7 research outputs found

    Spatial processing of conspecific signals in weakly electric fish: from sensory image to neural population coding

    Get PDF
    In this dissertation, I examine how an animal’s nervous system encodes spatially realistic conspecific signals in their environment and how the encoding mechanisms support behavioral sensitivity. I begin by modeling changes in the electrosensory signals exchanged by weakly electric fish in a social context. During this behavior, I estimate how the spatial structure of conspecific stimuli influences sensory responses at the electroreceptive periphery. I then quantify how space is represented in the hindbrain, specifically in the primary sensory area called the electrosensory lateral line lobe. I show that behavioral sensitivity is influenced by the heterogeneous properties of the pyramidal cell population. I further demonstrate that this heterogeneity serves to start segregating spatial and temporal information early in the sensory pathway. Lastly, I characterize the accuracy of spatial coding in this network and predict the role of network elements, such as correlated noise and feedback, in shaping the spatial information. My research provides a comprehensive understanding of spatial coding in the first stages of sensory processing in this system and allows us to better understand how network dynamics shape coding accuracy

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Fish behavior and its use in the capture and culture of fishes

    Get PDF
    Fishery management, Behaviour, Food fish, Fish culture, Conferences

    Ultrastructure of the cat inferior olive : an anatomical study using three new combination techniques

    Get PDF
    The present ultrastructural study focuses on two of the subnuclei of the IO: The medial accessory olive (MAO) and the principal olive (PO). These subnuclei, which are predominantly innervated by descending systems and by a recurrent pathway from the central cerebellar nuclei, may be involved in the preparation and execution of movements. Accurate timing obviously is essential in these processes. The morphological observations of this study will be discussed in relation to the electrophysiological properties of the olivary neurons (Chapter V). It will be attempted to show that the specific formation of the dendritic elements of these cells together with their synaptic input are well suited to serve as a timing devic
    corecore