

	

	

	

Automated color correction for colorimetric
applications using barcodes

Ismael Benito Altamirano

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial –
CompartirIgual 4.0. Espanya de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual
4.0. España de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0. Spain License.

I S M A E L B E N I T O - A LTA M I R A N O

A U T O M AT E D C O L O R C O R R E C T I O N

F O R C O L O R I M E T R Y A P P L I C AT I O N S

U S I N G B A R C O D E S

U N I V E R S I TAT D E B A R C E L O N A

P H D I N E N G I N E E R I N G A N D A P P L I E D S C I E N C E S

D I R E C T O R : J O A N D A N I E L P R A D E S

A U T O M AT E D C O L O R C O R R E C T I O N

F O R C O L O R I M E T R Y A P P L I C AT I O N S

U S I N G B A R C O D E S

Programa de doctorat en Enginyeria i Ciències Aplicades

Autor: Ismael Benito-Altamirano

Director: Dr. Joan Daniel Prades

Tutor: Dr. Ángel Diéguez Barrientos

Copyright © 2022 Ismael Benito-Altamirano

published by universitat de barcelona

phd in engineering and applied sciences

director: joan daniel prades

tutor: ángel diéguez

This work is licensed by a Creative Commons license cbea.

First printing, January 2022

Acknowledgements

First, this thesis is dedicated to my family. We are a small family: my parents, my grandparents
and my uncles and aunt. Specially, to my mother, who never has failed to encourage me to follow
what I like to study, also for her constancy in response to my chaos. Also, specially to my father,
from whom I got the passion for photography and computer science, knowing this one could
understand better this thesis. To my paternal grandparents who are no longer with us. To my
maternal grandmother who always has good advice, recently she said to my mother: "the kid has
studied enough, since you send it to kindergarten with 3 years, he hasn’t stopped", referring to
this thesis!

To my friends, beginning with Anna, who is my flatmate and my partner; and who has
supported me during these final thesis months. To other friends from the high school, both
neighborhoods I grew up and those friends from the faculty, also. To other colleagues with
whom I have shared the fight for a better university model, and now we share other fights, to my
comrades!

To the Department of Electronics and Biomedical Engineering of Universitat de Barcelona, to
all its members. Specially, to Dr. A. Cornet for being a nice host at the department. Specially, to
Dr. A. Herms, to encourage me to pursue the thesis in this department and to contact Dr. J. D:
Prades, director of this thesis. Also, to other colleagues from the MIND research group i from the
Laboratory from ’the 0 floor’: to Dr. C. Fàbrega, to Dr. O. Canals, and many others!

To Dr. J. D. Prades himself, for the opportunity by accepting this thesis proposal, and embrace
the idea I presented, leading to the creation of ColorSensing. To the ColorSensing team, begining
with Maria Eugenia Martín, co-funder and CEO of ColorSensing. Without forgetting, all the
other teammates: to Josep Maria, to Hanna, to Dani, to Maria, to Ferran and to Miriam (Dr. M.
Marchena). But also, to the former teammates: to Peter, to Oriol (Dr. O. Cusola), to Arnau, to
Carles, to Pablo, to Gerard, to Hamid and to David. Thank you very much all for this journey.

This thesis has been funded in part by the European Research Council under the H2020

Framework Program ERC Grant Agreements no. 727297 and no. 957527. Also, by the Eurostarts
programa with the Agreement no. 11453. Secondary funding sources have been: AGAUR -
PRODUCTE (2016-PROD-00036), BBVA Leonardo, and ICREA Academia programs.

Agraïments

Aquesta tesi va dedicada en primera instància a la meva família. Som una família petita: a mons pares, als

meus avis i als meus tiets. Especialment, a ma mare, perquè mai a fallat en animar-me per perseguir el que

m’agrada estudiar, també per la seva constància davant del meu desordre. Especialment també, al meu pare,

per la seva passió amb la fotografia i la informàtica que des de petit m’ha inculcat, així hom pot entendre

aquesta tesi molt millor. Als meus avis paterns que ja no estan. A la meva àvia materna que sempre té bons

consells, i fa poc li va dir a ma mare: "si el nen ja ha estudiat prou, d’ençà que el vas portar amb tres anys

(al col·legi) no ha parat d’estudiar", referint-se a aquesta tesi!

Als meus amics, començant per l’Anna, que és la meva companya de pis, i la meva parella; que m’ha

recolzat durant aquests darrers mesos a casa mentre redactava la tesi. A tots aquells amics de l’institut, del

barri, de la ’urba’ i de la facultat. També a aquelles companyes amb les quals hem compartit lluites a la

universitat des de l’època d’estudi i ara seguim compartint altres espais polítics, els i les meves camarades.

Al Departament d’Enginyeria Electrònica i Biomèdica de la Universitat de Barcelona, a tots els seus

membres. Especialment, al Dr. A. Cornet per la seva acollida al departament. Al Dr. A. Herms, per

animar-me a fer la tesi al Departament i contactar al Dr. J. D. Prades, director d’aquesta tesi. També, a

altres companyes i companys del MIND, el nostre grup de recerca, i del Laboratori ’de planta 0’: al Dr. C.

Fàbrega, la Dra. O. Casals, i tots els altres!

Al mateix Dr. J. D. Prades, per l’oportunitat acceptant aquesta tesi, i acollir la idea que li vaig presentar

fins al punt d’impulsar la creació de ColorSensing. A tot l’equip de ColorSensing, començant per la Maria

Eugenia Martín, cofundadora i CEO de ColorSensing. Però, per suposat, a la resta de l’equip: al Josep

Maria, a la Hanna, al Dani, a la María, al Ferran i a la Miriam (Dra. M. Marchena). Però també als seus

antics membres amb qui hem coincidit: al Peter, a l’Oriol (Dr. O. Cusola), a l’Arnau, al Carles, al Pablo, al

Gerard, a l’Hamid i al David. Moltes gràcies a tots i totes per fer aquest viatge conjuntament.

Index

Abstract 11

1 Introduction 15

1.1 Objectives . 19

1.2 Thesis sctructure . 20

2 Background and methods 21

2.1 The image consistency problem . 21

2.1.1 Color reproduction . 22

2.1.2 Image consistency . 23

2.1.3 Color charts . 24

2.2 2D Barcodes: the Quick-Response Code . 26

2.2.1 Scalability . 28

2.2.2 Data encoding in QR Codes . 29

2.2.3 Computer vision features of QR Codes 32

2.2.4 Readout of QR Codes . 34

2.3 Data representation . 37

2.3.1 Color spaces . 37

2.3.2 Color transformations . 38

2.3.3 Images as bitmaps . 41

2.4 Computational implementation . 43

3 QR Codes on challenging surfaces 45

3.1 Proposal . 46

3.1.1 Fundamentals of projections . 47

3.1.2 Proposed transformations . 48

8

3.2 Experimental details . 52

3.2.1 Datasets . 52

3.3 Results . 55

3.3.1 Qualitative surface fitting . 55

3.3.2 Quantitative data readability . 58

3.4 Conclusions . 61

4 Back-compatible Color QR Codes 63

4.1 Proposal . 64

4.1.1 Color as a source of noise . 65

4.1.2 Back-compatibility proposal . 68

4.2 Experimental details . 73

4.2.1 Color generation and substitution . 73

4.2.2 Placing colors inside the QR Code . 75

4.2.3 QR Code versions and digital IDs . 75

4.2.4 Channels . 75

4.3 Results . 77

4.3.1 Embedding colors in QRs codes: empty channel 77

4.3.2 Image augmentation channel . 78

4.3.3 Colorimetry setup as channel . 79

4.3.4 Readability . 81

4.3.5 Example of use case . 85

4.4 Conclusions . 86

5 Image consistency using an improved TPS3D method 89

5.1 Proposal . 90

5.1.1 Linear corrections . 91

5.1.2 Polynomial corrections . 93

5.1.3 Thin-plate spline correction . 95

5.2 Experimental details . 98

5.2.1 Dataset and pipeline . 100

5.2.2 Benchmark metrics . 103

5.3 Results . 105

5.3.1 Detecting failed corrections . 105

9

5.3.2 Color correction performance . 106

5.3.3 Execution time performance . 109

5.4 Conclusions . 112

6 Application: Colorimetric indicators 115

6.1 Proposal . 118

6.1.1 Early prototypes . 118

6.1.2 A machine-readable pattern for colorimetric indicators 120

6.1.3 A Color QR Code for colorimetric indicators 122

6.2 Experimental details . 124

6.2.1 Sensor fabrication . 124

6.2.2 Experimental setup . 125

6.2.3 Expected response model . 128

6.3 Results . 129

6.3.1 The color response . 129

6.3.2 Model fitting . 132

6.4 Conclusions . 140

7 Conclusions 143

7.1 Thesis conclusions . 143

7.2 Future work . 145

List of Figures 147

List of Tables 160

Bibliography 163

Abstract

Color-based sensor devices often offer qualitative solutions, where a
material change its color from one color to another, and this is change
is observed by a user who performs a manual reading. These materi-
als change their color in response to changes in a certain physical or
chemical magnitude. Nowadays, we can find colorimetric indicators
with several sensing targets, such as: temperature, humidity, environ-
mental gases, etc. The common approach to quantize these sensors is
to place ad hoc electronic components, e.g. a reader device.

With the rise of smartphone technology, the possibility to auto-
matically acquire a digital image of those sensors and then compute
a quantitative measure is near. By leveraging this measuring process
to the smartphones, we avoid the use of ad hoc electronic components,
thus reducing colorimetric application cost. However, there exists
a challenge on how-to acquire the images of the colorimetric appli-
cations and how-to do it consistently, with the disparity of external
factors affecting the measure, such as ambient light conditions or
different camera modules.

In this thesis, we tackle the challenges to digitize and quantize
colorimetric applications, such as colorimetric indicators. We make a
statement to use 2D barcodes, well-known computer vision patterns,
as the base technology to overcome those challenges. We focus on
four main challenges: (I) to capture barcodes on top of real-world
challenging surfaces (bottles, food packages, etc.), which are the
usual surface where colorimetric indicators are placed; (II) to define a
new 2D barcode to embed colorimetric features in a back-compatible
fashion; (III) to achieve image consistency when capturing images
with smartphones by reviewing existent methods and proposing a
new color correction method, based upon thin-plate splines mappings;
and (IV) to demonstrate a specific application use case applied to
a colorimetric indicator for sensing CO2 in the range of modified
atmosphere packaging –MAP–, one of the common food-packaging
standards.

Resum

Els dispositius de sensat basats en color, normalment ofereixen solucions

qualitatives, en aquestes solucions un material canvia el seu color a un

altre color, i aquest canvi de color és observat per un usuari que fa una

mesura manual. Aquests materials canvien de color en resposta a un canvi

en una magnitud física o química. Avui en dia, podem trobar indicadors

colorimètrics que amb diferents objectius, per exemple: temperatura, humitat,

gasos ambientals, etc. L’opció més comuna per quantitzar aquests sensors és

l’ús d’electrònica addicional, és a dir, un lector.

Amb l’augment de la tecnologia dels telèfons intel·ligents, la possibilitat

d’automatitzar l’adquisició d’imatges digitals d’aquests sensors i després

computar una mesura quantitativa és a prop. Desplaçant aquest procés de

mesura als telèfons mòbils, evitem l’ús d’aquesta electrònica addicional, i

així, es redueix el cost de l’aplicació colorimètrica. Tanmateix, existeixen

reptes sobre com adquirir les imatges de les aplicacions colorimètriques i de

com fer-ho de forma consistent, a causa de la disparitat de factors externs que

afecten la mesura, com per exemple la llum ambient or les diferents càmeres

utilitzades.

En aquesta tesi, encarem els reptes de digitalitzar i quantitzar aplicacions

colorimètriques, com els indicadors colorimètrics. Fem una proposició per

utilitzar codis de barres en dues dimensions, que són coneguts patrons

de visió per computador, com a base de la nostra tecnologia per superar

aquests reptes. Ens focalitzem en quatre reptes principals: (I) capturar

codis de barres sobre de superfícies del món real (ampolles, safates de menjar,

etc.), que són les superfícies on usualment aquests indicadors colorimètrics

estan situats; (II) definir un nou codi de barres en dues dimensions per

encastar elements colorimètrics de forma retro-compatible; (III) aconseguir

consistència en la captura d’imatges quan es capturen amb telèfons mòbils,

revisant mètodes de correcció de color existents i proposant un nou mètode

basat en transformacions geomètriques que utilitzen splines; i (IV) demostrar

l’ús de la tecnologia en un cas específic aplicat a un indicador colorimètric

per detectar CO2 en el rang per envasos amb atmosfera modificada –MAP–,

un dels estàndards en envasos de menjar.

Chapter 1. Introduction

The rise of the smartphone technology developed in parallel to the
popularization of digital cameras enabled an easier access to photog-
raphy devices to the people. Nowadays, modern smartphones have
onboard digital cameras that can feature good color reproduction for
imaging uses [1].

Alongside with this phenomenon, there has been a popularization
of color-based solutions to detect biochemistry analytes [2]. Both
phenomena are probable to be linked. As the first one eases the
second. Scientists who want to pursue research to discover new or
improve existent color-based analytics found themselves with better
and better imaging tools, spending fewer and fewer resources.

Color-based sensing [2] is often preferred over electronic sensing
[3] for three reasons: one, the rapid detection of the analytes; two,
the high sensitivity; and three, the high selectivity of colormetric
sensors. Nevertheless, imaging acquisition on smartphone devices
still presents some acquisition challenges, and how to overcome those
challenges is still an open debate [4].

This is why, the ERC-StG BetterSense project (ERC n. 336917)
was granted the extension ERC-PoC GasApp project (ERC n.727297).
Bettersense was an ERC-funded project which aimed to solve high
power consumption and the poor selectivity of electronic gas sensor
technologies [5]. GasApp was an ERC-funded project that aimed to
bring the capability to detect gases to smartphone technology, relying
on color-based sensor technology [6].

The accumulated knowledge from BetterSense was translated into
the GasApp project to create colorimetric indicators to sense target
gases, the GasApp proposal is detailed in Figure 1.1. Later on, the
SnapGas project (Eurostars n. 11453) was also granted to carry on this
research topic, and apply the new technology to other colorimetric
indicators to sense environmental gases [7].

16 automated color correction for colorimetry applications using barcodes

Figure 1.1: The GasApp pro-
posal is presented. Left, GasApp
changed the core sensing tech-
nology from electronic to colori-
metric indicators. Right, the ini-
tial idea of the GasApp project,
a card where colorimetric dyes
are printed alongside with color
charts and a QR Code.

The GasApp proposal was based upon changing the electronic
devices to colorimetric indicators, thus leveraging the electronic com-
ponents of the sensor readout to handheld smartphones. To do so,
GasApp projected a solution implementing an array with colorimetric
indicators displayed on top of a card-sized substrate to be captured
by a smartphone device (see Figure 1.1).

The design of this array of colorimetric indicators presented several
challenges, such as: detecting and extracting the card and the desired
region of interest (sensors), embedding one or more color charts and
later perform color correction techniques to achieve adequate sensor
readouts at any possible scenario a mobile phone could take a capture.

The research of this thesis started in this context, then the work
here presented aims to tackle these problems and resolve them with
an integral solution. Let us go deeper in some of these challenges to
properly formulate our thesis proposal.

First, the fabrication of the color-based sensors presents a challenge
itself. There exists is a common starting point in printed sensors
technologies to use ink-jet printing as the first approach to the problem
to fabricate a printed sensor [8; 9]. However, ink-jet printing is an
expensive and often limited printing technology from the standpoint
of view of mass-production [10].

Second, color reproduction is a wide-known challenge of digital
cameras [11]. Often, when a digital camera captures a scene it can
produce several artifacts during the capture (i.e. underexposure,
overexposure, ...), this is represented in see Figure 1.2.

The problem of color reproduction, involves a directly linked
problem: the problem of achieving image consistency among datasets
[12]. While color reproduction aims at matching the color of a given
object when reproduced in another device as an image (e.g. a painting,
a printed photo, a digital photo on a screen, etc.), image consistency is
the problem of taking different images of the same object in different
illumination conditions and with different capturing devices, to finally
obtain the same apparent colors for this object.

introduction 17

Usually, both problems are solved with the addition of color rendi-

tion charts to the scene. Color charts are machine-readable patterns
which contain several color references [13]. Color charts bring a sys-
tematic way of solving the image consistency problem by increasing
the amount of color references to create subsequently better color
corrections than the default white-balance [14; 15].

A

C

B

color (x)

a
p

p
a
re

n
t

c
o

lo
r

(x
)

Figure 1.2: Simplified 1D rep-
resentation of the color repro-
duction problem in reversible
and in non-reversible conditions.
For clarity only one color coor-
dinate has been represented: x

stands for R, G, or B, and x′

stands for R’, G’, or B’. Object
colors (x) appear to be different
(x’) after being acquired by dig-
ital means. In some situations,
these alterations cannot be re-
moved, because the transforma-
tion from x′ to x is not single-
valued (the critical color ranges
where this problem occurs are
highly lighted with the green
marker).

Third, using smartphones to acquire image data often presents
computer vision challenges. On one hand, authors preferred to
enclose the smartphone device in a fixed setup [16; 17]. On the other
hand, there exists a consolidated knowledge on computer vision
techniques, which it could be applied to readout colorimetric sensors
with handheld smartphones [18].

Computer vision often seeks to extract features from the captured
scene to be able to perform the desired operations on the image,
such as: projective corrections, color readouts, etc. These features are
objects with unique contour metrics or shapes, like the ArUco codes

(see Figure 1.3) used in augmented reality technology [19].

Moreover, 2D barcode technology is based upon this principle:
encode data into machine-readable patterns which are easy to extract
from a scene thanks to their uniqueness. QR Codes are the most
known 2D barcodes [20].

Figure 1.3: Four examples of
ArUco codes. These codes
present certain feature unique-
ness (rotation, non-symmetry,
etc.), which enables easy lo-
cation and identification on a
scene.

This is why, other authors had proposed solutions to print QR
Codes with using colorimetric indicators as their printing ink. Ren-
dering QR Codes which change its color when the target substance is
detected [21]. Even, using colorimetric dyes as actuators, where au-
thors enhanced the QR Code capacity instead of sensing any material
[22].

18 automated color correction for colorimetry applications using barcodes

Altogether, the presented solutions did not fully resolve what
GasApp needed: an integrated, disposable, cost-effective machine-
readable pattern to allocate colorimetric environmental sensors. The
state-of-the-art research presented partial solutions, i.e. the colorimet-
ric indicator was tackled, but there was not a proposal on how to
perform automated readouts. Or, the sensor was arranged in a QR
Code layout, but color correction was not tackled. Or, the color cali-
bration problem was approached, but any of the other two problems
were tackled. Etc.

To solve those challenges, we proposed the creation of an inte-
grated machine-readable pattern based on QR Codes, which would
embed both the color correction patches and the colorimetric indi-
cators patches. And, those embedding ought to be back-compatible
with the QR Code standard, to maintain the data storage capabilities
of QR Codes for traceability applications [20]. A representation of
this idea is portrayed in Figure 1.4.

Figure 1.4: Our thesis proposal
to create machine-readable pat-
terns that can accommodate
colorimetric sensors and color
charts, alongside with the digi-
tal information of the QR Code.

The novelty of the idea led us to submit a patent application in
2018, which was granted worldwide in 2019, and now is being evalu-
ated in national phases [23]. Moreover, we launched ColorSensing, a
spin-off company from Universitat de Barcelona to develop further the
technology in industrial applications [24].

The strength points of the back-compatible proposal were:

• the use of pre-existent computer vision algorithms to locate QR
Codes, freeing the designed pattern of redundant computer vision
features, as those ’circles’ seen outside the GasApp card (Figure 1.4),
which are redundant with the finder patterns of the QR Code
(corners of the QR Code);

• the reduced scale represented by a QR Code, Figure 1.4 is rescaled
for displaying purposes, but the original GasApp proposal was to
set to a business card size (3.5 × 2.0 inches), while our QR Code
proposal smaller (1 × 1 inch);

introduction 19

• reducing the barrier between the new technology and the final
users, as the back-compatible proposal maintains the mainstream
standard of the QR Codes, one could simply encode a desired URL
in the QR Code data alongside with the color information and
always be able to redirect the final user to a download link of the
proper reader which enables the color readout;

• and, the capacity to increase the color references embedded in a
color chart, while also reducing the global size of the chart, e.g.
the usual size of a commercial ColorChecker is about 11 × 8.5
inches, and it encodes 24 color patches, using modern machine-
readable standard such as QR Codes as an encoding base enables
a systematic path increase the capacity per surface unit, and sub-
sequently according to color correction theory, leading to a better
color corrections having more color references.

1.1 Objectives

All in all, the thesis proposes a new approach to automate color
correction for colorimetry applications using barcodes, namely Color
QR Codes featuring colorimetric indicators. Let us enumerate the
objectives of the thesis:

I Capture machine-readable patterns placed on top of challeng-

ing surfaces, which are captured with handheld smartphones.
These surfaces can be non-rigid surfaces presented in real-world
applications, such as: bottles, packaging, food, etc.

II Define a back-compatible QR Code modification to extend QR

Codes to act as color charts, which back-compatibility ensures
that the digital data of the QR Code remains readable during the
whole modification process.

III Achieve image consistency using color charts for any camera or

light setup, enabling colorimetric applications to yield quan-

titative results, and doing so by specifying a color correction
method that takes into account arbitrary modifications in the
capture scene, such as: light source, smartphone device, etc.

IV Demonstrate a specific application of the technology based on

colorimetric indicators, where the accumulated results from ob-
jectives I to III are applied.

20 automated color correction for colorimetry applications using barcodes

1.2 Thesis sctructure

In this thesis, we tackled the above-mentioned objectives. Prior to that,
we introduced a chapter to present the backgrounds and methods ap-
plied to this thesis. Then, we presented four thematic chapters related
to each one of the objectives. These chapters were prepared with a
coherent structure: a brief introduction, a proposal, an experimental
details section, the results presentation and the conclusion discussion.
Later, a general conclusion chapter was added to close the thesis. Let
us briefly present the content of each thematic chapter.

First, in chapter 3 we reviewed the state-of-the-art method to
extract QR Codes from different surfaces. Then, we focused on a
novel approach to readout QR Codes on challenging surfaces, such as
those found in food packages, such as cylinders or any non-rigid
plastic [25; 26].

Second, in chapter 4 we introduced the main proposal of the the-
sis, the back-compatible Color QR Codes [23]. Here, we also introduced
not only the machine-readable pattern proposal but also we bench-
marked the different possible approaches to embed colors in a QR
Code by taking into account its data encoding (which colors are to
be embedded where, etc.) and how it affected the QR Code final
readability.

Third, in chapter 5 we sought for a unified framework of color cor-
rections based upon affine [14], polynomial [27; 28], root-polynomial
[28] and thin-plate splines [15] color corrections. Within that frame-
work, we presented our new proposal for an improved TPS3D method

to achieve image consistency.

Finally, in chapter 6 we surveyed the different color sensors where
we already used partial approaches to our solution [29; 30]. Then,
we also studied how tho apply our proposal to an actual applica-

tion of a colorimetric indicator that sensed CO2 levels [31] in modified
atmosphere packaging [32].

Chapter 2. Background and methods

2.1 The image consistency problem

Color reproduction is one of the most studied problems in the audio-
visual industry, that is present in our daily lives, long before today’s
smartphones, when color was introduced to the cinema, also with
color analog cameras and color home TVs [11]. In the past years,
reproducing and measuring color has also become an important chal-
lenge for other industries such as health care, food manufacturing and
environmental sensing. Regarding health care, dermatology is one
of the main fields where color measurement is a strategic problem,
from measuring skin-tones to avoid dataset bias [33] to medical image
analysis to retrieve skin lesions [34; 35]. In food manufacturing, color
is used as an indicator to solve quality control and freshness problems
[36; 37; 38]. As for environmental sensing [4], colorimetric indicators
are widely spread to act as humidity [39], temperature [40] and gas
sensors [41; 42].

In this section, we focus on image consistency, a reduced problem
from color reproduction. While color reproduction aims at matching
the color of a given object when reproduced in another device as an
image (e.g. a painting, a printed photo, a digital photo on a screen,
etc.), image consistency is the problem of taking different images of the
same object in different illumination conditions and with different
capturing devices, to finally obtain the same apparent colors for
this object. In this problem, the apparent colors of an object do not
need to match its “real” spectral color, they only rather have to be
similar in each instance captured in different scenarios. In other
words, all instances should match the first or the best capture, and
not the real-life color. Therefore, image consistency is the actual
problem to solve in the before-mentioned applications, in which it
is more important to compare acquired images between them, so
that consistent conclusions can be drawn with all instances, than
comparing them to an actual reflectance spectrum.

22 automated color correction for colorimetry applications using barcodes

2.1.1 Color reproduction

Color reproduction is the problem of matching the reflectance of
an object with an image of this object [11]. This can be seen in
Figure 2.1.a, where an object (an apple) which has a reflectance R(λ),
is illuminated by a light source I(λ) and captured by a camera with a
sensor response D(λ). In fact, digital cameras contain more than one
sensor targeting different ranges of the visible spectrum, commonly
they hold 3 types of sensors centered in red, green and blue colors
[11].

Figure 2.1: The color reproduc-
tion problem is represented: (a)
a certain light source (I(λ)) il-
luminates a certain object with
a certain reflectance (R(λ)), this
scene is captured by a certain
camera with its sensor response
(D(λ)) and (b) the reproduced
image of the object (R′(λ)) is
then illuminated and captured
again.

In general, the signal acquired by one of the sensors inside the
camera device can be modeled as [43]:

Sk ∝

∫ ∞

−∞
I(λ) R(λ) Dk(λ) dλ (2.1)

where k ∈ {1, . . . , N} are the channels of the camera, N is the
total number of channels and λ are the visible spectra wavelengths.
Then, Figure 2.1.b portrays the color reproduction of the object, where
now a new reflectance will be recreated and captured with the same
conditions. Since our image is a printed image, the new reflectance
will be:

R′(λ) =
M

∑
i=0

fi(S1, . . . , SN) · Ri(λ) (2.2)

where Ri(λ) are the reflectance spectra of the M reproduction
inks, which will be printed as a function of the acquired Sk channel
contributions. The color reproduction problem now can be written as
the minimization problem to the distance of both reflectances:

∥

∥R′(λ)− R(λ)
∥

∥→ 0 (2.3)

for each wavelength, for each illumination and for each sensor.

background and methods 23

The same formulation could be written when displaying images on a
screen by changing R(λ) for I(λ).

Color reproduction is a wide open problem, and with each step
towards its general solution, the goal of achieving image consistency
when acquiring image datasets is nearer. Since color reproduction
solutions aim at attaining better acquisition devices and better repro-
duction systems, the need for solving the image consistency problem
will eventually disappear. But this is not yet the case.

2.1.2 Image consistency

However, the image consistency problem is far simpler than the color
reproduction problem. The image consistency problem can be seen as
the problem to match the acquired signal of any camera, under any
illumination for a certain object. This can be seen in Figure 2.2.a: an
object (an apple), which has a reflectance R(λ), is illuminated by a
light source I(λ) and it is captured by a camera with a sensor response
D(λ). Now, in Figure 2.2.b, the object is not reproduced but exposed
again over different illumination conditions I′(λ) and captured by a
different camera D′(λ).

Figure 2.2: The imaging con-
sistency problem is represented:
(a) a certain light source (I(λ))
illuminates a certain object with
a certain reflectance (R(λ)), this
scene is captured by a certain
camera with its sensor response
(D(λ)) and (b) the same object
is now illuminated by another
light source (I′(λ)) and captured
by another camera (D′(λ)).

Under its respective illumination, each camera will follow Equa-
tion 2.1 providing three different Sk channels. Considering we can
write a vector signal from the camera as:

s = (S1, . . . , SN) , (2.4)

the image consistency problem can be written as the minimization
problem to the distance between acquired signals:

∥

∥s′ − s
∥

∥→ 0 (2.5)

for each camera, for each illumination for a given object.

24 automated color correction for colorimetry applications using barcodes

The image consistency problem is easier to solve, as we have
changed the problem from working with continuous spectral distri-
butions (see Equation 2.3) to N-dimensional vector spaces (see Equa-
tion 2.5). These spaces are usually called color spaces, and the map-
pings between those spaces are usually called color conversions. Defor-
mations or corrections inside a given color space are often referred to
as color corrections. In this thesis, we will be using RGB images from
digital cameras. Thus, we will work with device-dependent color spaces.

This means that the mappings will be performed between RGB
spaces. Then, we can rewrite the color vector definition for RGB
colors following Equation 2.4 as:

s = (r, g, b), s ∈ R
3 , (2.6)

where R
3 represents here a generic 3-dimensional RGB space. In

subsection 2.3.1, we detail how color spaces are defined according to
their bit resolution and color channels.

2.1.3 Color charts

The traditional approach to achieve a general purpose color correction
is the use of color rendition charts, introduced by C.S. McCamy et.
al. in 1976 [13] (see Figure 2.3). Color charts are machine-readable
patterns placed in a scene that embed reference patches of a known
color, where in order to solve the problem, several color references
are placed in a scene to be captured and then used in a post-capture
color correction process.

These color correction processes involve algorithms to map the
color references seen in the chart to their predefined nominal colors.
This local color mapping is then extrapolated and applied to the
whole image. There exists many ways to correct the color of images
to achieve consistency.

Figure 2.3: A ColorChecker
chart. The first row shows a set
of six “natural colors”; the sec-
ond one shows a set of "miscella-
neous colors"; the third, primary
and secondary colors; and the
last row, a gray scale gradient.
This set of colors samples the
RGB space in a limited way, but
it is convenient to carry out a
few color corrections manually.

The most extended way to do so is to search for device-independent

color spaces (i.e. CIE Lab, CIE XYZ, etc.) [11]. But in the past decade,
there have appeared solutions that involve direct corrections between
device-dependent color spaces without the need to pass through device-
independent ones.

The most simple color correction technique is the white balance,
that only involves one color reference [44]. A white reference inside
the image is to be mapped to a desired white color and then the
entire image is transformed using a scalar transformation. Beyond
that, other techniques that use more than one color reference can be
found elsewhere, using affine [44], using polynomial [27; 28], root-
polynomial [28] or thin-plate splines [15] transforms.

background and methods 25

It is safe to say that, in most of these post-capture color correction
techniques, increasing the number and quality of the color refer-
ences offers a systematic path towards better color calibration results.
This strategy however, comes along with more image area dedicated
to accommodate these additional color references and therefore, a
compromise must be found.

This led X-Rite (a Pantone subsidiary company), to introduce im-
proved versions of the ColorChecker, like the ColorChecker Passport
Photo 2 ® kit (see Figure 4.a). Also in this direction, Pantone pre-
sented in 2020 an improved color chart called Pantone Color Match
Card ® (see Figure 4.b), based on the AruCo codes introduced by
S. Garrido-Jurado et al. in 2015 [19] to facilitate the location of a
relatively large number of colors. Still, the size of these color charts is
too big for certain applications with size constraints (e.g. smart tags
for packaging [45; 30]).

Figure 2.4: Previous state-of-the-
art color correction charts from
Pantone and X-Rite. (a) The
X-Rite ColorChecker Passport
Photo 2® kit. (b) The Pantone
Color Match Card®.

26 automated color correction for colorimetry applications using barcodes

2.2 2D Barcodes: the Quick-Response Code

Quick-Response Codes, popularized as QR Codes, are 2D barcodes
introduced in 1994 by Denso Wave [20], which aimed at replacing
traditional 1D barcodes in the logistic processes of this company.
However, the use of QR Codes has escalated in many ways and are
now present in manifold industries: from manufacturing to marketing
and publicity, becoming a part of the mainstream culture. In all these
applications, QR Codes are either printed or displayed and later
acquired by a reading device, which normally includes a digital
camera or barcode scanner. Also, there has been an explosion of 2D
barcode standards [46; 47; 48; 49; 50] (see Figure 2.5).

Figure 2.5: Different 2D barcode
standards. From left to right:
a QR Code, a DataMatrix, an
Aztec Code, a MaxiCode, a JAB
Code and a HCC Barcode.

The process of encoding and decoding a QR Code could be consid-
ered as a form of communication through a visual channel (see Fig-
ure 2.6): a certain message is created, then split into message blocks,
these blocks are encoded in a binary format, and finally encoded in a
2D array. This 2D binary array is an image that is transmitted through
a visual channel (printed, observed under different illuminations
and environments, acquired as a digital image, located, resampled,
etc.). On the decoder side, the binary data of the 2D binary array
is retrieved, the binary stream is decoded, and finally the original
message is obtained.

From the standpoint of a visual communication channel, many
authors before explored the data transmission capabilities of the QR
Codes, especially as steganographic message carriers (data is encoded
in a QR Code, then encoded in an image) due to their robust error
correction algorithm [51; 52].

background and methods 27

Figure 2.6: Block diagram for a
general encoding-decoding pro-
cess of a QR Code which fea-
tures the embedding of a color
layer. This color layer could be
used for a wide range of appli-
cations, such as placing a brand
logo inside a QR Code. The pro-
cess can be seen as a global en-
coding process (digital encode
and color encode), followed by a
channel (print and capture) and
a global decoding process (re-
move colors and decode digital
information).

28 automated color correction for colorimetry applications using barcodes

2.2.1 Scalability

Many 2D barcode standards allow modulating the amount of data
encoded in the barcode. For example, the QR Code standard imple-
ments different barcode versions from version 1 to version 40. Each
version increases the edges of the QR Code by 4 modules, from the
starting 21 × 21 (v1) modules up to 144 × 144 modules (v40) [20].

For each version, the location of every computer vision feature is
fully specified in the standard (see Figure 2.7), in subsection 2.2.3 we
will focus on these features. Some other 2D barcode standards are
flexible enough to cope with different shapes, such as rectangles in
the DataMatrix codes (see Figure 2.8), which can be easier to adapt to
different substrates or physical objects [46].

Figure 2.7: Some examples of
QR Code versions. From left to
right: Micro QR-Code (version
M3), version 3 QR Code, and
version 10 QR Code. Each of
them can store up to 7, 42, 213

bytes, respectively, using a 15%
of error correction capacity.

Figure 2.8: Some examples of
DataMatrix codes. From left
to right: rectangular DataMa-
trix code, square DataMatrix
code and four square DataMa-
trix combined. Each of them can
store up to 14, 28, 202 bytes, re-
spectively, using approximately
a 20% of error correction capac-
ity.

These different possible geometries must be considered when
adding colors to a 2D barcode. In the case of the QR Codes and
DataMatrix codes, the larger versions are built by replicating a basic
squared block. Therefore, the set of color references could be repli-
cated in each one of these blocks, to gain in redundancy and in a more
local color correction. Alternatively, different sets of color references
could be used in each periodic block to facilitate a more thorough
color correction based on a larger set of color references.

Regarding this size and shape modularity in 2D barcode encoding,
there exist a critical relationship between the physical size of the
modules and the pixels in a captured image. This is a classic sampling
phenomena [53], for a fixed physical barcode size and a fixed capture
(same pixels) as the version of the QR Code increases the amount of
modules in a given space increases.

background and methods 29

Thus, the apparent size of the module in the captured image
decreases, when this size is near a bunch of pixels we start to see
aliasing problems [54]. In turn, this problem leads to a point that QR
Codes cannot be fully recognized by the QR-Code decoding algorithm.
This is even more important if we substitute these black and white
modules with colors, where the error in finding the right reference
area may lead to huge errors in the color correction. Therefore,
this sampling problem will accompany the implementation of our
proposal taking into account the size of the final QR Code depending
on the application field and the typical resolution of the cameras used
in those applications.

2.2.2 Data encoding in QR Codes

The QR Code standard presents a complex encoding layout (see Fig-
ure 2.9). Encoding a message into a QR Code form implies several
steps.

First, the message is encoded as binary data and split into various
bytes, namely data blocks, QR Codes can support different data types,
the binary encoding for those data types will be different in order to
maximize the amount of data to encode in the barcode (see Table 2.1).

Second, additional error correction blocks are computed based on
the Reed-Solomon error correction theory [55]. Third, the minimal
version of the QR Code is determined, which defines the size of
the 2D array to “print” the error correction and data blocks, as a
binary image. When this is done, the space reserved for the error
correction blocks is larger than the space reserved for the data blocks
(see Figure 2.10).

Finally, a binary mask is implemented in order to randomize as
maximum as possible the QR Code encoding [20].

Figure 2.9: QR Code encoding
defines a complex layout with
several patterns to be consid-
ered, some of them are non-
variant patterns found in each
QR Code, others may appear de-
pending on the size of the QR
Code, and area related to the
data changes for each encoding
process. (a) A QR Code with
high error correction level and
version 5. (b) The complex pat-
tern structure of the pattern.

30 automated color correction for colorimetry applications using barcodes

ECC level Bits Numeric Alphanumeric Binary Kanji

Version 1

L 152 41 25 17 10

M 128 34 20 14 8

Q 104 27 16 11 7

H 72 17 10 7 4

Version 2

L 272 77 47 32 20

M 224 63 38 26 16

Q 176 48 29 20 12

H 128 34 20 14 8

Version 39

L 22,496 6,743 4,087 2,809 1,729

M 17,728 5,313 3,22 2,213 1,362

Q 12,656 3,791 2,298 1,579 972

H 9,776 2,927 1,774 1,219 750

Version 40

L 23,648 7,089 4,296 2,953 1,817

M 18,672 5,596 3,391 2,331 1,435

Q 13,328 3,993 2,42 1,663 1,024

H 10,208 3,057 1,852 1,273 784

Table 2.1: A summary of QR
Code data encoding capacity is
shown. The total capacity for
each configuration is expressed
in symbol capacity. Columns are
ordered left to right from higher
to lower capacity.

Figure 2.10: QR Code simplified
areas corresponding to the en-
code process. (a) A QR Code
with high error correction level
and version 5. (c) Simplified
view of the QR patterns, yellow
frame corresponds to the “error
correction” area and dark green
frame corresponds to the “data”
area.

background and methods 31

During the generation of a QR Code, the level of error correction
can be selected, from high to low capabilities: H (30 %), Q (25%),
M (15%) and L (7%). This should be understood as the maximum
number of error bits that a certain barcode can support (maximum
Bit Error Ratio, detailed in chapter 4). Notice the error correction
capability is independent of the version of the QR Code. However,
both combined define the maximum data storage capacity of the QR
Code, for a fixed version, higher error correction implies a reduction
of the data storage capacity of the QR Code.

This error correction feature is indirectly responsible for the pop-
ularity of QR Codes, since it makes them extremely robust while
allowing for a large amount of pixel tampering to accommodate aes-
thetic features, like allocating brand logos inside the barcode [56; 57]
(see Figure 2.11 and Figure 2.12). In this thesis, we will take advan-
tage of the encoding features of QR Codes, such as error correction to
embed reference colors inside a QR Code.

Figure 2.11: Different examples
of Halftone QR Codes, introduced
by HK. Chu et al. [56]. These
QR Codes exploit the error cor-
rection features of the QR Code
to achieve back-compatible QR
Codes with apparent grayscale
–halftone– colors.

Figure 2.12: Original figure
from Garateguy et al. [57], dif-
ferent QR Codes with color art
are shown: (a) a QR Code with
a logo overlaid; (b) a QArt Code

[58], (c) a Visual QR Code; and
(d) Garateguy et al. proposal.

32 automated color correction for colorimetry applications using barcodes

2.2.3 Computer vision features of QR Codes

Besides the data encoding introduced before, a QR Code embeds
computer vision features alongside with the encoded digital data.
These features play a key role when applying computer vision trans-
formations to the acquired images containing QR codes. Usually, they
are extracted to establish a correspondence between their apparent
positions in the captured image plane and those in the underlying 3D
surface topography. The main features we focus on this thesis are:

• Finder patterns are the corners of the QR Code, it has 3 of them to
break symmetry and orient the QR in a scene (see Figure 2.13.a).

• Alignment patterns are placed inside the QR Code to help in the
correction of noncoplanar deformations (see Figure 2.13.b).

• Timing patterns are located alongside two borders of the QR
Code, between a pair of finder patterns, to help in the correction
of coplanar deformations (see Figure 2.13.c).

• The fourth corner is the one corner not marked with a finder
pattern. It can be found as the crosspoint of the straight extensions
of the outermost edges of two finder patterns (see Figure 2.13.d).
It is useful in linear, coplanar and noncoplanar deformations.

Figure 2.13: Computer vision
patterns featured in a QR Code.
(a) Three finder or position pat-
terns, (b) six alignment patterns,
(c) two timing patterns and (d)
the fourth corner that can be in-
ferred from the external edges
of the finder patterns.

These features are easy to extract due to their spatial properties.
They are well-defined as they do not depend on the version of the QR
Code, nor the data encoding. The lateral size for a finder pattern is
always 7 modules. For an alignment pattern, 5 modules. And timing
patterns grow along with each version, but their period is always 2

modules (one black, one white).

Finder patterns implement a sequence of modules along both
axes that follows: 1 black, 1 white, 3 black, 1 white and 1 black,
often written as a 1:1:3:1:1 relation (see Figure 2.14). Alignment
patterns implement a sequence of modules along both axes that
follows: 1 black, 1 white, 1 black, 1 white and 1 black, a 1:1:1:1:1
relation (see Figure 2.15).

background and methods 33

Thus, the relation between white and black pixels provides a path
to use pattern recognition techniques to extract these features, as these
relations are invariant to perspective transformations. Moreover, these
linear relations can be expressed as squared relations, and are still
invariant under perspective transformations. This is specially useful
when using extraction algorithms based upon contour recognition [18;
59], for finder patterns the relation becomes 7²:5²:3² (see Figure 2.14);
and for alignment patterns, 5²:3²:1² (see Figure 2.15).

