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ABSTRACT 

On the Role of Sensory Cancellation and Corollary Discharge in Neural Coding and Behavior 

Armen Enikolopov 

 

Studies of cerebellum-like circuits in fish have demonstrated that synaptic plasticity shapes the 

motor corollary discharge responses of granule cells into highly-specific predictions of self-

generated sensory input. However, the functional significance of such predictions, known as 

negative images, has not been directly tested. Here we provide evidence for improvements in 

neural coding and behavioral detection of prey-like stimuli due to negative images. In 

addition, we find that manipulating synaptic plasticity leads to specific changes in circuit output 

that disrupt neural coding and detection of prey-like stimuli. These results link synaptic 

plasticity, neural coding, and behavior and also provide a circuit-level account of how combining 

external sensory input with internally-generated predictions enhances sensory processing.  In 

addition, the mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with a 

diverse array of sensory and motor signals processed within circuity similar to the cerebellum. 

Yet how the DCN contributes to early auditory processing has been a longstanding puzzle. Using 

electrophysiological recordings in mice during licking behavior we show that DCN neurons are 

largely unaffected by self-generated sounds while remaining sensitive to external acoustic 

stimuli. Recordings in deafened mice, together with neural activity manipulations, indicate that 

self-generated sounds are cancelled by non-auditory signals conveyed by mossy fibers.  In 

addition, DCN neurons exhibit gradual reductions in their responses to acoustic stimuli that are 

temporally correlated with licking. Together, these findings suggest that DCN may act as an 

adaptive filter for cancelling self-generated sounds.  Adaptive filtering has been established 



 

 
 

previously for cerebellum-like sensory structures in fish suggesting a conserved function for such 

structures across vertebrates. 
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Historical motivations and background 

As I sit to write the first sentence of this manuscript, I stare out at the water of Cold 

Spring Harbor.  Some hundred feet out, a gull beats its wings and with measured pace flies 

across the field of my vision.  My gaze is fixed, looking forward, but finally my eyes snap to 

attention and point directly at the bird.  No difference in its motion is apparent to me through 

these two phases of my observation, yet a gulf exists between what I perceive and what my eyes 

detect.  Not only the bird, but the world as well, flies across my retinas as my eyes saccade at 

five hundred degrees per second. As photoreceptors are concerned, the movement of the bird and 

movement of the world are indistinguishable.  Yet the perception of the gull’s movement is not 

perturbed, and the harbor beyond remains fixed in space.    

The body in motion is its own enemy in this regard. Movement generates sensory input 

that, from the perspective of sensory receptors, is often indistinguishable from sensation caused 

by the outside world.  Cancellation of the sensory consequences of an animal’s own movement is 

thought to be an important and early responsibility of all sensory processing systems.  Motion 

seen in the outside world must be distinguished from apparent movement imposed by movement 

of the eyes, the head, and the rest of the body. The smells and taste of one’s own body must be 

ignored to pay attention to the world beyond.  Mechanosensation generated through active touch 

must be distinguished from the body being touched, and reflexes triggered by touch must not be 

reactivated in turn by the reflexive motion. The sound of one’s diaphragm moving and the lungs 

expanding as one takes in a breath, the pounding of blood shuttling through atria and ventricles, 

valves and arteries, the sounds of mandibular joints chewing and teeth grinding, tongues and lips 

licking, all of these must be filtered out, seen beyond, and these predictable inputs must be 

ignored in favor of the sensory novelty of the world outside.  How might the distinction be 
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made? In principle, it should be possible – after all, the brain has access to both the sensory input 

and information about the motor act that generated it. 

 Human attention has been turned to these matters for thousands of years and 

constitutes some of the earliest written introspection about brain function.  It’s noteworthy that 

the first theories of vision were efference-driven.  The pre-Socratic Alcamaeon of Croton (ca. 

450 BCE) noted the spots of light and color, phosphenes, that result from a blow to the head and 

took them as evidence of an internal fire that resides in the eye (Celesia, 2012; Gross, 1999).  

This and the light seen in the eyes of some animals when observed in the dark, now known to be 

reflection from the tapetum lucidum present in the eyes of some (particularly nocturnal) animals, 

were the foundational evidence of the emission theory of vision. First proposed by Empedocles 

of Akragas (ca. 5th century BCE) and refined by others such as Plato, emission theory held that 

the eye is like a lantern, emitting an internal fire that leaves the eye to perform the task of seeing 

(Grüsser, 1995).  Euclid in his Optics registered a complaint, noting that the distant stars were 

evident to us immediately on opening the eyes, without the delay necessary for the eye’s fire to 

travel, as implied by theory.  Though the early theorists were mistaken in some of the finer 

details, the idea of sensation resulting from self-generated motion can be thought of as forward-

thinking, and is line with the subject of this thesis.  

Aristotle observed the persistence of afterimages when looking at the sun and at rushing 

water and noted their movement relative to the static visual scene when the eyes were shifted (or 

as we now understand, the movement of the visual scene relative to the retinally-static 

afterimages) (Aristotle, 330 BCE).  These observations were to continue to be the foundation of 

thought about sensory cancellation (though not recognized in that name) for some two thousand 

years.  Descartes noted that these afterimages did not move when the eye was pressed in 
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darkness, yet shifted during active eye movement.  The same procedures performed on natural 

images yielded the reverse – the visual scene remained static with active eye movements but 

moved when the eye was pressed. 

In the 19th century, Hermann von Helmholtz noted the same.  How could one distinguish 

between movement of the world and movement of one’s retina? Between an eye moved 

voluntarily, where the world appears stable, and an eye moved involuntarily such as an eye 

pressed by another person, where the world appears unstable, the only difference is that of 

intention.  Helmholtz considered the third case – what happened when there was intention but no 

movement.  He reflected on the contemporary findings of Albrech von Graefe in patients with 

paralysis of the external rectus muscle of the eye.  When these patients attempted to move an eye 

to the left, while their paralyzed eye remained still, their perceived vision jumped in the direction 

of the intended motion.  Helmholtz deduced that a copy of the signal used to move the eye must 

be used to construct a prediction of the movement’s sensory consequences, and the visual 

representation adjusted accordingly (von Helmholtz, 1925; Jeannerod, 1985; Grüsser, 1995). 

The preceding history lesson is included because by the mid-20th century, Sherringtonian 

reflex theory held sway; motion as a response to sensation, rather than sensation as a response to 

motion, was at the center of thinking about how the brain functions. Sherrington summarized the 

views of Helmholtz (and others such as Bain, Lewes, and Mach, who supported similar ideas) as 

proposing “that during movement, e.g., a willed movement, the outgoing current of impulses 

from brain to muscle is accompanied by a ‘sensation of innervation.’ Where a movement is to be 

precise, we do become aware, in fact, acutely aware immediately in advance of the amount and 

direction it is to assume.”  Remarkably, Sherrington argued vociferously against this prescient 

view, hinting as it does towards corollary discharge and reafferent cancellation, predictive 
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coding, and forward models, ultimately concluding that it “remains unproven”  (Sherrington, 

1900; Matthews, 1982). 

 It was in this historical context that Erich von Holst and Horst Mittelstaedt 

performed a series of experiments investigating the optomotor reflex in the hoverfly Eristaltis 

(von Holst and Mittelstaedt, 1950).  In response to a rotating environment, a stationary fly will 

itself begin to turn. The reflex is a stabilizing one, accounting for environmental perturbations 

such as wind that act on the animal. The authors questioned why the same reflex was not elicited 

during voluntary rotation in a stationary environment, where the movement of the environment 

across the retina was identical to that in the former case. In Eristalsis, it is possible to rotate the 

head by 180 degrees about its neck, which effectively inverts left-right motion.  In this 

preparation, clockwise rotation of the environment produces retinal image movement that would 

normally result from rotation in the opposite direction.  It was found that under these conditions, 

rotation of the environment initiates a continuous turning responses. Von Holst and Mittelstaedt 

interpreted this to mean that a copy of the motor signal used to initiate turning was routed to a 

sensory area and used to subtract the predicted self-generated sensory results of the voluntary 

motion from perceived motion (Figure 1.1).  Inverting, or negating, the visual effects of motion 

meant that subtracting this prediction now yielded a sensory effect of twice the real amplitude 

rather than being cancelled, and initiated a kind of positive feedback loop, resulting in the 

turning behavior.  They called this copied signal an efference copy, and lay the framework for 

our current thinking about the cancellation of self-generated sensory signals: in order to separate 

sensory information resulting from changes in the external world, “exafference,” from self-

generated sensory signals, “reafference,” an efference copy was sent from motor to sensory areas 

and used to subtract reafference from the total sensory stream, leaving only exafference. The 
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authors expanded their work to centipedes and  fish and presented a theoretical accounting for 

birds and mammals (von Holst and Mittelstaedt, 1950; von Holst, 1954).  

 

 

 

Figure 1.1 Schematic of reafference principal. 
Motor areas generate motor commands that are sent to motor effectors such as muscles. Movement of 
those effectors generates sensory input (reafference) at sensory receptors which corrupts sensory 
information about the outside world (exafference). As a result, a signal containing both reafferent and 
exafferent input is sent to sensory processing areas. A copy of the original motor signal (corollary 
discharge, also called efference copy) is sent from the motor area to sensory processing areas, where it is 
subtracted from sensory input to yield a filtered signal devoid of reafference.  

 

Contemporaneously, and in linguistic isolation from von Holst and Mittelstaedt, who had 

published in German, Roger Sperry developed a similar theory from his treatment of the 

analogous optomotor reflex in fish (Sperry, 1950).  He showed that occluding one eye and 

inverting the other similarly resulted in a forced turning behavior. Lesioning the optic lobe 

removed the effect, which Sperry interpreted as evidence for a feedback on an upper motor 

signal to the visual system. He termed the signal a “corollary discharge” (CD).  Despite minor 
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differences in conceptual implementation, the term is typically treated as synonymous with 

“efference copy” and will be used as such in the text to follow. 

The ensuing decades have confirmed many of the predictions of von Holst, Mittelstaedt, 

and Sperry.  Efferent feedback, or CD, has been found to be involved in many aspects of neural 

processing.  Though they will mostly be discussed here with regard to their role in modifying, 

cancelling, or reinterpreting reafference, CD mechanisms also serve to pattern and sequence 

motor acts, as in the Xenopus case discussed below (Sillar and Roberts, 1988; Li et al., 2002), or 

ventral spinocerebellar activity which has been shown to be modulated during fictive 

locomotion, helping coordinate descending and spinal  motor commands (Arshavsky et al., 1972, 

1983; Lundberg, 1971), or recent work on skilled reaching (Azim et al., 2014). Additionally, CD 

has been shown to serve as a replacement for, or alternative to proprioceptive signals.  In this 

case, CD has the benefit of being fast, occurring before the actual motor act, but suffers in that it 

provides information about the intended act, not the actual one, and ultimately relies on the 

fidelity of execution of the motor task by external effectors (Bell, 1989).  For example, eye 

position may accurately be deduced from CD of input to the oculomotor system (Guthrie et al., 

1983).  More broadly, and combining the above, CD has been suggested, in theoretical accounts 

termed forward models, to play a role in ensuring accurate and timely movement despite delayed 

and noisy proprioceptive feedback (Miall and Wolpert, 1996; Shadmehr et al., 2010).  

 From the perspective of information theory, the information present in a signal is 

inversely proportional to its predictability. The extreme case of a totally predictable signal 

contains no information at all (Shannon, 1948; Shannon and Weaver, 1949). Many of the 

responsibilities of sensory systems can be viewed from the perspective of their role as generators 

of predictions about sensory input and the removal of those expectations from sensory inflow so 
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as to increase the sensory stream’s information density (Barlow, 1990; Bullock, 1988; Bell et al., 

1997a).  Mechanisms of sensory prediction and cancellation have been studied in many systems, 

and these range from simple gating mechanisms that silence sensation during motion to the class 

of systems in which they have been studied in perhaps the closest detail, a class of circuits 

termed ‘cerebellum-like’. This circuit architecture has been found across a wide range of taxa in 

neural structures involved in sensory processing.  

In particular, over the last forty years, the cerebellum-like electrosensory lateral line lobe 

(ELL) of the mormyrid fish has yielded evidence from in vivo, in vitro, and modelling studies for 

the formation of a ‘negative image’ of predicted sensory input in a modifiable CD.  The system 

in question suffers from a disruptive but predictable reafference. This negative image of the 

expected sensory response is summed with the actual response in principal cells of the circuit to 

produce a signal from which the confounding effects of reafference have been subtracted. 

In the following section, I will present some examples of sensory cancellation mediated 

by CD, as well as some other roles for CD, specifically in systems other than those implementing 

cerebellum-like circuits. Following, I will discuss the general architecture of cerebellum-like 

circuits, their specific implementation in the mormyrid ELL, as well as in an analogous structure 

in the mammalian auditory system, the dorsal cochlear nucleus (DCN).  In Chapter 2, the main 

focus of this dissertation and my doctoral research, I present evidence for the functional 

significance of negative images at both the neural coding and behavioral levels, neither of which 

has heretofore demonstrated.  Chapter 3 presents work done in collaboration with others in the 

Sawtell laboratory that demonstrates that the DCN cancels self-generated sound. Finally, in 

Chapter 4, I will present concluding remarks and discuss avenues for further research. 
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Corollary Discharge and Cancellation in Reflexes 

Reafferent input impinges on the ability of the central nervous system to process 

information about the outside world, and the problem exists in nearly all sensory systems. In 

order to optimize sensitivity, reliability, and precision, many systems take advantage of CD 

mechanisms, routing signals about motor actions to sensory processing areas, to cancel or 

modify such input.  The function of CD across these systems varies.  Some CD mechanisms act 

mainly at the periphery, generally targeting sensory receptors and serving to gate sensory input 

on and off in time with motion. Such systems are ubiquitous and are necessary in nearly all 

sensory systems to regulate sensory inflow and serve to generate transient inhibition of sensory 

networks (Crapse and Sommer, 2008a).  CD mechanisms found in invertebrates are of this type, 

sometimes termed lower order CD, though they exist in vertebrates as well.  Such examples will 

be considered in crayfish, frog, and cricket.  Drosophila visuomotor coordination displays a 

related type of CD.  Similar suppressive mechanisms can be found vertebrates, as demonstrated 

in work on mouse and primate auditory cortex and in primate saccadic suppression.  Deficits in 

such systems have been linked to schizophrenia. Higher order CD engages more central 

processing areas and performs more nuanced computations, facilitating the contextual 

interpretation of sensory input, constructing stable internal representations of sensory input, and 

making more temporally-complex predictions about sensory reafference. Below, some examples 

other than those instantiated in cerebellum-like circuits are discussed. 

