the history
of the design of coding and decoding schemes that achieve the fundamental limits of some
important communication channels.

1.1 Shannon Capacity: 1948–2004

Many of today’s communication systems would have not been made available without the
existence of the field of information theory. This field has had a powerful impact on system

1As will be shown in the sequel, for some efficient decoders the output may not always correspond to
a valid codeword in the code, i.e., x̂xx /∈ C. However, in some special cases, these decoders may achieve
near-optimal performance.
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design in both digital and wireless communications. Its basis was developed in 1948 by
Claude-Shannon [1] to characterize the limits of reliable communication.

In earlier times, it was believed that the only way to achieve zero-error probability (i.e.,
Pe → 0) is to let the transmission rate R → 0. However, it was not until 1948, when
Shannon showed in his landmark paper [1] that:

“For every memoryless channel, there exists a parameter C, the channel capacity, such
that, Pe, can be made arbitrary small for any transmission rate R less than C.”

However, Shannon did not specify how to (practically) encode and decode the infor-
mation data to achieve the channel capacity, which kept researchers occupied nearly 50
years. In particular, his proof was based on the use of random codes — codes that
have no structure. Also, he assumed exhaustive maximum-likelihood (ML) decoding,
whose complexity is proportional to the number of words in the codeM = 2mR. Based on
this random coding technique, and the ML decoding, Robert Gallager [2] showed that the
average probability of error can be upper bounded as

Pe(R) ≤ e−mEr(R), (1.2)

where Er(R) is called the random coding error exponent and is shown to be a non-zero,
monotonically decreasing, positive function for all R < C (see [2] for more details about
this subject).

It is clear from the above bound that large codes would be required to approach capac-
ity and therefore more practical decoding methods would be needed. Good (large) codes
exist, and in fact a randomly chosen code will, with high probability, turns out to be good.
However, as we mentioned before, such codes have no structure and may be difficult to
implement. Therefore, the central objective now is to find a practical coding and decod-
ing schemes that could approach channel capacity. Ever since Shannon’s original paper,
information theorists have attempted to construct structured codes and low complexity
decoders that achieve the channel capacity.

There is a large body of work on capacity-achieving codes and their applications in
communications. In order to introduce the major results on such a topic, we provide
the diagram depicted in Figure 1.2 to summarize the corresponding works. We point the
interested reader to an excellent survey by Forney and Costello [3].

In this work, our main interest focuses on the capacity-achieving codes that are based
on lattice theory (see the black connection in Figure 1.2). These structured codes have
recently found their way to many applications in both digital and wireless communication

3
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Shannon Capacity
C = log(1 + ρ)

1948

Block
Codes &

Convolutional
Codes

1955–1970s

Viterbi
Decoder

Minimum
Distance
Decoder

Sequential
Decoder

R0

Wozencraft
1961

R. Fano
1963

Jelinek
1969

Lattice Codes
& Lattice

Space-Time
Codes

Lattice
Decoders

deBuda
1975

Polyterv
1994

Loiliger
1999

Erez &
Zamir
2004

Sphere
Decoders

Urbanke
&

Rimoldi
1998

LDPC Codes
Gallager 1963

Turbo Codes
Berrou

et. al. 1993

Rateless
Codes

Luby 2002

Concatenated
Codes

Forney 1966

Figure 1.2: A summary of the major results about designing coding and decoding schemes
that achieve the Shannon capacity.
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systems due to their low complexity encoding/decoding and its excellent performance. The
topic of lattice theory and its application to communication systems will be provided in
details in Chapter 2.

We review the capacity of some important channels that provide the main motivation
for the rest of the work.

1.2 The Linear Gaussian Vector Channel Model

Many today’s point-to-point, digital and wireless communication systems can be well de-
scribed by the linear Gaussian vector channel model. For a total of T channel uses, this
channel model can be mathematically described by

yyyct = MMM c
txxx
c
t + eeect , t = 1, 2, · · ·T, (1.3)

where xxxct ∈ CM×1 is the M -dimensional vector input to the channel at time t, yyyct ∈ CN×1

is the N -dimensional output vector of the channel, eeect ∈ CN×1 is the additive complex
Gaussian noise vector where each entry is zero-mean with independent real and imaginary
parts with variance 1/2, and MMM c

t ∈ CN×M is a matrix representing the channel linear
mapping.

Channel
Encoder MMM c

t +

wwwc
t

Channel
Decoder

Channel

Figure 1.3: A general linear Gaussian vector channel model.

A well-known model that falls into such class of channels that is widely used in the
literature is the so-called the power-constrained Additive White Gaussian Noise (AWGN)
channel.
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1.2.1 The Power-Constrained AWGN Channel

This model corresponds to the case where M = N = 1, and MMM c
t =
√
ρ, where ρ is defined

as the signa-to-noise ratio (SNR) at the receiver. After T channel uses, the channel model
may be expressed as

yyyc =
√
ρxxxc + eeec, (1.4)

where xxxc ∈ CT×1 is a codeword that is selected from a code C satisfying the following input
constrained

1

|C|
∑
xxxc∈C
‖xxxc‖2 ≤ T, (1.5)

and eeec ∈ CT×1 is the complex AWGN vector.

The optimal decoder that minimizes the word error probability (see (1.1)) is the ML
decoder which can be described by

x̂xxc = arg min
xxxc∈C
‖yyyc −√ρxxxc‖2.

Claude-Shannon [4] discovered that information data symbols can be transmitted through
the AWGN channel with very low decoding error probability as long as the transmission
rate is below capacity,

C = log(1 + ρ). (1.6)

However, in his mathematical proof, Shannon assumed that the input codewords are drawn
from the ensemble of Gaussian codes — a code that has no structure. He also, assumed
that the received signal is detected using the ML receiver — a receiver that is considered
practically to be infeasible.

Since then, there has been tremendous effort put towards the search for low complexity
encoders and decoders for the AWGN channel that achieve near optimal (ML) performance.
In his work, de Buda [5] was among the first to discover the existence of structured codes
that achieve, for high SNR, rates very close to capacity. These codes are constructed based
on the theory of lattices — a mathematical approach for representing infinite discrete points
in Euclidean space. It is worth mentioning that most of traditional block and convolutional
(trellis) codes can be constructed from lattices. The book by Conway and Sloane [6] is a
good introduction about lattices and lattice codes construction.

One important feature of lattice codes is that they can be decoded by a class of efficient
decoders known as lattice decoders — a decoder that decodes to the nearest lattice point,
whether or not this point belongs to the code. This may significantly reduce decoding
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complexity, especially for small signal dimensions and/or moderate-to-high SNR without
sacrificing performance. More details about lattice decoders will be discussed in Chapter 2.

Polytrev [7] studied the problem of coding for the “unconstrained” AWGN channel
where the channel input being an infinite lattice. In his setting, the notion of capacity
becomes meaningless as infinite rates of transmission are possible. Therefore, another
significant measurement was defined that characterizes the performance limits of such
coding scheme when decoded using lattice decoders which is the normalized density of the
lattice or equivalently the information density rate of the lattice. It has also been shown
that if only a finite number of lattice points are to be transmitted as codewords which
satisfy a certain power constraint, then rates up to log ρ is achievable.

In contrast to Polytrev, where random coding has been used to show the above result,
Loeliger [8] proved that rates up to log ρ can be achieved using ensembles of linear lattices.
These codes are constructed using linear codes over the ring of p-prime integer numbers,
i.e., ZP , which is usually referred to as Construction A [6]. An important aspect of both
Polytrev’s or Loeliger’s proof is based on an important theorem in number theory that is
referred to as Minkowski-Hlawka theorem [27], [28].

It is clear from the above discussion that, although we may achieve low encoding/decoding
complexity, the penalty of using lattice decoding is a significant degradation in performance
at low SNR and zero rate for ρ < 1. Therefore, since the capacity of the AWGN channel is
log(1 + ρ), at this point one may ask whether the loss of “one” in the rate formula is due
to the structured lattice codes or the sub-optimal (low complexity) lattice decoding. This
question was addressed in [9] by Urbanke and Rimoldi, where they showed that (spherical)
lattice codes can achieve the capacity of the AWGN channel under the high complexity
(optimal) ML decoder.

It was not until 2004, when Erez and Zamir [24] proved that rates up to log(1 + ρ),
can be achieved using lattice coding and decoding. The use of the minimum-mean square
error (MMSE) estimator is essential to achieve the capacity. Their construction is based on
the so-called nested lattices to generate nested codes or Voronoi codes. Such codes enjoy
an important advantage over other capacity-achieving lattice codes (e.g., spherical lattice
codes) due to their low encoding complexity (more details on this subject is provided in
Chapter 2).

Next, we will discuss how the results of Erez and Zamir in [24] could be extended to a
more general channel to achieve its capacity.

7
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1.2.2 The Multiple-Input Multiple-Output Wireless Channel

Broadband wireless communication technologies are of great interest as mobile applications
demand high data rates and quality service to support sophisticated real time services. This
has motivated researchers to seek ways to increase the capacity of such systems.

Multiple-Input Multiple-Output (MIMO) technology, a mathematical model for com-
munication systems with antenna arrays, promises significant increases in system per-
formance and capacity. MIMO wireless communication systems have become an active
research area for the past decade after the seminal work of Foschini [10] and Telatar
[11]. Such systems has been shown to provide many advantageous over single-antenna-
to-single-antenna systems and are mainly used to enhance the communication capabilities
and overcome signal’s transmission limitations that are caused by fading — a phenomena
that is caused by multi-path propagation. The sensitivity to fading can be substantially
reduced by the spatial diversity2 provided by multiple spatial paths. Figure 1.4 shows a
block diagram for a typical MIMO wireless communication system.
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Figure 1.4: A Multi-antenna wireless communication system with M transmit and N
receive antennas.

We consider a frequency-flat fading3 MIMO channel with M -transmit, N -receive
antennas. The complex base-band model of the received signal can be mathematically

2Diversity techniques collectively refer to methods of improving error performance by effectively trans-
mitting the same information data multiple times, where each replica sees a different (ideally, independent)
channel. There are many methods by which diversity can be achieved. Examples include: time diversity,
frequency diversity, space (spatial) diversity, channel coding (as an efficient means of time diversity).

3In flat fading, the coherence bandwidth of the channel is larger than the bandwidth of the signal.
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described by (1.3) with MMM c
t =
√
ρHHHc

t , where HHHc
t ∈ CN×M is the channel matrix that is in-

dependent of xxxct andwwwct , and ρ = SNR/M is the normalized average SNR with respect to M
at each receive antenna. The elements of the channel fading gain matrix are assumed to be
independent identically distributed (i.i.d) zero mean complex Gaussian random variables
with variance per dimension 1/2. Equivalently, each entry of HHHc

t has uniformly distributed
phase and Rayleigh distributed magnitude with average E{|[HHHc

t ]ji|} = 1 for all 1 ≤ i ≤M
and 1 ≤ j ≤ N . This is intended to model a Rayleigh fading channel with enough phys-
ical separation within the transmitting and the receiving antennas to achieve independence
in the entries of HHHc

t .

When the channel coefficients vary over time, the channel is considered random and
hence the information rate4 associated with it is also random. In that case, the “ergodic”
capacity of a MIMO channel is the ensemble average of the information rate over the
distribution of the channel matrix HHHc. The ergodic capacity, achieved by coding over an
infinitely long interval, is given by [11]

C(ρ) = EHHHc

{
log det

(
IIIM + ρ(HHHc)HHHHc

)}
. (1.7)

It is not difficult to show that capacity-achieving random Gaussian codes constructed
for the AWGN channel can also be used to achieve the capacity of the ergodic MIMO
channel [11].

The capacity formula in (1.7) is very difficult to evaluate in general. However, for
high-SNR values, the ergodic capacity can be shown to be given by [10]

C(ρ) = min{M,N} log ρ+ o(1).

In other words, at high SNR the channel capacity of the M ×N MIMO channel increases
with SNR as min{M,N} log ρ as opposed to log ρ for the single-input single-output channel.
The term min{M,N} is usually referred to as the number of spatial degrees of freedom in
the channel in which independent information symbols may be transmitted through them.
This is the so called spatial multiplexing [10].

On the other hand, if the channel matrix is chosen randomly but held fixed for the
whole duration of channel uses, i.e., HHHc

t = HHHc, then the capacity of the channel is not

Therefore, all frequency components of the signal will experience the same magnitude of fading. In
frequency-selective fading, the coherence bandwidth of the channel is smaller than the bandwidth of the
signal. Different frequency components of the signal therefore experience decorrelated fading.

4The information rate is defined by the mutual information, I(xxxc, (yyyc,HHHc)), between the input to the
channel xxxc, and the output of the channel (yyyc,HHHc), assuming the channel matrix can be perfectly estimated
at the receiver side.
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given by (1.7) anymore. This type of a channel is called the quasi-static (non-ergodic)
channel and in fact, its capacity in the strict sense is zero. This is due to the fact that
there is a non-zero probability that the channel is in a deep fade, making it impossible
to transmit information at positive rates while at the same time achieving arbitrary small
decoding error probability. Therefore, a different criterion has been defined to characterize
the performance limits of such a channel. This is the so-called outage capacity [12] — the
largest rate of reliable communication for a fixed error probability. The tradeoff between
data rate and error probability can be captured by the outage capacity which can be
evaluated using the outage probability, Pout(ρ,R). We say that the channel is in outage if
the transmission rate cannot be supported by the channel. We define the outage event by

O(ρ) , {HHHc : Rachiv(ρ,HHHc) < R}, (1.8)

where R is the transmission rate and Rachiv(ρ,HHHc) is the rate achievable by the coding and
decoding schemes used in the system for a given channel realization. In this case, we have

Pout(ρ,R) = Pr(O(ρ)).

In this work, we will only consider the quasi-static, Rayleigh fading M × N MIMO
channel. In this scenario, after T channel uses, the received signals {yyyct : 1 ≤ t ≤ T} may
be jointly combined into a matrix YYY c ∈ CN×T as

YYY c =
√
ρHHHcXXXc +EEEc, (1.9)

where XXXc = [xxxc1,xxx
c
2, · · · ,xxxcT ] ∈ CM×T is the transmitted code matrix, and EEEc = [eeec1, eee

c
2, · · ·

, eeecT ] ∈ CN×T is the noise matrix. The following average transmit power constraint is
enforced:

E{‖XXXc‖F} ≤MT.

In this model, we assume perfect Channel State Information (CSI) at the receiver side,
and no CSI at the transmitter. This is representative of systems based on “coherent”
detection under the simplifying assumption that the channel matrix can be estimated very
accurately at the receiver side.

As has been discussed earlier, exploiting multiple antennas at the transmitter and the
receiver side provide substantial benefits in both increasing system capacity and improving
the immunity to deep fading in the channel. To take advantage of these benefits, special
Space-Time Coding (STC) techniques are employed.

10
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Space-Time Coding

Space-time coding, a powerful coding technique that was developed by Tarokh et. al.
in [13], is used to achieve spatial diversity. At the time of its invention, intensive research
[13]–[15] had been conducted for the design of space-time codes that achieve high order
diversity. After that, much attention was paid to the design of space-time codes that achieve
high data rates [16],[17]. One approach, which attempts to achieve high data rates, is the
Vertical Bell Labs Layered Space-Time (V-BLAST) scheme [10]. In such a scheme, the
data stream is divided into independent substreams to be transmitted on the individual
antennas. The V-BLAST receiver decodes the substreams using a sequence of nulling and
canceling steps, usually referred to as zero-forcing decision feed-back equalization (ZF-
DFE) [18]. Although V-BLAST offers full symbol rate in data transmission with low
decoding complexity, it suffers from very poor performance in fading channels.

Since then, there has been considerable work on a variety of space-time transmission
schemes such as space-time trellis codes [13] and space-time block codes [15]. For example,
orthogonal space-time block codes [15] can provide full diversity with a linear complexity
ML decoding, however, they suffer from having a limited transmission rate, and thus do
not achieve the full capacity in MIMO channels [19]. Therefore, Hassibi and Hochwald
[16] proposed linear dispersion (LD) codes, in which the transmitted codewrod is a linear
combination of certain weighted matrices. The key to LD code design is that the basis
matrices are optimized such that the resulting codes maximize the mutual information of
the LD coded MIMO system. Unfortunately, for the LD codes proposed in [16], good error
probability performance is not strictly guaranteed. The design of linear space-time block
codes based on number theory were constructed in [20] and [21] to provide full rate and
full diversity without information loss.

It was until the discovery made by Zheng and Tse [22] that shows a rigorous fundamental
trade-off between the data rate increase possible via multiplexing versus the channel error
probability reduction possible via diversity. Since then, the diversity-multiplexing trade-off
has become the standard tool to compare different STC schemes and has been used as the
main performance metric to evaluate any STC scheme. In the following, we summarize
their main results:

Diversity-Multiplexing Tradeoff

As it is difficult to analyze the outage probability, Pout(ρ,R), for all SNR, the evaluation
is usually performed for the high SNR regime. For the random Gaussian code ensemble
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and the ML decoder, it has been shown in [22] that the asymptotic outage probability is
given by

Pout(ρ,R) = Pr(O(ρ))
ρ→∞
= Pr

(
R > log det

(
IIIM + ρ(HHHc)HHHHc

))
.

Definition 1. Consider a family of space-time codes {Cρ} for a given block length T
and M -transmit, N -receive antennas with rate R(ρ) and average error probability
Pe(ρ) (averaged over the random channel matrix HHHc). We say that the family
achieves multiplexing gain r and diversity gain d if

r = lim
ρ→∞

R(ρ)

log ρ
, d = lim

ρ→∞
− logPe(ρ)

log ρ
.

Using the above definition, it has been shown in [22], through rigorous mathematical
derivations, that the asymptotic outage probability

Pout(ρ, r log ρ)
ρ→∞
= ρ−d

∗
out(r),

where d∗out(r) is the best achievable outage SNR exponent which is defined in the following
theorem:

Theorem 1. (see [22]) For any T ≥ N +M − 1, the optimal diversity-multiplexing
tradeoff curve is the piecewise linear function d∗out(r) interpolating the points

(r = k, d = (M − k)(N − k)), for k = 0, 1, · · · ,min{M,N}.

An example of the optimal tradeoff in a 3× 3 MIMO system is depicted in Figure 1.5.
The tradeoff curve characterizes the performance capability of the quasi-static MIMO
channel. At one extreme where r = 0, the diversity gain d = MN which is the maximum
diversity order achievable by the channel. At the other extreme, where r = min{M,N},
the full degree of freedom is attained at the expense of poor performance (diversity order
of 0!). The tradeoff curve bridges between the two extremes.

The analysis in [22] showed that the average error probability Pe(ρ), defined in (1.1),
for the random Gaussian coding and ML decoding schemes is dominated by the asymptotic
outage probability, i.e.,

Pe(ρ)
ρ→∞
= Pout(ρ, r log ρ) = ρ−d

∗
out(r) (1.10)

The key ideas of arriving to the above result are summarized by the following steps:
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Figure 1.5: The diversity-multiplexing tradeoff of a quasi-static, flat-fading MIMO channel
with M = N = 3 antennas.

• Separate the outage event from the non-outage event in the error probability, i.e.,

Pe(ρ) = Pr(error|HHHc ∈ O) Pr(O) + Pr(error,HHHc /∈ O). (1.11)

• When the channel is in outage, the decoder output is highly likely to be in error.
Hence, the term Pr(error|HHHc ∈ O) can be upper bounded by 1.

• At high SNR, the outage probability Pr(O(ρ)) can be calculated as follows: denote
the transmission rate R(ρ) = r log ρ. Let 0 ≤ λ1 ≤ · · · ≤ λM be the ordered
eigenvalues of (HHHc)HHHHc, and define ααα = (α1, · · · , αM), αi , − log λi/ log ρ. As
discussed in [22], at high SNR, the non-negative values of ααα only contributes to the
outage event. Therefore, one can show that the outage event may be expressed as

O = lim
ρ→∞
O(ρ) =

{
ααα ∈ RM

+ :
M∑
i=1

(1− αi)+ < r

}
. (1.12)
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In this case, the outage probability can be evaluated as follows:

Pout(ρ, r log ρ) =

∫
α∈O

fααα(ααα) dααα,

where fααα(ααα) is the joint probability density function of ααα which, for all ααα ∈ O, is
asymptotically (as ρ→∞) given by [23]

fννν(ννν) = exp

(
− log(ρ)

M∑
i=1

(2i− 1 +N −M)αi

)
. (1.13)

Applying Varadhan’s lemma as in [22], as ρ→∞ we obtain

Pout(ρ, r log ρ) = ρ−d
∗
out(r), (1.14)

where

d∗out(r) = inf
ννν∈O

M∑
i=1

(2i− 1 +N −M)αi. (1.15)

It is not so difficult to see that the optimal channel coefficients that maximize (1.15)
are

For the case that r is an integer, say r = k, we have:

α∗i = 1, for i = 1, · · · ,M − k,

and
α∗i = 0, for i = M − k + 1, · · · ,M,

For the case that r is not an integer, say r ∈ (k, k + 1), we have:

α∗i = 1, for i = 1, · · · ,M − k − 1,

α∗i = 0, for i = M − k + 1, · · · ,M,

and
α∗i = k + 1− r.

Substituting ααα∗ in (1.15), we get

d∗out(r) = (M − r)(N − r), for 0 ≤ r ≤ min{M,N}. (1.16)
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• Using the random Gaussian code ensemble and the ML decoder, one can show [22]
that the average error probability when the channel is not in outage is bounded from
above by the outage probability, i.e., at high SNR we have

Pr(error,HHHc /∈ O) ≤ ρ−d
∗
out(r).

• By using the Fano inequality, one can show [22] that the error probability is lower
bounded by the outage probability. Therefore, at high SNR we have

Pe(ρ) ≥ ρ−d
∗
out(r). (1.17)

Again, the drawbacks of such approach center at following: First, the lack of structure of
the random Gaussian codebook that would allow for practical codeword enumeration. Sec-
ondly, the prohibitively complex ML receiver for which complexity increases exponentially
with the number of transmit antennas, making it impossible to implement for large array
sizes and high order digital modulation schemes.

Many works have focused on the design of low complexity encoders and decoders that
are capable of achieving the optimal diversity-multiplexing tradeoff of the MIMO channel.
In their paper [23], El-Gamal et. al have constructed a very efficient coding and decoding
schemes that are able to achieve the optimal diversity-multiplexing tradeoff. The coding
scheme is called LAttice Space-Time (LAST) coding which is developed from lattice codes
designed for the AWGN channel in [8],[25]. An important factor of using LAST codes is that
they can be also decoded using lattice decoders. An important ingredients for achieving
the optimal tradeoff is through the use of minimum mean-square error decision-feedback
equalization (MMSE-DFE) [29],[30].

Lattice decoding can be performed using sphere decoders [31]–[52]. Sphere decoders
based on Ficnke-Pohst and Schnorr-Euchner (SE) enumeration [32] are known to provide
ML performance with lower decoding complexity, especially for moderate-to-high SNR and
small signal dimensions. Previous work on the complexity of sphere decoding focused on
characterizing the mean and the variance of the decoder’s complexity, particularly for the
uncoded MIMO channel (e.g., V-BLAST) [52]–[54]. Seethaler et. al. [55] considered the
derivation of the computational distribution of the sphere decoder for the M × N un-
coded MIMO channel. It has been shown that the computational tail distribution follows
a Pareto-type with tail exponent given by N −M + 1. However, the exact complexity
analysis of the basic sphere decoder for general space-time codes applied to MIMO wireless
channel is known to be difficult. In this work, we shed the light on the computa-
tional complexity of sphere decoding for the quasi-static, LAST coded MIMO
channel.. This topic is discussed in Chapter 3.
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Unfortunately , sphere decoding suffers from two drawbacks: the initial sphere-radius
that must be chosen to ensure the existing of at least one lattice point inside the sphere
(otherwise the search is reset with a larger sphere radius), and second is that for low-to-
moderate SNR and/or large signal dimensionality, the computational complexity becomes
increasingly prohibitive [52]. As such, many attempts have been made to further reduce
the computational complexity of the sphere decoder .

On the other extreme, linear and non-linear receivers such as zero-forcing, minimum
mean-square error (MMSE), and MMSE-DFE decoders, are considered attractive alterna-
tives to lattice decoders in MIMO channels and have been widely used in many practical
communication systems [10], [34], [35]. Unfortunately, the very low decoding complexity
advantage that these decoders can provide comes at the expense of poor performance,
especially for large signal dimensions. The problem of designing low complexity receivers
for the MIMO channel that achieve near-optimal performance is considered a challenging
problem and has driven much research in the past years. In this work, we analyze the per-
formance of lattice sequential decoding that is capable of bridging the gap between sphere
decoders and low complexity linear decoders (e.g., MMSE-DFE decoder).

Two main advantages result in using such an efficient decoder: we avoid the problem
of selecting the appropriate sphere radius (i.e., avoid resetting the search), and for low-
to-moderate SNR it achieves very low decoding complexity. It is well-known that sphere
decoders can be viewed as a search in a tree for the closest lattice point to the received
signal. The search can be efficiently performed using sequential decoding algorithms. Fano
and Stack algorithms are two well-known algorithms that are widely used in the literature to
describe the operation of the sequential decoder [36], [38]. Both algorithms were originally
constructed as an alternative approach to the ML decoder for detecting convolutional
codes transmitted via discrete memoryless channels. It has been shown [2] that as long
as we operate below the cutoff rate, the decoder can achieve near-ML performance with
complexity that scales linearly with the constraint length of the code. For the uncoded
MIMO channel, specifically the V-BLAST, it has been shown in [39] that maximum receive
diversity can be achieved with decoding complexity that scales linearly with the dimension
of the transmitted signal. However, no mathematical analysis has been provided
for the coded MIMO channel, and the optimal diversity-multiplexing tradeoff
of the coded MIMO channel that can be achieved under the use of lattice
sequential decoders has not yet been studied. This topic is fully addressed in Chapter
4.
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1.3 The MIMO ARQ Channel

Another interesting channel model that will be considered in this work, which falls in to
the class of linear Gaussian vector channel model is the so-called “The MIMO Automatic
Repeat reQuest (ARQ) Channel”. ARQ is an important error-control mechanism that is
widely used in high-speed wireless mobile networks (e.g., wireless LAN, WiMAX, and Wi-
Fi) due to its very low error probability detection and generally low decoding complexity.
Recently, there has been a great interest in MIMO-ARQ wireless communication systems.

In the MIMO ARQ system, the delay introduced by the channel provides a third
dimension in the tradeoff region. The tradeoff between the diversity, the multiplexing,
and the delay provided by the quasi-static MIMO ARQ channel has been established in
the paper by El-Gamal et. al. in [41]. It has been shown in [41] that LAST codes achieve
the optimal diversity-multiplexing-delay tradeoff (see Chapter 5 for more details about this
result).

A powerful coding technique referred to as Incremental Redundancy LAttice Space-
Time (IR-LAST) coding scheme has been constructed in [41] to achieve the optimal tradeoff
of the MIMO ARQ channel. This scheme is the ARQ version of the LAST codes that is
used to achieve the optimal tradeoff of the quasi-static, Rayleigh-fading MIMO channel.
These lattice-based construction of space-time codes were designed using linear random
coding techniques [41]. The problem of constructing explicit optimal IR-LAST codes for
the above mentioned MIMO ARQ channel was discussed in [42].

However, in both papers, a list lattice decoder, for joint error correction and detection,
implemented via sphere decoder is an essential part for achieving the optimal tradeoff.
The optimality of such joint decoder is limited only to the high SNR regime and small
system dimensions, and for low-to-moderate SNR and large system dimensions, the size
of the candidate list could become large. This motivates us to search for a more efficient
joint decoding technique that is capable of achieving the optimal tradeoff with a fairly low
decoding complexity.

This property makes sequential decoding of lattice space-time codes a very attractive
option in MIMO ARQ systems requiring very low undetected error probabilities. Many
sequential decoding algorithms (e.g., the stack algorithm) were modified for the use of
signal detection and decoding in ARQ systems. Among those algorithms that is consid-
ered simple but efficient is the so-called time-out sequential decoding. In this algorithm,
the decoder simply tracks the number of computations performed by the decoder and
asks for retransmission if the computations become excessive and exceed a certain pre-
determined time limit. This results in reducing the decoding complexity by terminating
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the search during high channel noise. For the case of single-input single-output discrete
memoryless channel, it was shown (see [43]) that there exists an optimal time-out limit
value that maximizes both performance and throughput while achieving low decoding
complexity. Here, we would like to extend the work in [43] to the MIMO ARQ channel,
particularly, to the quasi-static, Rayleigh-fading MIMO ARQ channel. We will study the
throughput-performance-complexity tradeoffs in sequential decoding algorithms and the
effect of preprocessing and termination strategies such as the time-out algorithm.

We propose an efficient approach for joint detection and decoding based
on the Fano/Stack sequential decoder [39] developed for the closest lattice
point search problem. We show (via simulation and analysis) that the optimal
tradeoff can be achieved using such a decoder with significant reduction in
average decoding complexity.

1.4 Outline

The thesis is organized as follows: In Chapter 2, we briefly introduce an important topic in
mathematics, specifically in number theory, which is the so called lattices. The application
of lattices in various communication systems is presented. Basically we examine capacity-
achieving lattice codes under lattice decoding for the linear Gaussian vector channel.

Our novel analysis is mainly concentrated in Chapter 3, Chapter 4, and Chapter 5. In
Chapter 3, we review some previous results about the performance of the lattice decoder
implemented via sphere decoding algorithms in the quasi-static LAST coded MIMO chan-
nel. We provide a complete analysis on the sphere decoding complexity at the high SNR
regime.

In Chapter 4, we introduce lattice sequential decoders that are used as an alternative
to sphere decoders to solve the closest lattice point search problem. We investigate the
achievable rates of lattice sequential decoders for the outage-limited MIMO channel, and
we derive the general diversity-multiplexing tradeoff achieved by the decoder as a function
of its parameter — the bias term. We show how this parameter plays a fundamental role in
determining the diversity-multiplexing tradeoff achieved by sequential decoding of lattice
codes. This bias term is critical for controlling the amount of computations required at the
decoding stage and is responsible for the excellent performance-rate-complexity tradeoff
achieved by the decoder. We also provide a complete analysis for both the computational
complexity tail distribution and the average complexity of the lattice sequential decoder
in the high SNR regime.
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In Chapter 5, the application of the lattice sequential decoder in the MIMO ARQ
channel is introduced. Particularly, we investigate the asymptotic performance limits of
the lattice sequential decoder when a time-out limit is imposed. We prove its optimality
in terms of achieving the optimal tradeoff of the channel. We also provide complexity
analysis of such a decoder and compare it the complexity of the optimal (sphere) decoder
to demonstrate the complexity saving advantage achieved by the former decoder. Finally,
we verify all our theoretical results using simulations. A summary of the main findings is
presented in Chapter 6, including an outlook on future work.

1.5 Notations

Through out the thesis, we use the following notations:

� Bold lowercase letters aaa denote vectors, whose l2-norm is denoted by ‖aaa‖. The
notation aaak1 refers to the vector that contains the last k components of aaa.

� Bold uppercase letters AAA denote matrices. The ith column vector is denoted by aaai.
In the definition of matrices and vectors the convention AAA ∈ An×m is used to denote
a matrix with n rows and m columns whose components are taken from the set A.
Then notation AAAkk denotes the lower k × k part of the square matrix AAA.

• The notations <{·} and ={·} represent the real part and the imaginary part of a
complex number, respectively.

� IIIm denotes the m×m identity matrix and ⊗ denotes the Kronecker product.

� The complement of a set B is B.

� The superscript c denotes complex quantities, T denotes transpose, and H denotes
Hermitian transpose.

� The notation vvv ∼ N (µµµ,KKK) indicates that vvv is a real Gaussian random vector with
mean µµµ and covariance matrix KKK.

� For a bounded Jordan-measurable region R ⊂ Rm, V (R) denotes the volume of R.
We denote

Sm(rs) = {xxx ∈ Rm : ‖xxx‖ ≤ rs}
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by the m-dimensional hypersphere of radius rs with volume

V (Sm(rs)) =
(πr2

s)
m/2

Γ(m/2 + 1)

where Γ(n) =
∫∞

0
tn−1e−t dt is the Gamma function.