Figure 2.14: Finder pattern def-
inition in terms of modules.
Finder pattern measures always
7 × 7 modules. If scanned
with a line barcode scanner the
1:1:3:1:1 ratio is maintained no
matter the direction of the scan-
ner. If scanned using contour ex-
traction the aspect ratio 7²:5²:3²
is maintained as well if the QR
Code is captured within a pro-
jective scene (i.e. a handheld
smartphone).

Figure 2.15: Alignment pattern
definition in terms of modules.
Alignment pattern measures al-
ways 5 × 5 modules. If scanned
with a line barcode scanner the
1:1:1:1:1 ratio is maintained no
matter the direction of the scan-
ner. If scanned using contour ex-
traction the aspect ratio 5²:3²:1²
is maintained as well if the QR
Code is captured within a pro-
jective scene (i.e. a handheld
smartphone).

34 automated color correction for colorimetry applications using barcodes

2.2.4 Readout of QR Codes

Let us explore a common pipeline towards QR Code readout. First,
consider a QR Code captured from a certain point-of-view in a flat
surface which is almost coplanar to the capture device (e.g. a box
in a production line). Note that more complex applications, such as
bottles [60], all sorts of food packaging [61], etc., which are key to this
thesis, are tackled down in chapter 3.

Due to perspective, the squared shape of the QR Code will be
somehow deformed following some sort of projective transforma-
tion (see Figure 2.16.a). Then, in order to find the QR Code itself
within the image field, the three finder patterns are extracted apply-
ing contour recognition algorithms based on edge detection [18; 59]
(see Figure 2.16.b). As explained in subsection 2.2.3, each finder pat-
tern candidate must hold a very specific set of area relationships, no
matter how they are projected if the projection is linear. The con-
tours that fulfill this area relationship are labeled as candidates finder
patterns (see Figure 2.16.c).

Figure 2.16: The QR Code con-
tour detection method. a) A QR
Code from a certain perspective.
b) All the contours detected in
the image. c) The location of
the position patterns following
the area rule. Their respective
centers of mass are indicated.

Second, the orientation of the QR Code must be recognized, as in
a general situation, the QR Code captured in an image can take any
orientation (i.e. rotation). The above-mentioned three candidate finder
patterns are used to figure out the orientation of the barcode. To do
so, we should bear in mind that one of these corners will correspond
to the top-left one and the other two will be the end points of the
opposite diagonal (see Figure 2.17.a). By computing the distances
between the three candidate finder pattern centers and comparing
them we can find which distance corresponds to the diagonal and
assign the role of each pattern in the QR Code. The sign of the slope
of the diagonal m and the sign of the distance to the third point
s are computed and analyzed to solve the final assignment of the
patterns. The four possible combinations result in 4 possible different
orientations: north, east, south, west (see Figure 2.17.b). Once the
orientation is found, the three corner candidates are labeled following
the sequence L, M, N.

background and methods 35

Figure 2.17: The different orien-
tations of a QR Code are shown.
(a) Representation of the slope
of the diagonal connecting the
corners m and the diagonal seg-
ment linked to the top-left cor-
ner s. (b) The four possible ori-
entations of a QR-Code.

Third, a projection correction is performed to retrieve the QR Code
from the scene. The finder patterns can then be used to correct the
projection deformation of the image in the QR Code region. If the
deformation is purely affine, e.g. a flat surface laying coplanar to
the reader device, we can perform the correction with these three
points. But, if a more general deformation is presented, e.g. handheld
capture in a perspective plane, one need at least one additional point
to carry out such transformation: the remaining fourth corner O

(see Figure 2.17.a). As the edges around the previous corners were
previously determined (see Figure 2.18.a), the fourth corner O is
localized using the crossing points of two straight lines from corners
M and N (see Figure 2.18.b). With this set of 4 points, a projective
transformation that corrects the perspective effect on the QR-Code is
carried out (see Figure 2.18.c).

Moreover, notice the calculation of the fourth corner O can accu-
mulate the numerical error of the previous steps. This might lead to
inaccurate results in the bottom-right corner of the recovered code
(see Figure 2.18.c) and, in some cases, to a poor perspective correction.
This effect is especially strong in low resolution captures, where the
modules of the QR Code measure a few pixels. In order to solve this
issue, the alignment patterns are localized (see Figure 2.18.d) in a
more restricted and accurate contour search around the bottom-right
quarter of the QR Code (see Figure 2.18.e). With this better estimation
of a grid of reference points of known (i.e. tabulated) positions a
second projective transformation is carried out (see Figure 2.18.f). Nor-
mally, having more reference points than strictly needed to compute
projective transformations is not a problem thanks to the introduction
of maximum likelihood estimation (MLE) solvers for the projection
fitting [62].

Finally, the QR Code readout is performed, this means the QR
Code is down-sampled to a resolution where each of the modules
occupies exactly one pixel. After this, the data is extracted following
a reverse process of the encoding: the data blocks are interpreted as
binary data, also the error correction blocks. The Reed-Solomon tech-
nique to resolve errors is applied, and the original data is retrieved.

36 automated color correction for colorimetry applications using barcodes

Figure 2.18: The QR Code pro-
jective correction steps. a) The
orientation is deduced from the
centers of the 3 finder patterns
L, M, N. In this step, their
contour corners are found. b)
The fourth corner O is found,
based on the previous three cor-
ners. c) A first projective trans-
formation is carried out, but still
subject to significant error shifts
around the bottom-right corner;
d) The alignment patterns are
localized in a restricted contour
search. The centers of the align-
ment patters (shifted centers af-
ter the first projective correction
(green) and the reference centers
are both found (red). e) The er-
ror committed at this stage is
shown by subtraction of the im-
ages. f) Finally, a second pro-
jective transformation recovers
the final QR Code image, based
on the reference, tabulated, posi-
tions of the alignment patterns.

background and methods 37

2.3 Data representation

2.3.1 Color spaces

In section 2.1 we introduced the image consistency problem alongside
with a simplified description of the reflectance model (see Figure 2.19):

Sk ∝

∫ ∞

−∞
I(λ) R(λ) Dk(λ) dλ (2.7)

where a certain light source, I(λ), illuminates a certain object
with a certain reflectance, R(λ), this scene is captured by a sensor
with its response, Dk(λ). And, Sk represents the signal captured by
this sensor. This model specifically links the definition of color to
the sensor response, not only to the wavelength distribution of the
reflected light. Thus, our color definition depends on the observer.

Figure 2.19: A reduced represen-
tation of the reflectance model.
For more details see Figure 2.1.

Let the sensor Dk(λ) be the human eye, this is model becomes the
well-known tristimulus model of the human eye. In the tristimulus
model, a standard observer is defined from studying the human vision.
This was first studied in 1931 by the International Commission of
Illumination, which defined the CIE 1931 RGB and CIE 1931 XYZ
color spaces [63; 64]. Since then, the model has been revisited many
times defining new color spaces: in 1960 [65], in 1964 [66], in 1976

[67] and so on [68].

Commonly, color spaces referred to a standard observer are called
device-independent color spaces. As explained before, we are going to use
images which are captured by digital cameras. These images will use
device-dependent color spaces, despite the efforts of their manufacturers
to solve the color reproduction problem, as they try to match the
camera sensor to the tristimulus model of the human eye [69]. Let a
color s be defined by the components of the camera sensor:

s = (Sr, Sg, Sb) (2.8)

where Sr , Sg and Sb are the responses of the three sensors of the
camera for the red, green and blue channels, respectively. Cameras do
imitate the human tristimulus vision system by placing sensors in the
wavelength bands representing those where human eyes have more
sensitivity.

38 automated color correction for colorimetry applications using barcodes

Note that s is defined as a vector in Equation 2.8. Although, its
definition lacks the specification of its vector space:

s = (r, g, b) ∈ R
3 (2.9)

where r, g, b is a simplified notation of the channels of the color,
and R

3 is a generic RGB color space. As digital cameras store digital
information in a finite discrete representation, R

3 should become
N

3
[0,255] for 8-bit images (see Figure 2.20). This discretization process

of the measured signal in the camera sensor is a well-known phe-
nomenon in signal-processing, it is called quantization [70]. All to all,
we can write some common color spaces in this notation:

Figure 2.20: 125 colors of an
RGB color space. Each chan-
nel of the color space has been
sampled 5 times. Assuming the
space is a 24-bit color space, the
values of the sampled colors cor-
respond to: 0, 61, 127, 193 and
255. The combination (255, 255,
255) is the white color and (0, 0,
0) the black color.

• N[0,255] is the grayscale color space of 8-bit images.

• N
3
[0,255] is the RGB color space of 24-bit images (8-bits/channel).

• N
3
[0,4096] is the RGB color space of 36-bit images (12-bits/channel).

• N
3
[0,65536] is the RGB color space of 48-bit images (16-bits/channel).

• N
4
[0,255] is the CMYK color space of 32-bit images (8-bits /channel).

• R
3
[0,1] is the RGB color space of a normalized image, specially useful

when performing computer vision algorithms.

2.3.2 Color transformations

The introduction of color spaces as vector spaces brings all the mathe-
matical framework of geometric transformations. We can now define
a color conversion as the application between two color spaces.

For example, let f be a color conversion between an RGB and a
CMYK space:

f : N
3
[0,255] → N

4
[0,255] (2.10)

this color conversion can take any form. In section 2.1, we saw
that the reflectance spectra of the image of an object would be a linear
combination of the inks reflectance spectra used to reproduce that
object. If we recover that expression from Equation 2.2 and combine
it with the RGB color space from Equation 2.9, we obtain:

R′(λ) =
c,m,y,k

∑
j

f j(r, g, b) · Rj(λ) (2.11)

Now, R′(λ) is a linear combination of the reflectance spectra of the
cyan, magenta, yellow and black inks. The weights of the combination
is the CMYK color derived from the RGB color.

background and methods 39

In turn, we can express the CMYK color also as a linear combina-
tion of the RGB color channels, fi(r, g, b) is our color correction here,
then:

R′(λ) =
c,m,y,k

∑
j

[

r,g,b

∑
k

ajk · k
]

· Rj(λ) (2.12)

Note that we have defined fi as a linear transformation between
the RGB and the CMYK color spaces, doing so is the most common
way to perform color transformations between color spaces.

This is the foundation of the ICC Profile standard [71]. Profiling
is a common technique when reproducing colors. For example, take
Figure 2.20, if the colors are seen displayed on a screen they will
show the RGB space of the LED technology of the screen. However, if
they have been printed, the actual colors the reader will be looking at
will be the linear combination of CMYK inks representing the RGB
space, following Equation 2.12. ICC profiling is present in each color
printing process.

Alongside with the described example, here below, we present
some of the most common color transformations we will use during
the development of this thesis, that include normalization, desaturation,
binarization and colorization transformations.

2.3.2.1 Normalization

Normalization is the process to map a discrete color space with limited
resolution (N[0,255], N

3
[0,255], N

3
[0,4096], ...) to a color space which is

limited to a certain range of values, normally from 0 to 1 R[0,1], but
offers theoretically infinite resolution 1. All our computation will take 1 The infinite resolution that represents

R is not computationally feasible. How-
ever, the computational representation
of a R space, a float number, handles a
higher precision than other former space
before normalization.

place in such normalized spaces. Formally the normalization process
is a mapping that follows:

fnormalize : N
K
[0, 2n] → R

K
[0,1] (2.13)

where K is the number of channels of the color space (i.e. K = 1 for
grayscale, K = 3 for RGB color spaces, etc.) and n is the bit resolution
of the color space (i.e. 8, 12, 16, etc.).

Note that a normalization mapping might not be that simple that
only implies a division by a constant. For example, an image can be
normalized using an exponential law to compensate camera acquisi-
tion issues [72; 73].

40 automated color correction for colorimetry applications using barcodes

2.3.2.2 Desaturation

Desaturation is the process to map a color space to a grayscale repre-
sentation of this color space. Thus, formally this mapping will always
be a mapping from a vector field to a scalar field. We will assume
the color space has been previously normalized following a mapping
(see Equation 2.13). Then:

fdesaturate : R
K
[0,1] → R[0,1] (2.14)

where K is still the number of channel the input color space has.
There exist several ways to desaturate color spaces, for example, each
CIE standard incorporates different ways to compute their luminance
model [64].

2.3.2.3 Binarization

Binarization is the process to map a grayscale color space to a bi-
nary color space, this means the color space gets reduced only to a
representation of two values. Formally:

fbinarize : R[0,1] → N[0,1] (2.15)

Normally, these mappings need to define some kind of threshold to
split the color space representation into two subsets. Thresholds can
be as simple as a constant threshold or more complex [74].

2.3.2.4 Colirization

Colorization is the process to map a grayscale color space to a full-
featured color space. We can define a colorization as:

fcolorize : R[0,1] → R
K
[0,1] (2.16)

where K is now the number of channel the output color space has.
This process is more unusual than the previous mappings presented
here. It is often implemented in those algorithms that pursue image
restoration [75]. In this work, colorization will be of a special interest
in chapter 4.

background and methods 41

2.3.3 Images as bitmaps

A digital image is the result of capturing a scene with an array of
sensors [11], following Equation 2.7. Take a monochromatic image
I, this means we only have one color channel in our color space.
This image can be seen as a mapping between a vector field, the 2D
plane of the array of sensors, and a scalar field, the intensity of light
captured by each sensor:

Figure 2.21: An Airy disk is
shown as a grayscale image with
a color map (top) and as a func-
tion (bottom) with the same
color map.

I : R
2 → R (2.17)

where R
2 is the capture plane of the sensors and R is a generic

grayscale color space. Figure 2.21 shows an example of this: an Airy
disk [76] is represented first as an image, where the center of the disk
is visualized as a spot; also, the Airy disk is shown to be a function
of the space distribution.

Altogether, we can extend Equation 2.17 definition to images that
are not grayscale. This means each image can be defined as a mapping
from the 2D plane of the array of sensors to a color space, which is in
turn also a vector space:

I : R
2 → R

K (2.18)

where R
K is now a vector field also, thus the color space of the

image can be RGB, CMYK, etc. Note digital cameras can capture more
than the above-mentioned color bands, and there exists a huge field
of multi-spectral cameras [77], which is not the focus of our research.

As we pointed out when defining color spaces, digital images are
captured using discrete variable color spaces. But this process also
affects the spatial domain of the image. The process of discretizing
the plane R

2 is called sampling. And, the process of discretizing the
illumination data in R data is called quantization. Following this,
Equation 2.17 is rewritten as:

I : N[0,n] ×N[0,m] → N[0,255] (2.19)

which represents an 8-bit grayscale2 image of size (n, m). This 2 This example uses a grayscale image
of 8-bit resolution, however any of the
formats specified in the subsection 3.3.2
could be used here.

definition of an image allows us to differentiate the domain trans-
formations of the image, i.e. geometrical transformations to the
perspective of the image; from the image transformations, i.e. color
corrections to the color space to the image.

42 automated color correction for colorimetry applications using barcodes

In chapter 3, when dealing with the extraction of QR Codes from
challenging surfaces we used the definition in Equation 2.17 to refer to
the capturing plane of the image and how it relates to the underneath
surface where the QR Code is placed by projective laws.

In chapter 4 we used the definition of Equation 2.19 to detail our
proposal encoding process of colored QR Codes. In this scenario, it
is interesting reducing the notation of image definition taking into
account images can be seen as matrices. So, Equation 2.19 can be
rewritten in a compact form as:

I ∈ [0, 255]n×m (2.20)

where I is now a matrix which exist in a matrix space [0, 255]n×m.
This vector space contains both the definition of the spatial coordinates
of the image and the color space.

As before, we can use this notation to represent different image
examples:

• I ∈ [0, 255]n×m, is an 8-bit grayscale image with size (n, m).

• I ∈ [0, 255]n×m×3, is an 8-bit RGB image with size (n, m).

• I ∈ [0, 1]n×m, is a float normalized grayscale image with size (n, m).

• I ∈ {0, 1}n×m, is a binary image with size (n, m).

Finally, we can redefine the color space transformations (from
Equation 2.13 to Equation 2.16) transformations of these image spaces:

• Normalization:

fnormalize : [0, 255]n×m×3 → [0, 1]n×m×3 (2.21)

• Desaturation:

fdesaturate : [0, 1]n×m×3 → [0, 1]n×m (2.22)

• Binarization:

fbinarize : [0, 1]n×m → {0, 1}n×m (2.23)

• Colorization:

fcolorize : [0, 1]n×m → [0, 1]n×m×3 (2.24)

background and methods 43

2.4 Computational implementation

In 1990, Guido van Rosum released the first version of Python, an
open-source, interpreted, high-level, general-purpose, multi-paradigm
(procedural, functional, imperative, object-oriented) programming
language [78]. Since then, Python has released three major versions
of the language: Python 1 (1990), Python 2 (2000) and Python 3 (2008)
[79].

At the time we started to work in the thesis development, Python
was one of the popular programming languages both in the academia
and in the industry [80]. As Python is an interpreted language, the
actual code of Python is executed by the Python Virtual Machine
(PVM), this opens the door to create different PVM written with
different compiled languages, the official Python distribution is based
upon a C++ PVM, that is why the mainstream Python distribution is
called ’CPython’ [81].

CPython allows the user to create bindings to C/C++ libraries, this
was specially useful for our research. OpenCV is a widely-known
tool-kit for computer vision applications, which is written in C++, but
presents bindings to other languages like Java, MATLAB or Python
[82].

Altogether, we decided to use Python as our main programming language.
Both achieving rapid script capabilities that Python offers alongside
with standard libraries from Python and C++. The research started
with the use of Python 3.6 and ended with the use of Python 3.8, due
to Python development cycle.

Let us detail the stack of standard libraries used during the devel-
opment of the thesis:

• Python environment: we started using the Anaconda, an open-
source Python distribution that contained pre-compiled packages
ready to be used, such as OpenCV [83]. We adopted also pyenv,
a tool to install Python distributions and manage virtual environ-
ments [84]. Later on, we started to use docker technology, light
virtual machines to enclose the PVM and our programs [85].

• Scientific and data: we adopted the well-known numpy / scipy /
matplotlib stack,

– numpy is a C++ implementation of array representation (MATLAB-
like) for Python [86],

– scipy is a compendium of common mathematical operations
fully compatible with NumPy arrays, often SciPy implements
bindings to consolidated calculus frameworks written in C++
and Fortran, such as OpenBlas [87],

44 automated color correction for colorimetry applications using barcodes

– matplotlib is a 2D graphics environment we used to represent
our data [88].

NumPy, SciPy and Matplotlib are the entry point to a huge ecosys-
tem of packages which use them as their core. When processing
datasets two main packages were used,

– pandas is an abstraction layer to the previous stack, data is
organized in spreadsheets (like Excel, Origin Lab, etc.) [89],

– xarray is another abstraction layer to the previous stack, with
labeled N-dimensional arrays, xarray can be regarded as the
N-dimensional generalization of pandas [90].

• Images manipulation: there is a huge ecosystem regarding image
manipulation in Python, previous to computer vision, we adopted
some packages to read and manipulate images,

– pillow is the popular fork from the unmaintained Python Imag-
ing Library, we used Pillow specially to manipulate the image
color spaces, i.e. profile an image from RGB to be printed in
CMYK [91],

– imageio was used as an abstraction layer from Pillow, which uses
Pillow and other I/O libraries (such as rawpy) to read images
and convert them directly to NumPy matrices, we standardized
our code to read images using this package instead of using
other solutions (SciPy, Matplotlib, Pillow, OpenCV, ...) [92],

– imgaug was used to enhance image datasets, by tuning ran-
domly parameters of the image (illumination, contrast, etc.), this
is a well-known technique to increase dataset when training
computer vision models [93].

• Computer vision: we mainly adopted OpenCV as our main frame-
work to perform feature extraction algorithms, affine and per-
spective corrections and other operations [59]. Despite this, other
popular frameworks were used for some applications, such as
scikit-learn [94], scikit-image [95], keras [96], etc.

• QR Codes: regarding the encoding of QR Codes we adopted
mainly the package python-qrcode and use it as a base to create
our Color QR Codes [97]; regarding the decoding of the QR Codes,
there exists different frameworks we worked with,

– zbar is a light C++ barcode scanner, which decodes QR Codes
and other 1D and 2D barcodes [98], among the available Python
bindings to this library we chose the pyzbar library [99],

– zxing is a Java bar code scanner, similar to ZBar, formerly main-
tained by Google, and it is the core of most of Android QR Code
scanners [100], as this library was not written in Python we did
not use it in a daily basis, but we kept it as secondary QR Code
scanner.

Chapter 3. QR Codes on challenging surfaces

In chapter 2 we have introduced the popular QR codes [20], which
have become part of mainstream culture. With the original applica-
tions in mind (e.g. a box in a production line), the QR Codes were
designed, first, to be placed on top of flat surfaces, second, laying
coplanar to the reader device.

But today, users also apply QR Codes to non-planar surfaces like
bottles [60], all sorts of food packaging [61] (like meat [101], fish [102]
and vegetables [103]), vehicles, handrails, etc. (see Figure 3.1.a). Also,
QR Codes can incorporate biomedical [104], environmental [105] and
gas [30] sensors. All these applications involve surfaces that pose
challenges to their readout, especially when the QR Codes are big
enough to show an evident curvature or deformation.

Figure 3.1: An example of an
adverse situation, image of a
QR Code in a bike-sharing ser-
vice in Barcelona, where the QR
Code is bent over the bike frame.
User experience shows that cap-
turing these QR Codes is diffi-
cult when approaching the cam-
era to the QR Code due to the
bending. (a) An image captured
near the QR Code (∼20 cm), (b)
an image captured farther (∼1

m) and (c) a zoomed version
of (b) which despite the blur
performs better because the QR
Code resembles more to a flat
QR Code.

On top of that, in the most common uses, readout is carried out by
casual users holding handheld devices (like smartphones) in manifold
angles and perspectives. Surprisingly, these perspective effects are
not tackled by the original QR Code standard specification, but are
so common that are addressed in most of the state-of-the-art QR
Code reader implementations [59; 98; 100]. Still, the issues caused
by a non-flat topography remain mostly unsolved, and the usual
recommendation is just acquiring the QR Code image from a farther
distance, where curvature effects turn apparently smaller thanks to the
laws of perspective (see Figure 3.1.b and Figure 3.1.c.). This however
is a stopgap measure rather than a solution, that fails frequently when
the surface deformation is too high or the QR Code is too big.

46 automated color correction for colorimetry applications using barcodes

Therefore, reading QR codes from complex, arbitrary surfaces re-
mains an open problem till now. Other authors have already demon-
strated that it is possible to use the QR Code itself to fit the surface
underneath to a pre-established topography model. These proposals
only work well with surfaces that resemble the shape model assumed
(e.g. a cylinder, a sphere, etc.) and mitigate the problem just for a
limited set of objects and surfaces, for which analytical topography
models can be written.

Regarding perspective transformation models, Sun et al. proposed
the idea of using these transformations as a way to enhance read-
ability in handheld images from mobile phones [106]. This idea was
explored also by Lin and Fuh, showing that their implementation
performed better than ZXing [107], a commercial QR Code decoder
formerly developed by Google [100]. Concerning cylindrical trans-
formations, Li, X. et al. [108], Lay et al. [109; 110] and Li, K. [111]
reported results on QR Codes placed on top of cylinders. More
recently, Tanaka introduced the idea of correcting cylindrical deforma-
tion using an Image-to-Image Translation Network [112]. Finally, the
problem of arbitrary surface deformations has just been explored very
recently. Huo et al. suggested a solution based on Back-Propagation
Neural Networks [113]. Kikuchi et al. presented a radically different
approach from the standpoint of additive manufacturing by 3D print-
ing the QR codes inside those arbitrary surfaces, and thus solving
the inverse problem by rendering apparent planar QR Codes during
capture [114].

3.1 Proposal

Here, since a general solution for the decoding of QR Codes placed
on top of arbitrary topographies is missing, we present our proposal
on this matter based on the thin-plate spline 2D transformation [115].
Thin-plate splines (TPS) are a common solution to fit arbitrary data
and have been used before in pattern recognition problems: Bazen
et al. [116] and Ross et al. [117] used TPS to match fingerprints;
Shi et al. used TPS together with Spatial Transformer Networks to
improve handwritten character recognition by correcting arbitrary
deformations [118], and Yang et al. reviewed the usage of different
TPS derivations in the point set registration problem [119].

In order to investigate the advantages of the TPS with respect to for-
mer approaches, we take here the above-mentioned geometric surface
fittings as reference cases, namely: (i) affine coplanar transformations
(see Figure 3.2.a), (ii) projective transformations (see Figure 3.2.b), and
(iii) cylindrical transformations (see Figure 3.2.c).

Then we introduce our proposal for arbitrary surfaces based on
(iv) the thin-plate spline 2D transformation (see Figure 3.2.d) and

qr codes on challenging surfaces 47

benchmark against each other. With all four methods we use a com-
mercial barcode scanner, ZBar [98], to decode the corrected image and
observe the impact of each methodology, not just on the geometrical
correction but also on the actual data extraction.

Figure 3.2: Projection of differ-
ent surfaces into the capture
plane (img) when acquiring im-
ages from a digital camera. A
QR Code placed on each one
of these surfaces will show dif-
ferent deformations(a) an affine
(coplanar) plane, (b) a projective
(noncoplanar) plane, (c) a cylin-
drical surface and (d) a thin-
plate spline surface, it is contin-
uous and derivable.

3.1.1 Fundamentals of projections

In chapter 2 we have defined images as mappings from a R
2 plane to

a scalar field R, assuming they are grayscale. Figure 3.2 shows this R
2

plane and labels it as img. Let us define a projective transformation
of this plane as an application between two planes:

f : R
2 → R

2 (3.1)

.

Also, let the points (x, y) ∈ R
2 and (x′, y′) ∈ R

2, we can then
define an analytical projective mapping between those two points as:

x′ = fx(x, y) = a0,0 · x + a0,1 · y + a0,2

y′ = fy(x, y) = a1,0 · x + a1,1 · y + a1,2
(3.2)

where ai,j ∈ R are the weights of the projective transform. For a
more compact notation, (x, y) and (x′, y′) can be replaced by homo-
geneous coordinates [120] (p0, p1, p2) ∈ P2

R and (q0, q1, q2) ∈ P2
R,

respectively, that allow expressing the transformation in a full matrix
notation1: 1 Homogeneous coordinates introduce

an additional coordinate p2 and q2 in
our system, which extends the point
representation from a plane (R2) to a
projective space (P2

R). We will define
that p2 = q2 = 1 only for our landmarks
[120].

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 1

·

p0

p1

1

=

q0

q1

1

(3.3)

Finally, we can simplify this expression by naming our matrices as:

A · P = Q (3.4)

48 automated color correction for colorimetry applications using barcodes

Here, we will work with four projective transformations: the affine
transformation (AFF), the projective transformation (PRO), the cylin-
drical transformation (CYL) and the thin-plate spline transformation
(TPS). We can define all of them as subsets or extensions of projec-
tive transformations, so we will have to specifically formulate A for
each one of them. To do so, we need to know the landmarks in the
captured image (acting as vector Q) and their “correct” location in a
non-deformed corrected image (acting as vector P).

3.1.2 Proposed transformations

Affine (AFF). This transformation uses the landmarks to fit a coplanar
plane to the capturing device sensor (see Figure 3.3). It can accom-
modate translation, rotation, zoom and shear deformations [120]. An
affine transformation can be expressed in terms of Equation 3.3, only
taking a2,0 = a2,1 = 0:

Figure 3.3: Projection of an
affine surface into the capture
plane (img) when acquiring im-
ages from a digital camera.

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

0 0 1

·

p0

p1

1

=

q0

q1

1

(3.5)

This yields to a system with only 6 unknown ai,j weights. Thus,
if we can map at least 3 points in the QR Code surface to a known
location (e.g. finder pattern centers) we can solve the system for all
ai,j using the expression of Equation 3.4 with:

A =

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

0 0 1

,

P =

p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

1 1 1

and

Q =

q0,0 q0,1 q0,2

q1,0 q1,1 q1,2

1 1 1

.

(3.6)

qr codes on challenging surfaces 49

Projective (PRO). This transformation uses landmarks to fit a non-
coplanar plane to the capturing plane (see Figure 3.4). Projective
transformations use Equation 3.3 without any further simplification.
Also, Equation 3.4 is still valid, but now we have up to 8 unknown ai,j

weights to be determined. Therefore, we need at least 4 landmarks to
solve the system for A, then:

Figure 3.4: Projection of a pro-
jective surface into the capture
plane (img) when acquiring im-
ages from a digital camera.

A =

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 1

,

P =

p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

1 1 1 1

and

Q =

q0,0 q0,1 q0,2 q0,3

q1,0 q1,1 q1,2 q1,3

1 1 1 1

.

(3.7)

Notice that the four points in must not be collinear three-by-three,
neither the points of if we want the mapping to be invertible [120].

Cylindrical (CYL). This transformation uses landmarks to fit a cylin-
drical surface, which can be decomposed into a projective transfor-
mation and a pure cylindrical deformation (see Figure 3.5). Thus, the
cylindrical transformation extends the projective general transforma-
tion (Equation 3.2) and adds a non-linear term to the projection:

Figure 3.5: Projection of a cylin-
drical surface into the capture
plane (img) when acquiring im-
ages from a digital camera.

x′ = fx(x, y) = a0,0 · x + a0,1 · y + a0,2 + w0 · g(x, y)

y′ = fy(x, y) = a1,0 · x + a1,1 · y + a1,2 + w1 · g(x, y)
(3.8)

where g(x, y) is the cylindrical term, which takes the form of [111;
108]:

g(x, y) =

√

r2 − (c0 − x)2 i f r2 − (c0 − x)2 ≥ 0

0 i f r2 − (c0 − x)2
< 0

(3.9)

where r ∈ R is the radius of the cylinder, and c0 ∈ R is the first
coordinate of any point in the centerline of the cylinder. Now, Equa-
tion 3.3 becomes extended with another dimension for cylindrical
transformations:

w0 a0,0 a0,1 a0,2

w1 a1,0 a1,1 a1,2

w2 a2,0 a2,1 1

·

g(p0, p1)

p0

p1

1

=

q0

q1

1

(3.10)

50 automated color correction for colorimetry applications using barcodes

Applying the same reasoning as before, we have now 8 unknown
ai,j plus 3 unknown wj weights to fit. Equivalent matrices (Equa-
tion 3.4) for cylindrical transformations need now at least 6 landmarks
and looks like:

A =

w0 a0,0 a0,1 a0,2

w1 a1,0 a1,1 a1,2

w2 a2,0 a2,1 1

,

P =

g(p0,0, p1,0) ... g(p0,5, p1,5)

p0,0 ... p0,5

p1,0 ... p1,5

1 ... 1

and

Q =

q0,0 ... q0,5

q1,0 ... q1,5

1 ... 1

.

(3.11)

Thin-plate splines (TPS). This transform uses the landmarks as cen-
ters of radial basis splines to fit the surface in a non-linear way that
resembles the elastic deformation of a metal thin-plate bent around
fixed points set at these landmarks [115] (see Figure 3.6). The radial
basis functions are real-valued functions:

Figure 3.6: Projection of an ar-
bitrary surface into the capture
plane (img) when acquiring im-
ages from a digital camera.

h : [0, inf)→ R (3.12)

that take into account a metric on a vector space. Their value only
depends on the distance to a reference fixed point:

hc(v) = h(||v− c||) (3.13)

where v ∈ R
n is the point in which the function is evaluated,

c ∈ R
n is the fixed point, h is a radial basis function. Equation 3.13

reads as "hc(v) is a kernel of h in c with the metric || · ||". Similarly
to cylindrical transformations (Equation 3.8), we extended the affine
transformation (Equation 3.2) with N nonlinear spline terms:

x′ = fx(x, y) = a0,0 · x + a0,1 · y + a0,2 +
N−1

∑
k=0

w0,k · hk((x, y))

y′ = fy(x, y) = a1,0 · x + a1,1 · y + a1,2 +
N−1

∑
k=0

w1,k · hk((x, y))

(3.14)

where wj,k are the weights of the spline contributions, and hk(x, y)

are kernels of h in N landmark points.

qr codes on challenging surfaces 51

These radial basis function remains open to multiple definitions.
Bookstein [115] found that the second order polynomial radial basis
function is the proper function to compute splines in R

2 mappings in
order to minimize the bending energy, and mimic the elastic behavior
of a metal thin-plate. Thus, let h be:

h(r) = r2 ln(r) (3.15)

with the corresponding kernels computed using the euclidean
metric:

||(x, y)− (cx, cy)|| =
√

(x− cx)2 + (y− cy)2 (3.16)

Finally, in matrix representation, terms from Equation 3.4 are
expanded as follows:

A =

(

w0,0 ... w0,N−1 a0,0 a0,1 a0,2

w1,0 ... w1,N−1 a1,0 a1,1 a1,2

)

,

P =

h0(p0,0, p1,0) ... h0(p0,N−1, p1,N−1)
... ...

...
hN−1(p0,0, p1,0) ... hN−1(p0,N−1, p1,N−1)

p0,0 ... p0,N−1

p1,0 ... p1,N−1

1 ... 1

and

Q =

(

q0,0 ... q0,N−1

q1,0 ... q1,N

)

.

(3.17)

First, notice that only ai,j affine weights are present, since this
definition does not include a perspective transformation. Second, in
contrast with previous transformations, this system is unbalanced:
we have a total of 2N + 6 weights to compute (2N wj,k spline weights
plus 6 ai,j affine weights) however we only have defined N landmarks.
In the previous transformations, we used additional landmarks to
solve the system, but Bookstein imposed an additional condition of
the spline contributions: the sum of wj,k coefficients to be 0, and also
their cross-product with the pi,k landmark coordinates [115]. Such
condition makes spline contributions tend to 0 at infinity, while affine
contributions prevail. This makes our system of equations solvable
and can be expressed as:

(

w0,0 ... w0,N−1

w1,0 ... w1,N−1

)

·

p0,0 ... p0,N−1

p1,0 ... p1,N−1

1 ... 1

T

= 0 (3.18)

52 automated color correction for colorimetry applications using barcodes

3.2 Experimental details

Experiments were designed to reproduce the QR Code life-cycle in
different scenarios, which can be regarded as a digital communication
channel: a message made of several bytes with their corresponding
error correction blocks is encoded in the black and white pixels of
the QR Code, that is transmitted through a visual channel (typically,
first displayed or printed and then captured by a camera), and finally
decoded and the original message retrieved (see Figure 3.8.a).

In this context, the effects of the challenging surface topographies
can be seen as an additional step in the channel, where the image
is deformed in different ways prior to the capture. To investigate
these effects we attached our QR codes to real complex objects to
collect pictures with relevant deformations (see details below). Then,
in order to expand our dataset, we incorporated an image augmenta-
tion step that programmatically added additional random projective
deformations to the captured images [121]. Finally, we considered the
surface fitting and correction as an additional step in the QR Code
processing workflow, prior to attempting decoding. This proved more
effective than directly attempting the QR Code decoding based on
the distorted image with deformed position and feature patterns due
to the surface topography (see Figure 3.8.b).

3.2.1 Datasets

We created 3 datasets to evaluate the performance of different trans-
formations in different scenarios with arbitrary surface shapes.

• Synthetic QR Codes (SYNT). This dataset was intended to eval-
uate the impact of data and geometry of the QR Code on the
proposed deformation correction methods. To that end, we gener-
ated the QR Codes as digital images, without printing them, and
applied to them affine and projective transformations directly with
image augmentation techniques (see Figure 3.7.a). This dataset
contained 12 QR Code versions (from version 1 to 12), each of
them repeated 3 times with different random data (IDs), and 19

augmented images plus the original one. The mutual combination
of all these variations yielded a total of 720 images to be processed
by the proposed transformations (see Table 3.1).

• QR Codes on flat surfaces (FLAT). In this dataset, we only en-
coded 1 QR Code version 7 and printed it. We placed this QR Code
on different flat surfaces and captured images (see Figure 3.7.b).
Thus, we only expected projective deformations in this dataset, to
be used as a reference. We also augmented the captured images
to match the same quantity of images from the previous dataset
(see Table 3.1).

qr codes on challenging surfaces 53

• QR Codes on challenging surfaces (SURF). In this dataset, we
used the same QR Code we used in the FLAT dataset, but placed
on top of challenging surfaces, such as bottles, or manually de-
forming the QR Codes (see Figure 3.7.c). We expected here to
have cylindrical and arbitrary deformations in the dataset. Also,
we augmented the captured images to match the size of the other
datasets (see Table 3.1).

Figure 3.7: Example images
from the three datasets - (a)
SYNT, (b) FLAT and (c) SURF
- showing similar QR codes in
different surface deformations.

Figure 3.8: (a) Block diagram
for a general encoding-decoding
process of a QR Code. (b)
A modified diagram with the
addition of a deformation due
to a noncoplanar surface to-
pography and surface fitting
stage which contains a correc-
tion steps where image defor-
mation is reverted to improve
readout. In our experiments,
also, an image augmentation
step was added to be used in the
proposed experiments for this
work.

54 automated color correction for colorimetry applications using barcodes

SYNT Values Dataset size

Version from 1 to 13 12

IDs (per version) random 3

Captures 1

Image augmentation 20

Total 720

FLAT Values Dataset size

Version 7 1

IDs (per version) https://color-sensing.com/ 1

Captures 48

Image augmentation 15

Total 720

SURF Values Dataset size

Version 7 1

IDs (per version) https://color-sensing.com/ 1

Captures 48

Image augmentation 15

Total 720

Table 3.1: Summary of dataset
sizes. All datasets attempt to
have the same size employing
QR Code generation, different
captures or image augmenta-
tion.

qr codes on challenging surfaces 55

3.3 Results

3.3.1 Qualitative surface fitting

We fitted the four transformations (AFF, PRO, CYL and TPS) to the
surface underneath all the QR Code samples from the three datasets
(SYNT, FLAT and SURF). To evaluate visually how accurate each
transformation was, a squared lattice of equally spaced points on the
predicted QR Code surface was back-projected into the original image
space. For illustration purposes, results on representative samples
of the SYNT, FLAT and SURF datasets can be seen in Figure 3.9,
Figure 3.10 and Figure 3.11, respectively.

Our first dataset, SYNT, contained samples with affine (Figure 3.9.a)
and projective (Figure 3.9.b) deformations. We observed that all four
transformations achieved good qualitative fittings with images pre-
senting affine deformations. This is an expected result, since all trans-
formations implement affirm terms. Consequently, when it comes to
projective deformations, the AFF transformation failed to adjust the
fourth corner (the one without any finder pattern, see Figure 2.13.a),
as expected. Comparatively, the PRO and the CYL transformations
lead to similarly good results, since both can accommodate perspec-
tive effects. Finally, TPS fitted the surface well, specially inside the
QR Code, and a slight non-linear deformation was present outside
the boundaries of the barcode, but these are irrelevant for QR Code
decoding purposes.

Figure 3.9: Two examples (a),
(b) from the SYNT dataset. The
surfaces were fitted by the four
methods described (AFF, PRO,
CYL and TPS). The surface fit-
ting is shown as a lattice of red
points back-projected onto the
original image.

56 automated color correction for colorimetry applications using barcodes

The FLAT dataset involved QR Codes that were actually printed
and then imaged with a smartphone camera. These QR Codes were
captured in projective deformations (Figure 3.10.b), some of them
resembling affine deformations (Figure 3.10.a), and most of them just
a combination of both. Qualitative performance comparison is similar
to that of the SYNT dataset. Again, the AFF transformation failed
to correctly approach the fourth corner. Also, we confirmed that
PRO, CYL and TPS performed well under the FLAT images, but TPS
showed a non-linear, irrelevant, overcorrection outside the barcode.

Figure 3.10: Two examples (a),
(b) from the FLAT dataset. The
surfaces were fitted by the four
methods described (AFF, PRO,
CYL and TPS). The surface fit-
ting is shown as a lattice of red
points back-projected onto the
original image.

qr codes on challenging surfaces 57

The SURF dataset was the most challenging dataset in terms of
modeling adverse surface topographies. QR Codes here were im-
aged again with a smartphone, but in this case the surface under
the barcode was distorted in several ways: randomly deformed by
hand (Figure 3.11.a), placed on top of a small bottle (Figure 3.11.b), a
large bottle (Figure 3.11.c), etc. Results showed that AFF, PRO and
CYL methods were not able to correctly match a random surface (i.e.
deformed by hand), as expected. Instead, TPS worked well in these
conditions, being a great example of the power of the spline decom-
position to match slow varying topographies, if a sufficiently high
number of landmarks is available. For cylindrical deformations (i.e.
QR Codes in bottles), AFF and PRO methods were again unsuccessful.
CYL performed better with the small bottles than with the large ones.
Apparently, higher curvatures (i.e. lower bottle radius r) facilitate
the fitting of this parameter and improve the quality of the overall
prediction radius of the projected cylinder before fitting the surface.
Thus, the CYL method properly fits the cylinder radius from one of
the sides of the QR Codes with 2 finder patterns and often fails to fit
the opposite side. Interestingly, The TPS method performed opposite
to the CYL method in the cylindrical deformations, tackling better
surfaces with mild curvatures.