Like many organisms, the crayfish Procamarus clarkii employs a mechanosensitive hair 

cell system in detecting the presence of prey and approaching predators. Mechanosensitive hair 

cells on its tail and appendages of its abdomen elicit a reflex termed the “tail-flip response” on 

sensing water current disturbances caused by potential predators (Edwards et al., 1999). This tail 
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flip propels the animal away from said predator. However, he rapid movement itself has the 

possibility of reactivating the same mechanosensitive hairs. This is problematic for the crayfish 

because mechanosensory afferents and interneurons desensitize through repeated stimulation, so 

responsiveness to self-generated water flow would desensitize the system to predator-generated 

water flow. Moreover, the tail flip reflex stands the chance of repetitive self-activating in a 

positive feedback loop.  

 The crayfish is able to maintain the sensitivity of this reflex though a CD mechanism. A 

class of corollary discharge interneurons (CDIs), the primary afferent depolarizing interneurons 

(PADIs), target mechanosensory afferent terminals and inhibits them in time with tail-flips.  The 

mechanosenory pathway elicits tail-flip commands from motor neurons called giant escape 

command neurons, and these neurons send a corollary discharge to, and drive activity in, the 

PADIs (Kirk and Wine, 1984; Krasne and Bryan, 1973). A use of CD with remarkable functional 

similarity exists in the cockroach, where locomotion-associated CD mediates a hair-cell based 

escape response (Delcomyn, 1977). 

A similar example of sensory gating via corollary discharge exists in vertebrates. In its 

larval tadpole stage, Xenopous laevis possesses a predator avoidance reflex that generates 

swimming locomotion away from the direction of a mechanosensory stimulus.  Again, 

swimming itself generates a mechanosensory stimulus via water flow, and this reafference 

interferes with sensory tasks broadly, and more specifically, causes reactivation of the reflex.  An 

identified population of interneurons termed the ascending interneurons has been shown to fire 

rhythmically during swimming, and to make glycinergic synapses onto interneurons of the 

mechanosensory pathway and elicit IPSPs.  These ascending interneurons are driven by a motor 

central pattern generator (CPG), that is, a corollary discharge. In addition to modulating sensory 
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input, they also have a role in modulating the patterning of reflexive swimming itself (Sillar and 

Roberts, 1988; Li et al., 2002).  Analogous phase-dependent gating of sensory input in reflexes 

exists in humans, such as in modulation of the reflexes of the ankle flexor and extensors during 

walking. (Duysens et al., 1990) 

A particularly clear example is found in the cricket. The male Mediterranean field cricket 

Gryllus bimaculatus produces courtship calls by means of a set of rasp-like hooks on the outer 

edges of its forewings which are rubbed against each other in a process called stridulation. These 

rasps are located <10mm from the acoustic sensory organs of the cricket, and the resultant calls, 

which can continue for hours, exceed 100dB in volume.  Externally generated and presented 

acoustic stimuli of this amplitude sharply desensitize auditory interneurons in the cricket (Poulet 

and Hedwig, 2003) but behavioral work shows that crickets can maintain auditory sensitivity 

(that is, detect the calls of conspecifics) when the call is generated by their own stridulations, 

rather than presented externally (Heiligenberg, 1969).  How are crickets able to prevent being 

deafened when, and only when, they are the ones producing the sound? The problem is solved in 

this system by a single class of CDIs which make inhibitory connections onto both primary 

auditory afferents and auditory interneurons (Poulet and Hedwig, 2006).  Critically, these CDIs 

inhibit the auditory system in time with the cricket’s stridulations because they receive a signal 

from a mesothoracic CPG that is a relayed copy of the activation signal sent to the very motor 

neurons controlling wing rasp stridulations. Notably, the extent of inhibition is not affected by 

the amplitude of the call, which is to say that the mechanism simply gates the sensory system, 

effectively deafening the animal for the brief period of its call, but thereby ensuring continued 

sensitivity of the auditory system.   
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Recent work by the Maimon lab has focused on a role for corollary discharge in 

visuomotor processing in Drosophila.  Reflexive visuomotor coordination, flight-, and gaze-

stabilization in the fly has been considered in this context since von Holst and Mittelstaedt  (von 

Holst and Mittelstaedt, 1950) (Eristalis is a hoverfly and performs particularly impressive feats 

of flight command and stabilization as it hovers during feeding).  Flight in Drosophila consists of 

rapid and volitional turns of the body, termed body saccades, interleaved with periods of stable 

flight.  During these periods of stable flight, the optokinetic reflex, or the optomotor response, 

corrects flight trajectory disturbances such as those caused by local air currents or injury, and 

repositions the head to maintain a stable visual field.  Wide-field visual motion (that is, 

movement of the entire visual scene as opposed to specific elements of that scene) in a given 

direction elicits a corrective and compensatory motor response, so leftward rotation of the visual 

scene is followed by a motor response that “recenters” the animal by rotating it leftward, 

maintaining a consistent visual center.  However, body saccades also cause wide-field visual 

motion, and the optokinetic reflex clearly needs to be disengaged by some means during 

volitional motion, or the animal would never get anywhere, trapped in a perpetual positive-

feedback loop.  Maimon et al have identified three classes of optic flow processing neurons 

(HSN and VS, which respond to optic flow in the yaw and pitch axes, respectively, as well as 

visual processing interneurons further upstream) that receive motor-related, putatively CD, 

inputs during these body saccades.  HSN and VS neurons in particular are shown to mediate 

aspects of the optomotor response.  Whole-cell patch clamp recordings show that these inputs are 

sufficient in timing and are of the correct sign and amplitude to cancel out reafferent visual input 

during body saccades.  Moreover, while optic flow can exist in any of three axes, voluntary 

saccades mainly generate optic flow in the yaw axis. Fittingly, further work (Kim et al., 2017) 
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shows that the extent of saccade-related membrane polarization or depolarization in these cells 

correlates with the extent of their visual responsiveness to yaw.  This implies, and the authors go 

on to show, that these neurons are able to encode multiple channels of exafferent input while 

selectively cancelling out reafference in one of them.  This is particularly concordant with von 

Hostl and Mittlestaedt’s formulation of the reafference principle (von Holst and Mittelstaedt, 

1950) in that it does not blind (literally in this case) the sensory input entirely. Rather than 

operating like the gating mechanisms of the cricket auditory system or locust visual motion 

detection discussed above, the mechanism subtracts reafference while keeping exafferent input. 

 

Higher order Corollary Discharge and Cancellation  

Corollary discharge mechanisms have long been assumed, and more recently 

demonstrated, to play a role in mammalian auditory processing as well.  The anatomical 

existence of motor inputs into auditory cortex has been reported for decades (Reep et al., 1987; 

Budinger and Scheich, 2009; Nelson et al., 2013). Earlier work in humans had implicated 

corollary discharge in perceiving self -generated speech (Creutzfeldt et al., 1989).  In these 

experiments, extracellular single-unit recordings in the middle and superior temporal gyri 

showed that neurons which responded to speech presented through a speaker had weaker 

responses, or none at all, to speech generated by the patient himself.  This was in line with earlier 

work in monkeys which had shown differential responses to self- and other-generated 

vocalizations in the superior temporal gyrus (Müller-Preuss and Ploog, 1981).  Following those 

findings, it has been proposed that deficits in corollary discharge systems might underlie some of 

the positive symptoms of schizophrenia - most strikingly, auditory hallucinations (Feinberg, 

1978).  If, on hearing speech produced by oneself, no signal exists by which to recognize that the 
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sound just heard was self-generated, it might incorrectly be ascribed to an outside agent. That 

could be true of vocalized speech as well as subvocal, internal speech, or thought, which has 

been shown to be correlated to activity in motor cortical areas.  This would explain not only the 

false perception of voices, but also feelings that the hallucinated voice has access to the 

hallucinator’s thoughts – because, after all, it does.   

To this end, a series of electroencephalography experiments (Ford et al., 2001a) looked at 

the N1 component of event-related potentials during listening and speaking tasks in healthy and 

schizophrenic subjects. Whereas healthy patients showed a smaller amplitude N1 during 

speaking than during listening, schizophrenic patients showed no difference (Figure 1.2) (it 

should be added that for schizophrenic patients, the amplitudes were actually both of the same 

size as control patients’ listening-related N1 components, which seems to imply, confusingly, 

that schizophrenics ascribe both self- and other-generated speech to themselves, rather than 

ascribing both to external persons).  A related set of experiments by the same group showed that 

inner speech suppressed N1 event-related potentials elicited by externally-generate sound for 

control subjects but not schizophrenic patients (Ford et al., 2001b).  That said, attempts that have 

tried to specifically tie either of these effects to corollary discharge have so far failed (Ford and 

Mathalon, 2005). 
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Figure 1.2 Differences in auditory perceiving of self and other in control and schizophrenic patients 
 N1 component of event-related potentials at electroencephalographic site Cz, referenced to linked 
mastoids, for control (left) and schizophrenic (right) patients, in response to onset of vowel sounds spoken 
by the subject (blue), or played back after recording (blue).  Note inability of this measure to discriminate 
between self- and other- generated speech, in schizophrenia patients compared to control subjects.   
(reproduced from (Ford et al., 2001a))  

 

Looking more broadly at auditory cortex, findings such as the above, and confirmatory 

electrophysiology in monkeys demonstrating suppression of activity during vocalization in 

auditory cortex (Eliades and Wang, 2008), and reciprocally, during auditory attention tasks 

(Otazu et al., 2009), imply a processing role for corollary discharge in auditory cortex.  The 

former finding is functionally similar to the discussed findings in crickets.  Anatomical tracing 

studies have shown primary auditory cortex to receive input from several motor-related cortical 

areas, including the cingulate, primary motor, and secondary motor cortex.  Recent work has 

identified a circuit modulating sound-evoked activity in AC1 involving a corollary discharge 

from secondary motor cortex (Schneider et al., 2014).  Locomotion has also been shown to 

suppress auditory responses, and in vivo intracellular recording has demonstrated that this is due 

to an increase in inhibition (rather than a decrease in excitation).  Cortical inhibition is mediated 

almost entirely by local interneurons, and it was found that this is a type of feed-forward 

inhibition in which projection neurons in secondary motor cortex activate a set of parvalbumin-
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positive interneurons in auditory cortex. These inputs are active during locomotion and serve to 

suppress both spontaneous and sound-evoked synaptic activity (Nelson et al., 2013; Schneider et 

al., 2014).  This is in some contrast to findings in visual cortex, where locomotion has been 

found to facilitate visual responses (Fu et al., 2014).  The inhibition seems to be broad, and it is 

postulated that this may serve to enhance sensitivity to specific auditory inputs by suppressing 

responses to self-generated sound arising from locomotion.  This is in keeping with other work 

that shows that activity in auditory cortex is suppressed during behaviors that require increased 

auditory processing (Eliades and Wang, 2008; Otazu et al., 2009). 

Corollary discharge figures in theories of predictive coding.  Predictive coding has been 

postulated to exist in primary visual cortex to explain non-classical visual responses in V1.  In 

such a scheme, CD of motor commands fed back to early sensory areas could be used to generate 

an experience-dependent prediction of sensory input, in particular reafference.  A recent study 

has identified such a mechanism in mouse V1 (Leinweber et al., 2017).  Secondary motor cortex 

and neighboring Broadmann area 24b were shown to target most V1 neurons in layer 2/3.  

Imaging activity in axons of these inputs in V1 shows correlation with locomotion as well as 

visual flow resulting from said locomotion. Training the mice on a left-right inverted 2D 

environment reversed the correlation of neural activity with behavior to match visual flow.  The 

exact nature of what can be, or is, done with these signals is currently unclear. Possibly, 

Leinweber et al. postulate, they exist to cancel out self-generated optic flow.  

Returning to the question of the visual processing during motion, consider that saccadic 

movements of the eyes or head should cause visual blur given their speed, but noticeably, do not. 

In fact, we seem to pay little attention to visual input during saccades at all. This is easily 

demonstrated by looking in the mirror and trying to catch your eyes in motion as you shift your 
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focus from one reflected eye to the other – you only ever see yourself staring right back (though 

the observation that from a moving train, railroad ties are only visible during saccades in the 

direction of travel, which effectively stabilize the scene, demonstrates that the suppression is not 

complete) (Krekelberg, 2010).  This dampening of the sensation of motion, saccadic suppression, 

is known to use a gating-type CD mechanism to suppress movement-detection neurons during 

voluntary and optokinetic saccades in the analogous case of locust (Zaretsky and Rowell, 1979) 

(though the neuronal class directly responsible for this suppression has yet to be identified), but 

there has long been disagreement as to whether CD was present in saccadic suppression in 

vertebrates, and primates in particular, with the alternative being mechanisms based on visual or 

proprioceptive signals (Battaglini et al., 1996; Ross et al., 2001).  Clues to a role for CD have 

existed for some time - one way to distinguish between visual and non-visual effects is to 

compare suppression during true saccades and “simulated” saccades, achieved by rapidly 

deflecting a screen at saccade-like speeds. Psychophysical studies demonstrate that for some 

visual stimuli, real saccades are accompanied by a loss in contrast sensitivity of about one order 

of magnitude relative to “simulated” saccades for a brief time window surrounding the saccade 

(Diamond et al., 2000). That the onset of sensitivity loss precedes the saccades argues for a CD 

rather than a proprioceptive input.   

Neural correlates of saccadic suppression have been found throughout the visual system 

(for a recent review, Krock and Moore, 2014). Earlier physiological studies were in conflict – 

some argued for a passive, visually-driven mechanism for suppression (Fischer et al., 1981; 

Wurtz, 1969), while other findings, such as the identification of cells in primate V1 that respond 

to external motion, but not retinal motion induced by saccades (Battaglini et al., 1986), argued 

for an active, CD-driven role.  The reality seems, as is often the case, that both types of 
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mechanisms exist – passive and active mechanisms are both at play. A number of findings over 

the past decade and a half have confirmed neural saccadic suppression with an ‘extraretinal’ 

source, some supporting CD over proprioceptive mechanisms based on a timing argument 

(proprioception cannot initiate suppression before the actual saccade, as is sometimes seen) 

(Ibbotson and Krekelberg, 2011; Krock and Moore, 2014).  Finally, recent work claims to have 

identified such a corollary discharge pathway (Berman et al., 2016).  Suppression in the middle 

temporal visual area (MT) was found to depend on corollary discharge signals from motor 

superior colliculus (SCi) which could be inactivated with lidocaine injection. The authors present 

a putative pathway, as the path from SCi to MT is not direct, but it should be noted that these 

results are based on findings in one monkey.  Behaviorally-studied deficits in saccadic 

suppression have been noted in schizophrenia patients (Crawford et al., 1995). 