� We use =̇ to denote exponential equality, i.e., we refer to g(z) =̇ za as limz→∞ g(z)/ log(z) =
a, ≥̇ and ≤̇ are used similarly.

• The positive part of a real variable x is denoted by (x)+ = max{0, x}.

• The notation E{·} represents the statistical average.
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Chapter 2

Capacity-Achieving Coding and
Decoding Schemes from A Lattice
Theory Prospective

THE present chapter is devoted to the theory of (real) lattices. Our treatment is short
and focused on those aspects that are of direct importance for the construction of

lattice codes which are appropriate for the linear Gaussian vector channel model, and for
the design of efficient algorithms that solve the closest lattice point search (CLPS) problem
[44] (referred here to as lattice decoding). For a full account of the general theory of lattices
we refer the reader to the specialized texts, in particular to the rich text by Conway and
Sloane [6].

2.1 Lattices: An Introduction

A lattice is a discrete pointset Λ in a Euclidean space Rm that is closed under vector addi-
tion, i.e., any translate Λ +xxx by a lattice point xxx ∈ Λ is just Λ again. Let {ggg1, ggg2, · · · , gggm}
be a set of linearly independent vectors in Rm. The set Λ of all linear combinations
xxx = z1ggg1 + z2ggg2 + · · ·+ zmgggm with integer coefficients zi is a lattice, i.e.,

Λ = {xxx = GzGzGz : zzz ∈ Zm},
where GGG = [ggg1, ggg2, · · · , gggm] is an m × m full-rank generator matrix. Thus, any lattice Λ
in Rm can be seen as a linear transformation of the integer lattice Zm. Figure 2.1 shows
some examples of lattices in Rm.
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Figure 2.1: Examples of lattices in R2: The left figure corresponds to the rectangular
lattice with ggg1 = [1 0]T, and ggg2 = [0 1]T. The right figure is the hexagonal lattice with
ggg1 = [0 1]T, and ggg2 = [

√
3/2 1/2]T.

One can associate with every lattice point xxx ∈ Λ a bounded region Exxx ∈ Rm. The
region E is called a fundamental region of the lattice Λ if every element in Rm can be
uniquely written as the sum of an element in E and a lattice point in Λ. In other words,
the translates of a fundamental region by the lattice points tile Rm. The fundamental
paralleltope P is an example of a fundamental region for the lattice Λ which is defined as

P = {u1ggg1 + u2ggg2 + · · ·+ umgggm : 0 ≤ ui ≤ 1}.

Another important fundamental region that will be widely used in this work is the so-
called the Voronoi cell. For a lattice Λ generated by a matrix GGG, the Voronoi (cell) region,
Vxxx(GGG), associated with a lattice point xxx ∈ Λ is defined as the set of points in Rm closest
to xxx, i.e.,

Vxxx(GGG) = {uuu ∈ Rm : ‖xxx− uuu‖ ≤ ‖λλλ− uuu‖, xxx 6= λλλ ∈ Λ}
Figure 2.2 shows two fundamental regions associated with the hexagonal lattice. It must
be noted that all fundamental regions of a lattice Λ have equal volumes, say Vf (Λ), which
is given by

Vf (Λ) =
√

det(GGGTGGG).
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P

(a) The fundamental paralleltope region.

V

(b) The fundamental Voronoi region.

Figure 2.2: Some fundamental regions of the hexagonal lattice.
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Next, we introduce some properties associated with a lattice Λ having the Voronoi cell
as its fundamental region, which are of great importance to our analysis:

1. The nearest neighbor quantizer QΛ(·) associated with Λ is defined by

QΛ(uuu) = arg min
λλλ∈Λ
‖λλλ− uuu‖.

2. We define the modulo-lattice function of uuu ∈ Rm

[uuu] mod Λ = uuu−QΛ(uuu).

3. The second moment per dimension of Λ is defined by

σ2(Λ) ,
1

m
E{‖uuu‖2} =

1

mVf (Λ)

∫
ννν∈V0(GGG)

‖ννν‖2 dννν,

where uuu is a random vector uniformly distributed over V000(GGG).

4. The normalized second moment associated with Λ is given by

G(Λ) ,
σ2(Λ)

Vf (Λ)2/m
.

One can show that as m→∞, the asymptotic normalized second moment G(Λ)→
1/2πe. In fact, G(Λ) is always greater than 1/2πe, and for sufficiently large m, there
exist lattices whose Voronoi region approaches a sphere. This is equivalent to saying
that a random vector uuu uniformly distributed over V000 converges in distribution (in the
sense of divergence) to a Gaussian i.i.d random vector with per component variance
equal to σ2(Λ), i.e., 1

m
h(uuu) is close to 1

2
log(2πeσ2(Λ)).

In this case, a sequence of lattices {Λm} of increasing dimension is said to be good
for mean-square error quantization [26] if G(Λm)→ 1/2πe.

5. For a given radius rs, the set Λ +Sm(rs) is a packing in the Euclidean space if for all
lattice points xxx,yyy ∈ Λ, xxx 6= yyy, we have (xxx+Sm(rs))∩ (yyy+Sm(rs)) = ∅. The packing
radius (see Figure 2.3) rpack(Λ) is defined by

rpack(Λ) = sup{rs : Λ + Sm(rs) is a packing}.
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rcov

reff

rpack

Figure 2.3: The packing radius, the effective radius, and the covering radius of the hexag-
onal lattice.

6. The effective radius reff(Λ) is the radius of the sphere centered at the origin with
volume equal to the volume of the Voronoi region (see Figure 2.3), i.e.,

V (Sm(reff)) = V (V000(GGG)).

7. The covering radius rcov(Λ) is the radius of the smallest sphere centered at the
origin that contains V0 (see Figure 2.3).

8. A sequence of lattices {Λm} of increasing dimension is good for covering [25] if
their covering efficiency, ηcov(Λm), satisfies

ηcov(Λm) ,
rcov(Λm)

reff(Λm)
→ 1.

9. A sequence of lattices {Λm} of increasing dimension is good for packing [25] if their
packing efficiency, ηpack(Λm), satisfies

ηpack(Λm) ,
rpack(Λm)

reff(Λm)
≥ 1

2

10. Minkowski-Hlawka Theorem[27]: Let f : Rm → R be a Riemann integrable
function of bounded support (i.e., f(xxx) = 0 if ‖xxx‖ exceeds some bound). For any δ >
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0, there exist ensembles {Λ} of lattices with fundamental volume Vf and dimension
m such that

EΛ

{∑
xxx∈Λ∗

f(xxx)

}
≤ (1 + δ)

1

Vf (Λ)

∫
Rm

f(xxx) dxxx. (2.1)

where Λ∗ = Λ\{000}, and δ → 0 as m→∞.

The above important theorem is sometimes regarded as a pre-Shannon result in
information theory. In fact, the Mikowski-Hlawka theorem was originally used for
packing lattices to solve the well-known sphere packing problem.

11. A pair of m-dimensional lattices {Λ,Λ′} is nested, i.e., Λ′ ⊂ Λ, if there exists
corresponding generator matrices GGG and GGG′ such that GGG′ = NGNGNG. Where NNN is an
m×m integral matrix whose determinant is greater than one [6].

A special case of nested lattices, which will be frequently used in our analysis and
simulation, is the self -similar lattices. In such lattices Λ′ is just a scaled version of
Λ, i.e., Λ′ = QΛ, where Q ∈ Z+ is called the nesting ratio.

At this stage, we would like to point out to the reader that most of the results that
have been introduced above are asymptotic in the dimension m. However, in this work we
will be mostly dealing with communication systems with finite dimensionality. Therefore,
the following result is of a great importance to our analysis (see the proof of Theorem 5 in
[24]):

12. Suppose that a random vector uuu of (finite) dimension m is uniformly distributed
over the Voronoi fundamental region V000 of a lattice Λ with second order moment
σ2(Λ) = σ2. Then, the probability density function of uuu, say fuuu(ννν), can be shown to
be upper bounded by

fuuu(ννν) ≤ βmfggg(ννν), (2.2)

where βm is a constant that approaches unity as m→∞, and fggg(ν) is the probability
density function of a zero-mean Gaussian i.i.d random vector with per component
variance σ2, i.e., ggg ∼ N (000, σ2).

Next, we would like to introduce lattice codes, particulary (random) lattice codes that
are based on Construction A. These codes will be intensively used in this work.
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2.2 Lattice Codes: Construction A

Recently, there has been a tremendous amount of work in designing “good” lattice codes
for the general linear Gaussian vector channel such as, point-to-point quasi-static MIMO
channel, multiple access channel, interference channel, and more. This is due to the main
three facts about lattice codes: first, its low encoding complexity as opposed to the un-
structured Gaussian random code ensemble that are very difficult to construct in practice,
its ability to achieve the fundamental limits of the standard random coding arguments,
and most importantly, these codes can be efficiently decoded (at least more efficiently
than random Gaussian codes).

It must be noted here that, although we use structured (lattice) codes, we resort to a
random ensemble of lattices to derive our main results. For many communication channels
(including the ones that are presented in this work), explicit lattice codes that achieve
optimal performance limits can be found in the literature (see for example [42], [48]).
However, in this work, our main concern is not in the encoder construction rather it is in
the decoder design, particularly in the design of low complexity decoders that achieve near -
optimal performance (more about this topic will be discussed in the subsequent chapters).

Lattices have become a standard tool for the construction of both block and convo-
lutional trellis codes for the linear Gaussian vector channel [6], [49], [50]. In this work,
lattice codes based on linear block codes will be considered. Such lattice codes consists
of the intersection of a lattice Λc, termed as the coding lattice (or a translate of a lattice
Λc + uuu0) with a bounded region. The bounded region is chosen to satisfy the input power
constrained and the transmission rate.

Definition 2. An m-dimensional lattice code C(Λc,uuuo,R) is the finite subset of the
lattice translate Λc + uuu0 inside the shaping region R, i.e.,

C(Λc,uuuo,R) = {Λc + uuu0} ∩ R,

where R is a bounded measurable region of Rm.

The vector uuu0 is chosen so that the number of lattice “codewords” in the code C is
maximized1 by ensuring the boundary of the shaping region R does not contain any lattice
point xxx ∈ Λc. If this is the case, for a self-similar lattice, where GGGs = QGGGc, one can show

1There are infinitely many choices of uuu0, however, this vector is usually selected so that the average
power of the code is minimized.
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that the total number of lattice codewords in the code C is given by

|C| = V (Vs)
Vf (Λc)

= Qm,

or equivalently, the transmission rate is given by R = 1
m

log |C| = logQ (see Figure 2.4).
In general, this is a very difficult problem for any dimension m, and therefore, we resort

Figure 2.4: On the left, a nested lattice code with codewords located on the boundary
of the Voronoi region. The right figure shows a nested code C = {Λc + uuu0} ∩ Vs where
uuu0 = (0,−0.25) consisting of all 16 points inside the Voronoi region. This code has the
lowest average power of any known set of 16 points in the plane.

to a random technique that shows (see Lemma 2 in [8]).

Lemma 1. For any Λ and R, there exists uuu0 such that

|C(Λ,uuuo,R)| ≥ V (R)

Vf (Λ)
. (2.3)

Now, depending on the characteristic of the shaping region R, different lattice codes
can be constructed. For example, if the shaping region R is chosen to be an m-dimensional
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hypersphere of radius Rs (where Rs is chosen to satisfy the power constraint), then the
generated lattice code is called spherical lattice code [51]. If R is chosen to be the Voronoi
region of another lattice, say Λs, where Λs ⊂ Λc, the generated lattice code is called the
Voronoi code or nested code [6]. In the latter case, Λs is usually referred to as the shaping
lattice.

Definition 3. Let Λc be a lattice in Rm and Λs be a sublattice of Λc. The nested
lattice code defined by the partitioning Λc/Λs is given by

C = Λc ∩ Vs,

where Vs is the fundamental Voronoi region of Λs. In other words, C is formed by the
coset leaders of the cosets of Λs in Λc.

As mentioned previously, in this work we focus our analysis on nested lattice codes,
specifically lattice codes that are generated using construction A which is described
below (see [6], [8]).

We consider the Loeliger ensemble of mod-p lattices, where p is a prime. First, we
generate the set of all lattices given by

Λp = κ(C + pZm),

where Zp denotes the field of mod-p integers, C ⊂ Zm
p is a linear code over Zp with

generator matrix in systematic form [III PPPT]T, where PPP is a m− k× k parity check matrix,
and p → ∞, κ → 0 is a scaling coefficient chosen such that the fundamental volume
Vf = κ2MTp2MT−k = 1, . We use a pair of self-similar lattices for nesting. We take the
shaping lattice to be Λs = φΛp, where φ is chosen carefully in order to satisfy the input
power constraint. Finally, the coding lattice is obtained as Λc = ζΛs, where ζ is chosen
appropriately to satisfy the transmission rate constraint.

Interestingly, one can construct a generator matrix of Λp as (see [6])

GGGp = κ

(
III 000
PPP pIII

)
, (2.4)

which has a lower triangular form.

In order to be able to apply the above lattice coding scheme to the linear Gaussian
vector channel, we will appeal to the following real channel model equivalent to (1.3).
After T channel uses, the received signal is given by

yyy = MxMxMx+ eee, (2.5)
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where
xxx = (xxxT

1 ,xxx
T
2 , · · · ,xxxT

T )T,

with xxxt = [<{xxxct},={xxxct}], and

eee = (eeeT1 , eee
T
2 , · · · , eeeTT )T,

with eeet = [<{eeect},={eeect}], and the (real) channel matrix is given by

MMM =

(
<{MMM c} −={MMM c}
={MMM c} <{MMM c}

)
.

Here, we have xxx ∈ Rm, eee ∈ Rn, yyy ∈ Rn, and MMM ∈ Rn×m, where n = 2NT and m = 2MT .

Note that the above configuration applies to the “non-ergodic” channel model (e.g.,
the quasi-static MIMO channel), where the channel matrix is random but remains fixed
during all channel uses (i.e., MMM c

t = MMM c).

We say that an M × T space-time coding scheme is a full-dimensional LAttice Space-
Time (LAST) code if its vectorized (real) codebook (corresponding to the channel model
(2.5)) is a lattice code with dimension m = 2MT . As discussed in [23], the design of
space-time signals reduces to the construction of a codebook C ⊆ R2MT with code rate
R = 1

T
log |C|, satisfying the input averaging power constraint

1

|C|
∑
xxx∈C
‖xxx‖2 ≤MT. (2.6)

2.3 Lattice Decoder: Near Optimal Decoding

The search for low complexity decoders that achieve near optimal performance is an on-
going research for information and coding theorist. For the linear Gaussian vector channel
that is considered in this work, it is well-known that the ML decoder is the optimal solution
that minimizes the word error probability. In such a decoder, the received signal is decoded
to the nearest codeword or lattice point inside R. For a random Gaussian code ensemble,
the ML decoder achieves the capacity of the channel.

However, the ML decoder performs an exhaustive search over all codewords that belongs
to the code C, and hence it is considered very complex to implement in practice. Figure 2.5
shows an example of the ML decoder, where the Euclidean space is divided into subregions
based on the distance between each codeword in the code. These decision regions are
optimal in terms of minimizing the probability of decoding error.
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xxx2

xxx8

xxx9

xxx10

Figure 2.5: The decision regions that corresponds to the ML decoder for a hexagonal nested
lattice code with nesting ratio 4.

For the real linear Gaussian vector channel model, the ML decoder can be expressed as

x̂xx = arg min
xxx∈C
‖yyy −MMMxxx‖2. (2.7)

Searching over the codebook C is performed by a search algorithm (e.g., the sphere
decoder) that takes into account the shaping region R which is referred to as boundary
control. Due to its exponential complexity, the implementation of such optimal decoder is
practically unfeasible and the design of low complex receivers that achieve near optimal
performance is considered a challenging problem.

Relaxing the boundary control, or lattice decoding, is believed to reduce complexity at
the expense of introducing some error performance degradation. Lattice decoder algorithms
reduce complexity by relaxing the code boundary constraint and find the point of the
underlying (infinite) lattice closest to the received point (which may or may not be a
code point). In lattice theory, this is usually referred to as the closest lattice point search
problem (CLPS) [44], which can be described by

x̂xx = arg min
xxx∈Λc
‖yyy −MMMxxx‖2. (2.8)
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Many researchers have studied the information-theoretic limits of lattice coding and
decoding schemes for the linear Gaussian vector channel model [5], [7], [8], [24], [23], [41].
A very interesting approach that may be used to prove the rate achievability of lattice
coding and decoding schemes for such a channel is through the so-called the ambiguity
decoder. Lattice ambiguity decoder was originally developed by Loeliger in [8] for the
AWGN channel (see (2.5), whereMMM =

√
ρIII) and was used in [23] to prove the achievability

rate of the lattice decoder for the quasi-static, Rayleigh fading MIMO channel. The same
technique will be used in this work to analyze the achievable rate of other efficient lattice
decoders for the quasi-static MIMO channel. Therefore, for convenience, we introduce the
ambiguity decoder and we extend it to the real linear Gaussian vector channel model:

Assume the received vector can be written as yyy = xxx+www, where xxx ∈ Λc and www = MMM−1eee
is an m-dimensional noise vector independent of xxx, for which MMM ∈ Rm×m is an arbitrary
full-rank matrix and eee ∼ N (000, 0.5III). The ambiguity decoder is defined by a decision region
E ⊂ Rm and outputs xxx ∈ Λc if yyy ∈ E +xxx and there exists no other point xxx′ ∈ Λc such that
yyy ∈ E + xxx′. An ambiguity occurs if the received vector yyy ∈ {E + xxx} ∩ {E + xxx′} for some
xxx 6= xxx′. If we define A(E) to be the ambiguity event for the decision region E , then for a
given Λc and E , the probability of error can be upper bounded as

Pe(E|Λc) ≤ Pr(eee /∈ E) + Pr(A(E)). (2.9)

As mentioned in [8], the upper bound (2.9) holds for any Jordan measurable bounded
subset E of Rm. Consider now the following lemma:

Lemma 2. There exists an m = 2MT -dimensional lattice code C(Λc,uuu0,R) with
fundamental volume Vc that satisfies (2.6), for some fixed translation vector uuu0, and
R is the m/2-dimensional hypersphere with radius

√
MT centered at the origin such

that the error probability is upper bounded as

Pe(Λc, ET,γ) ≤ (1 + ε′)2−T [log det(MMMTMMM)1/2T−M log(r2e/MT )−R] + Pr(eee /∈ ET,γ), (2.10)

where ET,γ , {zzz ∈ R2MT : zzzTMMMTMMMzzz ≤ r2
e(1 + γ)}, re > 0, γ > 0, and ε′ > 0.

Proof. See [23].

We consider the achievable rate of some special cases:
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For the power-constrained AWGN channel:

the achievable rate under lattice decoding provided in (2.8) follows easily by letting MMM =√
ρIII, M = 1, and r2

e = T in the above lemma. In that case, from the standard typicality
arguments it follows that for any ε > 0 and γ > 0, there exists Tγ,ε such that for all T > Tγ,ε
we have that Pr(eee /∈ ET,γ) < ε/2. The second term in the upper bound (5.59) can be made
smaller than ε/2 for sufficiently large T if

R < log det(MMMTMMM)1/2T = log ρ. (2.11)

Since the capacity of the AWGN channel is log(1 + ρ), lattice coding and decoding as
defined by deBuda, Polytrev and Loeliger achieve near capacity only for high SNR. The
loss in “one” in the rate formula results in significant degradation in performance at low
SNR and zero rate for ρ < 1.

Capacity-achieving lattice codes under lattice decoding has been made possible after
the work of Erez and Zamir [24]. In their work, the power constrained AWGN channel
is first transformed into a modulo-lattice additive noise channel (known as the MLAN-
channel). The input alphabet of this channel is the Voronoi region (Vs) of the shaping
lattice Λs, i.e., ccc ∈ C = Λc ∩ Vs added to a dither signal uuu ∼ U(Vs). The dither signal
assures that the power constrained of the channel is satisfied all the time. Another role
of it is to de-correlate the estimation error from the channel input. The output of the
transmitter is given by the modulo lattice operator as

xxx = [ccc− uuu] mod Λs. (2.12)

The received signal, xxx + eee, is then multiplied by the MMSE factor α = PX/(PX + σ2),
where PX is the average transmitted power, and the dither signal is then added. The result
is reduced modulo-Λs, i.e.,

yyy = [α(xxx+ eee) + uuu] mod Λs

= [ccc+ eee′] mod Λs, (2.13)

where eee′ = [αeee+ (1− α)uuu] mod Λs.

The analysis of Erez and Zamir revealed that using lattice coding and MMSE lattice
decoding, reliable communication is possible as long as

R < log(1 + ρ) = C.
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For the outage-limited M ×N MIMO channel:

with channel gain matrix HHHc, the achievable rate follows by letting MMM =
√
ρHHH, where

HHH =
√
ρIIIT ⊗

(
<{HHHc} −={HHHc}
={HHHc} <{HHHc}

)
, (2.14)

and r2
e = MT in the Lemma 2. In that case, from the standard typicality arguments it

follows that for any ε > 0 and γ > 0, there exists Tγ,ε such that for all T > Tγ,ε we have
that Pr(eee /∈ ET,γ) < ε/2. The second term in the upper bound (5.59) can be made smaller
than ε/2 for sufficiently large T if

R < log det(MMMTMMM)1/2T = log(ρ(HHHc)HHHHc). (2.15)

For such a channel, the lattice decoder that is given in (2.8) is usually referred to in
literature as naive lattice decoding. The loss in the identity matrix IIIM in the rate formula
results in significant degradation in performance not just at low SNR, but at high SNR as
well, due to the channel being in deep fading or near outage (more about this topic will be
discussed in the subsequent chapters). It has been shown in [23] that such decoder cannot
achieve the optimal diversity-multiplexing tradeoff2 of the MIMO channel for any values
of M , N , and T ≥ N +M − 1.

It has been shown in [23] that a minimum-mean square error (MMSE) preprocessing can
dramatically improve the performance of the lattice decoding in MIMO systems. The use
of the so called MMSE decision feedback equalization (MMSE-DFE) prior lattice decoding
led to achieving the optimal diversity-multiplexing tradeoff of the MIMO channel. The
operation of the MMSE-DFE at the receiver followed by lattice decoding is summarized in
the following (see Appendix I in [23] for more details).

MMSE-DFE Pre-Processing

First, we perform the QR-decomposition on the augmented channel matrix

H̃HH =

(
HHH
III

)
= Q̃QQRRR,

2The naive lattice decoder achieves the optimal tradeoff d∗(r) = (M−r)(N−r) and r ∈ [0,min{M,N}),
only for the special case of T = 1 and squared channel matrix N = M , or for any N ≥M , T ≥ N −M +1,
in the high rate segment r ∈ [M − 1,M)
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where HHH is given in (2.14), Q̃QQ ∈ R(n+m)×m has orthonormal columns, and RRR ∈ Rm×m is an
upper triangular with positive diagonal elements. If we let QQQ = HHHRRR−1 the upper n ×m
part of QQQ, then the matrices FFF = QQQT and BBB = RRR are called the MMSE-DFE forward and
backward filters, respectively.

At the receiver, the received signal, yyy, is multiplied by the forward filter matrix FFF of the
MMSE-DFE. Moreover, we add the dither signal filtered by the upper triangular feedback
filter matrix BBB of the MMSE-DFE. This is a nontrivial generalization of the Erez-Zamir
lattice coding scheme for the AWGN channel, i.e., a generalization of the MLAN-channel,
which is introduced next.

2.4 The mode-Λ Scheme

We define nested lattice codes for the quasi-static MIMO channel. We say that a LAST
code is nested if the underlying lattice code is nested. Here, the information message is
effectively encoded into the cosets Λs in Λc. As defined in [23], we shall call such codes the
mod-Λ scheme. The proposed mod-Λ scheme works as follows:

Consider the nested LAST code C defined by Λc (the coding lattice) and by its sublattice
Λs (the shaping lattice) in Rm. Assume that Λs has a second-order moment σ2(Λs) = 1/2
(so that uuu uniformly distributed over Vs satisfies E{|uuu|2} = MT ). The transmitter selects
a codeword ccc ∈ C, generates a dither signal uuu with uniform distribution over Vs, and
computes xxx = [ccc− uuu] mod Λs. The signal xxx is then transmitted on the MIMO channel.

At the receiver, the received signal, yyy, is multiplied by the forward filter matrix FFF of the
MMSE-DFE. Moreover, we add the dither signal filtered by the upper triangular feedback
filter matrix BBB of the MMSE-DFE.

By construction, we have xxx = c− u+ λc− u+ λc− u+ λ with λ = −QΛs(c− uc− uc− u). Then, we can write

yyy′ = FFFyyy +BBBuuu = BBBccc′ + eee′, (2.16)

where ccc′ = (ccc+λλλ) and eee′ = −[B − FHB − FHB − FH]xxx+FeFeFe. Since xxx is uniformly distributed over Vs and
is independent of ccc, it can be shown [23] that E{eee′eee′T} = 1/2IIIm and if the shaping lattice
Λs is good for MSE quantization, then eee′ → N (0, 1/2IIIm) as T →∞. The desired signal ccc
is now translated by an unknown lattice point λ ∈ Λs. However, since ccc and ccc+ λλλ belong
to the same coset of Λs in Λc, this translation does not involve any loss of information.
It follows that in order to recover the information message, the decoder must identify the
coset Λs + ccc that contains ccc+ λλλ. The decoder first finds

ẑzz = arg min
zzz∈Z2MT

‖yyy′ −BGzBGzBGz‖2, (2.17)
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then the decoded codeword is given by ĉcc = [GGGẑzz] mod Λs.

The optimality of LAST codes with the mod-Λ scheme is given by the following results
(see [23] for more details):

• For a fixed, nonrandom channel matrix HHHc, the rate

Rmod(HHHc, ρ) = log det
(
IIIM + ρ(HHHc)HHHHc

)
, (2.18)

is achievable by LAST codes with lattice coding and MMSE-DFE lattice decoding
(i.e., the mod-Λ scheme).

• There exists a sequence of nested LAST codes with block length T ≥ N + M −
1 that achieves the optimal diversity-multiplexing tradeoff curve d∗(r) for all r ∈
[0,min{M,N}) under the mod-Λ scheme.

It is well-known that lattice decoding can be realized efficiently by sphere decoding,
whose average complexity grows exponentially with m for any fixed SNR. This limits sphere
decoding to low signal dimensions. For instance, to decode a 3×3 LAST code that achieves
the optimal tradeoff, one has to search in a 30-dimensional lattice. The sphere decoding is
slow for this dimension. Thus, we often have to resort to an approximate solution. In this
work, the approximation is performed through the use of sequential decoding algorithms
to search for the closest lattice point. These type of decoders can achieve near-optimal
performance in many communication channels with lower (average) decoding complexity.
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Chapter 3

Asymptotic Sphere Decoding
Complexity Analysis for the LAST
Coded MIMO Channel

SINCE its introduction to MIMO wireless communication systems, the sphere decoder
has become an attractive efficient implementation of the ML decoder, especially for

small signal dimensions and/or moderate to large SNRs. Such a decoder allows for signif-
icant reduction in decoding complexity as opposed to the ML decoder without sacrificing
performance. In general, the sphere decoder is commonly used in communication sys-
tems that can be well-described by the linear Gaussian vector channel model that was
introduced in Chapter 1.

It is well-known that sphere decoding based on Fincke-Pohst and Schnorr-Euchner
enumerations are efficient strategies to perform lattice decoding and have been widely con-
sidered for signal detection in MIMO systems of small dimensions. The outage performance
analysis of the lattice decoder, implemented via sphere decoding algorithms, was consid-
ered in the work by El-Gamal, Caire, and Damen in [23]. In their analysis, it has been
shown that the optimal diversity-multiplexing tradeoff of the quasi-static MIMO channel
can be achieved using LAST coding and lattice or sphere decoding. However, the compu-
tational complexity of the sphere decoder was not considered. In fact, the exact complexity
analysis of the basic sphere decoder for general space-time codes applied to multiple-input
multiple-output (MIMO) wireless channel is known to be difficult.

Previous work on the complexity of sphere decoding focused on characterizing the mean
and the variance of the decoder’s complexity, particularly for the uncoded MIMO chan-
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nel (e.g., V-BLAST) [52]–[54]. Seethaler et. al. [55] considered the derivation of the
computational distribution of the sphere decoder for the M × N uncoded MIMO chan-
nel. Characterizing and understanding the complexity distribution is important, especially
when the sphere decoder is used under practically relevant runtime constraints. It has
been shown in [55] that the computational tail distribution follows a Pareto-type with tail
exponent given by N −M + 1. However, the main drawback of their work is that they
consider the decoder’s complexity analysis when the number of computations performed
by the decoder increases without bound. In other words, although the behavior of the tail
distribution is characterized, when the search becomes excessive they do not specify at
when the decoder must terminate the search and declare an error. As a result, the exact
average complexity of the sphere decoder when applied to the uncoded MIMO channel was
not studied.

Achieving higher diversity and multiplexing gains require incorporating error control
coding (across antenna and time) at the transmitter. Several works have considered the
computational complexity analysis of optimal and sub-optimal decoders for the LAST
coded MIMO channel [32], [39], [57]. A first step toward specifying the exact complexity
required by the decoder to achieve the optimal diversity-multiplexing tradeoff (DMT) of
the quasi-static LAST coded MIMO channel was considered in [57]. It was shown that the
optimal tradeoff can be achieved using lattice reduction aided linear decoders at a worst-
case complexity O(log ρ), where ρ is the average SNR. This corresponds to a linear increase
in complexity as a function of the code rate at high SNR. However, this very low decoding
complexity comes at the expense of a large performance gap from the sphere decoder’s er-
ror performance. In order to close the gap between the sphere decoder and linear decoders,
lattice sequential decoding algorithms [39] are considered efficient decoders that achieve
near-optimal performance with much lower decoding complexity compared to sphere de-
coders. In [?], we have analyzed in details the decoder’s computational tail distribution
and the average decoding complexity. Specifically, we have shown that when the computa-
tional complexity exceeds a certain limit, the tail distribution becomes upper bounded by
the outage probability achieved by LAST coding and sequential decoding schemes. As a
result, one may save on decoding complexity while still achieving near-optimal performance
by setting a time-out limit at the decoder so that when the computational complexity ex-
ceeds this limit the decoder terminates the search. Moreover, we have shown analytically
how the minimum-mean square-error decision feed-back equalization (MMSE-DFE) can
significantly improve the tail exponent and as a consequence reduces (average) computa-
tional complexity. However, it would be interesting to study the complexity behavior of
the optimal sphere decoder in the quasi-static MIMO channel. This would allow us to
compare the complexity of the sphere decoder with other low complexity decoders and see
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whether it is worth sacrificing performance for complexity when using such decoders (e.g.,
lattice sequential decoders [?]).

In this work, we shed the light on the computational complexity of sphere decoding
for the quasi-static, LAttice Space-Time (LAST) coded MIMO channel. We extend the
results in [23] to show that a tradeoff exists between the computational complexity of lattice
decoding (implemented via sphere decoding) and the multiplexing gain. Specifically, we
drive an upper bound of the tail distribution of the decoder’s computational complexity. We
show that, when the computational complexity exceeds a certain limit, this upper bound
becomes dominated by the outage probability achieved by LAST coding and lattice (sphere)
decoding schemes. We show analytically how minimum-mean square-error decision feed-
back equalization can significantly improve the tail exponent and as a consequence reduces
computational complexity. In particular, we show that there exists a cut-off multiplexing
gain for which the average computational complexity of the decoder remains bounded.

3.1 LAST Coding and Lattice Decoding

We consider a quasi-static, Rayleigh fading MIMO channel with M -transmit, N -receive
antennas, and no channel state information (CSI) at the transmitter and perfect CSI at
the receiver. The complex base-band model of the received signal can be mathematically
described by (for T channel usages)

YYY c =
√
ρHHHcXXXc +WWW c, (3.1)

where XXXc ∈ CM×T is the transmitted space-time code matrix, YYY c ∈ CN×T is the received
signal matrix, WWW c ∈ CN×T is the noise matrix, HHHc ∈ CN×M is the channel matrix, and
ρ = SNR/M is the normalized SNR at each receive antenna with respect to M . The
elements of both the noise matrix and the channel fading gain matrix are assumed to be
i.i.d. zero mean circularly symmetric complex Gaussian random variables with variance
σ2 = 1.