Figure 3.11: Three examples (a),
(b), (c) from the SURF dataset.
The surfaces were fitted by the
four methods described (AFF,
PRO, CYL and TPS). The surface
fitting is shown as a lattice of
red points back-projected onto
the original image.

58 automated color correction for colorimetry applications using barcodes

3.3.2 Quantitative data readability

In order to evaluate the impact of these surface prediction capabilities
on the actual reading of the QR Code data, we run the full decoding
pipeline mentioned in Figure 3.8 for all the images in the three datasets
(SYNT, FLAT and SURF) with the four transformations (AFF, PRO,
CYL and TPS). There, once surface deformation was corrected, the QR
Code data was extracted with one of the most widespread barcode
decoder (ZBar [56; 122]). Therefore, in this experiment we are actually
evaluating how the error made on the assessment of the QR Code
geometry, due to surface and perspective deformations, impacts on
the evaluation of the individual black/white pixel bits; and to what
extent the native QR Code error correction blocks (based on Reed-
Solomon according to the standard).

We then defined a success metric of data readability[25] (R) as:

R = 100 · Ndecoded

Ntotal
[%] (3.19)

where Ndecoded is the number of QR Codes successfully decoded
and Ntotal is the total amount of QR Codes of a given dataset and
transformation. Such a number has a direct connection with the user
experience. In a manual reading scenario, it tells us how often the
user will have to repeat the picture (e.g. R = 95% means 5 repetitions
out of every 100 uses). In applications with automated QR Code
scanning, this measures how long it will take to pick up the data.

Figure 3.12 summarizes the readability performance of the four
transformations with the three datasets. For the SYNT and FLAT
datasets, PRO, CYL and TPS scored at 100% or close. AFF scored only
a 78% and 60% for the SYNT and the FLAT datasets, respectively. This
is because AFF lacks the perspective components that PRO and CYL
incorporate to address this problem. It is noteworthy that the TPS
scored similar to the PRO and CYL for these two datasets: despite
TPS does not include perspective directly, it is composed of affine and
non-linear terms, and the later ones can fit a perspective deformation.

This behavior is also confirmed for the segregated data on the
SYNT dataset (see Figure 3.13), where the TPS performed slightly
worse on images with a perspective deformation, similarly to the AFF.
Also in Figure 3.13, we see that AFF showed its best performance
(97%) in the subset of images where only affine transformation was
present, rendering lower in the projective ones (70%).

qr codes on challenging surfaces 59

Figure 3.12: Data readability (R)
of each dataset (SYNT, FLAT,
SURF) for each transformation
method (AFF, PRO, CYL and
TPS).

Figure 3.13: Data readability
(R) of the SYNT dataset, seg-
regated by the kind of deforma-
tion (affine or perspective) that
the QR Codes were exposed to,
for each transformation method
(AFF, PRO, CYL and TPS).

Figure 3.14: Data readability
(R) of the SURF dataset segre-
gated by the kind of deforma-
tion (cylindrical or other) that
the QR Codes were exposed to,
for each transformation method
(AFF, PRO, CYL and TPS).

60 automated color correction for colorimetry applications using barcodes

Figure 3.14 shows the segregated data for the SURF dataset, neither
the AFF nor the PRO transformations decoded almost any QR Code
(1%-2%). CYL performed well for cylindrical surfaces in the SURF
dataset (62%), but got beaten by the TPS results by 13 points (from
62% to 75%). Moreover, CYL scored less than 30% in images without
explicit cylindrical deformations, as expected; while the TPS remained
well over 85%. This is a remarkable result for the TPS, considering
that the rest of transformations failed completely at this task.

Finally, we wanted to benchmark the methodology proposed here
with a popular, state-of-the-art decoder like ZBar. To that end, we
fed ZBar with all our datasets of images (without pre-processing and
with surface geometry corrections made). Figure 3.15 shows that ZBar
implementation to read QR Code pixels out of reading each line of the
QR Code as one dimensional barcode[98] performs very well with the
SYNT dataset. But, in the more realistic smartphone-captured images
from FLAT, ZBar performed poorly, succeeding only in approximately
in 2/3 of the dataset.

Surprisingly, ZBar was still able to decode some SURF dataset
images. We compared these results with a combined sequence of
CYL and TPS transformations that can be regarded as TPS with a
fall-back to the CYL method, since CYL has its own fall-back into
PRO. Our solution, slightly improved the good results of ZBar in the
SYNT dataset, obtained a perfect score in the FLAT dataset where
ZBar struggles (100% vs 75%), and displayed a remarkable advantage
(84% vs 19%) in decoding the most complex SURF dataset. We can
therefore state that the here-proposed methodology outperforms the
state-of-the-art when facing complex surface topographies.

Figure 3.15: Data readability
(R) of the three datasets (SYNT,
FLAT and SURF) when pro-
cessed with ZBar and our com-
bined CYL and TPS methods.

qr codes on challenging surfaces 61

3.4 Conclusions

We have presented a method to increase the readout performance
of QR Codes suffering surface deformations that pose a challenge
to existing solutions. The thin-plate splines (TPS) transformation
has proven to be a general solution for arbitrary deformations that
outperforms other transformations proposed in the literature (AFF,
PRO, CYL), and the commercial implementation ZBar, by more than
4 times.

TPS presented a few corner cases when approaching high perspec-
tive projective transformations (i.e. the QR Code is way noncoplanar
with the capture device in a flat surface), where CYL and PRO meth-
ods performed very well. The results presented here point at an
optimum solution based on a sequential combination of the three
methods as fall-back alternatives (i.e. TPS → CYL → PRO).

This work has demonstrated how the TPS method is a suitable can-
didate to correct images where QR Codes are present using traditional
feature extraction using the QR Codes features themselves. Futures
developments could involve some enhancements to this methodology,
we explored them, and we expose now some ideas.

First, one could enhance the TPS definition to incorporate perspec-
tive components into the TPS fittings, which one of the differences
between the CYL and the TPS method. This was done by Bartoli et al.,
in their work they renamed the TPS method as DA-Warp, standing
for ’Deformable Affine Warp’, and introduced three new methods:
the RA-Warp – ’Rigid Affine Warp’ –, the DP-Warp – ’Deformable Per-
spective Warp’ – and the RP-Warp – ’Rigid Perspective Warp’ –; their
framework could be applied to images with QR Codes to increase the
performance of our solution and avoid the fall-back TPS → CYL →

PRO [123].

Second, approximating the radial basis contributions to the TPS
fittings is a well-know technique to relax the condition that each
landmark must be mapped directly to its respective landmark in
the corrected image [124; 125]. This is usually done by adding a
smoothing factor λ to the diagonal of the P array (see Equation 3.17).
We deepen in this methodology in chapter 5 when we applied TPS
to color correction, for QR Code extraction we discarded to use it
because we often want the extracted key features to match exactly
their position in the recovered image. Nevertheless, as it was not
checked it should be addressed in some future work.

62 automated color correction for colorimetry applications using barcodes

Third, in this work we demonstrated that TPS can be used to map
the surface where the QR Code is posed, no matter how adversarial
was that surface – if it is continuous and derivable –. The TPS
framework needs a huge quantity of landmark points to compute
the TPS correction, the more, the better. We extracted these landmarks
with classical feature extractors (contour detection, pattern matching,
etc.), but one could use neural networks to solve that problem. For
example, Shi et al. [118] presented an interesting solution which also
involved TPS, they trained a neural network to discover the optimal
landmarks for a given image with a text, in order to rectify it using a
TPS method, and later on, apply a text recognition network to recover
the text. Other authors, like Li et al. [126] have presented recent
work using the popular general-purpose recognition neural network
’YOLOv3’ [127] to locate the corners of ArUco codes [19].

Finally, our method could be applied to other 2D barcodes, such as
DataMatrix, Aztec Code or MaxiCode. The main blocker to implement
our methodology to such machine-readable patterns is the feature
extraction. For example, QR Codes implement a variety of patterns,
as detailed in chapter 2: finder, alignment and timing patterns. For
example, DataMatrix codes only present timing patterns [46], but this
handicap might be avoided using better extractors that use the Hough
transform to recover the full grid of the machine-readable pattern not
only the key features [128].

Chapter 4. Back-compatible Color QR Codes

As we have previously introduced, the popularization of digital cam-
eras enabled an easier access to photography devices to the people.
Nowadays, modern smartphones have onboard digital cameras that
can feature good color reproduction for imaging uses. However, when
actual colorimetry is needed, the smartphone camera sensor does not
suffice, needing auxiliary ad hoc tools to evaluate color and guarantee
image consistency among datasets [129].

As we have introduced in chapter 2, a traditional approach to
achieve a general purpose color calibration is the use of color correc-
tion charts, introduced by C.S. McCamy et. al. in 1976 [13], combined
with color correction techniques. It is safe to say that, in most of these
post-capture color correction techniques, increasing the number and
quality of the color references offers a systematic path towards better
color calibration, we pursue this topic further in next chapter 5.

Figure 4.1: A machine-readable
pattern to allocate an ammonia
sensor. Top: the designed pat-
tern, with two spaces to print
a colorimetric sensor. Bottom:
the captured version of the pat-
tern with a printed colorimetric
dye in one slot. Notice this pat-
tern resembles a QR Code, but
it does not contain any data.

In 2018, we presented a first implementation of a machine-readable
pattern (see Figure 4.1), based on the image recognizable structures
of the QR Codes, that integrated a color changing indicator (sensitive
to gases related to bad odor) and a set of color references (to measure
that color indication) [29]. In 2020, we reported a more refined
solution allocating hundreds of colors into another machine-readable
pattern, suitable to measure multiple gas sensors by means of color
changes alongside with the reference colors inside a pseudo QR Code
pattern [30]. In both solutions, the QR Code finder, the timing and
the alignment patterns (detailed in chapter 2) were present and used
to find, locate and sample the gas sensitive pixels and the reference
colors, but all the digital information was removed. These were,
therefore, ad hoc solutions that lacked the advantages of combining a
compact colorimetric readout and calibration pattern with the digital
data available in a QR Code. These solutions are presented from the
standpoint of view of colorimetric sensors in chapter 6.

64 automated color correction for colorimetry applications using barcodes

4.1 Proposal

Linking the colorimetric problem to a set of digital information opens
the door to many potential uses related to automation. For example,
the digital data could store a unique ID to identify the actual color
calibration references used in the image, or other color-measurement
properties e.g. by pointing at a data storage location. When used,
for example, in smart packaging, this enables the identification of
each package individually, gathering much more refined and granular
information.

In this chapter, we propose a solution for that by placing alto-
gether digital information and color references without breaking
the QR Code standard in a back-compatible Color QR Code imple-
mentation for colorimetric applications. Our solution modifies the
above-presented default QR Code encoding process (see Figure 2.6),
to enhance the QR Code to embed colors in a back-compatible way
(see Figure 4.2).

Figure 4.2: Block diagram
for a back-compatible encoding-
decoding process of a QR Code
which features the embedding
of a color layer for colorimetric
applications. The process can be
seen as a global encoding pro-
cess (digital encode and color
encode), followed by a chan-
nel (print and capture) and a
global decoding process (extract
colors and decode digital infor-
mation). This process is back-
compatible with state of the art
scanners which remove colors
and achieve the decoding of the
data and compatible with new
decoders which can benefit from
color interrogation. The back-
compatibility is achieved by fol-
lowing certain rules in the color
encoding process (i.e. use the
same threshold when placing
the colors than when removing
them).

back-compatible color qr codes 65

This solution is inspired by, but not directly based on, previous
Color QR Codes proposals that aim at enhancing the data storage
capacity of a QR Code by replacing black and white binary pixels
by color ones (see Figure 4.3) [57; 130; 131; 132]. Those approaches
offer non-back-compatible barcodes that cannot be decoded with
standard readers. Instead, our work offers a design fully compatible
with conventional QR Codes. Evidently, without a specialized reader,
the color calibration process cannot be carried out either, but back-
compatibility assures that any standard decoder will be able to extract
the digital data to, e.g. point at the appropriate reader software to
carry out the color correction in full. From the point of view of the
usability, back-compatibility is key to enable a seamless deployment
of this new approach to color calibration, using only the resources
already available in smartphones (i.e. the camera and a standard QR
decoder).

Figure 4.3: Previous state-of-the-
art QR Code variants that im-
plement colors in some fashion.
(a) A QR Code which is able to
back-compatible embed an im-
age. (b) A RGB implementation
of QR Codes where 3 different
QR Codes are packed in each
RGB channel, each channel is
back-compatible, although the
resulting image is not. (c) A
High Capacity Color Barcode, a
re-implementation of a QR Code
standard using colors, which is
not back-compatible with QR
Codes.

4.1.1 Color as a source of noise

Before being able to formulate our proposal, it is necessary to study
how the additions of color affects the QR Code as carrier in our
proposed communication framework (see Figure 4.2). As QR Codes
are equipped with and error correction blocks, we can think of color
as a source of noise to be corrected with those correction blocks.
Deliberate image modifications, like the insertion of a logo, or the
inclusion of a color reference chart like we do here, can be regarded
as additional noise to the channels. As such, the noise related to this
tampering of pixels can be characterized with well-known metrics
like the signal-to-noise ratio (SNR) and the bit error ratio (BER).

Let’s exemplify this with a QR Code that encodes a website URL
(see Figure 4.4.a.). First, this barcode is generated and resized (Fig-
ure 4.4.b.) to fit a logo inside (Figure 4.4.c.). The scanning process
(Figure 4.2) follows a sequence of sampling –to detect the where QR
Code is– (Figure 4.4.d.), desaturation –turning the color image into
a grayscale image– (Figure 4.4.e.) and thresholding –to binarize the
image– (Figure 4.4.f.). The original binary barcode (Figure 4.4.a.) and
the captured one (Figure 4.4.f.) will be clearly different, and here
is where the error correction plays a key role to retrieve the correct
encoded message -the URL in this example-.

66 automated color correction for colorimetry applications using barcodes

Figure 4.4: A QR Code is over-
laid with a logo, which accumu-
lates error due to the presence
of the logo. (a) The QR Code
is encoded. (b) The code is re-
sized to accommodate the logo.
(c) The logo is placed on top of
the QR Code. (d) The code is
“captured” and down-sampled
again. (e) The sampled image
is passed to grayscale. (f) The
image is binarized, the apparent
QR Code differs from the origi-
nal QR Code (a).

We usually represent signal-to-noise ratio (SNR) from the stand
point of view of signal processing. Thus SNR is the ratio between
‘signal power’ and ‘noise power’. Usually, as signals are evaluated over
time this ratio is presented as an root mean square (RMS) average:

SNR =
PRMS,signal

PRMS,noise
(4.1)

where PRMS,signal and PRMS,noise are the average power of the signal
and the noise, respectively. Which in turn is equal to:

SNR =

(

ARMS,signal

ARMS,noise

)2

(4.2)

where ARMS,signal and ARMS,noise are the root mean square (RMS)
amplitude of the signal and the noise. A RMS of a discrete x variable
can be written as:

xRMS =

√

1
n

(

x2
1 + x2

2 + · · ·+ x2
n

)

(4.3)

Then, using this RMS expression and having into account grayscale
images can be defined as two-dimensional discrete variables, we can
rewrite SNR as follows:

SNR =
∑

n
0 ∑

m
0 (Agray(i, j))2

∑
n
0 ∑

m
0 (Agray(i, j)− Cgray(i, j))2 (4.4)

where Agray ∈ [0, 1]n×m are the pixels of the QR Code original
image (Figure 4.5.a), which act as a ‘signal image’, Cgray ∈ [0, 1]n×m

back-compatible color qr codes 67

are the pixels of the QR Code with the logo in a normalized grayscale
(Figure 4.5.b), the difference between both images acts as the ‘noise

image’ (Figure 4.5.c), and the ratio between their variances is the
SNR. Finally, the SNR values can be expressed in decibels using the
standard definition:

SNRdB = 10 log10(SNR). (4.5)

The bit error ratio (BER) is defined as the probability to receive
an error when reading a set of bits or, in other words, the mean
probability to obtain a 0 when decoding a 1 and to obtain a 1 when
decoding a 0:

BER =
E(N)

N
(4.6)

where N is the total amount of bits received, and E(N) the errors
counted in the N bits. In our case, this translates into the mean
probability to obtain a black pixel when decoding a white pixel, and
to obtain a white one when decoding a black one. A reformulated
BER expression for our binary images is as follows:

BER =
∑

n
0 ∑

m
0 |Abin(i, j)− Cbin(i, j)|

N
(4.7)

where Abin ∈ {0, 1}n×m is the binarized version of Agray ∈ [0, 1]n×m

(Figure 4.5.d), Cbin ∈ {0, 1}n×m is the binarized version of Cgray ∈
[0, 1]n×m (Figure 4.5.e) and N = n ·m are the total pixels in the image.
The pixels contributing to the BER are shown in Figure 4.5.f.

Figure 4.5: A QR Code with a
logo is created and read, which
accumulates error due to the
presence of the logo. (a) The
original QR Code encoded. (b)
The captured sampled grayscale
QR Code. (c) The power differ-
ence between (a) and (b). (d)
The original grayscale QR Code
encoded is binarized, which it
is represented exactly as (a). (e)
The captured sampled grayscale
image from (b) is binarized. (f)
The difference between (d) and
(e) is shown: light blue pix-
els correspond to white pixels
turned into black by the logo,
and dark blue pixels correspond
to black pixels turned into white
by the logo.

68 automated color correction for colorimetry applications using barcodes

As a summary, Table 4.1 shows the results for the computation
of the SNR and BER figures for Figure 4.4 images. As we can see,
adding a logo to the pattern represents a noise source that reduces
the SNR to 10.53 dB, further noise sources (printing, capture, etc.)
will add more noise thus reducing the SNR more. BER metric shows
us the impact of the logo when recovering the digital bits, as we
have mentioned before this quantity is directly related to the error
correction level needed to encode the QR Code. In this example, with
a BER of 8.54%, the poorest error correction level (L, 7%) would not
suffice to ensure safe readout of the barcode.

Measure Acronym Value

Signal-to-Noise ratio SNR 10.53 dB
Bit error ratio BER 8.54 %

Table 4.1: The values for the
SNR and BER are computed for
the QR Code with a logo from
Figure 4.4. The SNR is com-
puted using grayscale images.
The BER is computed using bi-
nary images (see Figure 4.4).

4.1.2 Back-compatibility proposal

We want to achieve back-compatibility with the QR Code standard.
This means that we must still be able to recover the encoded data
message from the colored QR Code using a standard readout process
(capturing, sampling, desaturating and thresholding).

To make it possible we must place these colors inside the barcode
avoiding the protected key areas that ensure its readability. In the rest
of the available positions, the substitution of black and white pixels
with colors can be regarded as a source of noise added to the digital
data pattern. We propose here a method to reduce the total amount
of noise and miss-classifications introduced in the QR Code when
encoding colors, that is based on the affinity of those colors to black
and white (i.e. to which color it resembles the most). To that end,
we classify the colors of the palette to be embedded in two groups:
pseudo-black and pseudo-white colors.

Initially, let G′rgb ∈ [0, 255]l×3 be a set of colors with size l we want
to embed in a QR Code. Then, let us start with the definition of the
main steps of our proposal to encode these colors inside a QR Code:

1. Normalization, the 8-bit color channels (RGB) are mapped to a
normalized color representation:

fnormalize : [0, 255]l×3 → [0, 1]l×3 (4.8)

2. Desaturation, the color channels (RGB) are then mapped into a
monochromatic grayscale channel (L):

fgrayscale : [0, 1]l×3 → [0, 1]l (4.9)

3. Binarization, the monochromatic grayscale channel (L) is con-
verted to a monochromatic binary channel (B):

fthreshold : [0, 1]l → {0, 1}l (4.10)

back-compatible color qr codes 69

4. Colorization, the binary values of the palette colors represent the
affinity to black (zero) and white (one) and can be used to create
a mapping between the position in the color palette list and the
position inside the QR Code matrix (a binary image). This mapping
will also depend on the geometry of the QR Code matrix (where
are the black and white pixels placed) and an additional matrix
that protects the key zones of the QR Code (a mask which defines
the key zones):

fmapping : {0, 1}l × {0, 1}n×m × {0, 1}n×m → {0, . . . , l + 1}n×m

(4.11)

Once the mapping is computed, a function is defined to finally
colorize the QR Code, which renders an RGB image of the QR
Code with embedded colors:

fcolorize : {0, 1}n×m × [0, 1]l×3 × {0, . . . , l + 1}n×m → [0, 1]n×m×3

(4.12)

Subsequently, to create the pseudo-black and pseudo-white colors
subsets, we must define the implementation of these functions. These
definitions are arbitrary, i.e. it is possible to compute a grayscale ver-
sion of a color image in different ways. Our proposed implementation
is intended to resemble the QR Code readout process:

1. Normalization, fnormalize will be a function that transforms a 24-bit
color image (RGB) to a normalized color representation. We used
a linear rescaling factor for this:

Grgb(k, c) = fnormalize(G
′
rgb) =

1
255

G′rgb(k, c) (4.13)

where G′rgb ∈ [0, 255]l×3 is a list of colors with a 24-bit RGB color

depth and Grgb ∈ [0, 1]l×3 is the normalized RGB version of these
colors.

2. Desaturation, fgrayscale will be a function that transforms the color
channels (RGB) to a monochromatic grayscale channel. We used
an arithmetic average of the RGB pixel channels:

Ggray(k) = fgrayscale(Grgb) =
1
3

3

∑
c=0

Grgb(k, c) (4.14)

where Grgb ∈ [0, 1]l×3 is the normalized RGB color palette and
Ggray ∈ [0, 1]l is the grayscale version of this color palette.

3. Binarization, fthreshold will be a function that converts the monochro-
matic grayscale channel (L) to a binary channel (B). We used a
simple threshold function with a thresholding value of 0.5:

Gbin(k) = fthreshold(Ggray) =

0 Ggray(k) ≤ 0.5

1 Ggray(k) > 0.5
(4.15)

70 automated color correction for colorimetry applications using barcodes

where Ggray ∈ [0, 1]l is the grayscale version of the color palette
and Gbin ∈ {0, 1}l is its binary version, which describes the affinity
to black (0) and white (1) colors.

4. Colorization, fcolor will be a function that will render a RGB image
from the QR Code binary image and the palette colors by using a
certain mapping. We used this function to implement it:

Crgb(i, j, k) = fcolor(Abin, Grgb, M) =

Abin(i, j) M(i, j) = 0

Grgb(p− 1, k) M(i, j) = p > 0
(4.16)

where Abin ∈ {0, 1}n×m is the original QR Code binary image,
Grgb ∈ [0, 1]l×3 is a color palette to be embedded in the image,
Crgb ∈ [0, 1]n×m×3 is the colorized QR Code image, and M ∈
{0, . . . , t}n×m is an array mapping containing the destination of
each one of the colors of the palette into the 2D positions within
the image. We propose to use Gbin (Equation 4.15) to create M, this
mapping will also depend on the geometry of the QR Code image
(where are the black and white pixels placed) and an additional
matrix that protects the key zones of the QR Code (a mask which
defines the key zones), this mapping will be fmapping, it has the
general form:

M = fmapping(Gbin, Abin, Z) (4.17)

where M ∈ {0, . . . , t}n×m is the array mapping, Gbin ∈ {0, 1}l is
the affinity to black or white of each color in the palette, Abin ∈
{0, 1}n×m is the original QR Code binary image and Z ∈ {0, 1}n×m

is a mask that protects the QR Code key patterns to be overwritten
by the palette. One possible implementation of fmapping (Equa-
tion 4.17) is shown in algorithm 1, where the colors of the palette
are mapped to positions of the QR Code based on their affinity
to black and white. For each one of these two classes, the partic-
ular assignment of a color to one of the many possible pixels of
the class (either black or white) is fully arbitrary and allows for
further design decisions. In this implementation of the mapping,
we choose to assign the colors in random positions within the class.
In other applications, interested e.g. in preserving a certain color
order, additional mapping criteria can be used as shown below.
Anyhow, preserving the assignment to the black or white classes
based on the color affinity is key for back-compatibility.

back-compatible color qr codes 71

Algorithm 1: Creation of the mask for grayscale insertion
method

Input: Gbin ∈ {0, 1}l , Abin ∈ {0, 1}n×m, and Z ∈ {0, 1}n×m

Output: M ∈ {0, . . . , l + 1}n×m

1 Wcolor ← []

2 Bcolor ← []

3 for k = 0, . . . , l do

4 if Gbin(k) == 1 then

5 Append k to Wcolor

6 else

7 Append k to Bcolor

8 p← lenght(Wcolor)

9 q← lenght(Bcolor)

10 Wpos ← []

11 Bpos ← []

12 for i = 0, . . . , n do

13 for j = 0, . . . , m do

14 if Z(i, j) == 1 then

15 if Abin(i, j) == 1 then

16 Append (i, j) to Wpos

17 else

18 Append (i, j) to Bpos

19 W ′pos ← Select p random values of Wpos

20 B′pos ← Select q random values of Bpos

21 M← {0}i,j ∀i ∈ {0, . . . , n} and j ∈ {0, . . . , m}
22 for k = 0, . . . , p do

23 M(W ′pos(k))←Wcolor(k) + 1

24 for k = 0, . . . , q do

25 M(B′pos(k))← Bcolor(k) + 1

26 return M

72 automated color correction for colorimetry applications using barcodes

Figure 4.6: The color informa-
tion from the ColorSensing logo
is distributed using different cri-
teria, each one of these distri-
butions compute different mea-
sures of SNR and BER, although
the total amount of colors is
the same, the way they are dis-
tributed affects the signal qual-
ity. (a) The original QR Code
with the logo. (b) The logo
colors are sorted at the top of
the QR Code. (c) The logo
colors are randomly distributed
among the QR Code. (d) The
logo colors are distributed by us-
ing a threshold criterion among
blacks and white colors.

Moreover, to illustrate how different placement mappings affect
the readout process, we will consider 4 different situations, where
fmapping plays different roles, and we will compute their SNR and
BER metrics:

• Logo. When a logo-like pattern is encoded, Grgb will be the colors
of the logo and Mlogo will be a mapping that preserves the logo im-
age, overlaid on top of the original QR Code image (Figure 4.6.a.).

• Sorted. We are going to use the colors of the logo (thus Grgb will
be the same as before), but we are going to place them on top of
the QR Code, sorting them as they appear in the color list. Msorted

will establish that the first color goes to the first available position
inside Agray pixels, etc. (Figure 4.6.b.).

• Random. Again we use the same colors of the logo (Grgb remains
the same) but now Mrandom defines a random mapping of the
palette into the available positions of Agray (Figure 4.6.c.).

• Grayscale. Our proposed method. Same as before, but the now
random assignment of Mgray respects the rule that pseudo-white
colors are only assigned to white pixels of Agray, and pseudo-black
only to the black ones, as described in algorithm 1 (Figure 4.6.d.).

Measure Logo Sorted Random Grayscale

SNR 10.53 dB 10.27 dB 10.35 dB 12.23 dB
BER 8.55 % 8.33 % 8.62 % 0.00 %

Table 4.2: Values of SNR and
BER computed for each criteria
in Figure 4.6. Using the logo as
it is, the sorted criteria and ran-
dom criteria yield to similar re-
sults. However, the use of a sim-
ple grayscale threshold criteria
slightly increases the SNR and
hugely depletes the BER, show-
ing a good result for encoding
colors in a back-compatible way.

Finally, Table 4.2 shows the SNR and BER figures for the four map-
pings (exemplified in the images of Figure 4.6). Using the grayscale
approach to encode colors by their resemblance to black and white
colors leads to much lower noise levels. Since the original data of
the QR Code can be seen as a random distribution of white and
black pixels, Msorted and Mrandom mappings yield similar results to
Mlogo, encoding the logo itself. Meanwhile, Mgray mapping shows
us a 0% BER, and an almost 2dB SNR increase. This suggests that
our proposal is an effective way to embed colors into QR Code in a
back-compatible manner (see Figure 4.2), as it is demonstrated in the
following sections.

back-compatible color qr codes 73

4.2 Experimental details

Experiments were designed to test our proposed method, we carried
out 3 different experiments where QR Codes were filled with colors
and then transmitted through different channels. In all experiments,
we calculated the SNR and BER as a measure of the signal quality of
each QR Code once transmitted through different channels. Also, we
checked the direct readability by using a QR Code scanner before and
after going through the channels. Table 4.3 contains a summary of
each experiment designed. A detailed explanation of the experimental
variables is provided below.

All experiments Values Size

Color substitution (%) 1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 100 12

Colorized zone EC, D, EC&D 3

Colorizing method Random, Grayscale 2

Experiment 1 Values Size

Digital IDs from 000 to 999 1000

QR version 5, 6, 7, 8, 9 5

Channels Empty, Image augmentation 1 + 1

Experiment 2 Values Size

Digital IDs 000 1

QR version 5, 6, 7, 8, 9 5

Channels Empty,
Image augmentation 1 + 1000

Experiment 3 Values Size

Digital IDs 000 1

QR version 5 1

Channels Empty, Colorimetry setup 1 + 25

Table 4.3: Summary of parame-
ter values for each experiment
designed. All experiments share
common parameters, at least
each experiment has 72 different
QR Codes that will be generated
using as reference the multipli-
cation of the shared parameters.
Experiment 1 generates 360.000

different QR Codes.

4.2.1 Color generation and substitution

We choose our random color palette Grgb for the experiments to be
representative of the RGB space. Nevertheless, Grgb should be random
in a way that it is uniformly random in the grayscale space L. But
if we define three uniform random RGB channels as our generator,
we will fail to accomplish a grayscale uniform random channel. This
is due to the fact that when computing the L space as a mean of
the RGB channels, we are creating a so-called Irwin-Hall uniform
sum distribution [133] (see Figure 4.7.b.). In order to avoid this, we
propose to first generate the L channel as a uniform random variable,
then generate RGB channels which will produce these generated L
channel values (see Figure 4.7.b.).

74 automated color correction for colorimetry applications using barcodes

Figure 4.7: Histogram compari-
son between uniform randomly
generated RGB channels. (a)
which yields to a non-uniform
grayscale -L- and uniform ran-
domly generated grayscale -L-
. (b) with derived pseudo-
uniform RGB channels.

During the different experiments, we will be filling QR Codes with
a palette of random colors Grgb. The color substitution factor ranged
from only 1% of the available pixel positions in a QR Code replaced
with colors up to 100% (see Figure 4.8). Evidently, each QR Code
version offers different numbers of pixels and thus positions available
for color substitution.

Figure 4.8: The same QR
Code is populated with differ-
ent amounts of colors. (a) 1% of
the pixels are substituted using
a random placement method
(yellow arrows show the col-
orized pixels). (b) 100% of the
pixels are substituted using a
random placement method.

back-compatible color qr codes 75

4.2.2 Placing colors inside the QR Code

Our back-compatibility proposal starts avoiding the substitution of
colors in key protected areas of the QR Code. This can be imple-
mented with a Z mask (see algorithm 1). In our experiments, we used
3 masks (see Figure 4.9):

I ZEC&D, that excludes only the key protected areas and allows
covering with colors all the error correction and data regions (see
details in chapter 2),

II ZEC, that only allows embedding colors in the error correction,

III ZD, with colors only in the data.

Once we have restricted ourselves to these Z masks, we will embed
the colors following a M mapping. We propose to use Mrandom and
Mgray presented before (see Figure 4.6.c. and Figure 4.6.d.).

Figure 4.9: The same QR Code
is populated in different areas
with 80% of colors for each area.
(a) the whole QR Code is pop-
ulated (EC&D). (b) Only the er-
ror correction area is populated
(EC). c. Only the data area is
populated.

4.2.3 QR Code versions and digital IDs

The encoded data and the version of the QR Code will shape the
actual geometry of the barcode, thus it will determine the Agray pixels.
To generate the barcodes, we choose as payload data a URL with a
unique identifier such as https://color-sensing.com/#000, where
the numbers after ‘#’ range from 000 to 999 to make the barcodes
different from each other. Also, the QR Code selected versions ranged
from 5 to 9, to test and exemplify the most relevant computer vision
pattern variations defined in the QR Code standard. For all of these
barcodes, we used the highest level of error correction of QR Code
standard: the H level, which provides a 30% of error correction.

4.2.4 Channels

The use of QR Code in real world conditions imply additional sources
of error, like differences in printing, different placements, ambient
light effects, effects of the camera and data processing, etc. All these
factors can be regarded as sources of noise in a transmission channel.

https://color-sensing.com/#000

76 automated color correction for colorimetry applications using barcodes

We considered 3 different channels for the experiments:

• Empty. A channel where there is no color alteration due to the
channel. It was used as a reference, to measure the noise level
induced by the colorization process (see Figure 4.10.a).

• Image augmentation. With a data augmentation library [121] we
generated images that mimic different printing processes and ex-
posure to different light conditions. With this tool we also applied
Gaussian blur distortions, crosstalk interferences between the RGB
channels and changed contrast conditions. (see Figure 4.10.b).

• Colorimetry setup. We actually printed the QR Codes and cap-
tured them with a fixed camera (Raspberry Pi 3 with a Raspberry
Pi Camera v2) [134] under different illumination-controlled condi-
tions (Phillips Hue Light strip) [135]. The camera was configured
to take consistent images. The light strip was configured to change
its illumination conditions with two subsets of illumination con-
ditions: white light (9 color temperatures from 2500K to 6500K)
and colored light (15 different colors sampling evenly the CIExyY
space) (see Figure 4.10.c).

Figure 4.10: The same QR Code
with data and the same amount
of colors (80% of the data area)
is exposed to different channels.
(a) The image passed-through
an empty channel. (b) The im-
age passed-through an augmen-
tation channel which resembles
a warm light scene. (c) The
image passed-through a real
environment channel, actually
printed and captured in a scene
with a lamp at 2500K (warm
light).

back-compatible color qr codes 77

4.3 Results

4.3.1 Embedding colors in QRs codes: empty channel

Let us start with the results of Experiment 1, where 360.000 different
color QR Codes were encoded (see Table 4.3). Then, SNR and BER
were computed against an empty channel (only the color placement
was taken into account as a source of noise). Results show only data
from those QR Codes where colors were placed using the ZEC&D

mask (see details in subsection 4.2.3), reducing our dataset to 120.000

QR Codes. Figure 4.11 shows aggregated results of the SNR and BER
as a function of the color substitution ratio, for Mrandom and Mgray

mappings data is averaged for all QR Code versions (5, 6, 7, 8 and 9)
and for all 1000 different digital IDs. These results indicate that SNR
and BER are independent of the QR Code versions and the QR Code
digital data, since the standard deviation of these figures (shadow
area in Figure 4.11) that average different versions and digital IDs
are very small. Only the BER for Mrandom shows a narrow deviation.
Of course, all these deviations increased when noise was added (see
further results).

Figure 4.11: SNR and BER re-
sults for Experiment 1 before
sending the QR Codes to any
channel, only taking into ac-
count the QR Codes where all
the area has been used (EC&D).
Lines and points show average
data, light shadows show the
min and max values, and heavy
shadows show the standard de-
viation for each color substitu-
tion ratio. Left: SNR results
for Greyscale (squares, black)
and Random (dots, red) meth-
ods. Right: BER results for
Greyscale (squares, black) and
Random (dots, red) methods.

Regarding the SNR, it decreases for both Mrandom and Mgray when
the total amount of colors increases. We found that our Mgray pro-
posal (affinity towards black and white) is 6 dB better than Mrandom,
regardless of the quantity of colors embedded, the data, or the version
of the QR Code. This means that our proposal to place colors based
on their grayscale value is 4 times less noisy than a random method.

Concerning the BER, results show that, before including the effects
of a real noisy channel, our placement method leads to a perfect
BER score (0%). Instead, with a random substitution, and even in an
ideal channel, BER increases linearly and reaches up to a 40% of BER.
Taking into account the QR Code resemblance to a pseudo-random
pattern, the maximum BER in this scenario is 50%. This slightly better
result can be attributed to the fact that we are not tampering with the
key protected areas of the QR Code (finder, alignment, . . .).

78 automated color correction for colorimetry applications using barcodes

4.3.2 Image augmentation channel

Results from Experiment 1 showed that the SNR and BER results
are independent from the data encoded in the QR Code. Based on
this finding, we reduced the amount of different IDs encoded to
only one per QR Code version and increased the number of image
augmentation channels to 1000. This was the key idea of Experiment
2, and by doing this we achieved the same statistics of a total 360.000

results, from 3.600 QR Codes sent though 1.000 different channels.
Focusing again only on the QR Codes that are color embedded using
the whole zone (ZEC&D) we ended up with 120.000 results to calculate
the corresponding SNR and BER (see Figure 4.12).

Figure 4.12: SNR and BER re-
sults for Experiment 2 after
sending the QR Codes to an
image augmentation channel,
only taking into account the
QR Codes where all the area
has been used (EC&D). Lines
and points show average data,
light shadows show the min and
max values, and heavy shad-
ows show the standard devia-
tion for each color substitution
ratio. Left: SNR results for
Greyscale (squares, black) and
Random (dots, red) methods.
Right: BER results for Greyscale
(squares, black) and Random
(dots, red) methods.

Regarding the SNR, it worsened in comparison with Experiment 1,
because now the image augmentation channel is adding noise (see
details in subsection 4.2.4). The 6 dB difference between Mrandom and
Mgray remains for higher color substitution. This can be explained
because the noise generated by the color placement is larger than the
noise generated by the channel when increasing the amount of colors.

Concerning the BER, it increased up to an average value of about
7% for Mgray method due to the influence of a noisy channel. In
the most extreme cases (channel with the lowest SNR and for the
maximum color substitution ratio), BER values do not exceed 20%.
Instead, the augmentation channel does not seem to increase the BER
for Mrandom; essentially because it is already close to the theoretical
maximum.

We have also observed (see Figure 4.13) the impact of the channel
noise on the SNR and BER figures of Mrandom and Mgray are mostly
independent of the QR Code version. Therefore, we can expect that
the level of resilience to noise offered by one or another mapping will
remain, independently of the data to encode or the QR Code version
needed. That is the reason why we removed the QR Code version
from the set of variables to explore in the Experiment 3.

back-compatible color qr codes 79

Figure 4.13: SNR results for
Experiment 2, splitted by QR
Code version, after sending the
QR Codes to an image aug-
mentation channel, only tak-
ing into account the QR Codes
where all the area has been used
(EC&D). SNR results are shown
for Greyscale (squares, black)
and Random (dots, red) meth-
ods. Lines and points show av-
erage data, light shadows show
the min and max values, and
heavy shadows show the stan-
dard deviation for each color
substitution ratio.

4.3.3 Colorimetry setup as channel

Experiment 3 consisted of only one QR Code v5 (1 ID, 1 version)
being colored in 72 different ways (12 color insertion ratios, 2 color
placement mappings –Mrandom and Mgray– and 3 different zones to
embed colors –ZEC&D, ZEC and ZD–), then printed and exposed to a
colorimetry setup with a total of 25 different color illumination condi-
tions captured with a digital camera. We performed this experiment
as a way to check if the proposed method and the results obtained
with the image augmentation channel held in more severe, and real,
capturing conditions. This experiment led to a dataset of 1.800 images
acquired from the real world. The calculations of the SNR and the
BER were based on those images with colors placed with the ZEC&D

mask, reducing our dataset to 600 results (see Figure 4.14).

Regarding the SNR, as our real channel was quite noisy, averaged
values sank more than 10 dB, for all the color substitution ratio and
for Mrandom and Mgray. Here, the huge advantage of 6dB observed

80 automated color correction for colorimetry applications using barcodes

before for Mgray was not so evident, since the channel was now
the main source of noise. This should serve to illustrate that our
proposed method starts with an initial advantage in ideal conditions
with respect to the random mapping method, which can diminish
due to the channel noise but will always perform better.

Regarding the BER, for Mgray, the BER values did not increase rel-
ative to the image augmentation channel, both distributions overlap
in the range of 7-10% of BER. For Mrandom, the linear maximum be-
haviour up to a BER of 40% is also shown in this situation. As shown
in further sections, although noise levels from both methods are simi-
lar in practical applications, the difference in how they are translated
into BER determines the grayscale mapping better performing.

Figure 4.14: SNR and BER re-
sults for Experiment 3 after
sending the QR Codes to a real
channel (printing and captur-
ing the QR Code in a colorime-
try setup), only taking into ac-
count the QR Codes where all
the area has been used (EC&D).
Lines and points show average
data, light shadows show the
min and max values, and heavy
shadows show the standard de-
viation for each color substitu-
tion ratio Left: SNR results for
Greyscale (squares, black) and
Random (dots, red) methods.
Right: BER results for Greyscale
(squares, black) and Random
(dots, red) methods.

back-compatible color qr codes 81

4.3.4 Readability

Up to this point, results show how embedding colors in the QR Codes
might increase the probability of encountering bit errors when decod-
ing those QR Codes. Results also indicate that our back-compatible
method can reduce the average probability of encountering a bit error
from 40% to 7-10%, enabling proper back-compatible QR Code scan
using the error correction levels included in the standard that can
tolerate this amount of error (levels Q and H). This is a necessary but
not sufficient demonstration of back-compatibility.

We must also be sure that the new method offers QR Codes fully
readable with conventional decoders. To assess this readability, we
checked the integrity of the data of all the QRs in our experiments
using ZBar, a well-established barcode scanner often used in the
literature [56; 122]. We calculated the success ratio at each color
substitution ratio as the amount of successfully decoded QR Codes by
ZBar divided by the total amount of QR Codes processed. Also, we
analyzed separately the results obtained when embedding colors in
the 3 different zones (ZEC&D, ZEC and ZD masks), in order to identify
further relevant behaviours.