Following saccades, the visual system must not only suppress sensory input during the 

saccade, but must also maintain the perception of a stable physical world that is pieced together 

from very unstable retinal images, and retinotopic input must somehow be shifted to account for 

the new image resulting from each saccade.  The hypothesis laid out by Helmholtz a century and 

a half ago has found support in work on vision in humans and non-human primates. Goldberg 

and others have demonstrated that neurons in several cortical and subcortical visual areas 

undergo a process called remapping which mediates the perceptual stability of attended objects 

by shifting retinotopic representations to account for saccadic shifts of gaze (Hall and Colby, 

2011; Ross et al., 2001; Sun and Goldberg, 2016).  Through this, a continuously accurate 

representation of visual space is maintained. Moreover, this process is performed anticipatorily, 

implicating corollary discharge mechanisms – neurons in the lateral intraparietal cortex (LIP) 

(Duhamel et al., 1992) were shown to respond in anticipation of saccades which will bring an 
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existing, out-of-receptive-field stimulus into their receptive field.  Further work has 

demonstrated similar remapping in frontal eye fields (FEF) (Umeno and Goldberg, 2001), and 

the superior colliculus (SC) (Walker et al., 1995).  These interconnected areas all receive both 

visual signals and signals related to saccadic eye movements (Barash et al., 1991; Bruce and 

Goldberg, 1985; Wurtz and Goldberg, 1972).  Areas  V2, V3a (Nakamura and Colby, 2002), and 

V4 (Neupane et al., 2016), and potentially V1 (Knapen et al., 2016, though this is a weak effect 

examined with fMRI) have also demonstrated remapping. 

The first corollary discharge pathway described in primate is in the visual system.  

Sommer and Wurtz demonstrated that a corollary discharge from SC is conveyed through the 

mediodorsal nucleus of the thalamus (MD) to FEF (Sommer and Wurtz, 2002, 2006).  Having 

confirmed that spatiotemporal patterns of the eye saccade CD match responses in cortical 

neurons, the authors used the GABAA antagonist musimol to temporarily inactivate MD. This 

treatment eliminated FEF remapping. Recent work has demonstrated a functional role for this 

CD pathway.  Inactivation of MD induced an impairment of perceptual localization of visual 

stimuli following contralateral saccades (Cavanaugh et al., 2016).  Corollary discharge then, is 

responsible for a complex reinterpretation of incoming sensory information based on known 

motor inputs which has the functional consequence of filtering out reafferent changes to visual 

input. 

The above examples demonstrate that corollary discharge is used in many systems to 

make predictions about incoming sensory information, and in particular to deal with the problem 

of cancelling or separating reafferent sensory input from informative exafferent input about the 

external environment.  The lower order CD mechanisms typically serve in peripheral gating 

roles. Higher order CDs are able to accomplish more nuanced modulation of sensory inflow.  
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Many of the mechanisms discussed above, especially those using generalized suppression 

schemes, are incapable of dealing with complex reafference.  Those that ‘blind’ the sensory 

organs effectively throw the baby out with the bathwater, at least for the duration of the gating.  

Moreover, they are not flexible enough to account for reafference which changes due to external 

environmental state (Bell, 1989). Cancellation mechanisms that can deal with periodic but brief 

events, such as cricket stridulations, cannot sufficiently deal with reafference of long time 

duration, because gating off of a sensory system during reafference that is always present 

effectively incapacitates the sensory system in question.  The weakly electric mormyrid fish, 

whose ampullary receptor afferents display an extended response to its own electric organ 

discharge (EOD) for 100ms stretches typically 5 times per second, is one such example among 

many – broadly inhibiting the ampullary receptor during the EOD response would render it 

nearly useless, since the reafference is nearly always ‘on’.  The early conceptual groundwork of 

Sperry, von Holst and Mittelstaedt predicted a more nuanced approach, whereby a corollary 

discharge, once sent from motor to sensory processing areas, could be sculpted to create a 

negation of the predicted reafference, thereby allowing its cancellation.  Further, we will 

consider a class of circuits that have been shown to perform just such a calculation. 

 

Cerebellum-like circuits 

The early experimental and conceptual work of Sperry, von Holst and Mittelstaedt was a 

means of moving away from the then-dominant reflex theory of motion activation. In doing so, 

they posited and presented evidence for a system which would be capable not simply of silencing 

the sensory organs during reafference, but rather of sculpting a predicted and plastic negative 

image of the signal-corrupting reafference so that it could, by addition, be cancelled out.  These 
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ideas have found their strongest support in work since the 1970s on cerebellum-like circuits. In 

these systems, nearly all of the predictions for such systems made by von Holst / Mittlestaedt / 

Sperry have been borne true, and a considerable literature has worked out the circuitry and 

physiology of mechanisms which allow the formation of such negative images.  A notable body 

of theoretical work has also expanded our understanding of the capabilities and limitations of 

these circuits in constructing negative images.  

With the possible exception of hagfish and lampreys, the brains of all craniates possess a 

cerebellum (Bell et al., 2008). In addition, in many craniates (birds and reptiles excluded) one 

may find other structures that share similarities in anatomy, gene expression, and function with 

the cerebellum. These have been termed cerebellum-like structures.  These exist among many 

disparate taxa and significantly different neural systems, and while their particular 

implementation varies widely across these, the basic circuit architecture that defines them is 

easily recognized.   

These include the electrosensory lobe (ELL) of mormyrids and the dorsal cochlear 

nucleus (Oertel and Young, 2004) of most mammals, already mentioned. Additionally, the ELL 

is present in another class of weakly electric fish, the gymnotids. Further, most basal aquatic 

vertebrates possess a medial octavolateral nucleus (MON) which is used to process 

mechanosensory input from the lateral line, auditory, and vestibular systems.  Excluding the 

bony fish, most animals that have an MON also have a dorsal octavolateral nucleus (DON) that 

processes electrosensory input. The optic tectum of teleosts is thought by possess a cerebellum-

like circuit in its margin layer, and the insect mushroom body has also suggested to share 

features with these systems (Farris, 2011) (for an in-depth review, Bell, 2002). 
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In the following section I will describe the general anatomical, developmental, 

pharmacological and genetic features shared by cerebellum-like circuits, and how these lead to 

their integration of sensory information with a wide array of motor CD and sensory input. 

Having introduced an architectural schema for these systems, I will discuss their specific 

implementations in the DCN and the mormyrid ELL. Further I will describe the physiological 

mechanisms that allow the creation of negative images in these circuits.  Note that in the 

immediately following section, the term ‘cerebellum-like structure’ excludes the cerebellum 

proper, except when otherwise noted.  

 

Anatomy common to cerebellum-like circuits 

 

Figure 1.3: Schematic of major anatomical features of a cerebellum-like circuit. 
Principal cells receive input from peripheral sensors in a sensory input layer or of principal and Purkinje-
like cells.  Sensory afferents terminate on basal dendrites of those cells at proximal apical dendrites (gray) 
or basal dendrites (black), sometimes via interneurons. Principal cells extend widely-arborized spiny 
dendrites into a molecular layer consisting of axons from granule cells residing in a granule cell layer or 
sometimes a non-laminar structure (figure reproduced from (Bell et al., 1997a)). 
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Common identifying features are shared across the class of circuits termed cerebellum-

like (Bell, 2002; Bell et al., 2008; Requarth and Sawtell, 2011; Warren and Sawtell, 2016) 

(Figure 1.3).  The molecular layer can perhaps be considered the defining feature of cerebellum-

like circuits. It contains fine parallel fibers (PFs) that span the breadth of the layer, all oriented in 

approximately the same direction.  PFs arise from a mass of granule cells (GCs) that is typically 

located outside the cerebellum-like structure proper, though in the case of the DCN and the 

cerebellum they are considered part of the structure itself, residing in several masses, the granule 

cell domains, on the periphery of the DCN, and in the granule cell layer beneath the molecular 

layer in the cerebellum.  In some cerebellum-like structures, the parallel fibers also include the 

axons of Golgi cells. Unipolar brush cells, a class of excitatory interneurons, are also present in 

some structures as well (Floris et al., 1994; Mugnaini et al., 2011).  These appear to play a key 

role in generating delayed responses in granule cells, discussed below (Kennedy et al., 2014).  

GCs are densely packed and typically represent the majority of neurons in the CNS (cerebellar 

GCs account for approximately 2/3 of all human neurons (Llinas et al., 2004)). Their small size 

has prevented in vivo recordings until only recently (Chadderton et al., 2004; Kennedy et al., 

2014).  In the cerebellum, the DCN, and the eminentia granularis, which gives rise to parallel 

fibers of the ELL and MON, granule cells have a classic granule cell shape, consisting of small 

cell bodies with several thin, radially-extending dendrites which terminate in claw-like post-

synaptic structures (Bell, 2002).    

The inputs to GCs, mossy fibers (MFs) originate in a broad array of other brain areas and 

typically carry information that is in some way predictive of the primary sensory input that the 

structure is responsible for. In that way they provide information which can be used to predict 

changes in sensation in that modality.  These inputs can be corollary discharge but can also be 
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sensory input from other modalities such as proprioception, or can consist of feedback from 

higher order areas dealing with the same sensory modality. 

PFs synapse onto the spines of principal neurons and onto stellate cells (Montgomery et 

al., 1995). This is similar to the parallel fiber inputs onto Purkinje cells and local interneurons in 

the cerebellum.  The principal cells are cells with spine-covered dendrites. They fall into two 

classes – first, large excitatory output neurons which project to higher brain areas, and the 

second, Purkinje-like in many structures, that make local inhibitory connections onto other cells 

of the same class as well as onto the output principal neurons.  The cell bodies of these two 

classes of cells are typically in a layer below the molecular layer but are sometimes in the 

molecular layer itself. 

Cerebellum-like structures, potentially including the cerebellum, are sensory processing 

structures, and they integrate some type of peripheral sensory input with potentially predictive 

inputs about that modality. That peripheral input comes in via afferents of primary sensory 

neurons such as electroreceptors and targets deeper layers of the structure, where the afferents 

synapse onto principal and Purkinje-like cells, either directly or through local interneurons, some 

of which may be inhibitory and allow for a sign-flip of the incoming signal, allowing excitatory 

signals from the periphery to be represented as inhibitory signals in the circuit.  The afferent 

inputs onto output and Purkinje-like cells occur at basilar dendrites or at proximal apical 

dendrites.  Typically, the peripheral inputs make connections in a manner that preserves a 

mapping of the sensory modality in its representation in cells of the cerebellum-like structure, be 

it a tonotopic representation of frequency-space, as in the DCN, or a somatotopic representation 

of the skin surface, as in the ELL.  

 



 

25 
 

Other commonalities of cerebellum-like structures 

That such similarities exist between structures in widely disparate taxa has naturally led 

to thinking about the source of these similarities, and the extent to which the formation and 

patterning of these structures is controlled by similar underlying genetic mechanisms.  Though 

they are to some extent the result of convergent evolution (Bell, 2002; Bullock et al., 1983), it 

seems that there may exist a kind of genetic framework that can be activated to produce 

cerebellum-like structures.  

Indeed, work in chick has shown that implantation of fibroblast growth factor 8 (FGF8)-

containing beads into the neural tube of chick embryos at the prospective location of caudal 

diencephalon or midbrain produced ectopic growth of cerebellum-like structures (Martinez et al., 

1999).  FGF8, a growth factor family broadly involved in development, cell growth, and 

morphogenesis (O’Leary et al., 2016), acts in this case via a suppressive effect on Otx2. This role 

for Otx genes (Otx1 and Otx2 are murine homologs of the Drosophila orthodenticle (otd) gene) 

in patterning the cerebellum and cerebellum-like structures is further supported by the finding 

that Otx1-/-;Otx2+/- mice develop both ectopic cerebellar tissue and enlarged cerebella that 

replace the entire mesencephalon (Acampora et al., 1997). 

Gene expression patterns are shared between cerebellum-like structures and cerebellum 

to varying degrees. The DCN cartwheel cell in particular shares much in common with cerebellar 

Purkinje cells, at least three different mutations resulting in cell-type-specific degeneration of 

both Purkinje and cartwheel cells (Berrebi et al., 1990).  GluRdelta2, related to ionotropic 

glutamate receptors and necessary for long-term depression (LTD) at the cerebellar PF-Purkinje 

cell synapse (Yawata et al., 2006), is also expressed in most cerebellum-like circuits. Beyond 

mammalian cerebellar Purkinje cells (Yuzaki, 2003), its expression has been established in 
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mammalian DCN, (Petralia et al., 1996) , in the molecular layers of the cerebellum, in MON and 

OTML (and not in other brain regions) in zebrafish (Mikami et al., 2004) and mormyrids, as well 

as the ELL of the mormyrid (Sawtell and Bell, 2013).  