An M ×T space-time coding scheme is a full-dimensional LAttice Space-Time (LAST)
code if its vectorized (real) codebook (corresponding to the channel model (2.5)) is a
lattice code with dimension m = 2MT . As discussed in Chapter 2, Section 2.2, the design
of space-time signals reduces to the construction of a codebook C ⊆ R2MT with code rate
R = 1

T
log |C|, satisfying the input averaging power constraint

1

|C|
∑
xxx∈C
‖xxx‖2 ≤MT.
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Depending whether lattice decoding is pre-processed by MMSE-DFE filtering or not,
the equivalent real model of the above channel can be easily shown to be given by (2.5)
with MMM that satisfies

det(MMMTMMM) =
[
det
(
ρ(HHHc)HHHHc

)]2T
, (3.2)

for the case of naive lattice decoding, and

det(MMMTMMM) =
[
det
(
IIIM + ρ(HHHc)HHHHc

)]2T
, (3.3)

for MMSE-DFE lattice decoding (see [23] for more details).

It has been shown in [23] that LAST coding and lattice decoding (for both naive and
MMSE-DFE decoding) can achieve rates up to

RLAST(ρ,HHHc) = det(MMMTMMM)1/2T . (3.4)

As has been discussed in Chapter 1, the asymptotic error performance of any coding
and decoding schemes in the outage-limited MIMO channel is dominated by the outage
probability, Pout(ρ,R), i.e., Pe(ρ) =̇ Pout(ρ,R). For LAST coding and lattice decoding
schemes, the outage probability is defined by

Pout(ρ,R) = Pr(R ≥ RLAST(ρ,HHHc)) =̇ ρ−dout(r), (3.5)

where dout(r) ≤ (M − r)(N − r) ∆
= d∗(r), ∀ r ∈ [0,min{M,N}), is defined as the diversity-

multiplexing tradeoff achieved by such coding and decoding schemes [22], and d∗(r) is the
optimal diversity-multiplexing tradeoff of the channel.

Define the outage event O(ρ) as

O(ρ) = {HHHc : R(ρ) ≥ RLAST(ρ,HHHc)},

and denote the transmission rate R(ρ) = r log ρ. Let 0 ≤ λ1 ≤ · · · ≤ λM be the ordered
eigenvalues of (HHHc)HHHHc, and define ααα = (α1, · · · , αM), αi , − log λi/ log ρ. As discussed
in [22], at high SNR, the non-negative values of ααα only contributes to the outage event.
Therefore, the outage event can be expressed as

O =̇

{
ααα ∈ RM

+ :
M∑
i=1

αi > M − r
}
, (3.6)

for naive lattice decoding. For MMSE-DFE lattice decoding,

O =̇

{
ααα ∈ RM

+ :
M∑
i=1

(1− αi)+ < r

}
. (3.7)
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In what follows, we summarize the results derived in [23]. For the lattice decoding,
there exists a sequence of full-dimensional LAST codes that achieves diversity-multiplexing
tradeoff (assuming N ≥M)

d(r) = min{T,N −M + 1}(M − r), ∀r ∈ [0,M ], (3.8)

for any block length T ≥ 1. If the decoder is pre-processed by MMSE-DFE filtering, then
lattice decoding achieves the optimal diversity-multiplexing tradeoff of the channel:

d∗(r) = (M − r)(N − r), for all r ∈ [0,min{M,N}], (3.9)

under the constraint T ≥M +N − 1 (see [23] for more details).

Next, we show that the diversity-multiplexing tradeoff can be naturally extended to
include the decoding complexity. In other words, we derive the diversity-multiplexing-
complexity tradeoff of the MIMO channel under sphere decoding.

3.2 Lattice Decoding via Sphere Decoding

While ML decoding performs exhaustive search over all codewords ccc ∈ C(Λc,R), sphere
decoding algorithms find the closest lattice point xxx ∈ Λc to the received signal yyy within a
sphere radius Rs centered at the received signal (see Figure 3.1).

It is well-known that the sphere decoder allows for significant reduction in decoding
complexity for small dimensions and average to large values of SNR. Depending whether
the sphere decoding incorporate the boundaries of the lattice code (i.e., R) into the search
algorithm or not, one can achieve ML or near -ML performance. Here, we consider sphere
decoding algorithms that describe lattice decoding, i.e., the class of decoding algorithms
that do not take into account the shaping region R.

In general, the sphere decoder, after QR decomposition of the channel-code matrix
MGMGMG, finds all integer lattice points zzz ∈ Zm that satisfy the sphere constraint

‖yyy′ −RzRzRz‖2 ≤ R2
s, (3.10)

where yyy′ = QQQTyyy, QQQ is an orthogonal matrix that corresponds to the QR decomposition of
the channel-code matrix MMMGGG = QQQRRR, and RRR is an m × m upper triangular matrix with
positive diagonal elements that is given by

RRR =


Rm,m Rm,m−1 · · · Rm,m

0 Rm−1,m−1 · · · Rm−1,m

0 0
. . .

...
0 0 · · · R1,1

 . (3.11)

41



CHAPTER 3. ASYMPTOTIC SPHERE DECODING COMPLEXITY ANALYSIS
FOR THE LAST CODED MIMO CHANNEL

∗ yyy
Rs

Figure 3.1: The operation of the sphere decoder. The sphere decoder searches for the
closest lattice point to yyy among the points that are only inside the sphere (3 points).
However, the ML decoder has to search over the 16 points inside the shaping region.

It is more convenient to look at the sphere decoder as a search in a tree with m layers.
The k-th layer, where 1 ≤ k ≤ m, contains nodes that correspond to the partial integer
lattice points zzzk1 ∈ Zk (the last k components of the integer vector zzz). In this case, nodes
(zzzk1) that satisfy the following constraint

‖yyy′k1 −RRRkkzzz
k
1‖2 ≤ R2

s,

are allowed to be visited by the decoder, where RRRkk is the lower k × k part of the matrix
RRR, yyy′k1 is the last k components of the vector yyy′. The structure of RRR allows one to perform
a backward sequential search from layer (dimension) 1 (corresponds to the last vector
coordinate) to layer m (corresponds to the first vector coordinate). Several algorithms
were developed to efficiently perform the search (cf. [32]). Once all points are listed, one
can find the point that is closest in distance to yyy.

In this case, one may define the computational complexity of the sphere decoder as
the total number of nodes that have been visited (or extended) by the decoder during the
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search. Define the indicator function φ(zzzk1) by

φ(zzzk1) =

{
1, if zzzk1 is extended;

0, otherwise.
(3.12)

Then, the total number of partial integer lattice points zzzk1 ∈ Zk found by the decoder at
layer k can be expressed as

Ck =
∑
zzzk1∈Zk

φ(zzzk1). (3.13)

In this case, the total computational complexity of the sphere decoder C that is required
to find the closest lattice point to the received signal is given by C =

∑m
k=1Ck.

3.2.1 Sphere Radius Selection

The selection of the initial radius Rs at the beginning of the search is of crucial importance
in the computational complexity analysis. Choosing a very small value Rs may result in
finding no lattice points inside the sphere (i.e., Ck = 0 for some 1 ≤ k ≤ m). On the other
hand, choosing a very large value of Rs results in finding too many lattice points inside the
sphere that leads to very large computational complexity. As such, the sphere radius Rs

must be chosen sufficiently large for the search sphere to contain at least one lattice point.

Selecting Rs = rcov(MGMGMG), i.e., the covering radius1 of the lattice generated by MGMGMG,
guarantees the existing of at least one lattice point inside the sphere. Unfortunately, the
computation of rcov for a general lattice is very difficult. Although, an upper bound of rcov

can be obtained, rcov ≤ 1
2

∑m
i=1[RRR]ii, it is random. This requires finding its distribution

(which is difficult in general) and may not lead to finding the complexity distribution of
the decoder. Another choice of Rs is the distance between the Babai estimate and the
vector yyy. As mentioned in [52], although this choice guarantees the existence of at least
one lattice point (the Babai estimate) inside the sphere, it not clear in general whether it
leads to too many lattice points inside the sphere.

In this work, we follow a different approach to find a fixed sphere radius that guarantees
the existing of at least one lattice point inside the sphere (making the selection totally
independent of the lattice and channel statistics). This particular choice of sphere radius is
shown to simplify the analysis of deriving an upper bound on the decoder’s computational

1The covering radius rcov(GGG) of a lattice Λ(GGG) is the radius of the smallest sphere centered at the origin
that contains V000(GGG).
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complexity. The basic idea of this approach (as will be shown next) is to separate the
typical noise events from the non-typical ones. This allows the separation of the “typical”
lattice points (lattice points that are highly likely to be generated by the sphere decoder)
from the atypical ones.

3.2.2 The k-th Layer Complexity

In this section, we would like to provide some insight about the computational complexity
of the sphere decoder at the k-th layer. This may assist us in the derivation of an upper
bound on the computational complexity distribution as will be shown in the sequel.

As mentioned previously, the computational complexity of the sphere decoder at the
k-th layer is determined by the total number of partial lattice points zzzk1 ∈ Zk that satisfy
the k-th layer sphere constraint

‖yyy′k1 −RRRkkzzz
k
1‖ ≤ Rs.

We assume that Rs is chosen sufficiently large enough so that at least one lattice point is
found inside the sphere (details on how Rs is selected will be introduced next). It is clear
that the computational complexity of the decoder depends on the distributions of yyyk1 and
RRRkk. Since those two quantities are random, the computational complexity analysis of the
sphere decoder is considered difficult.

A first step toward establishing the upper bound for the total computational complexity,
i.e., C =

∑m
k=1 Ck, is using a well-known bound on Ck (see [22]) which is given by

Ck ≤
V (Sk(Rs + rcov(RRRkk)))

det(RRRT
kkRRRkk)1/2

. (3.14)

where rcov(RRRkk) is the covering radius of the lattice generated by the partial matrix RRRkk.
However, as mentioned previously, finding the exact value of rcov is very difficult in general.
Therefore, most of the work on sphere decoding complexity (see [44], [55], and [56]), rely
on approximating Ck by

Ck ≈
V (Sk(Rs))

det(RRRT
kkRRRkk)1/2

, (3.15)

If yyyk1 is assumed to be uniformly distributed over V000(RRRkk) (which is not the case here) the
above approximation becomes exact if averaging Ck is performed over yyyk1. However, it is
not yet clear how close this approximation is to the exact value for any yyyk1. To overcome
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these problems, by bounding the noise from above, we establish an upper bound on Ck
that is independent of rcov(RRRkk) and yyyk1, as shown in the following lemma:

Lemma 3. The k-th layer complexity Ck of the sphere decoder with radius Rs, when
the magnitude of the noise |eee| ≤ Rs, can be upper bounded by

Ck ≤
V (Sk(

√
7Rs))

det(RRRT
kkRRRkk)1/2

= C ′k. (3.16)

Proof. See Appendix A.

It should not be so surprising that the k-th layer complexity of the sphere decoder
is inversely proportional to the volume of the Voronoi region of the lattice generated by
the partial upper triangular matrix RRRkk. Since RRRkk is related to the channel matrix HHHc,
it is to be expected that the computational complexity depends critically on the channel
conditions, i.e., depends on whether the channel is ill or well conditioned. We are now
ready to establish our upper bound on the decoder’s complexity.

3.3 Computational Complexity: Tail Distribution in

the High SNR Regime

In this section, we consider a fixed sphere radius R2
s = MT (1 + ζ log ρ), where ζ > 0.

The reason for that choice will become evident as we further analyze the complexity of
the decoder. We are interested in finding an upper bound to the tail distribution of the
decoder’s computational complexity at high SNR. The main result is summarized in the
following theorem:
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Theorem 2. The asymptotic computational complexity distribution of the sphere
decoder in an M ×N LAST coded MIMO channel with codeword length T , is upper
bounded by

Pr(C ≥ L) ≤̇ ρ−η(r), (3.17)

under the condition that

L ≥ m+ V (Sm(2Rs))
m∑
k=1

V (Sk(
√

7Rs))

det(RRRT
kkRRRkk)1/2

, (3.18)

where the SNR exponent η(r) = min{T,N −M + 1}(M − r) for naive decoding and
T ≥ 1, and η(r) = (M − r)(N − r) for MMSE-DFE decoding and T ≥ N +M − 1.
The matrix RRRkk is the lower k × k part of RRR = QQQTMGMGMG.

Proof. We follow the approach that is commonly used to derive an upper bound for the
decoding error probability in quasi-static MIMO channel (see (1.11)). By separating the
outage event from the non-outage event, we obtain:

Pr(C ≥ L) ≤ Pr(ααα ∈ O) + Pr(C ≥ L,ααα ∈ O). (3.19)

Let us concentrate on bounding the second term in the RHS of (3.19). As mentioned
in section 3.1.2, bounding this term is considered difficult in general. However, as will be
shown in the sequel, the analysis can be simplified by bounding the noise vector eee. In this
case, one can upper bound the second term in the RHS of (3.19) as follows:

Pr(C ≥ L|O) ≤ Pr(C ≥ L, ‖eee‖2 ≤ R2
s|O) + Pr(‖eee‖2 ≥ R2

s). (3.20)

The problem now is to find Rs such that the above upper bound is tight. In order to do
so, we consider the behavior of some of the parameters that corresponds to the channel-
code lattice Λ(MGMGMG) when the channel is not in outage, which may lead to finding the
appropriate Rs.

First, there exists a shifted lattice code Λc + uuu∗0 with (see Chapter 2, Lemma 1)

|C(Λc,uuu
∗
0,R)| = 2RT = ρrT ≥ V (R)

Vc
.

When the channel is not in outage, one can verify that the asymptotic effective radius of
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the channel-code matrix, reff(MGMGMG), can be lower bounded by

reff(MGMGMG) =

[
Vc det(MMMTMMM)1/2

V (Sm000 (1))

]1/m

≥̇MT
[
ρ−rT det(MMMTMMM)1/2

]1/m
=̇ MTργ,

(3.21)

where γ = [ν(ααα)−r]/2M > 0, when the channel is not in outage, and ν(ααα) = M−∑M
j=1 αj

or ν(ααα) =
∑M

j=1(1− αj)+ for the naive or the MMSE-DFE lattice decoding, respectively.

It is clear from (3.21) that, when the channel is not in outage, as ρ→∞, the volume of
the Voronoi region V000(MGMGMG) (corresponds to the channel-code matrix) as well as reff(MGMGMG)
grow quickly with SNR as ρκ, where κ > 0. According to this, the decoder’s sphere radius
is required to increase with SNR as well in order to ensure the existing of at least one
lattice point inside the decoder’s search sphere.

However, choosing Rs = reff(MGMGMG) =̇ ργ results into too many points inside the sphere
and may not lead to a tight upper bound. Therefore, Rs is required to grow with SNR at
slower rate than ρκ. For that reason, we chose the search radius to be R2

s = MT (1+ζ log ρ),
where ζ > 0 (asymptotically less than ρκ, for all ζ > 0) and show that for sufficiently large
ζ, such fixed radius sphere decoder guarantees (with high probability) the existing of at
least one lattice point inside the sphere. Interestingly, such choice of Rs makes it totally
independent of the lattice and the channel statistics.

Now, suppose that spheres of squared radius R2
s = MT (1 + ζ log ρ), Sm(Rs), are placed

around each lattice point xxx that belongs to the (infinite) channel-code lattice (see Fig-
ure 3.2). There is still a non-zero probability that no lattice point will be found inside the
decoder’s sphere as depicted in Figure 3.2.

This may happen when eee ∈ V000(MGMGMG)\Sm(Rs). This event occurs with probability

Pr(no lattice point) ≤ Pr(eee /∈ Sm(Rs))

= Pr(‖eee‖2 > MT (1 + ζ log ρ))

≤ ρ−MTζ ,

(3.22)

where the last inequality follows from applying Chernoff bound. For sufficiently large ζ,
the above probability becomes negligible. In other words, asymptotically, one can expect
that the received signal is highly likely to be located inside a sphere of square radius
R2
s = MT (1 + ζ log ρ). Therefore, we may neglect the output of the search (or declare an
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?yyy

reff(MMMGGG)

R

1

Figure 3.2: A geometrical approach for upper bounding the complexity distribution.
Spheres of radius Rs centered at the lattice points xxx ∈ Λ(MGMGMG) are presented in dashed
lines. The doted line represents the decoder’s search sphere centered at the received signal
yyy of radius Rs.

error) if the received signal is located outside Sm(Rs). It turns out that this modification
on sphere decoding does not affect the asymptotic performance achieved by such decoding
scheme.

Next, consider bounding the first term in the RHS of (3.20) from above. By viewing
the decoder as a search on the tree one can interpret C as the total number of nodes in
the tree visited by the decoder. Therefore, assuming the received vector yyy ∈ Sm(Rs), one
can rewrite C as C = m+ C̃, where

C̃ =
m∑
k=1

∑
zzzk1∈Zk\{000}

φ(zzzk1).

48



CHAPTER 3. ASYMPTOTIC SPHERE DECODING COMPLEXITY ANALYSIS
FOR THE LAST CODED MIMO CHANNEL

Now, let φ̃k(zzz) be the indicator function defined by

φ̃k(xxx) =

{
C ′k, if ‖eee−MMMxxx‖2 ≤ R2

s;

0, otherwise,

where C ′k is as defined in Lemma 3. Then, one can easily verify that

C̃ ≤
m∑
k=1

C ′k
∑
xxx∈Λ∗c

φk(xxx),

where Λ∗c = Λc\{000}. For a given lattice Λc, using Markov inequality, we have

Pr(C ≥ L|Λc) = Pr(C̃ ≥ L−m|Λc) ≤
Eeee′{C̃|Λc}
L−m , (3.23)

for L > m. Taking the expectation of C̃ with respect to the noise, one can easily show
that2

Pr(C ≥ L, ‖eee‖2 ≤ R2
s|Λc,O)

≤
∑m

k=1C
′
k

L−m
∑
xxx∈Λ∗c

Pr(‖eee−MMMxxx‖2 ≤ R2
s, ‖eee‖2 ≤ R2

s|O)

(a)

≤
∑m

k=1C
′
k

L−m
∑
xxx∈Λ∗c

Pr(‖MMMxxx‖2 ≤ 4R2
s|O)

=

∑m
k=1C

′
k

L−m EMMM

∑
xxx∈Λ∗c

1{‖MMMxxx‖2 ≤ 4R2
s}
∣∣∣∣O
 .

(3.24)

where (a) follows from the fact that in general one can show that for any random vectors
uuu and vvv, and Rs > 0, it holds {‖uuu − vvv‖2 ≤ R2

s, ‖vvv‖2 ≤ R2
s} ⊆ {‖vvv‖2 ≤ 4R2

s}, and 1{A}
denotes the indicator function of the event A. By taking the expectation of (3.24) over the
ensemble of random lattices (see [8], Theorem 4)

Pr(C ≥ L,‖eee‖2 ≤ R2
s|O)

≤
∑m

k=1C
′
k

L−m EMMM

{
V (Sm(2Rs))

Vc det(MMMTMMM)1/2

∣∣∣∣O}
= EMMM

{
ρ−T [ν(ααα)−r]|O

} (3.25)

2At this point, we would like to remind the reader that for the case of MMSE-DFE lattice decoding,
the additive noise vector is non-Gaussian for finite T . However, one can show (see Chapter 2, Section 2.1)
that for a well-constructed lattice the probability density function of the noise vector eee, feee(ννν) ≤ βmfẽee(ννν),
where ẽee ∼ N (000, 0.5III), and βm is a constant (has no effect at high SNR).
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for L ≥ m + V (Sm(2Rs))
∑m

k=1 C
′
k, where ν(ααα) = M −∑M

j=1 αj for naive decoding and

ν(ααα) =
∑M

j=1(1− αj)+ for MMSE-DFE decoding. It is interesting to note that the above
upper bound is equivalent to the upper bound derived for the error performance of lattice
decoding [23].

Averaging (3.25) over the channels in O set,

Pr(C ≥ L, ‖eee‖2 ≤ R2
s)

≤̇
∫
O
fααα(ααα) Pr(C ≥ L, ‖eee‖2 ≤ R2

s|ααα) dααα

≤̇ ρ−dout(r),

(3.26)

where fααα(ααα) is the joint probability density function of ααα which, for all ααα ∈ O, is asymp-
totically given by [23]

fααα(ααα) =̇ exp(− log(ρ)
M∑
i=1

(2i− 1 + |N −M |)αi).

and dout(r) is the outage SNR exponent that is given in (3.8) or (3.9) depending on the
coding and decoding schemes used in the system.

The behavior of the first term in the RHS of (3.19) at high SNR is also ρ−dout(r).
Therefore, we finally have

Pr(C ≥ L) ≤̇ ρ−dout(r). (3.27)

under the condition that

L ≥ m+ V (Sm(2Rs))
m∑
k=1

V (Sk(
√

7Rs))

det(RRRT
kkRRRkk)1/2

.

The above results reveal that if the number of computations performed by the decoder
exceeds

L0 = m+ V (Sm(2Rs))
m∑
k=1

V (Sk(
√

7Rs))

det(RRRT
kkRRRkk)1/2

, (3.28)

the complexity distribution of the sphere decoder at any SNR is upper bounded by the lat-
tice decoding error probability (at high SNR the bound becomes equivalent to the asymp-
totic outage probability). As a result, one may save on decoding complexity while still
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achieving near-ML performance by setting a time-out limit at the decoder so that when
the computational complexity exceeds L0 the decoder terminates the search. It is clear that
this time-out limit does not affect the optimal tradeoff achieved by the modified decoding
scheme. To see this, suppose that the sphere decoder imposes a time-out limit so that the
search is terminated once the number of computations reaches L0, and hence the decoder
declares an error. Let Es be the event that the decoder makes an erroneous detection
when L ≤ L0 (this event occurs when the received signal yyy ∈ Vxxx(MGMGMG), assuming xxx was
transmitted). In this case, the average error probability is given by

Pe(ρ) = Pr(Es ∪ {C ≥ L0}) ≤ Pr(Es) + Pr(C ≥ L0) ≤̇ ρ−dout(r). (3.29)

However, since L0 is random, it would be interesting to calculate the minimum average
number of computations required by the decoder to terminate the search.

3.4 Average Sphere Decoding Complexity

It is to be expected that when the channel is ill-conditioned (i.e., in outage) the compu-
tational complexity becomes extremely large. Moreover, when the channel is in outage it
is highly likely that the decoder performs an erroneous detection. Unfortunately, when
the channel is not in outage, there is still a non-zero probability that the number of com-
putations will become large (see (3.25)). As such, it is sometimes desirable to terminate
the search even when the channel is not in outage, especially when the sphere decoder is
used under practically relevant runtime constraints. Therefore, we would like to determine
the minimum average number of computations that is required in order for the decoder
to decide when to terminate the search without affecting the achievability of the optimal
tradeoff.

This can be expressed as

Lout = E{L0(HHHc ∈ O)}, (3.30)

where L0(HHHc ∈ O) denotes the minimum number of computations performed by the de-
coder to achieve near-ML performance when the channel is not in outage which is given in
(3.28).

Since it is very difficult to evaluate Lout for any SNR, we would like first to consider the
asymptotic (at high SNR) behavior of L0. As mentioned in Chapter 2, we focus our analysis
on nested LAST codes, specifically LAST codes that are generated using construction A.
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We consider the Loeliger ensemble of mod-p lattices, where p is a prime. First, we
generate the set of all lattices given by

Λp = κ(C + pZ2MT )

where p → ∞, κ → 0 is a scaling coefficient chosen such that the fundamental volume
Vf = κ2MTp2MT−1 = 1, Zp denotes the field of mod-p integers, and C ⊂ Z2MT

p is a linear
code over Zp with generator matrix in systematic form [III PPPT]T. We use a pair of self-
similar lattices for nesting. We take the shaping lattice to be Λs = φΛp, where φ is chosen
such that the covering radius is 1/2 in order to satisfy the input power constraint. Finally,
the coding lattice is obtained as Λc = ρ−r/2MΛs to satisfy the transmission rate constraint
R(ρ) = r log ρ. Interestingly, one can construct a generator matrix of Λp as (see [6])

GGGp = κ

(
III 000
PPP pIII

)
, (3.31)

which has a lower triangular form. In this case, one can express the generator matrix of
Λc as GGG = ρ−r/2MGGG′, where GGG′ = φGGGp. Thanks to the lower triangular format of GGG. If MMM
is an m×m arbitrary full-rank matrix, and GGG is an m×m lower triangular matrix, then
one can easily show that

det[(MGMGMG)kk] = det(MMMkk) det(GGGkk), (3.32)

where (MGMGMG)kk, MMMkk, and GGGkk, are the lower k × k part of MGMGMG, MMM , and GGG, respectively.

3.4.1 MMSE-DFE Sphere Decoding (MMM = BBB)

Using the above result, for the case of MMSE-DFE sphere decoding, one can express the
determinant that appears in (3.28) as

det(RRRT
kkRRRkk) = det(MMMT

kkMMMkk) det(GGGT
kkGGGkk) = ρ−rk/2M det(BBBT

kkBBBkk) det(GGG′
T
kkGGG

′
kk). (3.33)

Let µ1 ≤ µ2 ≤ · · · ≤ µk be the ordered nonzero eigenvalues of BBBT
kkBBBkk, for k = 1, · · · ,m.

Then,

det(BBBT
kkBBBkk) =

k∏
j=1

µj.

Note that for the special case when k = m we have µ2(j−1)T+1 = · · · = µ2jT = 1 +
ρλj((HHH

c)HHHHc), for all j = 1, · · · ,M .
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Denote α′i = − log µi/ log ρ. Using (3.33), one can asymptotically express L0 as

L0 = m+ (log ρ)m/2
m∑
k=1

(log ρ)k/2ρck , (3.34)

where

ck =
1

2

k∑
j=1

( r
M
− α′j

)+

. (3.35)

Now, since ck is non-decreasing in k, we have at high SNR

L0 = m+ (log ρ)mρcm , (3.36)

where

cm = T
M∑
i=1

( r
M
− (1− αi)+

)+

.

The average of L0 at high SNR (averaged over the channel statistics) when the channel
is not in outage is given by

E{L0(HHHc ∈ O)} =

∫
ααα∈O

L0fααα(ααα) dααα

= m+ (log ρ)m
∫

ααα∈O

exp

(
log ρ

[
T

M∑
i=1

(
r

M
− (1− αi)+

)+

−

M∑
i=1

(2i− 1 +N −M)αi

])
dααα

= m+ (log ρ)mρlMMSE−DFE(r),

where O =
{
ααα ∈ RM

+ :
∑M

i=1(1− αi)+ ≥ r
}

, and

lMMSE−DFE(r) = max
ααα∈O

[
T

M∑
i=1

( r
M
− (1− αi)+

)+

−
M∑
i=1

(2i− 1 +N −M)αi

]
. (3.37)

It is not so difficult to see that the optimal channel coefficients that maximize (3.37) are

α∗i = 1, for i = 1, · · · ,M − k,
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and
α∗i = 0, for i = M − k + 1, · · · ,M,

i.e., the same ααα∗ that achieves the optimal DMT of the channel. Substituting ααα∗ in (3.37),
we get

lMMSE−DFE(r) =
Tr(M − r)

M
− (M − r)(N − r), (3.38)

for r = 0, 1, · · · ,M . In this case, the asymptotic average computational complexity that
is required by the decoder to achieve near-ML performance, when the channel is not in
outage, can be expressed as

LMMSE−DFE
out = 2MT + (log ρ)2MTρlMMSE−DFE(r). (3.39)

3.4.2 Naive Sphere Decoding (MMM = HHH)

Unfortunately, the equality in (3.32) does not apply for a general M ×N MIMO channel
under naive sphere decoding, and applies only to MMM being a square matrix, i.e., applies
only to the case of MMSE-DFE sphere decoding where MMM = BBB (the MMSE-DFE feedback
matrix). For the case of naive sphere decoding, one may find a lower bound on det(RRRT

kkRRRkk)
which yields to an upper bound on the average computational complexity.

The interlacing theorem for bordered matrices (see [65], Theorem 4.3.8) implies that:

λi(RRRkk
TRRRkk) ≥ λi(RRR

TRRR), for i = 1, · · · , k.

Therefore, for the case of naive sphere decoding where MMM = HHH, we have

det(RRRT
kkRRRkk) =

k∏
j=1

λj(RRR
T
kkRRRkk) ≥

k∏
j=1

λj(HHH
T
kkHHHkk)λj(GGG

T
kkGGGkk)

≥ ρ−rk/2M
k∏
j=1

λj(HHH
THHH)λj(GGG

′T
kkGGG

′
kk).

(3.40)

Let µ1 ≤ µ2 ≤ · · · ≤ µk be the ordered nonzero eigenvalues ofHHHT
kkHHHkk, for k = 1, · · · ,m.

Denote α′i = − log µi/ log ρ. Using (3.40), one can asymptotically upper bound L0 as

L0 ≤ m+ (log ρ)m/2
m∑
k=1

(log ρ)k/2ρck , (3.41)
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where

ck =
1

2

k∑
j=1

( r
M
− α′j

)+

. (3.42)

Now, since ck is non-decreasing in k, we have at high SNR

L0 ≤ m+ (log ρ)mρcm , (3.43)

where

cm = T
M∑
i=1

( r
M
− (1− αi)

)+

.

In this case, the average of L0 (averaged over channel statistics) when the channel is
not in outage, can be upper bounded as

E{L0(HHHc ∈ O)} =

∫
ααα∈O

L0fααα(ααα) dααα

= m+ (log ρ)m
∫

ααα∈O

exp

(
log ρ

[
T

M∑
i=1

(
r

M
− (1− αi)

)+

−

M∑
i=1

(2i− 1 +N −M)αi

])
dααα

= m+ (log ρ)mρlnaive(r),

where O =
{
ααα ∈ RM

+ :
∑M

i=1 αi ≤M − r
}

, and

lnaive(r) = max
ααα∈O

[
T

M∑
i=1

( r
M
− (1− αi)

)+

−
M∑
i=1

(2i− 1 +N −M)αi

]
. (3.44)

Therefore, one can show that when the channel is not in outage we have that the optimal
ααα that maximizes (3.44) is achieved for α1 = M − r, and αi = 0 for all i > 1, yielding

lnaive(r) =
T (M − 1)

M
(M − r)− (N −M + 1)(M − r), (3.45)

for r = 0, 1, · · · ,M . In this case, the asymptotic average computational complexity that
is required by the naive decoder to upper bound the complexity tail distribution by its
outage probability can be expressed as
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Lnaive
out ≤ 2MT + (log ρ)2MTρlnaive(r). (3.46)

To see the advantage of using the MMSE-DFE prior decoding that results in a huge
saving in (average) computational complexity over the naive decoder, consider the case of
a MIMO system with M = N . Assuming the use of an optimal random nested LAST
code of codeword length T and a fixed rate R, i.e., r = 0. In this case, one can see that
lMMSE−DFE(0) < 0 irrespective to the value of T (i.e., the average complexity is bounded
for all T ). It is clear that the term (log ρ)2MTρ−NM decays quickly to 0 as ρ → ∞. The
simulation results (introduced next) agree with the above analysis.

For the case of naive decoding we have lnaive(0) = T (M − 1) −M which results into
unbounded average complexity except for the case when T = 1. However, for the case
that corresponds to T = M = 2, although it becomes unbounded, the average complexity
grows slowly with the SNR as (log ρ)2MT . For T > 2, the average complexity grows quickly
with SNR as (log ρ)2MTρT (M−1)−M resulting in an unbounded complexity. However, the
experimental results (provided in the next section) shows that the average complexity
of such a decoder decays (albeit rather slowly) with SNR, for T ≥ 2. This means that
the theoretical bound derived above fails to predict the average complexity behavior of
the naive sphere decoder for such values of T . In all cases, the simulation results show
that the average complexity becomes extensively high for values of codeword length T ≥
2. In general, at any multiplexing gain r, we have that lMMSE−DFE(r) < lnaive(r). This
again proves that employing MMSE-DFE preprocessing at the decoding stage significantly
improves the average computational complexity of the decoder at all multiplexing gains.