Figure 4.15: Success ratio of de-
coded QR Codes before passing
through a channel among dif-
ferent embedding zones (EC&D,
Error Correction and Data), for
each color mapping method
(greyscale and random) for all
QR Code versions. Each curve
represents a QR Code ver-
sion, there are up to 5 curves
for each method, Greyscale
(squares, black) and Random
(dots, red).

On the one hand, readability results of the QR Codes of Exper-
iment 1 (channel without noise) are shown in Figure 4.15. Mgray,
the proposed mapping, scores a perfect readability, no matter the
insertion zone. This is because Mgray does not actually add BER

82 automated color correction for colorimetry applications using barcodes

when colors are inserted. Instead, Mrandom, the random method, is
extremely sensitive to color insertion, and the readability success rate
decays rapidly as the number of inserted colors increases. As seen
in Experiment 1, the Data zone (ZD) seems the most promising to
embed the largest fraction of colors.

Figure 4.16: Success ratio of de-
coded QR Codes after passing
through an image augmentation
channel among different embed-
ding zones (EC&D, Error Cor-
rection and Data), for each color
mapping method (greyscale and
random) for all QR Code ver-
sions. Each curve represents
a QR Code version, there are
up to 5 curves for each method,
Greyscale (squares, black) and
Random (dots, red).

On the other hand, results after passing through the noisy channels
of Experiment 2 and Experiment 3 are shown in Figure 4.16 and Fig-
ure 4.17, respectively. Clearly, the noise of the channel also affects
the readability of Mgray mapping, but the codes built this way are
much more resilient and can allocate a much larger fraction of colors
without failing. Even more: if colors are only placed in the Data
(ZD) encoding zone, grayscale mapped color QR Codes remain fully
readable until all the available pixels of the zone are occupied.

To get a practical outcome of these results, one should translate the
color substitution ratios into the actual amount of colors that these
ratios mean when using different encoding zones in QR Codes with
different versions. Table 4.4 summarizes these numbers grouped by
encoding zone, QR Code version. Results compare the maximum
number of colors that can be allocated using each one of the mapping
methods (grayscale vs. random) with at least a 95% of readability.
Experience shows that beyond this 5% of failure, the user experience
is severely damaged.

back-compatible color qr codes 83

Figure 4.17: Success ratio of
decoded QR Codes after pass-
ing through a real-life chan-
nel among different embedding
zones (EC&D, Error Correc-
tion and Data), for each color
mapping method, Greyscale
(squares, black) and Random
(dots, red), only for a QR Code
of version 5.

Clearly, the Mgray mapping allows for allocating between 2x to
4x times more colors than a naive Mrandom approach. Interestingly,
restricting the placement of colors to the data zone (ZD) leads to a
much larger number of colors, in spite of having less pixels available;
being the error correction (ZEC) the less convenient to tamper with. In
the best possible combination (Mgray mapping, ZD zone, v9 –largest
version studied–) this proposal reaches an unprecedented number of
colors that could be embedded close to 800. As a matter of fact, this
could mean sampling a 3-dimensional color space of 24 bits resolution
(i.e. sRGB) with 93 colors evenly distributed along each axis.

Needless to say, that such figures can be systematically increased
with QR Codes of higher versions. To get a specific answer to the
question of how many colors can be be embedded as a function of
the QR Code version in the best possible conditions -data zone (ZD)
with our grayscale mapping (Mgray)-, we generated a specific dataset
of QR Codes with versions running from v3 to v40, and checked
their 95% readability in the conditions of Experiment 2 through 50

image augmentation channels (see Figure 4.18). Results indicate that
thousands of colors are easily at reach, with a theoretical maximum of
almost 10,000 colors with QR Codes v40. In real life, however, making
these high version QR Codes readable with conventional cameras at
reasonable distances means occupying quite a lot of space (about 5

inches for a QR Code v40). That size, though, is comparable to that
of a ColorChecker pattern but giving access to thousands of colors
instead of only tens.

84 automated color correction for colorimetry applications using barcodes

QR

Code

version

EC&D Error Correction Data

Greyscale Random Greyscale Random Greyscale Random

5 322 54 282 70 352 141

6 206 69 448 90 464 139

7 314 78 520 104 512 205

8 387 97 499 125 672 269

9 467 117 461 77 784 235

Table 4.4: Number of differ-
ent colors that can be embed-
ded inside a QR Code with a
95% success ratio during the de-
coding process for each inser-
tion mask (EC&D, EC or D),
for both color mapping methods
(greyscale and random). In abso-
lute terms, the mask correspond-
ing with only the Data zone
beats the other two, as expected
the Grayscale method performs
better than the Random one.

Figure 4.18: Number of colors
that can be embedded in the
D zone as a function of the
QR Code version (from v3 to
v40). Lines show the theoreti-
cal maximum number of colors,
for different substitution ratios.
Square dots show the maximum
number of colors that could be
embedded in a QR Code with a
demonstrated readability above
95% in the conditions of Experi-
ment 2. In contrast to the other
QR Code zones, such high read-
abilities are obtained, even in
100% substitution ratio only in
the D zone.

back-compatible color qr codes 85

4.3.5 Example of use case

Finally, we illustrate how this approach can be applied to carry out ac-
tual color correction problems with full QR Code back-compatibility,
using the 24 colors from the original ColorChecker [13] to create a bar-
code that contains them (see Figure 4.19). We created a compact color
QR Code version 5 with H error correction level. According to our
findings, this setup should let us embed 352 colors in the data zone
(ZD) zone without risking readability. In this example, this allowed us
to embed up to 10 replicas of the 24 color references, offering plenty
of redundancy to detect variation of the color calibrations across the
image or to improve the correction itself. Table 5 shows the main
quantitative results obtained with this colored QR Code, submitted to
the conditions of Experiment 2, with one empty channel and 120.000

image augmentation channels.

Encoding

Digital ID 000

Version 5

Error correction level H

Unique colors 24 colors

Total embedded colors 240 colors

Color substitution ratio 22 %

Empty channel 1 channel

SNR 12.68 dB

BER 0.0 %

Success ratio 100 %

Augmentation channels 120000 channels

SNR 11 ± 2 dB

BER 2.7 ± 1.7 %

Success ratio 96 %

Table 4.5: Properties of the pro-
posed QR Code with the Col-
orChecker colors embedded in
it. Properties are related with
different steps in the QR Code
life-cycle, from encoding to de-
coding.

Figure 4.19: A color QR Code
(version 5 with H error correc-
tion level) which contains 240

pixels that are coloured. This
is implemented with our back-
compatible method. These color
pixels reproduce the 24 original
ColorChecker colors with a re-
dundancy of 10 pixels per color.
Only 22% of the digital data pix-
els are used in this process, al-
most all the Data (D) zone is
used to allocate the colors.

86 automated color correction for colorimetry applications using barcodes

4.4 Conclusions

We have presented a method to pack a set of colors, useful for color
calibration, in a QR Code in a fully back-compatible manner, this
is preserving its conventional ability to store digital data. By doing
this, we enhanced the state-of-the-art color charts with two main
features: first, we did leverage the computer vision readout of the
color references to the QR Code features; and two, de facto we reduced
the size of the color charts to the usual size of a QR Code, one or two
inches.

Also, we have demonstrated that the color capacity of the QR
Codes constructed this way (up to a few thousand colors!) is orders
of magnitude higher than that found in the traditional color charts,
due to the image density and pattern recognition robustness of the
QR Codes.

Moreover, compared to other colored QR Codes, our proposal,
based on the grayscale affinity of the colors to white or black, leads to
much lower signal alteration levels and thus much higher readability,
than the found in more naive approaches like, e.g., random assign-
ment methods, which represent the aesthetic QR Codes (printing a
logo).

This work opens a way to explore further methods to embed color
information in conventional 2D barcodes. Tuning how we defined our
criteria of color embedding upon the affinity of colors to black and
white would lead to more efficient embedding methods. We explored
some of these ideas to seek those improved methods, and we expose
them below.

First, the way in which we implemented the grayscale (a mean
value of the RGB channels) is only one of the ways to compute a
grayscale channel, i.e. one could use the luma definition a weighted
mean based on the human eye vision:

fgrasycale(r, g, b) = 0.2126 · r + 0.7152 · g + 0.0722 · b .

Or the lightness one:

fgrasycale(r, g, b) =
1
2
(max(r, g, b) + min(r, g, b)) .

These grayscale definitions are often part of colorspaces definitions
[11], such as CIELab, CIELuv, HSL, etc. All these different grayscale
will generate different color distributions, displacing colors between
black and white regions of the QR Code.

back-compatible color qr codes 87

Second, we defined a way to select the area inside the QR Code
where to embed the colors (see algorithm 1), this could be improved
also. For example, we could decide to implement fthreshold in a more
complex fashion. Let us imagine a certain set of colors Grgb to encode
in a certain QR Code, one could create more than two sets to define
the black-white affinity, i.e. four sets, namely: blackest colors (0),
blackish colors (1), whitish colors (2) and whitest colors (3):

fthreshold(Ggray) =

0 0.00 < Ggray(k) ≤ 0.25

1 0.25 < Ggray(k) ≤ 0.50

2 0.50 < Ggray(k) ≤ 0.75

3 0.75 < Ggray(k) ≤ 1.00

And accommodate algorithm 1 to this new output from fgrayscale

by assigning those colors with higher potential error (1,2) to the
DATA zone and those with lower potential error (0,3) to the EC zone.
Theoretically, this would outperform our current approach, as in this
work we demonstrated that DATA zones are more resilient to error
than EC zones, thus displacing away from EC critical colors would
lead to a systematic increase of color capacity.

Third, many authors have contributed to create aesthetic QR Codes
which embed trademarks and images with incredibly detailed results,
we wanted to highlight some solutions that might be combined with
our technology to embed even further colors or improve the control
over the placement of the colors.

Halftone QR Codes were proposed by Chu et al. [56], they sub-
stituted QR Code modules for subsampled modules that contained
white and black colors. These submodules presented a dithering
pattern that followed the encoded image shape. One could use the
dithering idea to embed also colors inside subsampled pixels.

QArt Codes were introduced by Cox [58], the proposal aims to force
the QR Code encoding to block certain areas of the QR Code to be
black or white no matter what the encoded data is (note this is only
possible for some kinds of data encoding). One could use this feature
to preserve dedicated areas for color embeddings, as a complement
to algorithm 1. Note the need for a back-compatible criteria is still-
present, the QArt Code only provides us the certainty if a module of
the original QR Code is black or white, but they must remain black or
white during the decoding process. This combination of technologies
has a potential impact in reducing the cost of producing the Color
QR Codes. as one could fix the position of the colored modules
before encoding the data using our grayscale criteria, then print
the QR Code using cost-effective printing technologies (rotogravure,
flexography, etc.) and the black and white pixels using also cost-
effective monochromatic printing technologies (laser printing), rather
than use digital ink-jet printing to print the whole code.

88 automated color correction for colorimetry applications using barcodes

Finally, we have assumed that our back-compatible Color QR Codes

are meant to be for colorimetric measurement, as this is the preamble
of our research.

Nevertheless, the above-presented results could be applied to en-
code data in the color of the QR Codes in a back-compatible manner.
This means, include more digital information in the same space. Other
authors have presented their approaches to this solution, none of them
in a back-compatible way. Les us propose a couple of ideas to achieve
these digital back-compatible Color QR Codes, based on other ideas to
color encode data in QR Codes.

First, Blasinki et al. [130] introduced a way to multiplex 3 QR Codes
in one, by encoding a QR Code in each CMY channel of the printed
image. And then, when they recovered the QR Code, they applied a
color interference cancellation algorithm to extract the QR Codes from the
RGB captured image, they also discussed how to approach the color
reproduction problem and manipulated further the remaining black
patterns (finder, alignment and timing) to include color references.

All in all, this rendered non back-compatible Color QR Codes.
Now, using our proposed method, one could turn this approach to
back-compatibility again by simply do the following: keep the first
QR Code to multiplex as the ’default’ QR Code; then, take another
3 additional QR Codes and create a barcode following Blasinki et al.
method; in turn, create a "pseudo-white" and "pseudo-black" version
of this color QR Code; and finally, re-encode the default QR Code
with the pseudo-colors in a back-compatible manner. Also, note this
proposal is not restricted by the number of channels an image has,
as we are exploiting intermediate values, not only the extreme ones.
There should exist a limit yet to discover of how many QR Code can
be multiplexed in this fashion.

Second, other authors like Berchtold et al. – JAB Code –[49] or
Grillo et al. – HCCBC –[136] fled from the original QR Code standard
to redefine entirely the data encoding process. The main caveat of
their technological proposals is the lack of back-compatibility, as we
have discussed before. One could combine both technologies to create
more adoptable tecnology. Grillo et al. proposal seems the easiest way
to go, as they kept the factor form of QR Codes. Theoretically, one
could simply multiplex one HCCBC with one QR Code as described
with the previous method and achieve a digital back-compatible Color
QR Code.

Chapter 5. Image consistency using an improved TPS3D

method

Thin-plates splines (TPS) were introduced by Duchon in 1978 [137],
reformulated by Meinguet in 1979 [138]. Later in 1989, TPS were
popularized by Bookestein [115] due to their potential to fit data
linked by an elastic deformation, especially when it comes to shape
deformation.

So far, TPS have been used widely to solve problems like morphing
transformations in 2D spaces. For example, Rohr et al. [139] and
Crum et al. [140] used TPS to perform elastic registration of similar
features in different images in a dataset. Or, Bazen et al. [116] used
TPS to match fingerprints. Moreover, we have successfully used TPS
to improve QR Code extraction in chapter 3.

TPS framework can be applied to color spaces. As explained in
chapter 2, color spaces are three-dimensional spaces. TPS formulation
covers this scenario for 3D deformations [137; 138; 115]. In fact, we
can already find works that apply them to color technology. For
example, Colatoni et al. [141] and Poljicak et al. [142] used TPS to
characterize screen displays. Also, Sharma et al. [143] interpolated
colors to be printed in commercial printers using TPS. Moreover,
Menesatti et al. [15] proposed a new approach to color correct dataset
for image consistency based upon TPS, and called this method 3D

Thin-Plate Splines (TPS3D).

In this chapter, we focus on the implementation of thin-plate spline
color corrections, specifically in the use of the TPS3D method to
perform color correction in image datasets directly in RGB spaces,
while proposing an alternative radial basis function [144] to be used to
compute the TPS, and introducing a smoothing factor to approximate
the solution in order to reduce corner-case errors [145]. All in all,
we illustrate here the advantages and limitations of the new TPS3D
methodology to color correct RGB images.

90 automated color correction for colorimetry applications using barcodes

5.1 Proposal

Solving the image consistency problem, introduced in chapter 2, using
the TPS3D method requires the creation of an image dataset. The
images on this dataset must contain some type of color chart. Also,
the captured scenes in the images must be meaningful, and the color
chart must be representative of those scenes. Here, we propose to use
the widely-accepted Gehler’s ColorChecker dataset [146; 147], which
contains 569 images with a 24 patch Macbeth ColorChecker placed
in different scenes (see Figure 5.1). We do so, rather than creating
our own dataset with the Back-compatible Color QR Codes proposed
in chapter 4 because this is a standard dataset with a standard color
chart. In chapter 6, we will combine both techniques into colorimetric
sensors.

Figure 5.1: An example of a
Gehler’s ColorChecker dataset
image.

Moreover, we propose to apply a data augmentation technique
to increase the size of the dataset by 100, to match in size other
augmented image datasets that have appeared recently. We do not
use those images as they do not always contain a ColorChecker [12].

Furthermore, we propose to benchmark our TPS3D against its
former implementation [15] and a range of alternative methods to
correct the color in images, such as: white balance [44], affine [44],
polynomial [27; 28] and root-polynomial [28] corrections. Benchmark-
ing includes both quantitative color consistency and computational
cost metrics [15; 148].

In this section we review the derivation of the above-mentioned
color correction methods before introducing our improvements to
the TPS3D method. Notice the formulation will remind to the 2D
projection formulation from chapter 3, however some differences have
to be considered:

• as described in chapter 2 color corrections are mappings between

3D spaces,

• unlike projective transformations in 2D planes, we will be only

using affine terms as basis, and

• our notation in this formulation avoids the use of homogeneous
coordinates (p0, p1, p2) in favor of more verbose notation using the
name of each color channel (r, g, b).

image consistency using an improved tps3d method 91

5.1.1 Linear corrections

In chapter 2 we defined color corrections as an application f between
two RGB color spaces. If this application is to be linear, thus a
linear correction, we can use a matrix product notation to define the
correction [14; 44]:

s′ = f (s) = M · s (5.1)

where M is a 3 × 3 linear matrix that maps each color in the
origin captured color space s = (r, g, b) to the corrected color space
s′ = (r′, g′, b′) (see Figure 5.2). In order to solve this system of
equations, we must substitute these vectors by matrices containing
enough color landmarks (known pairs of colors in both spaces) to
solve the system for M: Figure 5.2: RGB colors of the

ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show
their augmented version, as in
their captured values.

M · P = Q (5.2)

where Q is matrix with s′ colors and P is matrix with colors s.

5.1.1.1 White-balance correction

White-balance is the simplest color transformation that can be applied
to an RGB color. In the white-balance correction each channel of
vector function f is independent:

r′ = fr(r) =
rmax

rwhite
· r

g′ = fg(g) =
gmax

gwhite
· g

b′ = fb(b) =
bmax

bwhite
· b

(5.3)

Figure 5.3: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using a white-balance cor-

rection. The whitest point (up-
per right) is the only one that is
properly corrected.

where (rmax, gmax, bmax) is the maximum value of each channel
in the color corrected space, e.g. (255, 255, 255) for 24-bit images;
and (rwhite, gwhite, bwhite) is the measured whitest color in the image
(see Figure 5.3). This relation can be easily written as a matrix, and
only needs one color reference to be solved (from Equation 5.2):

ar 0 0
0 ag 0
0 0 ab

·

r

g

b

=

r′

g′

b′

(5.4)

where ak are the weight contributions of Equation 5.3 for each k

channel.

92 automated color correction for colorimetry applications using barcodes

The white-balance correction can be improved by subtracting the
black level of the image before applying the white-balance correction
(see Figure 5.4). For example, shown for the red channel for simplicity,
this improvement looks like:

r′ = fr(r) = rmin +
rmax − rmin

rwhite − rblack
· (r− rblack) (5.5)

Figure 5.4: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using a white-balance with

black-subtraction correction. The
whitest point (upper right) and
the blackest point (lower left)
are the only ones properly cor-
rected.

where rmin is the minimum value of the channel red possible in
the color corrected space, e.g. 0 for 24-bit images; and rblack is the red
value of the measured darkest color in the image. Equation 5.2 is still
valid for this linear mapping, but f becomes a composed application
(f : R

3 → R
4 → R

3), where M becomes a 3 × 4 matrix, and we
need to expand the definition of the P colors using a homogeneous
coordinate:

ar 0 0 tr

0 ag 0 tg

0 0 ab tb

·

r1 r2

g1 g2

b1 b2

1 1

=

r′1 r′2
g′1 g′2
b′1 b′2

(5.6)

where ak are the affine contributions and tk are the translation
contributions for each k channel, and now two points are required to
obtain the color correction weights.

5.1.1.2 Affine correction

White balance is only a particular solution of an affine correction.
We can generalize Equation 5.3 for, e.g., the red channel to accept
contributions from green and blue channels:

Figure 5.5: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using an affine correc-

tion. We could choose to fix
3 points, but here we applied
an approximated solver to the
system, so any of the points is
strictly matched.

r′ = fr(r, g, b) = ar,r · r + ar,g · g + ar,b · b =
r,g,b

∑
k

ar,kk (5.7)

this expression is connected with the full matrix implementation,
with 9 unknown weights:

ar,r ar,g ar,b

ag,r ag,g ag,b

ab,r ab,g ab,b

·

r1 r2 r3

g1 g2 g3

b1 b2 b3

1 1 1

=

r′1 r′2 r′3
g′1 g′2 g′3
b′1 b′2 b′3

(5.8)

where aj,k are the weights of the M matrix, and we need 3 known
colors references to solve the system (see Figure 5.5).

image consistency using an improved tps3d method 93

In turn, white-balance with black-subtraction Equation 5.5 is a
specific solution of an affine transformation, which handles translation
and can be generalized as:

Figure 5.6: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using an affine correc-

tion with translation. We could
choose to fix 4 points, but here
we applied an approximated
solver to the system, so any of
the points is strictly matched.

r′ = fr(r, g, b) = tr +
r,g,b

∑
k

ar,kk (5.9)

also tied up to its matrix representation:

ar,r ar,g ar,b tr

ag,r ag,g ag,b tg

ab,r ab,g ab,b tb

·

r1 r2 r3 r4

g1 g2 g3 g4

b1 b2 b3 b4

1 1 1 1

=

r′1 r′2 r′3 r′4
g′1 g′2 g′3 g′4
b′1 b′2 b′3 b′4

(5.10)

where aj,k and tk are the weights of the M matrix, and we require
4 known colors to solve the system (see Figure 5.6).

5.1.2 Polynomial corrections

As we have seen with affine corrections, we can expand the definition
of the measured color space matrix P including additional terms to
it. This is useful to compute non-linear corrections using a linear
matrix implementation. Formally, this space expansion can be seen
as f being now a composed application:

f : R
3 → R

3+N → R
3 (5.11)

where R
3+N is an extended color space derived from the original

color space R
3. We can write a generalization of Equation 5.9 for

polynomial corrections as follows:

r′ = fr(r, g, b) = tr +
r,g,b

∑
k

ar,kk +
N

∑
i

wr,iΦi(r, g, b) (5.12)

where Φ(r, g, b) = {Φi(r, g, b)}, i = 1, · · · , N is a set of monomials,
wi are the weight contributions for each monomial and N is the length
of the monomial set [28].

The monomials in the set Φ(r, g, b) will have a degree 2 or more,
because we do not unify the affine parts as monomials, we do so to
emphasize their contribution to the correction. Also, notice that N

is arbitrary, and we can choose how we construct our polynomial
expansions by tuning the monomial generator Φi(r, g, b).

94 automated color correction for colorimetry applications using barcodes

Despite that, N always relates to the number of vectors needed in
Equation 5.2 to solve the system. M takes the form of a 3× (4 + N)

matrix, P takes the form of a (4 + N)× (4 + N) matrix and Q takes
the form of a 3× (4 + N) :

wr,N · · · wr,1 ar,r ar,g ar,b tr

wg,N · · · wg,1 ag,r ag,g ag,b tg

wb,N · · · wb,1 ab,r ab,g ab,b tb

·

ΦN,0 ΦN,2 . . . ΦN,N+4
...

...
...

...
Φ1,1 Φ1,2 . . . Φ1,N+4

r1 r2 . . . rN+4

g1 g2 . . . gN+4

b1 b2 . . . bN+4

1 1 . . . 1

=

r′1 r′2 . . . r′N+4
g′1 g′1 . . . g′N+4
b′1 b′1 . . . b′N+4

(5.13)

5.1.2.1 Geometric polynomial correction

The simplest polynomial expansion of a color space occurs when
Φ(r, g, b) generates a pure geometric set:

Φ(r, g, b) = {kα : 2 ≤ α ≤ D} (5.14)

where k ∈ {r, g, b} is any of the RGB channels, α is the degree
of a given monomial of the set and D is the maximum degree we
choose to form this set (see Figure 5.7). For example, for D = 3 , it
will produce the set:

ΦD=3(r, g, b) =
{

r2, g2, b2, r3, g3, b3
}

(5.15)

Combining this expression with Equation 5.13, we can see we
obtain a matrix that is directly related with the Vandermonde matrix
[149], but for 3D data instead of 1D data.

Figure 5.7: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using a geometric polyno-

mial correction of degree 4. Many
of the points are almost matched
due to the polynomial expan-
sion.

5.1.2.2 Polynomial correction

Equation 5.14 can be generalized to take into account also cross-terms
from any of the channels to create the monomial terms [27; 28]. So,
we can write now:

Φ(r, g, b) =

{

rgb

∏
k

kαk : 2 ≤ |α| ≤ D

}

(5.16)

where |α| = ∑
rgb
k αk is a metric, which is the sum of the degrees of

each channel in the monomial, thus the degree of each monomial.

image consistency using an improved tps3d method 95

Following with the example where D = 3, now we obtain an
expanded set:

ΦD=3(r, g, b) =
{

r2, g2, b2, rg, gb, br, r3, g3, b3, rg2, gb2, br2, gr2, bg2, rb2, rgb
}

(5.17)

5.1.2.3 Root-polynomial correction

Finally, a root-polynomial correction is defined modifying Equa-
tion 5.16 to introduce the |α|-th root to each monomial [28]:

Φ(r, g, b) =

{

rgb

∏
k

k
αk
|α| : 2 ≤ |α| ≤ D

}

(5.18)

So, this reduces the amount of terms of each set for a given degree
D. Then, our example with D = 3 becomes reduced to:

ΦD=3(r, g, b) =

{√
rg,
√

gb,
√

br, 3
√

rg2, 3
√

gb2,
3√

br2, 3
√

gr2, 3
√

bg2,
3√

rb2, 3
√

rgb

}

(5.19)

Notice that all the terms present in a Vandermonde expansion
have now disappeared, as they are now the same terms of the
affine transformation due to the root application { 3

√
r3, 3
√

g3, 3
√

b3} =
{
√

r2,
√

g2,
√

b2} = {r, g, b}, and the only remaining terms are the
roots of the cross-products.

5.1.3 Thin-plate spline correction

As an alternative to the former approaches, we can use thin-plate
spline as the basis of the expansion to the color space in P [15]:

r′ = fr(r, g, b) = tr +
r,g,b

∑
k

ar,kk +
N

∑
i

wr,ihi(r, g, b) (5.20) Figure 5.8: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using a thin-plate spline

correction. All the points are
strictly matched by the TPS def-
inition.

where wi are the weight contributions for each spline contributions,
and hi(r, g, b) are kernels of h in the N known colors. We will follow
the same formulation described in chapter 3. A more detailed defini-
tion of hi functions can be found there. Also, notice this expression
is really similar to Equation 5.12 of polynomial corrections, the main
difference is the fact that the number of N spline contributions equals
to the number of color references (see Figure 5.8).

96 automated color correction for colorimetry applications using barcodes

Equation 5.2 becomes now:

wr,1 · · · wr,N ar,r ar,g ar,b tr

wg,1 · · · wg,N ag,r ag,g ag,b tg

wb,1 · · · wb,N ab,r ab,g ab,b tb

·

h1,1 h1,2 . . . h1,N
...

...
...

...
hN,1 hN,2 . . . hN,N

r1 r2 . . . rN

g1 g2 . . . gN

b1 b2 . . . bN

1 1 . . . 1

=

r′1 r′2 . . . r′N
g′1 g′1 . . . g′N
b′1 b′1 . . . b′N

(5.21)

This system is unbalanced, as we have N colors vectors in P and
Q. In other corrections, we used four additional color references to
solve the system, but here each new color is used to compute an
additional spline, unbalancing the system again. Alternatively, the
TPS formulation imposes two additional conditions [115]: the sum of
wj,k coefficients is to be 0, and their cross-product with the P colors as
well. As a consequence of such conditions, spline contributions tend
to 0 at infinity, while affine contributions prevail. This makes our
system of equations solvable, and it can be expressed as an additional
matrix product:

wr,1 · · · wr,N

wg,1 · · · wg,N

wb,1 · · · wb,N

·

r1 ... rN

g1 ... gN

b1 ... bN

1 ... 1

T

= 0 (5.22)

5.1.3.1 Polynomial radial basis functions

The RBF used to compute splines remains open to multiple defini-
tions. The thin-plate approach to compute those splines implies using
solutions of the biharmonic equation [115]:

∆2U = 0 (5.23)

that minimize the bending energy functional described by many
authors, thus resembling the spline solution to the trajectory followed
by an n-dimensional elastic plate. These solutions are the polyno-
mial radial basis functions and a general solution is provided for
n-dimensional data as [145; 144; 139]:

hc(s) = U(s, c) =

||s− c||2k−n ln ||s− c|| 2k− n is even

||s− c||2k−n otherwise
(5.24)

image consistency using an improved tps3d method 97

where n is the number of dimensions, k is the order of the func-
tional, s and c are the data points where the spline is computed and
|| · || is a metric.

For a bending energy functional (the metal thin-plate approach)
k = 2 and n = 2 (2D data), we obtain the usual thin-plate spline RBF
[115]:

hc(s) = ||s− c||2 ln ||s− c|| (5.25)

But for k = 2 and n = 3 (3D data) we obtain [115]:

hc(s) = ||s− c|| (5.26)

It is unclear why in the TPS3D to color correct images, Menesatti et
al. [15] used the definition for 2D data (Equation 5.25), rather than the
actual 3D definition (Equation 5.26) which according to the literature
should yield to more accurate results. We will investigate here the
impact of this change in the formal definition of the TPS3D.

So far, we have not defined a metric || · || to solve the TPS contribu-
tions. We will follow Menesatti et al. and use the euclidean metric of
the RGB space. We will also name this metric ∆RGB, as it is commonly
known in colorimetry literature [15]:

||s− c|| = ∆RGB(s, c) =
√

(rs − rc)2 + (gs − gc)2 + (bs − bc)2 (5.27)

5.1.3.2 Smoothing the thin-plate spline correction

Approximating the TPS corrections is a well-known technique [139;
145]. Specifically, this is performed in ill-conditioned scenarios where
data is noisy or saturated, and strict interpolation between data
points, leads to important error artifacts. We propose now adding
a smoothing factor to the TPS3D, to improve color correction in ill-
conditioned situations.

We approximated the TPS by adding a smoothing factor to the
spline contributions, which reduces the spline contributions in favor
of the affine ones (see Figure 5.9). Taking Equation 5.20, we will
introduce a smooth factor only for those color references where the
center of the spline was those references themselves:

Figure 5.9: RGB colors of the
ColorChecker of an image are
projected in the red-green plane.
The colors are replicated: (◦)
show the original colors of the
ColorChecker and (×) show the
corrected values of the aug-
mented version shown in Fig-
ure 5.2 using a smoothed thin-

plate spline correction. Not all the
points are strictly matched now,
as we relaxed the the TPS defi-
nition.

r′j = fr(rj, gj, bj) = tr +

rj ,gj ,bj

∑
k

ar,kk +
N

∑
i

(wr,ihi(rj, gj, bj) + λδij) (5.28)

where λ is the smoothing factor, and δij is a Kronecker delta.

98 automated color correction for colorimetry applications using barcodes

Notice that in the previous TPS definition the spline contributions
of a reference color to the same reference color were 0 under the
euclidean metric we chose. Also, notice the matrix product of Equa-
tion 5.21 is still valid, as we have only affected the diagonal of the
upper part of the P matrix. Thus,

Psmooth = P +

[

λI

O(4, N)

]

=

h1,1 + λ h1,2 . . . h1,N

h2,1 h2,2 + λ . . . h2,N
...

...
...

...
hN,1 hN,2 . . . hN,N + λ

r1 r2 . . . rN

g1 g2 . . . gN

b1 b2 . . . bN

1 1 . . . 1

(5.29)

where P is the matrix of color references and their TPS expansion,
I is the identity matrix and O(4, N) is a matrix with 0s of size 4× N.

5.2 Experimental details

So far, we have reviewed the state-of-the-art methods to color correct
images to achieve consistent datasets using color references as fixed
points in color spaces to compute color corrections. Also, we have
proposed two updates to the TPS3D method: using the suited RBF
and smoothing the TPS contributions.

In Table 1, we show a summary of all the corrections that we stud-
ied in this work using the dataset described in the next section. First,
a perfect correction (PERF) and a non-correction (NONE) scenario
are present as reference. Notice that perfect correction will display
here the quantization error after passing from 12-bit images to 8-bit
images. Then several corrections have been implemented, that have
been grouped by authorship of the methods and type of correction:

• Affine (AFF): white-balance (AFF0), white-balance with black sub-
traction (AFF1), affine (AFF2), affine with translation (AFF3).

• Vandermonde (VAN): four polynomial corrections from degree 2

to 5 (VAN0, VAN1, VAN2 and VAN3).

• Cheung (CHE): from Cheung et al. [27], four polynomial correc-
tions with different terms: 5 (CHE0), 7 (CHE1), 8 (CHE2) and 10

(CHE3).

• Finlayson (FIN): from Finlayson et al. [28], two polynomial and
two root-polynomial, of degrees 2 and 3 (FIN0, FIN1, FIN2, FIN3).

• Thin-plate splines (TPS): TPS3D from Menesatti et al. [15] (TPS0),
our method using the proper RBF (TPS1) and the same method
with two smoothing values (TPS2 and TPS3).

image consistency using an improved tps3d method 99

Correction Acronym P extended color space

Perfect PERF (r, g, b)

No correction NONE (r, g, b)

White-balance AFF0 (r, g, b)

White-balance w/ black subtraction AFF1 (1, r, g, b)

Affine AFF2 (r, g, b)

Affine w/ translation AFF3 (1, r, g, b)

Vandermonde (degree=2) VAN0 (1, r, g, b, r2, g2, b2)

Vandermonde (degree=3) VAN1 (1, r, g, b, r2, g2, b2, r3, g3, b3)

Vandermonde (degree=3) VAN2 (1, r, g, b, r2, g2, b2, r3, g3, b3, r4, g4, b4)

Vandermonde (degree=4) VAN3 (1, r, g, b, r2, g2, b2, r3, g3, b3, r4, g4, b4, r5, g5, b5)

Cheung (terms=5) CHE0 (1, r, g, b, rgb)

Cheung (terms=7) CHE1 (1, r, g, b, rg, rb, gb)

Cheung (terms=8) CHE2 (1, r, g, b, rg, rb, gb, rgb)

Cheung (terms=10) CHE3 (1, r, g, b, rg, rb, gb, r2, g2, b2)

Finlayson (degree=2) FIN0 (r, g, b, r2, g2, b2, rg, rb, gb)

Finlayson (degree=3) FIN1 (r, g, b, r2, g2, b2, rg, rb, gb, r3, g3, b3,

rg2, gb2, rb2, gr2, bg2, br2, rgb)

Finlayson root (degree=2) FIN2 (r, g, b,
√

rg,
√

rb,
√

gb)

Finlayson root (degree=3) FIN3 (r, g, b,
√

rg,
√

rb,
√

gb, 3
√

rg2, 3
√

gb2, 3
√

rb2,

3
√

gr2, 3
√

bg2, 3
√

br2, 3
√

rgb)

Thin-plate splines (Manesatti) TPS0 (1, r, g, b, ∆2
1 ln ∆1, . . . , ∆2

24 ln ∆24)

Thin-plate splines (ours, smooth=0) TPS1 (1, r, g, b, ∆1, . . . , ∆24)

Thin-plate splines (ours, smooth=0.001) TPS2 (1, r, g, b, ∆1, . . . , ∆24)

Thin-plate splines (ours, smooth=0.1) TPS3 (1, r, g, b, ∆1, . . . , ∆24)

Table 5.1: All the color correc-
tions performed in this work.
The table shows the name of the
correction, the tag used in this
work to refer to the correction
and the augmented definition
for each vector of P, the color
references or color to be cor-
rected. In this table we use a re-
duced notation ∆i = ∆RGB(si, c)

for simplicity.

100 automated color correction for colorimetry applications using barcodes

5.2.1 Dataset and pipeline

As explained before, the usual approach to solve the image consis-
tency problem is placing color references in a certain scene to later
perform a color correction. There exists a widely spread usage of color
charts, e.g. Macbeth ColorChecker of 24 colors [13]. Over the years,
extensions of this ColorChecker have appeared, mostly presented by
X-Rite, a Pantone company, or by Pantone itself, which introduced
the Pantone Color Match Card ® that features four AruCo patterns
[19] to ease the pattern extraction when acquiring the colors of the
chart.

Since in this chapter we do not propose improved versions of the
charts themselves, we use an existing image dataset that contains
images of the Macbeth ColorChecker of 24 colors in different scenes
in order to evaluate our color correction with respect to image con-
sistency; and benchmark it against other correction methods. The
Gehler’s dataset is a widely used dataset with several versions, and
there exists a deep discussion about how to use it. Despite the efforts
of the dataset creators and other authors to enforce the use of the last
“developed” dataset [147], here we use the RAW original version of
the dataset [146], and we developed the images ourselves. We did so
because we performed image augmentation over the dataset, as we
want to control the developing process of the RAW images and also
measuring the resulting augmented colors directly from the provided
annotations in the original dataset (see Figure 5.10).

Figure 5.10: Our pipeline: for
each Gehler’s dataset raw im-
age (bayer) we develop an RGB
image, which is already the half
size of the original image, also
this image is down-sampled to
reduce its size 4 times. Then
we augment this down-sampled
image with 100 sample augmen-
tation scenarios. For each aug-
mented scenario we correct back
before augmentation using 21

different correction methods de-
scribed in Table 5.1.

The Gehler’s dataset comprises images from two cameras: a Canon
EOS 1DS (86 images) and a Canon EOS 5D (483 images), both cameras
producing raw images of 12-bit per channel (N3

[0,4096]) with a RGGB
Bayer pattern [150]. This means we have twice as many green pixels
than red or blue pixels.

image consistency using an improved tps3d method 101

Images have been processed using Python [151], represented by
numpy arrays [152; 86], and have been developed using imageio [92]
and rawpy, the Python wrapper of craw binary, the utility used else-
where to process the Gehler’s dataset [146; 147]. When developing the
images, we implemented no interpolation, thus rendering images half
the size of the raw image (see Table 5.2). These are our ground-truth

images: the colors in these images are what we are trying to recover
when performing the color corrections.

We chose to work with 8-bits per channel RGB images as is the
most commonly developed pixel format present nowadays. First, we
cast the developed dataset 12-bit images (N3

[0,4096]) to 8-bit resolution

(N3
[0,255]). The difference between the cast images and the groundtruth

images is the quantization error, due to the loss of color depth res-
olution. To speeded up the calculations without losing statistical
significance in the results we down-sampled the images by a factor
4. The down-sampling factor is arbitrary and depends on the level
of redundancy of the color distribution in our samples. We selected
a down-sampling factor that did not alter the color histogram of the
images of the dataset, see Figure 5.11. Table 5.2 shows the final image
sizes for each camera on the Gehler’s dataset.

Camera Raw image Developed image Down-sampled image

Canon EOS 1DS (4064, 2704) (2041, 1359) (511, 340)

Canon EOS 5D (4368, 2912) (2193, 1460) (549, 365)

Table 5.2: Sizes in pixels (x, y) of
the images along our pipeline.
Notice raw pixels are natural
pixels of the sensor, this means
each pixel only represents one
color (red, green or blue).

Subsequently, we augmented the dataset using imgaug [93] (see Fig-
ure 5.12) that generated image replicas simulating different acquisition
setup conditions. The augmentations were performed with random
augmentations that modeled: linear contrast, gamma contrast and
channel cross-talk. Geometrical distortions were omitted because this
work is focused on a colorimetry problem.

Finally, we corrected each developed, down-sampled and aug-
mented image using the color corrections listed in Table 5.1. These
corrections were computed using color-normalized versions of those
images (R3

[0,1]). White-balance corrections were implemented directly
with simple array operations [86]; while affine, polynomial and root-
polynomial corrections were applied as implemented in the [153]. We
implemented our own version of the TPS with the corresponding
RBFs, including support for smoothing, using a derivation of the
scipy [86].

102 automated color correction for colorimetry applications using barcodes

Figure 5.11: An image from
Gehler’s dataset (K=1) is down-
sampled with 3 factors (K=4,
16, 64), where K is the down-
sampling factor. The figure also
shows the histogram associated
with each image and the size
in pixels of the image. Down-
sampled images by a factor 4

maintain the histogram repre-
sentation, but further down-
sampling alters the histogram.

Figure 5.12: Different examples
of color augmentation using
imgaug in Python. The upper-
left image is the developed orig-
inal image from the Gehlre’s
dataset. The other images are
augmentations of these image
with variations in color, contrast
and saturation.

image consistency using an improved tps3d method 103

5.2.2 Benchmark metrics

In order to benchmark the performance of all the correction methods,
we implemented different metrics. First, a within-distance (∆RGB ,within)
as the mean distance of all and only the colors in the ColorChecker to
their expected corrected values [15]:

Figure 5.13: The metric
∆RGB ,within is represented. RGB
colors of the ColorChecker of
an image are projected in the
red-green plane. The colors are
present as their ground-truth
value (◦) and their augmented
copy (×). Dashed lines across
the plane show the ∆RGB ,within

between each color pair. Cyan,
magenta and yellow pairs are
highlighted above the other
ColorChecker colors.

∆RGB ,within =
∑

L
l=1 ∆RGB(s

′
l , c′ l)

L
(5.30)

where s′ l is the corrected version of a certain ColorChecker cap-
tured color sl , which has a ground-truth reference value of c′ l , and
L is the number of reference colors in the ColorChecker (in our case
L = 24). Alongside with this metric, a criterion was defined to detect
failed corrections. We consider failed corrections those which failed to
reduce the within-distance between the colors of the ColorChecker after
the correction. Then, by comparing the ∆RGB ,within of the corrected
image and the image without correction (NONE):

∆RGB ,within − ∆RGB ,within,NONE > 0 . (5.31)

Second, we defined a pairwise-distance set (∆RGB ,pairwise) as the set
of the distances between all the colors in a ColorChecker in the same
image:

Figure 5.14: The set
∆RGB ,pairwise is represented.
RGB colors of the ColorChecker
of an image are projected in the
red-green plane. The colors are
present as their ground-truth
value (◦). Dashed lines across
the plane show the ∆RGB ,pairwise

between all the colors. The dis-
tances between cyan, magenta
and yellow are highlighted
above the other distances.