Other genes that are expressed in the cerebellum or cerebellum-like circuits only in 

adulthood are expressed only during development in circuits.  Functional NMDA receptors, for 

example, are expressed in principal cells of the adult DCN (Manis and Molitor, 1996) as well as 

principal cells of the ELL in both adult mormyrids (Grant et al., 1998a) and gymnotids (Berman 

et al., 2001), but are expressed in cerebellar Purkinje cells parallel fiber synapses only during 

development (Dupont et al., 1987), though they are present at climbing fiber synapses (Piochon 

et al., 2007) (Bell et al., 2008; Sawtell and Bell, 2013). 
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Dorsal Cochlear Nucleus  

 

Figure 1.4 Simplified schematic of circuitry of the Dorsal Cochlear Nucleus. 
Peripheral auditory input enters the DCN via the auditory nerve, synapsing onto basal dendrites of 
fusiform cells. Mossy fibers convey a wide range of proporioceptive, vestibular, motor corollary 
discharge, and high-order auditory inputs onto granule cells. Granule cells send parallel fibers into a 
molecular layer, where they synapse onto the spiny arborized dendrites of glutamatergic fusiform cells 
and Purkinje-like glycinergic and GABAergic cartwheel cells. Fusiform cells send the output of the DCN 
to inferior colliculus via the dorsal acoustic stria. Cartwheel cells excite each other but inhibit fusiform 
cells. Several other cell types are not shown.  (reproduced from (Nelson, 2004)) 

 

The mammalian DCN is a brainstem structure that acts in parallel with the ventral 

cochlear nucleus (VCN) as the first stage for central processing of auditory sensory input 

(Figure 1.4).  While the VCN serves largely as a relay and computation area for purely auditory 

input, extracting higher-order features from the Fourier-transformed auditory output of the 

cochlea, the DCN integrates auditory input with a wide array of other inputs in order to 

contextualize and perhaps selectively filter self-generated modulations of audition. Together, 
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these may give upstream auditory areas access to two channels of auditory information – one 

(the VCN) representing reafference and exafference together, and the other, from the VCN, a 

filtered channel containing only exafference.  

DCN’s shares many similarities with other cerebellum-like structures, as first noticed by 

de Nó (Lorente de Nó, 1933, 1979). It is a laminar structure that receives peripheral inputs via 

the auditory nerve, which in turn carries information, as part of the 8th cranial nerve (the 

vestibulocochlear nerve) from the spiral ganglion of the cochlea.  The spiral ganglion contains 

spiral ganglion cells which innervate inner hairs of the cochlea. These inner hair cells are laid out 

along the length of the basilar membrane of the cochlea, and the tonotopy extracted and imposed 

by the acoustico-mechanical structure of the basilar membrane is maintained through to the 

spiral ganglion, the axons of those neurons which form the auditory nerve itself, and finally to 

the tonotopically organized connections it makes onto cells of the DCN and VCN (Cant, 1992; 

Young and Davis, 2002). 

Auditory nerve fibers innervate the deep layer of the DCN, where they make synapses 

onto the smooth basal dendrites of glutamatergic fusiform cells (FCs) and giant cells, together 

the output cells of the DCN, as well as inhibitory glycinergic interneurons called vertical, or 

tuberculoventral cells. As mentioned, the inputs onto these cells classes are tonotopically 

arranged, such that there is a medio-lateral gradient in the DCN from low to high pitch, but the 

exact organization of inputs onto one class versus another, as well as the connectivity between 

them, seems to be tightly regulated and forms the basis of complex response properties of several 

cell classes in the DCN that vary non-monotonically in the frequency and amplitude domains 

(Figure 1.5).  These complex response maps and the underlying connectivity patterns that define 

them give rise to response properties to complex inputs (that is, inputs consisting of more than a 
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single tone) of these same cells , such as selective tuning to notch-filtered broadband noise 

(Young and Davis, 2002), that likely underlie a functional role for the DCN in monoaural sound 

source localization (Oertel and Young, 2004). 

     

 

Figure 1.5 Example response properties of DCN neurons. 
Neurons of the dorsal cochlear nucleus have complex response properties, varying nonlinearly with 
frequency and intensity. (A) Response map of a putative fusiform cell to pure tones of varying frequency 
and amplitude. Note prominent areas of inhibition to the immediate left and right of the main excitatory 
region. (B) Response map of a cartwheel cell. Though CWCs do not receive direct peripheral auditory 
input, they demonstrate complex response patterns to acoustic stimuli, presumably receiving feedback 
from higher order auditory regions via parallel fibers.   

 

As in other cerebellum-like structures, the DCN contains a prominent molecular layer, 

the PFs of which are the axons of glutamatergic granule cells and GABAergic Golgi cells, whose 

cell bodies reside in several distinct regions around the VCN called granule cell domains, as well 

as in the fusiform cell layer (FCL) discussed below (Mugnaini et al., 1980).  The granule cell 

domains receive input from MFs which convey information from a wide range of sources such as 

corollary discharge, information from higher order auditory areas (e.g., inferior colliculus), 

inputs from other sensory modalities such as vestibular information related to head and external 

ear (pinna) movement and position, and proprioceptive inputs that encode jaw and tongue 

movements, among others (Oertel and Young, 2004).  In sum, these inputs are likely to be those 

that are predictive of self-generated changes in auditory input such as endogenous modulations 
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of exogenous sounds, e.g. acoustic filtering of sound by the head and pinna for use in monaural 

sound location, and purely reafferent input such as sounds generated by body movements, e.g. 

chewing or licking.  Of additional note is the presence of unipolar brush cells in the granule cell 

domains (Diño and Mugnaini, 2008; Floris et al., 1994; Mugnaini et al., 2011), which themselves 

receive MF input that is relayed to granule cells and may be involved in the DCN, as they are in 

the mormyrid ELL, in time-delaying granule cell output (Kennedy et al., 2014).  

Parallel fibers synapse onto of the major class of efferent cells of the DCN, the fusiform 

cells, whose soma reside in the fusiform cell layer and whose apical spine-covered dendrites 

extend into the molecular layer. Fusiform cells, along with giant cells, form the output of the 

DCN and project to the IC via the dorsal acoustic stria, and in the IC these signals are brought 

together with the output of the VCN. 

An additional class of cells in the DCN is the cartwheel cell , a cell type whose spine-

covered dendrites arborize extensively in the molecular layer, where its cell body also resides. 

These cells make inhibitory synapses onto fusiform cells as well as onto each other, and are 

considered to be Purkinje-like because they are GABAergic (as well as glycinergic), display a 

Purkinje-like dendritic morphology, and share a similar pattern of gene expression with Purkinje 

cells (Bell et al., 2008).  

The DCN seems to have at least two roles, though the two may be related. In its longer-

recognized role, previous work has shown the DCN to be involved in monaural sound location, 

whereby cues to sound source elevation are derived from spectral notches imposed by acoustic 

filtering through interaction with the head and pinna in a location-dependent manner. That is, 

initially identical sounds arriving from different positions relative to the ear interact with the 

head and pinna, and via acoustic absorption, reflection, and refraction, arrive at the tympanic 
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membrane recognizably different from one another. This filter, termed the head-related-transfer-

function (HRTF) allows for an (almost) one-to-one mapping between sound source elevations 

and filters, so knowing the filter implies the elevation (Musicant et al., 1990; Rice et al., 1992; 

Young et al., 1996). 

These calculations are thought to be mediated at least partially by cells in the DCN that 

selectively respond to exactly the spectral properties that change with elevation (i.e., notches), at 

least for some species.  Work in cat has shown that severing the dorsal acoustic stria, the efferent 

ouput of  the DCN, while leaving VCN output intact effectively removes the ability to 

monoaurally identify sound source elevation, while maintaining localization acuity in other axes. 

(May, 2000).  However, that role may not extend to mice, which like many common prey species 

(Heffner and Heffner, 1988), are relatively bad at sound localization, in particular vertical 

localization (Lauer et al., 2011). The role may perhaps not even extend to other mammals.  The 

mountain beaver Aplodontia rufa, and the pocket gopher,	Geomys bursarius have exceptionally 

large DCNs, the mountain beaver’s being 4-7 times larger than that of any know rodent, but both 

display profoundly diminished hearing in both frequency and threshold, and nearly no acuity in 

sound localization (Godfrey et al., 2016; Heffner and Heffner, 1990; Merzenich et al., 1973). The 

DCN of the mountain beaver has become specialized for the detection of slow (~1Hz) changes in 

air pressure changes (Merzenich et al., 1973).  Presumably this is related to its habitat: long 

subterrestrial tunnels.  The pocket gopher lives in similar subterranean environments, though its 

hearing at the infrasonic frequencies noted for the mountain beaver has not been tested. 

Incidentally, the mountain beaver is commonly considered the most primitive extant rodent 

(Godin, 1964; Nowak and Paradiso, 1999). 
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Several lines of evidence have pointed to a role for the DCN in filtering out self-

generated sound. First, there exist proprioceptive inputs to the DCN other than those related to 

head and neck position (Oertel and Young, 2004). Additionally, some patients who experience a 

type of tinnitus thought to be mediated by pathologies of plasticity in the DCN (coupled with 

peripheral hair cell loss or cochlear neuropathy) (Shore et al., 2016) report shifts in the pitch of 

the tinnitus hallucination in response to jaw movements (termed somatic tinnitus, this typically 

permanent form of tinnitus accounts for approximately 20% of tinnitus cases, and, incidentally, 

began to afflict the author in the weeks leading to the completion of this manuscript).  This other 

role is discussed further in Chapter 3, where I present evidence that the DCN serves to decouple 

exafferent and reafferent auditory signals related to licking, extracting a channel of information 

that represents only sound generated by the outside world.   

 

Electrosensory Lobe 

Outside the elasmobranchs, electroreception is present in four groups of teleost fish – the 

siluriforms, or catfish, the monotypic subfamily Xenomystinae, represented solely by the African 

brown knifefish (Xenomystus nigi) (Bullock and Northcutt, 1982), as well as the weakly electric 

fish of Central and South America – Gymnotidae, and the weakly electric fish of Africa - 

Mormyroidea.  Each of these groups possesses a cerebellum-like electrosensory lobe (ELL).  The 

latter two have active electrosensory systems, that is, they have an electric organ in the tail that 

can generate and discharge a pulsatile or wave-like signal in addition to a passive system of 

electroreceptors.  The ELLs of Gymnotids and Mormyrids display a remarkable number of 

structural similarities despite having evolved separately (Bell, 2002; Bullock et al., 1983). 

Though a comparison of features between the ELL structures of these groups is a fruitful 
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exercise, for the purposes of the remaining text, I will refer strictly to the ELL of the mormyrid 

Gnathonemus petersii, Peter’s elephant-nose fish.  

 

Figure 1.6 Histological section showing the mormyrid electrosensory lobe 
Each major receptor class of the mormyrid is represented somatotopically in the ELL. Ampullary 
afferents terminate in the ventrolateral zone (VLZ). Two class of mormyromast afferents terminate in the 
medial zone (MZ) and dorsolateral zone (DLZ). Knollenorgen afferents project to the nucleus of ELL 
(Not labelled). Parallel fiber inputs originate from granule cells in the eminentia granularis posterior 
(EGp) (reproduced from )(Bell, 1989) 

 

The ELL is an electrosensory processing organ but in fact is responsible for three 

separate types of input that correspond to the three morphological types of electroreceptors found 

in mormyrids, each serving different functions (Szabo, 1965; Bodznick and Montgomery, 2005; 

Kawasaki, 2005) (Figure 1.6). The one of primary concern to the work in this paper is the 

ampullary receptor, which is present in each of the four groups of fish mentioned above, with 

some morphological variation between groups (Szamier and Bennett, 1974). The ampullary 

receptor is the smallest of the three classes and is tuned to low frequency and DC bioelectrical 

signals typically produced by the locomotion and muscular contractions of prey such as insect 

larvae and worms (Kalmijn, 1974; Engelmann et al., 2010; Bodznick and Montgomery, 2005) 
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(Figure 1.7A).   These receptors tile the ventral and dorsal surfaces of the trunk, the face, and the 

mormyrid’s protuberant chin, the Schnauzenorgen, which is tiled particularly densely and is the 

location of approximately half the ampullary receptors.  Concordantly, this chin takes up about 

half of the somatotopic homunculus representing ampullary inputs to the ELL. The 

Schnauzenorgen and a small area above the mouth are electrosensory foveas, the former for 

detection of objects directly below the animal, under the river bottom, and the latter pointing 

forward like an electrosensory headlight (Bacelo et al., 2008).  In addition to responding to low-

amplitude, low-frequency exogenous signals, the ampullary receptors are also strongly driven by 

the animal’s own EOD (Figure 1.7B,C), which can be some five orders of magnitude larger than 

the lowest prey-generated signals the receptors can detect. Passive filtering by the ampullary 

receptor brings that difference to 10 to 100 fold (Chen et al., 2005).  Ampullary receptor 

afferents project to the ventrolateral zone (VLZ) of the ELL, and that will be the area of our 

immediate focus.  
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Figure 1.7 Schematic of electrosensory input in mormyrids 
(A) Mormyrids use a passive system of ampullary receptors (orange) to detect low frequency biogenic 
electric fields generated by prey. An electric organ (purple) present at their tail generates pulsatile electric 
discharges called the Electric Organ Discharge (EOD) that are utilized by the active system of tuberous 
receptors (purple on body), but interfere with passive system encoding of prey signals. (B) The EOD is 
detected by ampullary receptors as prolonged, ringing response that lasts for 100+ms (C) The EOD is 
itself a pulsatile signal lasting about a millisecond.   

 

The remaining two receptors types, the mormyromasts and the Knollenorgen, are used to 

process the animal’s own EOD, and the EOD of conspecifics, respectively.  The former is used 

as for active electrolocation and has been the subject of the majority of study in mormyrids.  The 

Knollenorgen receptors represent a communication channel.  Though the exact nature of these 

communicative signals is not well understood, mormyrids larger than G. petersii have been 

reported to engage in coordinated pack hunting (Arnegard and Carlson, 2005). Mormyromast 

A 

B C 
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afferents project to the medial and dorsolateral zones of the ELL, and Knollenorgen afferents to 

the nucleus of ELL.  

 

 

Figure 1.8 Simplified circuitry of the mormyrid ELL. 
Principal glutamatergic output cells of the ELL, E and I cells, as well as GABAergic Purkinje-like MG 
cells receive electrosensory input via interneurons onto basilar dendrites. These interneurons induce a sign 
change for I-type output and MG cells. MG cells inhibit each other and the output cells. Each of these cell 
classes extends apical dendrites into the molecular layer, where they receive input from parallel fibers. 
Parallel fibers are the axons of granule cells, which receive a wide range of predictive inputs, including 
corollary discharge signals related to the electric organ discharge. (modified from (Sawtell and Williams, 
2008))  

 

Ampullary afferents terminate in the deep layers of the ELL (Figure 1.8) in a 

somatotopic arrangement, targeting the principal cells of the ELL either directly through 
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synapses onto their basilar dendrites, or via interneurons, some of which are inihitory and 

function to flip the sign of the afferent signal. As a result, principal cells of the ELL exist in two 

flavors, E-cells and  I-cells, the former excited by an increase in electrical stimulation at the 

center of its receptive field, and the latter inhibited.  These are the cells recorded from in the 

work described in Chapter 2  A Purkinje-like interneurons called the medium-sized ganglion 

(MG) cells also exists in the ELL. MG cells are Purkinje-like cells, being GABAergic 

interneurons that receive peripheral input and arborize extensively in the molecular layer. They 

inhibit each other and surrounding efferent E and I cells.  MG cells also exist as I-type or E-type.  