Moreover, for the case of MMSE-DFE sphere decoding, there exists a cut-off multiplex-
ing gain, say r0, such that the average computational complexity of the decoder remains
bounded as long as we operate below such value. This value can be easily found by setting
lMMSE−DFE(r0) = 0. This results in

r0 =

⌊
MN

M + T

⌋
. (3.47)

Interestingly, for the DMT optimal random LAST codes with T = N +M − 1, if we let
the number of receive antennas N →∞, then one can achieve a cut-off multiplexing gain
r0 = M which is the maximum multiplexing gain achieved by the channel. This shows that
one can dramatically improve the computational complexity of the decoder by increasing
the number of antennas at the receiver side.

From the above analysis, one can see that it is impossible for the sphere decoder to
maintain very low decoding complexity while achieving the maximal diversity (or the op-
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timal tradeoff) of the channel, especially for the case of nested LAST codes discussed
previously. For the case of MMSE-DFE sphere decoding, achieving the maximum diver-
sity MN requires the use of LAST codes with codeword lengths T ≥ N+M−1. Increasing
the number of receive antennas N requires increasing T as well, and hence, the second term
in (3.39) does not decay very quickly to zero. It turns out that the sphere decoder may
achieve linear computational complexity m for high SNR for large enough number of an-
tennas N and fixed T , however at the expense of losing the maximum diversity MN (or
losing the optimal tradeoff).

3.5 Simulation Results

We consider a MIMO system with M = N = 2, T = 3 for different rates R = 4, 8 bits
per channel use. The LAST code is selected randomly and is obtained as an (m, p, k)
Loeliger construction (refer to Chapter 2 for a detailed description). The computational
complexity distribution Pr(C > L) is plotted when L increases proportionally with SNR
as L = ρ, for both the naive and the MMSE-DFE sphere decoders at different rates (see
Figure. 3.3 and Figure. 3.4). For comparison, the frame error rate of the corresponding
decoders, and the outage probability at the same coding rates are also plotted. It is clear
from both figures that the curves which correspond to the outage probability, the error
performance, and the computational complexity distribution match in slope, i.e., they all
exhibit the same behavior at high SNR. In other words, all curves have the same SNR
exponent. This basically agrees with the derived theoretical results. Moreover, the average
computational complexity are plotted in Figure. 3.5, and Figure. 3.6 and Figure. 3.7 for
both MMSE-DFE and naive decoding, respectively. Figure. 3.5 shows how the average
number of computations decays very quickly to m at high SNR, even for large values of T .
Figure. 3.6 and Figure. 3.7 show how the average computational complexity is affected by
the codeword length T , at a fixed rate (r = 0), for the case of naive sphere decoding. In a
2×2 quasi-static MIMO channel under naive sphere decoding, the maximum diversity gain
M = 2 is achieved when T ≥ 1. Three random nested LAST codes with codeword lengths
T = 1, 2, and 3 are used to achieve the same diversity gain. However, as discussed in the
previous section, using a codeword length T ≤ 2 would result in a small average decoding
complexity. For T = 3 the average computational complexity becomes extensively large.
This is clearly depicted in Figure. 3.6 and Figure. 3.7 where, even at high SNR, the average
number of computations decays to m at a slower rate compared to the case of MMSE-DFE
sphere decoding.

57



CHAPTER 3. ASYMPTOTIC SPHERE DECODING COMPLEXITY ANALYSIS
FOR THE LAST CODED MIMO CHANNEL

10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

100

Fr
am

e
E

rr
or

R
at

e

10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

100

SNR (dB) SNR (dB)

P
r(

C
≥

L
)

R = 4 bpc

R = 8 bpc

R = 8 bpc

R = 4 bpc

Outage
Probability

Outage
Probability

(a) (b)

Figure 3.3: (a) Performance and (b) complexity distribution (with L = ρ) achieved by the
naive sphere decoder for the case of 2×2 LAST coded MIMO channel.
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Figure 3.4: (a) Performance and (b) complexity distribution (with L = ρ) achieved by the
MMSE-DFE sphere decoder for the case of 2×2 LAST coded MIMO channel.
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Figure 3.5: The reduction in computational complexity achieved by the MMSE-DFE lattice
decoder for all values of T that achieve maximum diversity 4. All curves decays quickly to
m = 2MT = 4T at high SNR.
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Figure 3.6: The computational complexity achieved by the naive lattice decoder for values
of T = 1 and T = 2, that achieve maximum diversity 2.
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Figure 3.7: The computational complexity achieved by the naive lattice decoder for values
of T = 3.
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3.6 Summary

In this chapter, we have provided a complete analysis for the computational complex-
ity of a fixed radius sphere decoder applied to LAST coded MIMO channel, at the high
SNR regime. The sphere radius increases with SNR (as log ρ) but is independent of the
lattice and the channel conditions. An upper bound of the asymptotic complexity distri-
bution has been derive. It has been shown that, for both the naive and the MMSE-DFE
sphere decoders, if the number of computations performed by the decoder exceeds a certain
limit, the complexity’s tail distribution becomes upper bounded by the asymptotic outage
probability achieved by the LAST coding and sphere decoding schemes. As a result, the
tradeoff of the MIMO channel under sphere decoding is naturally extended to include the
decoder’s complexity. When the channel is well-conditioned, this computations limit can
be used as an indication of when the decoder can terminate the search to save on com-
plexity without affecting the achievability of the optimal tradeoff. The average number of
computations that is required to terminate the search when the channel is not in outage
has been calculated in terms of the system parameters. As expected, MMSE-DFE pre-
processing significantly improves the overall computational complexity of the underlying
decoding scheme.

It is clear from the previous analysis that the complexity of the sphere decoder depends
critically on the system parameters M , N , and T . In order to achieve high order diversity,
the number of antennas and the codeword length must be increased simultaneously, causing
the complexity of the decoding to increase. The search for low complexity decoders that can
achieve near-optimal performance is considered a challenging problem. As will be shown
in the next Chapter, we attempt to solve this issue using efficient tree search algorithms to
perform lattice decoding that are capable of providing an excellent performance-complexity
tradeoff in the outage-limited MIMO channel.
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Chapter 4

Lattice Sequential Decoding for The
LAST Coded MIMO Channel

WITH the aid of MMSE-DFE at the decoding stage, lattice coding and sphere de-
coding achieve the optimal tradeoff of the channel. However, as we have seen in

the previous chapter, sphere decoders are only efficient in the high signal-to-noise ratio
(SNR) regime and low signal dimensions, and exhibits exponential (average) complexity
for low-to-moderate SNR and large signal dimensions [52], [54]. On the other extreme,
linear and non-linear receivers such as zero-forcing, MMSE, and MMSE-DFE decoders,
are considered attractive alternatives to lattice decoders in MIMO channels and have been
widely used in many practical communication systems [10]–[35]. Unfortunately, the very
low decoding complexity advantage that these decoders can provide comes at the expense
of poor performance, especially for large signal dimensions. The problem of designing
low complexity receivers for the MIMO channel that achieve near-optimal performance is
considered a challenging problem and has driven much research in the past years. In this
work, we analyze the performance of lattice sequential decoding that is capable of bridging
the gap between sphere decoders and low complexity linear decoders (e.g., MMSE-DFE
decoder).

Applying sequential decoders for the detection of signals transmitted via MIMO com-
munication channels introduced an alternative and interesting approach to solve the CLPS
problem that is related to the optimum decoding rule in such channels [39], [40]. Morgan
et. al. [39] showed that lattice sequential decoders, although sub-optimal, are capable of
achieving good, and for some cases near ML, error performance. The analysis was consid-
ered only for the case of uncoded MIMO channel (i.e., V-BLAST). It was demonstrated
that lattice sequential decoders achieve the maximum receive diversity provided by the
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channel and for low signal dimensions it achieves near-ML performance while significantly
reducing decoding complexity compared to lattice decoder. The performance limits
achieved by lattice sequential decoders for (lattice) space-time coded MIMO
channel [23], [13], [16] has not yet been studied.

Conventional sequential decoders (e.g., Fano and Stack algorithms [36],[38]) were orig-
inally constructed as an alternative to the ML decoder to decode convolutional codes
transmitted via discrete memoryless channel while achieving low (average) decoding com-
plexity. Although sequential decoding algorithms are simple to describe, the analysis of
decoding complexity is considered difficult. This is due to the fact that the amount of com-
putations performed by the decoder attempting to decode a message is random. Therefore,
sequential decoding complexity is usually analyzed through its computational distribution.
For codes transmitted at rate R, the asymptotic computational complexity C of sequential
decoding for the above mentioned channel follows a Pareto distribution [37],

Pr(C > L) ≈ L−e(R), L→∞, (4.1)

where e(R) is the tail distribution exponent that is a function of R. Theoretical analysis
showed that e(R) > 1 as long as R < R0, where R0 is the well-known channel cut-off rate.
In other words, average computational complexity is kept bounded as long as we operate at
rates below R0. For the quasi-static MIMO channel, it is expected that lattice sequential
decoders would behave in a similar fashion.

Similar to the discrete memoryless channel, our analysis reveals that there exists a
cut-off multiplexing gain for which the average computational complexity of the lattice
sequential decoder remains bounded as long as we operate below such value. In this work,
we show that a tradeoff exists between the (average) computational complexity of the
decoder and the multiplexing gain. The tradeoff is characterized by the tail exponent of the
computational distribution, which is shown to be equivalent to the diversity-multiplexing
tradeoff achieved by such decoding scheme.

In this chapter, the asymptotic performance of the lattice sequential decoder for lattice
space-time coded MIMO channel is analyzed. We determine the rates achievable by lattice
coding and sequential decoding applied to such a channel. The diversity-multiplexing
tradeoff under lattice sequential decoding is derived as a function of its parameter—the
bias term, which is critical for controlling the amount of computations required at the
decoding stage. Achieving low decoding complexity requires increasing the value of the
bias term. However, this is done at the expense of losing the optimal tradeoff of the channel.
In this work, we derive the tail distribution of the decoder’s computational complexity in
the high signal-to-noise ratio regime. Our analysis reveals that the tail distribution of
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such low complexity decoder is dominated by the outage probability of the channel for
the underlying coding scheme. Also, the tail exponent of the complexity distribution
is shown to be equivalent to the diversity-multiplexing tradeoff achieved by lattice coding
and lattice sequential decoding schemes. We show analytically how minimum-mean square-
error decision feed-back equalization can significantly improve the tail exponent and as a
consequence reduces computational complexity. In particular, we show that there exists a
cut-off multiplexing gain for which the average computational complexity of the decoder
remains bounded.

4.1 System Model

We consider a quasi-static, Rayleigh fading MIMO channel with M -transmit, N -receive
antennas, and no CSI at the transmitter and perfect CSI at the receiver. The complex
base-band model of the received signal can be mathematically described by

YYY c =
√
ρHHHcXXXc +WWW c, (4.2)

where XXXc ∈ CM×T is the transmitted space-time code matrix, T is the number of channel
usages, YYY c ∈ CN×T is the received signal matrix, WWW c ∈ CN×T is the noise matrix, HHHc ∈
CN×M is the channel matrix, and ρ = SNR/M is the normalized SNR at each receive
antenna with respect to M . The elements of both the noise matrix and the channel fading
gain matrix are assumed to be i. i. d zero mean circularly symmetric complex Gaussian
random variables with variance σ2 = 1.

An M ×T space-time coding scheme is a full-dimensional LAttice Space-Time (LAST)
code if its vectorized (real) codebook (corresponding to the channel model (2.5)) is a
lattice code with dimension m = 2MT . As discussed in [23], the design of space-time
signals reduces to the construction of a codebook C ⊆ R2MT with code rate R = 1

T
log |C|,

satisfying the input averaging power constraint

1

|C|
∑
xxx∈C
‖xxx‖2 ≤MT. (4.3)

The equivalent real model of (4.2) can be easily shown to be given by (2.5) with

MMM =
√
ρ IIIT ⊗

(
<{HHHc} −={HHHc}
={HHHc} <{HHHc}

)
.

where ⊗ denotes the Kronecker product.
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4.2 Lattice Fano/Stack Sequential Decoder

As we have discussed in Chapter 3, the sphere decoder can be considered as a search in
a tree. Generally speaking, a sphere decoding algorithm explores the tree of all possible
lattice points and uses the path metric in order to discard paths corresponding to points
outside the search sphere. As an alternative to sphere decoding algorithms, sequential
decoders comprise a set of efficient and powerful decoding techniques able to perform the
tree search. These decoders can achieve near optimal performance without suffering the
complexity of the ML or sphere decoder for coding rates not too close to the channel
capacity [2], [37].

The sequential search on a tree can be briefly described as follows: the search is at-
tempted one branch at a time. Namely, if the decoder is “located” at a particular node,
it will move forward along the most likely branch stemming from it and thus reach a new
node, provided that the likelihood of the entire past path up to and including the new
node exceeds a certain current threshold. If it does not, then the decoder must return to
the preceding node. From there it will try to move forward along an alternate path. It will
succeed in this attempt if the value of the likelihood of the new path exceeds a threshold
appropriate to it. Thus, the decoder moves forward and backward with the hope that the
likely paths are going to be examined so that the average decoding effort will be kept low.

Fano and Stack sequential decoders [36], [38] are efficient tree search algorithms that
attempt to find a “best fit” with the received noisy signal. As in conventional sequential
decoder, to determine a best fit (path), values are assigned to each node on the tree. This
value is called the metric. For lattice sequential decoders, this metric [corresponds to (2.5)]
is given by (see [39])

µ(zzzk1) = bk − ‖yyy′k1 −RRRkkzzz
k
1‖2, ∀ 1 ≤ k ≤ m, (4.4)

where zzzk1 = [zk, · · · , z2, z1]T denotes the last k components of the integer vector zzz, RRRkk is
the lower k × k part of the matrix RRR that corresponds to the QR decomposition of the
channel-code matrix MMMGGG = QQQRRR, yyy′k1 is the last k components of the vector yyy′ = QQQTyyy, and
b ≥ 0 is the bias term.

In the Stack algorithm, as the decoder searches the different nodes in the tree, an
ordered list of previously examined paths of different lengths is kept in storage. Each stack
entry contains a path along with its metric. Each decoding step consists of extending the
top (best) path in the stack. The decoding algorithm terminates when the top path in the
stack reaches the end of the tree (refer to [38] for more details about the algorithm).

67



CHAPTER 4. LATTICE SEQUENTIAL DECODING FOR THE LAST CODED
MIMO CHANNEL

In the Fano algorithm, as the decoder searches nodes, values of the path metric are
compared to a certain threshold denoted by τ ∈ {· · · ,−2δ,−δ, 0, δ, 2δ, · · · } where δ is
called the step size. The decoder attempts to extend the most probable path by moving
“forward” if the path metric stays above the running threshold. Otherwise, it moves
“backward” searching for another path that may lead to the most probable transmitted
sequence (refer to [36] for more details about the algorithm).

Although the Stack decoder and the Fano algorithm generate essentially the same set
of visited nodes (see [39]), the Fano decoder visits some nodes more than once. However,
the Fano decoder requires essentially no memory, unlike the Stack algorithm. Also, it must
be noted that the way the nodes are generated in both sequential algorithms plays an
important role in reducing the computation complexity and for some cases may improve
the detection performance. For example, the determination of the best and next best nodes
is simplified in the CLPS problem by using the Schnorr-Euchner enumeration [32] which
generates nodes with metrics in ascending order given any node zzzk1.

4.3 Performance Analysis for Fixed Bias Term: Achiev-

ing the Optimal Tradeoff

After the work of [22], the diversity-multiplexing tradeoff — a fundamental tradeoff between
rate via multiplexing and error probability via diversity, has become a standard metric in
the characterization of the quasi-static Rayleigh fading MIMO channel. Our goal in this
section is to analyze the diversity-multiplexing tradeoff achieved by the lattice sequential
decoder when the bias b (defined in (4.4)) is held fixed but not too large. We consider two
scenarios: the naive and MMSE-DFE lattice sequential decoders. The latter corresponds
to the case when the decoder is preprocessed by MMSE-DFE filtering.

For the case of naive lattice sequential decoding we have the following result:

Theorem 3. For N ≥M and any block length T ≥ 1, there exists a sequence of
full-dimensional LAST codes that achieves diversity gain

d(r) = min{T,N −M + 1}(M − r), ∀r ∈ [0,M ], (4.5)

under naive lattice sequential decoding for fixed bias b ≥ 0.

Proof. See Appendix B.
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It is clear from the above theorem that the naive lattice sequential decoder is not
capable of achieving the optimal tradeoff of the channel for any finite b ≥ 0. This result
is expected, since the performance of such a decoder upper bounds the performance of
naive lattice decoder (corresponds to b = 0), where the latter has been shown in [23] to be
sub-optimal, and achieves SNR exponent d(r) as defined in Theorem 1 (Chapter 1).

Similar to the analysis provided in [23], in order to improve the performance of the
lattice sequential decoder one could apply MMSE-DFE prior decoding. It has been shown
in [23] that, for a fixed, non-random channel matrix HHHc, the rate

Rmod(HHHc, ρ) = log det
(
IIIM + ρ(HHHc)HHHHc

)
, (4.6)

is achievable by nested LAST codes (see Chapter 2) and MMSE-DFE lattice decoding. For
such coding and decoding schemes, the real channel model can be shown to be expressed
by (2.5) with MMM = BBB and n = m, where BBB is the feedback matrix of the MMSE-DFE (see
[23] for more details) that satisfies

det(BBBTBBB) =
[
det
(
IIIM + ρ(HHHc)HHHHc

)]2T
. (4.7)

However, in such scheme, the additive noise becomes non-Gaussian, but for a well-constructed
lattice code1 it is asymptotically (as T → ∞) Gaussian [24], [25]. This creates some dif-
ficulty in decoder’s performance and complexity analysis in the outage-limited MIMO
channel (due to T being finite) which can be overcome as discussed in Chapter 2, Section
2.1.

In our analysis, we apply the same mod-Λ scheme that was described in Chapter 2
with some modification in the decoding stage. Here, we replace the lattice decoder by the
lattice sequential decoder. in this case, the decoder first estimates2 the closest lattice point
to yyy′, say ẑzz. Then, the decoded codeword is given by ĉcc = [GGGẑzz] mod Λs. In this case, we
have the following result:

Theorem 4. There exists a sequence of nested LAST codes with block length
T ≥M +N − 1 that achieves the optimal diversity-multiplexing tradeoff curve

d∗(r) = (M − r)(N − r), ∀r ∈ [0,min{M,N}], (4.8)

under the mod-Λ scheme and lattice sequential decoding for fixed bias b ≥ 0.

1Lattices that satisfy Minkowski-Hlawka theorem (see [7], [8] for more details)
2It must be noted that other than the case of b = 0, the output of the decoder may not always be the

closest lattice point to the received signal. Lattice sequential decoding attempts to estimate the decoding
rule that is given in (2.8).
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Proof. See Appendix C.

The above theorem indicates that the use of optimal receivers (e.g., ML and lattice
decoders) is not essential if the main goal is to achieve the optimal tradeoff of the channel.
Sub-optimal receivers may do the job. It should be noted, however, that although the
optimal diversity-multiplexing tradeoff is achieved by such decoders, the performance gap
from ML or lattice decoder increases as b becomes large. To achieve near-ML performance
in this case, one has to resort to low values of b.

At this point, one may ask the following question: how large b can be set in order not
to loose the optimal tradeoff? For fixed (finite) b, one cannot catch the effect of the bias
term on the diversity-multiplexing tradeoff achieved by such decoding scheme. In order to
do that, we allow the bias term to vary with SNR and channel coefficients as will be shown
in the sequel.

4.4 Achievable Rate & Outage Performance Analysis:

Variable Bias Term

In this section, we would like to study the behavior of the outage probability under lattice
sequential decoding when the bias term b is allowed to change with SNR. It has been
shown in Section 4.3 that the naive lattice decoder cannot achieve the optimal tradeoff
of the channel for the any b ≥ 0. Therefore, in this section we exclude such a decoder
from further discussion. In what follows, we consider the use of the MMSE-DFE lattice
sequential decoder. As discussed in the previous section, rate up to Rmod is achievable
by lattice coding and decoding. When the lattice decoder is replaced by the lattice Fano
/Stack3 sequential decoder we get the following result:

Theorem 5. For a fixed non-random channel matrix HHHc, the rate

Rb(HHH
c, ρ) , max

{
Rmod(HHHc, ρ)− 2M log

(
1 +
√

1 + 8α

2

)
, 0

}
, (4.9)

3For the Fano algorithm, we assume throughout the Chapter that only small values of step size δ is
used by the decoder, and hence, its affect on the performance analysis can be neglected (see the proof of
Theorem 5). Otherwise, choosing very large values of δ may result in very poor performance. For the
Stack algorithm, we have δ = 0.
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is achievable by LAST coding and MMSE-DFE lattice Fano/Stack sequential decoding
with bias term b, where α is given by

α =

(
reff(BBBGcGcGc)

2rpack(BBBGcGcGc)

)2

b, (4.10)

and reff(BBBGGGc) and rpack(BBBGGGc) are the effective radius and packing radius of the lattice
generated using BBBGGGc.

Proof. The proof relies on the ambiguity decoder that was introduced in Chapter 2. Con-
sider an m = 2MT -dimensional lattice code C(Λc,uuu0,R) (that corresponds to a generated
matrix GGGc) with fundamental volume Vc that satisfies (4.3), for some fixed translation
vector uuu0, and R is the m/2-dimensional hypersphere with radius

√
m/2 centered at the

origin.

The input to the MMSE-DFE lattice sequential decoder is the vector yyy′ = QQQTyyy, where
QQQ is an orthogonal matrix that corresponds to the QR decomposition of the channel-code
matrix MMMGGGc = BBBGGGc = QQQRRR. The associated path metric in this case is given by (4.4).

Consider the Fano algorithm with bias b ≥ 0, threshold τ , and step size δ. Let Ef be the
event that the Fano decoder makes an erroneous detection, conditioned on τmin > µmin− δ,
where τmin is the minimum threshold used by the decoder, µmin = min{0, b − ‖eee′11‖2, 2b −
‖eee′21‖2, . . . , bm−‖eee′m1 ‖2} is the minimum metric that corresponds to the transmitted path,
and eee′ = QQQTeee. Then, Pe = Eτmin

{Pr(Ef )} is the frame error rate of the lattice Fano
sequential decoder. Due to lattice symmetry, we can assume that the all zero codeword,
i.e., 000, was transmitted. For a given lattice Λc,

Pr(Ef |Λc)
(a)

≤ Pr

 ⋃
zzz∈Zm\{000}

{µ(zzz) > µmin − δ}


(b)

≤ Pr

 ⋃
xxx∈Λ∗c

{‖BxBxBx‖2 − 2(BxBxBx)Teee < bm+ δ}


= Pr

 ⋃
xxx∈Λ∗c

{
2(BxBxBx)Teee ≥ ‖BxBxBx‖2

(
1− bm+ δ

‖BxBxBx‖2

)} ,

(4.11)

where Λ∗c = Λc\{000}, (a) is due to the fact that in general, µ(zzz) > µmin−δ is just a necessary
condition for xxx = GGGczzz to be decoded by the Fano decoder, and (b) follows by noticing that
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−(µmin + ‖eee′‖2) ≤ 0. Note the independence of (4.11) on τmin. It is clear from the above
analysis that lattice Fano sequential decoder approaches the performance of lattice decoder
as b, δ → 0. Now, using the fact that

‖BxBxBx‖2 ≥ min
xxx∈Λ∗c
‖BBBxxx‖2 = (2rpack(BBBGGGc))

2,

where rpack(BBBGGGc) is the packing radius of the lattice Λ(BBBGGGc), we can further upper bound
(4.11) as

Pr(Ef |Λc) ≤ Pr

 ⋃
xxx∈Λ∗c

{
2(BBB′xxx)Teee ≥ ‖BBB′xxx‖2

} , (4.12)

where

BBB′ =

(
1− b+ δ/m

(2rpack(BBBGGGc))2/m

)
BBB. (4.13)

Now, one can show that

(2rpack(BBBGGGc))
2/m = 2Rmod/M

Γ(m/2 + 1)2/mV (Sm(2rpack(BBBGGGc)))
2/m

mπ2Rmod/M

(a)
= 2Rmod/M

V (Sm(2rpack(BBBGGGc)))
2/m

2V (R)2/m det(BBBTBBB)2/m

=
2Rmod/M

2

V
2/m
c

V (R)2/m

V (Sm(2rpack(BBBGGGc)))
2/m

V
2/m
c V (V(BBB))2/m

(b)
=

2[Rmod−R]/M

2

V (Sm(2rpack(BBBGGGc)))
2/m

V (V(BBBGcGcGc))2/m

(c)
=

2[Rmod−R]/M

2

V (Sm(2rpack(BBBGGGc)))
2/m

V (Sm(reff(BBBGGGc)))2/m
(4.14)

where (a) follows from the fact that V (R) is the volume of the m-dimensional hypersphere
of radius

√
m/2, (b) follows from the fact that there exists a shifted lattice code Λc + uuu∗0

with number of codewords inside the shaping region (see Chapter 2, Lemma 1)

|C(Λc,uuu
∗
0,R)| = 2RT =

V (R)

Vc
,

and (c) follows from the definition of the effective radius of the lattice generated using the
matrix BBBGGGc. Therefore, we can further asymptotically (as m→∞) upper bound (4.12) as

Pr(Ef |Λc) ≤ Pr

 ⋃
xxx∈Λ∗c

{
2(B̃BBxxx)Teee ≥ ‖B̃BBxxx‖2

} , (4.15)
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where B̃BB is given by

B̃BB =

(
1− 2b

2[Rmod−R]/M(2rpack(BBBGGGc)/reff(BBBGGGc))2

)
BBB, (4.16)

where for large m, we have approximated b + δ/m ≈ b for finite δ. The last equa-
tion in the upper bound (4.15) corresponds to the probability of decoding error of a
received signal yyy = B̃BBxxx + eee decoded using lattice decoding and is valid for all values
of b < 2[Rmod−R−1](2rpack(BBBGGGc)/reff(BBBGGGc))

2. Let b = 1
2
b′(2rpack(BBBGGGc)/reff(BBBGGGc))

2, where

b′ ≥ 0 is a constant independent of the lattice Λc. In this case, we may express B̃BB as

B̃BB =

(
1− b′

2[Rmod−R]/M

)
BBB. (4.17)

It is clear from (4.17) that B̃BB is invertible. In this case, we obtain the equivalent channel
output

ỹyy = B̃BB
−1
yyy′ = xxx+ ẽee.

Next, we apply the ambiguity decoder with decision region

E ′T,γ ,
{
zzz ∈ Rm : zzzTB̃BB

T
B̃BBzzz ≤MT (1 + γ)

}
. (4.18)

The probability of making a decoding error using the lattice sequential decoder can then
be upper bounded by

Pr(Ef |Λc) ≤ Pr(ẽee ∈ E ′T,γ) + Pr(A(E ′T,γ)). (4.19)

In this case, Lemma 1 can be easily applied to the bound (4.19) withAAA = B̃BB, and r2
e = MT .

Noticing that

det
(
B̃BB

T
B̃BB
)

=

(
1− b′

2[Rmod−R]/M

)2m

det
(
BBBTBBB

)
,

and by solving for R, we achieve the desired result.

The above derivation also applies to the Stack algorithm with minor modifications. In
such algorithm, any lattice codeword xxx = GGGczzz 6= 000 can be decoded as the closest lattice
point to the received vector only if µ(zzz) ≥ µmin. Hence, the average error probability of
the stack decoder can be upper bounded by (4.19) (since δ = 0 in such algorithm).
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As discussed earlier, choosing a fixed but not very large values of b may result in achiev-
ing the optimal diversity-multiplexing tradeoff of the channel. However, lattice sequential
decoders are used as an alternative to ML and lattice decoders to achieve very low decoding
complexity and to do so one has to resort to large values of b. As will be shown in the
sequel, choosing large values of b may lead to a loss in diversity gain and/or multiplexing
gain, and as a result, a loss in the optimal tradeoff.

4.4.1 Outage Performance Analysis

Next, we consider a random channel matrix HHHc as defined in (4.2) and obtain an achiev-
able diversity-multiplexing tradeoff for LAST codes under MMSE-DFE lattice sequential
decoding when b varies with SNR. Before we do that, we would like to analyze the outage
behavior of the lattice sequential decoder and drive its achievable diversity-multiplexing
tradeoff. Without loss of generality, we assume that N ≥M .

Our goal in this section is to show how the outage performance critically depends on
the value of the bias term b. Denote 0 ≤ λ1 ≤ · · · ≤ λM the eigenvalues of (HHHc)HHHHc.
Consider b as a function of ρ and λλλ = (λ1, · · · , λM), and express it as

b(λλλ, ρ) =
1

2

∏M
i=1(1 + ρλi)

1/M

η(λλλ, ρ)1/M

1−

 η(λλλ, ρ)
M∏
i=1

(1 + ρλi)


1/2M


(

2rpack(BBBGGGc)

reff(BBBGGGc)

)2

. (4.20)

In this case, one can easily show that by substituting b in (4.10), we get

Rb(λλλ, ρ) = log η(λλλ, ρ). (4.21)

Depending on the value of η(λλλ, ρ) we obtain different achievable rates and hence different
outage performances. For example, setting η(λλλ, ρ) =

∏M
i=1(1 + ρλi) we achieve lattice

decoder’s outage performance, which corresponds to b = 0 and Rb = Rmod. To analyze the
outage performance of lattice sequential decoders, we allow the bias term b to vary with
SNR as defined in (4.20). We define the outage event under lattice sequential decoding as
Ob(ρ) , {HHHc : Rb(HHH

c, ρ) < R}. Denote R = r log ρ. The probability that the channel is in
outage, Pout(ρ, b) = Pr(Ob(ρ)), can be evaluated as follows:

Pout(ρ, b) = Pr(log η(λλλ, ρ) < R). (4.22)
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The term η(λλλ, ρ) can be chosen freely between 1 and
∏M

i=1(1+ρλi) (the maximum achievable
rate under lattice decoding). However, in our analysis and for the sake of simplicity, we let

η(λλλ, ρ) =
M∏
i=1

(1 + ρλi)
ζi , (4.23)

where ζi, ∀1 ≤ i ≤ M , are constants that satisfy the following two constraints:
∑M

i=1 ζi =
M , and ζ1 ≥ ζ2 ≥ · · · ≥ ζM ≥ 0.

Now define νi , − log λi/ log ρ, then

Pout(ρ, b) = Pr

(
log

M∏
i=1

(1 + ρλi)
ζi < r log ρ

)

=̇ Pr

(
M∑
i=1

ζi(1− νi)+ < r

)
, (4.24)

where (x)+ = max{0, x}. At high SNR, the typical outage event can be written as

O+
b (ζ1, · · · , ζM) ,

{
ννν ∈ RM

+ :
M∑
i=1

ζi(1− νi)+ < r

}
.

In this case, the outage probability can be evaluated as follows:

Pout(ρ, b) =

∫
O+
b (ζ1,··· ,ζM )

fννν(ννν) dννν,

where fννν(ννν) is the joint probability density function of ννν which, for all ννν ∈ O+
b (ζ1, · · · , ζM),

is asymptotically given by [23]

fννν(ννν) =̇ exp

(
− log(ρ)

M∑
i=1

(2i− 1 +N −M)νi

)
. (4.25)

Applying Varadhan’s lemma as in [22], we obtain

Pout(ρ, b) =̇ ρ−db(r),

where

db(r) = d(r, ζζζ) = inf
ννν∈O+

b (ζ1,··· ,ζM )

M∑
i=1

(2i− 1 +N −M)νi.
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where ζζζ = (ζ1, · · · , ζM). It is clear from the above optimization problem that db(r) depends
critically on the selected coefficients ζζζ (or equivalently b). Since ζi are ordered, one can
assume without loss of generality of the optimal solution that 1 ≥ ν1 ≥ · · · ≥ νM ≥ 0. The
linear optimization problem is therefore equivalent to the following problem

Minimize :
M∑
i=1

(2i− 1 +N −M)νi

Such that : 0 ≤ νi ≤ 1 ∀i ≥ 2
M∑
i=1

ζiνi ≥M − r

where ζi ∈ [0,M ]. We arrive now to the following results:

• Case 1 : (0 < ζi < M , and
∑M

i=1 ζi = M) We have the following:

– If r = 0, the optimal solution is

ν∗1 = · · · = ν∗M = 1.