∆RGB ,pairwise =
{

∆RGB(c
′
l , c′m) : l, m = 1, . . . , L

}

(5.32)

where c′ l and c′m are colors of the ColorChecker in a given image.
Also, we implemented another criterion to detect ill-conditioned correc-

tions. Ill-conditioned corrections are those failed corrections in which
colors have also collapsed into extreme RGB values (see Figure 5.16).
By using the minimum pairwise-distance for a given color corrected
image:

min
(

∆RGB ,pairwise

)

< δ , (5.33)

where δ is a constant threshold which tends to zero. Note that
somehow we were measuring here the opposite to the first criterion:
we expected erroneous corrected colors to be pushed away from the
original colors Equation 5.31. However, sometimes they also got
shrunk into the borders of the RGB cube Equation 5.33, causing two
or more colors to saturate into the same color. Also, notice that we did
not define a mean pairwise-distance, ∆RGB ,pairwise, as it was useless to
define a criterion around a variable which presented huge dispersion
in ill-conditioned scenarios (e.g. colors pairs were at the same time
close and far, grouped by clusters).

104 automated color correction for colorimetry applications using barcodes

Third, we defined an inter-distance (∆RGB ,inter) as the color distance
between all the other colors in the corrected images with respect
to their values in the ground-truth images (measured as the mean
RGB distance of all the colors in the image but subtracting first the
ColorChecker area as proposed by Hemrit et al. [147]):

Figure 5.15: The metric
∆RGB ,inter is represented. RGB
colors of an entire image are
projected in the red-green plane.
The colors are present as their
ground-truth value (black
points, ◦) and their augmented
copy (red points, ×). Then,
three random colors are selected
to show dashed lines across
the plane to show the ∆RGB ,inter

between each color pair.

∆RGB ,inter =
∑

M
m=1 ∆RGB(s

′
m, c′m)

M
(5.34)

where M is the total amount of pixels in the image other than
those of the ColorChecker. This definition particularized the proposal
of Menesatti et al., where in order to compute the ∆RGB ,inter, they
used all the colors of another color chart instead of the actual image.
Specifically, Menesatti et al. used the GretagMacbeth ColorChecker
SG ® with 140 color patches [15].

Finally, to compare the computational performance of the methods,
we measured the execution time (T) to compute each corrected image,
T was also measured for images with different sizes to study its
linearity against the amount of pixels in an image in all corrections
[148].

Figure 5.16: An example of a
failed and ill-conditioned cor-
rection. The augmented image
shows saturated colors: the yel-
lowish colors and the whitish
colors. The corrected image
is computed with the TPS0

method rendering an erroneous
result.

image consistency using an improved tps3d method 105

5.3 Results

5.3.1 Detecting failed corrections

Let us start with the results of the detection of failed corrections for
each color correction proposed. Here we used the defined criteria
for ∆RGB ,within (Equation 5.31) and ∆RGB ,pairwise (Equation 5.33) to
discover failed and ill-conditioned corrections (see Figure 5.16).

Figure 5.17: A count of
the failed corrections for each
correction method is shown.
Failed corrections are selected
if their ∆RGB ,within computation
is greater than the NONE correc-
tion. After this, the count is di-
vided in ill-conditioned results
or not. Ill-condition is assessed
using the ∆RGB ,pairwise compar-
ison to a minimum distance of
∆RGB =

√
3.

First, we subtracted the ∆RGB ,within measures to the other ∆RGB ,within

and compare this quantity to 0, following Equation 5.31. Those cases
where this criterion were greater than 0 were counted as failed correc-
tions.

Second, for those corrections marked as failed, the ∆RGB ,pairwise cri-
teria (Equation 5.33) was applied to discovery ill-correction scenarios
(such as Figure 5.16) in between failed corrections. The ∆RGB ,pairwise

criteria was implemented using a δ =
√

3, due to the fact this is the
∆RGB ,pairwise of two colors that dist one digit from each other in each
channel (i.e. (0, 0, 0) and (1, 1, 1) for colors in the N

3
[0,255] space).

Finally, we also computed the relative % of failed color corrections
referenced to the total of color corrections performed, this figure is
relevant as we removed these cases from further analysis.

Figure 5.17 showed how resilient the studied color correction meth-
ods are to fail, let us see how well each group of correction has scored
here:

• AFF: AFF0 and AFF1 scored poor results, 9.7% and 4.58% of failed
corrections, respectively. On the contrary, AFF2 and AFF3 scored
almost any failures, this responds to the fact that AFF2 and AFF3

were using all the available references, instead of one or two.

106 automated color correction for colorimetry applications using barcodes

Also, AFF1 reduces to a half the failed correction from AFF0, as
AFF3 reduces the AFF1 ones, as they are the same corrections
but incorporating the translation component to the corrections
(Table 5.1).

• VAN: all four corrections scored less than a 1% of failed corrected
images. Notice here that the degree of the polynomial expan-
sion (from 2 to 5, VAN0 to VAN3) correlates with the amount
of failed corrections. Specially for those scenarios who present

ill-conditioned results, where min
(

∆RGB ,pairwise

)

<

√
3.

• CHE: all four corrections scored less than 1% of failed corrected
images. Results were very similar to VAN corrections. The correla-
tion between the degree of the polynomial expansion (Table 5.1)
and the failed corrections was also seen here (AFF1 to AFF3).

• FIN: all four correction scored less than 1% of failed corrected
images. Root-polynomial corrections (FIN1 and FIN3) showed
around the half of failed correction than their respective polynomial
corrections (FIN0 and FIN2). But, all of them scored worst results
than VAN0, VAN1 and all four CHE. This might be linked with the
fact FIN corrections did not implement the translation component
to the expansion (Table 5.1), as AFF0 and AFF2.

• TPS: TPS1 and TPS0 scored the worst results in Figure 5.17, 11.2%
and 14.3% of failed cases, respectively. With a huge presence of
ill-conditioned results. On the contrary, TPS2 and TPS3 scored in
the top positions alongside with VAN0, VAN1, CHE0 and CHE2. It
was easy to conclude that our proposition to smooth the thin-plate
contributions to the color correction had succeeded in terms of
fixing ill-conditioned scenarios (such as Figure 5.16).

5.3.2 Color correction performance

Once evaluated and cleaned the failed corrections from our results, we
proceeded to evaluate how the proposed color corrections scored in
terms of color correction performance. In other words, we evaluated
how they minimize the median value of the within-distances distribu-

tions and the inter-distances distributions. Figure 5.18 and Figure 5.19.

We defined ∆RGB ,within and ∆RGB ,inter similar to Menesatti et al.
[15], but it is also interesting to define these metrics with a percentage
definition. The maximum distance in the RGB space is the distance
∆RGB((0, 0, 0), (255, 255, 255)) = 255 ·

√
3, following Equation 5.27.

Thus,

∆RGB[%] = 100 · ∆RGB

255 ·
√

3
(5.35)

Figure 5.18 and Figure 5.19 show both definitions.

image consistency using an improved tps3d method 107

5.3.2.1 Within-distances

Figure 5.18: The ∆RGB ,within for
each image in the dataset and
for each augmentation is shown
as a distribution against the
color correction techniques. The
means of the distributions are
also present (△). PERF correc-
tion is not zero and shows the
quantization effect. NONE is a
reference of not applying any
correction at all. The rest of the
corrections are grouped in: AFF,
VAN, CHE, FIN and TPS correc-
tions.

On one hand, let us see how well each group of correction has
scored in the ∆RGB ,within metric (see Figure 5.18):

• AFF: as expected AFF0, the white-balance correction, scored poorly.
It was the worst correction, scoring a mean ∆RGB ,within of more
than 8%. This is due to the fact that only one color reference (white)
was taken into account to compute this color correction. AFF1 and
AFF2 scored a similar mean ∆RGB ,within above 5%. AFF2, the most
complete affine correction, scored the best result in this group with
around a 3%. Also, the addition of a translation component, AFF1

and AFF3 (Table 5.1), reduced the ∆RGB ,within.

• VAN: all four VAN corrections scored a better mean and median
∆RGB ,within than AFF3, all scoring around 2% or less. This was
good news, here it can be seen that systematically increasing the
degree of a polynomial expansion results in a better fitting of the
RGB color space deformation. Despite this, results showed how
this method seems to converge to a minimum median ∆RGB ,within

around 1%.

• CHE: all four CHE corrections scored a better mean and median
∆RGB ,within than AFF3, but they scored slightly worst results than
VAN corrections (3-1%). This result showed that adding cross-
term contributions to the polynomial expansion (Table 5.1) did not
improve the fitting of the RGB color space deformation.

108 automated color correction for colorimetry applications using barcodes

• FIN: surprisingly FIN corrections scored the worse results above
all the polynomial corrections -VAN and CHE- (5-3%). This might
be explained by the lack of translation components (Table 5.1).
Also, FIN1 and FIN3, the root-polynomial, scored around 2% more
∆RGB ,within than their respective polynomial corrections FIN0 and
FIN2 (Table 5.1).

• TPS: all TPS correction scored the best results for this metric. TPS0

and TPS1 scored an incredible good result of less than 1% of mean
∆RGB ,within. Here it can be seen the outlying behavior of TPS0

and TPS1 was not fully solved before, as the mean ∆RGB ,within of
TPS1 is outside the distribution box. Also, TPS2 and TPS3, which
approximated the TPS method to the AFF3 method scored also
excellent results, better than VAN3, which is the best polynomial
correction. Moreover, we checked with these results that increasing
the smooth factor in the TPS formulation (TPS1 → TPS2 → TPS3),
increased the ∆RGB ,within as it smoothed the fitting RGB space color
deformation.

5.3.2.2 Inter-distances

Figure 5.19: The ∆RGB ,inter for
each image in the dataset and
for each augmentation is shown
as a distribution against the
color correction techniques. The
means of the distributions are
also present (△). PERF correc-
tion is not zero and shows the
quantization effect. NONE is a
reference of not applying any
correction at all. The rest of the
corrections are grouped in: AFF,
VAN, CHE, FIN and TPS correc-
tions.

On the other hand, let us see how well each group of correction
has scored in the ∆RGB ,inter metric (see Figure 5.19):

• AFF: these corrections showed somehow expected results, as they
scored similar ∆RGB ,inter than ∆RGB ,within. ∆RGB ,inter increased
around 1-2% for all corrections, respectively to ∆RGB ,within. AFF3

was the best of the AFF corrections, performing a mean and median
inner-distance around 4%.

image consistency using an improved tps3d method 109

• VAN: VAN0 and VAN1 presented similar results to AFF3, mean
∆RGB ,inter were around 4%, and the distribution matched AFF3

distribution (mean, median, box and outliers). VAN2 and VAN3

presented worst results, their distributions got spread. VAN2 and
VAN3 scored mean ∆RGB ,inter around 8%. Despite the higher de-
gree polynomial expansions systematically reduced the ∆RGB ,within,
they increased the ∆RGB ,inter.

• CHE: all four corrections scored similar results to AFF3, matching
the AFF3 distribution (mean, median, box and outliers). Thus,
performing a mean and median inner-distance around 4%.

• FIN: all four corrections scored the worst results. FIN0 and FIN1

scored similar to AFF1 and AFF2. FIN3 showed the worst correc-
tion of the overall data, above AFF0 and VAN3, with a median
∆RGB ,within of almost 10%, and a mean of almost 8%. Once again,
it was observed that root-polynomial presents worst results than
their respective polynomial correction.

• TPS: all four correction scored the best results also for this metric.
The effect of smoothing or not the TPS correction was reduced in
this metric. All four corrections scored median and mean ∆RGB ,inter

around 2%.

All in all, TPS corrections proved to provide the best solution to
color correct images in our dataset. The original Menesatti et al.
[15] proposal (TPS0) worked slightly better than our first proposal of
using the recommended RBF for 3D spaces (TPS1). The smoothed
TPS proposals (TPS2 and TPS3) scored the subsequent best results for
both metrics, ∆RGB ,within and ∆RGB ,inter. VAN3 proved to be a good
competitor in the within-distance metric, on the contrary had one of
the poor results in the ∆RGB ,inter metric. AFF3, VAN0, VAN1 and all
CHE methods proved to be good competitors in the ∆RGB ,inter metric,
that is an interesting result as it opens the possibility to have fall-back
methods if the TPS fails.

5.3.3 Execution time performance

Let us see how the proposed color correction methods scored in
terms of execution time for each image corrected. As our dataset
has images from two cameras, with different sizes, we decided to
focus only in one camera to ensure results were not affected by
the disparity in size. We chose to work with the larger subset of
images: the Canon EOS 5D with 483 images. These images have
549× 365 pixels = 200385 pixels ≈ 0.2 Mpx (see Table 5.2), as we
down-sampled them (K = 4) to speed up the global computation time
of our pipeline (see Figure 5.10).

110 automated color correction for colorimetry applications using barcodes

Figure 5.20: The execution time
in milliseconds for each image
in the dataset and for each aug-
mentation is shown as a dis-
tribution against the color cor-
rection techniques. The means
of the distributions are also
present (△).

Figure 5.20 shows the results of the measured execution times.
PERF execution time represents the minimal time to compute our
pipeline, as the PERF method also went all the way computing the
same pipeline, it just returns the perfect expected image in 8-bit
representation. NONE did the same but returning the image without
applying any correction. Let us see how the other methods scored in
this benchmark:

• AFF: all four corrections scored the best results in the benchmark,
as expected, as they are the simpler corrections regarding imple-
mentation. AFF0 and AFF1 scored a mean T per image around
20-30 ms. AFF2 and AFF3 scored around 100 ms.

• VAN: all four corrections were slower than AFF3, from a 100 ms
to 600 ms. As AFF3 is a polynomial correction of order 1, and the
subsequent corrections are VAN0 to VAN3, with degrees 2 to 5,
respectively, we can observe an exponential relation between the
polynomial degree of the expansion and T .

• CHE: all four corrections scored similar results to VAN1, with a
mean T per image around 200 ms. Being around 10 times slower
than AFF0 and 2 times slower than AFF2-AFF3.

• FIN: FIN0 scored very similar to the above-mentioned CHE meth-
ods. Despite this good result, the other FIN displayed slow mean
T per image. FIN3 takes around 1000 ms to compute per image.
FIN methods presented again that adding superior degrees to the
polynomial expansion add computational time to the correction.
Also, adding complex operation to the pipeline, such as computing
a root square, it also affects the computational cost of the solution.

image consistency using an improved tps3d method 111

• TPS: TPS0 scored very similar to FIN3, and in fact scored above the
mean 1000 ms timestamp, achieving the worst score for this metric.
This makes sense, as TP0 is the original TPS method, which implied
the use of a more complex function (see Table 5.1). Our proposal
TPS1 reduced this computation time around 800 ms. Also, adding
smooth to the TPS method seems to reduce slightly its mean T ,
arriving down to 700 ms at TPS3. TPS3 is around 25 times slower
than AFF1 and 8 times slower than AFF3.

All in all, results for AFF, VAN, CHE and FIN showed that increas-
ing the degree of the polynomial expansion, increased the mean T
for each image. AFF corrections achieved the top scores as they are
computationally simple. And, TPS scored poorly in this benchmark,
as expected [148]. Also, the scores for VAN2, VAN3, FIN2 and FIN3

were also poor. We accomplished to improve slightly the TPS scores
by introducing a change in the RBF and the smooth parameter.

Finally, as we computed the above-mentioned results using thumb-
nail images (K = 4, 549 × 365 pixels), we wanted to check the
computational order of the presented methods against the size of the
image.

Figure 5.21: The execution time
in milliseconds against the im-
age size for a reduced set of
images of the dataset. Results
show a linear behavior for all
the corrections techniques. Cor-
rections are grouped by color
and marker, within the same
group different transparencies
have been applied to differenti-
ate the corrections

To do so, we computed a reduced dataset of images containing 10

images from the dataset and recompute the same pipeline (see Fig-
ure 5.10) for different K down-sampling constants (see Figure 5.11): 1,
2, 4, 8, 16 and 32. Which render images of approximately: 3.2, 0.80,
0.2, 0.05, 0.012 and 0.003 megapixels, respectively.

Figure 5.21 shows the computed results, as we can see all correc-
tions performed with a linear computational order O(n), for the all
the down-sampled versions of the images. The figure also shows the
relation we found earlier between the different correction, i.e. TPS are
almost two decades apart from AFF corrections. We consider these
results to be useful as they could be used eventually as a design rule
when designing color corrections pipelines.

112 automated color correction for colorimetry applications using barcodes

5.4 Conclusions

In this chapter, we improved the work done by Menesatti et al. [15].
We successfully reproduced their findings about the TPS3D method
for color correction to achieve image consistency in datasets. It can
be shown that our results match theirs not only qualitatively but also
quantitatively. For this purpose, Table 5.3 shows a summary of the
results above-presented for future comparison.

Also, we extended the study to other state-of-the-art methods,
Gong et al. [44], Cheung et al. [27] and Finlayson et al. [28], that can
be found in standard libraries [153]. The TPS3D proved to be the best
correction color method among the other in terms of color correction
performance, both in ∆RGB ,within and ∆RGB ,inter metrics. Despite this,
TPS3D has a heavy implementation compared to simpler method
such as AFF color corrections, resulting in T per image 20 to 100

times superior to AFF color corrections.

Moreover, we proposed 2 criteria to detect failed corrections using
the ∆RGB ,within and ∆RGB ,pairwise metrics. These criteria discovered
failed corrections over the dataset which heavily affected TPS3D. Our
proposal to approximate the TPS3D formulation by a smoothing factor
proved the right way to systemically remove those ill-conditioned
scenarios.

Furthermore, we compared different RBF into the TPS3D formu-
lation. We did not prove a significance improvement in the color
correction, although we did find that our proposed RBF would im-
prove by a 30% the results regarding the T per image.

Finally, we demonstrated the T increases linearly with the image
size for all the compared color corrections, enabling to take into
account this variable when designing future color correction pipelines.

Regarding future work to improve this color correction framework,
let us highlight some alternatives.

First, the systematic increase of color references should lead to
a systematic improvement. This was not explored in the presented
work in the chapter, as explained we preferred to use an established
dataset which contained only images with the original ColorChecker
with 24 color patches [13].

Thus, if creating a new dataset, one could add to the images
modern color charts from X-Rite ® which include up to 140 colors,
as other authors did [15; 154; 155]. Or, one could use directly our
proposal of chapter 4 to encode the same 140 color references in our
proposed back-compatible QR Code.

image consistency using an improved tps3d method 113

We deepen into this idea of using our machine-readable patterns
in chapter 6, where we used a Color QR Code to embed 125 colors
of the RGB cube and use those colors with the above-presented color
correction framework.

Second, we proposed this color correction framework as a solution
to a general-purpose image consistency scenario. Often, colorimetric
problems present themselves as a more reduced problem, i.e. we only
need to seek for color correction in a certain subset of colors. If this
is the case, instead of increasing the amount of correction colors we
could reduce the colors to perform the color correction.

When doing so, we ought to select the color references which are
near our data points, or at least they are the most representative version
of our data within our correction colors. If not, the mapping will be
poor in some parts of the data, as Donato et al. pointed out when
discussing different approximation techniques for TPS mappings
[125].

Third, there exist several authors that have explored different RBF
that could be placed in the kernel definition of the TPS3D method,
here we only discussed between two RBF which were solutions for 2D
and 3D for the thin-plate spline solution. Theoretically, any RBF could
be used [144], even more modern smooth bump functions [156; 157]

114 automated color correction for colorimetry applications using barcodes

Correction #1 #2 #3 #4 #5 #6 #7

- - µ σ µ̃ µ µ σ µ̃ µ µ

PERF 0 0 0.99 0.12 0.99 0.223 0.945 0.019 0.949 0.214 8

NONE 0 0 59 27 56 13 52 23 50 12 11

AFF0 5519 2018 37 21 36 8 39 22 37 9 17

AFF1 2605 2152 24 18 21 5 24 19 22 6 30

AFF2 38 24 22 14 21 5.1 30 17 28 7 96

AFF3 19 9 12 10 10 2.7 17 12 15 3.9 110

VAN0 9 1 10 8 8 2.2 20 22 14 4 142

VAN1 10 2 8 7 6 1.9 20 23 14 5 172

VAN2 35 23 8 7 5 1.8 30 40 20 8 397

VAN3 176 154 8 8 5 1.7 40 40 20 9 542

CHE0 10 2 11 9 9 2.6 17 15 14 3.9 199

CHE1 9 1 10 9 8 2.3 18 18 14 4 210

CHE2 11 2 10 8 8 2.2 18 22 13 4 202

CHE3 16 6 9 7 7 2.0 20 25 14 5 219

FIN0 56 46 14 11 13 3.2 26 24 21 6 212

FIN1 29 21 19 12 18 4.4 29 18 27 7 271

FIN2 537 462 10 11 6 2.2 40 40 20 8 691

FIN3 346 193 17 11 15 3.9 42 34 34 10 958

TPS0 8133 8117 2 7 2 0.5 10 13 7 2.3 1067

TPS1 6359 6331 4 10 2 0.9 13 16 8 3 738

TPS2 9 1 3.5 3.3 2.2 0.8 13 11 10 2.9 697

TPS3 10 1 6 5 4 1.3 13 11 11 3.0 665

Table 5.3: A summary of the
presented results. The sum-
mary includes metrics for each
color correction for 7 different
metrics (see left), the within-
distances and inter-distances
also include some statistical in-
formation such as the mean (µ),
the standard deviation (σ) and
the median (µ̃). The median
should be considered as the ref-
erence figure in those metrics
as their distributions are quite
asymmetric.

Table headers:

#1: ∆RGB ,within − ∆RGB ,within,NONE > 0 [u.]

#2: min
(

∆RGB ,pairwise

)

<

√
3 [-]

#3: ∆RGB ,within [-]

#4: ∆RGB ,within [%]

#5: ∆RGB ,inter [-]

#6: ∆RGB ,inter [%]

#7: T [ms]

Chapter 6. Application: Colorimetric indicators

In previous chapters, we presented the need to achieve image con-
sistency in datasets, and how this need relates with the capacity to
perform quantitative color measurements over those datasets. Also,
we discussed how this need is relevant in several industries. In this
chapter, we are going to focus on analytical chemistry [4], specifically
in environmental sensing.

Environmental sensing a wide field of research, for example, one
could tackle the problem using very-low power electronic sensors
[158]. Or, one could use colorimetric indicators. Colorimetric indicators
are present in our daily life as humidity [39], temperature [40] or gas
sensors [41; 42].

Usually, colorimetric indicators feature chemical reactions which
act as a sensor or dosimeter for a certain substance or physical magni-
tude, a change on these magnitudes is then transduced into a change
in the color of the chemical solution, i.e. a pH change induces a
change in the chemical structure of a molecule which renders the
color change (see Figure 6.1).

Moreover, colorimetric indicators are inexpensive and disposable,
and simple to fabricate: i.e. printing them on top of a cellulose paper
[31].

Figure 6.1: Reaction mechanism
of the pH indicator bromocresol
green (BCG, pH 3.8–5.4) for the
detection of NH3. Increase of
the NH3 concentration leads to
a proton release, detectable as a
color change from yellow over
green to blue.

116 automated color correction for colorimetry applications using barcodes

In 2017, within a related research, we presented a solution to
detect nitrogen dioxide (NO2) in the environment using a colorimetric
indicator. In that work, the colorimetric indicators were prepared
soaking sterilized absorbent cellulose into the reactive ink. The results
successfully conclude it was possible to measure air concentrations of
NO2 from 1 ppm to 300 ppm using a colorimetric indicator [159; 3]
(see Figure 6.2).

Figure 6.2: UV–VIS diffuse re-
flectance of the soaked pads
with Griess-Saltzman reagent
exposed to different NO2 con-
centrations and the correspond-
ing images of the colors devel-
oped (insets, 3 replicas per con-
centration).

Furthermore, in 2017, we presented a solution to detect ammonia
(NH3) in the environment with the use of colorimetric indicators. In
this case, the colorimetric indicators were created dip-coating a glass
substrate in a solution containing the reactive ink (see Figure 6.3).
Results shown that it was possible to measure concentrations of NH3

from 10 to 100 ppm [160].

Figure 6.3: Left, an ammonia
(NH3) colorimetric indicator has
been dip-coated into a glass sub-
strate, which exhibits a yellow
color when exposed to synthetic
air. Right, the same sensor is ex-
posed to 100 ppm of NH3 and
it turns into purple.

In both works, we did not measure the color with digital cameras.
On one hand, the NO2 sensor was enclosed in a setup with a fixed
one-pixel RGB sensor and several LED acting as a light source. In fact,
we have continued to contribute to this line of research, enclosing
colorimetric sensors in controlled compact and cost-effective fixed
setups [45; 161; 162].

application: colorimetric indicators 117

On the other hand, the NH3 sensor was studied using standard
spectrophotometry and sRGB color was computed from the measured
spectra (see Figure 6.4). We pursued this line of research further in
parallel to the development of this thesis [29; 163; 30].

Figure 6.4: (a) Standard tristim-
ulus X(λ), Y(λ), Z(λ) curves of
the human eye. (b) The inte-
grated sRGB colors represented
in the RGB cube. (c) The ren-
dered sequence of RGB colors
corresponding to the gas sens-
ing spectra c(λ).

As a wrap-up, in this chapter we present the different partial ap-
proaches to combine colorimetric indicators with our thesis proposal
of Color QR Codes. The partial solutions were applied to different
target gases, such as ammonia, (NH3), hydrogen sulfide (H2S), etc.

Finally, we present here a carbon dioxide (CO2) sensor featuring a

Color QR Code. The Color QR Code enables to: extract the sensor from
any surface (chapter 3), embed inside or outside the QR Code the
sensor ink (chapter 4) alongside with color references to perform a
color correction using a whole framework of corrections (chapter 5).

118 automated color correction for colorimetry applications using barcodes

6.1 Proposal

6.1.1 Early prototypes

In 2018, we presented a solution [29] to automate the readout of an en-
vironmental colorimetric indicator that was developed to detect NH3

[160]. This solution preceded most of the research above-presented in
this thesis.

The proposal was to design a machine-readable pattern resembling
a QR Code, without any digital data, to allocate color references
and two reserved areas in order to print the colorimetric ink. The
whole process of design, fabrication and interrogation is described in
Figure 6.5.

The machine-readable pattern would maintain the finder, align-
ment and timing patterns of QR Codes (more details in chapter 2).
see Figure 6.6 shows an example of these machine-readable patterns
designed to embed a NH3 sensor.

Figure 6.5: The proposed
pipeline for creating machine-
readable patterns proposed in
2018 [29].

The first downside of this proposal is the way the color references
are generated. These colors derived from the measures of the ink
color when exposed to different amounts of the target gas – NH3 –
(see Figure 6.7), and then classified into a subset of colors – e.g. 32

colors – (see Figure 6.8). Later, when the machine-readable pattern
is printed the color might differ from the measured color. This is
a perfect example of solving the problem of color reproduction. As
we discussed in previous chapters, we preferred to solve the image

consistency problem, i.e. place more color references than only those
colors from the sensor.

The second downside was the way these color references were
encoded in the QR Code-like pattern. As we cleared all the digital
information area, we invalidated one of our goals: to achieve a back-
compatible QR Code for colorimetric applications. Also, this proposal
embedded the colors in 3× 3 module blocks as we did not develop
yet the proper methods to correctly perform a successful extraction in
challenging surfaces without significant readout failures.

Figure 6.6: A machine-readable
pattern to allocate an ammonia
sensor. Left: the designed pat-
tern, with two spaces to print a
colorimetric sensor. Right: the
captured version of the pattern
with a printed colorimetric dye
in one slot. Notice this pattern
resembles a QR Code, but it
does not contain any data.

application: colorimetric indicators 119

Figure 6.7: RGB 8-bit color data
acquired from a colorimetric
sensor captured with a digital
camera at 5500K color temper-
ature exposition, with the cen-
ters of 32 clusters generated by
K-means clustering. Data is pre-
sented as a projection into the
red-channel plane of the RGB
space.

Figure 6.8: 32 clusters centers
from Figure 6.7 data, and color
clustering regions. Data is pre-
sented as a projection into the
red-channel plane of the RGB
space.

120 automated color correction for colorimetry applications using barcodes

6.1.2 A machine-readable pattern for colorimetric indicators

In 2020, we introduced our improved proposal for a machine-readable
pattern for colorimetric indicators [163; 30]. This approach maintained
the use of a QR Code-like machine-readable pattern without digital
data, only allocating the sensor ink, the color references and computer
vision patterns to perform the readout.

However, as we improved our computer vision algorithms to cap-
ture QR Codes, we were able to add more complex color encoding
to the pattern definition. Then, the number of embedded color ref-
erences in the pattern was considerably increased, and with so the
color correction method was improved (see Figure 6.9).

This proposal tackled many aspects of the sensor readout improv-
ing the former one:

• The factor form of a QR Code version 7 was maintained, preserving
the alignment pattern array to ease the readout.

• An additional pattern to ease the location of the fourth corner was
added.

• The reference colors were embedded as 1 x 1 modules, this is as
the same size of a QR Code module.

• Two palettes of reference colors were embedded with a total of
245 colors: 125 colors from an RGB excursion, with 5 samples per
channel; and 120 colors from an HSL excursion, with 6 samples for
the H channel, 4 for the S channel and 5 for the L channel.

• A fabrication process which involved screen-printing instead of dip-
coating or other techniques, improving the sensor reproduction.

• An improved version of the TPS3D color correction which ac-
counted for ill-conditioned scenarios and corrected them if possible
with a fall-back mechanism into affine transformations.

Figure 6.9: The layer structure
of the machine-readable pattern
for colorimetric indicators: a)
the colorimetric indicator ink,
b) the machine-readable pattern
inks, c) the plastic substrate and
d) white cardboard.

application: colorimetric indicators 121

Figure 6.10: Five machine-
readable patterns (a), (b), (c),
(d) and (e) are exposed to dif-
ferent atmospheres (1), (2), (3),
(4), (5), the value of the mean
measured RGB color for each
ink at each atmosphere is rep-
resented as a transposed vector.
(a) a NH3 sensor using the BPB
and BGC indicators. (b) a CH2O

dosimeter using the BGC indi-
cator. (c) a H2S dosimeter us-
ing the Cu-PAN. (d) a CH2O

dosimeter using the BTB+ODA
indicator. And, (e) a CH2O

dosimeter using the BCP+ODA
indicator. The different 5 atmo-
spheric conditions can be con-
sulted in Engel et al. [30].

All in all, we successfully applied this proposal of machine-readable
pattern which resembled a QR Code into several colorimetric indica-
tors that targeted different environmental gases [30] (see Figure 6.10):

• NH3: an ammonia sensor was presented as a result of combining
two colorimetric indicators, bromophenol blue (BPB) and bromocresol

green (BCG).

• H2S: a hydrogen sulfide dosimeter was presented using a copper

complex of an azo dye (Cu-PAN) as colorimetric indicator.

• CH2O: three different dosimeter were presented to measure formalde-
hyde, based on three different colorimetric indicators. Once again,
based on the bromophenol blue (BPB) and bromocresol green (BCG),
with the addition of an extra compound, octadecylamine (ODA), to
tune the original indicator to this target gas.

122 automated color correction for colorimetry applications using barcodes

6.1.3 A Color QR Code for colorimetric indicators

Here, we present a Color QR Code for colorimetric indicators which
features fully-functional back-compatibility, this means it can be read
with any commercial QR Code scanner and a URL, or other desired
message, is obtained (see Figure 6.11). The main specifications of
these machine-readable patterns are:

Figure 6.11: A back-compatible
Color QR Code for colorimetric
indicators. This QR Code will
be read by commercial scanners,
and it should display the URL:
c-s.is/#38RmtGVV6RQSf. The
Color QR Code includes up to
125 reference colors and blank
space to allocate a colorimetric
indicator ink (above the lower
finder pattern).

• they use the full standard of the QR Code. Thus:

– enabling extraction techniques similar to the ones presented
in chapter 3, which leads to ease the location of colorimetric
elements in the same scene, placed outside the QR Code (see Fig-
ure 6.12.a), or inside (see Figure 6.12.b),

– plus, they can be designed in any desired version of the QR
Code standard, the current proposal uses a version 3 instead of
a version 7 (reducing the physical size of the sensor),

– and they can encode any desired information, for example a
URL with a variable ID, rendering almost infinite possibilities
(see Figure 6.13)

• Also, they can embed hundreds of colors, following our technique
to create back-compatible QR Codes, as we detailed in chapter 4.
This implies:

– they contain by default 125 RGB colors (5× 5× 5),

– 100 of them are encoded in the DATA zone of the QR Code,

– 25 of them are encoded in the EC zone of the QR Code,

– and more extra space to allocate reactive inks, that always be
computed in the design of the QR Code as error.

Figure 6.12: The structure of the
Color QR Code from Figure 6.11

is detailed. a) and b) show pos-
sible sensor inks placements, a)
shows a big sensor outside the
QR Code, b) shows smaller fac-
tor forms (3 × 2, 1 × 1, ...) in-
side the QR Code. c) Shows the
color references and how they
are spread in the QR Code areas.
Finally, d) shows the whole lay-
out of the sensor with the Color
QR Code.

c-s.is/#38RmtGVV6RQSf

application: colorimetric indicators 123

• Moreover, as they can embed such quantity of colors (see Fig-
ure 6.12):

– the palette of colors can be fine-tuned depending on the applica-
tion to solve, as we explained in chapter 5 this leads a path to
systematically enhance color corrections,

– plus, redundancy can be added if the palette is reduced, for
example, if the ColorChecker palette is suitable for a certain
problem it can be embedded several times,

– then, with these colors references all the available framework of
color corrections presented in chapter 5 can be applied.

This proposal is a wrap up of the before studied technologies,
which combines the practical use case of colorimetric sensors with
our thesis proposal to use QR Codes to embed color references to act
as a color chart.

In the subsequent sections, we present the results of using a Color
QR Code, from the same batch as Figure 6.13, to measure and calibrate
a CO2 sensor, based on the m-cresol purple (mCP) and phenol red (PR)
colorimetric indicators [164; 165; 166; 31]. The measurements were
performed in a dedicated setup with artificial an atmosphere and
different light conditions. The results show how different color correc-
tion techniques from our framework yielded to different calibration
models results for the sensor.

Figure 6.13: 16 different Color
QR Codes for colorimetric in-
dicators with different encoded
data that differs in an alphanu-
meric ID. The encoded reference
colors in each QR Code is the
same, however the position of
the colors is distributed follow-
ing the digital data in a back-
compatible manner. Each Color
QR Code has a reserved area
(white) above the lower finder
pattern to allocate a colorimetric
ink.

124 automated color correction for colorimetry applications using barcodes

6.2 Experimental details

6.2.1 Sensor fabrication

We had previously fabricated colorimetric indicators in several forms:
soaked cellulose [159], dip-coating [160] or screen-printing [163]. The
later method provides a more reliable fabrication method in terms of
reproducibility. Also, as a printing method is the entry point to other
printing techniques such as rotogravure or flexography, among other
industrial printing technologies [10].

Then, we fabricated our current sensors using a screen-printing man-
ual machine in our laboratory. The screens were created according to
the designs before-mentioned in the previous section. The substrate
was a coated white cardboard of 350 gr, the coating was mate polypropy-

lene. And, the Color QR Codes were previously printed using ink-jet
technology (see Figure 6.14).

Sensors were printed in batches including per each Color QR Code:
a CO2 sensor, based on the mCP+PR color indicators; and a NH3

sensor [30], based on the BPB color indicator. Here, we focused only
in the CO2, which is the blueish sensor before exposing it to the CO2

target concentrations (see Figure 6.15).

Figure 6.14: Two screens and
one substrate sheet. Each screen
can print one color indicator,
and both can be combined into
the same pattern. The sub-
strate has DINA4 measures, it
also contains up to 10 Color QR
Codes with an approximated
size of 1 inch.

Figure 6.15: Several substrate
sheets already printed, each
sheet contains up to 10 CO2 sen-
sors and 10 NH3 sensors.

application: colorimetric indicators 125

6.2.2 Experimental setup

Figure 6.16: Schema of our labo-
ratory setup. The setup features
3 subsystems: a massflow con-
troller station, a capture station
and a user-access computer. The
massflow controller station pro-
vides modified atmospheres to a
chamber where the gas sensors
are placed. The capture station
can see the chamber through an
optical window, and take time-
lapses with a controlled light set-
ting. Finally, the user computer
presents a web page interface to
the user to operate the system.

We designed and built our experimental setup from scratch. This
experimental setup was used in the research of this thesis and related
research, i.e. seeking for new colorimetric indicators. The setup
consists of a complex system which responds to the necessity to
capture colorimetric indicators targeting specific gases. Thus, the
setup needed to solve not only the optical measurement, but also the
management of target gas lines (see Figure 6.16).

The setup consisted of three main subsystems:

1. Mass-flow control station: a tiny desktop computer, a Lenovo
ThinkCentre M93 Tiny, implemented the software to control up to
five BROOKS 5850S mass-flow controllers [167], which fed a sensor
chamber with the desired gas mix (see Figure 6.17). The control
over the BROOKS devices was done in LabVIEW ® [168].

Also, a LabVIEW front-end screen was implemented to enable user
interaction in this subsystem. The tiny computer was equipped
with a touchscreen to ease user interaction, but usually this station
is set to automatic when using the setup to perform long-term data
acquisition.

Moreover, LabVIEW used a serial communication protocol using
the BROOKS official Windows DLL [169] with some hardware
protocol adaptations performed (USB⇔ RS232⇔ RS485). Figure 6.17: The 3D design of

the circular sensor chamber. The
chamber is transparent to enable
optical readings, and it is sealed
using rubber (orange). The
chamber also has four threaded
input/output holes.

126 automated color correction for colorimetry applications using barcodes

2. Capture station: a single-board computer, a Raspberry Pi 3B+,
implemented the software to control a digital camera (Raspberry
Pi Camera v2) [134] and a strip of RGB LEDs from Phillips Hue
[135] which acted as a variable light source.

Then, the control software of both the camera and the light strip
was implemented in Python [151]. Specifically, the picamera mod-
ule was used to drive the camera, and the phue one to drive the
LED strip 1. 1 Note this part of the setup was also

used in chapter 4 when exposing the
Color QR Codes to the colorimetry setup
channel.3. User station: a desktop comptuter, from Hewlett-Packard, imple-

mented the user control software to manage all the system. This
software was implemented using Python again, but with a differ-
ent stack in mind: flask was used as a back-end service [170],
and bokeh was used to present plots in the front-end [171]. The
front-end was based upon a web-based technology that uses the
popular Chromium Embedded Framework to contain the main
application [172].

6.2.2.1 Gas concentrations

The colorimetric indicator was exposed to a series of pulses of differ-
ent controlled atmospheres. In total, it was exposed to 15 pulses of
100 minutes each pulse. Each pulse consisted of exposing the sensor
30 min to the target gas CO2, followed by an exposure of 70 min to a
synthetic atmosphere without the target gas. This let the experiment
last for a day.

Table 6.1 shows the expected concentration of the CO2 pulses ver-
sus the measured and corrected against dilution laws, as indicated
by the manufacturer [167]. The target gas was diluted using a syn-
thetic atmosphere (21 % oxygen, 79% nitrogen). We configured the
experiment to repeat 3 times the same pulse for 5 different target
concentrations: 20%, 30%, 35%, 40% and 50%.

Pulse Expected [%] Measured [%]

1 20.0 25.21 ± 0.00

2 20.0 25.22 ± 0.22

3 20.0 25.22 ± 0.22

4 30.0 36.62 ± 0.22

5 30.0 36.67 ± 0.31

6 30.0 36.67 ± 0.31

7 35.0 42.10 ± 0.40

8 35.0 42.30 ± 0.40

9 35.0 42.20 ± 0.40

10 40.0 46.90 ± 0.40

11 40.0 47.30 ± 0.40

12 40.0 47.40 ± 0.40

13 50.0 57.60 ± 0.50

14 50.0 57.60 ± 0.50

15 50.0 57.60 ± 0.50

Table 6.1: The expected and
the measured gas concentration
for each gas pulse is shown.
The measured values were taken
from the BROOKS instrumenta-
tion reading while applying a
correction algorithm provided
by the manufactured [167].

These concentrations were selected as the CO2 indicator was de-
signed to tackle the scenario of modified atmosphere packages (MAP)
– 20% to 40% of CO2 – [32]. Also, this is why, the synthetic atmo-
sphere was partially exposed to a humidifier to achieve proper work
conditions for the colorimetric indicator, those resembling a MAP
containing some fresh food, i.e. meet, fish or vegetable.

Figure 6.18 shows a detailed view on the above-mentioned gas
pulses, all the measures are shown for the target gas channel (CO2),
and both the dry and the humid synthetic atmospheres (SA).

application: colorimetric indicators 127

Figure 6.18: The expected
(black) and the measured gas
concentration (red) for each gas
pulse is shown on a temporal
axis along the experiment du-
ration. The measured values
were taken from the BROOKS
instrumentation reading while
applying a correction algorithm
provided by the manufactured
[167].

6.2.2.2 Capture settings

The sensor was exposed to different light conditions of white light.
This was achieved using the above-mentioned Phillips Hue light
system. Color temperatures ranged from 2500K to 6500K, in steps of
500K (see Figure 6.19). These are a less aggressive light conditions
than those we used in chapter 4 when studying the capacity of QR
Codes in the colorimertry setup.