In conclsion: The MG cells are more numerous than the efferent cells and make more synapses 

onto parallel fibers (Meek and Grant, 1994),  yet a clear explanation of their role in either 

negative image formation specifically, or peripheral/parallel fiber integration in general, has so 

far been lacking.  

 The output cells and the MG extend spiny apical dendrites into the molecular 

layer where they receive input from PFs. These PFs are the axons of granule cells that project 

from the eminentia granularis posterior (EGp). The MF inputs into EGp in mormyrids are well 

studied and represent a diverse source of inputs. These include a corollary discharge input 

corresponding to the motor signal that initiates the EOD, proprioceptive input related to bending 

of the body or fins, which is critical because the body position dictates the distance between the 

electric organ and electroreceptors thereby dictating the size of the EOD-associated reafference, 

and descending input from higher order electrosensory areas (Bell et al., 1992a).  Together, these 

are sources of predictive information about ongoing sensory input into the electroreceptors. The 

EGp, like the granule cell layer of the cerebellum and the granule cell domains of the DCN, also 

contains GABAergic Golgi cells and unipolar brush cells (Bell, 2002).   
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Sensory Processing 

 Though the organ that was eventually recognized as the ampullary receptor was 

first described in the 17th century by Stefano Lorenzini, it’s function as an electroreceptor wasn’t 

identified until 1960 (Murray, 1960), presumably due to a kind of intellectual sensory 

anthropocentrism.  Ampullary receptors exist in nearly all non-teleost fish, some teleosts as 

described, including the weakly electric, and a few amphibians.  Monotremes such as the 

platypus (Scheich et al., 1986) and at least some dolphins (Czech-Damal et al., 2011) display 

passive electroreception but use a different receptor type innervated by the trigeminal nerve and 

will not be considered further herein. Behavioral thresholds for some elasmobranchs are as low 

as 5nV/cm (Kalmijn, 1982), corresponding to about a car battery between two antipodal points 

on Earth, circumferentially (Enikolopov, 2018).  Individual receptors cells are less sensitive, 

about 2uV/cm in skates, for reasons discussed below. In Gnathonemus petersii, ampullary 

afferents have a threshold of approximately 40uV/cm at the low frequencies, 1-10Hz, that they 

are most responsive to (Engelmann et al., 2010, and confirmed in Figure 2.2).   

Ampullary receptors in mormyrids and elasmobranchs are anatomically and functionally 

similar and both derive from mechanosensory lateral line receptors, but evolved separately, 

having been lost in the teleost ancestor and newly evolved at least twice (Bell, 2002; Bullock et 

al., 1983).  Notably, ampullary organs are “more closely similar within habitat than they are 

taxonomically” (Keller, 2004) and so the below discussion references ampullae of Lorenzini as 

well as the teleost ampullary receptor. 
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Ampullary receptors detect small biogenic electric fields generated near their body by 

predator and prey and it is useful to consider the ethological context in which they are utilized.  

While many fish use vision for prey detection (Bell, 2002; Bullock et al., 1993) mormyrids are 

weakly electric fish are nocturnal (Moller et al., 1979; Westby, 1988), including  G. petersii, 

which inhabits the bottoms of freshwater streams and rivers of Central Africa (Bleckmann and 

von der Emde, 1998; Okedi, 1965).  Stomach analysis in wild-caught mormyrids show that they 

often feed on insect larvae, small crustaceans, and worms (I will spare the reader the 

impressively exhaustive entomological species-lists such research generates) (Corbet Philip S., 

1961; Okedi, 1965).  G. petersii thrives quite well on a diet consisting of the blackworm 

Lumbriculus variegatus in a laboratory setting.  While they do use active electroreception as well 

as vision and chemoreception (Bleckmann and von der Emde, 1998), mormyrids are adept at 

prey detection even in the absence of these when relying solely on the passive system 

(Bleckmann and von der Emde, 1998; von der Emde, 1994).  

Aquatic electrical signals that can be detected by passive electroreception are both biotic 

and abiotic in origin. Abiotic signals are caused by reduction/oxidation processes in sediment, 

seismic activity, lightning, and magnetic storms.  These are mostly DC or low frequency signals 

(Emde, 2013; Keller, 2004) (See Chapter 2 and Conclusion for speculation about how these 

may be dealt with).  It is likely that biotic signals are of greater importance to electroreceptive 

animals, and these are mostly the result of muscle contractions and biochemical processes that 

induce ion flow across thin epithelia such as the gills (Emde, 2013; Peters and Bretschneider, 

1972, wherein electric fields generated by some 60 species are measured).  It’s likely that all 

prey of the mormyrid produce such fields, and notably, wounded specimens produce fields 
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typically one to several orders of magnitude larger than intact ones (Kalmijn, 1988; Keller, 

2004).  

Sensory filtering begins the ampullary receptor. The ampullary receptor organ is 

comprised of several electroreceptor cells arranged with accessory cells in an approximately 

spherical subdermal invaginated chamber called the ampulla. This ampulla sits at the end of a 

narrow canal 100-200um long and filled with conductive gel. The electroreceptor cells are 

innervated by a single myelinated afferent fiber per organ which carries information to the ELL 

(Derbin, 1974).  

The canal acts as a low-impedance shunt, but canal length serves as a low-pass filter.  

Tight junctions of accessory cells within the ampulla electrically isolate the receptor cell 

membrane into a basal portion electrically close to the internal milieu of the animal, and an 

apical portion facing the lumen of the ampulla, isopotential to the external world (Keller, 2004). 

It is this potential difference, between the canal pore and the inside of the animal that the 

receptor cell experiences.  

Pooling across the multiple electroreceptor cells within a single organ been shown to be 

responsible for a noise reduction of approximately an order of magnitude in elasmobranchs, 

though teleost ampullary organs have many fewer electroreceptor cells per organ (Bodznick et 

al., 1993). Further convergence at central targets is likely responsible for more noise reduction, 

and has been theoretically shown to do so in the mormyrid (Engelmann et al., 2010). 

Mormyrid ampullary receptors are linear encoders, responding to a combination of 

amplitude and slope, so-called fractional order filters (Engelmann et al., 2010). Neurons in many 

systems, however, are known to be non-linear (Koch and Segev, 2000), and this includes neurons 

of the ELL  (Gabbiani et al., 1996).   
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Non-linear burst firing (Krahe and Gabbiani, 2004) is a salient feature of gymnotid and 

mormyrid (Sugawara et al., 1999) ELL neurons. Work in the gymnotid has shown them to 

extract, from the tonic firing of peripheral afferent, specific features about prey-like stimuli. This 

burst firing can be modulated by central feedback, allowing context-dependent modulation 

(Bastian and Nguyenkim, 2001). Theoretical work suggests that non-linear encoding is 

particularly important for encoding spatially diffuse stimuli (Chacron, 2006), and such spatial 

characteristics have been shown to determine response properties of gymnotid ELL neurons, 

including bursting, through feedback (Doiron et al., 2003).  

While some principal cells in the mormyrid ELL have simple receptive fields (RFs), their 

response strongest to stimuli at the center of the RF and decaying to baseline with distance from 

the center, the majority display complex, antagonistic center-surround RFs. Others still have 

more complex RFs that consist of multiple center-surround RFs (Metzen et al., 2008), and 

display differential responses to field-strength-matched stimuli presented globally and locally 

(personal observation, data not presented). 

Elasmobranch ampullary receptors are driven strongly across much of their dynamic 

range by reafferent input related to their own ventilation, the process in which water is driven 

through the mouth and across the gills for respiration.  Work in the thornback ray Platyrhinoidis 

triseriata (Montgomery, 1984a), the carpet shark Cephaloscyllium isabella (Bodznick and 

Montgomery, 1992), and the little skate Raja erinacea (New and Bodznick, 1990) has 

demonstrated an approximately five-fold reduction in noise at the first stage of electrosensory 

processing, the DON (Bodznick and Montgomery, 1992).  This reafference is detected by many 

cells across the body of the animal, and Montgomery and Bodznick demonstrated this fact can be 

used to perform ‘common mode rejection’. Features broadly common to multiple receptors are 
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subtracted from each other, with interneurons that receive afferent sensory input inhibiting 

excitatory efferent cells that receive the same the ventilatory reafference (Montgomery and 

Bodznick, 1993a).  Relatedly, integration of input from contralaterally positioned receptors in 

mormyrid has been theoretically shown to  enhance coding of prey-like stimuli and increase 

bandwidth (Engelmann et al., 2010). 

 A more powerful noise-cancellation technique was first described by Bell in the 

mormyrid (Bell, 1982; Bell et al., 1997b) but has since been demonstrated in gymnotid ELL 

(Bastian, 1995) and elasmobranch DON (Bodznick et al., 1999).  These cerebellum-like circuits 

perform as adaptive filters, learning to cancel signals correlated to body motion. The circuit and 

synaptic mechanisms for this are discussed below.  

 

Formation of negative images for cancellation 

The active electrosensory system of the mormyrid poses a significant challenge to passive 

electroreception.  Active electroreception involves the emission of a brief, high frequency pulse 

from an electric organ on the tail of the fish, the EOD, at a rate of approximately 5Hz. The active 

regions of the ELL are exquisitely tuned to object-induced distortions in the electric field 

generated by this discharge.  Though the ampullary receptors of the passive system are tuned to 

respond to low frequency bioelectric fields of aquatic animals, the power of the EOD so dwarfs 

those signals that the EOD produces a sustained ringing response in ampullary receptors that 

lasts for approximately 100ms (Figure 1.7B). Since the typical inter-EOD interval is about 

200ms, but often as low as 30ms, reafference stands to incapacitate passive electroception (Bell 

and Russell, 1978).  Zipser and Bennett (1976) showed that the active regions of the ELL receive 

a corollary discharge of the motor command that evokes the EOD. Positing that the passive 
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system VLZ may also receive such a signal to predict the incoming EOD, Curt Bell showed 

(Bell, 1981) that in fact it does, and that it is used to form a negative image of the ampullary 

receptor response to the EOD.  

 
Figure 1.9 Plastic responses to sensory consequences of the EOD. 
(a) Extracellular recording of corollary discharge response in ELL MG cell. (top left) Response to the 
EOD command before any pairing. (middle left) Pairing the EOD command with a 1ms-long excitatory 
stimulus (arrowhead) produces an immediate and vigorous response. (bottom left) following a brief 
pairing, the EOD command alone evokes a response opposite in effect to that during the pairing. (right 
column) Same as left column but using an inhibitory stimulus. (b) Raster of an MG cell showing 
timecourse of an experiment like that in (a). C=command, S=stimulus, t=0 on top of raster. Note the 
gradual decay of response during the C+S period, and the expression of a negative image following C+S 
pairing. (c) equivalent experiment to (a middle left, bottom left), but with inhibitory stimulus paired at 
increase delays (left column) from the EOD command. (d) Anti-Hebbian learning rule. In vivo experiment 
where PF-evoked ESPSs are paired at different delays with current-injection-evoked dendritic spikes. 
Points represent change in EPSP amplitude as function of this delay. Synaptic depression occurred only 
when EPSP preceded dendritic spike by <50ms. All other delays resulted in potentiation. (a) reproduced 
from Bell, 2001; (b) reproduced from (Bell 1981); (c) reproduced from (Bell, 1982); (d) modified from 
(Bell et al., 1997b)  
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Since the electric organ is a modified muscle, the EOD can be blocked by administering 

the nicotinic acetylcholine receptor antagonist curare, blocking transmission at the 

neuromuscular junctions of the electric organ. While this silences the EOD itself, it does not 

block the command that evokes it. The electromotor neuron volley (EMN) that would produce 

the EOD can easily be detected with surface electrodes near the electric organ, and the ELL 

continues to receive an electric organ corollary discharge (EOCD) via MFs. This allowed the 

presentation of an artificial mimic EOD, the amplitude and timing of which could be modified, 

or it could be omitted entirely.  In vivo recording demonstrated that on presentation of a mimic 

EOD stimulus synchronized to the EOCD, principal cells of the VLZ first show a robust 

response (Figure 1.9A), but within minutes that response to the mimic diminishes without a loss 

of other responsiveness.  Moreover, by omitting the mimic, the response of VLZ principal cells 

to the EOCD itself can be examined, and they respond with a negative image of the initial 

sensory response to the mimic (Figure 1.9A bottom, Figure 1.9B). Further work (Bell, 1982) 

showed that the system is capable of cancelling signals of varied shape, amplitude, and polarity, 

and at varying delays from the EOD command (Figure 1.9C).  This then was the first evidence 

of the kind of system postulated by Sperry, von Holst and Mittelstaedt – a plastic corollary 

discharge, and one that was able to cancel out the effects of a self-generated signal. 

In the ensuing three and half decades, a great deal of effort has gone into explaining how 

these negative images are formed, with the working assumption that cancellation of reafference 

is critical to providing a clean sensory stream for processing relevant information about the 

outside world. Further in vivo and in vitro work determined that plasticity in the ELL was 

implicated in forming these negative images: intracellular current injected into principal cells at 

fixed delays from the EMN led to the formation of in vitro negative images at current amplitudes 
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sufficient to elicit dendritic spikes. This implied that the change must occur at synapses onto 

principal cells, likely PF-principal cells synapse (Bell et al., 1993).  One of the first 

demonstrations of spike-timing dependent plasticity (STDP) showed that in contrast to 

hippocampus and neocortex, plasticity at the PF-ELL principal cell synapse followed an anti-

Hebbian learning rule.  (Bell et al., 1993, 1997b) (Figure 1.9D).  That is, in contrast to classic 

Hebbian learning (Hebb, 1949), correlation between presynaptic signals and postsynaptic 

depolarization leads to weakening of synaptic strength.   