– If r 6= 0, the optimal solution is

ν∗i = min

 1

ζi

(
M∑
j=i

ζj − r
)+

, 1

 ∀i ≥ 1, (4.26)

and the diversity-multiplexing tradeoff is given by

db(0) = MN,

d(r, ζζζ) =
M∑
i=1

(2i− 1 +N −M)ν∗i .
(4.27)

An interesting remark about this diversity-multiplexing tradeoff is that maximum di-
versity d(0, ζζζ) = MN is independent of ζi,∀i ≥ 1. Moreover, other than the uniform
assignments4 of ζζζ = (1, · · · , 1), the optimal diversity-multiplexing tradeoff cannot be
achieved.

4This corresponds to the case of b = 0. However, if we choose η(λλλ, ρ) = φ
∏M

i=1(1+ρλi) where 0 < φ < 1
is a constant independent of ρ, then according to (4.20) we have b = 1

2φ
−1/M [1−φ1/2M ], i.e., b is a constant

independent of ρ. In this case, at high SNR we have R =̇ Rmod which results in achieving the optimal
diversity-multiplexing tradeoff. This agrees with result provided in Theorem 2 for finite bias term.
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• Case 2 : (ζi = 0 for some i) For such choices of ζi, it is clear that the optimal diversity-
multiplexing tradeoff is lost, i.e., db(r) < (M−r)(N−r) for all r = 0, 1, · · · ,M . The
maximum diversity achieved in this scenario can be easily shown to be given by

d(0, ζζζ) = MN −
M∑
i=1

(2i− 1 +N −M)δ(ζi),

where δ(ζi) = 1 if ζi = 0 and 0 otherwise.

Interestingly, for Case 1, one can derive a closed form for the achievable diversity-multiplexing
tradeoff as given in the following theorem:

Theorem 6. The diversity-multiplexing tradeoff, db(r), for an M -transmit, N -receive
antenna coded MIMO Rayleigh channel under MMSE-DFE lattice Fano/Stack
sequential decoder with bias b as given in (4.20) and coefficients ζi ∈ (0,M),
∀1 ≤ i ≤M , is the piecewise-linear function connecting the points (r(k),d(k)),
k = 0, 1, · · · ,M where

r(0) = 0, r(k) =
M∑

i=M−k+1

ζi, 1 ≤ k ≤M,

d(k) = (M − k)(N − k), 0 ≤ k ≤M.

(4.28)

Proof. By solving the above optimization problem, we obtain the following diversity-
multiplexing tradeoff:

d(r, ζζζ) =



M−k−1∑
i=1

(2i− 1 +N −M)+

2(M − k)− 1 +N −M
ζM−k

(
M∑

j=M−k
ζj − r

)
, r ∈ [rk, rk+1], 0 ≤ k ≤M − 2;

N −M + 1

ζ1

(
M∑
j=1

ζj − r
)
, r ∈ [rM−1, rM ],

(4.29)
where

rk =


0, k = 0;

M∑
i=M−k+1

ζi, 1 ≤ k ≤M.

Substituting rk in (4.29), we get the diversity-multiplexing tradeoff expression in (4.28).
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Example 1. Consider a 2× 2 MIMO channel. The diversity-multiplexing tradeoff curves
achieved with respect to different values of ζi that correspond to Case 1 and Case 2 are illus-
trated in Figure. 4.1. Although the diversity at r = 0 is not affected by the coefficients ζi 6= 0
(d(0) = 4), the more unbalanced the coefficients are, the worse the diversity-multiplexing
tradeoff is.
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optimal DMT

Figure 4.1: diversity-multiplexing tradeoff curves db(r) achieved by lattice Fano/Stack
sequential decoder for the case of 2×2 MIMO channel for different values of (ζ1, ζ2).

It is clear from the above analysis that by varying ζi and correspondingly varying
b, one can fully control the maximum diversity and multiplexing gains achieved by such
decoding scheme. Figure. 4.2 shows the achievable diversity-multiplexing tradeoff curves
under lattice sequential decoding for all possible values of ζi that satisfy the constraint∑M

i=1 ζi = M . The figures include both Case 1 and Case 2.

Following the footsteps of [23], we are now ready to prove the following theorem:

78



CHAPTER 4. LATTICE SEQUENTIAL DECODING FOR THE LAST CODED
MIMO CHANNEL

0
Multiplexing gain, r

D
iv

er
si

ty
ga

in
,
d

b
(r

)

M

d0(r) = (M − r)(N − r)

MN

0

(a) Diversity-multiplexing tradeoff curves correspond to
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Figure 4.2: Diversity-multiplexing tradeoff curves db(r) achieved by lattice Fano/Stack
sequential decoder for different bias b.
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Theorem 7. There exists a sequence of full-dimensional LAST codes with block length
T ≥M +N − 1 that achieves the diversity-multiplexing tradeoff curve db(r) under
LAST coding and MMSE-DFE lattice Fano/Stack sequential decoding with variable
bias term b that is given in (4.20).

Proof. See Appendix D.

4.4.2 Improving the Achievable Rate

It is clear from (4.9) that lattice sequential decoders suffer from very poor performance as
b becomes large (achievable rate Rb could reach 0!). The question that may arise here is
whether the achievable rate of the decoder can be improved especially for large values of b
(for which low decoding complexity is to be expected [39]) and hence improving the error
performance.

It turns out that the way the nodes are generated in the algorithm plays an impor-
tant role in improving both the achievable rate and performance of the decoder without
increasing the decoding complexity. For example, Schnorr-Euchner enumeration is con-
sidered a good candidate for the use in lattice Fano/Stack sequential decoding algorithms
[39]. If the determination of best and next best nodes in the lattice Fano/Stack sequential
decoder is based on the Schnorr-Euchner search strategy, then as b → ∞ the decoder
reduces to the MMSE-DFE decoder [39], which achieves diversity-multiplexing tradeoff
(N −M + 1)(1− r/M)+ [35].

Corollary 1. For a fixed non-random channel matrix HHHc, the rate

Rb(HHH
c, ρ) , max

{
Rmod(HHHc, ρ)− 2M log

(
1 +
√

1 + 8α

2

)
, RMMSE−DFE(HHHc, ρ)

}
,

(4.30)
is achievable by LAST coding and MMSE-DFE lattice Fano/Stack sequential decoding
constructed under the Schnorr-Euchner search strategy, where RMMSE−DFE(HHHc, ρ) is
the achievable rate of the MMSE-DFE decoder, and α is as defined in (4.10).

In what follows, we discuss some interesting results about low computational complexity
receivers.
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4.4.3 MMSE-like Receivers: Large N Analysis

The main role of the bias term b used in the algorithm is to control the amount of compu-
tations performed by the decoder. The computational complexity of the lattice sequential
decoder is defined as the total number of nodes visited by the decoder during the search.
It has been shown in [39] via simulation, that there exists a value of b, say b∗, such that for
all b ≥ b∗, the computational complexity decreases monotonically with b. As b → ∞, the
number of visited nodes is always equal to m (computational complexity of MMSE-DFE
decoder). In what follows, we discuss a very interesting result.

It is clear from the above analysis that increasing the bias b can affect both diversity and
multiplexing gains achieved by such a decoding scheme. However, we would like to show
that at r = 0 (i.e., at fixed rate R), there exists a lattice sequential decoding algorithm that
can simultaneously achieve computational complexity m and maximum diversity d = MN .

Consider the bias term given in (4.20) with η(λλλ, ρ) =
∏M

i=1(1 + ρλi)
ζi where the coeffi-

cients 0 < ζi < 1 are chosen according to Case 1 such that ζi = ε for all i. In this case, as

ρ→∞, it can be easily verified that b =̇ ρ
(1−ε)
M

∑M
i=1(1−αi)+ . The probability that b exceeds

ρκ/M , for 0 < κ < M , can be evaluated as follows:

Pr(b ≥ ρκ/M) =̇ Pr

(
(1− ε)

M∑
i=1

(1− αi)+ ≥ κ

)
= 1− Pr

(
M∑
i=1

(1− αi)+ <
κ

(1− ε)

)
=̇ 1− ρ−(N− κ

(1−ε))
+
(M− κ

(1−ε))
+

.

It is clearly seen that, as N becomes large, with probability close to 1 the bias term b→∞
as ρ → ∞. Therefore, for such choice of η(λλλ, ρ), at high SNR we can achieve linear
computational complexity but at the expense of losing the optimal tradeoff. However, as
argued in the proof of Theorem 4, at r = 0 we have d = MN . Therefore, as ρ → ∞,
linear computational complexity m and maximum diversity gain MN can be achieved
simultaneously for large values of N . We can conclude that there exists a lattice sequential
decoding algorithm that achieves ML decoder’s diversity gain, MN , at r = 0 (fixed rate
R) when N →∞.

4.5 Computational Complexity: Tail Distribution in

the High SNR Regime

Lattice sequential decoders are constructed as an alternative to sphere decoders (or equiv-
alently lattice decoders) to solve the CLPS problem with much lower computational com-
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plexity. Due to the random nature of the channel matrix and the additive noise, the
computational complexity of both decoders is considered difficult to analyze in general. As
such, most of the work related to such analysis has been performed via first and second
order statistics of complexity [52],[53],[54]. However, in their work [55], Seethaler et. al.
took a different path and analyzed sphere decoder through its complexity tail distribution
defined as Pr(C ≥ L), where C is the total number of computations performed by the
decoder and L is the distribution parameter. This approach follows naturally from the
randomness of the computational complexity of such decoding scheme. It has been shown
in [55] that, for large L (i.e., as L→∞), the complexity distribution of sphere decoder is
of a Pareto-type that is given by L−(N−M+1).

As discussed earlier, the bias term b is responsible for the performance-complexity
tradeoff achieved by the lattice sequential decoders [39]. For example, setting b = 0, we
achieve the best performance (performance of sphere decoder) but at the expense of very
large decoding complexity. On the other extreme, setting b =∞, lattice sequential decoder
that uses Schnorr-Euchner enumeration becomes equivalent to the MMSE-DFE decoder.
Although it achieves very low decoding complexity, it suffers from poor performance. In
our work, we consider the case of fixed (finite) b. It turns out that for fixed but not large
values of b, the complexity distribution’s tail exponent e(r) defined by

e(r) = lim
ρ→∞

− log Pr(C ≥ L)

log ρ
,

is asymptotically lower bounded by the diversity-multiplexing tradeoff achieved by the
LAST coding and sequential decoding schemes, i.e., e(r) ≥ dout(r), and does not depend on
the bias term at the high SNR regime. However, increasing the value of b could significantly
lower the computational complexity (e.g., as b → ∞, Pr(C > L) = 0 for L ≥ m) but at
the expense of great loss in the achievable diversity-multiplexing tradeoff.

In what follows, we consider only lattice codes that are diversity-multiplexing tradeoff
optimal. Also, for the sake of simplicity we consider the Stack algorithm in analyzing the
decoder’s computational complexity. It must be noted that the following analysis is only
valid for finite but small values of b.

4.5.1 Naive Lattice Sequential Decoding

In this section, we would like to analyze the computational complexity of the naive lattice
Stack sequential decoder with bias term b > 0, particularly at the high SNR regime. We
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are interested in bounding the tail distribution of the decoder’s computational complexity
at high SNR.

Theorem 8. The asymptotic computational complexity distribution of the naive lattice
sequential decoder in an M ×N LAST coded MIMO channel with codeword length
T ≥ N +M − 1, is upper bounded by the asymptotic outage probability, i.e.,

Pr(C ≥ L) ≤̇ ρ−d(r), (4.31)

for all L that satisfy

L ≥ m+
m∑
k=1

(7π)k/2

Γ(k/2 + 1)

[bk +MT (1 + log ρ)]k/2

det(RRRT
kkRRRkk)1/2

, (4.32)

where RRRkk is the lower k × k part of RRR = QQQTHGHGHG, and d(r) is given in (4.5).

Proof. The input to the decoder, after QR preprocessing (HHHGGG = QQQRRR) of (2.5), is given by
yyy′ = QQQTyyy = RRRzzz + eee′, where eee′ = QQQTeee. Let µmin = min{0, b − ‖eee′11‖2, 2b − ‖eee′21‖2, . . . , bm −
‖eee′m1 ‖2} be the minimum metric that corresponds to the transmitted path. Without loss
of generality, we assume that N ≥ M . Due to lattice symmetry, we assume that the all
zero codeword, i.e., 000, was transmitted.

First, let

C =
m∑
k=1

∑
zzzk1∈Zk

φ(zzzk1),

be a random variable that denotes the total number of visited nodes during the search,
where φ(zzzk1) is the indicator function defined by

φ(zzzk1) =

{
1, if node zzzk1 is extended;

0, otherwise.

In this case, the computational complexity tail distribution can be expressed as Pr(C ≥ L),
where L is the distribution parameter. Now, a node at level k, i.e., zzzk1, may be extended
by the Stack decoder if µ(zzzk1) > µmin, or equivalently, if ‖eee′k1 −RRRkkzzz

k
1‖2 ≤ bk − µmin. The

difficulty in analyzing the computational complexity of the lattice Stack sequential decoder
stems from the fact that the distribution of the partial matrix RRRkk is hard to obtain in
general. Another factor that may complicate the analysis is µmin which is a noise dependent
term. However, we can simplify the analysis by considering the following.
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First, the complexity tail distribution can be upper bounded as

Pr(C ≥ L) ≤ Pr(C ≥ L, ‖eee′‖2 ≤ α2) + Pr(‖eee′‖2 > α2). (4.33)

where α > 0.

Next, we would like to further upper bound the second term in the RHS of (4.33). We
can first write φ(zzzk1) as

φ(zzzk1) =

{
1, if ‖eee′k1 −RRRkkzzz

k
1‖2 ≤ bk − µmin;

0, otherwise,

Given ‖eee′‖2 ≤ α2, and by noticing that −(µmin + ‖eee′‖2) ≤ 0, we obtain∑
zzzk1∈Zk

φ(zzzk1) ≤
∑
zzzk1∈Zk

φ
′
(zzzk1), (4.34)

where

φ
′
(zzzk1) =

{
1, if ‖eee′k1 −RRRkkzzz

k
1‖2 ≤ bmk + α2;

0, otherwise.
(4.35)

Now, let

φ
′′
k(zzz) =

{
Sk, if ‖eee′ −RRRzzz‖2 ≤ bm− µmin;

0, otherwise,

where
Sk =

∑
zzzk1∈Zk

φ
′
(zzzk1), (4.36)

then it can be easily shown that

C ≤
m∑
k=1

∑
zzz∈Zm

φ
′′
k(zzz) ≤

m∑
k=1

∑
xxx∈Λc

φ̃k(xxx),

where

φ̃k(xxx) =

{
Sk, if ‖HHHxxx‖2 − 2(HHHxxx)Teee ≤ bm;

0, otherwise,
.

Notice the independence of the above upper bound on µmin. Consider now the following
lemma:
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Lemma 4. In lattice Stack sequential decoder with finite bias b > 0, the number of
visited nodes at level k, given that ‖eee′‖2 ≤MT (1 + log ρ), can be upper bounded by

∑
zzzk1∈Zk

φ(zzzk1) ≤ Sk ≤
(7π)k/2

Γ(k/2 + 1)

[bk +MT (1 + log ρ)]k/2

det(RRRT
kkRRRkk)1/2

, (4.37)

where Sk is as defined in (4.36).

Proof. The proof is similar to the proof of Lemma 3.16 in Chapter 3 with Rs = α.

For a given lattice Λc, we have

Pr(C ≥ L|Λc, ‖eee′‖2 ≤MT (1 + log ρ)) ≤ Pr(C̃ ≥ L−m|Λc, ‖eee′‖2 ≤MT (1 + log ρ))

≤ Eeee′{C̃|Λc, ‖eee′‖2 ≤MT (1 + log ρ)}
L−m , for L > m,

(4.38)

where the last inequality follows from using Markov inequality, and C̃ is defined as

C̃ =
m∑
k=1

∑
zzzk1∈Zk\{000}

φ(zzzk1),

since we have assumed that the all-zero lattice point was transmitted.

The conditional average of C̃ with respect to the noise can be further upper bounded
as

Eeee′{C̃|Λc, ‖eee′‖2 ≤MT (1 + log ρ)} ≤
m∑
k=1

Sk
∑
xxx∈Λ∗c

Pr(‖HHHxxx‖2 − 2(HHHxxx)Teee < bm) (4.39)

Therefore, we have

Pr(C ≥ L|Λc, ‖eee‖2 ≤MT (1+log ρ)) ≤
∑m

k=1 Sk
L−m

∑
xxx∈Λ∗c

Pr(‖HHHxxx‖2−2(HHHxxx)Teee < bm). (4.40)

Following the proof of Theorem 3 (see Appendix B), and by averaging over the ensemble
of random lattices we get, for L > m+

∑m
k=1 Sk

Pr(C ≥ L) ≤̇ ρ−T [M−∑M
j=1 νj−r]. (4.41)
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Define A = {ννν ∈ RM
+ : ν1 ≥ · · · ≥ νM ≥ 0,

∑M
i=1 νi > M − r}. Similar to the outage

analysis in Section IV, by separating the event {ννν ∈ A} from its complement, we obtain:

Pr(C ≥ L) ≤ Pr(ννν ∈ A)+Pr(‖eee′‖2 > MT (1+log ρ))+Pr(C ≥ L,ννν ∈ A, ‖eee′‖2 ≤MT (1+log ρ))
(4.42)

The behavior of the first term in (4.42) at high SNR is ρ−d(r), where d(r) is as defined
in Theorem 1. The second term can be shown to be upper bounded by ρ−d(r) (see [23]).
Averaging the third term over the channels in A set, we obtain,

Pr(C ≥ L) ≤̇ ρ−d(r) +

∫
A
fννν(ννν) Pr(C ≥ L|ννν) dννν ≤̇ ρ−d(r), (4.43)

for all L ≥ m+
∑m

k=1 Sk, where fννν(ννν) is the joint probability density function of ννν defined
in (B.9).

4.5.2 MMSE-DFE Lattice Sequential Decoding

It is well-known [32] that employing MMSE-DFE preprocessing at the decoding stage
significantly reduces the decoder’s computational complexity. In this section, we show
how MMSE-DFE significantly improves the tail exponent of the computation complexity
distribution of lattice sequential decoding compared to the naive decoder. Again, our goal
in this section is to analyze the computational complexity of the MMSE-DFE lattice Stack
sequential decoder for fixed but small b > 0, particularly at the high SNR regime. We are
interested in bounding the tail distribution of the decoder’s computational complexity at
high SNR.

Theorem 9. The asymptotic computational complexity distribution of the MMSE-DFE
lattice sequential decoder in an M ×N LAST coded MIMO channel with codeword
length T ≥ N +M − 1, is upper bounded by the asymptotic outage probability, i.e.,

Pr(C ≥ L) ≤̇ ρ−d
∗(r), (4.44)

for all L that satisfy

L ≥ m+
m∑
k=1

(7π)k/2

Γ(k/2 + 1)

[bk +MT (1 + log ρ)]k/2

det(RRRT
kkRRRkk)1/2

, (4.45)

where RRRkk is the lower k × k part of RRR = QQQTBGBGBG, and d∗(r) is as defined in
Theorem 4.
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Proof. The input to the decoder, after QR preprocessing (BBBGGG = QQQRRR) of (2.5), is given
by yyy′′ = QQQTyyy′ = RRRzzz + eee′′, where eee′′ = QQQTeee′. Following the same approach used to prove
Theorem 6, the tail distribution can be upper bounded as follows

Pr(C ≥ L) ≤ Pr(ννν ∈ B)+Pr(‖eee′‖2 > MT (1+log ρ))+Pr(C ≥ L,ννν ∈ B, ‖eee′‖2 ≤MT (1+log ρ)),
(4.46)

where the set B = {ννν ∈ RM
+ : ν1 ≥ · · · ≥ νM ≥ 0,

∑M
i=1(1− νi)+ < r}.

Using Lemma 4 and the Markov inequality, one can show that for a given lattice Λc

Pr(C ≥ L|Λc, ‖eee′‖2 ≤MT (1 + log ρ)) ≤ 1

L−m
m∑
k=1

Sk
∑
xxx∈Λ∗c

Pr(‖BBBxxx‖2 − 2(BBBxxx)Teee′ < bm).

(4.47)

Similar to the proof of Theorem 4, one can easily show that

Pr(C ≥ L) ≤̇ ρ−T [
∑min{M,N}
j=1 (1−αj)+−r]. (4.48)

for any L > m +
∑m

k=1 Sk. Now, the behavior of the first term in (4.46) at high SNR
is ρ−d

∗(r), where d∗(r) is as defined in Theorem 2. Following [23], one can show that the
second term is upper bounded by ρ−d

∗(r). Averaging the third term over the channels in B
set, we obtain,

Pr(C ≥ L) ≤̇ ρ−d
∗(r) +

∫
B
fννν(ννν) Pr(C ≥ L|ννν) dννν ≤̇ ρ−d

∗(r). (4.49)

for all L ≥ m+
∑m

k=1 Sk.

The above results reveal that if the number of computations performed by the decoder
exceeds

L0 = m+
m∑
k=1

(7π)k/2

Γ(k/2 + 1)

[bk +MT (1 + log ρ)]k/2

det(RRRT
kkRRRkk)1/2

, (4.50)

the complexity distribution of the lattice sequential decoder at high SNR is upper bounded
by the asymptotic outage probability. However, the MMSE-DFE lattice sequential decoder
exhibits larger SNR exponent than the naive one. This implies that the probability of the
complexity being atypically large is smaller when MMSE-DFE is applied prior sequential
decoding. Now, if a “time-out” limit is imposed at the decoder to terminate the search when
the number of computations exceeds this limit, then L0 represents the minimum value that
should be set by the decoder without resulting in a loss in the optimal performance achieved

87



CHAPTER 4. LATTICE SEQUENTIAL DECODING FOR THE LAST CODED
MIMO CHANNEL

by such decoding scheme. This can be very beneficial in two-ways MIMO communication
systems (e.g, MIMO automatic repeat request [41]), where the feedback channel can be
used to eliminate the decoding failure probability. In applications where there is a hard-
limit on the buffer size, the decoder declares an error when the complexity goes above the
limit.

It is clear that this time-out limit does not affect the optimal tradeoff achieved by the
modified decoding scheme. To see this, suppose that the lattice (stack) sequential decoder
imposes a time-out limit so that the search is terminated once the number of computations
reaches L0, and hence the decoder declares an error. Assuming Es is the event that the
decoder performs an error when C < L0, in this case, the average error probability is given
by

Pe(ρ) = Pr(Es ∪ {C ≥ L0}) ≤ Pr(Es) + Pr(C ≥ L0) ≤̇ ρ−dout(r). (4.51)

It should be noted that the above analysis does not yield the full picture of the decoder’s
complexity in general. As mentioned previously, the complexity of the decoder depends
critically on the bias b chosen in the algorithm. Unfortunately, it is still unclear how the
SNR exponent e(r) is affected by the value b in general. However, as b→∞, the naive or
the MMSE-DFE lattice sequential decoder under Schnorr-Euchner enumeration becomes
equivalent to the zero-forcing (ZF-DFE) or the MMSE-DFE decoder, respectively. The
total number of computations performed by both decoders is always equal to m. This
corresponds to an SNR exponent e(r) =∞. Thus, we can conclude that, at high SNR, as
b increases the SNR exponent e(r) increases as well.

Another criterion that is used to characterize the computational complexity of such a
decoder is through its average complexity. Since L0 is random, it would be interesting
to calculate the minimum average number of computations required by the decoder to
terminate the search. This is considered next.

4.6 Average Computational Complexity

It is to be expected that when the channel is ill-conditioned (i.e., in outage) the computa-
tional complexity becomes extremely large. Moreover, when the channel is in outage it is
highly likely that the decoder performs an erroneous detection. However, when the channel
is not in outage, there is still a non-zero probability that the number of computations will
become large (see (4.43) and (4.49)). As such, it is sometimes desirable to terminate the
search even when the channel is not in outage. Therefore, we would like to determine the
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minimum average number of computations that is required in order for the decoder to
determine when to terminate the search.

In other words, we would like to find the minimum average number of computations
that is required by the decoder to achieve near-optimal performance. This can be expressed
as

Lout = E{L0(HHHc ∈ O)}, (4.52)

where L0(HHHc ∈ O) denotes the total number of computations performed by the decoder to
achieve near optimal performance when the channel is not in outage.

Before we do that, we would like first now to study the asymptotic behavior of L0.
Again, in this section we focus our analysis on nested LAST codes, specifically LAST
codes that are generated using construction A (see Chapter 2, Section 2.2).

We consider the Loeliger ensemble of mod-p lattices, where p is a prime. First, we
generate the set of all lattices given by

Λp = κ(C + pZ2MT )

where p → ∞, κ → 0 is a scaling coefficient chosen such that the fundamental volume
Vf = κ2MTp2MT−1 = 1, Zp denotes the field of mod-p integers, and C ⊂ Z2MT

p is a linear
code over Zp with generator matrix in systematic form [III PPPT]T. We use a pair of self-similar
lattices for nesting. We take the shaping lattice to be Λs = φΛp, where φ is chosen such
that the covering radius is 1/2 in order to satisfy the input power constraint. Finally, the
coding lattice is obtained as Λc = ρ−r/2MΛs. Interestingly, one can construct a generator
matrix of Λp as (see [6])

GGGp = κ

(
III 000
PPP pIII

)
, (4.53)

which has a lower triangular form. In this case, one can express the generator matrix of
Λc as GGG = ρ−r/2MGGG′, where GGG′ = ζGGGp. Thanks to the lower triangular format of GGG. If MMM
is an m×m arbitrary full-rank matrix, and GGG is an m×m lower triangular matrix, then
one can easily show that

det[(MGMGMG)kk] = det(MMMkk) det(GGGkk), (4.54)

where (MGMGMG)kk, MMMkk, and GGGkk, are the lower k × k part of MGMGMG, MMM , and GGG, respectively5..

5For the sake of simplicity we consider the complexity analysis of naive decoding for a square MIMO
system (i.e., for N = M). This is due to the fact that for a general M × N MIMO system under naive
decoding, the determinant (4.54) does not exist (except when N = M). In this case, one may lower bound

det(RRRT
kkRRRkk) =

k∏
j=1

λj(RRRT
kkRRRkk) ≥

k∏
j=1

λj(HHHT
kkHHHkk)λj(GGGT

kkGGGkk) to get only an upper bound on L0. For the

case of MMSE-DFE decoding, the combined channel code matrix is always a square matrix.
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Using the above result, one can express the determinant that appears in (4.50) as

det(RRRT
kkRRRkk) = det(MMMT

kkMMMkk) det(GGGT
kkGGGkk) = ρ−rk/2M det(MMMT

kkMMMkk) det(GGG′
T
kkGGG

′
kk) (4.55)

where MMM is either BBB or HHH, depending whether the decoder is preprocessed with MMSE-
DFE or not. Let µ1 ≤ µ2 ≤ · · · ≤ µk be the ordered nonzero eigenvalues of MMMT

kkMMMkk, for
k = 1, · · · ,m. Then,

det(MMMT
kkMMMkk) =

k∏
j=1

µj

Note that for the special case when k = m we have µ2(j−1)T+1 = · · · = µ2jT = ρλj((HHH
c)HHHHc),

for all j = 1, · · · ,M when MMM = HHH. When MMM = BBB we have µ2(j−1)T+1 = · · · = µ2jT =
1 + ρλj((HHH

c)HHHHc), for all j = 1, · · · ,M .

Denote α′i = − log µi/ log ρ. Using (4.54), one can asymptotically upper bound L0 as

L0 = m+
m∑
k=1

(log ρ)k/2ρck , (4.56)

where

ck =
1

2

k∑
j=1

( r
M
− α′j

)+

. (4.57)

Now, since ck is non-decreasing in k, we have

L0 = m+ (log ρ)m/2ρcm , (4.58)

where

cm =


T

M∑
i=1

( r
M
− (1− αi)

)+

, for MMM = HHH;

T
M∑
i=1

( r
M
− (1− αi)+

)+

, for MMM = BBB;

Consider the case of MMSE-DFE lattice decoding. The average of L0 (averaged over
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channel statistics) when the channel is not in outage is given by

E{L0(HHHc ∈ O)} =

∫
ααα∈O

L0fααα(ααα) dααα

= m+ (log ρ)m/2
∫

ααα∈O

exp

(
log ρ

[
T

M∑
i=1

(
r

M
− (1− αi)+

)+

−

M∑
i=1

(2i− 1 +N −M)αi

])
dααα

= m+ (log ρ)m/2ρlmmse(r),

where O =
{
ααα ∈ RM

+ :
∑M

i=1(1− αi)+ ≥ r
}

, and

lmmse(r) = max
ααα∈O

[
T

M∑
i=1

( r
M
− (1− αi)+

)+

−
M∑
i=1

(2i− 1 +N −M)αi

]
. (4.59)

It is not so difficult to see that the optimal channel coefficients that maximize (4.59) are

α∗i = 1, for i = 1, · · · ,M − k,

and
α∗i = 0, for i = M − k + 1, · · · ,M,

i.e., the same ααα∗ that achieves the optimal diversity-multiplexing tradeoff of the channel.
Substituting ααα∗ in (4.59), we get

lmmse(r) =
Tr(M − r)

M
− (M − r)(N − r), (4.60)

for r = 0, 1, · · · ,M . In this case, the asymptotic minimum average computational com-
plexity, when the channel is not in outage, can be upper bounded as

Lmmse
out = 2MT + (log ρ)MTρlmmse(r). (4.61)

Similarly, the above analysis can be applied to the case of naive lattice decoding, where
the average of L0 (averaged over channel statistics) when the channel is not in outage is
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given by

E{L0(HHHc ∈ O)} =

∫
ααα∈O

L0fααα(ααα) dααα

= m+ (log ρ)m/2
∫

ααα∈O

exp

(
log ρ

[
T

M∑
i=1

(
r

M
− (1− αi)

)+

−

M∑
i=1

(2i− 1 +N −M)αi

])
dααα

= m+ (log ρ)m/2ρlnaive(r),

where O =
{
ααα ∈ RM

+ :
∑M

i=1 αi ≤M − r
}

, and

lnaive(r) = max
ααα∈O

[
T

M∑
i=1

( r
M
− (1− αi)

)+

−
M∑
i=1

(2i− 1 +N −M)αi

]
. (4.62)

In this case, one can show that when the channel is in outage we have that the optimal ααα
that maximizes (4.62) is achieved for α1 = M − r, and αi = 0 for all i > 1, yielding

lnaive(r) =
T (M − 1)

M
(M − r)− (N −M + 1)(M − r), (4.63)

for r = 0, 1, · · · ,M . In this case, the asymptotic minimum average computational com-
plexity can be upper bounded as

Lnaive
out ≤ 2MT + (log ρ)MTρlnaive(r). (4.64)

To see the advantage of using the MMSE-DFE prior decoding that results in a huge
saving in (average) computational complexity compared to the naive decoder, consider the
case of M = N . Assuming the use of an optimal random nested LAST code of codeword
length T and fixed rate R, i.e., r = 0. In this case, one can see that lmmse(0) < 0 irrespective
to the value of T , i.e., the average complexity is bounded for all T . It is clear that the
term (log ρ)2MTρ−NM decays quickly to 0 as ρ → ∞. The simulation results (introduced
next) agree with the above analysis.

For the case of naive decoding we have lnaive(0) = T (M − 1) −M which makes the
RHS of (4.64) unbounded, except for the case when T = 1. This can be used as an
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indication of what values of T may result in large average complexity. However, for the
case that corresponds to T = M = 2, although it becomes unbounded, the upper bound
grows slowly with SNR as (log ρ)4. For T > 2, the upper bound grows quickly with
SNR as (log ρ)MTρT (M−1)−M . Since, the maximum diversity d = min{T,N −M + 1}M is
achievable for all values of T ≥ 1, one should avoid using codeword lengths T > 2 to save
on complexity. The experimental results (provided in the next section) demonstrate such
improvements and agrees with the above theoretical results. In general, at any multiplexing
gain r, we have that lmmse(r) > lnaive(r), for the same codeword length T . This again proves
that employing MMSE-DFE preprocessing at the decoding stage significantly improves the
average computational complexity of the decoder at all multiplexing gains.