Also, the camera settings were fixed, without auto-exposition nor
auto white-balance, to capture color consistent images through all
the dataset. This ensures us we can extract the color reference tables
during color correction only in the 9 first images.

Figure 6.19: A printed sen-
sor, featuring a Color QR Code
and two colorimetric indicators
is displayed inside the sensor
chamber of our setup. Then is
exposed to different light con-
ditions. From left to right, the
illumination changes following
3 color temperatures of white
light: 2500K, 4500K and 6500K.

Notice, that the number of different light illuminations (9) was kept
low to preserve an adequate sampling rate of the sensor dynamic.
As, our setup performs the captures in a synchronous way: an image
is taken, then the color illumination changes, then another image is
taken, etc. The global sampling rate was 1 FPS, which is the maximum
frame rate a Raspberry Pi Camera can process at Full HD quality
(1920 × 1088 pixels). Then, the actual frame rate for each illumination
stream was 1/9 FPS.

128 automated color correction for colorimetry applications using barcodes

6.2.3 Expected response model

In previous works, we already studied the relation between the col-
orimetric response of an indicator with the presence of the target gas
[30; 29; 160; 163]. The relation we found was:

S[%] = m log(c) + n (6.1)

where S is the colorimetric response of the sensor, c is the concen-
tration of the target gas in the atmosphere, m and n are the constants
of a linear law. Then, the colorimetric response is linear with the loga-
rithm of the gas concentration. m represents the sensitivity towards
the logarithm of the gas concentration, and n the response at very
low concentrations.

Also, we can recover the sensitivity as a function of the gas concen-
tration using derivates and use it to compute the error of the model
for each concentration. To do so, we will use error propagation rules:

∆S

∆c

∣

∣

∣

∣

c

=
m

c
=⇒ ∆c|c = ∆S|c ·

c

m
(6.2)

where c is a given concentration recovered with the inverted Equa-
tion 6.1, m depends on each fitted model, ∆S|c is the error of the
measured signal response and ∆c|c is the model error for this given
concentration.

Finally, the signal color response S[%] is usually normalized fol-
lowing a metric. We defined this metric to resemble the normalization
performed in an electronic gas sensor [30]. This kind of normalization
divides the measured signal by the signal value assigned to zero
gas concentration, this produces a metric that is not upper-bounded
[0, ∞), the more the initial value is to zero resistance, the greater the
response. Let us adapt this normalization for a red channel of a
colorimetric indicator:

Sr[%] = 100 · r(c)− r0

r0 − rre f
(6.3)

where Sr is the response in % of the red channel, c the concentration
of the target gas in %, r(c) the raw red sensor signal with an 8-bit
resolution (0–255), r0 the value of r(c = 0%) and rre f an absolute
color reference which acts as the zero resistance compared to electronic
sensors, for our sensor the value is (rre f , gre f , bre f) = (0, 0, 255), as our
measured blue channel signal decreases when the gas concentration
increases [31].

application: colorimetric indicators 129

6.3 Results

6.3.1 The color response

Let us start with the response of the colorimetric indicator under
the different CO2 atmospheres. In Figure 6.20 it is represented the
obtained signals from the mean RGB channels for the colorimetric
indicator for all the experiment captures in the D65 standard illu-
minant (6500K). In order to obtain these mean values, we created
a computer vision algorithm to extract the region of interest. This
algorithm was based upon the state-of-the-art, presented in chapter 2,
and our above-presented work, in chapter 3.

First, with these results, we could already confirm that we cor-
rectly selected our absolute reference to compute the color response –
(rre f , gre f , bre f) = (0, 0, 255) –. As the previous work suggested [31],
the color indicator moves from a blueish color to a yellowish color
with the appearance of CO2 in the atmosphere.

Figure 6.20: From top to bot-
tom: a representation of the
color of the sensor over time
for the D65 standard illuminant
(6500K), it can be observed it
changes from blueish colors to
yellowish colors; the same col-
ors as RGB channel signals; and
the response (%) for all the RGB
channels.

Then, Figure 6.20 displays the computed responses from the sensor.
The responses were computed following Equation 6.3. The results
show the channel which achieved the best response was the green

channel. The green channel presented a higher response and less
noise. Followed by the red channel, which performed close to the
green channel in response, but with a more accurate noise. The
blue channel, performed with approximately the half of the response
than the other channels at the lower concentration tested. And, its
response saturated in the higher concentrations more rapidly than
red and green channels.

130 automated color correction for colorimetry applications using barcodes

Figure 6.21: The response of the
green channel exposed to a D65

standard illuminant (6500K) for
all the pulses are overlapped in
the same time frame. This re-
sults in 15 pulses, each reference
target gas concentration (20, 30,
35, 40, 50) has a pulse replica (0,
1, 2).

Moreover, in Figure 6.21 we present the previous results but now
stacked as into the same time frame, the pulse duration of 100 minutes.
This is interesting from the gasometric standpoint of view. Our
colorimetric indicator presented:

• a fast response, achieving the 90% of the Sg(%) response in less
than 5 minutes, for the highest concentration; and in less than 10

minutes, for the lower one,

• a reasonable maximum response above 150% for the higher target
concentration of CO2 50%,

• a slight saturation in the upper region of concentrations, this will
be reflected in our fitted models,

• excellent reproducibility among the replicas of each pulse, except
for one pulse in the first triplet (20% of target gas concentration),

• and, a drift in the lower concentration area, as pulses did not end
in the same response they started.

All in all, Figure 6.21 presented our colorimetric indicator as a good
choice to detect the concentration of CO2 in modified atmosphere
packaging (MAP). The caveats presented by the sensor: the saturation
in the upper range (50%) and the drift in the lower range (0%) did
not affect our further results as our models were targeting only to fit
the data of the range 20% - 50% which applies to MAP.

application: colorimetric indicators 131

Figure 6.22: The response of the
green channel exposed to nine
illuminants (2500K to 6500K) for
all the pulses are overlapped
in the same time frame. This
results in 135 apparent pulses,
now each reference target gas
concentration (20, 30, 35, 40,
50) has a pulse replica (0, 1, 2)
for each illuminant. Legend is
omitted to favor clearness, re-
sults should be compared to Fig-
ure 6.21.

However, these results became meaningless when we exposed the
colorimetric indicator to other light conditions than D65 standard
illumination, as the apparent sensor response changed drastically,
as expected. Figure 6.22 portrays how the different illuminations
affected the measure of the response for all the above-mentioned 15

pulses.

Finally, it was the time to exploit the color correction framework
studied in chapter 5. For each illumination, the 125 RGB colors
placed inside the Color QR Code were extracted (see Figure 6.23).
These colors were used to apply each one of the above-mentioned
color correction techniques (see Table 5.1). All the images from each
illumination were corrected (>10000 image/illumination).

The references of the D65 standard illumination were taken as the
destiny color space of our correction techniques. Figure 6.24 shows
how a TPS3 improved the situation exposed in Figure 6.22 recovering
a more suitable scenario to fit a colorimetric model to the data. In the
text subsection, we focus in how we measured each pulse and fitting
our proposed model to the different color corrections.

Figure 6.23: The captured color
references from the Color QR
Code in each illumination condi-
tion. D65 is the reference space.

132 automated color correction for colorimetry applications using barcodes

Figure 6.24: The response of the
green channel exposed to nine
illuminants (2500K to 6500K),
then corrected using the TPS3

method (Table 5.1), for all the
pulses are overlapped in the
same time frame. This results in
135 apparent pulses, now each
reference target gas concentra-
tion (20, 30, 35, 40, 50) has a
pulse replica (0, 1, 2) for each il-
luminant. Legend is omitted to
favor clearness, results should
be compared to Figure 6.21. The
shadowed area is the area cor-
responding to the 5 minutes
windows used to integrate the
response of the sensor for the
model computation.

6.3.2 Model fitting

After applying the color correction techniques, we prepared the date
to be suitable to fit our proposed linear-logarithmic model (Equa-
tion 6.1), to do so we:

• measured a mean corrected response value from the data during
the last five minutes of gas exposition. Figure 6.24 shows this time
window shadowed;

• transformed these responses measures applying a logarithm,

• linked those responses to their respective gas concentration mea-
sures from Table 6.1;

• and, split the available data into train (75%) and validation subsets
(25%).

Then we fed the train subsets, one for each available color cor-
rection in Table 5.1, to a linear model solver and obtained up to 22

different solutions, including the special NONE and PERF corrections
described in chapter 5. The validation subsets were used after to
evaluate the models.

Let us start with this two reference corrections, Figure 6.25 and
shows the fitting for both corrections, and Figure 6.26 shows the
validation results. Results indicated that NONE was the worst case

scenario, thus without correction the measurement of the colorimetric
indicator was impossible. And PERF, as expected, was the best case

scenario.

application: colorimetric indicators 133

Figure 6.25: NONE and PERF
fitted models, which represent
the worst and the best case sce-
narios, respectively. The fitted
model in NONE is the one per-
formed without correcting any
captured color. The PERF model
is an artificial model in which
each captured color has been
mapped to its correspondent
D65 color.

Figure 6.26: NONE and PERF re-
gression for the validation data.
The coefficient r2 was computed
for this data. This result con-
firms that NONE is the worst
case scenario with a null r2, and
PERF is the best score in the
whole set of results.

134 automated color correction for colorimetry applications using barcodes

Specifically, when we say PERF is the best case scenario we mean
the following: as the PERF model is the model of acquiring the data
in a fixed setup –with a fixed camera configuration, a fixed light
conditions, etc.–, the problem which we aim to solve in this thesis,
the image consistency problem, is not present in this data; which
follows that the error seen in this model is the intrinsic error of the
colorimetric indicator technology.

Then, the PERF results showed the good performance of the colori-
metric indicator to sense CO2 in the target range of gas concentrations,
scoring both r2 metrics for training (Figure 6.25) and validation (Fig-
ure 6.26) almost a perfect score. This confirmed our model proposal.

Let us compare now the subsequent color corrections (Table 5.1)
with the before-mentioned extreme cases, the results are displayed
from Figure 6.27 to Figure 6.36:

• AFF: AFF0, AFF1 and AFF2 showed, in that order, the worst results
in the dataset, both in training (see Figure 6.27) and validation
(see Figure 6.28). Although the data was biased towards this group
of corrections. The bias is explained with the fact that we only
changed color temperature of white illuminants in our setup.

However, AFF3 scored the best results above the whole other
corrections groups, this is the correction which best approximated
to the PERF solution.

This is explained by the bias, but also because a general affine
correction has contributions not present in a simple white-balance
(AFF0, AFF1) or the affine without translation (AFF2).

• VAN: all corrections showed similar result to AFF3, but neither
of them accomplished to outperform it. From the standpoint of
the training model all four models showed the same fitting, if
error correction is taken into account (see Figure 6.29). From
validation, the results showed also the same metric once again,
good approaches to PERF (see Figure 6.30).

• CHE: all corrections showed a similar result to AFF3 in training
(see Figure 6.31), the same as all VAN corrections. Only CHE0

showed a slightly worse metric in validation (see Figure 6.32),
which is non-significant.

• FIN: FIN0 presented similar results to AFF3 both in training
(see Figure 6.33) and validation (see Figure 6.34). However, FIN1,
its root-polynomial version, presented worse results, both in train-
ing and validation. FIN2 and FIN3, the order 3 versions of FIN0

and FIN1, also failed to correct the color responses properly to fit
the data.

application: colorimetric indicators 135

• TPS: all corrections showed good results, close to AFF3. In training,
all the corrections showed the same fitting, if error correction is
taken into account (see Figure 6.35). As for validation, TPS0 and
TPS1 achieved the best scores. (see Figure 6.36) Note here, TPS0

and TPS1 presented problems to ill-conditioned scenarios, this
was solved using Equation 5.31 criterion to detect and clean those
scenarios.

Figure 6.27: AFF0, AFF1, AFF2

and AFF3 fitted models for the
green channel of the measured
sensor data. AFF0 to AFF2

scored the worst results in the
whole dataset. However, AFF3

scored the best.

Figure 6.28: AFF0, AFF1, AFF2

and AFF3 validation regressions.
Once again, AFF0 to AFF2

present bad results, where their
r2 shows these models are mean-
ingless. On the other hand,
AFF3 presents a really close re-
sult to PERF.

136 automated color correction for colorimetry applications using barcodes

Figure 6.29: VAN0, VAN1,
VAN2 and VAN3 fitted mod-
els for the green channel of the
measured sensor data. All mod-
els scored slightly worse metrics
than the AFF3 correction, de-
spite this their training results
are as good as the AFF3.

Figure 6.30: VAN0, VAN1,
VAN2 and VAN3 validation re-
gressions. All models scored
good results (r2

> 0.95) approx-
imating to the PERF results.

application: colorimetric indicators 137

Figure 6.31: CHE0, CHE1,
CHE2 and CHE3 fitted models
for the green channel of the mea-
sured sensor data. All mod-
els scored slightly worse met-
rics than the AFF3 correction,
despite this their training results
are as good as the AFF3.

Figure 6.32: CHE0, CHE1,
CHE2 and CHE3 validation re-
gressions. All models scored
good results (r2

> 0.95), except
CHE0 which scored 0.94, ap-
proximating to the PERF results.

138 automated color correction for colorimetry applications using barcodes

Figure 6.33: FIN0, FIN1, FIN2

and FIN3 fitted models for the
green channel of the measured
sensor data. Only FIN0 resem-
bles to AFF3, the other three
methods performed worse.

Figure 6.34: FIN0, FIN1, FIN2

and FIN3 validation regressions.
Only FIN0 scores good re-
sults, compared to AFF3 (r2 =

0.95). The other methods scored
worse, resulting in meaningless
models.

application: colorimetric indicators 139

Figure 6.35: TPS0, TPS1, TPS2

and TPS3 fitted models for the
green channel of the measured
sensor data. All models scored
slightly worse metrics than the
AFF3 correction, despite this
their training results are as good
as the AFF3.

Figure 6.36: TPS0, TPS1, TPS2

and TPS3 validation regressions.
TPS0 and TPS1 good results
(r2

> 0.95), followed by TPS3

and TPS2.

140 automated color correction for colorimetry applications using barcodes

6.4 Conclusions

In this chapter, we demonstrated the application of our technology to
colorimetric indicators. The process to design and acquire the signal
of these colorimetric indicators was based upon our proposals of:
Color QR Codes –chapter 3 and chapter 4– and a color correction
framework to solve the image consistency problem –chapter 5–.

The studied example CO2 colorimetric indicator [31] presented an
excellent response in the green channel of our measured data. Also,
the red channel presented a good response, although it was noisy.
The blue channel was discarded due to its reduced response.

Then, the studied colorimetric indicator presented good repro-
ducibility and performed linearly with the logarithm of the con-
centration (for the PERF scenario), as we anticipated in other re-
lated work for other colorimetric indicators (such as NH3, H2S, etc.)
[3; 29; 30; 159; 163].

Moreover, we tackled the problem of image consistency with our
proposed framework. Results indicated that the NONE correction
model was useless without applying any color correction. We cor-
rectly applied the AFF, VAN, CHE, FIN and TPS corrections. We even
detected corner cases of ill-conditioned color corrections in TPS0 and
TPS1 using the criteria defined in the previous chapter.

Furthermore, AFF3 outperformed all corrections, which approx-
imated the PERF scenario with the best r2 scores both in training
and validation. This was somehow expected as the problem was
biased towards a white-balancing problem, as we used only white
light sources from 2500K to 6500K color temperature. Despite this, we
demonstrated that AFF0 or AFF1, the most common white-balance
corrections, were not enough to color correct the data. On one hand,
VAN, CHE and TPS followed the results of AFF3 quite close, re-
maining in reserve for further analysis in more extreme illumination
conditions. On the other hand, FIN presented the worse results (other
than AFF0, AFF1 and AFF2), this correlates with chapter 5 conclu-
sions, where we found that the lack of translation components in the
color correction, produced poor results for FIN corrections.

All in all, Table 6.2 summarizes all the model results displayed
from Figure 6.25 to Figure 6.36. In the table, we also added four
additional metrics: the ∆c (see Equation 6.2) at 20% and 50% gas
concentration and their respective relative metrics, namely the relative

error ǫc of our model in those gas concentrations.

application: colorimetric indicators 141

This summary highlights the above-presented evidence. The CO2

color indicator presented around 10% of relative error in the stud-
ied range ([CO2] = 20% − 50%) by itself (PERF). As reference, a
commercial CO2 sensor from Sensirion has a 3% relative error [173].

Then, our result is an excellent result for cost-effective disposable
sensors, which are not meant to be persistent like the Sensirion one.
Also, without color correction (NONE), it presented a 440% relative
error, which is a useless result. Moreover, only correcting with white-
balance (AFF0, AFF1) scored around 70-90% relative error. Only
AFF3 and related corrections (VAN, CHE) scored good results within
10-20%. TPS methods scored slightly worse results in the range of
20-30% relative error.

Finally, seeking for improving these results, let us discuss some
future work for this chapter.

First, in this chapter, we concluded that AFF3 was the best correc-
tion to color correct the presented color indicator for CO2 sensing. As
mentioned, this was probably a biased dataset towards this kind of
color deformation. We should look for more complex illumination config-

urations to enhance the sample here presented, we already used those
kinds of extreme light configuration in chapter 4 when we created the
Color QR Codes.

Second, we could also modify the camera capturing settings, this
is an interesting topic, as the image consistency problem is not only
affected by the light source but also by the camera. Going further, we
could perform captures with several devices at the same time. All
these new approaches to the problem require more complex setups.

Third, in chapter 5 we concluded we ought to use more locally-
bounded color references to specific problems, such the problem of
colorimetric indicators. However, when we introduced this chapter
we explained that we broaden the amount of encoded colors (from
[29] to [30]) instead to keep them to a representative subset of the RGB
color spaces that was representative of the problem. Both statements
are compatible.

As explained before, we failed to obtain the proper representative

colors of the problem due to a color reproduction problem, thus we
broaden the color chart to a general-purpose 125 RGB colors, to obtain
an equidistributed sample of the printer colors. In order to close the
loop, as suggested in chapter 5, now that we have more than 24

colors (chapter 5, ColorChecker) we should implement newer color
corrections which are based only using those color references that are
representative of our data –i.e. the nearest colors–, and seek for an
improvement of the results, specially in the TPS color corrections.

142 automated color correction for colorimetry applications using barcodes

Correction m
[

%
%

]

n[%] r2[−] r2
valid[−] ∆c20[%] ∆c50[%] ǫ20[%] ǫ50[%]

NONE 90 ± 80 200 ± 130 0.04 0.00 88 249 440 497

PERF 98.4 ± 1.8 -14.2 ± 3.0 0.99 0.99 2 5 9 10

AFF0 101 ± 19 -17 ± 31 0.56 0.10 18 51 90 102

AFF1 100 ± 14 -16 ± 23 0.69 0.45 14 38 68 77

AFF2 98 ± 10 -16 ± 16 0.81 0.34 10 27 48 55

AFF3 100.1 ± 2.9 -19 ± 5 0.98 0.97 3 8 14 16

VAN0 109 ± 4 -31 ± 6 0.97 0.96 3 10 17 19

VAN1 109 ± 4 -30 ± 7 0.97 0.97 4 11 19 21

VAN2 107 ± 4 -28 ± 6 0.97 0.97 3 10 17 20

VAN3 106 ± 4 -26 ± 6 0.97 0.97 4 10 18 20

CHE0 101.0 ± 3.5 -20 ± 6 0.97 0.94 3 9 17 19

CHE1 104.3 ± 3.5 -25 ± 6 0.98 0.97 3 9 16 18

CHE2 105 ± 4 -25 ± 6 0.97 0.97 3 9 17 19

CHE3 109 ± 4 -32 ± 6 0.97 0.96 3 10 17 20

FIN0 108 ± 4 -29 ± 7 0.97 0.95 4 11 19 21

FIN1 97 ± 8 -15 ± 12 0.88 0.62 7 21 37 42

FIN2 104 ± 8 -23 ± 13 0.88 0.77 8 22 38 43

FIN3 98 ± 9 -15 ± 15 0.83 0.35 9 26 46 52

TPS0 102 ± 6 -19 ± 9 0.94 0.97 5 15 27 31

TPS1 102 ± 5 -20 ± 9 0.95 0.97 5 14 26 29

TPS2 103 ± 6 -22 ± 10 0.92 0.88 6 17 30 33

TPS3 105 ± 5 -25 ± 8 0.95 0.94 4 13 22 25

Table 6.2: A summary of the pre-
sented results. The summary
includes metrics for each color
correction for 8 different metrics:
the first 3 (m, n, r2) refer to the
training model found; r2

valid is
the validation score of our mod-
els; ∆c20[%] and ∆c20[%] are the
model sensitivity in concentra-
tion, with c = 20% and c = 50%,
respectively; ǫ20[%] and ǫ20[%]

are their respective relative error,
computed as 100 · ∆c

c .

Chapter 7. Conclusions

7.1 Thesis conclusions

This thesis tackled the problem of acquiring data in a quantitative
manner from colorimetric indicators, and other colorimetric applica-
tions, to do so the problem of automating color calibration ought to be
resolved in with a seamless integration to the colorimetric application
without any additional barriers to the final consumer, thus using
well-known 2D barcodes.

Here, we present a summary of the main conclusions for each one
of the thesis objectives:

I Capture machine-readable patterns placed on top of challeng-

ing surfaces. Results demonstrated that our method performed
better than other extraction methods. We proved so by using
the same commercial QR Code reader (ZBar) on the same image
which had been corrected by the above-mentioned methods for
our three datasets (SYNT, FLAT and SURF), and computing a
data readability factor R for each method and dataset.

For the SYNT and FLAT datasets our method scored similar to
the previous methods with almost a R = 100%, for the SURT
dataset –where challenging surfaces were prsent–, AFF and PRO
methods scored really poor results, a 0% and 2%, respectively.
CYL method scored a 50%, and TPS up to 79%.

By combining both CYL and TPS methods, we arrived to a joint
result of 84%. We even benchmarked this against ZBar without
any image correction, this proved our method (TPS+CYL) scored
4 times better than a bare ZBar decoding (84% vs 19%).

II Define a back-compatible QR Code modification to extend QR

Codes to act as color charts. Results indicated our method mini-
mized the error applied to a QR Code when color is present, both
SNR and BER figures demonstrated that for any of the channels
considered. We also demonstrated that the data zone (D) is the
more suitable candidate to embed color references, as it presents
a higher resilience to be manipulated.

144 automated color correction for colorimetry applications using barcodes

Our method outperformed a random placed of colors by far, for
example for a version 5 QR Code, our method outperformed by
a 150% the results of the random assignment method for the data
zone, and almost a 500% for the global EC&D zone, embedding
more than 300 colors in a QR Code.

III Achieve image consistency using color charts for any camera or

light setup, enabling colorimetric applications to yield quan-

titative results. Results proved all TPS methods to be the best
methods both in ∆RGBwithin and ∆RGBinter metrics, scoring half
or less the distance of the nearest competitor, the general AFF
correction.

Despite this, the original TPS3D method presented a huge num-
ber of ill-conditioned cases where the image was not properly
corrected, around the 20% - 30% of the cases, this ill-conditioned
scenarios were solved when imposing our smoothness proposal.

Also, results indicated that the change in the kernel RBF of the
TPS did not improve, neither degrade, the TPS scores.

Moreover, regarding the execution time T , AFF methods were
the fastest methods available of the proposed framework, due to
their computational simplicity.

All the other methods scored worse times than these corrections,
specially FIN (root-polynomial) and TPS corrections. TPS were
20 to 100 times slower than AFF color corrections. Despite this,
we proved that changing the kernel RBF of the TPS formulation
did speed up by a 30% the result computation.

IV Demonstrate a specific application of the technology based on

colorimetric indicators. Results demonstrated the general affine
correction (AFF3) was the best correction in the color correction
framework, probably because our experiment was biased towards
white-balance corrections.

Our color indicator proved to a good cost-effective indicator with
only a 10% relative error in the studied range (PERF), around
10% - 20% when corrected with AFF3 and similar corrections
(VAN, CHE), and 20%-30% with TPS corrections. In front of the
440% relative error observed without any correction (NONE).

All in all, we demonstrated the feasibility of applying barcode
technology to colorimetric applications, thus enhancing the previous
state-of-the-art technologies in the field. Our new Color QR Code
acted as substitutes of the traditional color charts, presenting more
color capacity in a compact form. Altogether, with a new proposal
for color correcting scenes using an improved TPS3D method, we
demonstrate the use of our technology to colorimetric indicators.

conclusions 145

7.2 Future work

During the presented thesis, we presented some ideas to further
continue to work on the presented results in each chapter. How to
pursue these partial research was detailed there. Along with this,
our integrated solution on how to automate color correction using
barcodes can be applied somewhere else. Let us expose some ideas
on how to apply our technology beyond colorimetric indicators to
other fields where color correction is still an open problem.

First, other biochemical analytes can be considered instead of envi-
ronmental gases, temperature or humidity [2]. Taking as an example
water, many authors have proposed colorimetric methods to detect
substances in the water: such as chlorine [174] or fluorine [175], or even,
coliphages [176].

All these examples, could be integrated straight-forward with our
technology as their similarity to colorimetry indicators. Here, the
solvent of the substance to sense is liquid (water), which is often
mixed with a chemical reactive which contains a derivate of a color
indicator. The main gap between our technologies would be a com-
puter vision problem, on how to embed our Color QR Code in their
system involving liquid water. Fortunately, in chapter 3 we tackled
this problem and proposed a combined method using both TPS and
CYL correction which, theoretically, would solve the implementation
of our technology on top cylindrical surfaces like reactive vials.

Second, another example is the wide-spread in-vitro diagnostics
lateral-flow assays [17; 177]. Lateral-flow assays were already popular
before 2021, they were popular due to self-diagnosis pregnancy tests,
that were based on this technology. But nowadays, they are even
more popular due to the pandemic situation derived from COVID-19

disease, and the use of this technology to provide to the people of
self-diagnosis antigen tests for detecting SARS-CoV-2 [178].

Many authors have attempt to perform readouts from lateral-flow
assays using smartphones [179]. The most common approach from
these authors is to overcome the image consistency problem by fixing
the illumination and capture conditions using ad hoc hardware to the
smartphone [180]. However, those extra hardware present a stopgap
between their proposals and the final user, alongside with a price
increase to fabricate and distribute the hardware.

Our solution here would overcome those problems, by simply
adding a Color QR Code to the lateral-flow cassette, which is a cost-
effective solution. Thus, leveraging all the color correction to the
smartphone or remote post-processing.

146 automated color correction for colorimetry applications using barcodes

Third, there exists an increasing need for achieving image consis-
tency in other health-care fields, one of these is dermatology [33; 34].
Dermatology is a wide health-care field, we can find authors that
have used smartphone or neural networks to ease the diagnosis of
different diseases like skin cancer [181], skin burns [182] or other skin

lesions [183].

Other authors have proposed to use previous color charts to color
calibrate dermatology images [184; 185; 186]. For example, Vander-
Heaghen et al. presented the use of a ColorChecker chart [13] to
achieve consistent imaging in commercial cameras, and concluded
that despite their efforts, the resultant images already had too much
variability which cannot be eliminated [185].

We could use our technology to improve their results. First, they
sought to use the ColorChecker to color correct the images using
device-independent color spaces, as we discussed in this thesis, there
exist more modern approaches to this problem, working directly in
device-depending color spaces. Then, we could apply our color cor-
rection framework directly to their dataset. Moreover, our complete
proposal of Color QR Codes could add more colors to the color cor-
rection that are representatives of the problem tackled. This is similar
to the work presented by Cugmas et al. [186] in their teledermoscopy
solution for canine skin, where they used two ColorChecker charts for
this purpose. With our proposal, this seems redundant, the Color QR
Codes could embed the colors of both color charts.

Finally, any colorimetric application is potentially approachable by
our technology presented in this thesis. The adoption of the technol-
ogy relies on two further challenges: one, to adapt the color correction
to the colorimetric model present in the application, thus condition-
ing the colors to be embedded in the barcode; and two, to adapt the
barcode definition to the desired conditions of the application.

list of figures 147

List of Figures

1.1 The GasApp proposal is presented. Left, GasApp changed the core sensing technology from
electronic to colorimetric indicators. Right, the initial idea of the GasApp project, a card
where colorimetric dyes are printed alongside with color charts and a QR Code. 16

1.2 Simplified 1D representation of the color reproduction problem in reversible and in non-
reversible conditions. For clarity only one color coordinate has been represented: x stands
for R, G, or B, and x′ stands for R’, G’, or B’. Object colors (x) appear to be different (x’) after
being acquired by digital means. In some situations, these alterations cannot be removed,
because the transformation from x′ to x is not single-valued (the critical color ranges where
this problem occurs are highly lighted with the green marker). 17

1.3 Four examples of ArUco codes. These codes present certain feature uniqueness (rotation,
non-symmetry, etc.), which enables easy location and identification on a scene. 17

1.4 Our thesis proposal to create machine-readable patterns that can accommodate colorimetric
sensors and color charts, alongside with the digital information of the QR Code. 18

2.1 The color reproduction problem is represented: (a) a certain light source (I(λ)) illuminates a
certain object with a certain reflectance (R(λ)), this scene is captured by a certain camera
with its sensor response (D(λ)) and (b) the reproduced image of the object (R′(λ)) is then
illuminated and captured again. 22

2.2 The imaging consistency problem is represented: (a) a certain light source (I(λ)) illuminates
a certain object with a certain reflectance (R(λ)), this scene is captured by a certain camera
with its sensor response (D(λ)) and (b) the same object is now illuminated by another light
source (I′(λ)) and captured by another camera (D′(λ)). 23

2.3 A ColorChecker chart. The first row shows a set of six “natural colors”; the second one
shows a set of "miscellaneous colors"; the third, primary and secondary colors; and the last
row, a gray scale gradient. This set of colors samples the RGB space in a limited way, but it
is convenient to carry out a few color corrections manually. 24

2.4 Previous state-of-the-art color correction charts from Pantone and X-Rite. (a) The X-Rite
ColorChecker Passport Photo 2® kit. (b) The Pantone Color Match Card®. 25

2.5 Different 2D barcode standards. From left to right: a QR Code, a DataMatrix, an Aztec Code,
a MaxiCode, a JAB Code and a HCC Barcode. 26

150 automated color calibration for colorimetry applications using barcodes

2.6 Block diagram for a general encoding-decoding process of a QR Code which features the
embedding of a color layer. This color layer could be used for a wide range of applications,
such as placing a brand logo inside a QR Code. The process can be seen as a global encoding
process (digital encode and color encode), followed by a channel (print and capture) and a
global decoding process (remove colors and decode digital information). 27

2.7 Some examples of QR Code versions. From left to right: Micro QR-Code (version M3),
version 3 QR Code, and version 10 QR Code. Each of them can store up to 7, 42, 213 bytes,
respectively, using a 15% of error correction capacity. 28

2.8 Some examples of DataMatrix codes. From left to right: rectangular DataMatrix code, square
DataMatrix code and four square DataMatrix combined. Each of them can store up to 14, 28,
202 bytes, respectively, using approximately a 20% of error correction capacity. 28

2.9 QR Code encoding defines a complex layout with several patterns to be considered, some of
them are non-variant patterns found in each QR Code, others may appear depending on the
size of the QR Code, and area related to the data changes for each encoding process. (a) A
QR Code with high error correction level and version 5. (b) The complex pattern structure
of the pattern. 29

2.10 QR Code simplified areas corresponding to the encode process. (a) A QR Code with high
error correction level and version 5. (c) Simplified view of the QR patterns, yellow frame
corresponds to the “error correction” area and dark green frame corresponds to the “data”
area. 30

2.11 Different examples of Halftone QR Codes, introduced by HK. Chu et al. [56]. These QR Codes
exploit the error correction features of the QR Code to achieve back-compatible QR Codes
with apparent grayscale –halftone– colors. 31

2.12 Original figure from Garateguy et al. [57], different QR Codes with color art are shown: (a) a
QR Code with a logo overlaid; (b) a QArt Code [58], (c) a Visual QR Code; and (d) Garateguy
et al. proposal. 31

2.13 Computer vision patterns featured in a QR Code. (a) Three finder or position patterns, (b)
six alignment patterns, (c) two timing patterns and (d) the fourth corner that can be inferred
from the external edges of the finder patterns. 32

2.14 Finder pattern definition in terms of modules. Finder pattern measures always 7 × 7

modules. If scanned with a line barcode scanner the 1:1:3:1:1 ratio is maintained no matter
the direction of the scanner. If scanned using contour extraction the aspect ratio 7²:5²:3² is
maintained as well if the QR Code is captured within a projective scene (i.e. a handheld
smartphone). 33

2.15 Alignment pattern definition in terms of modules. Alignment pattern measures always 5 ×
5 modules. If scanned with a line barcode scanner the 1:1:1:1:1 ratio is maintained no matter
the direction of the scanner. If scanned using contour extraction the aspect ratio 5²:3²:1² is
maintained as well if the QR Code is captured within a projective scene (i.e. a handheld
smartphone). 33

2.16 The QR Code contour detection method. a) A QR Code from a certain perspective. b) All
the contours detected in the image. c) The location of the position patterns following the
area rule. Their respective centers of mass are indicated. 34

list of figures 151

2.17 The different orientations of a QR Code are shown. (a) Representation of the slope of the
diagonal connecting the corners m and the diagonal segment linked to the top-left corner s.
(b) The four possible orientations of a QR-Code. 35

2.18 The QR Code projective correction steps. a) The orientation is deduced from the centers of
the 3 finder patterns L, M, N. In this step, their contour corners are found. b) The fourth
corner O is found, based on the previous three corners. c) A first projective transformation is
carried out, but still subject to significant error shifts around the bottom-right corner; d) The
alignment patterns are localized in a restricted contour search. The centers of the alignment
patters (shifted centers after the first projective correction (green) and the reference centers
are both found (red). e) The error committed at this stage is shown by subtraction of the
images. f) Finally, a second projective transformation recovers the final QR Code image,
based on the reference, tabulated, positions of the alignment patterns. 36

2.19 A reduced representation of the reflectance model. For more details see Figure 2.1. 37

2.20 125 colors of an RGB color space. Each channel of the color space has been sampled 5 times.
Assuming the space is a 24-bit color space, the values of the sampled colors correspond to: 0,
61, 127, 193 and 255. The combination (255, 255, 255) is the white color and (0, 0, 0) the black
color. 38

2.21 An Airy disk is shown as a grayscale image with a color map (top) and as a function (bottom)
with the same color map. 41

3.1 An example of an adverse situation, image of a QR Code in a bike-sharing service in
Barcelona, where the QR Code is bent over the bike frame. User experience shows that
capturing these QR Codes is difficult when approaching the camera to the QR Code due
to the bending. (a) An image captured near the QR Code (∼20 cm), (b) an image captured
farther (∼1 m) and (c) a zoomed version of (b) which despite the blur performs better
because the QR Code resembles more to a flat QR Code. 45

3.2 Projection of different surfaces into the capture plane (img) when acquiring images from a
digital camera. A QR Code placed on each one of these surfaces will show different defor-
mations(a) an affine (coplanar) plane, (b) a projective (noncoplanar) plane, (c) a cylindrical
surface and (d) a thin-plate spline surface, it is continuous and derivable. 47

3.3 Projection of an affine surface into the capture plane (img) when acquiring images from a
digital camera. 48

3.4 Projection of a projective surface into the capture plane (img) when acquiring images from a
digital camera. 49

3.5 Projection of a cylindrical surface into the capture plane (img) when acquiring images from
a digital camera. 49

3.6 Projection of an arbitrary surface into the capture plane (img) when acquiring images from a
digital camera. 50

3.7 Example images from the three datasets - (a) SYNT, (b) FLAT and (c) SURF - showing similar
QR codes in different surface deformations. 53

152 automated color calibration for colorimetry applications using barcodes

3.8 (a) Block diagram for a general encoding-decoding process of a QR Code. (b) A modified
diagram with the addition of a deformation due to a noncoplanar surface topography and
surface fitting stage which contains a correction steps where image deformation is reverted
to improve readout. In our experiments, also, an image augmentation step was added to be
used in the proposed experiments for this work. 53

3.9 Two examples (a), (b) from the SYNT dataset. The surfaces were fitted by the four methods
described (AFF, PRO, CYL and TPS). The surface fitting is shown as a lattice of red points
back-projected onto the original image. 55

3.10 Two examples (a), (b) from the FLAT dataset. The surfaces were fitted by the four methods
described (AFF, PRO, CYL and TPS). The surface fitting is shown as a lattice of red points
back-projected onto the original image. 56

3.11 Three examples (a), (b), (c) from the SURF dataset. The surfaces were fitted by the four
methods described (AFF, PRO, CYL and TPS). The surface fitting is shown as a lattice of red
points back-projected onto the original image. 57

3.12 Data readability (R) of each dataset (SYNT, FLAT, SURF) for each transformation method
(AFF, PRO, CYL and TPS). 59

3.13 Data readability (R) of the SYNT dataset, segregated by the kind of deformation (affine or
perspective) that the QR Codes were exposed to, for each transformation method (AFF, PRO,
CYL and TPS). 59

3.14 Data readability (R) of the SURF dataset segregated by the kind of deformation (cylindrical
or other) that the QR Codes were exposed to, for each transformation method (AFF, PRO,
CYL and TPS). 59

3.15 Data readability (R) of the three datasets (SYNT, FLAT and SURF) when processed with
ZBar and our combined CYL and TPS methods. 60

4.1 A machine-readable pattern to allocate an ammonia sensor. Top: the designed pattern, with
two spaces to print a colorimetric sensor. Bottom: the captured version of the pattern with a
printed colorimetric dye in one slot. Notice this pattern resembles a QR Code, but it does
not contain any data. 63

4.2 Block diagram for a back-compatible encoding-decoding process of a QR Code which
features the embedding of a color layer for colorimetric applications. The process can be seen
as a global encoding process (digital encode and color encode), followed by a channel (print
and capture) and a global decoding process (extract colors and decode digital information).
This process is back-compatible with state of the art scanners which remove colors and
achieve the decoding of the data and compatible with new decoders which can benefit from
color interrogation. The back-compatibility is achieved by following certain rules in the color
encoding process (i.e. use the same threshold when placing the colors than when removing
them). 64

list of figures 153

4.3 Previous state-of-the-art QR Code variants that implement colors in some fashion. (a) A
QR Code which is able to back-compatible embed an image. (b) A RGB implementation of
QR Codes where 3 different QR Codes are packed in each RGB channel, each channel is
back-compatible, although the resulting image is not. (c) A High Capacity Color Barcode, a
re-implementation of a QR Code standard using colors, which is not back-compatible with
QR Codes. 65

4.4 A QR Code is overlaid with a logo, which accumulates error due to the presence of the logo.
(a) The QR Code is encoded. (b) The code is resized to accommodate the logo. (c) The logo
is placed on top of the QR Code. (d) The code is “captured” and down-sampled again. (e)
The sampled image is passed to grayscale. (f) The image is binarized, the apparent QR Code
differs from the original QR Code (a). 66

4.5 A QR Code with a logo is created and read, which accumulates error due to the presence of
the logo. (a) The original QR Code encoded. (b) The captured sampled grayscale QR Code.
(c) The power difference between (a) and (b). (d) The original grayscale QR Code encoded is
binarized, which it is represented exactly as (a). (e) The captured sampled grayscale image
from (b) is binarized. (f) The difference between (d) and (e) is shown: light blue pixels
correspond to white pixels turned into black by the logo, and dark blue pixels correspond to
black pixels turned into white by the logo. 67

4.6 The color information from the ColorSensing logo is distributed using different criteria, each
one of these distributions compute different measures of SNR and BER, although the total
amount of colors is the same, the way they are distributed affects the signal quality. (a) The
original QR Code with the logo. (b) The logo colors are sorted at the top of the QR Code.
(c) The logo colors are randomly distributed among the QR Code. (d) The logo colors are
distributed by using a threshold criterion among blacks and white colors. 72

4.7 Histogram comparison between uniform randomly generated RGB channels. (a) which
yields to a non-uniform grayscale -L- and uniform randomly generated grayscale -L-. (b)
with derived pseudo-uniform RGB channels. 74

4.8 The same QR Code is populated with different amounts of colors. (a) 1% of the pixels are
substituted using a random placement method (yellow arrows show the colorized pixels).
(b) 100% of the pixels are substituted using a random placement method. 74

4.9 The same QR Code is populated in different areas with 80% of colors for each area. (a) the
whole QR Code is populated (EC&D). (b) Only the error correction area is populated (EC). c.
Only the data area is populated. 75

4.10 The same QR Code with data and the same amount of colors (80% of the data area) is
exposed to different channels. (a) The image passed-through an empty channel. (b) The
image passed-through an augmentation channel which resembles a warm light scene. (c)
The image passed-through a real environment channel, actually printed and captured in a
scene with a lamp at 2500K (warm light). 76

154 automated color calibration for colorimetry applications using barcodes

4.11 SNR and BER results for Experiment 1 before sending the QR Codes to any channel, only
taking into account the QR Codes where all the area has been used (EC&D). Lines and
points show average data, light shadows show the min and max values, and heavy shadows
show the standard deviation for each color substitution ratio. Left: SNR results for Greyscale
(squares, black) and Random (dots, red) methods. Right: BER results for Greyscale (squares,
black) and Random (dots, red) methods. 77