Principal cells of the ELL are able to create negative images at varied delays to the 

EOMC (Figure 1.9C) (Bell et al., 1992a). Critical for this is a mechanism that provides 

predictive signals at varied delays to granule cells. This is a necessary condition of the system 

that allows correlations of the EOMC to temporally delayed sensory consequences of the EOD to 

be detected and cancelled, and is fundamental to what differentiates the system from the gating 

and suppression mechanisms discussed earlier. Recently, groundbreaking work by Kennedy and 

coauthors (Kennedy et al., 2014) has elucidated this underlying mechanism.  It was shown that 

granule cells, in concert with unipolar brush cells that produce a response delayed from the 

EOMC, provide the necessary temporal basis (Figure 1.10).  That basis is shown to match the 
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temporal structure of the reafferent response to the EOD.  That basis seems to be recapitulated in 

findings described in Chapter 2 (Figure 2.10). 

 

 

Figure 1.10 Mossy fiber and UBC responses to EOCD. 
Example spike rasters (gray dots) and smoothed firing rates (black) of putative mossy fibers in response 
to corollary discharge, recorded extracellularly in EGp. Four temporal classes can be identified. (B) As in 
(A), but every line represents smoothed rate of a single cell, color corresponds to normalizing firing rate. 
(C) As in (B), but intracellularly recorded unipolar brush cells (UBC). Note similarity of identified UBC 
responses to ‘Late’ and ‘Pause’ responses recorded from mossy fibers. (duplicated from (Kennedy et al., 
2014)) 
 

These characteristics, a cell that receives both peripheral sensory input and a corollary 

discharge input at a synapse that displays anti-Hebbian STDP, where that CD is available at 

multiple delays from the act itself, together constitute a mechanism by which negative images of 

self-generated sensory input can be formed. PF inputs that predict a postsynaptic (sensory) spike 
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are depressed, and all others are potentiated.  While depression in the system is associative and 

N-Methyl-D-aspartate (NMDA) receptor dependent, potentiation is non-associative (Han et al., 

2000a).  Modelling work has shown that an anti-Hebbian learning rule is better at producing 

negative images and cancellation of self-generated sensory input than other types of learning 

rules (Roberts and Bell, 2000a).  Early modeling work suggested that the system may work by 

way of a delay line, though (Kennedy et al., 2014) has shown otherwise.  Work in gymnotids 

(Bastian, 1995) and elasmobranchs (Bodznick et al., 1999), and more recently mormyrids 

(Requarth and Sawtell, 2014) that the predictive signal need not be a CD but can be 

proprioceptive.  

 

Despite the fact that decades of work have enlightened us as to the synaptic, cellular, and 

circuit mechanisms that produce negative images, until now it has remained unclear whether they 

serve any functional role for the animals that can form them, neither at the neural coding level 

nor at the level of behavior.  On the one hand, a number of factors may prevent negative images 

from being useful – receptor saturation, nonlinearity of central neurons, error resulting from the 

subtraction of large negative images from large reafference. On the other hand, the role that 

negative-image-based cancellation has been assumed to hold may be performed by alternative 

mechanisms demonstrated to function in other systems, and theoretically in this one – common 

mode rejection, center-surround receptive fields, spatial filtering. In the following chapter, I will 

discuss these possibilities in further detail and demonstrate that negative images as formed in the 

mormyrid ELL do in fact have a functional role in improving neuronal coding of prey-like 

stimuli by predicting and removing the consequences of self-generated reafference, and the 

effect is seen at the behavioral level. 
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Internally-generated predictions 
enhance neural and behavioral 

detection of sensory stimuli in an 
electric fish 
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Introduction 

The notion that internally-generated predictions of the sensory consequences of behavior 

play vital roles in sensory processing and motor control has a long history (Grüsser, 1986). 

Seminal behavioral experiments performed in fish and flies in the 1950’s suggested that 

corollary discharge signals cancel inappropriate reflexes that would otherwise be triggered by 

sensory reafference from voluntary movements (Sperry, 1950; von Holst and Mittelstaedt, 1950). 

Although fixed gating or generalized suppression of sensory responses by corollary discharge 

has been demonstrated in a variety of systems (Krasne and Bryan, 1973; Poulet and Hedwig, 

2007; Richmond and Wurtz, 1980; Roberts and Russell, 1972; Zipser and Bennett, 1976), such 

mechanisms seem insufficient in cases where the effects of a motor command are complex, of 

long duration, or vary over time (e.g. due to growth, fatigue, or injury).  Von Holst and others 

posited that the nervous system learns and stores negative images that are highly specific to the 

sensory consequences of particular motor acts (von Holst, 1954). Studies of cerebellum-like 

structures in three separate groups of fish have provided compelling neural correlates of such 

negative images and have elucidated their synaptic, cellular, and circuit mechanisms at a level of 

detail that has thus far not been possible in other systems (but see (Brooks et al., 2015; Kim et 

al., 2015; Leinweber et al., 2017). Rather than cancelling specific reflexes, negative images in 

electrosensory systems are hypothesized to play a more general function, namely, to cancel self-

generated sensory input so that unpredictable, behaviorally relevant stimuli can be processed 

more effectively (Bell et al., 1997a; Bell, 2001; Bodznick et al., 1999). The present study takes 

advantage of unique features of the passive electrosensory system of weakly electric mormyrid 

fish to directly test this hypothesis.  
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Mormyrid fish, as well as a number of non-electrogenic fish, use a passive electrosensory 

system to detect small low-frequency electric fields generated by invertebrate prey (Bodznick 

and Montgomery, 2005). Detecting these signals is more complex for mormyrids, however, 

because, at the same time, they employ an electromotor system for both navigation and 

communication that involves the repeated generation of large pulsed electric fields known as 

electric organ discharges (EODs). Each EOD pulse sets the highly sensitive electroreceptors of 

the passive system into a ringing pattern of activation lasting 100-200 ms (Bell and Russell, 

1978), as long as the typical interval between successive EOD pulses.  Thus, downstream circuits 

of the passive electrosensory system face the challenge of pulling out small prey-related signals 

from ongoing, large-amplitude EOD-induced firing rate modulations in electroreceptor afferents 

(see Figure 1 for an illustration of this problem).  Moreover, since the frequency content of prey-

evoked responses overlaps with that of EOD-evoked responses (Bell and Russell, 1978; Wilkens 

and Hofmann, 2005; Engelmann et al., 2010), temporal filtering is likely insufficient to solve this 

problem. Nevertheless, studies of foraging behavior in mormyrid fish have demonstrated that the 

passive electrosensory system plays a role prey detection even when other sensory modalities, 

including the active electrosensory system, are also used (Bleckmann and von der Emde, 1998).  

Although it is easy to imagine how cancelling the effects of the EOD through the 

generation of negative images could enhance sensory processing (Figure 2.1), there are 

numerous reasons why such a scheme might fail to explain prey detection.  For example, if the 

EOD saturates the electroreceptors, subtracting a negative image would not be sufficient to 

recover signals related to external stimuli.  Other nonlinear properties of neurons in ELL might 

prevent the simple subtraction process schematized in Figure 2.1 from being effective, or noise 

associated with such a subtraction might swamp tiny signals related to prey.  Alternatively, non-
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plastic mechanisms, rather than negative images, might play dominant roles in minimizing the 

effects of the EOD. Such mechanisms could include spatial filtering (BODZNICK and 

MONTGOMERY, 1992; Montgomery, 1984b; Montgomery and Bodznick, 1993b) or reductions 

in neuronal gain (Bastian, 1986; Rotem et al., 2007; Schneider et al., 2014).  

Here we report on a series of experiments that addresses these issues and provides, to our 

knowledge, the first direct evidence that negative images enhance the neural coding and 

behavioral detection of external electrosensory stimuli.  We also use pharmacological 

manipulations of synaptic plasticity in the ELL to provide support for a mechanistic model 

linking granule cell temporal representations, spike timing-dependent plasticity, and negative 

image formation (Bell et al., 1997b; Kennedy et al., 2014; Roberts and Bell, 2000b). 
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Figure 2.1 Schematic illustrating hypothesized role of negative images in enhancing neural coding 
of external stimuli. 
ELL principal cells (center, black) receive sensory input via electroreceptors (lower left, blue) along with 
centrally-originating motor corollary discharge input via granule cells (upper left, green). The sensory 
input contains behaviorally relevant signals related to external objects, such as prey, contaminated by the 
response to the fish’s own EOD. Previous results have provided evidence for negative images (lower 
right, green) formed by anti-Hebbian plasticity consisting of associative synaptic depression (upper right, 
blue) and non-associative synaptic potentiation (upper right, red) acting on a temporally diverse set of 
granule cell corollary discharge inputs (upper left, green). A major remaining question is whether such 
mechanisms are actually sufficient to allow principal cells to detect tiny prey-like signals despite 
interference due to the fish’s EOD (lower right).  

 

Results 
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ELL Neurons Respond to Prey-Like Stimuli despite Self-Generated Interference  

Past studies of mormyrid fish have focused on characterizing negative images and their 

mechanisms but have never directly tested whether ELL principal neurons can detect external 

electrosensory stimuli in the presence of self-generated electrosensory input caused by the EOD.  

We recorded extracellular action potentials from electroreceptor afferent fibers terminating 

within the first central stage of passive electrosensory processing, known as the ventrolateral 

zone (VLZ) of the ELL.  At the same time, we delivered small, low-frequency electrical stimuli 

via a dipole electrode positioned in the water near the electroreceptor innervated by the recorded 

fiber (Figure 2.2A). Such localized electrical stimuli mimic the electrical fields generated by the 

fish’s invertebrate prey (Chacron et al., 2003; Doiron et al., 2003). In our preparation, 

neuromuscular paralysis blocks the EOD (the electric organ is a modified muscle) but the fish is 

unanesthetized and continues to spontaneously emit the motor command that would discharge 

the electric organ at rates of 3-5 Hz. After each spontaneously emitted EOD motor command 

(Figure 2.2B, green lines) we delivered a short electrical pulse that mimics the fish’s EOD (see 

STAR Methods).  In other experiments (Figure 2.6, Figure 2.7, Figure 2.10) we took advantage 

of this same setup to probe responses to corollary discharge in isolation from electrosensory 

input by turning the EOD mimic off or to probe the response to electrosensory input in isolation 

from corollary discharge by deliver the EOD mimic independently of the command. 

Consistent with previous reports, electroreceptor afferents exhibit highly regular action 

potential firing at rates around 50 Hz in the absence of stimulation (Bell, 1982; Engelmann et al., 

2010). As can be seen in the traces in Figure 2.2B, the EOD mimic evoked large firing rate 

modulations that masked responses to the prey-like stimulus. An off-line digital subtraction of 

the average response to the EOD revealed a reliable underlying encoding of the prey-like 
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stimulus (Figure 2.2B, dashed line). This observation is important because it rules out the 

possibility (mentioned in the Introduction) that the EOD prevents afferents from encoding prey-

like signals entirely, for example by saturating their responses.  

 
Figure 2.2 Accurate detection of prey-like stimuli in ELL despite self-generated interference 
(A) Three repetitions of a prey-like stimulus consisting of 400 ms presentations of 5-20 Hz bandpassed 
noise. (B) Smoothed firing rate of an example electroreceptor afferent before (solid line) and after (dashed 
line) off-line subtraction of the average response of the afferent to the EOD. Green lines indicate the times 
of EOD commands emitted spontaneously by the fish. An EOD mimic pulse (0.2 ms duration) was 
delivered 4.5 ms after each EOD command. (C,D) Smoothed firing rates of example E and I cells in 
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response to a prey-like stimulus (stimulus amplitude and waveform same as used for B). (E) 
Quantification of prey-like stimulus detection for the example electroreceptor afferent in B. ROC curve 
was calculated based on the peak firing rate in 100 ms periods following the EOD. Gray dashed line 
indicates chance detection. Solid line indicates prey detection performance in the presence of the EOD. 
Area under ROC curve (AUC) (unsubtracted) =  0.53. Dotted line indicates detection performance after 
subtracting the average response to the EOD (dashed line in B). AUC (subtracted) =  0.72. (F)  
Quantification of prey-like stimulus detection for the example E cell in C. AUC (unsubtracted) =  0.84.  
AUC (subtracted) =  0.87. (G) Quantification of prey-like stimulus detection for the example I cell in D. 
AUC (unsubtracted) =  0.78.  AUC (subtracted) =  0.81. (H) Summary of detection performance for 
electroreceptor afferents (n = 21) across a range of stimulus amplitudes before (solid line) and after 
(dashed line) off-line subtraction of the effects of the EOD. Mean AUC across stimulus intensities for 
electroreceptor afferents (n = 21) was greater after subtracting the effect of the EOD, P < 0.0001, one-
tailed Wilcoxon signed rank test. Statistically significant differences are indicated by asterisks. (I) 
Summary of detection performance for E cells (n = 8).  Mean AUC (unsubtracted) across stimulus 
intensities was greater for E cells than for afferents, P < 0.0001, one-tailed Wilcoxon rank sum test. (J) 
Summary of detection performance for I cells (n = 22).  Mean AUC (unsubtracted) across stimulus 
intensities was greater for I cells than for afferents, P < 0.0001, one-tailed Wilcoxon rank sum test. 
 

Identical experiments were performed while recording from principal cells in the VLZ. 

There are two main classes of ELL principal cells, termed E and I cells. Both are glutamatergic 

neurons that convey the output of ELL to higher stages of electrosensory processing in the 

midbrain (Bell, 1982) (see Methods).  E cells, like electroreceptor afferents, increase their firing 

rates when the voltage outside the electroreceptor is positive, while I cells increase their firing 

rates when the voltage outside the electroreceptor is negative (Figure 2.3).  In contrast to 

electroreceptor afferents, firing rate modulations in E and I cells due to prey-like stimuli are 

larger than the effects of the EOD mimic as can be seen in the example traces (Figure 2.2C,D). 
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Figure 2.3 Basic properties of electroreceptor afferents, E cells, and I cells 
(A) Prey-like stimulus waveform. (B) Sample voltage trace from an electroreceptor afferent recording. 
Red tics indicate the time of the EOD command and are followed by a stimulus artifact resulting from the 
delivery of the EOD mimic. Note the prominent bi-phasic response to the EOD mimic, a burst followed 
by a pause. Upstrokes and downstrokes in the prey-like stimulus evoke firing rate increases and 
decreases, respectively. (C) Sample voltage trace from an E cell recording. Note the minimal response to 
the EOD mimic, consistent with cancellation. Polarity of response to the prey-like stimulus is the same as 
for the electroreceptor afferent. (D) Sample voltage trace from an I cell recording. Note the minimal 
response to the EOD mimic, consistent with cancellation. Polarity of response to the prey-like stimulus is 
opposite that of the electroreceptor afferent and the E cell. (E-G) Gray lines, cross-correlations between 
the prey-like stimulus waveform and the firing rate for all the afferents (E), E cells (F), and I cells (G) 
included in the analysis for Figure 2.2. Black lines, average cross-correlation for each group. 
 