It is interesting to note that, for the case of MMSE-DFE lattice decoding, there exists
a cut-off multiplexing gain, say r0, such that the average computational complexity of the
decoder remains bounded as long as we operate below such value. This value can be easily
found by setting lmmse(r0) = 0. This results in

r0 =

⌊
MN

M + T

⌋
.

If we let the number of receive antennas N → ∞, then one can achieve a multiplex-
ing gain r0 = M which is the maximum multiplexing gain achieved by the channel. As
discussed in Section 4.4.3, this again shows that one can dramatically improve the com-
putational complexity of the decoder by increasing the number of antennas at the receiver
side.

To see the great advantage of using the lattice sequential decoder with constant bias
term over the lattice decoder implemented via sphere decoding algorithms, we compare the
average computational complexity of both decoders when MMSE-DFE is presented. It has
been shown in Chapter 3 (see (??)) that the minimum average number of computations
required by the MMSE-DFE sphere decoder to achieve the optimal tradeoff, say Lmmse

sphere for
a system with m = 2MT signal dimension is given by (assuming fixed rate r = 0)

Lmmse
sphere = 2MT +

(log ρ)2MT

ρMN
.

The ratio of the average complexity of both decoders, say γ, is given by

γ =
Lsphere

Lmmse
sequential

=̇
2MT + (log ρ)2MT/ρMN

2MT + (log ρ)MT/ρMN
.

This is a huge saving in computational complexity, especially for large signal dimensions
and moderate-to-high SNR. For example, consider the case of a 3× 3 LAST coded MIMO

93



CHAPTER 4. LATTICE SEQUENTIAL DECODING FOR THE LAST CODED
MIMO CHANNEL

system with T = 5. At ρ = 103 (30 dB), we have γ ≈ 31, i.e., the sphere decoder’s
complexity is about 31 times larger than the complexity of the lattice sequential decoder.
As will be shown in the sequel, simulation results agree with the above theoretical results.
For ρ < 30 dB, one would expect the ratio γ � 31. For extremely high SNR values (e.g.,
ρ� 30 dB), it seems that γ → 1 as ρ→∞.

4.7 Numerical Results

Throughout the simulation study, the fading coefficients are generated as independent iden-
tically distributed circularly symmetric complex Gaussian random variables. The LAST
code is obtained as an (m = 2MT, p, k) Loeliger construction (see Chapter 2, Section 2.2).

In Figure. 4.3, we compare the performance in terms of the frame error rate of a MIMO
system with M = N = 2, T = 3 and rate R = 4 bits per channel use (bpcu) under naive
and MMSE-DFE lattice Fano sequential decoding. For both decoders we fix the bias term
to b = 0.6. It is clear that the MMSE-DFE lattice sequential decoder outperforms the naive
one, where the former achieves diversity order of 4 (the maximum diversity gain achieved
by the channel) and the latter achieves diversity order of 2. This validates our theoretical
claims for fixed rate (i.e. r = 0). To validate the achievability of the optimal diversity-
multiplexing tradeoff with LAST coding and MMSE-DFE lattice sequential decoding, we
consider the performance of a MIMO system with M = N = 2, T = 3 for different rates
R = 4, 8, 10.34 bpcu, which is illustrated in Figure. 4.4. The constant gap between
the outage probability and the error performance for different R confirms our theoretical
results.

Figure. 4.5 and Figure. 4.6 show the effect of increasing the bias term on diversity
order and average computational complexity (number of visited nodes during the search)
achieved by lattice sequential decoding. As discussed earlier, increasing the bias term in the
decoding algorithm significantly reduces decoding complexity but at the expense of losing
diversity. For the 2 × 2 LAST coded MIMO system with T = 3, as b → ∞ we achieve
linear computational complexity m = 12 for all SNR, and diversity order 1. For sequential
decoding algorithms that implement the Schnorr-Euchner enumeration, this corresponds
to the performance and complexity of MMSE-DFE decoder.

In our computational complexity distribution simulation, we consider a MIMO system
with M = N = 2, T = 3 for different rates R = 4, 8 bits per channel use. First, the
frame error rate of the lattice Fano sequential decoder is plotted in Figure. 4.7. (a) and
Figure 4.8. (a) when the bias b = 0.6 and the step size δ = 0.2 for both cases, the naive
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and the MMSE-DFE decoding6. The computational complexity distribution Pr(C > L) is
plotted for both decoders at different rates, for sufficiently large L (see Figure 4.7. (b) and
Figure 4.8. (b)). It is clear from both figures that the curves which correspond to the error
probability and the computational complexity distribution match in slope, i.e., they both
exhibit the same behavior at high SNR. In other words, both curves have the same SNR
exponent. This basically agrees with the derived theoretical results.

The complexity saving advantage that lattice sequential decoders posses over sphere
decoders is depicted in Figure. 4.9 and Figure. 4.10, for the same coded MIMO channel
with R = 4 bits per channel use. One can notice the amount of computations saved by
lattice sequential decoders for all values of SNR, especially for large signal dimensions (see
Figure 4.10). Even at high SNR, the sphere decoder still exhibits large decoding complexity
compared to the lattice sequential decoder. For example, as depicted in Figure. 4.10, at
ρ = 30 dB, the average complexity of the sphere decoder is about 30 times the complexity
of the lattice sequential decoder for an optimal LAST coded MIMO system with dimension
m = 30. This is achieved at the expense of small loss in performance (∼1 dB). This agrees
with the derived theoretical results.

Figure. 4.11 shows how the average computational complexity is affected by the code-
word length T , at a fixed rate (r = 0), for the case of naive lattice sequential decoding. In
a 2× 2 quasi-static MIMO channel under naive lattice sequential decoding, the maximum
diversity gain M = 2 is achieved when T ≥ 1. Three random nested LAST codes with
codeword lengths T = 1, 2, and 3 are used to achieve the same diversity gain. However, as
discussed in the previous section, using a codeword length T ≤ 2 would result in a small
average decoding complexity. For T = 3 the average computational complexity becomes
extensively large. The complexity saving advantage that the MMSE-DFE pre-processing
provides over the naive decoder is also shown in Figure 4.12. It is clear that applying
MMSE-DFE prior sequential decoding significantly reduces average computational com-
plexity, especially at high SNR. This agrees with the theoretical results derived in this
Chapter.

6We have noticed that the simulation under lattice Fano sequential decoding with small values decoding
parameters (e.g., b = 0.6 and δ = 0.2) yields a decoding complexity tail distribution similar to the sphere
decoder one (see Chapter 3, Fig. 3.3 and Fig. 3.4). This can be explained from the fact that the Fano
decoder visits a node more than once during the search for the closest lattice point and the number of
visits increases as b and δ decreases. Since low values of decoding parameters is needed to achieve close
to the sphere decoder performance, one should expect computational cost of sequential decoding close to
the sphere decoding one. In general, there is a slight improvement in the complexity tail distribution of
the lattice sequential decoder compared to the sphere decoder especially for low-to-moderate values of
decoding parameters. The improvement is in the coding gain but no the diversity order.
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Figure 4.3: Performance comparison between naive and MMSE-DFE lattice sequential
decoding with b = 0.6 for the case of 2 × 2 LAST coded MIMO channel with T = 3 and
R = 4 bpcu.
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Figure 4.7: (a) Performance and (b) complexity distribution (with L = ρ) achieved by the
naive lattice Fano sequential decoder (b = 0.6, δ = 0.2) for the case of 2×2 LAST coded
MIMO channel.
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Figure 4.8: (a) Performance and (b) complexity distribution (with L = ρ) achieved by the
MMSE-DFE lattice sequential decoder (b = 0.6, δ = 0.2) for the case of 2×2 LAST coded
MIMO channel.
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Figure 4.9: (a) Performance and (b) average computational complexity comparison between
sphere decoding and lattice sequential decoding for signal with dimension m = 12.
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Figure 4.10: (a) Performance and (b) average computational complexity comparison be-
tween sphere decoding and lattice sequential decoding for signal with dimension m = 30.
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decoding, and T ≥ 3 for MMSE-DFE decoding.
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length T .
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4.8 Summary

In this chapter, we have provided a complete analysis for the performance limits of lattice
Fano/Stack sequential decoder applied to LAST coded MIMO system. The achievable rate
of such system is derived. It turns out that the achievable rate under lattice sequential
decoding depends critically on the decoding parameter, the bias term. The bias term is
responsible for the excellent performance-complexity tradeoff achieved by such decoding
scheme. For small values of bias, it has been shown that the optimal tradeoff of the
channel can be achieved. As the bias grows without bound, lattice sequential decoding
achieves linear computational complexity, where the total number of visited nodes during
the search is always equal to the signal dimension. As such, lattice sequential decoders
bridge the gap between the lattice (sphere) decoder and the low complexity receivers (e.g.,
the MMSE-DFE decoder). At high SNR, it was argued that there exists a lattice sequential
decoding algorithm that can achieve maximum diversity gain at very low multiplexing gain,
especially for large number of receive antennas.

We have also provided a complete analysis for the computational complexity of the
lattice sequential decoder applied to LAST coded MIMO systems at the high SNR regime.
It has been shown that for both the naive and the MMSE-DFE lattice sequential decoders,
if the number of computations performed by the decoder exceeds a certain limit, then
the complexity’s tail distribution becomes dominated by the outage probability with an
SNR exponent that is equivalent to the diversity-multiplexing tradeoff achieved by the
corresponding coding and decoding schemes. The tradeoff of the channel is naturally
extended to include decoding complexity. Moreover, the asymptotic average computational
complexity has also been analyzed for both cases. As expected, MMSE-DFE preprocessing
significantly improves the overall computational complexity of the underlying decoding
scheme. Finally, it has been shown that there exists a cut-off multiplexing gain for which
the average complexity remains bounded as long as we operate below such value.
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Chapter 5

Time-Out Lattice Sequential Decoder
for The MIMO ARQ Channel

AUTOMATIC Repeat reQuest (ARQ) is an efficient communication strategy that uses
feedback to achieve high reliability, and is widely used in many wireless networks

(e.g., LTE and WiMAX) (refer to [58] for a detailed study about several ARQ schemes).
In its early stages, ARQ was used in conjunction with codes with good error detection ca-
pabilities. However, such codes increase the number of retransmissions which significantly
reduce transmission rate (throughput) and increase delay. This may become undesirable
for many communication systems, particularly in wireless fading channels. To overcome
such problems, hybrid-ARQ system was introduced which uses forward error correction
techniques (e.g., block and convolutional codes) [59]–[63]. This, however, comes at the ex-
pense of increasing the complexity of the receiver. The design of low complexity receivers
for ARQ systems that achieve near optimal performance and high throughput is considered
a challenging problem.

The class of sequential decoders is among the most promising decoders that can handle
high data rates with low decoding complexity. As we have demonstrated in Chapter 4,
there is still a non-zero probability that the decoding complexity (time) becomes excessive,
especially when the channel is very noisy. In this situation, the decoder encounters buffer
overflow that results in a decoding failure. It is this probability that limits the performance
of the sequential decoder. Fortunately, the decoding failure probability can be totally
eliminated using systems with feedback channel. For that reason, sequential decoders were
adopted with ARQ systems [43],[60],[61] due to their ability to detect for retransmission
before ending the decoding search which results in huge saving in decoding complexity
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while maintaining high throughput. All of this makes sequential decoding very promising
and attractive for use in systems with repeat request.

Many sequential decoding algorithms (e.g., stack algorithm) were modified for the use of
signal detection and decoding in ARQ systems. Among those algorithms that is considered
simple but efficient is the so-called time-out sequential decoding. In this algorithm, the
decoder simply tracks the number of computations performed by the decoder and asks for
retransmission if the computations become excessive and exceed a certain predetermined
time limit. This results in reducing the decoding complexity by terminating the search
during high channel noise. For the case of single-input single-output discrete memoryless
channel, it was shown (see [43]) that there exists an optimal time-out limit value that
maximizes both performance and throughput while achieving low decoding complexity. In
this chapter, we would like to extend the work in [43] to the quasi-static MIMO ARQ
channel. In particular, we will study the throughput-performance-complexity tradeoffs in
sequential decoding algorithms and the effect of preprocessing and termination strategies
such as the time-out algorithm.

5.1 System Model

5.1.1 ARQ MIMO Channel

Consider a MIMO ARQ system with M -transmit and N -receive antennas, a maximum
of L rounds, no CSI at the transmitter and perfect CSI at the receiver. For the MIMO
ARQ channel model, we follow in the footsteps of El Gamal et al. [41] and use the
incremental-redundancy ARQ transmission scheme. We restrict ourselves to the one-bit
feedback (ACK/NACK) MIMO ARQ model. The ARQ feedback channel is assumed to be
zero-delay and error-free. The complex baseband model of the received signal at the `-th
round can be mathematically described as

YYY c
` =

√
ρ

M
HHHc

`XXX
c
` +WWW c

`, (5.1)

where XXXc
` ∈ CM×T is the transmitted signal matrix, T is the number of channel uses,

YYY c
` ∈ CN×T is the received signal matrix, WWW c

` ∈ CN×T is the noise matrix, HHHc
` ∈ CN×M is

the channel matrix, and ρ is the average signal-to-noise ratio (SNR) per receive antenna.
The elements of both the noise matrix and the channel fading gain matrix are assumed to
be independent identically distributed zero-mean circularly symmetric complex Gaussian
random variables with variance σ2 = 1.
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In this work, we assume two different scenarios of channel dynamics. The first model
being the long-term static channel, where the channel coefficients remain constant during
all L rounds, i.e., HHHc

` = HHHc for all 1 ≤ ` ≤ L. This scenario applies to very fast ARQ pro-
tocols and/or very slow fading environments, such as wireless LANs. The second scenario
is the short-term static channel, where the channel remains constant during each round
and changes independently at each round. This scenario applies to slow ARQ protocols
where the time between the consecutive rounds is larger than the channel coherence time,
or to frequency-selective fading, where each ARQ transmission takes place at a different
frequency according to some frequency hopping scheme. Also, the following short-term
average power constraint on the transmitted signal is assumed

E{‖XXXc
`‖2
F} ≤MT. (5.2)

The equivalent real-valued channel model, after ` transmission rounds, corresponding
to (5.1) can be written as

yyy` = HHH`xxx+www`, (5.3)

where we define xxx = (xxxT
1,1, . . . ,xxx

T
L,1, . . . ,xxx

T
L,T )T, with xxxT

`,t = (<{[XXXc
`]t}T,={[XXXc

`]t}T)T, and

www = (wwwT
1,1, . . . ,www

T
`,1, . . . ,www

T
`,T )T, with wwwT

`,t = (<{[WWW c
`]t}T,={[WWW c

`]t}T)T. The vector yyy` ∈
R2NT` represents the total signal received over all transmitted blocks from 1 to `. The
equivalent real-valued channel matrix, HHH`, has dimension 2NT` × 2MTL and is formed
by taking the first 2NT` rows of the matrix HHHL which is composed by L diagonal blocks,
where each diagonal block takes the form√

ρ

M
IIIT ⊗

(
<{HHHc

`} −={HHHc
`}

={HHHc
`} <{HHHc

`}

)
.

5.1.2 IR-LAST Coding Scheme

An m-dimensional lattice code C(Λ,uuuo,R) is the finite subset of the lattice translate Λ+uuu0

inside the shaping region R, i.e., C = {Λ + uuu0} ∩ R, where R is a bounded measurable
region of Rm. It is well-known [23] that an (M × T ) × L space-time coding scheme is a
full-dimensional LAST code if its vectorized (real) codebook (corresponding to the channel
model (5.3)) is a lattice code with dimension m = 2MTL.

We say that a LAST code is nested if the underlying lattice code is nested. Here, the
information message is effectively encoded into the cosets Λs in Λc. As defined in [23], we
shall call such codes the mod-Λ scheme. The proposed mod-Λ scheme works as follows.
Consider the nested LAST code C defined by Λc (the coding lattice) and by its sublattice Λs
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(the shaping lattice) in Rm. Assume that Λs has a second-order moment σ2(Λs) = 1/2 (so
that uuu uniformly distributed over Vs satisfies E{‖uuu‖2} = MTL). The transmitter selects
a codeword ccc ∈ C, generates a dither signal1 uuu with uniform distribution over Vs, and
computes xxx = [ccc− uuu] mod Λs.

For the MIMO ARQ channel, we use the mod-Λ incremental redundancy scheme that
was provided in [41]. The signal xxx is partitioned into L vectors of size 2MT each. Those vec-
tors are transmitted, sequentially, in the different ARQ rounds based on the ACK/NACK
feedback. Upon completion of the ` < L transmission, the receiver attempts to decode the
message using lattice stack sequential decoder (introduced in Chapter 4) that implements
a sort of deadline algorithm. In particular, the received signal, yyy`, is multiplied by the
forward filter matrix FFF ` of the minimum mean-square error decision feedback equalization
(MMSE-DFE) corresponding to the truncated matrix HHH`, and then the dither signal fil-
tered by the upper triangular feedback filter matrix BBB` of the MMSE-DFE is added to it
(the definitions and some useful properties of the MMSE-DFE matrices FFF , BBB are given in
[23]). In this case, the received signal can be expressed as

yyy′` = FFF `yyy` +BBB`uuu = BBB`ccc
′ + eee′, (5.4)

where ccc′ = ccc+λλλ, λλλ = −QΛs(ccc−uuu), and eee′ = −[BBB` −FFF `HHH`]xxx+FFF `eee`. One can easily verify
(see [23]) the relationship between BBB` and the channel matrix HHH` through the following
equations:

For the case of long-term static channel, we have

det(BBBT
`BBB`) =

(
det
(
III +

ρ

M
(HHHc)HHHHc

))2T`

, (5.5)

and for the short-term static channel, we have

det(BBBT
`BBB`) =

∏̀
j=1

det
(
III +

ρ

M
(HHHc

j)
HHHHc

j

)2T

. (5.6)

The basic idea in this approach is to use a modified lattice stack sequential decoder for
joint error detection and correction. The decoder first check if the channel is in outage. In
this case, an error is declared and a NACK is sent back. If not, we use the modified lattice
sequential decoder to find a lattice point that satisfies a certain predetermined condition

1A dither signal is a random signal that is used to make the MMSE estimation error independent of
the transmitted codeword (see [25] for further details).
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(e.g., a time-out limit). Now if no point is found, an error is declared, and hence, a NACK
bit is fed back. If a point is found to satisfy such condition then we proceed to the next
step to find the codeword as ĉcc = [GGGẑzz] mod Λs. The only exception to this rule is at the
L-th ARQ round, where the regular lattice stack sequential decoder is used to find the
closest lattice point.

5.1.3 Diversity-Multiplexing-Delay Tradeoff

Let η be defined as the average throughput of the ARQ scheme, expressed in transmitted
bits per channel use. Following the definition used in [41], η can be expressed as

η =
R1

1 +
∑L−1

`=1 p(`)
, (5.7)

where R1 denotes the rate of the first block in bits per channel use, p(`) = Pr(A1, . . . ,A`)
with A` denoting the event that an ACK is fed back at round `.

Let E` denotes the event that the transmitted message is incorrectly decoded by the
ARQ decoder, then the probability of error can be upper bounded as

Pe ≤
L−1∑
`=1

Pr(E`,A`) + Pr(EL), (5.8)

where Pr(E`,A`) takes the definition of the probability of undetected error at round ` ≤
L− 1.

Define respectively the ARQ multiplexing gain and ARQ diversity gain as

re = lim
ρ→∞

η(ρ)

log ρ
, d = − lim

ρ→∞
logPe(ρ)

log ρ
.

In the MIMO ARQ system, the delay introduced by the channel provides a third
dimension in the tradeoff region. The tradeoff between the diversity, the multiplexing, and
the delay provided by the quasi-static MIMO ARQ channel has been established in the
paper by El-Gamal et. al. in [41]. The result is summarized in the following theorem:
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Theorem 10. The optimal tradeoff of the coherent block-fading MIMO ARQ channel
with M -transmit, N -receive antennas, L maximum number of ARQ rounds , under
the short-term power constraint, is given as follows: In the case of long-term static
channel

d∗ls(re, L) = f
(re
L

)
∀0 ≤ re < min{M,N},

which is achieved with code block length T ≥ d(M +N − 1)/Le, where
f(r) = (M − r)(N − r). In the case of short-term static channel

d∗ss(re, L) = Lf
(re
L

)
, ∀0 ≤ re < min{M,N},

which is achieved with code block length T ≥M +N − 1.

It has been shown in [41] that LAST codes achieve the optimal diversity-multiplexing-
delay tradeoff. Achieving the optimal tradeoff in [41] was performed using IR-LAST coding
scheme coupled with a list lattice decoder for joint error detection and correction. This
decoder (corresponds to (5.4)) finds all lattice points that satisfy (see [41]){

xxx ∈ Rm : ‖yyy′ −BBB`xxx‖2 ≤MTL(1 + γ log ρ)
}
,

where γ is a constant chosen appropriately to strike the optimal balance between the prob-
ability of error (accepting a wrong message) and the probability of declaring a decoding
error (i.e., to ensure the achievability of the optimal tradeoff). This decoder can be ef-
ficiently implemented using sphere decoding algorithms (see for example [32]). Sphere
decoders, however, are computationally very complex especially for low-to-moderate SNR
and large signal dimensions where the output of the list sphere decoder can become exten-
sively large that may result in a waste of time trying to decode the message. Hence, it is
of great interest to search for a low complexity joint detector and decoder that can achieve
the optimal tradeoff. This fact motivates us to replace the list lattice decoder by a more
efficient retransmission strategy using lattice sequential decoders. The strategy is based
on the stack algorithm and is designed to predict the occurrence of an error in advance
by monitoring the number of computations performed by the decoder. Before we do that,
we would like to introduce next the sequential decoder for lattice codes and some of its
parameters that will be used to construct our new MIMO ARQ joint error detection and
decoding scheme.

112



CHAPTER 5. TIME-OUT LATTICE SEQUENTIAL DECODER FOR THE MIMO
ARQ CHANNEL

5.2 Lattice Sequential Decoder: Performance Bounds

and Complexity Distribution

5.2.1 Lattice Stack Algorithm

We extend the stack algorithm that was introduced in Chapter 4 to the MIMO ARQ
channel. The metric at the `-th round [corresponds to (5.4)] is given by

µ(zzzk1, `) = bk − ‖yyy′′` k1 −RRR
(`)
kkzzz

k
1‖2, ∀1 ≤ k ≤ m, (5.9)

where zzzk1 = [zk, · · · , z2, z1]T denotes the last k components of the integer vector zzz ∈ Zm,

RRR
(`)
kk is the lower k × k matrix of RRR` that corresponds to the QR decomposition of the

code-channel matrix BBB`GGG = QQQ`RRR` at the `-th round, yyy′′`
k
1 is the last k components of the

vector yyy′′` = QQQT
` yyy
′
`, and b ≥ 0 is the bias term. The bias parameter is critical for controlling

the amount of computations required at the decoding stage.

The main role of the bias term b used in the algorithm is to control the amount of com-
putations performed by the decoder. In this work, we define the computational complexity
of the joint lattice sequential decoder as the total number of nodes visited by the decoder
during the search, accumulated over all ARQ rounds, until a new transmission is started.
Also, the bias term is responsible for the excellent performance-throughput-complexity
tradeoff achieved by such decoding scheme. The role that the bias parameter plays in the
new efficient decoding algorithm will be discussed in details in the subsequent sections.

5.2.2 Performance Analysis: Lower and Upper Bounds

In this section, we extend the results of Chapter 4 to the MIMO ARQ channel and derive
lower and upper bounds on the error performance of the lattice sequential decoder when
applied to such a channel. These bounds work as the primary elements for constructing
our new efficient decoder for the MIMO ARQ channel.

Consider the detection at the `-th ARQ round. For simplicity, we consider here the
long-term static channel (similar arguments can be done for the short-term static channel).
Assume the received signal is yyy` = BBB`xxx + eee`, and denote Eld(BBB`) and Esd(BBB`, b) as the
events that lattice decoder and lattice sequential decoder make an erroneous detection,
respectively, where b is the bias term that was introduced in (5.9). As has been discussed
in Chapter 4, lattice decoders outperform lattice sequential decoders for any b > 0. In
fact, the performance of the lattice decoder serves as a lower bound of the lattice stack
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sequential decoder. Now, lattice decoding disregard the boundaries of the lattice code and
find the point of the underlying (infinite) lattice closest to the received point. As such,
due to lattice symmetry, one can assume that the all-zero lattice point is transmitted. For
a given lattice Λc, we have

P (Eld(BBB`)|Λc) = Pr

 ⋃
xxx∈Λ∗c

{
2(BBB`xxx)Teee` ≥ ‖BBB`xxx‖2

} ≤ P (Esd(BBB`, b)|Λc), (5.10)

where Λ∗c = Λc\{000}.
For the lattice sequential decoder, it seems a bit difficult to obtain an exact expression

for its decoding error probability. Instead, we seek to derive an upper bound for the error
performance of such a decoder which can be done as follows:

P (Esd(BBB`, b)|Λc)
(a)

≤ Pr

 ⋃
zzz∈Zm\{000}

{µ(zzz, `) > µmin(`)}


(b)

≤ Pr

 ⋃
xxx∈Λ∗c

{‖BBB`xxx‖2 − 2(BBB`xxx)Teee` < bm}


= Pr

 ⋃
xxx∈Λ∗c

{
2(BBB`xxx)Teee` > ‖BBB`xxx‖2

(
1− bm

‖BBB`xxx‖2

)} ,

(5.11)

where (a) is due to the fact that in general, µ(zzz, `) > µmin(`) is just a necessary condition for
xxx = GzGzGz to be decoded by the stack decoder, µmin = min{0, b−‖eee′`11‖2, 2b−‖eee′`21‖2, . . . , bm−
‖eee′`m1 ‖2} is the minimum metric that corresponds to the transmitted path with eee′` = QQQTeee`,
and (b) follows by noticing that −(µmin + ‖eee′`‖2) ≤ 0. Similar to the proof the Theorem 5
in Chapter 4, one can show that (5.11) can be finally upper bounded as

P (Esd(BBB`, b)|Λc) ≤ P (Eld(B̃BB`)|Λc), (5.12)

where

B̃BB` =

(
1− b

2[Rmod(`)−R]/Mφ(`)

)
BBB`, (5.13)

where Rmod(`) is the rate at round ` that can be achieved using MMSE-DFE lattice de-
coding and according to (5.5) is given by

Rmod(`) = log det(BBBT
`BBB`)

1/2T = log det
(
III +

ρ

M
(HHHc)HHHHc

)`
,
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R is the transmission rate, and φ(`) = 0.5(2rpack(BBB`GGG)/reff(BBB`GGG))2 . Interestingly, one
may show that φ(`) is lower bounded by a constant independent of SNR and ` and as a
result it has no effect on the performance in the SNR scale of interest.

It is clear from the above analysis that the lattice stack sequential decoder approaches
the performance of the lattice decoder as b→ 0, i.e., Esd(BBB`, 0) = Eld(BBB`). Moreover, the
upper bound (5.12) corresponds to the probability of decoding error of a received signal yyy` =
B̃BB`xxx+eee` decoded using lattice decoding and is valid for all values of b < 2[Rmod(`)−R]/Mφ(`),
i.e., Esd(BBB`, b) = Eld(B̃BB`). Therefore, for a given lattice Λc, channel matrix HHH`, and a bias
term b > 0, one can bound the error performance of the lattice sequential decoder as

P (Eld(BBB`)|Λc) ≤ P (Esd(BBB`, b)|Λc) ≤ P (Eld(B̃BB`)|Λc). (5.14)

By averaging (5.14) over the ensemble of random lattices Λc, one can show that for a
fixed non-random channel matrix HHHc

`, the rate

Rb(HHH
c
`, ρ, `) , max

{
Rmod(HHHc

`, ρ)− 2ML log

(
1 +

√
1 + 8α(`)

2

)
, 0

}
, (5.15)

is achievable by LAST coding and MMSE-DFE lattice Fano/Stack sequential decoding
with bias term b ≥ 0, where α is given by

α(`) =

(
reff(BBB`GGG)

2rpack(BBB`GGG)

)2

b. (5.16)

This is simply the extension of Theorem 5 to the MIMO ARQ channel.

The equations (5.15) and (5.16) suggest that as long as the channel is well-conditioned,
one may use large of values of bias term which is needed to achieve low decoding complexity
(as will be discussed later). On the other hand, if the channel is close to outage, very low
values of b must be chosen in order to maintain high achievable rates. For example, if
b = 0, (5.15) reduces simply to Rb = Rmod, which corresponds to the rate achievable by
the MMSE-DFE lattice decoder.

In general, for the long-term static channel, one can show that if b is allowed to vary
with SNR and the channel statistics as

b(λλλ, ρ) =
1

2

∏M
i=1(1 + ρλi)

`/ML

η(λλλ, ρ)`/ML

1−

 η(λλλ, ρ)
M∏
i=1

(1 + ρλi)


`/2ML


(

2rpack(BBB`GGG)

reff(BBB`GGG)

)2

, (5.17)
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the achievable rate can be rewritten as

Rb(λλλ, ρ, `) = ` log η(λλλ, ρ). (5.18)

The term η(λλλ, ρ) can be chosen freely between 1 and
∏M

i=1(1 + ρλi) (the maximum achiev-
able rate under lattice decoding). Depending on the value of η(λλλ, ρ) we obtain different
achievable rates and hence different outage performances.

We define the outage event under lattice sequential decoding as Ob(ρ, `) , {HHHc
` :

Rb(HHH
c
`, ρ) < R1}. Denote R1 = r1 log ρ. The probability that the channel is in outage,

Pout(`, b) = Pr(Ob(ρ, `)), can be evaluated as follows:

Pout(`, b) = Pr(` log η(λλλ, ρ) < R1) =̇ ρ−db(r1/`). (5.19)

where db(r) is the outage SNR exponent that is achieved by the MIMO channel with no
ARQ (i.e., with L = 1). For simplicity, we may express

η(λλλ, ρ) = φ
M∏
i=1

(1 + ρλi)
ζi , (5.20)

where 0 < φ < 1 is a constant independent of ρ, and ζi, ∀1 ≤ i ≤ M , are constants that
satisfy the following two constraints:

∑M
i=1 ζi ≤M , and ζ1 ≥ ζ2 ≥ · · · ≥ ζM ≥ 0.

The above choice of ζi leads to a bias term (assuming high SNR)

b(λλλ, ρ) ≈ 1

2

M∏
i=1

(1 + ρλi)
(1−ζi)`/ML (5.21)

which may grow exponentially with SNR as ρε, ε > 0, when the channel is not in outage.
This may significantly reduce the decoding complexity. However, as discussed in Chapter 4,
although the diversity at r = 0 is not affected by the coefficients ζi 6= 0 (db(0) = MN), the
more unbalanced the coefficients are, the worse the diversity-multiplexing tradeoff is. By
varying the decoder parameter (bias term), one gets different performance-rate-complexity
tradeoffs.

It is a simple matter to extend the above result to the `-th ARQ round. One can
show that, there exists a sequence of full-dimensional LAST codes with block length T ≥
(M +N −1)/` that achieves the diversity-multiplexing tradeoff curve db(r1/`) which is the
piecewise-linear function connecting the points (r(k), d(k/`)), k = 0, 1, · · · ,M , where

r(0) = 0, r(k) =
M∑

i=M−k+1

ζi, 1 ≤ k ≤M,

d(k/`) =

(
M − k

`

)(
N − k

`

)
, 0 ≤ k ≤M.

(5.22)

116



CHAPTER 5. TIME-OUT LATTICE SEQUENTIAL DECODER FOR THE MIMO
ARQ CHANNEL

In this case, one can show that there exists a lattice code Λc such that

P (Esd(BBB`, b)) =̇ ρ−db(r1/`), ∀ 1 ≤ ` ≤ L. (5.23)

under the condition T` ≥ N +M − 1.