4.12 SNR and BER results for Experiment 2 after sending the QR Codes to an image augmentation
channel, only taking into account the QR Codes where all the area has been used (EC&D).
Lines and points show average data, light shadows show the min and max values, and
heavy shadows show the standard deviation for each color substitution ratio. Left: SNR
results for Greyscale (squares, black) and Random (dots, red) methods. Right: BER results
for Greyscale (squares, black) and Random (dots, red) methods. 78

4.13 SNR results for Experiment 2, splitted by QR Code version, after sending the QR Codes to
an image augmentation channel, only taking into account the QR Codes where all the area
has been used (EC&D). SNR results are shown for Greyscale (squares, black) and Random
(dots, red) methods. Lines and points show average data, light shadows show the min and
max values, and heavy shadows show the standard deviation for each color substitution ratio. 79

4.14 SNR and BER results for Experiment 3 after sending the QR Codes to a real channel (printing
and capturing the QR Code in a colorimetry setup), only taking into account the QR Codes
where all the area has been used (EC&D). Lines and points show average data, light shadows
show the min and max values, and heavy shadows show the standard deviation for each
color substitution ratio Left: SNR results for Greyscale (squares, black) and Random (dots,
red) methods. Right: BER results for Greyscale (squares, black) and Random (dots, red)
methods. 80

4.15 Success ratio of decoded QR Codes before passing through a channel among different
embedding zones (EC&D, Error Correction and Data), for each color mapping method
(greyscale and random) for all QR Code versions. Each curve represents a QR Code version,
there are up to 5 curves for each method, Greyscale (squares, black) and Random (dots, red). 81

4.16 Success ratio of decoded QR Codes after passing through an image augmentation channel
among different embedding zones (EC&D, Error Correction and Data), for each color
mapping method (greyscale and random) for all QR Code versions. Each curve represents a
QR Code version, there are up to 5 curves for each method, Greyscale (squares, black) and
Random (dots, red). 82

4.17 Success ratio of decoded QR Codes after passing through a real-life channel among different
embedding zones (EC&D, Error Correction and Data), for each color mapping method,
Greyscale (squares, black) and Random (dots, red), only for a QR Code of version 5. 83

4.18 Number of colors that can be embedded in the D zone as a function of the QR Code
version (from v3 to v40). Lines show the theoretical maximum number of colors, for
different substitution ratios. Square dots show the maximum number of colors that could be
embedded in a QR Code with a demonstrated readability above 95% in the conditions of
Experiment 2. In contrast to the other QR Code zones, such high readabilities are obtained,
even in 100% substitution ratio only in the D zone. 84

list of figures 155

4.19 A color QR Code (version 5 with H error correction level) which contains 240 pixels that
are coloured. This is implemented with our back-compatible method. These color pixels
reproduce the 24 original ColorChecker colors with a redundancy of 10 pixels per color.
Only 22% of the digital data pixels are used in this process, almost all the Data (D) zone is
used to allocate the colors. 85

5.1 An example of a Gehler’s ColorChecker dataset image. 90

5.2 RGB colors of the ColorChecker of an image are projected in the red-green plane. The
colors are replicated: (◦) show the original colors of the ColorChecker and (×) show their
augmented version, as in their captured values. 91

5.3 RGB colors of the ColorChecker of an image are projected in the red-green plane. The colors
are replicated: (◦) show the original colors of the ColorChecker and (×) show the corrected
values of the augmented version shown in Figure 5.2 using a white-balance correction. The
whitest point (upper right) is the only one that is properly corrected. 91

5.4 RGB colors of the ColorChecker of an image are projected in the red-green plane. The
colors are replicated: (◦) show the original colors of the ColorChecker and (×) show the
corrected values of the augmented version shown in Figure 5.2 using a white-balance with

black-subtraction correction. The whitest point (upper right) and the blackest point (lower left)
are the only ones properly corrected. 92

5.5 RGB colors of the ColorChecker of an image are projected in the red-green plane. The colors
are replicated: (◦) show the original colors of the ColorChecker and (×) show the corrected
values of the augmented version shown in Figure 5.2 using an affine correction. We could
choose to fix 3 points, but here we applied an approximated solver to the system, so any of
the points is strictly matched. 92

5.6 RGB colors of the ColorChecker of an image are projected in the red-green plane. The colors
are replicated: (◦) show the original colors of the ColorChecker and (×) show the corrected
values of the augmented version shown in Figure 5.2 using an affine correction with translation.
We could choose to fix 4 points, but here we applied an approximated solver to the system,
so any of the points is strictly matched. 93

5.7 RGB colors of the ColorChecker of an image are projected in the red-green plane. The colors
are replicated: (◦) show the original colors of the ColorChecker and (×) show the corrected
values of the augmented version shown in Figure 5.2 using a geometric polynomial correction

of degree 4. Many of the points are almost matched due to the polynomial expansion. 94

5.8 RGB colors of the ColorChecker of an image are projected in the red-green plane. The colors
are replicated: (◦) show the original colors of the ColorChecker and (×) show the corrected
values of the augmented version shown in Figure 5.2 using a thin-plate spline correction. All
the points are strictly matched by the TPS definition. 95

5.9 RGB colors of the ColorChecker of an image are projected in the red-green plane. The
colors are replicated: (◦) show the original colors of the ColorChecker and (×) show the
corrected values of the augmented version shown in Figure 5.2 using a smoothed thin-plate

spline correction. Not all the points are strictly matched now, as we relaxed the the TPS
definition. 97

156 automated color calibration for colorimetry applications using barcodes

5.10 Our pipeline: for each Gehler’s dataset raw image (bayer) we develop an RGB image, which
is already the half size of the original image, also this image is down-sampled to reduce its
size 4 times. Then we augment this down-sampled image with 100 sample augmentation
scenarios. For each augmented scenario we correct back before augmentation using 21

different correction methods described in Table 5.1. 100

5.11 An image from Gehler’s dataset (K=1) is down-sampled with 3 factors (K=4, 16, 64), where
K is the down-sampling factor. The figure also shows the histogram associated with each
image and the size in pixels of the image. Down-sampled images by a factor 4 maintain the
histogram representation, but further down-sampling alters the histogram. 102

5.12 Different examples of color augmentation using imgaug in Python. The upper-left image is
the developed original image from the Gehlre’s dataset. The other images are augmentations
of these image with variations in color, contrast and saturation. 102

5.13 The metric ∆RGB ,within is represented. RGB colors of the ColorChecker of an image are
projected in the red-green plane. The colors are present as their ground-truth value (◦) and
their augmented copy (×). Dashed lines across the plane show the ∆RGB ,within between each
color pair. Cyan, magenta and yellow pairs are highlighted above the other ColorChecker
colors. 103

5.14 The set ∆RGB ,pairwise is represented. RGB colors of the ColorChecker of an image are
projected in the red-green plane. The colors are present as their ground-truth value (◦).
Dashed lines across the plane show the ∆RGB ,pairwise between all the colors. The distances
between cyan, magenta and yellow are highlighted above the other distances. 103

5.15 The metric ∆RGB ,inter is represented. RGB colors of an entire image are projected in the
red-green plane. The colors are present as their ground-truth value (black points, ◦) and their
augmented copy (red points, ×). Then, three random colors are selected to show dashed
lines across the plane to show the ∆RGB ,inter between each color pair. 104

5.16 An example of a failed and ill-conditioned correction. The augmented image shows saturated
colors: the yellowish colors and the whitish colors. The corrected image is computed with
the TPS0 method rendering an erroneous result. 104

5.17 A count of the failed corrections for each correction method is shown. Failed corrections
are selected if their ∆RGB ,within computation is greater than the NONE correction. After this,
the count is divided in ill-conditioned results or not. Ill-condition is assessed using the
∆RGB ,pairwise comparison to a minimum distance of ∆RGB =

√
3. 105

5.18 The ∆RGB ,within for each image in the dataset and for each augmentation is shown as a
distribution against the color correction techniques. The means of the distributions are also
present (△). PERF correction is not zero and shows the quantization effect. NONE is a
reference of not applying any correction at all. The rest of the corrections are grouped in:
AFF, VAN, CHE, FIN and TPS corrections. 107

5.19 The ∆RGB ,inter for each image in the dataset and for each augmentation is shown as a
distribution against the color correction techniques. The means of the distributions are also
present (△). PERF correction is not zero and shows the quantization effect. NONE is a
reference of not applying any correction at all. The rest of the corrections are grouped in:
AFF, VAN, CHE, FIN and TPS corrections. 108

list of figures 157

5.20 The execution time in milliseconds for each image in the dataset and for each augmentation
is shown as a distribution against the color correction techniques. The means of the
distributions are also present (△). 110

5.21 The execution time in milliseconds against the image size for a reduced set of images of the
dataset. Results show a linear behavior for all the corrections techniques. Corrections are
grouped by color and marker, within the same group different transparencies have been
applied to differentiate the corrections . 111

6.1 Reaction mechanism of the pH indicator bromocresol green (BCG, pH 3.8–5.4) for the
detection of NH3. Increase of the NH3 concentration leads to a proton release, detectable as
a color change from yellow over green to blue. 115

6.2 UV–VIS diffuse reflectance of the soaked pads with Griess-Saltzman reagent exposed to
different NO2 concentrations and the corresponding images of the colors developed (insets,
3 replicas per concentration). 116

6.3 Left, an ammonia (NH3) colorimetric indicator has been dip-coated into a glass substrate,
which exhibits a yellow color when exposed to synthetic air. Right, the same sensor is
exposed to 100 ppm of NH3 and it turns into purple. 116

6.4 (a) Standard tristimulus X(λ), Y(λ), Z(λ) curves of the human eye. (b) The integrated sRGB
colors represented in the RGB cube. (c) The rendered sequence of RGB colors corresponding
to the gas sensing spectra c(λ). 117

6.5 The proposed pipeline for creating machine-readable patterns proposed in 2018 [29]. 118

6.6 A machine-readable pattern to allocate an ammonia sensor. Left: the designed pattern, with
two spaces to print a colorimetric sensor. Right: the captured version of the pattern with a
printed colorimetric dye in one slot. Notice this pattern resembles a QR Code, but it does
not contain any data. 118

6.7 RGB 8-bit color data acquired from a colorimetric sensor captured with a digital camera at
5500K color temperature exposition, with the centers of 32 clusters generated by K-means
clustering. Data is presented as a projection into the red-channel plane of the RGB space. . . 119

6.8 32 clusters centers from Figure 6.7 data, and color clustering regions. Data is presented as a
projection into the red-channel plane of the RGB space. 119

6.9 The layer structure of the machine-readable pattern for colorimetric indicators: a) the
colorimetric indicator ink, b) the machine-readable pattern inks, c) the plastic substrate and
d) white cardboard. 120

6.10 Five machine-readable patterns (a), (b), (c), (d) and (e) are exposed to different atmospheres
(1), (2), (3), (4), (5), the value of the mean measured RGB color for each ink at each atmosphere
is represented as a transposed vector. (a) a NH3 sensor using the BPB and BGC indicators.
(b) a CH2O dosimeter using the BGC indicator. (c) a H2S dosimeter using the Cu-PAN. (d)
a CH2O dosimeter using the BTB+ODA indicator. And, (e) a CH2O dosimeter using the
BCP+ODA indicator. The different 5 atmospheric conditions can be consulted in Engel et al.
[30]. 121

158 automated color calibration for colorimetry applications using barcodes

6.11 A back-compatible Color QR Code for colorimetric indicators. This QR Code will be read by
commercial scanners, and it should display the URL: c-s.is/#38RmtGVV6RQSf. The Color
QR Code includes up to 125 reference colors and blank space to allocate a colorimetric
indicator ink (above the lower finder pattern). 122

6.12 The structure of the Color QR Code from Figure 6.11 is detailed. a) and b) show possible
sensor inks placements, a) shows a big sensor outside the QR Code, b) shows smaller factor
forms (3× 2, 1× 1, ...) inside the QR Code. c) Shows the color references and how they are
spread in the QR Code areas. Finally, d) shows the whole layout of the sensor with the Color
QR Code. 122

6.13 16 different Color QR Codes for colorimetric indicators with different encoded data that
differs in an alphanumeric ID. The encoded reference colors in each QR Code is the same,
however the position of the colors is distributed following the digital data in a back-
compatible manner. Each Color QR Code has a reserved area (white) above the lower finder
pattern to allocate a colorimetric ink. 123

6.14 Two screens and one substrate sheet. Each screen can print one color indicator, and both can
be combined into the same pattern. The substrate has DINA4 measures, it also contains up
to 10 Color QR Codes with an approximated size of 1 inch. 124

6.15 Several substrate sheets already printed, each sheet contains up to 10 CO2 sensors and 10

NH3 sensors. 124

6.16 Schema of our laboratory setup. The setup features 3 subsystems: a massflow controller
station, a capture station and a user-access computer. The massflow controller station
provides modified atmospheres to a chamber where the gas sensors are placed. The
capture station can see the chamber through an optical window, and take time-lapses with a
controlled light setting. Finally, the user computer presents a web page interface to the user
to operate the system. 125

6.17 The 3D design of the circular sensor chamber. The chamber is transparent to enable optical
readings, and it is sealed using rubber (orange). The chamber also has four threaded
input/output holes. 125

6.18 The expected (black) and the measured gas concentration (red) for each gas pulse is shown
on a temporal axis along the experiment duration. The measured values were taken from
the BROOKS instrumentation reading while applying a correction algorithm provided by
the manufactured [167]. 127

6.19 A printed sensor, featuring a Color QR Code and two colorimetric indicators is displayed
inside the sensor chamber of our setup. Then is exposed to different light conditions. From
left to right, the illumination changes following 3 color temperatures of white light: 2500K,
4500K and 6500K. 127

6.20 From top to bottom: a representation of the color of the sensor over time for the D65 standard
illuminant (6500K), it can be observed it changes from blueish colors to yellowish colors; the
same colors as RGB channel signals; and the response (%) for all the RGB channels. 129

6.21 The response of the green channel exposed to a D65 standard illuminant (6500K) for all the
pulses are overlapped in the same time frame. This results in 15 pulses, each reference target
gas concentration (20, 30, 35, 40, 50) has a pulse replica (0, 1, 2). 130

c-s.is/#38RmtGVV6RQSf

list of figures 159

6.22 The response of the green channel exposed to nine illuminants (2500K to 6500K) for all the
pulses are overlapped in the same time frame. This results in 135 apparent pulses, now each
reference target gas concentration (20, 30, 35, 40, 50) has a pulse replica (0, 1, 2) for each
illuminant. Legend is omitted to favor clearness, results should be compared to Figure 6.21. 131

6.23 The captured color references from the Color QR Code in each illumination condition. D65

is the reference space. 131

6.24 The response of the green channel exposed to nine illuminants (2500K to 6500K), then
corrected using the TPS3 method (Table 5.1), for all the pulses are overlapped in the same
time frame. This results in 135 apparent pulses, now each reference target gas concentration
(20, 30, 35, 40, 50) has a pulse replica (0, 1, 2) for each illuminant. Legend is omitted to
favor clearness, results should be compared to Figure 6.21. The shadowed area is the area
corresponding to the 5 minutes windows used to integrate the response of the sensor for the
model computation. 132

6.25 NONE and PERF fitted models, which represent the worst and the best case scenarios,
respectively. The fitted model in NONE is the one performed without correcting any
captured color. The PERF model is an artificial model in which each captured color has been
mapped to its correspondent D65 color. 133

6.26 NONE and PERF regression for the validation data. The coefficient r2 was computed for this
data. This result confirms that NONE is the worst case scenario with a null r2, and PERF is
the best score in the whole set of results. 133

6.27 AFF0, AFF1, AFF2 and AFF3 fitted models for the green channel of the measured sensor
data. AFF0 to AFF2 scored the worst results in the whole dataset. However, AFF3 scored the
best. 135

6.28 AFF0, AFF1, AFF2 and AFF3 validation regressions. Once again, AFF0 to AFF2 present
bad results, where their r2 shows these models are meaningless. On the other hand, AFF3

presents a really close result to PERF. 135

6.29 VAN0, VAN1, VAN2 and VAN3 fitted models for the green channel of the measured sensor
data. All models scored slightly worse metrics than the AFF3 correction, despite this their
training results are as good as the AFF3. 136

6.30 VAN0, VAN1, VAN2 and VAN3 validation regressions. All models scored good results
(r2

> 0.95) approximating to the PERF results. 136

6.31 CHE0, CHE1, CHE2 and CHE3 fitted models for the green channel of the measured sensor
data. All models scored slightly worse metrics than the AFF3 correction, despite this their
training results are as good as the AFF3. 137

6.32 CHE0, CHE1, CHE2 and CHE3 validation regressions. All models scored good results
(r2

> 0.95), except CHE0 which scored 0.94, approximating to the PERF results. 137

6.33 FIN0, FIN1, FIN2 and FIN3 fitted models for the green channel of the measured sensor data.
Only FIN0 resembles to AFF3, the other three methods performed worse. 138

6.34 FIN0, FIN1, FIN2 and FIN3 validation regressions. Only FIN0 scores good results, compared
to AFF3 (r2 = 0.95). The other methods scored worse, resulting in meaningless models. . . . 138

160 automated color calibration for colorimetry applications using barcodes

6.35 TPS0, TPS1, TPS2 and TPS3 fitted models for the green channel of the measured sensor data.
All models scored slightly worse metrics than the AFF3 correction, despite this their training
results are as good as the AFF3. 139

6.36 TPS0, TPS1, TPS2 and TPS3 validation regressions. TPS0 and TPS1 good results (r2
> 0.95),

followed by TPS3 and TPS2. 139

List of Tables

2.1 A summary of QR Code data encoding capacity is shown. The total capacity for each
configuration is expressed in symbol capacity. Columns are ordered left to right from higher
to lower capacity. 30

3.1 Summary of dataset sizes. All datasets attempt to have the same size employing QR Code
generation, different captures or image augmentation. 54

4.1 The values for the SNR and BER are computed for the QR Code with a logo from Figure 4.4.
The SNR is computed using grayscale images. The BER is computed using binary images
(see Figure 4.4). 68

4.2 Values of SNR and BER computed for each criteria in Figure 4.6. Using the logo as it is, the
sorted criteria and random criteria yield to similar results. However, the use of a simple
grayscale threshold criteria slightly increases the SNR and hugely depletes the BER, showing
a good result for encoding colors in a back-compatible way. 72

4.3 Summary of parameter values for each experiment designed. All experiments share common
parameters, at least each experiment has 72 different QR Codes that will be generated using
as reference the multiplication of the shared parameters. Experiment 1 generates 360.000

different QR Codes. 73

4.4 Number of different colors that can be embedded inside a QR Code with a 95% success
ratio during the decoding process for each insertion mask (EC&D, EC or D), for both color
mapping methods (greyscale and random). In absolute terms, the mask corresponding with
only the Data zone beats the other two, as expected the Grayscale method performs better
than the Random one. 84

4.5 Properties of the proposed QR Code with the ColorChecker colors embedded in it. Properties
are related with different steps in the QR Code life-cycle, from encoding to decoding. . . . 85

5.1 All the color corrections performed in this work. The table shows the name of the correction,
the tag used in this work to refer to the correction and the augmented definition for each
vector of P, the color references or color to be corrected. In this table we use a reduced
notation ∆i = ∆RGB(si, c) for simplicity. 99

5.2 Sizes in pixels (x, y) of the images along our pipeline. Notice raw pixels are natural pixels of
the sensor, this means each pixel only represents one color (red, green or blue). 101

162 automated color calibration for colorimetry applications using barcodes

5.3 A summary of the presented results. The summary includes metrics for each color correction
for 7 different metrics (see left), the within-distances and inter-distances also include some
statistical information such as the mean (µ), the standard deviation (σ) and the median
(µ̃). The median should be considered as the reference figure in those metrics as their
distributions are quite asymmetric. 114

6.1 The expected and the measured gas concentration for each gas pulse is shown. The measured
values were taken from the BROOKS instrumentation reading while applying a correction
algorithm provided by the manufactured [167]. 126

6.2 A summary of the presented results. The summary includes metrics for each color correction
for 8 different metrics: the first 3 (m, n, r2) refer to the training model found; r2

valid is the val-
idation score of our models; ∆c20[%] and ∆c20[%] are the model sensitivity in concentration,
with c = 20% and c = 50%, respectively; ǫ20[%] and ǫ20[%] are their respective relative error,
computed as 100 · ∆c

c . 142

Bibliography

[1] Jose C. Contreras-Naranjo, Qingshan Wei, and Aydogan Ozcan. Mobile phone-based microscopy,
sensing, and diagnostics. IEEE Journal of Selected Topics in Quantum Electronics, 22(3):1–14, May 2016.
doi: 10.1109/jstqe.2015.2478657. URL https://doi.org/10.1109/jstqe.2015.2478657.

[2] Ajay Piriya V.S, Printo Joseph, Kiruba Daniel S.C.G., Susithra Lakshmanan, Takatoshi Kinoshita,
and Sivakumar Muthusamy. Colorimetric sensors for rapid detection of various analytes. Materials

Science and Engineering: C, 78:1231–1245, September 2017. doi: 10.1016/j.msec.2017.05.018. URL
https://doi.org/10.1016/j.msec.2017.05.018.

[3] Cristian Fàbrega, Luis Fernández, Oriol Monereo, Alba Pons-Balagué, Elena Xuriguera, Olga Casals,
Andreas Waag, and Joan Daniel Prades. Highly specific and wide range NO2 sensor with color
readout. ACS Sensors, 2(11):1612–1618, October 2017. doi: 10.1021/acssensors.7b00463. URL
https://doi.org/10.1021/acssensors.7b00463.

[4] Gabriel Martins Fernandes, Weida R. Silva, Diandra Nunes Barreto, Rafaela S. Lamarca, Paulo
Clairmont F. Lima Gomes, João Flávio da S Petruci, and Alex D. Batista. Novel approaches for
colorimetric measurements in analytical chemistry – a review. Analytica Chimica Acta, 1135:187–203,
October 2020. doi: 10.1016/j.aca.2020.07.030. URL https://doi.org/10.1016/j.aca.2020.07.030.

[5] Bettersense – nanodevice engineering for a better chemical gas sensing technology. http://www.

bettersense.eu/default.asp, 2014-2019.

[6] Gasapp – making complex gas analytics friendly and available asap. https://cordis.europa.eu/
project/id/727297, 2017-2018.

[7] Snapgas – a smartphone-based dosimeter of the exposure to toxic gases. http://snap-gas.eu/,
2018-2020.

[8] Ana Moya, Gemma Gabriel, Rosa Villa, and F. Javier del Campo. Inkjet-printed electrochemical
sensors. Current Opinion in Electrochemistry, 3(1):29–39, June 2017. doi: 10.1016/j.coelec.2017.05.003.
URL https://doi.org/10.1016/j.coelec.2017.05.003.

[9] Ahmed Salim and Sungjoon Lim. Review of recent inkjet-printed capacitive tactile sensors. Sensors,
17(11):2593, November 2017. doi: 10.3390/s17112593. URL https://doi.org/10.3390/s17112593.

[10] R.H. Leach, R. Leach, and R. Pierce. The Printing Ink Manual. Springer, 1993. ISBN 9780948905810.
URL https://books.google.es/books?id=2PwKTqO5dioC.

[11] R.W.G. Hunt. The reproduction of colour. Color Research & Application, 30(6):466–467, 2005. ISSN
0361-2317. doi: 10.1002/col.20163.

[12] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S. Brown. When color constancy goes
wrong: Correcting improperly white-balanced images. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, June 2019. doi: 10.1109/cvpr.2019.00163. URL https:

//doi.org/10.1109/cvpr.2019.00163.

https://doi.org/10.1109/jstqe.2015.2478657
https://doi.org/10.1016/j.msec.2017.05.018
https://doi.org/10.1021/acssensors.7b00463
https://doi.org/10.1016/j.aca.2020.07.030
http://www.bettersense.eu/default.asp
http://www.bettersense.eu/default.asp
https://cordis.europa.eu/project/id/727297
https://cordis.europa.eu/project/id/727297
http://snap-gas.eu/
https://doi.org/10.1016/j.coelec.2017.05.003
https://doi.org/10.3390/s17112593
https://books.google.es/books?id=2PwKTqO5dioC
https://doi.org/10.1109/cvpr.2019.00163
https://doi.org/10.1109/cvpr.2019.00163

164 automated color calibration for colorimetry applications using barcodes

[13] C. S. McCamy, H. Marcus, and J. G. Davidson. COLOR-RENDITION CHART. J Appl Photogr Eng, 2

(3):95–99, 1976.

[14] G.D. Finlayson, S.D. Hordley, and R. Xu. Convex programming colour constancy with a
diagonal-offset model. In IEEE International Conference on Image Processing 2005. IEEE, 2005. doi:
10.1109/icip.2005.1530550. URL https://doi.org/10.1109/icip.2005.1530550.

[15] Paolo Menesatti, Claudio Angelini, Federico Pallottino, Francesca Antonucci, Jacopo Aguzzi, and Cor-
rado Costa. RGB color calibration for quantitative image analysis: The "3D Thin-Plate Spline" warping
approach. Sensors (Switzerland), 12(6):7063–7079, 2012. ISSN 14248220. doi: 10.3390/s120607063.

[16] Kenneth D. Long, Elizabeth V. Woodburn, Huy M. Le, Utsav K. Shah, Steven S. Lumetta, and
Brian T. Cunningham. Multimode smartphone biosensing: the transmission, reflection, and intensity
spectral (TRI)-analyzer. Lab on a Chip, 17(19):3246–3257, 2017. doi: 10.1039/c7lc00633k. URL
https://doi.org/10.1039/c7lc00633k.

[17] Joonchul Shin, Sudesna Chakravarty, Wooseok Choi, Kyungyeon Lee, Dongsik Han, Hyundoo
Hwang, Jaekyu Choi, and Hyo-Il Jung. Mobile diagnostics: next-generation technologies forin
vitrodiagnostics. The Analyst, 143(7):1515–1525, 2018. doi: 10.1039/c7an01945a. URL https:

//doi.org/10.1039/c7an01945a.

[18] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital image processing using MATLAB.
Tata McGraw Hill Education, 2. ed., 4. repr edition, 2011. ISBN 9780070702622.

[19] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and R. Medina-Carnicer. Generation
of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51:
481–491, 2016. ISSN 00313203. doi: 10.1016/j.patcog.2015.09.023.

[20] ISO Central Secretary. Information technology - automatic identification and data capture techniques
- qr code bar code symbology specification. ISO ISO/IEC 18004:2015, International Organization for
Standardization, 2015. URL https://www.iso.org/standard/62021.html.

[21] Yuan Xu, Zhangming Liu, Rui Liu, Mengxue Luo, Qi Wang, Liqin Cao, and Shuangli Ye. Inkjet-
printed pH-sensitive QR code labels for real-time food freshness monitoring. Journal of Materials

Science, 56(33):18453–18462, September 2021. doi: 10.1007/s10853-021-06477-x. URL https://doi.

org/10.1007/s10853-021-06477-x.

[22] João F.C.B. Ramalho, L.C.F. António, S.F.H. Correia, L.S. Fu, A.S. Pinho, C.D.S. Brites, L.D. Carlos,
P.S. André, and R.A.S. Ferreira. [INVITED] luminescent QR codes for smart labelling and sensing.
Optics & Laser Technology, 101:304–311, May 2018. doi: 10.1016/j.optlastec.2017.11.023. URL https:

//doi.org/10.1016/j.optlastec.2017.11.023.

[23] Ismael Benito Altamirano, Olga Casals Guillen, Cristian Fàbrega Gallego, Juan Daniel Prades García,
Andreas Hans Wilhelm Waag. Colour correction, August 2019. URL https://patents.google.com/

patent/WO2019145390A1/.

[24] Colorsensing – color imaging revolution. http://color-sensing.com/, 2018.

[25] Laslo Tarjan, Ivana Šenk, Srdjan Tegeltija, Stevan Stankovski, and Gordana Ostojic. A readability
analysis for qr code application in a traceability system. Computers and Electronics in Agriculture,
109:1–11, 2014. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2014.08.015. URL https:

//www.sciencedirect.com/science/article/pii/S0168169914002142.

[26] Jianping Qian, Bin Xing, Baohui Zhang, and Han Yang. Optimizing QR code readability for
curved agro-food packages using response surface methodology to improve mobile phone-based
traceability. Food Packaging and Shelf Life, 28:100638, June 2021. doi: 10.1016/j.fpsl.2021.100638. URL
https://doi.org/10.1016/j.fpsl.2021.100638.

https://doi.org/10.1109/icip.2005.1530550
https://doi.org/10.1039/c7lc00633k
https://doi.org/10.1039/c7an01945a
https://doi.org/10.1039/c7an01945a
https://www.iso.org/standard/62021.html
https://doi.org/10.1007/s10853-021-06477-x
https://doi.org/10.1007/s10853-021-06477-x
https://doi.org/10.1016/j.optlastec.2017.11.023
https://doi.org/10.1016/j.optlastec.2017.11.023
https://patents.google.com/patent/WO2019145390A1/
https://patents.google.com/patent/WO2019145390A1/
http://color-sensing.com/
https://www.sciencedirect.com/science/article/pii/S0168169914002142
https://www.sciencedirect.com/science/article/pii/S0168169914002142
https://doi.org/10.1016/j.fpsl.2021.100638

bibliogrpahy 165

[27] Vien Cheung, Stephen Westland, David Connah, and Caterina Ripamonti. A comparative study of
the characterisation of colour cameras by means of neural networks and polynomial transforms.
Coloration Technology, 120(1):19–25, 2004. ISSN 14723581. doi: 10.1111/j.1478-4408.2004.tb00201.x.

[28] Graham D. Finlayson, Michal MacKiewicz, and Anya Hurlbert. Color Correction Using Root-
Polynomial Regression. IEEE Transactions on Image Processing, 24(5):1460–1470, 2015. ISSN 10577149.
doi: 10.1109/TIP.2015.2405336.

[29] Ismael Benito-Altamirano, Peter Pfeiffer, Oriol Cusola, and J. Daniel Prades. Machine-Readable
Pattern for Colorimetric Sensor Interrogation. Proceedings, 2(13):906, 2018. ISSN 2504-3900. doi:
10.3390/proceedings2130906.

[30] Laura Engel, Ismael Benito-Altamirano, Karina R. Tarantik, Carolin Pannek, Martin Dold, J. Daniel
Prades, and Jürgen Wöllenstein. Printed sensor labels for colorimetric detection of ammonia,
formaldehyde and hydrogen sulfide from the ambient air. Sensors and Actuators, B: Chemical, 330

(December 2020), 2021. ISSN 09254005. doi: 10.1016/j.snb.2020.129281.

[31] Yanan Zhang and Loong-Tak Lim. Inkjet-printed CO2 colorimetric indicators. Talanta, 161:105–113,
December 2016. doi: 10.1016/j.talanta.2016.08.014. URL https://doi.org/10.1016/j.talanta.

2016.08.014.

[32] Ivor J Church and Anthony L Parsons. Modified atmosphere packaging technology: A review. Journal

of the Science of Food and Agriculture, 67(2):143–152, February 1995. doi: 10.1002/jsfa.2740670202.
URL https://doi.org/10.1002/jsfa.2740670202.

[33] Newton M. Kinyanjui, Timothy Odonga, Celia Cintas, Noel C. F. Codella, Rameswar Panda, Prasanna
Sattigeri, and Kush R. Varshney. Fairness of classifiers across skin tones in dermatology. In Anne L.
Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou,
Daniel Racoceanu, and Leo Joskowicz, editors, Medical Image Computing and Computer Assisted

Intervention – MICCAI 2020, pages 320–329, Cham, 2020. Springer International Publishing. ISBN
978-3-030-59725-2.

[34] Kerstin Bunte, Michael Biehl, Marcel F. Jonkman, and Nicolai Petkov. Learning effective color features
for content based image retrieval in dermatology. Pattern Recognition, 44(9):1892–1902, 2011. ISSN
0031-3203. doi: https://doi.org/10.1016/j.patcog.2010.10.024. URL https://www.sciencedirect.

com/science/article/pii/S003132031000508X. Computer Analysis of Images and Patterns.

[35] Zhongyu Li, Xiaofan Zhang, Henning Müller, and Shaoting Zhang. Large-scale retrieval for medical
image analytics: A comprehensive review. Medical Image Analysis, 43:66–84, 2018. ISSN 1361-8415.
doi: https://doi.org/10.1016/j.media.2017.09.007. URL https://www.sciencedirect.com/science/

article/pii/S136184151730138X.

[36] Sergio Cubero, Nuria Aleixos, Enrique Moltó, Juan Gómez-Sanchis, and Jose Blasco. Advances in
machine vision applications for automatic inspection and quality evaluation of fruits and vegetables.
Food and Bioprocess Technology, 4(4):487–504, July 2010. doi: 10.1007/s11947-010-0411-8. URL
https://doi.org/10.1007/s11947-010-0411-8.

[37] Pankaj B. Pathare, Umezuruike Linus Opara, and Fahad Al-Julanda Al-Said. Colour measurement
and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1):36–60, May
2012. doi: 10.1007/s11947-012-0867-9. URL https://doi.org/10.1007/s11947-012-0867-9.

[38] Di Wu and Da-Wen Sun. Colour measurements by computer vision for food quality control – a
review. Trends in Food Science & Technology, 29(1):5–20, January 2013. doi: 10.1016/j.tifs.2012.08.004.
URL https://doi.org/10.1016/j.tifs.2012.08.004.

[39] Hyo Sung Jung, Peter Verwilst, Won Young Kim, and Jong Seung Kim. Fluorescent and colorimetric
sensors for the detection of humidity or water content. Chem. Soc. Rev., 45(5):1242–1256, 2016. doi:
10.1039/c5cs00494b. URL https://doi.org/10.1039/c5cs00494b.

https://doi.org/10.1016/j.talanta.2016.08.014
https://doi.org/10.1016/j.talanta.2016.08.014
https://doi.org/10.1002/jsfa.2740670202
https://www.sciencedirect.com/science/article/pii/S003132031000508X
https://www.sciencedirect.com/science/article/pii/S003132031000508X
https://www.sciencedirect.com/science/article/pii/S136184151730138X
https://www.sciencedirect.com/science/article/pii/S136184151730138X
https://doi.org/10.1007/s11947-010-0411-8
https://doi.org/10.1007/s11947-012-0867-9
https://doi.org/10.1016/j.tifs.2012.08.004
https://doi.org/10.1039/c5cs00494b

166 automated color calibration for colorimetry applications using barcodes

[40] Arno Seeboth, Detlef Lötzsch, Ralf Ruhmann, and Olaf Muehling. Thermochromic poly-
mers—function by design. Chemical Reviews, 114(5):3037–3068, January 2014. doi: 10.1021/cr400462e.
URL https://doi.org/10.1021/cr400462e.

[41] Yanan Zhang and Loong-Tak Lim. Colorimetric array indicator for NH3 and CO2 detection. Sensors

and Actuators B: Chemical, 255:3216–3226, February 2018. doi: 10.1016/j.snb.2017.09.148. URL
https://doi.org/10.1016/j.snb.2017.09.148.

[42] Xu dong Wang and Otto S. Wolfbeis. Optical methods for sensing and imaging oxygen: materials,
spectroscopies and applications. Chem. Soc. Rev., 43(10):3666–3761, 2014. doi: 10.1039/c4cs00039k.
URL https://doi.org/10.1039/c4cs00039k.

[43] Steven A. Shafer. Using color to separate reflection components. Color Research & Application, 10(4):
210–218, 1985. doi: 10.1002/col.5080100409. URL https://doi.org/10.1002/col.5080100409.

[44] Ming Gong, Hua Li, and Weiguo Cao. Moment invariants to affine transformation of colours.
Pattern Recognition Letters, 34(11):1240–1251, August 2013. doi: 10.1016/j.patrec.2013.03.038. URL
https://doi.org/10.1016/j.patrec.2013.03.038.

[45] Christian Driau, Cristian Fàbrega, Ismael Benito-Altamirano, Peter Pfeiffer, Olga Casals, Hongqiang
Li, and Joan Daniel Prades. How to implement a selective colorimetric gas sensor with off the shelf
components? Sensors and Actuators, B: Chemical, 293(October 2018):41–44, 2019. ISSN 09254005. doi:
10.1016/j.snb.2019.04.117.

[46] ISO Central Secretary. Information technology - automatic identification and data capture techniques
- qr code bar code symbology specification. ISO ISO/IEC 16022:2006, International Organization for
Standardization, 2006. URL https://www.iso.org/standard/44230.html.

[47] ISO Central Secretary. Information technology — international symbology specification — maxicode.
ISO ISO/IEC 16023:2000, International Organization for Standardization, 2000. URL https://www.

iso.org/standard/29835.html.

[48] ISO Central Secretary. Information technology — automatic identification and data capture tech-
niques — aztec code bar code symbology specification. ISO ISO/IEC 24778:2008, International
Organization for Standardization, 2000. URL https://www.iso.org/standard/41548.html.

[49] Waldemar Berchtold, Huajian Liu, Martin Steinebach, Dominik Klein, Tobias Senger, and Nicolas
Thenee. JAB code - a versatile polychrome 2d barcode. Electronic Imaging, 2020(3):207–207, Jan-
uary 2020. doi: 10.2352/issn.2470-1173.2020.3.mobmu-207. URL https://doi.org/10.2352/issn.

2470-1173.2020.3.mobmu-207.

[50] Gavin Jancke. High capacity color barcodes (hccb) - microsoft research, 2021. URL https://www.

microsoft.com/en-us/research/project/high-capacity-color-barcodes-hccb/.

[51] Hazem Al-Otum and Nour Emad Al-Shalabi. Copyright protection of color images for android-based
smartphones using watermarking with quick-response code. Multimedia Tools and Applications, 77(12):
15625–15655, 2018. ISSN 15737721. doi: 10.1007/s11042-017-5138-3.

[52] Luis Rosales-Roldan, Jinhui Chao, Mariko Nakano-Miyatake, and Hector Perez-Meana. Color image
ownership protection based on spectral domain watermarking using QR codes and QIM. Multimedia

Tools and Applications, 77(13):16031–16052, 2018. ISSN 15737721. doi: 10.1007/s11042-017-5178-8.

[53] S Annadurai. Fundamentals of digital image processing. Pearson Education India, 2007.

[54] Gang Xu, Renzhe Li, Lu Yang, and Xiaochen Liu. Identification and recovery of the blurred qr code
image. In 2012 International Conference on Computer Science and Service System, pages 2257–2260, 2012.
doi: 10.1109/CSSS.2012.560.

[55] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications. John Wiley & Sons,
1999.

https://doi.org/10.1021/cr400462e
https://doi.org/10.1016/j.snb.2017.09.148
https://doi.org/10.1039/c4cs00039k
https://doi.org/10.1002/col.5080100409
https://doi.org/10.1016/j.patrec.2013.03.038
https://www.iso.org/standard/44230.html
https://www.iso.org/standard/29835.html
https://www.iso.org/standard/29835.html
https://www.iso.org/standard/41548.html
https://doi.org/10.2352/issn.2470-1173.2020.3.mobmu-207
https://doi.org/10.2352/issn.2470-1173.2020.3.mobmu-207
https://www.microsoft.com/en-us/research/project/high-capacity-color-barcodes-hccb/
https://www.microsoft.com/en-us/research/project/high-capacity-color-barcodes-hccb/

bibliogrpahy 167

[56] Hung Kuo Chu, Chia Sheng Chang, Ruen Rone Lee, and Niloy J. Mitra. Halftone QR codes. ACM

Transactions on Graphics, 32(6):1–8, 2013. ISSN 07300301. doi: 10.1145/2508363.2508408.

[57] Gonzalo J. Garateguy, Gonzalo R. Arce, Daniel L. Lau, and Ofelia P. Villarreal. QR images: Optimized
image embedding in QR codes. IEEE Transactions on Image Processing, 23(7):2842–2853, 2014. ISSN
10577149. doi: 10.1109/TIP.2014.2321501.

[58] Russ Cox. Qart codes. https://research.swtch.com/qart, 2012.

[59] Itseez. Open source computer vision library. https://github.com/itseez/opencv, 2015.

[60] Lindsey M. Higgins, Marianne McGarry Wolf, and Mitchell J. Wolf. Technological change in the
wine market? the role of qr codes and wine apps in consumer wine purchases. Wine Economics

and Policy, 3(1):19–27, 2014. ISSN 2212-9774. doi: https://doi.org/10.1016/j.wep.2014.01.002. URL
https://www.sciencedirect.com/science/article/pii/S2212977414000039.

[61] Simona Violino, Francesca Antonucci, Federico Pallottino, Cristina Cecchini, Simone Figorilli, and
Corrado Costa. Food traceability: a term map analysis basic review. European Food Research and

Technology, 245(10):2089–2099, Oct 2019. ISSN 1438-2385. doi: 10.1007/s00217-019-03321-0. URL
https://doi.org/10.1007/s00217-019-03321-0.

[62] P. Márquez-Neila, J. López-Alberca, J. M. Buenaposada, and L. Baumela. Speeding-up homography
estimation in mobile devices. Journal of Real-Time Image Processing, 11(1):141–154, 2016. URL
www.scopus.com.

[63] Hugh S. Fairman, Michael H. Brill, and Henry Hemmendinger. How the CIE 1931 color-matching
functions were derived from wright-guild data. Color Research & Application, 22(1):11–23, February
1997. doi: 10.1002/(sici)1520-6378(199702)22:1<11::aid-col4>3.0.co;2-7. URL https://doi.org/10.

1002/(sici)1520-6378(199702)22:1<11::aid-col4>3.0.co;2-7.