Standard receiver operating characteristic (ROC) analysis was used to quantify these 

results (Dayan and Abbott, 2001). Such analysis confirmed that, in the presence of the EOD, 

detection of a prey-like stimulus based on afferent firing rate is poor over a wide range of 

stimulus amplitudes (Figure 2.2E,H, solid lines). An off-line subtraction of the average response 

to the EOD dramatically improved detection performance in afferents (Figure 2.2E,H, dashed 

lines). Detection performance in E and I cells is far better than that observed in electroreceptor 

afferents over a wide range of stimulus amplitudes, presumably due to cancellation of the effects 

of the EOD (Figure 2.2F,G,I,J, solid lines). This result was not sensitive to details of the ROC 
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analysis, such as the size of the analysis windows (Figure 2.4). Furthermore, off-line subtraction 

of EOD effects in E and I cells yields only small improvement in their detection performance 

(Figure 2.2F,G,I,J,  dashed lines), consistent with the hypothesis that EOD effects are already 

subtracted by negative images.  Together, these results show (1) that the EOD is a substantial 

source of self-generated interference for the passive electrosensory system of mormyrids and (2) 

that this interference is almost completely removed at the first central stage of processing in 

ELL. 

 

Figure 2.4 Superior detection in ELL principal cells versus electroreceptor afferents does not 
depend on ROC analysis window size 
(A) AUC values as a function of the length of the analysis window (10- 300 ms), with the start of the 
window aligned to the time of the EOD. Rows show the same analysis for different prey-like stimulus 
amplitudes. Lines are averages and ribbons are SEM. Data are the same as for Figure 2.2. A value of 100 
ms was used for the analysis in Figure 2. (B) Same as A, but for sliding analysis windows taken 
independent of the times of the EOD.  
 
  

An important consideration for evaluating the function of negative images is the relative 

strength of electroreceptor responses evoked by prey versus those evoked by the EOD. We 

sought to confirm that our experiments were representative of natural conditions in this regard. 

We compared the strength of electroreceptor afferent responses evoked by artificial prey-like 
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stimuli to those evoked by actual prey (a live blackworm) (Figure 2.5). In the presence of a 

worm we observed increased variation in the normally highly-regular afferent firing rates.  Large 

firing rate modulations were sometimes observed, presumably due to spontaneous movements of 

the worm which brought it very near to the pore of the electroreceptor innervated by the recorded 

afferent. Given the steep fall-off of electrical dipole fields with distance (Bodznick and 

Montgomery, 2005), a strong dependence of neural response magnitude on the exact location of 

the prey relative to the electroreceptor is expected. A comparison of the magnitude of firing rate 

variations in the presence of worms to those induced by artificial prey-like stimuli indicate that 

actual prey are capable of inducing firing rate modulations as large or larger than those used in 

the present study.  
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Figure 2.5 Electroreceptor responses to actual prey versus artificial prey-like stimuli 
(A) Firing rate modulations due to blackworms in 4 electroreceptor afferents recorded in the VLZ. For the 
top 3 examples a live worm was attached to a glass pipette and positioned near the electroreceptor pore of 
the recorded afferent. The exact location of the worm relative to the fish depended on the movements and 
configuration of the wriggling worms, which were 1-1.5 cm in length. The bottom example shows the 
response to moving the cut tip of a worm glued to a pipette near the skin with a manipulator (distance < 5 
mm). (B) Firing rates of the same afferents as in A but in the absence of worms. In the bottom example a 
glass pipette was moved near the pore but without a worm attached. (C) Inter-spike interval histograms in 
the presence (orange) and the absence (blue) of worms for the electroreceptor afferent recordings in A. 
(D) Firing rate residuals calculated as maximum deviations from the mean firing rate over sliding 100 ms 
windows for all electroreceptor afferents used in Figure 2.2. Box represents 25th-75th percentile, 
whiskers extend to 1.5*interquartile range. Outliers not plotted. (E) Firing rate residuals for responses of 
electroreceptor afferents to worms, as in D. Black dots represent data points > 2 S.D. from the mean. 
These data points likely come from periods when spontaneous movements of the worm brought it near the 
electroreceptor pore innervated by the recorded afferent. These results suggest that natural prey are 
capable of driving firing rate modulations as large or larger than the artificial prey-like stimuli used in this 
study.  
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Improvements in Neural Detection of Prey-Like Stimuli due to Negative Images 

Although the results in Figure 2.2 show a dramatic improvement in prey detection 

performance in E and I cells compared to electroreceptor afferents, they do not directly establish 

whether or to what extent this improvement is the result of negative images. Two approaches 

were devised to test this. The first takes advantage of our ability to decouple the EOD from the 

motor command that would normally evoke it, such that effects of the EOD on the neural 

detection of prey-like  

stimuli can be tested in the same cell with and without negative images.  Responses to 

prey-like stimuli in E and I cells were measured while delivering EOD mimic pulses paired with 

the fish’s spontaneously emitted EOD motor commands, similar to the experiments shown in 

Figure 2.2, but with the addition of interleaved EOD mimics delivered independent of the fish’s 

commands (Figure 2.6A). EOD commands were paired with the mimic for at least 2 hours prior 

to recording, to allow negative images to form. As expected based on past studies (Bell, 1981, 

1982), E and I cell responses to EOD mimics paired with the command were reduced or, in some 

cases, completely cancelled (Figure 2.6B). In contrast, EOD mimics delivered independent of 

the command evoked strong responses (Figure 2.6C).  Probing the response to the command 

alone revealed temporally-specific negative images of the effect of the EOD mimic (Figure 

2.6D). Such negative images can account for the reduction of the response to EOD mimics 

paired with the command relative to those delivered independent of the command. 
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Figure 2.6 Improvements in neural detection of prey-like stimuli due to negative images 
(A) Schematic of the experimental design. Neural detection of prey-like stimuli was quantified using 
ROC curves calculated for 100 ms periods following the EOD mimics paired with commands (red) as 
well as for interleaved mimics delivered independent of the command (cyan). (B) Firing rate histograms 
triggered on the EOD command for two example E cells (top two rows) and two example I cells (bottom 
two rows). (C) Histograms triggered on an identical EOD mimic delivered independent of the command 
in the same cells. (D) Histograms triggered on the EOD command without an EOD mimic reveal negative 
images of the effects of the mimic in the same cells. (E,F) Summary comparing detection performance for 
E cells (n = 17) and I cells (n = 31) in time windows following EOD mimics paired with the command 
(red) versus mimics delivered independent of the command (cyan).  Mean AUC across stimulus 
intensities was greater when the mimic was paired with the command for both E and I cells, P < 0.0001 
and P < 0.0001,  respectively, one-tailed Wilcoxon signed rank test. (G) For E cells, improvements in 
AUC value for the paired versus independent condition is correlated on a cell by cell basis with the degree 
of cancellation of the EOD mimic in the paired condition, R2 = 0.57.   
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Prey-like stimulus detection performance was better in time-windows following EOD 

mimics paired with commands compared to time-windows following EOD mimics delivered 

independent of the command (Figure 2.6E,F). Since the only difference between the two 

conditions in this experiment is the timing of the EOD mimic relative to centrally-originating 

electric organ corollary discharge signals, improvements in neural coding can be directly 

attributed to negative images. For E cells the difference in detection performance in the two 

conditions (EOD mimics paired versus independent of the command) was correlated on a cell-

by-cell basis with the extent to which responses to the EOD mimic were cancelled by the 

negative image (Figure 2.6G). No such correlation was observed for I cells, possibly due to the 

fact that EOD mimic sometimes drove the spike rate to zero.  Since the magnitude of the 

response to the mimic cannot be determined in such cases, our estimate of the magnitude of 

cancellation is expected to be less accurate for I cells than for E cells. 

A second approach takes advantage of our ability to rapidly induce negative image 

formation, such that the neural detection of prey-like stimuli can be tested in the same cell over 

before, during, and after negative images have formed (Figure 4A).  For these experiments EOD 

mimics were delivered in the same spatial configuration as prey-like stimuli, i.e. locally within 

the receptive field of the recorded unit in contrast to the more spatially uniform EOD mimics 

used in Figure 2.2 and Figure 2.6 (see Methods).  Such conditions mimic situations in which 

the spatial pattern of EOD-induced current flow through the skin changes, e.g. due to the location 

of the fish relative to large objects or non-conducting boundaries. In addition, characterizing 

detection performance in a situation where the spatial characteristics of the EOD mimic and the 

prey-like stimulus match rules out a role for spatial filtering mechanisms in enhancing detection. 
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Figure 2.7 Time course of improvement in neural detection of prey-like stimuli due to negative 
images 
(A) Schematic of the experimental design. Neural detection of prey-like stimuli was quantified using 
ROC curves calculated for baseline periods in which the fish issued EOD commands but no EOD mimics 
were delivered (green), pairing periods in which an EOD mimic was delivered following each command 
(red), and periods in which EOD mimics were delivered independent of the command (cyan). AUC was 
calculated over 100 ms windows following command or mimic onset.  Scale bar: 100 ms. (B,C) Firing 
rate histograms triggered on EOD command or mimic for example E and I cells. Note the reduction in the 
response to the EOD mimic during pairing (early versus late) due to the formation of a negative image 
(green line, late).  Scale bars: 50 Hz, 50 ms in B and 30 Hz, 50 ms in C.  (D,E) Smoothed firing rate early 
versus late in the pairing period for the E cell shown in B. Black lines indicate time of EOD command 
and yellow trace shows two prey-like stimulus presentations. Firing rate modulations evoked by the prey-
like stimulus are masked by the effects of the EOD early during pairing but become evident late in pairing 
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due to cancellation. (F,G) Time course of neural detection performance quantified using ROC analysis for 
the same example E and I cells. Error bars are S.E.M. calculated for repeated prey-like stimulus 
presentations. (H) Averaged data for E cells (n = 5), error bars are the S.E.M. across cells. Detection 
performance drops at the onset of pairing the command with an EOD mimic, P < 0.0001 and 
subsequently improves during pairing, P < 0.0001, multiple linear regression. For EOD mimics presented 
independent of the command, performance drops, P < 0.0001 but does not improve, P = 0.83, multiple 
linear regression. (I) Averaged data for I cells (n = 6) as in (G). Detection performance drops at the onset 
of pairing, P < 0.0001, and subsequently improves, P = 0.034, multiple linear regression. For mimics 
presented independent of the command, performance drops, P < 0.0001 and does not improve, P = 0.73, 
multiple linear regression. (J) Time course of cancellation of the effects of the EOD mimic during pairing 
for E cells as measured by the root mean square amplitude of the firing rate. Same data as in H. Dashed 
line indicates exponential fit. Adjusted R2 =0.98. (K) Same display as J for I cells (n = 6). Adjusted R2 
=0.91. 
 

E and I cells exhibit stable responses with little or no response to the EOD command 

alone prior to pairing with an EOD mimic (Figure 2.7B,C, light green). Pairing an EOD mimic 

with the command resulted in strong initial firing rate modulations that diminished over 10-20 

minutes or ~2,500-5,000 commands (Figure 2.7B,C, red, compare early and late). Turning the 

mimic off revealed a temporally-specific negative image of the response to the mimic during 

pairing (Figure 2.7B,C, dark green), consistent with previous studies. The larger negative 

images observed at the level of firing rates in I versus E cells is likely due to rectification, as 

such differences are not observed in intracellular recordings of the subthreshold membrane 

potential (Bell et al., 1997a; Mohr et al., 2003). Finally, delivering the same EOD mimic 

independent of the command evoked a strong response similar to that observed at the start of 

pairing (Figure 2.7B,C, cyan), consistent with the diminished response late in pairing being due 

to negative images rather than fatigue or peripheral adaptation.  This pattern of results is 

consistent with previous studies (Bell, 1981, 1982). 

The novelty of these experiments was to simultaneously deliver prey-like stimuli 

uncorrelated with the fish’s EOD commands (Figure 2.7D,E), such that neural detection 

performance  could be quantified before, during, and after negative image formation.  Example E 

and I cells are shown in Figure 2.7F,G and averages across cells of each type are shown in 
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Figure 2.7H,I. Prey detection performance was initially high in the absence of an EOD mimic 

(Figure 2.7F-I, green) and dropped sharply when an EOD mimic was paired with the command 

(Figure 2.7F-I, red). We observed a gradual increase in detection performance during pairing, 

consistent with a role for negative images in improving neural coding (Figure 2.7F-I, early 

versus late). Finally, when we delivered the same EOD mimic but now independent of the EOD 

command detection performance dropped once again (Figure 2.7F-I, cyan). No gradual 

improvements in detection performance were observed in this condition, consistent with the 

observation that negative images only form when stimuli are time-locked to the fish’s EOD 

command. The time course of improved prey detection performance during pairing matched the 

time course over which the effects of the EOD were cancelled in the same units (Figure 2.7J,K), 

again consistent with negative images improving neural coding of prey-like stimuli. 

Though it is hypothesized that negative images perform a pure subtraction of the effects 

of the EOD, allowing ELL neurons to selectively encode behaviorally relevant stimuli, this has 

never been directly tested. Alternatively, corollary discharge inputs could reduce neural 

sensitivity to sensory inputs during behavior (Bastian, 1986; Rotem et al., 2007; Schneider et al., 

2014).  We looked for evidence of a change in the sensitivity of principal cell responses to prey-

like stimuli that could contribute to changes in detection performance.  Inspection of the 

responses of the E and I cells used in Figure 2.7 revealed that firing rate modulations tracked the 

waveform of the prey-like stimulus with no changes in the root mean squared amplitude of 

responses early versus late during pairing with an EOD mimic (Figure 2.8A-D).  Instead, we 

observed a clear reduction in the standard deviation of the response to prey-like stimuli late in 

pairing (Figure 2.8E-G). Because the timing of the EOD mimics are controlled by the fish and 

are uncorrelated with the prey-like stimulus, strong responses evoked by the EOD mimic early in 
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the pairing period contribute to the variance of the response to the prey-like stimulus. Hence the 

reduction in the standard deviation of the response to prey-like stimuli late in the pairing period 

is consistent with the improvements in neural detection performance being due mainly or entirely 

to the subtraction of a negative image without any overall changes in sensitivity to the prey-like 

stimulus.   