It must be noted that, except for the case of ` = L (the final ARQ round), db(r1/`) is
not the best achievable SNR exponent for the MIMO ARQ channel at any round ` < L.
This is because in the above analysis we have ignored the detection capabilities that the
MIMO ARQ can have. By carefully designing the lattice sequential decoder to include an
efficient error detection mechanism, we will show how the SNR exponent can be raised up
to achieve the optimal tradeoff of the channel at any round `.

From a lattice point of view, the event of error under lattice decoding can be expressed
as the event that the received signal is located outside the fundamental Voronoi region of
the underlying (infinite) lattice. In this case, assuming 000 was transmitted, one may express
the bounds in (5.14)

P (eee /∈ V000(BBB`GGG)|Λc) ≤ P (Esd(BBB`, b)|Λc) ≤ P (eee /∈ V000(B̃BB`GGG)|Λc). (5.24)

where B̃BB` is as defined in (5.13). Interestingly, the upper bound in (5.24) provides us with
the fact that as long as eee ∈ V000(B̃BB`GGG), the received signal is correctly decoded using lattice
sequential decoding. As will be shown in the sequel, this fact can be used as the basic tool
to construct our new efficient joint detection and decoding scheme.

5.2.3 Computational Complexity Distribution

An important parameter of the lattice sequential decoder is the distribution of compu-
tation, which characterizes the time needed to decode a message. It is well-known [38]
that the number of computations required to decode a message using sequential decoders
is highly variable and assume very large values during intervals of high channel noise.
Moreover, due to the random nature of the channel matrix and the additive noise, the
computational complexity of such decoder is considered difficult to analyze in general.
However, in Chapter 4, we have shown that for the MIMO channel with no ARQ under
lattice sequential decoding with constant bias term, the tail distribution becomes upper
bounded by the asymptotic outage probability with SNR exponent that is equivalent to the
optimal diversity-multiplexing tradeoff of the channel. This upper bound is shown to be
achieved only of the number of computations performed by the decoder exceeds a certain
limit when the channel is not in outage. This result can be easily extended to the MIMO
ARQ channel as will be explained in the following.
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Consider again decoding the received signal at the ARQ round ` = 1, · · · , L. Let
φ(zzzk1, `) be the indicator function defined by

φ(zzzk1, `) =

{
1, if node zzzk1 is extended;

0, otherwise,
(5.25)

and let Nj(`) be a random variable that denotes the total number of visited nodes during
the search up to dimension j, at round ` < L. In this case, Nj(`) can be expressed as

Nj(`) =

j∑
k=1

∑
zzzk1∈Zk

φ(zzzk1, `). (5.26)

For the case of MIMO channel with no ARQ (i.e., L = 1), following the footsteps of
the proof of Theorem 9 in Chapter 4, one can show that the asymptotic computational
complexity distribution of the MMSE-DFE lattice sequential decoder (assuming no error
detection) is given by (for T ≥ N +M − 1)

Pr(Nj ≥ Γ) ≤ Pr(Nm ≥ Γ) ≤̇ ρ−f(r), (5.27)

for all Γ that satisfy

Γ ≥ m+
m∑
k=1

(7π)k/2

Γ(k/2 + 1)

[bk +MT (1 + log ρ)]k/2

det(RRRT
kkRRRkk)1/2

, (5.28)

where RRRkk is the lower k × k part of the upper triangular matrix RRR(`) of the QR decom-
position of BBB`GGG, and f(r) = (M − r)(N − r) for r ∈ [0,min{M,N}). It must be noted
that (5.28) is only valid for constant (fixed) bias term b, and a lower bound on Γ for the
general expression of b (see (5.21) is known yet. However, as will be discuss in the sequel,
even for fixed bias, the above lower bound shows a significant improvement in complexity
compared to the more complex optimal sphere decoder.

The above important result indicates that there exists a finite probability that the
number of computations performed by the decoder may become excessive even at high
SNR, irrespective to the channel being ill or well-conditioned! This probability is usually
referred to as the probability of a decoding failure. Such probability limits the performance
of the lattice sequential decoder, especially for a one-way communication system. For a
two-way communication system, such as in our MIMO ARQ system, the feedback channel
can be used to eliminate the decoding failure probability. Therefore, our new decoder
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must be carefully designed to predict in advance the occurrence of decoding failure to
avoid wasting the time trying to decode the message. This would result in a huge saving
in decoding complexity. As will be shown in the sequel, the above result can be easily
extended to the MIMO ARQ channel.

5.3 Time-Out Algorithm

It is well-known that the number of computations required to decode a message using
sequential decoders is highly variable and assume very large values during intervals of high
channel noise. As such, the decoder is expected to spend longer time attempting to decode
the message. For the proposed incremental-redundancy MIMO ARQ system, this condition
can be used as an indicator of when the receiver should terminate the search and request
the transmitter for additional redundancy bits during any of the ` < L rounds.

In order to avoid wasting time trying to decode a noisy signal during any of ` < L
ARQ rounds, we implement a time-out algorithm in the lattice stack sequential decoder
for joint error detection and correction. Such algorithm works as follows: we define a
parameter Γout to be the maximum time (number of computations) allowed to decode a
message during any of the ` < L ARQ rounds. If the decoding time exceeds Γout, a NACK
bit is fed back to the transmitter. The only exception of this rule is when the maximum
number of ARQ rounds, L, is reached. In this case, the regular lattice sequential decoder
(with no time-out limit) is used, where a NACK bit will be interpreted as an error, and
the transmission of the next message is started anyway. Next, we define the retransmission
probability and the undetected error probability from a lattice point of view. Those two
quantities are responsible for the performance-throughput tradeoff achieved by the MIMO
ARQ system. Throughout the work we assume the use of a small (fixed) bias term during all
L ARQ rounds. Before continuing our analysis, we would like to introduce some important
definitions related to the MIMO ARQ channel that will be used throughout the Chapter.

Denote 0 ≤ λ
(j)
1 ≤ · · · ≤ λ

(j)
min{M,N} the eigenvalues of (HHHc

j)
HHHHc

j, ∀1 ≤ j ≤ `. Let us
first define the outage event for both long-term and short-term static channels under the
lattice sequential decoder with bias term b that is given in (5.21) and η(λλλ, ρ) as defined in
(5.20), with ` received blocks as

Ob(ρ, `) =

{
HHHc

j ∈ CN×M ∀1 ≤ j ≤ ` : Rb(ρ) < R1

}
,
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where

Rb(ρ) =


`
M∑
i=1

ζi log(1 + ρλi), for long-term static channel;∑̀
j=1

M∑
i=1

ζi log(1 + ρλ
(j)
i ), for short-term static channel,

(5.29)

Denote, R1 = r1 log ρ, and define αi , − log λi/ log ρ, and (x)+ = max{0, x}., then It can
be easily verified that at high SNR, the outage event for the long-term static channel model
can be expressed as (assuming N ≥M)

Ols(`) =

{
ααα ∈ RM

+ : α1 ≥ · · · ≥ αM ,
M∑
i=1

ζi(1− αi)+ < r1/`

}
,

where in such channel we have λ
(j)
i = λi, ∀1 ≤ j ≤ `. For the short-term static channel we

have

Oss(`) =

{
(ααα(1), · · · ,ααα(`)) ∈ RM`

+ : α
(j)
1 ≥ · · · ≥ α

(j)
M , ∀1 ≤ j ≤ `,

∑̀
j=1

M∑
i=1

ζi

[
1− α(j)

i

]+

< r1

}
.

Then, the associated asymptotic outage probability is given by (see [41])

Pout(ρ, `) =̇

{
Pr(Ols(`)) =̇ ρ−dout(`), for long-term static channel;

Pr(Oss(`)) =̇ ρ−`dout(`), for short-term static channel,
(5.30)

where dout(`) = db(r1/`) where db(r) is as defined in (5.19).

5.3.1 Retransmission Request Probability

We make use of the lower and the upper bounds of the lattice sequential decoder’s error
performance in (5.24) to implement an error control mechanism for our IR-LAST MIMO
ARQ system. It is clear from (5.13) and (5.24) that V000(B̃BB`GGG) ⊆ V000(BBB`GGG) for all b ≥ 0.
Therefore, at the decoder side, one can divide each of the Voronoi regions of the channel-
code lattice Λ(BBB`GGG), i.e., Vuuu(BBB`GGG) (corresponds to a lattice point uuu = BBB`GzGzGz, zzz ∈ Zm) into
two disjoint regions — Ruuu(B̃BB`GGG) and Vuuu(BBB`GGG)\Ruuu(B̃BB`GGG). This is depicted in Figure. 5.1.
For convenience, we define Vuuu(`) = Vuuu(BBB`GGG) and Ruuu(`) = Ruuu(B̃BB`GGG).

Now, denote the region D(`) as

D(`) = Rm\

 ⋃
uuu∈Λ(BBB`GGG)

Ruuu(`)

 . (5.31)
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000

1

Figure 5.1: The division of the Voronoi cell of the lattice generated by the channel-code
matrix BBB`GGG into two distinct regions — the shaded region Ruuu(B̃BB`GGG), and the white re-
gion Vuuu(BBB`GGG)\Ruuu(B̃BB`GGG). The two dimensional hexagonal lattice is shown for illustration
purposes.
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We take advantage of the feedback channel by introducing the erasure option at the decoder
such that whenever the received signal yyy` ∈ D(`), for ` < L, the decoder requests for a
repeat transmission or additional bits (as in the case of IR-LAST coding scheme). In this
case, at round ` < L, the probability of a retransmission when the channel is not in outage
is given by

Pr(A`, no outage) = Pr(yyy` ∈ D(`)). (5.32)

Unfortunately, determining whether yyy` ∈ D(`) or not is considered by itself a difficult
problem. We try to simplify this problem through the use of lattice sequential decoding by
tracking the number of computations performed during the search for the closest lattice
point.

Following the definition of the number of computations performed by the decoder pro-
vided in (5.26), a retransmission is requested by the time-out algorithm at round ` < L if
the number of computations exceeds the maximum time allowed before reaching the end
of the tree. In other words, a NACK is sent back to the transmitter if, at any 1 ≤ j < m,
Nj(`) > Γout. This event could occur during a high channel noise period so that the re-
ceived signal yyy` is close to the boundaries of a Voronoi cell of the lattice Λ(BBB`GGG) and as a
result, the decoder declares that yyy` ∈ D(`). In this case, for the selected value of b, one has
to carefully choose the time-out parameter Γout so that whenever Nj(`) > Γout, the decoder
decides that yyy` ∈ D(`) (see Figure. 5.2.(a)). Selecting an inappropriate value of Γout may
result in the loss of the optimal tradeoff. Later, we shall make use of the following result
for evaluating (5.32), for fixed2 bias values:

Lemma 5. For the long-term static ARQ channel, the asymptotic tail distribution of
the total computational complexity of the lattice sequential decoder with fixed bias
b > 0, at round ` given the channel is not in outage, Pr(Nj(`) ≥ Γout), can be upper
bounded by

Pr(Nj(`) ≥ Γout) ≤̇ ρ−d` , ∀1 ≤ j ≤ m, (5.33)

under the condition

Γout ≥ m+
m∑
k=1

(7π)k/2

Γ(k/2 + 1)

[bk +MTL(1 + ζ log ρ)]k/2

det(RRR
(`)T
kk RRR

(`)
kk )1/2

,

where ζ is a constant chosen sufficiently large enough so that
MTLζ ≥ (M − r1/`)(N − r1/`), and

2The general case of a variable bias term that is given in (5.21) will not be considered here due to the
difficulty of obtaining a lower bound on Γout for such bias values.
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d` = inf
ααα∈Ols(`)

{ M∑
i=1

(2i− 1 +N −M)αi

+ T`

[
M∑
i=1

(1− αi)+ − r1/`

]}
,

(5.34)

and

Ols(`) =

{
ααα ∈ RM

+ , α1 ≥ · · · ≥ αM :
M∑
j=1

(1− αi)+ ≥ r1/`

}
.

Proof. see Appendix E.

It must be noted that the above result can be easily extended for the short-term static
channel. In this case, one can show that Pr(Nj(`) ≥ Γout) ≤̇ ρ−`d` , ∀1 ≤ j ≤ m. Next, we
derive an upper bound for the undetected error probability.

5.3.2 Undetected Error Probability

Another important parameter that characterizes the performance of the MIMO ARQ sys-
tem, is the undetected error probability which was defined in (5.8). In the IR-LAST MIMO
ARQ system, an ACK bit is sent back to the transmitter if the decoder correctly decode
the received signal subject to the condition that Nm(`) < Γout. This corresponds to the
event yyy` ∈ R000(`), assuming 000 was transmitted (see Figure. 5.2.(b)). Also, an ACK is sent
back to the transmitter, if decoding fails but it is not detected. Such an event occurs when
the total number of computations Nm(`) < Γout, but the decoded lattice point is not 000.
This happens when the received signal yyy` ∈ Ruuu(`) for any uuu 6= 000 (see Figure. 5.2.(c)).
Using the above argument, the undetected error probability can be expressed as (assuming
000 was transmitted)

Pr(Esd(BBB`, b),A`) = Pr

 ⋃
uuu∈Λ∗(BBB`GGG)

{eee′` ∈ Ruuu(`)}

 . (5.35)

Our goal now is to upper bound (5.35). In this work, we will resort to a geometrical
approach to obtain an upper bound on the undetected error probability. Before doing so,
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000

! yyy!

000

! yyy!

000

! yyy!

1

(a) The event of sending a NACK
when the channel is not in outage.

000

! yyy!

000

! yyy!

000

! yyy!

1

(b) The event of sending an ACK
with correct decoding.

000

! yyy!

000

! yyy!

000

! yyy!

1

(c) The event of sending an ACK
with decoding failure but not de-
tected.

Figure 5.2: The events of retransmission, correct decoding, and undetected error that occur
in the time-out algorithm (assuming 000 was transmitted). The correct decoding region is
represented in dark color. The chessboard shaded regions represent the undetected error
events (E`,A`). The white region represents the detected error event.
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we express the event of sending an ACK, i.e., A`, in terms of the number of computations
performed by the lattice sequential decoder as A` = {Nm(`) < Γout}. Consider now the
following theorem:

Theorem 11. For any lattice code Λc, the undetected error probability of the
quasi-static M ×N MIMO ARQ system with maximum rounds L, and codeword
length T , under the time-out MMSE-DFE lattice sequential decoding scheme with
parameters b and Γout, is bounded above as: In the case of long-term static channel

Pr(Esd(BBB`, b),A`) ≤̇ ρ−f(r1/L), (5.36)

which is achieved with code block length T ≥ d(M +N − 1)/Le, where
f(r) = (M − r)(N − r), and any b that satisfies (5.21). In the case of short-term
static channel

Pr(Esd(BBB`, b),A`) ≤̇ ρ−Lf(r1/L), (5.37)

which is achieved with code block length T ≥M +N − 1.

Proof. It seems a bit difficult to obtain an upper bound directly for the undetected error
probability using (5.35). Therefore, we resort to a geometrical approach (see Figure. 5.3)
to further upper bound (5.35) by selecting b such that the bound reff(B̃BB`GGG) ≤ rpack(BBB`GGG)

is maintained for all ` < L. The effective radius reff(B̃BB`GGG) of the lattice generated by B̃BB`GGG
is given by

reff(B̃BB`GGG) =

[
Vc det(B̃BB

T

` B̃BB`)
1/2

V (Sm(1))

]1/m

. (5.38)

In this case, we can upper bound the undetected error probability as

Pr(Esd(BBB`, b),A`) = Pr

 ⋃
uuu∈Λ∗(BGBGBG)

{eee′` ∈ Ruuu(`)}

 ≤ Pr(‖eee′`‖2 ≥ r2
eff(B̃BB`GGG)). (5.39)

It is not yet clear how the RHS of (5.39) can be evaluated. To overcome this problem, we
can find a lower bound on r2

eff(B̃BB`GGG) at high SNR as follows:

Asymptotically, one can express bias term that is defined by (5.21) as

b =̇
ρ

`
ML

∑M
i=1(1−αi)+

η`/ML

[
1−

(
η

ρ
∑M
i=1(1−αi)+

)`/2ML
]
. (5.40)
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000

rpack(BBB!GGG)

reff(B̃BB!GGG)

1

Figure 5.3: A geometric approach used to over bound the undetected error probability
under the time-out algorithm.
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Substituting (5.40) in (5.13), when the channel is not in outage, one can upper bound

det(B̃BB
T

` B̃BB`)) ≥ η2T , where η =̇ ρ
∑M
i=1 ζi(1−αi). In this case, we have that

r2
eff(B̃BB`GGG) ≥

[
Vc

V (R)

V (R)

V (Sm(1))
ηT
]2/m

(a)

≥ MTL
[
ρ−r1TρT

∑M
i=1 ζi(1−αi)

]2/m

≥̇ MTLρν ≥̇MTL(1 + γ log ρ), (5.41)

where (a) follows from the fact that there exists a shifted lattice code Λc +uuu∗0 with number
of codewords inside the shaping region,

|C(Λc,uuu
∗
0,R)| = 2R1T = ρr1T ≥ V (R)

Vc
. (5.42)

Also, ν = `
ML

[
∑M

j=1 ζi(1 − αj)
+ − r1/`] > 0 when the channel is not in outage, and the

last inequality follows from the fact that limρ→∞(1 + γ log ρ)/ρν = 0 for any ν, γ > 0.
Therefore,

Pr(Esd(BBB`, b),A`) ≤̇ Pr(‖eee′`‖2 ≥MLT (1 + γ log ρ)) ≤̇ ρ−2MTLγ. (5.43)

By choosing a large enough value of γ such that MTLγ ≥ f(r1/L), we obtain

Pr(Esd(BBB`, b),A`) ≤̇ ρ−f(r1/L), (5.44)

under the condition that LT ≥M +N − 1.

The above analysis also applies to the short-term static channel, and one can show that
under the condition T ≥ N +M − 1, we have

Pr(Esd(BBB`, b),A`) ≤̇ ρ−Lf(r1/L). (5.45)

As will be shown in the sequel, (5.32) and (5.35) play an important role in determining
the achievable diversity-multiplexing-delay tradeoff of the MIMO ARQ channel. Reducing
the number of retransmissions comes at the expense of increasing the undetected error
probability, which is undesirable. It is clear that both probabilities are closely related and
hence increasing or decreasing one of them may lead to a loss in the optimal tradeoff of
the channel.

127



CHAPTER 5. TIME-OUT LATTICE SEQUENTIAL DECODER FOR THE MIMO
ARQ CHANNEL

5.3.3 Achieving the Optimal Tradeoff: Bias Term vs. Γout

Our goal here is to prove the optimality of the time-out lattice sequential decoder in
terms of the achievable diversity-multiplexing-delay tradeoff. It is well-known that the
bias term b controls the amount of the computations performed by the lattice sequential
decoder during the search and responsible for the excellent performance-complexity tradeoff
achieved by such a decoder. Choosing a very large value of b although greatly reduces
decoding complexity, it may lead to a loss in the optimal tradeoff of the channel. Therefore,
it is expected that the time-out parameter Γout will be a function of the bias term b chosen
in the algorithm. One may have already noticed that in Lemma 1. It turns out that an
optimal value of Γout, denoted by Γ∗out, exists so that the optimal tradeoff is achieved with
a fairly low decoding complexity (i.e., average number of computations) compared to the
joint list lattice decoder. The achievability of the optimal tradeoff, for any fixed bias term,
under time-out lattice sequential decoding is summarized in the following theorem:

Theorem 12. Consider a MIMO ARQ channel under short-power constraint given in
(5.2), with M transmit, N receive antennas, a maximum number of ARQ rounds L,
an effective multiplexing gain 0 ≤ re < min{M,N}. Then, the IR-LAST coding
scheme under time-out lattice stack sequential decoding with parameter Γout and fixed
b > 0, achieves the optimal tradeoff: In the case of long-term static channel

d∗ls(re, L) =

{
f
(re
L

)
, 0 ≤ re < min{M,N};

0, re ≥ min{M,N},

which is achieved with code block length T ≥ d(M +N − 1)/Le, where
f(r) = (M − r)(N − r). In the case of short-term static channel

d∗ss(re, L) =

{
Lf
(re
L

)
, 0 ≤ re < min{M,N};

0, re ≥ min{M,N},

which is achieved with code block length T ≥M +N − 1. The optimal tradeoff is
achieved subject to the condition

Γout ≥ m+
m∑
k=1

(4π)k/2

Γ(k/2 + 1)

[bk +MTL(1 + ζ log ρ)]k/2

det(RRR
(`)T
kk RRR

(`)
kk )1/2

. (5.46)

Proof. see Appendix F.

128



CHAPTER 5. TIME-OUT LATTICE SEQUENTIAL DECODER FOR THE MIMO
ARQ CHANNEL

It must be noted that the above theorem is only valid for non-zero, but fixed values of
b. Although one can fully characterize the achievable tradeoff in terms of the bias term3

(see Section 5. 2. 2), for non-fixed bias, it is not yet clear how the time-out parameter Γout

changes with the bias term for variable b. Therefore, in what follows, and for the purpose
of completing the analysis, we will only consider the case of fixed bias term.

Now, since Γout depends on the channel statistics (i.e., it is random), it would be
desirable to determine its average value (averaged over channel statistics when it is not in
outage). This may shed the light on determining the optimal value of Γout that can be
used to achieve the optimal tradeoff of the channel. This can be done as follows:

Consider the long-term static channel. Therefore, the optimal average value of Γout,
say Γ∗out, may be asymptotically lower bounded by

Γ∗out =̇ m+
m∑
k=1

(log ρ)k/2Eααα/∈Ols(`)
{

det(RRR
(`)T
kk RRR

(`)
kk )−1/2

}
, (5.47)

In this work, we focus our analysis on nested LAST codes, specifically LAST codes that
are generated using construction A that is described below.

We consider the Loeliger ensemble of mod-p lattices, where p is a prime. First, we
generate the set of all lattices given by

Λp = κ(C + pZ2MTL)

where p → ∞, κ → 0 is a scaling coefficient chosen such that the fundamental volume
Vf = κ2MTLp2MTL−1 = 1, Zp denotes the field of mod-p integers, and C ⊂ Z2MTL

p is a
linear code over Zp with generator matrix in systematic form [III PPPT]T. We use a pair of
self-similar lattices for nesting. We take the shaping lattice to be Λs = ζΛp, where ζ is
chosen such that the covering radius is 1/2 in order to satisfy the input power constraint.
Finally, the coding lattice is obtained as Λc = ρ−r/2MLΛs. Interestingly, one can construct
a generator matrix of Λp as (see [6])

GGGp = κ

(
III 000
PPP pIII

)
, (5.48)

which has a lower triangular form. In this case, one can express the generator matrix of
Λc as GGG = ρ−r/2MLGGG′, where GGG′ = ζGGGp. Thanks to the lower triangular format of GGG. If

3For example, if we let b to vary with SNR and channel statistics as given in (5.21) one can achieve an
asymptotic SNR exponent d∗ls(re, L) = db(re/L) and d∗ss(re, L) = Ldb(re/L) for the long-term and short
term static channels, respectively, where db(r) is as described in Section 5. 2. 2.
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MMM is an m ×m arbitrary full-rank matrix, where m = 2MTL, and GGG is an m ×m lower
triangular matrix, then one can easily show that

det[(MGMGMG)kk] = det(MMMkk) det(GGGkk), (5.49)

where (MGMGMG)kk, MMMkk, and GGGkk, are the lower k × k part of MGMGMG, MMM , and GGG, respectively.

Using the above result, one can express the determinant that appears in (5.47) as

det(RRR
(`)T
kk RRR

(`)
kk ) = det(BBB

(`)T
kk BBB

(`)
kk ) det(GGGT

kkGGGkk) = ρ−rk/2ML det(RRR
(`)T
kk RRR

(`)
kk ) det(GGG′

T
kkGGG

′
kk),
(5.50)

Let µ1 ≤ µ2 ≤ · · · ≤ µk be the ordered nonzero eigenvalues of BBB
(`)T
kk BBB

(`)
kk , for k = 1, · · · ,m.

Then,

det(BBB
(`)T
kk BBB

(`)
kk ) =

k∏
j=1

µj

Note that for the special case when k = m we have µ2(j−1)TL+1 = · · · = µ2jTL = 1 +
ρλj((HHH

c)HHHHc), for all j = 1, · · · ,M .

Denote α′i = − log µi/ log ρ. Using (5.49), one can asymptotically express Γ∗out as

Γ∗out = m+
m∑
k=1

(log ρ)k/2Eααα/∈Ols(`){ρck}, (5.51)

where

ck =
1

2

k∑
j=1

( r1

ML
− α′j

)+

. (5.52)

Now, since ck is non-decreasing in k, we have

Γ∗out = m+ (log ρ)m/2Eααα/∈Osl(L){ρcm}, (5.53)

where

cm = TL

M∑
i=1

( r1

ML
− (1− αi)+

)+

.

At multiplexing gain r1, we have the channel is in outage only when
∑M

j=1(1− αj)+ ≤
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r1/L. In this case, we have

Eααα/∈Osl(L){ρcm} =

∫
ααα/∈Osl(L)

ρcmfααα(ααα) dααα

=̇ (log ρ)m/2
∫

ααα/∈Osl(L)

exp

(
log ρ

[
TL

M∑
i=1

(
r1

ML
− (1− αi)+

)+

−

M∑
i=1

(2i− 1 +N −M)αi

])
dααα

=̇ (log ρ)m/2ρl(r1),

where Osl(L) =
{
ααα ∈ RM

+ :
∑M

i=1(1− αi)+ < r1/L
}

, and

l(r1) = max
ααα/∈Osl(L)

[
TL

M∑
i=1

( r1

ML
− (1− αi)+

)+

−
M∑
i=1

(2i− 1 +N −M)αi

]
. (5.54)

It is not so difficult to see that the optimal channel coefficients that maximize (5.54) are

α∗i = 1, for i = 1, · · · ,M − k,

and
α∗i = 0, for i = M − k + 1, · · · ,M.

Substituting ααα∗ in (5.54), we get

l(r1) =
Tr1

M

(
M − r1

L

)
−
(
M − r1

L

)(
N − r1

L

)
, (5.55)

for r1 = 0, 1, · · · ,M . An since re =̇ r1, the asymptotic average computational complexity,
when the channel is in outage, can be expressed as4

Γ∗out = 2MTL+ (log ρ)MTLρl(re). (5.56)

One interesting special case of computing the optimal average time-out parameter Γ∗out

is when re = 0, i.e., when using a code with fixed rate R1. In this case we have

Γ∗out = 2MTL+
(log ρ)MTL

ρMN
. (5.57)

4As a reminder, the logarithm that appears in the complexity analysis is to the base 2.
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Thus, the above equation describes how the time-out limit is related to the system
parameters (M,N, T, L, ρ) at the high SNR regime. As an example, consider a 2 × 2
MIMO ARQ channel with L = 2 rounds. Then, according to Theorem 2, we have T = 3
is sufficient to achieve the optimal tradeoff. The signal dimension in this case is m = 24.
Assume ρ = 100 (20 dB). According to (5.56), the optimal time-out limit is given by
Γ∗out ≥ 98. As will be shown in the sequel, this theoretical result closely matches the value
of Γ∗out that is obtained experimentally. Typical values of b that corresponds to Γ∗out ≈ 98
are between 0.6 and 1. For very small values of b, the average number of computations
increases and according to that Γ∗out � 98.

To see the great advantage of using the time-out lattice sequential decoder with con-
stant bias term over the incomplete list lattice decoder implemented via sphere decoding
algorithms, we compare the average computational complexity of both decoders. However,
it should be noted here that the sphere decoder is allowed to time-out according to the
results that were derived in Chapter 3, Section 3.4, in order to get a fair complexity com-
parison between both decoders. It has been shown in Chapter 3 (see Section 3.4) that, for
high SNR, the average computations performed by the sphere decoder when the channel
is not in outage, say Γsphere for a system with m = 2MTL signal dimension is given by
(assuming fixed rate r1 = 0)

Γsphere = 2MTL+
(log ρ)2MTL

ρMN
. (5.58)

The ratio of the average complexity of both decoder, say γ, is given by

γ =
Γsphere

Γ∗out

=
2MTL+ (log ρ)2MTL/ρMN

2MTL+ (log ρ)MTL/ρMN
.

This is a huge saving in computational complexity, especially for large signal dimensions
even at very high SNR. For example, at ρ = 108 (80 dB), γ ≈ 7.4, i.e., the list sphere
decoder’s complexity is about 7 times larger than the complexity of the new proposed
time-out lattice sequential decoder. For ρ < 80 dB, one would expect the ratio γ � 7. For
extremely high SNR values (e.g., ρ ≥ 90 dB), it seems that γ → 1 as ρ→∞.

Moreover, some interesting remarks about the effect of extremely decreasing or increas-
ing the value of b on the performance-throughput-complexity tradeoff are discussed next.
For very large SNR values, it is

It is well-known that as b→∞, lattice sequential decoders based on Schnnor-Euchner
enumeration converts to the MMSE-DFE decoder [39]. In terms of the total number of
visited nodes, MMSE-DFE decoder achieves linear computational complexity in m. In this
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case, for any Γout > m, the message will always be decoded from the first round. Although
it achieves high throughput and is computationally efficient, this decoder cannot achieve
the optimal tradeoff. Assuming N ≥M , the maximum SNR exponent that such a decoder
can achieve is (N −M + 1)(1− re/ML)+ (see [35] for more details about MMSE decoding
for the case of MIMO channel with no ARQ).

On the other hand, as b→ 0 the decoder achieves the best performance. However, the
decoding complexity becomes equivalent to (and for some cases worst than) the complexity
of lattice (sphere) decoding which is extensively large. Our main objective of using lattice
sequential decoding is to save on decoding complexity. Therefore, one should appropriately
select the bias term b so that the optimal tradeoff is achieved while reducing the compu-
tational complexity. This may be achieved by the sequential decoder by ensuring that the
path metric along the correct path increases on average, while decreases along other paths.
In this case, we choose b such that Eeee′{µ(zzzk1)} > 0 (assuming zzzm1 is the correct path). This
corresponds to b > E{‖[eee′]i‖2} = 1/2. This fact is verified experimentally as will be shown
in the next section.

As discussed earlier, the value of the parameter Γout used in the time-out algorithm is
critical for achieving the optimal tradeoff of the MIMO ARQ system. In order to achieve
the optimal tradeoff, both b and Γout have to be appropriately selected in the time-out
algorithm. Remember that the probability of error is upper bounded by

Pe ≤
L−1∑
`=1

Pr(E`,A`)︸ ︷︷ ︸
controlled by Γout

+ Pr(EL)︸ ︷︷ ︸
controlled by b

(5.59)

where Pr(E`,A`) ≤ ρ−f(re/L) is the probability of undetected error at round ` and is mainly
controlled by the time-out parameter Γout. However, the second term of the RHS of the
above upper bound is affected by the value of the bias term b. Therefore, both b and Γout

have to be appropriately selected in the time-out algorithm so that a balance is obtained
which may lead to achieving the optimal tradeoff of the channel.

Suppose that an optimal value of b is set in the time-out algorithm. Then, choosing a
very small or large value of Γout may result in a loss of the optimal tradeoff. This is because
Γout can be seen as the parameter responsible for the amount of retransmission when error is
detected. Choosing a large value of Γout reduces the probability of retransmission and may
result in large performance degradation. In this case, as Γout → ∞, we have Pr(A`) → 1.
Therefore, the undetected error probability becomes equivalent to (for the long-term static
channel)

Pr(E`,A`) = Pr(E`) =̇ ρ−f(r1/`).
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Moreover, the probability of retransmission given the channel is not in outage approaches
0, which means that re = r1 (p(`) → 0). And since the average error probability defined
in (5.8) is dominated by the term with the smallest SNR exponent, we have

Pe(ρ) ≤̇ ρ−f(r1/L) +
L∑
`=1

ρ−f(r1/`) =̇ ρ−f(re). (5.60)

This is equivalent to the performance of the MIMO channel with no ARQ. On the other
hand, choosing a very small value of Γout improves the performance5 at the expense of large
throughput loss. In this case, the undetected error probability approaches 0, p(`) → 1,
and the throughput η → R1/L, i.e., re = r1/L. The error probability at high SNR in this
case is also given by (5.60).