[64] Practice for computing the colors of objects by using the CIE system. URL https://doi.org/10.

1520/e0308-15.

[65] David L. Fridge. Aberration synthesizer. Journal of the Optical Society of America, 50(1):87, January
1960. doi: 10.1364/josa.50.000087. URL https://doi.org/10.1364/josa.50.000087.

[66] Günter Wyszecki. Proposal for a new color-difference formula. Journal of the Optical Society of America,
53(11):1318, November 1963. doi: 10.1364/josa.53.001318. URL https://doi.org/10.1364/josa.53.

001318.

[67] Alan R. Robertson. The CIE 1976 color-difference formulae. Color Research & Application, 2(1):7–11,
March 1977. doi: 10.1002/j.1520-6378.1977.tb00104.x. URL https://doi.org/10.1002/j.1520-6378.

1977.tb00104.x.

[68] Janos Schanda. Colorimetry : understanding the CIE system. CIE/Commission internationale de
l’eclairage Wiley-Interscience, Vienna, Austria Hoboken, N.J, 2007. ISBN 9780470049044.

[69] Li Long and Shan Dongri. Review of camera calibration algorithms. In Advances in Intelligent Systems

and Computing, pages 723–732. Springer Singapore, 2019. doi: 10.1007/978-981-13-6861-5_61. URL
https://doi.org/10.1007/978-981-13-6861-5_61.

[70] J.-P. Braquelaire and L. Brun. Comparison and optimization of methods of color image quantization.
IEEE Transactions on Image Processing, 6(7):1048–1052, July 1997. doi: 10.1109/83.597280. URL
https://doi.org/10.1109/83.597280.

[71] Mary Nielsen and Michael Stokes. The creation of the srgb icc profile. In Color and Imaging Conference,
volume 1998, pages 253–257. Society for Imaging Science and Technology, 1998.

[72] Huw Morgan and Miloslav Druckmüller. Multi-scale gaussian normalization for solar image
processing. Solar Physics, 289(8):2945–2955, April 2014. doi: 10.1007/s11207-014-0523-9. URL
https://doi.org/10.1007/s11207-014-0523-9.

https://research.swtch.com/qart
https://github.com/itseez/opencv
https://www.sciencedirect.com/science/article/pii/S2212977414000039
https://doi.org/10.1007/s00217-019-03321-0
www.scopus.com
https://doi.org/10.1002/(sici)1520-6378(199702)22:1<11::aid-col4>3.0.co;2-7
https://doi.org/10.1002/(sici)1520-6378(199702)22:1<11::aid-col4>3.0.co;2-7
https://doi.org/10.1520/e0308-15
https://doi.org/10.1520/e0308-15
https://doi.org/10.1364/josa.50.000087
https://doi.org/10.1364/josa.53.001318
https://doi.org/10.1364/josa.53.001318
https://doi.org/10.1002/j.1520-6378.1977.tb00104.x
https://doi.org/10.1002/j.1520-6378.1977.tb00104.x
https://doi.org/10.1007/978-981-13-6861-5_61
https://doi.org/10.1109/83.597280
https://doi.org/10.1007/s11207-014-0523-9

168 automated color calibration for colorimetry applications using barcodes

[73] Magudeeswaran Veluchamy and Bharath Subramani. Image contrast and color enhancement using
adaptive gamma correction and histogram equalization. Optik, 183:329–337, April 2019. doi:
10.1016/j.ijleo.2019.02.054. URL https://doi.org/10.1016/j.ijleo.2019.02.054.

[74] Payel Roy, Saurab Dutta, Nilanjan Dey, Goutami Dey, Sayan Chakraborty, and Ruben Ray. Adaptive
thresholding: A comparative study. In 2014 International Conference on Control, Instrumentation, Commu-

nication and Computational Technologies (ICCICCT). IEEE, July 2014. doi: 10.1109/iccicct.2014.6993140.
URL https://doi.org/10.1109/iccicct.2014.6993140.

[75] Yao Xiang, Beiji Zou, and Hong Li. Selective color transfer with multi-source images. Pattern

Recognition Letters, 30(7):682–689, May 2009. doi: 10.1016/j.patrec.2009.01.004. URL https://doi.

org/10.1016/j.patrec.2009.01.004.

[76] John E Greivenkamp. Field guide to geometrical optics, volume 1. SPIE press Bellingham, WA, 2004.

[77] Naoto Yokoya, Claas Grohnfeldt, and Jocelyn Chanussot. Hyperspectral and multispectral data fusion:
A comparative review of the recent literature. IEEE Geoscience and Remote Sensing Magazine, 5(2):29–56,
June 2017. doi: 10.1109/mgrs.2016.2637824. URL https://doi.org/10.1109/mgrs.2016.2637824.

[78] Guido van Rossum. Python programming language. Python Software Foundation, 1990. URL
https://www.python.org.

[79] Guido Van Rossum et al. Python programming language. In USENIX annual technical conference,
volume 41, page 36, 2007.

[80] Jan Erik Solem. Programming Computer Vision with Python: Tools and algorithms for analyzing images. "
O’Reilly Media, Inc.", 2012.

[81] Huaxiong Cao, Naijie Gu, Kaixin Ren, and Yi Li. Performance research and optimization on
CPython’s interpreter. In Annals of Computer Science and Information Systems. IEEE, October 2015.
doi: 10.15439/2015f139. URL https://doi.org/10.15439/2015f139.

[82] Joseph Howse, Prateek Joshi, and Michael Beyeler. Opencv: computer vision projects with python. Packt
Publishing Ltd, 2016.

[83] Anaconda software distribution, 2020. URL https://docs.anaconda.com/.

[84] pyenv. pyenv – simple python version management. https://github.com/pyenv/pyenv, 2022.

[85] Dirk Merkel. Docker – lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239):2, 2014.

[86] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

[87] Ralf Gommers, Pauli Virtanen, Evgeni Burovski, Warren Weckesser, Travis E. Oliphant, David
Cournapeau, Tyler Reddy, Matt Haberland, alexbrc, Pearu Peterson, Andrew Nelson, Josh Wilson,
endolith, Nikolay Mayorov, Ilhan Polat, Stefan van der Walt, Denis Laxalde, Matthew Brett, Eric
Larson, Jarrod Millman, Lars, peterbell10, Paul van Mulbregt, Pamphile Roy, CJ Carey, eric jones,
Atsushi Sakai, Eric Moore, Robert Kern, and Kai. scipy/scipy: Scipy 1.8.0rc2, December 2021. URL
https://doi.org/10.5281/zenodo.5796897.

[88] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/mcse.2007.55. URL https://doi.org/10.1109/mcse.2007.55.

https://doi.org/10.1016/j.ijleo.2019.02.054
https://doi.org/10.1109/iccicct.2014.6993140
https://doi.org/10.1016/j.patrec.2009.01.004
https://doi.org/10.1016/j.patrec.2009.01.004
https://doi.org/10.1109/mgrs.2016.2637824
https://www.python.org
https://doi.org/10.15439/2015f139
https://docs.anaconda.com/
https://github.com/pyenv/pyenv
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.5796897
https://doi.org/10.1109/mcse.2007.55

bibliogrpahy 169

[89] Jeff Reback, jbrockmendel, Wes McKinney, Joris Van den Bossche, Tom Augspurger, Phillip Cloud,
Simon Hawkins, Matthew Roeschke, gfyoung, Sinhrks, Adam Klein, Patrick Hoefler, Terji Pe-
tersen, Jeff Tratner, Chang She, William Ayd, Shahar Naveh, Marc Garcia, JHM Darbyshire, Jeremy
Schendel, Andy Hayden, Richard Shadrach, Daniel Saxton, Marco Edward Gorelli, Fangchen Li,
Matthew Zeitlin, Vytautas Jancauskas, Ali McMaster, Pietro Battiston, and Skipper Seabold. pandas-
dev/pandas: Pandas 1.4.0rc0, January 2022. URL https://doi.org/10.5281/zenodo.5824773.

[90] Stephan Hoyer, Alex Kleeman and Eugene Brevdo. xarray – n-d labeled arrays and datasets in
python. https://github.com/pydata/xarray, 2014.

[91] Hugo van Kemenade, Andrew Murray, wiredfool, Alex Clark, Alexander Karpinsky, Ondrej Bara-
novič, Christoph Gohlke, Jon Dufresne, Brian Crowell, David Schmidt, Konstantin Kopachev, Alastair
Houghton, Sandro Mani, Steve Landey, vashek, Josh Ware, Jason Douglas, Stanislau T., David Caro,
Uriel Martinez, Steve Kossouho, Riley Lahd, Antony Lee, Eric W. Brown, Oliver Tonnhofer, Mickael
Bonfill, Peter Rowlands, Fahad Al-Saidi, and German Novikov. python-pillow/pillow: 9.0.0, January
2022. URL https://doi.org/10.5281/zenodo.5813885.

[92] Almar Klein, Sebastian Wallkötter, Steven Silvester, Anthony Tanbakuchi, Paul Müller, Juan Nunez-
Iglesias, actions user, Mark Harfouche, Antony Lee, Matt McCormick, OrganicIrradiation, Arash
Rai, Ariel Ladegaard, Tim D. Smith, Ghislain Vaillant, jackwalker64, Joel Nises, Miloš Komarčević,
rreilink, lschr, Dennis, Hugo van Kemenade, Maximilian Schambach, Chris Dusold, DavidKorczynski,
Felix Kohlgrüber, Ge Yang, Graham Inggs, Joe Singleton, and Michael. imageio/imageio: v2.13.5,
December 2021. URL https://doi.org/10.5281/zenodo.5800390.

[93] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving, Christoph Reinders,
Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui, Jirka Borovec, Christian Vallentin,
Semen Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-
Hung Weng, Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. imgaug. https:

//github.com/aleju/imgaug, 2020. Online; accessed 01-Feb-2020.

[94] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

[95] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D.
Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image contributors. scikit-image:
image processing in Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359. doi: 10.7717/peerj.453. URL
https://doi.org/10.7717/peerj.453.

[96] Nikhil Ketkar. Introduction to keras. In Deep learning with Python, pages 97–111. Springer, 2017.

[97] Lincoln Loop. Pure python qr code generator. https://github.com/lincolnloop/python-qrcode,
2010.

[98] SourceForge. Zbar. http://zbar.sourceforge.net/, 2009.

[99] London Natural History Museum. pyzbar - python wrapper for zbar. https://github.com/

NaturalHistoryMuseum/pyzbar, 2016.

[100] Sean Owen, Daniel Switkin, and ZXing Team. Zxing ("zebra crossing"). https://github.com/zxing/
zxing, 2008.

[101] Yaoqi Peng, Lingxian Zhang, Zhixing Song, Jin Yan, Xinxing Li, and Zhenbo Li. A qr code based
tracing method for fresh pork quality in cold chain. Journal of Food Process Engineering, 41(4):e12685,
2018. doi: https://doi.org/10.1111/jfpe.12685. URL https://onlinelibrary.wiley.com/doi/abs/

10.1111/jfpe.12685.

[102] K. Seino, S. Kuwabara, S. Mikami, Y. Takahashi, M. Yoshikawa, H. Narumi, K. Koganezaki, T. Wak-
abayashi, and A. Nagano. Development of the traceability system which secures the safety of fishery

https://doi.org/10.5281/zenodo.5824773
https://github.com/pydata/xarray
https://doi.org/10.5281/zenodo.5813885
https://doi.org/10.5281/zenodo.5800390
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://doi.org/10.7717/peerj.453
https://github.com/lincolnloop/python-qrcode
http://zbar.sourceforge.net/
https://github.com/NaturalHistoryMuseum/pyzbar
https://github.com/NaturalHistoryMuseum/pyzbar
https://github.com/zxing/zxing
https://github.com/zxing/zxing
https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.12685
https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.12685

170 automated color calibration for colorimetry applications using barcodes

products using the qr code and a digital signature. In Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE

Cat. No.04CH37600), volume 1, pages 476–481, Nov 2004. doi: 10.1109/OCEANS.2004.1402962.

[103] Jian-Ping Qian, Xin-Ting Yang, Xiao-Ming Wu, Li Zhao, Bei-Lei Fan, and Bin Xing. A traceability
system incorporating 2d barcode and rfid technology for wheat flour mills. Computers and Electronics

in Agriculture, 89:76–85, 2012. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2012.08.004.
URL https://www.sciencedirect.com/science/article/pii/S0168169912002050.

[104] Thomas F. Scherr, Sparsh Gupta, David W. Wright, and Frederick R. Haselton. An embedded
barcode for “connected” malaria rapid diagnostic tests. Lab Chip, 17:1314–1322, 2017. doi:
10.1039/C6LC01580H. URL http://dx.doi.org/10.1039/C6LC01580H.

[105] Bora Yoon, Hyora Shin, Eun-Mi Kang, Dae Won Cho, Kayeong Shin, Hoeil Chung, Chan Woo Lee, and
Jong-Man Kim. Inkjet-compatible single-component polydiacetylene precursors for thermochromic
paper sensors. ACS Applied Materials & Interfaces, 5(11):4527–4535, Jun 2013. ISSN 1944-8244. doi:
10.1021/am303300g. URL https://doi.org/10.1021/am303300g.

[106] Aidong Sun, Yan Sun, and Caixing Liu. The QR-code reorganization in illegible snapshots taken by
mobile phones. IEEE, 2007. doi: 10.1109/iccsa.2007.86.

[107] Jeng-An Lin and Chiou-Shann Fuh. 2D barcode image decoding. Hindawi Limited, pages 1–10, 2013.
doi: 10.1155/2013/848276.

[108] Kejing Li, Fanwu Meng, Zhipeng Huang, and Qi Wang. A correction algorithm of QR code on
cylindrical surface. Journal of Physics: Conference Series, 1237:022006, 6 2019. doi: 10.1088/1742-
6596/1237/2/022006. URL https://doi.org/10.1088%2F1742-6596%2F1237%2F2%2F022006.

[109] K. Lay, L. Wang, and C. Wang. Rectification of qr-code images using the parametric cylindrical
surface model. 2015 International Symposium on Next-Generation Electronics (ISNE), pages 1–5, 2015.

[110] Kuen-Tsair Lay and Ming-Hao Zhou. Perspective projection for decoding of qr codes posted on
cylinders. 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA),
pages 39–42, 2017.

[111] Xiaochao Li, Zhifeng Shi, Donghui Guo, and Shan He. Reconstruct argorithm of 2d barcode for
reading the qr code on cylindrical surface. 2013 International Conference on Anti-Counterfeiting, Security

and Identification (ASID), pages 1–5, 2013.

[112] Kazumoto Tanaka. Bent qr code image rectification method based on image-to-image translation
network. In Xin-She Yang, Simon Sherratt, Nilanjan Dey, and Amit Joshi, editors, Proceedings of Sixth

International Congress on Information and Communication Technology, pages 685–692, Singapore, 2022.
Springer Singapore. ISBN 978-981-16-2377-6.

[113] Lina Huo, Jianxing Zhu, Pradeep Kumar Singh, and Pljonkin Anton Pavlovich. Research on qr image
code recognition system based on artificial intelligence algorithm. Journal of Intelligent Systems, 30(1):
855–867, 2021. doi: doi:10.1515/jisys-2020-0143. URL https://doi.org/10.1515/jisys-2020-0143.

[114] Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar Jayaraman, Jianmin Zheng, and Takashi Maekawa.
Embedding qr codes onto b-spline surfaces for 3d printing. Computer-Aided Design, 102:215–223, 2018.
ISSN 0010-4485. doi: https://doi.org/10.1016/j.cad.2018.04.025. URL https://www.sciencedirect.

com/science/article/pii/S0010448518302537. Proceeding of SPM 2018 Symposium.

[115] F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.

[116] A.M. Bazen and Sabih H. Gerez. Fingerprint matching by thin-plate spline modelling of elastic
deformations. Pattern recognition, 36(8):1859–1867, 2003. ISSN 0031-3203. doi: 10.1016/S0031-
3203(03)00036-0. SAS 03-061.

https://www.sciencedirect.com/science/article/pii/S0168169912002050
http://dx.doi.org/10.1039/C6LC01580H
https://doi.org/10.1021/am303300g
https://doi.org/10.1088%2F1742-6596%2F1237%2F2%2F022006
https://doi.org/10.1515/jisys-2020-0143
https://www.sciencedirect.com/science/article/pii/S0010448518302537
https://www.sciencedirect.com/science/article/pii/S0010448518302537

bibliogrpahy 171

[117] Arun Ross, Sarat Dass, and Anil Jain. A deformable model for fingerprint matching. Pattern

Recognition, 38(1):95–103, 2005. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2003.12.021.
URL https://www.sciencedirect.com/science/article/pii/S0031320304002444.

[118] Baoguang Shi, Mingkun Yang, Xinggang Wang, Pengyuan Lyu, Cong Yao, and Xiang Bai. ASTER:
An attentional scene text recognizer with flexible rectification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 41(9):2035–2048, September 2019. doi: 10.1109/tpami.2018.2848939. URL
https://doi.org/10.1109/tpami.2018.2848939.

[119] Yang Yang, Sim Heng Ong, and Kelvin Weng Chiong Foong. A robust global and local mixture
distance based non-rigid point set registration. Pattern Recognition, 48(1):156–173, January 2015. doi:
10.1016/j.patcog.2014.06.017. URL https://doi.org/10.1016/j.patcog.2014.06.017.

[120] E. Casas-Alvero. Analytic Projective Geometry. European Mathematical Society, Zürich, Switzerland,
2014.

[121] Alexander Jung. imgaug Documentation, 2018.

[122] Yves Van Gennip, Prashant Athavale, Jérôme Gilles, and Rustum Choksi. A Regularization Approach
to Blind Deblurring and Denoising of QR Barcodes. IEEE Transactions on Image Processing, 24(9):
2864–2873, 2015. ISSN 10577149. doi: 10.1109/TIP.2015.2432675.

[123] Adrien Bartoli, Mathieu Perriollat, and Sylvie Chambon. Generalized thin-plate spline warps.
International Journal of Computer Vision, 88(1):85–110, October 2009. doi: 10.1007/s11263-009-0303-4.
URL https://doi.org/10.1007/s11263-009-0303-4.

[124] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warping by radial basis functions: Application
to facial expressions. CVGIP: Graphical Models and Image Processing, 56(2):161–172, 1994. ISSN
1049-9652. doi: https://doi.org/10.1006/cgip.1994.1015. URL https://www.sciencedirect.com/

science/article/pii/S1049965284710157.

[125] Gianluca Donato and Serge Belongie. Approximate thin plate spline mappings. In Anders Heyden,
Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors, Computer Vision — ECCV 2002, pages
21–31, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-47977-2.

[126] Boxuan Li, Benfei Wang, Xiaojun Tan, Jiezhang Wu, and Liangliang Wei. Corner location and
recognition of single ArUco marker under occlusion based on YOLO algorithm. Journal of Electronic

Imaging, 30(03), May 2021. doi: 10.1117/1.jei.30.3.033012. URL https://doi.org/10.1117/1.jei.

30.3.033012.

[127] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018.
URL http://arxiv.org/abs/1804.02767.

[128] Markéta Dubská, Adam Herout, and Jiří Havel. Real-time precise detection of regular grids and
matrix codes. Journal of Real-Time Image Processing, 11(1):193–200, February 2013. doi: 10.1007/s11554-
013-0325-6. URL https://doi.org/10.1007/s11554-013-0325-6.

[129] Christoph Ruppert, Navneet Phogat, Stefan Laufer, Matthias Kohl, and Hans Peter Deigner. A
smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring
of digoxigenin. Microchimica Acta, 186(2), 2019. ISSN 14365073. doi: 10.1007/s00604-018-3195-6.

[130] Henryk Blasinski, Orhan Bulan, and Gaurav Sharma. Per-colorant-channel color barcodes for mobile
applications: An interference cancellation framework. IEEE Transactions on Image Processing, 22(4):
1498–1511, 2013. ISSN 10577149. doi: 10.1109/TIP.2012.2233483.

[131] Marco Querini and Giuseppe F. Italiano. Reliability and data density in high capacity color bar-
codes. Computer Science and Information Systems, 11(4):1595–1616, 2014. ISSN 18200214. doi:
10.2298/CSIS131218054Q.

https://www.sciencedirect.com/science/article/pii/S0031320304002444
https://doi.org/10.1109/tpami.2018.2848939
https://doi.org/10.1016/j.patcog.2014.06.017
https://doi.org/10.1007/s11263-009-0303-4
https://www.sciencedirect.com/science/article/pii/S1049965284710157
https://www.sciencedirect.com/science/article/pii/S1049965284710157
https://doi.org/10.1117/1.jei.30.3.033012
https://doi.org/10.1117/1.jei.30.3.033012
http://arxiv.org/abs/1804.02767
https://doi.org/10.1007/s11554-013-0325-6

172 automated color calibration for colorimetry applications using barcodes

[132] Max E. Vizcarra Melgar, Alexandre Zaghetto, Bruno Macchiavello, and Anderson C A Nascimento.
CQR codes: Colored quick-response codes. In 2012 IEEE Second International Conference on Consumer

Electronics - Berlin (ICCE-Berlin), volume 2401, pages 321–325. IEEE, sep 2012. ISBN 978-1-4673-1547-0.
doi: 10.1109/ICCE-Berlin.2012.6336526.

[133] Götz Trenkler. Continuous univariate distributions. Computational Statistics & Data Analysis, 21(1):
119, 1996. ISSN 01679473. doi: 10.1016/0167-9473(96)90015-8.

[134] Mary Pagnutti, Robert E. Ryan, George Cazenavette, Maxwell Gold, Ryan Harlan, Edward Leggett,
and James Pagnutti. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for
scientific and engineering purposes. Journal of Electronic Imaging, 26(1):013014, 2017. ISSN 1017-9909.
doi: 10.1117/1.jei.26.1.013014.

[135] Claudio Cusano, Paolo Napoletano, and Raimondo Schettini. Evaluating color texture descriptors
under large variations of controlled lighting conditions. Journal of the Optical Society of America A, 33

(1):17, 2016. ISSN 1084-7529. doi: 10.1364/josaa.33.000017.

[136] A Grillo, A Lentini, M Querini, and G F Italiano. High capacity colored two dimensional codes. In
Proceedings of the International Multiconference on Computer Science and Information Technology. IEEE,
October 2010. doi: 10.1109/imcsit.2010.5679869. URL https://doi.org/10.1109/imcsit.2010.

5679869.

[137] Jean Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des
plaques minces. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique,
10(R3):5–12, 1976.

[138] Jean Meinguet. Multivariate interpolation at arbitrary points made simple. Zeitschrift für angewandte

Mathematik und Physik ZAMP, 30(2):292–304, March 1979. doi: 10.1007/bf01601941. URL https:

//doi.org/10.1007/bf01601941.

[139] K. Rohr, H.S. Stiehl, R. Sprengel, T.M. Buzug, J. Weese, and M.H. Kuhn. Landmark-based elastic
registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging, 20(6):
526–534, June 2001. doi: 10.1109/42.929618. URL https://doi.org/10.1109/42.929618.

[140] W R Crum, T Hartkens, and D L G Hill. Non-rigid image registration: theory and practice. The

British Journal of Radiology, 77(suppl_2):S140–S153, December 2004. doi: 10.1259/bjr/25329214. URL
https://doi.org/10.1259/bjr/25329214.

[141] Philippe Colantoni, Jean-Baptiste Thomas, and Jon Y. Hardeberg. High-end colorimetric display
characterization using an adaptive training set. Journal of the Society for Information Display, 19(8):520,
2011. doi: 10.1889/jsid19.8.520. URL https://doi.org/10.1889/jsid19.8.520.

[142] Ante Poljicak, Jurica Dolic, and Jesenka Pibernik. An optimized radial basis function model
for color characterization of a mobile device display. Displays, 41:61–68, January 2016. doi:
10.1016/j.displa.2015.12.005. URL https://doi.org/10.1016/j.displa.2015.12.005.

[143] Gaurav Sharma and Mark Q. Shaw. Thin-plate splines for printer data interpolation. In 2006 14th

European Signal Processing Conference, pages 1–5, 2006.

[144] M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, January 2000. doi:
10.1017/s0962492900000015. URL https://doi.org/10.1017/s0962492900000015.

[145] R. Sprengel, K. Rohr, and H.S. Stiehl. Thin-plate spline approximation for image registration. In
Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE. doi: 10.1109/iembs.1996.652767. URL https://doi.org/10.1109/iembs.1996.652767.

[146] Peter Vincent Gehler, Carsten Rother, Andrew Blake, Tom Minka, and Toby Sharp. Bayesian color
constancy revisited. In 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June
2008. doi: 10.1109/cvpr.2008.4587765. URL https://doi.org/10.1109/cvpr.2008.4587765.

https://doi.org/10.1109/imcsit.2010.5679869
https://doi.org/10.1109/imcsit.2010.5679869
https://doi.org/10.1007/bf01601941
https://doi.org/10.1007/bf01601941
https://doi.org/10.1109/42.929618
https://doi.org/10.1259/bjr/25329214
https://doi.org/10.1889/jsid19.8.520
https://doi.org/10.1016/j.displa.2015.12.005
https://doi.org/10.1017/s0962492900000015
https://doi.org/10.1109/iembs.1996.652767
https://doi.org/10.1109/cvpr.2008.4587765

bibliogrpahy 173

[147] Ghalia Hemrit, Graham D. Finlayson, Arjan Gijsenij, Peter V. Gehler, Simone Bianco, and Mark S.
Drew. Rehabilitating the color checker dataset for illuminant estimation. CoRR, abs/1805.12262, 2018.
URL http://arxiv.org/abs/1805.12262.

[148] Weixin Luo, Xuan Yang, Xiaoxiao Nan, and Bingfeng Hu. GPU accelerated 3d image deformation
using thin-plate splines. In 2014 IEEE Intl Conf on High Performance Computing and Communications,

2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded

Software and Syst (HPCC, CSS, ICESS). IEEE, August 2014. doi: 10.1109/hpcc.2014.168. URL
https://doi.org/10.1109/hpcc.2014.168.

[149] Dan Kalman. The generalized vandermonde matrix. Mathematics Magazine, 57(1):15–21, January 1984.
doi: 10.1080/0025570x.1984.11977069. URL https://doi.org/10.1080/0025570x.1984.11977069.

[150] David R. Bull. Digital picture formats and representations. In Communicating Pictures, pages
99–132. Elsevier, 2014. doi: 10.1016/b978-0-12-405906-1.00004-0. URL https://doi.org/10.1016/

b978-0-12-405906-1.00004-0.

[151] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[152] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

[153] Thomas Mansencal, Michael Mauderer, Michael Parsons, Nick Shaw, Kevin Wheatley, Sean Cooper,
Jean D. Vandenberg, Luke Canavan, Katherine Crowson, Ofek Lev, Katrin Leinweber, Shriramana
Sharma, Troy James Sobotka, Dominik Moritz, Matt Pppp, Chinmay Rane, Pavithra Eswaramoorthy,
John Mertic, Ben Pearlstine, Manuel Leonhardt, Olli Niemitalo, Marek Szymanski, Maximilian
Schambach, Sianyi Huang, Mike Wei, Nishant Joywardhan, Omar Wagih, Pawel Redman, Joseph
Goldstone, and Stephen Hill. Colour 0.3.16, January 2020. URL https://doi.org/10.5281/zenodo.

3757045.

[154] Dilip Prasad, Rang Nguyen, and Michael Brown. Quick approximation of camera’s spectral response
from casual lighting. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 844–851, 2013.

[155] Roy S. Berns. Predicting camera color quality. Archiving Conference, 2021(1):61–64, June 2021. doi:
10.2352/issn.2168-3204.2021.1.0.14. URL https://doi.org/10.2352/issn.2168-3204.2021.1.0.14.

[156] R. Fry and S. McManus. Smooth bump functions and the geometry of banach spaces. Expositiones

Mathematicae, 20(2):143–183, 2002. doi: 10.1016/s0723-0869(02)80017-2. URL https://doi.org/10.

1016/s0723-0869(02)80017-2.

[157] Bita Akram, Usman R. Alim, and Faramarz F. Samavati. Cinapact-splines: A family of infinitely
smooth, accurate and compactly supported splines. In George Bebis, Richard Boyle, Bahram Parvin,
Darko Koracin, Ioannis Pavlidis, Rogerio Feris, Tim McGraw, Mark Elendt, Regis Kopper, Eric Ragan,
Zhao Ye, and Gunther Weber, editors, Advances in Visual Computing, pages 819–829, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-27857-5.

[158] C. Fàbrega, O. Casals, F. Hernández-Ramírez, and J.D. Prades. A review on efficient self-heating
in nanowire sensors: Prospects for very-low power devices. Sensors and Actuators B: Chemical, 256:
797–811, March 2018. doi: 10.1016/j.snb.2017.10.003. URL https://doi.org/10.1016/j.snb.2017.

10.003.

[159] Luis Fernández, Alba Pons, Oriol Monereo, Ismael Benito-Altamirano, Elena Xuriguera, Olga Casals,
Cristian Fàbrega, Andreas Waag, and Joan Daniel Prades. NO2 measurements with RGB sensors
for easy in-field test. Proceedings, 1(4):471, August 2017. doi: 10.3390/proceedings1040471. URL
https://doi.org/10.3390/proceedings1040471.

http://arxiv.org/abs/1805.12262
https://doi.org/10.1109/hpcc.2014.168
https://doi.org/10.1080/0025570x.1984.11977069
https://doi.org/10.1016/b978-0-12-405906-1.00004-0
https://doi.org/10.1016/b978-0-12-405906-1.00004-0
https://doi.org/10.5281/zenodo.3757045
https://doi.org/10.5281/zenodo.3757045
https://doi.org/10.2352/issn.2168-3204.2021.1.0.14
https://doi.org/10.1016/s0723-0869(02)80017-2
https://doi.org/10.1016/s0723-0869(02)80017-2
https://doi.org/10.1016/j.snb.2017.10.003
https://doi.org/10.1016/j.snb.2017.10.003
https://doi.org/10.3390/proceedings1040471

174 automated color calibration for colorimetry applications using barcodes

[160] K. Schmitt, K. Tarantik, C. Pannek, I. Benito-Altamirano, O. Casals, C. Fàbrega, A. Romano-Rodríguez,
J. Wöllenstein, and J. D. Prades. Colorimetric sensor for bad odor detection using automated color
correction. In Luis Fonseca, Mika Prunnila, and Erwin Peiner, editors, SPIE Proceedings. SPIE, June
2017. doi: 10.1117/12.2265990. URL https://doi.org/10.1117/12.2265990.

[161] Christian Driau, Cristian Fabrega, Ismael Benito-Altamirano, Peter Pfeiffer, Olga Casals, and
Joan Daniel Prades. Compact, versatile and cost-effective colorimetric gas sensors. In 2019

IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, May 2019. doi:
10.1109/isoen.2019.8823240. URL https://doi.org/10.1109/isoen.2019.8823240.

[162] Christian Driau, Olga Casals, Ismael Benito-Altamirano, Joan Daniel Prades, and Cristian Fàbrega.
Revisiting colorimetric gas sensors: Compact, versatile and cost-effective. Proceedings, 56(1):
20, December 2020. doi: 10.3390/proceedings2020056020. URL https://doi.org/10.3390/

proceedings2020056020.

[163] Laura Engel, Ismael Benito-Altamirano, Karina R. Tarantik, Martin Dold, Carolin Pannek, J. Daniel
Prades, and Jürgen Wöllenstein. Printable colorimetric sensors for the detection of formaldehyde
in ambient air. ECS Meeting Abstracts, MA2020-01(27):2029–2029, May 2020. doi: 10.1149/ma2020-
01272029mtgabs. URL https://doi.org/10.1149/ma2020-01272029mtgabs.

[164] Andrew Mills and Graham A. Skinner. Water-based colourimetric optical indicators for the detection
of carbon dioxide. The Analyst, 135(8):1912, 2010. doi: 10.1039/c000688b. URL https://doi.org/10.

1039/c000688b.

[165] Andrew Mills, Graham A. Skinner, and Pauline Grosshans. Intelligent pigments and plastics for
CO2 detection. Journal of Materials Chemistry, 20(24):5008, 2010. doi: 10.1039/c0jm00582g. URL
https://doi.org/10.1039/c0jm00582g.

[166] Pradeep Puligundla, Junho Jung, and Sanghoon Ko. Carbon dioxide sensors for intelligent food
packaging applications. Food Control, 25(1):328–333, May 2012. doi: 10.1016/j.foodcont.2011.10.043.
URL https://doi.org/10.1016/j.foodcont.2011.10.043.

[167] Brooks Instruments. Brooks® Smart-Series Digital Mass Flow Meters and Controllers – Models 5800-

S, 2008. URL https://www.brooksinstrument.com/~/media/brooks/documentation/products/

legacy%20products/brooks/x-tmf-5800s-mfc-eng.pdf?la=en.

[168] Rick Bitter, Taqi Mohiuddin, and Matt Nawrocki. LabVIEW: Advanced programming techniques. Crc
Press, 2006.

[169] Brooks Instruments. Smart DDE Software – for use with Brooks Digital Mass Flow

Meter/Controller Series, 2013. URL https://www.brooksinstrument.com/-/media/

Brooks/documentation/products/Accessories-And-Software/Software/0162-Smart-DDE/

software-installation-manual-smart-dde.ashx?rev=a5f7e7e5b78b442bb1de389dcefbff29&

sc_lang=en.

[170] Miguel Grinberg. Flask web development: developing web applications with python. " O’Reilly Media,
Inc.", 2018.

[171] Bokeh Development Team. Bokeh: Python library for interactive visualization, 2018. URL https:

//bokeh.pydata.org/en/latest/.

[172] Czarek Tomczak et al. cefpython. https://github.com/cztomczak/cefpython, 2022. Online; accessed
09-Jan-2022.

[173] Datasheet Sensirion SCD30 Sensor Module – CO2, humidity, and temperature sensor. Sensirion, the sensor
company, 07 2019. Version 0.94.

[174] Samuel Schaefer. Colorimetric water quality sensing with mobile smart phones. PhD thesis, University of
British Columbia, 2014.

https://doi.org/10.1117/12.2265990
https://doi.org/10.1109/isoen.2019.8823240
https://doi.org/10.3390/proceedings2020056020
https://doi.org/10.3390/proceedings2020056020
https://doi.org/10.1149/ma2020-01272029mtgabs
https://doi.org/10.1039/c000688b
https://doi.org/10.1039/c000688b
https://doi.org/10.1039/c0jm00582g
https://doi.org/10.1016/j.foodcont.2011.10.043
https://www.brooksinstrument.com/~/media/brooks/documentation/products/legacy%20products/brooks/x-tmf-5800s-mfc-eng.pdf?la=en
https://www.brooksinstrument.com/~/media/brooks/documentation/products/legacy%20products/brooks/x-tmf-5800s-mfc-eng.pdf?la=en
https://www.brooksinstrument.com/-/media/Brooks/documentation/products/Accessories-And-Software/Software/0162-Smart-DDE/software-installation-manual-smart-dde.ashx?rev=a5f7e7e5b78b442bb1de389dcefbff29&sc_lang=en
https://www.brooksinstrument.com/-/media/Brooks/documentation/products/Accessories-And-Software/Software/0162-Smart-DDE/software-installation-manual-smart-dde.ashx?rev=a5f7e7e5b78b442bb1de389dcefbff29&sc_lang=en
https://www.brooksinstrument.com/-/media/Brooks/documentation/products/Accessories-And-Software/Software/0162-Smart-DDE/software-installation-manual-smart-dde.ashx?rev=a5f7e7e5b78b442bb1de389dcefbff29&sc_lang=en
https://www.brooksinstrument.com/-/media/Brooks/documentation/products/Accessories-And-Software/Software/0162-Smart-DDE/software-installation-manual-smart-dde.ashx?rev=a5f7e7e5b78b442bb1de389dcefbff29&sc_lang=en
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://github.com/cztomczak/cefpython

bibliogrpahy 175

[175] Yunpeng Xing, Qian Zhu, Xiaohong Zhou, and Peishi Qi. A dual-functional smartphone-based sensor
for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping.
Sensors and Actuators B: Chemical, 319:128254, September 2020. doi: 10.1016/j.snb.2020.128254. URL
https://doi.org/10.1016/j.snb.2020.128254.

[176] M Muniesa, E Ballesté, Lejla Imamovic, M Pascual-Benito, D Toribio-Avedillo, F Lucena, AR Blanch,
and J Jofre. Bluephage: A rapid method for the detection of somatic coliphages used as indicators of
fecal pollution in water. Water research, 128:10–19, 2018.

[177] I. Hernández-Neuta, F. Neumann, J. Brightmeyer, T. Ba Tis, N. Madaboosi, Q. Wei, A. Ozcan, and
M. Nilsson. Smartphone-based clinical diagnostics: towards democratization of evidence-based
health care. Journal of Internal Medicine, 285(1):19–39, September 2018. doi: 10.1111/joim.12820. URL
https://doi.org/10.1111/joim.12820.

[178] Wesley Wei-Wen Hsiao, Trong-Nghia Le, Dinh Minh Pham, Hui-Hsin Ko, Huan-Cheng Chang,
Cheng-Chung Lee, Neha Sharma, Cheng-Kang Lee, and Wei-Hung Chiang. Recent advances in
novel lateral flow technologies for detection of COVID-19. Biosensors, 11(9):295, August 2021. doi:
10.3390/bios11090295. URL https://doi.org/10.3390/bios11090295.

[179] Evgeni Eltzov, Sarah Guttel, Adarina Low Yuen Kei, Prima Dewi Sinawang, Rodica E. Ionescu,
and Robert S. Marks. Lateral flow immunoassays - from paper strip to smartphone technology.
Electroanalysis, 27(9):2116–2130, August 2015. doi: 10.1002/elan.201500237. URL https://doi.org/

10.1002/elan.201500237.

[180] Andrew S. Paterson, Balakrishnan Raja, Vinay Mandadi, Blane Townsend, Miles Lee, Alex Buell,
Binh Vu, Jakoah Brgoch, and Richard C. Willson. A low-cost smartphone-based platform for highly
sensitive point-of-care testing with persistent luminescent phosphors. Lab on a Chip, 17(6):1051–1059,
2017. doi: 10.1039/c6lc01167e. URL https://doi.org/10.1039/c6lc01167e.

[181] Fleur W. Kong, Caitlin Horsham, Alexander Ngoo, H. Peter Soyer, and Monika Janda. Review
of smartphone mobile applications for skin cancer detection: what are the changes in availability,
functionality, and costs to users over time? International Journal of Dermatology, 60(3):289–308,
September 2020. doi: 10.1111/ijd.15132. URL https://doi.org/10.1111/ijd.15132.

[182] Evgin Goceri. Impact of deep learning and smartphone technologies in dermatology: Automated
diagnosis. In 2020 Tenth International Conference on Image Processing Theory, Tools and Applications

(IPTA). IEEE, November 2020. doi: 10.1109/ipta50016.2020.9286706. URL https://doi.org/10.

1109/ipta50016.2020.9286706.

[183] David Boccara, Farid Bekara, Sabri Soussi, Matthieu Legrand, Marc Chaouat, Maurice Mimoun,
and Kevin Serror. Ongoing development and evaluation of a method of telemedicine: Burn care
management with a smartphone. Journal of Burn Care & Research, 39(4):580–584, December 2017. doi:
10.1093/jbcr/irx022. URL https://doi.org/10.1093/jbcr/irx022.

[184] C. Grana, G. Pellacani, S. Seidenari, and R. Cucchiara. Color calibration for a dermatological video
camera system. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.

IEEE, 2004. doi: 10.1109/icpr.2004.1334649. URL https://doi.org/10.1109/icpr.2004.1334649.

[185] Yves Vander Haeghen and Jean Marie Naeyaert. Consistent cutaneous imaging with commercial
digital cameras. Archives of Dermatology, 142(1), January 2006. doi: 10.1001/archderm.142.1.42. URL
https://doi.org/10.1001/archderm.142.1.42.

[186] Blaž Cugmas and Eva Štruc. Accuracy of an affordable smartphone-based teledermoscopy system
for color measurements in canine skin. Sensors, 20(21):6234, October 2020. doi: 10.3390/s20216234.
URL https://doi.org/10.3390/s20216234.

https://doi.org/10.1016/j.snb.2020.128254
https://doi.org/10.1111/joim.12820
https://doi.org/10.3390/bios11090295
https://doi.org/10.1002/elan.201500237
https://doi.org/10.1002/elan.201500237
https://doi.org/10.1039/c6lc01167e
https://doi.org/10.1111/ijd.15132
https://doi.org/10.1109/ipta50016.2020.9286706
https://doi.org/10.1109/ipta50016.2020.9286706
https://doi.org/10.1093/jbcr/irx022
https://doi.org/10.1109/icpr.2004.1334649
https://doi.org/10.1001/archderm.142.1.42
https://doi.org/10.3390/s20216234

	Abstract
	Introduction
	Objectives
	Thesis sctructure

	Background and methods
	The image consistency problem
	2D Barcodes: the Quick-Response Code
	Data representation
	Computational implementation

	QR Codes on challenging surfaces
	Proposal
	Experimental details
	Results
	Conclusions

	Back-compatible Color QR Codes
	Proposal
	Experimental details
	Results
	Conclusions

	Image consistency using an improved TPS3D method
	Proposal
	Experimental details
	Results
	Conclusions

	Application: Colorimetric indicators
	Proposal
	Experimental details
	Results
	Conclusions

	Conclusions
	Thesis conclusions
	Future work

	List of Figures
	List of Tables
	Bibliography