Therefore, in order to achieve the optimal tradeoff of the MIMO ARQ channel, first
b must be chosen to ensure that the achievability of the optimal diversity-multiplexing
tradeoff when operating over the whole received signal (i.e., at round L). Then, Γout is
selected accordingly so that the optimal diversity-multiplexing-delay tradeoff is achieved.

5.4 Simulation Results

In our simulation, we consider a long-term static MIMO ARQ link with M = N = L = 2,
T = 3 and R1 = 8 bits per channel use. The incremental redundancy LAST code is
obtained as an (m, p, k) Loeliger construction. The frame error rate and computational
complexity are plotted in Figure 5.4 and Figure 5.5, respectively, for different values of b
used in the time-out algorithm. We measure the computational complexity of the joint
lattice sequential decoder as the total number of nodes visited by the decoder during the
search, accumulated over all ARQ rounds, until a new transmission is started. For every
value of b, the optimal value of Γout, denoted by Γ∗out, was found via simulation by trial
and error. Using those optimal parameters, it is shown that the IR-LAST coding scheme
decoded using the time-out lattice sequential decoder can achieve probability of error very
close to the one that corresponds to the same IR-LAST coding scheme decoded using the
list lattice decoder. This is achieved with significant reduction in complexity compared to
the list lattice decoder (see Figure 5.5). It is interesting to see how such IR-LAST coding
scheme can achieve probability of error close to the coherent LAST code with half the

5Performance improvement is achieved as a coding gain and not in the SNR exponent. In this case,
the decoder will accumulate more information about the message before making a decision which is due
to the fact that most of the time the decoder asks for retransmission.
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rate (4 bpcu). On the other hand, the effective rate, Re, of the IR-LAST coding scheme
decoded under the new proposed decoder is shown to approach R1 = 8 as SNR grows as
predicted by the theory. Optimal values of Γout for some special cases of b are provided
in Table 1. As expected, for values of b < 1/2, the average computational complexity of
the time-out algorithm increases and as a consequence, the value of Γ∗out is proportionally
increased. Simulation results demonstrate the excellent performance-complexity tradeoff
achieved by the proposed algorithm for all values of b, especially at the moderate-to-high
SNR regime (see Figure. 5.5).

Table 5.1: Optimum values of Γout for some special cases of b used in the time-out algorithm
for the case of M = N = L = 2 and T = 3 MIMO ARQ system using IR-LAST random
code

b Γ∗out

0.6 100
0.4 800
0.1 4× 104

The error rates are obtained by averaging over at least 10 000 channel realizations at
small SNRs and as much channel realization as required to count at least 100 frame errors
at high SNRs. It is clear that for values of b > 1/2 the decoder exhibits some performance
degradation compared to the incomplete list sphere decoder. To improve the performance
one need to resort to smaller values of b at the price of increasing computational complexity
(see Figure 5.4 and Figure 5.5). In general and for all finite values of b, the time-out
lattice stack sequential decoder has much lower computational complexity compared to
the incomplete list sphere decoder.

5.5 Summary

In this Chapter, we have demonstrated, analytically and via simulation, the significant im-
provements achieved by the lattice stack sequential decoder over the incomplete list lattice
decoder that is used for joint error detection and correction in the IR-LAST MIMO ARQ
channel. A time-out algorithm has been proposed. Theoretical analysis and simulation
results show that the optimal tradeoff can be achieved by such algorithm with very low
decoding complexity compared to the list lattice decoder, especially for moderate-to-high
SNR for which the list output could be extensively large.
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Figure 5.4: The optimal tradeoff achieved by the time-out algorithm lattice stack sequential
decoder for several values of b.
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Chapter 6

Discussion and Conclusion

6.1 Summary

The search for low computational complexity decoders for any communication system is
still an active and ongoing research topic up to these days. However, it is considered a
very challenging problem.

In this thesis, our main objective is to analyze the computational complexity of some ef-
ficient algorithms that perform lattice decoding for lattice codes applied to several wireless
communication channels. In general, the sphere decoder is commonly used in communica-
tion systems that can be well-described by the linear Gaussian vector channel model. It is
well-known that such a decoder achieves ML or near-ML performance. However, the exact
complexity analysis of the basic sphere decoder for general space-time codes applied to
MIMO wireless channel is known to be difficult. In Chapter 3, we have analyzed the com-
putational complexity of sphere decoding for the quasi-static, LAST coded MIMO channel.
Specifically, we have derived an upper bound of the tail distribution of the decoder’s com-
putational complexity. We have shown that, when the computational complexity exceeds
a certain limit, this upper bound becomes dominated by the outage probability achieved
by LAST coding and lattice (sphere) decoding schemes. We have calculated the minimum
average computational complexity that is required by the decoder to achieve near optimal
performance in terms of the system performance. Moreover, we have shown analytically
how MMSE-DFE can significantly improve the tail exponent and as a consequence reduces
(average) computational complexity.

However, sphere decoders are only efficient in the high SNR regime and low signal
dimensions, and exhibits exponential (average) complexity for low-to-moderate SNR and

138



CHAPTER 6. DISCUSSION AND CONCLUSION

large signal dimensions. The problem of designing low complexity receivers for the MIMO
channel that achieve near-optimal performance is considered a challenging problem. In
Chapter 4, the asymptotic performance of the lattice sequential decoder for LAST MIMO
channel has been analyzed. We have determined the rates achievable by lattice coding
and sequential decoding applied to such a channel. The diversity-multiplexing tradeoff
under lattice sequential decoding has been derived as a function of its parameter—the bias
term, which is critical for controlling the amount of computations required at the decoding
stage. Achieving low decoding complexity requires increasing the value of the bias term.
However, this is done at the expense of losing the optimal tradeoff of the channel. In this
work, we have also derived the tail distribution of the decoder’s computational complexity
in the high signal-to-noise ratio regime. Our analysis reveals that the tail distribution of
such low complexity decoder is dominated by the outage probability of the channel for the
underlying coding scheme. Also, the tail exponent of the complexity distribution is shown
to be equivalent to the diversity-multiplexing tradeoff achieved by lattice coding and se-
quential decoding schemes. We have shown analytically how MMSE-DFE can significantly
improve the tail exponent and as a consequence reduces computational complexity. In par-
ticular, we have shown that there exists a cut-off multiplexing gain for which the average
computational complexity of the decoder remains bounded.

Finally, in Chapter 5, we have considered some applications to lattice sequential de-
coding for the MIMO ARQ channel. We have proposed an efficient approach for joint
detection and decoding based on lattice stack sequential decoding. We have implemented
a time-out algorithm at the decoder to predict in advance the occurrence of high channel
noise. This results in less wasted time trying to decode a noisy signal and hence improving
upon decoding complexity. We have shown that the optimal tradeoff of the channel can be
achieved using such a decoder with significant reduction in (average) decoding complexity.
We have demonstrated, via analysis and simulation, the significant improvements achieved
by the Fano and stack sequential decoders over the incomplete list lattice decoder that is
used for joint error detection and correction in the MIMO ARQ channel.

6.2 Suggestion for Further Research

In this work we were able to provide some mathematical analysis regarding the computa-
tional complexity of the lattice sequential decoder for the outage-limited MIMO channels.
However, our analysis is not complete in the sense that the analysis has been performed
for the high-SNR regime. It would be desirable to study the complexity behavior of both
sphere decoding and lattice sequential decoding for practical values of SNR (i.e., for low-
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to-moderate SNR).

Another important issue we would be interesting to investigate for future work is the
implementation of a power control algorithm to the MIMO ARQ scheme. Our work analyze
the MIMO ARQ system with constant power at the transmitter. In long-term static
channel, constant power at the transmitter does not improve diversity at low multiplexing
rate. This problem has been solved in [41] by implementing a power control algorithm.
Mathematical analysis revealed that diversity order at low multiplexing rate with power
control algorithm increases without any additional feedback beyond the standard one-bit
ARQ feedback signal. The implementation of power control algorithm for the case of
sequential decoding is considered for future work.

Multi-Level Feedback MIMO ARQ Systems: Our MIMO ARQ system model
uses only a one-bit feedback for success/failure indication. Recently [64], there has been
some interest in MIMO ARQ systems with multi-level feedback. A significant part of
such system depends on the accumulative nature of the incremental redundancy ARQ
scheme. It has been shown in [64] that performance improvements are possible when
additional information is provided through the feedback link. The design of IR-LAST
codes for the case of multi-level feedback MIMO ARQ system has not yet been studied.
It would interesting to analyze both the performance improvements and computational
complexity of the multi-level feedback MIMO ARQ system when sequential decoder is
considered. One could examine the advantages of having such low complexity decoders on
the performance of the system and try to optimize the search algorithm when multi-level
feedback is considered.
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Proof of Lemma 1

Without loss of generality, we assume that all-zero lattice point was transmitted. Let

φ′(zzzk1) =

{
1, if ‖eee′k1 −RRRkkzzz

k
1‖2 ≤ R2

s, ‖eee′k1‖2 ≤ R2
s;

0, otherwise.
(A.1)

where eee′k1 is the last k components of eee′ = QQQTeee, and QQQ is the orthogonal matrix defined in
(3.10). Given that ‖eee′‖2 ≤ R2

s, it must follow that ‖eee′k1‖ ≤ R2
s, for all 1 ≤ k ≤ m. The

total number of integer lattice points that satisfy (A.1) is given by

Ck =
∑
zzzk1∈Zk

φ′(zzzk1). (A.2)

In general one can show that for any random vectors uuu and vvv, and Rs > 0, it holds{‖uuu−
vvv‖2 ≤ R2

s, ‖vvv‖2 ≤ R2
s} ⊆ {‖vvv‖2 ≤ 4R2

s}. Therefore, one can easily show that

Ck ≤
∑
zzzk1∈Zk

φ̂(zzzk1), (A.3)

where

φ̂(zzzk1) =

{
1, if ‖RRRkkzzz

k
1‖2 ≤ 4R2

s;

0, otherwise.
(A.4)

We can further upper bound Ck by introducing an auxiliary random variable that has
a uniform distribution in the Voronoi region of the lattice Λ(RRRkk). This can be done as
follows:
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Let

φ̃(xxxk1 + uuuk1) =

{
1, ‖xxxk1 + uuuk1‖2 ≤ 7R2

s

0, otherwise

where uuuk1 is a random variable that is uniformly distributed in V000(RRRkk) and independent
of xxxk1. Then, assuming that there exists at least one lattice point xxxk1 6= 000 inside the sphere,
one can show that

Ck ≤
∑

xxxk1∈Λ(RRRkk)

φ̃(xxxk1 + uuuk1)

The indicator function in (A.4) can be rewritten as

φ̂(xxxk1) =

{
1, ‖xxxk1‖2 ≤ 4R2

s, ‖(xxxk1 + uuuk1)− uuuk1‖2 ≤ 4R2
s

0, otherwise

=

{
1, ‖xxxk1‖2 ≤ 4R2

s, ‖(xxxk1 + uuuk1)‖2 ≤ 4R2
s + 2uuuk1

T
xxxk1 + ‖uuuk1‖2

0, otherwise

where uuuk1 is a uniform random variable in the fundamental region of the lattice Λ(RRRkk).

By noting that ‖uuuk1‖2 ≤ R2
s [since uuuk1 ∈ V000(Λ(RRRkk))], and uuuk1

T
xxxk1 ≤ ‖uuuk1‖‖xxxk1‖ ≤ R2

s (since
‖xxxk1‖ ≤ Rs), we then have ∑

xxxk1∈Λ(RRRkk)

φ̂(xxxk1) ≤
∑

xxxk1∈Λ(RRRkk)

φ̃(xxxk1 + uuuk1)

Equivalently, we have that

Ck ≤
∑

xxxk1∈Λ(RRRkk)

φ̃(xxxk1 + uuuk1). (A.5)

Now, taking the average in both sides of (A.5) over uuuk1 ∈ V000(RRRkk) we have (see Lemma
2 in [8])

Ck ≤
V (Sk(

√
7Rs))

Vf (Λ(RRRkk))

142



Appendix B

Proof of Theorem 4

The input to the decoder, after QR preprocessing (HHHGGG = QQQRRR) of (2.5), is given by
yyy′ = QQQTyyy = RRRzzz + eee′, where eee′ = QQQTeee. Let Es be the event that the lattice Stack
sequential decoder makes an erroneous detection, conditioned on µmin, where µmin =
min{0, b − ‖eee′11‖2, 2b − ‖eee′21‖2, . . . , bm − ‖eee′m1 ‖2} is the minimum metric that corresponds
to the transmitted path. Then, Pe = Eµmin

{Pr(Es)} is the frame error rate of the lattice
Stack sequential decoder. Without loss of generality, we assume that N ≥M .

Due to lattice symmetry, we assume that the all zero codeword 000 was transmitted.
Now, any sequence xxx = GzGzGz 6= 000, xxx ∈ Λc can be decoded as the closest lattice point by the
decoder only if its metric µ(zzzm1 ) is greater than µmin. Therefore, for a given lattice Λc,

Pr(Es|Λc) ≤
∑

zzz∈Zm\{000}
Pr(µ(zzzm1 ) > µmin)

=
∑

zzz∈Zm\{000}
Pr(‖eee′ −RRRzzz‖2 < bm− µmin).

(B.1)

The upper bound in (B.1) follows from the union bound, and due to the fact that in
general, µ(zzzm1 ) > µmin is just a necessary condition for xxx to be decoded by the lattice Stack
sequential decoder. By noticing that −(µmin + ‖eee′‖2) ≤ 0, we get

Pr(Es|Λc) ≤
∑
xxx∈Λ∗c

Pr(‖HHHxxx‖2 − 2(HHHxxx)Teee < bm), (B.2)

where Λ∗c = Λc\{000}. Note the independence of the upper bound (B.2) of µmin. We would
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like now to upper bound the term inside the summation in (B.2). Using Chernoff bound,

Pr(‖HHHxxx‖2 − 2(HHHxxx)Teee < bm) ≤
{
e−‖HHHxxx‖

2/8ebm/4, ‖HHHxxx‖2 > bm;

1, ‖HHHxxx‖2 ≤ bm.
(B.3)

By taking the expectation over the ensemble of random lattices (see [8], Theorem 4),

Pr(Es) = EΛc{Pr(Es|Λc)} ≤
1

Vc

{ ∫
‖HHHxxx‖2<bm

dxxx+ ebm/4
∫

‖HHHxxx‖2>bm

e−‖HHHxxx‖
2/8 dxxx

}

≤ 1

Vc

{
πm/2(bm)m/2

Γ(m/2 + 1) det(HHHTHHH)1/2
+

(8π)m/2ebm/4

det(HHHTHHH)1/2

}
.

(B.4)

Next, we make use of the fact that there exists a shifted lattice code Λc +uuu∗0 with number
of codewords inside the shaping region (see [8])

|C(Λc,uuu
∗
0,R)| = 2RT ≥ V (R)

Vc
.

Also, it is easy to verify that

det(HHHTHHH) =
(
det
(
ρ(HHHc)HHHHc

))2T
.

Denote R = r log ρ and 0 ≤ λ1 ≤ · · · ≤ λM the eigenvalues of (HHHc)HHHHc, then, the bound
(B.4) can be rewritten as (conditioned on channel statistics)

Pr(Es|ννν) ≤̇ K(m, b)ρ−T [M−∑M
j=1(1−νj)+−r], (B.5)

where ννν = (ν1, · · · , νM), νi , − log λi/ log ρ, (x)+ = max{0, x}, and K(m, b) is a constant
independent of ρ. Now, define the set

A =

{
ννν ∈ RM

+ : ν1 ≥ · · · ≥ νM ≥ 0,
M∑
i=1

νi > M − r
}
. (B.6)

Using (B.6), the probability of error can be upper bounded as follows:

Pr(Es) ≤ Pr(ννν ∈ A) + Pr(Es, ννν ∈ A). (B.7)

The behaviour of the first term at high SNR is ρ−d(r). Averaging the second term over the
channels in A set, we obtain (see [23]),

Pr(Es) ≤̇ ρ−d(r) +

∫
A
fννν(ννν) Pr(Es|ννν) dννν
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≤̇ ρ−d(r), (B.8)

where fννν(ννν) is the joint probability density function of ννν which, for all ννν ∈ A, is asymp-
totically given by (see [23])

fννν(ννν) =̇ exp

− log(ρ)

min{M,N}∑
i=1

(2i− 1 + |N −M |)νi

 . (B.9)

By definition, the error probability of the lattice sequential decoder is lower bounded by
the probability of error of the lattice decoder (ld) knowing the channel matrix HHHc. Hence,
it can be easily shown that (see [23])

Pr(Es) ≥ Pr(Eld) =̇ ρ−d(r). (B.10)
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Proof of Theorem 5

The input to the decoder, after QR preprocessing (BBBGGG = QQQRRR) of (2.5), is given by
yyy′′ = QQQTyyy′ = RRRzzz + eee′′, where eee′′ = QQQTeee′. Let Es be the event that the lattice Stack
sequential decoder makes an erroneous detection, conditioned on µmin, where µmin =
min{0, b − ‖eee′11‖2, 2b − ‖eee′21‖2, . . . , bm − ‖eee′m1 ‖2} is the minimum metric that corresponds
to the transmitted path. Then, Pe = Eµmin

{Pr(Es)} is the frame error rate of the lattice
Stack sequential decoder.

Due to lattice symmetry, we assume that the all zero codeword 000 was transmitted.
Now, any sequence xxx = GzGzGz 6= 000, xxx ∈ Λc can be decoded as the closest lattice point by the
decoder only if its metric µ(zzzm1 ) is greater than µmin. Therefore, for a given lattice Λc,

Pr(Es|Λc) ≤
∑

zzz∈Zm\{000}
Pr(µ(zzzm1 ) > µmin)

=
∑

zzz∈Zm\{000}
Pr(‖eee′′ −RRRzzz‖2 < bm− µmin).

(C.1)

The upper bound in (C.1) follows from the union bound, and due to the fact that in
general, µ(zzzm1 ) > µmin is just a necessary condition for xxx to be decoded by the lattice Stack
sequential decoder. By noticing that −(µmin + ‖eee′′‖2) ≤ 0, we get

Pr(Es|Λc) ≤
∑
xxx∈Λ∗c

Pr(‖BBBxxx‖2 − 2(BBBxxx)Teee′ < bm), (C.2)

where Λ∗c = Λc\{000}. Note the independence of the upper bound (C.2) of µmin. We would
like now to upper bound the term inside the summation in (C.2). The difficulty here
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stems from the non-Gaussianity of the random vector eee′ for any finite T . To overcome this
problem, consider the following:

Let
ẽee = [BBB −FFFHHH]ggg +FFF (www +www1),

where ggg ∼ N (0, σ2IIIm), www1 ∼ N (0, (σ2− 1/2)IIIm) and σ2 ≥ 1/2. Following the footsteps of
[23], it can be shown that by appropriately constructing a nested LAST code we have that

Pr(Es|Λc) ≤ βm
∑
xxx∈Λ∗c

Pr(‖BBBxxx‖2 − 2(BBBxxx)Tẽee < bm), (C.3)

where ẽee ∼ N (0, 0.5IIIm), and βm is a constant independent of ρ. Using Chernoff bound,

Pr(‖BBBxxx‖2 − 2(BBBxxx)Tẽee < bm) ≤
{
e−‖BBBxxx‖

2/8ebm/4, ‖BBBxxx‖2 > bm;

1, ‖BBBxxx‖2 ≤ bm.
(C.4)

By taking the expectation over the ensemble of random lattices (see [8], Theorem 4),

Pr(Es) = EΛc{Pr(Es|Λc)} ≤
βm
Vc

{ ∫
‖BBBxxx‖2<bm

dxxx+ ebm/4
∫

‖BBBxxx‖2>bm

e−‖BBBxxx‖
2/8 dxxx

}

≤ βm
Vc

{
πm/2(bm)m/2

Γ(m/2 + 1) det(BBBTBBB)1/2
+

(8π)m/2ebm/4

det(BBBTBBB)1/2

}
.

(C.5)

Next, we make use of the fact that there exists a shifted lattice code Λc +uuu∗0 with number
of codewords inside the shaping region (see [8])

|C(Λc,uuu
∗
0,R)| = 2RT ≥ V (R)

Vc
.

Also, it is easy to verify that

det(BBBTBBB) =
(

det
(
III +

ρ

M
(HHHc)HHHHc

))2T

.

Denote R = r log ρ and 0 ≤ λ1 ≤ · · · ≤ λmin{M,N} the eigenvalues of (HHHc)HHHHc, then, the
bound (C.5) can be rewritten as (conditioned on channel statistics)

Pr(Es|ννν) ≤̇ K(m, b)ρ−T [
∑min{M,N}
j=1 (1−νj)+−r], (C.6)
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where ννν = (ν1, · · · , νmin{M,N}), νi , − log λi/ log ρ, (x)+ = max{0, x}, and K(m, b) is a
constant independent of ρ. Now, define the set

B =

ννν ∈ Rmin{M,N}
+ : ν1 ≥ · · · ≥ νmin{M,N} ≥ 0,

min{M,N}∑
i=1

(1− νi)+ < r

 . (C.7)

Using (C.7), the probability of error can be upper bounded as follows:

Pr(Es) ≤ Pr(ννν ∈ B) + Pr(Es, ννν ∈ B). (C.8)

The behaviour of the first term at high SNR is ρ−d
∗(r). Averaging the second term over

the channels in B set,

Pr(Es) ≤̇ ρ−d
∗(r) +

∫
B
fννν(ννν) Pr(Es|ννν) dννν

≤̇ ρ−d
∗(r), (C.9)

where fννν(ννν) is the joint probability density function of ννν given by (B.9).

By definition, the error probability of the lattice sequential decoder is lower bounded by
the probability of error of the lattice decoder (ld) knowing the channel matrix HHHc. Hence,
it can be easily shown that (see [23])

Pr(Es) ≥ Pr(Eld) =̇ ρ−d
∗(r). (C.10)
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Proof of Theorem 7

We consider an ensemble of 2MT -dimensional random lattices {Λc} with fundamental
volume Vc satisfying the Minkowski-Hlawka theorem. The random lattice codebook is
C(Λ,uuu0,R), for some fixed translation vector uuu0 and where R is the 2MT -dimensional
sphere of radius

√
MT centred at the origin. The average probability of error (average

over the channel and lattice ensemble) can be upper bounded as

P̄e(ρ) = EΛ{Pe(ρ|Λ)}
≤ EΛ{Pr(error, Rb(ρ) > R(ρ))}+ Pout(ρ, b),

(D.1)

where Pe(ρ|Λ) is the probability of error for a given choice of Λ. Denote 0 ≤ λ1 ≤ · · · ≤
λM the eigenvalues of (HHHc)HHHHc, and let R = r log ρ. As shown in Section 4. 4. 1, by
expressing the bias term b as in (4.20), the achievable rate of lattice sequential decoding
can be written as Rb = log η, where η =

∏M
i=1(1 + ρλi)

ζi . Now, define the outage event

B = {βββ ∈ RM
+ :

∑M
i=1 ζi(1 − βi)+ < r}, where βi = −log λi/ log ρ. Then, the second term

in the upper bound can be expressed as

EΛ{Pr(error, Rb(ρ) > R(ρ))} =̇

∫
B
fβββ(βββ)EΛ{Pe(ρ|βββ,Λ)} dβββ

≤ Pr(‖eee′‖2 > MT (1 + γ)) +

∫
B
fβββ(βββ)Pr(A|βββ) dβββ,

(D.2)

where γ > 0, and fβββ(βββ) is the joint probability density function of βββ which is asymptotically
given by

fβββ(βββ) =̇ exp

(
− log(ρ)

M∑
i=1

(2i− 1 + |N −M |)βi
)
. (D.3)
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Consider here the Stack algorithm (δ = 0). In this case, the matrix BBB′ provided in
(4.13) can be expressed at high SNR as

B̃BB =
(

1− bρ−[
∑M
i=1(1−βi)+−r]/M

)
BBB.

Hence, at high SNR we have

det(B̃BB
T
B̃BB) =̇

(
1− bρ−[

∑M
i=1(1−βi)+−r]/M

)
ρ
∑M
i=1(1−βi)+ . (D.4)

As ρ→∞, we can express b [see (4.20)] as

b =̇
ρ
∑M
i=1(1−βi)+/M

η1/M

[
1−

(
η

ρ
∑M
i=1(1−βi)+

)1/2M
]
. (D.5)

Substituting (D.5) into (D.4), and by realizing that for all Rb > R or equivalently η >̇ ρr,
we can lower-bound (D.4) as det(BBB′TBBB′) ≥ η. Setting AAA = BBB′ in Lemma 1, the ambiguity
probability can be upper bounded as

Pr(A|βββ) ≤̇ exp(−T [log η − r log ρ]). (D.6)

It has been shown in [23] that for T ≥ M + N − 1, the SNR exponent of Pr(‖eee′‖2 >
MT (1 + γ)) with respect to log ρ is larger than d0(r) > db(r). Substituting (D.6) in (D.2)
we get (for T ≥M +N − 1)

EΛ{Pr(error,Rb(ρ) > R(ρ))}

≤̇
∫
B

exp

(
− log(ρ)

M∑
i=1

(2i− 1 + |N −M |)βi + T

[
M∑
i=1

ζi(1− βi)+ − r
])

dβββ

=̇ ρ−db(r).
(D.7)
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Proof of Lemma 5

Let φ′(zzzk1, `) be the indicator function defined by

φ′(zzzk1, `) =

{
1, if ‖eee′′` k1 −RRR

(`)
kkzzz

k
1‖2 ≤ bk − µmin(`);

0, otherwise,

where µmin(`) is the minimum metric along the decoded path. Then, it can be easily
verified that ∑

zzzk1∈Zk
φ(zzzk1, `) ≤

∑
zzzk1∈Zk

φ′(zzzk1, `), (E.1)

where φ(zzzk1, `) is as defined in (5.25), where a path may be extended by the stack decoder
if the partial path metric at that node satisfies µ(zzzk1, `) ≥ µmin(`). Now, given ‖eee′′`‖2 ≤
MTL(1 + γ), and by noticing that −(µmin(`) + ‖eee′′`‖2) ≤ 0, we obtain∑

zzzk1∈Zk
φ′(zzzk1, `) ≤

∑
zzzk1∈Zk

φ
′′
(zzzk1, `), (E.2)

where

φ
′′
(zzzk1, `) =

{
1, if ‖eee′′` k1 −RRR

(`)
kkzzz

k
1‖2 ≤ bk +MTL(1 + γ);

0, otherwise.
(E.3)

Notice the independence of the upper bound (E.2) on µmin(`). Now, let

φ
′′′
k (zzz, `) =

{
Sk(`), if ‖eee′′` −RRR`zzz‖2 ≤ bm− µmin(`);

0, otherwise,
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where
Sk(`) =

∑
zzzk1∈Zk

φ
′′
(zzzk1, `), (E.4)

then it can be easily shown that∑
zzzk1∈Zk

φ
′
(zzzk1, `) ≤

∑
zzz∈Zm

φ
′′′
k (zzz, `) ≤

∑
xxx∈Λc

φ̃k(xxx, `),

where

φ̃k(xxx, `) =

{
Sk(`), if ‖BBB`xxx‖2 − 2(BBB`xxx)Teee′` ≤ bm;

0, otherwise.

Consider now the following lemma:

Lemma 6. At the `-th ARQ round, the number of nodes visited by the lattice stack
sequential decoder at level k = 1, · · · ,m, given that ‖eee′‖2 ≤MTL(1 + γ), can be
upper bounded by (for any finite b > 0)

∑
zzzk1∈Zk

φ(zzzk1, `) ≤ Sk(`) ≤
(7π)k/2

Γ(k/2 + 1)

[bk +MTL(1 + γ)]k/2

det(RRR
(`)T
kk RRR

(`)
kk )1/2

= S ′k(`), (E.5)

where Sk(`) is as defined in (E.4).

Proof. The proof follows the same footsteps of Lemma 4 in Chapter 4.

The tail distribution, given the channel is not in outage, can then be upper bounded
as follows

Pr(Nm(`) ≥ Γout|Ols(`)) ≤ Pr(‖eee′`‖2 >MTL(1 + γ))+

Pr(Nm(`) ≥ Γout, ‖eee′`‖2 ≤MTL(1 + γ)|Ols(`)).
(E.6)

For a given lattice Λc, using Markov inequality, we have

Pr(Nm(`) ≥ Γout|Λc,Ols(`),‖eee′`‖2 ≤MTL(1 + γ))

≤ Pr(Ñm(`) ≥ Γout −m|Λc,Ols(`), ‖eee′`‖2 ≤MTL(1 + γ))

≤ Eeee′{Ñm(`)|Λc,Ols(`), ‖eee′`‖2 ≤MTL(1 + γ)}
Γout −m

, for Γout > m,

(E.7)
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where Ñm(`), assuming all-zero codeword was transmitted, is defined as

Ñm(`) =
m∑
k=1

∑
zzzk1∈Zk\{000}

φ(zzzk1, `).

Using Lemma 2, the conditional average of Ñm(`) with respect to the noise can be further
upper bounded as

Eeee′{Ñm(`)|Λc,Ols(`), ‖eee′`‖2 ≤MTL(1 + γ)} ≤
m∑
k=1

S ′k(`)
∑
xxx∈Λ∗c

Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Teee′` < bm).

(E.8)

Therefore,

Pr(Nm(`) ≥ Γout|Λc,Ols(`),‖eee′`‖2 ≤MTL(1 + γ))

≤

m∑
k=1

S ′k(`)

Γout −m
∑
xxx∈Λ∗c

Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Teee′` < bm).
(E.9)

We would like now to upper bound the term inside the summation in (E.9). The
difficulty here stems from the non-Gaussianity of the random vector eee′` for any finite T . To
overcome this problem, consider the following:

Let
ẽee` = [BBB` −FFF `HHH`]ggg` +FFF `(eee` +www`),

where ggg` ∼ N (0, σ2IIIm), www` ∼ N (0, (σ2 − 1/2)IIIm) and σ2 ≥ 1/2. It can be shown that by
appropriately constructing a nested LAST code we have that

Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Teee′` < bm) ≤ βm Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Tẽee` < bm), (E.10)

where ẽee` ∼ N (0, 0.5IIIm), and βm is a constant independent of ρ. Using Chernoff bound,

Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Tẽee` < bm) ≤
{
e−‖BBB`xxx‖

2/8ebm/4, ‖BBB`xxx‖2 > bm;

1, ‖BBB`xxx‖2 ≤ bm.
(E.11)

By taking the expectation over the ensemble of random lattices

EΛc

∑
xxx∈Λ∗c

Pr(‖BBB`xxx‖2 − 2(BBB`xxx)Teee′` < bm)

 ≤ βm
Vc

{
πm/2(bm)m/2

Γ(m/2 + 1) det(BBBT
`BBB`)1/2

+
(8π)m/2ebm/4

det(BBBT
`BBB`)1/2

}
.

(E.12)
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Substituting (5.5) and (5.42) in (E.12), and by selecting Γout ≥ m+
∑m

k=1 S
′
k(`), we get

Pr(Nm ≥ Γout|Ols(`)) ≤̇ ρ−T`[
∑M
i=1(1−αi)+−r1/`]. (E.13)

Now, by setting γ = ζ log ρ, the first term in the RHS of (E.6) can be shown to be upper
bounded by ρ−f(r1/`), as long as ζ is chosen sufficiently large such that MTLζ ≥ f(r1/`)
(see [41], Appendix IV). Averaging the second term in the RHS of (E.13) over the channels
in Ols(`) set, we obtain ,

Pr(Nm(`) ≥ Γout) ≤̇ ρ−f(r1/`) +

∫
Ols(`)

fααα(ααα) Pr(Nm ≥ Γout|ααα) dααα ≤̇ ρ−f(r1/`), (E.14)

where fααα(ααα) is the joint probability density function of ααα which, for all ααα ∈ Ols(`), is
asymptotically given by (see [23])

fααα(ααα) =̇ exp

(
− log(ρ)

M∑
i=1

(2i− 1 +N −M)αi

)
. (E.15)

Since Nj(`) < Nm(`), for all 1 ≤ j < m, then

Pr(Nj(`) ≥ Γout) ≤ Pr(Nm(`) ≥ Γout) ≤̇ ρ−f(r1/`).
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