 

 

Figure 2.8 Cancellation reduces the variance of responses to prey-like stimuli. 
 (A) Prey-like stimulus waveform consisting of 2 seconds of frozen noise. (B) Left, firing rate of two 
example E cells averaged over multiple presentations of a prey-like stimulus early (first 2 minutes) versus 
late (last two minutes) in the pairing period. Only period 100 ms following the command are included in 
the averages. Right, root mean square (RMS) amplitude of the firing rate during the prey-like stimulus 
period for the same cells. (C) Same displays for two example I cells. (D) RMS amplitude of prey-like 
stimulus responses is not different early versus late during pairing for all E and I cells shown in Figure 4 
(n = 11, P = 0.831, two-tailed Wilcoxon signed rank test). (E) Left, standard deviation of the firing rate of 
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two example E cells over multiple presentations of a prey-like stimulus early versus late in the pairing 
period (same cells as in B). Right, standard deviation of the firing rate during the prey-like stimulus 
period for the same cells. (F) Same displays for two example I cells (same cells as in C). (G) Standard 
deviation of prey-like stimulus responses is reduced late versus early during pairing (n = 11, P = 0.00195, 
two-tailed Wilcoxon signed rank test). 
 

Enhanced Behavioral Responses to Prey-Like Stimuli associated with Negative Image Formation 

Are the improvements in neural detection performance we observed accompanied by 

improvements at the behavioral level? To address this question, we took advantage of an 

electromotor behavior that can be readily measured in paralyzed fish under the same 

experimental conditions as the neural recordings described above. The electromotor novelty 

response (NR) is a transient increase in the rate of the EOD command elicited by a sensory 

stimulus (Figure 2.9A). This behavior has been studied extensively in weakly electric fish and 

shares characteristics with orienting responses in other vertebrates (Hall et al., 1995; Post and 

von der Emde, 1999). As in past studies, we use it as a behavioral indication that the fish has 

detected an external stimulus (Hall et al., 1995).  

 

Figure 2.9 Improvements in behavioral responses to prey-like stimuli associated with negative 
image formation 
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(A) Sample EOD command times (bottom) and smoothed EOD command rate illustrating an abrupt 
increase in rate, the novelty response, evoked by the presentation of a prey-like stimulus (gray bar).  Scale 
bar:  5 Hz, 2 seconds. (B) Command rate changes evoked by a prey-like stimulus during  baseline periods 
in which the fish issued EOD commands but no EOD mimics were delivered (green), pairing periods in 
which an EOD mimic was delivered following each command (red), and periods in which EOD mimics 
were delivered independent of the command (cyan) (n = 12 repetitions of the experiment performed in 8 
fish). Behavioral detection of prey-like stimuli, as measured by command rate changes, is stable during 
the first phase, P =  0.31, Friedman's non-parametric test; decreases on initial presentation of EOD mimic, 
P = 0.0038, Friedman's non-parametric test; and then improves during pairing,  P < 0.001, Friedman's 
non-parametric test. Detection drops when the EOD mimic is delivered independent of command, P < 
0.001 and does not improve, P = 0.24, Friedman's non-parametric test. (C) Time constants of cancellation 
of the effects of the EOD during pairing, improvements in neural detection or prey-like stimuli during 
pairing, and increases in behavioral responses to prey-like stimuli during pairing are similar. 
 

We quantified the amplitude of NRs evoked by a prey-like stimulus. The experimental 

design, including both the prey-like stimulus and the EOD mimic amplitudes and spatial 

configurations were identical to those used for the neural recording experiments described in 

Figure 2.7. A baseline level of NRs was established by delivering prey-like stimuli in the 

absence of an EOD mimic (Figure 2.9B, green). Pairing a local EOD mimic with the command 

resulted in an initial drop in NR amplitude followed by a gradual return to baseline levels 

(Figure 2.9B, red), presumably due to the formation of negative images. When the EOD mimic 

was delivered independently of the EOD command NR amplitudes again dropped but without a 

gradual return to baseline (Figure 2.9B, cyan). The lack of improvement in responses to prey-

like stimuli in this condition is presumably because negative images cannot form (Bell, 1982). 

Hence changes in behavioral detection of prey-like stimuli closely mirrored changes in neural 

detection performance measured under the same conditions.  Moreover, cancellation of the 

effects of the EOD, improvements in neural detection performance quantified using ROC 

analysis, and improvements in behavioral detection performance measured using the NR all 

exhibited a similar timecourse (Figure 2.9C).  These results suggest that negative image 

formation not only improves the detection of prey-like stimuli at the level of neural coding in 

ELL but also enhances behavioral responses.  
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Manipulating Synaptic Plasticity in ELL disrupts Neural Coding and Behavioral Responses to 

Prey-Like Stimuli   

To provide a causal test of the hypothesis that negative images improve prey coding and 

detection, we attempted to block the associative synaptic plasticity underlying negative image 

formation.  In vitro studies have demonstrated that anti-Hebbian synaptic plasticity in ELL 

depends on N-Methyl-D-aspartate (NMDA) receptors (Bell et al., 1997b; Han et al., 2000b).   

Micropressure injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid 

(AP5) into the VLZ molecular layer (Figure 2.10A) led to gradual changes in the responses of 

ELL principal cells to the EOD command. By 10-20 minutes after AP5 injections both E and I 

cells exhibited increased firing with a prominent peak at a short delay (~15-20 ms) after the 

command and subsequent pairing with an EOD mimic failed to induce negative images (Figure 

2.10B, Figure 2.10). Such large, sharply peaked command responses are never observed in the 

VLZ of naïve fish and are opposite to what would be expected if AP5 acted mainly to block 

excitatory synaptic transmission.  Moreover, E and I cell responses to the EOD mimic (delivered 

independently of the command) were unchanged in the presence of AP5 (Figure 2.10). In an 

additional set of experiments we compared the effects of AP5 application on command responses 

and negative image formation with several agents reported to block long-term depression (LTD) 

in other systems and brain regions (Bear and Malenka, 1994; Jörntell and Hansel, 2006).  We 

obtained preliminary data for an effect of the broad spectrum kinase inhibitor H7 and no effect of 

phosphatase inhibitors (Figure 2.12), suggesting a similarity with LTD in Purkinje cells and the 

gymnotid ELL (Belmeguenai and Hansel, 2005; Harvey-Girard and Maler, 2013; Harvey-Girard 

et al., 2010).  However, since the effects of H7 were not as large and consistent across cells as 
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those of AP5 and since there is no in vitro data confirming the effects of H7 in the mormyrid 

ELL, we chose to use AP5 for further experiments. 

 
Figure 2.10 Manipulating synaptic plasticity in ELL disrupts neural and behavioral detection of 
prey-like stimuli   
(A) Fluorescent dextran (arrow) marks micropressure injection site of the NMDA receptor antagonist 
AP5 into the ELL molecular layer. Dotted line marks the boundary between the molecular and ganglion 



 

71 
 

cell layers of VLZ.  EGp = eminentia granularis posterior, VLZ = ventrolayeral zone, DLZ = dorsolateral 
zone. Scale bar = 100 um. (B) Smoothed firing rate triggered on the EOD command for an example E cell 
before and after an AP5 injection. (C) Schematic of plasticity rule in ELL principal cells under normal 
conditions (top) and with NMDA receptors blocked (bottom).  (D) Changes in EOD command responses 
in a model ELL principal cell induced by setting the rate of associative synaptic depression to zero 
(compare with panel B). (E) Average command responses of ELL principal cells before AP5 injection (n 
= 40, green)) (left), 0-10 minutes after injection (n = 3, red), 10-40 minutes after injection (n = 11, light 
red), and following saline injections (n = 22, blue). Scale bar: 100 Hz, 50 ms. (F) Left, prey-like stimulus 
detection quantified in 100 ms windows triggered on the EOD command before (green), 0-10 minutes 
after (dark  red) and 10-40 minutes after (light red) AP5 injection and following saline injection (blue). 
Same data as in E. AP5 injection resulted in a significant decrease in detection performance at 10-40 
minutes,  P < 0.0001, one-tailed Wilcoxon rank sum test. No significant changes in detection performance 
were observed after saline injections or when detection performance was quantified late in the command 
cycle when effects of AP5 on firing rate were minimal (right, 100 ms analysis window beginning 100 ms 
after the command). (G) Command rate changes evoked by a prey-like stimulus during a baseline 
condition (green) and following micropressure injections of saline (blue) or AP5 (red) into the ELL 
molecular layer. AP5 injections reduced command rate changes evoked by a prey-like stimulus, P <  
0.0001, whereas saline injections had no effect (P = 0.97, Friedman's non-parametric test, n = 6 
repetitions of the experiment in 6 fish). 
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Figure 2.11 Effects of NMDA receptor blockade on negative image formation and responses to the 
EOD mimic in ELL neurons 
(A) Example cell from the vehicle condition showing the formation of a negative image (bottom panels) 
after 4 minutes of pairing the command with an EOD mimic (-25 uA, arrow). The difference in the 
command response after pairing (post-pre, bottom row) is temporally matched and opposite in polarity to 
the response during pairing (2nd row). Gray outline are s.e.m. (B) Three cells from the AP5 condition 
showing the failure of pairing to induce negative images. Conditions for pairing are the same as for the 
veh condition. Note the prominent responses to the EOD command alone (see main text for explanation). 
(C) Average peak or trough firing rate responses evoked by global EOD mimics (±25 uA) in E and I cells 
in vehicle treated versus AP5 treated fish. Neurons were recorded >15 minutes after application of vehicle 
(fish Ringer’s solution or 0.9% NaCl) or AP5 (300 uM-1 mM) directly onto the exposed surface of the 
VLZ molecular layer. Both excitatory (E) and inhibitory (I) effects on firing rate were evoked for both E 
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and I cells by switching the polarity of the EOD mimic and cells were pooled according to response 
polarity. AP5 treatment did not alter responses to the EOD mimic (E responses: P = 0.797, Student’s t-
test, n= 15 (veh), n = 16 (AP5); I responses: P = 0.688, Student’s t-test, n= 15 (veh), n = 11 (AP5). (D) 
Average traces showing the timing and polarity of responses to the EOD mimics for all of the cells 
included in C.  
 

 

Figure 2.12  Effects of kinase and phosphatase inhibitors on command responses and negative 
image formation 
(A) Average peak or trough firing rate responses to the EOD in E and I cells in vehicle treated versus drug 
treated fish. Neurons were recorded >15 minutes after application of either a vehicle solution (n = 27), 
AP5 (300 uM-1 mM) (n = 27), FK506 (1 mM) (n = 6), Okadaic acid (1 mM) (n = 3), or the kinase 
inhibitor H7 (0.5- 2 mM) (n = 32) directly onto the exposed surface of the VLZ molecular layer. 
Command responses were increased relative to the vehicle condition following AP5 or H7 treatment (P < 
0.0001, Student’s t-test), although the magnitude of the increase for AP5 was larger than for H7. (B) 
Average traces showing temporal profiles of command-evoked firing rates for all of the cells and 
conditions summarized in A. Gray outline are s.e.m. (C) Example cell from the FK506 (phosphatase 
inhibitor) condition showing the formation of a negative image (bottom panels) after 4 minutes of pairing 
the command with an EOD mimic (-25 uA, arrow). (D) Example cell from the H7 (kinase inhibitor) 
condition showing a failure of negative image under the same pairing conditions as used in C. (E) 
Average of 5 cells tested for negative images after H7 treatment. Note, the difference in the command 
response after pairing (post-pre) is not a negative image of the response to the stimulus (pairing-pre) 
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Figure 2.13 Effects of NMDA receptor blockade on behavioral NRs evoked by prey-like stimuli 
Command rate changes evoked by a prey-like stimulus during a baseline condition (green) and following 
micropressure injections of AP5 (red) into the ELL molecular layer. AP5 injections reduced command 
rate changes evoked by a prey-like stimulus (P < 0.001, Friedman's non-parametric test, n = 6 repetitions 
of the experiment in 6 fish) 
 
 

The striking effect of AP5 injection provides a confirmation of models of negative image 

formation based on anti-Hebbian spike timing dependent plasticity at parallel fiber synapses.  In 

vitro studies have shown that, although NMDA receptor antagonists block associative synaptic 

depression of parallel fiber synapses, non-associative potentiation of parallel fiber synapses 

remains intact(Bell et al., 1997b; Han et al., 2000b).  We used a computational model to 

understand the effects of blocking associative depression in vivo. The model is the same as that 

used in a previous study and consists of a single ELL principal cell that receives a large set of 

realistic granule cell corollary discharge responses generated based on past in vivo recordings 

(Kennedy et al., 2014).  After each command the strength of granule cell inputs are adjusted 

according to the measured anti-Hebbian spike timing-dependent plasticity rule. To mimic the 

effects of AP5 injection we set the magnitude of the associative depression component of the 
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plasticity rule to zero while leaving the non-associative potentiation unchanged (Figure 2.10C, 

left). Without any additional tuning, the model principal cell exhibits a gradual increase in 

response at a short delay after the EOD command (Figure 2.10C, right), similar to the effects of 

AP5 injections on actual principal cells responses.  With associative depression blocked, 

presynaptic action potentials driven by the EOD command lead to unchecked potentiation of 

granule cell synapses. The emergence of an early peak in the principal cell response can be 

explained by the observation from a past study that a large majority of granule cells fire at a short 

delay after the EOD motor command (Kennedy et al., 2014). 

 
Next we tested the effects of AP5 injection on responses to prey-like stimuli in ELL 

neurons.  Gradual increases in responses to the EOD command following AP5 injection (Figure 

2.10D; histograms represent pooled responses of E and I cells) were paralleled by a decline in 

neural detection performance (Figure 2.10E, left). A direct effect of AP5 on granule cells in 

these experiments is unlikely because of their remote location in an external granule cell mass 

overlying the ELL molecular layer (Figure 2.10A).  To rule out the possibility that NMDA 

receptor blockade interferes with electrosensory encoding in ELL independent of its effects on 

synaptic plasticity (Marcoux et al., 2015), we analyzed prey-like stimulus detection performance 

in time windows far from the EOD command. Detection performance was unaffected away from 

the command (Figure 2.10E, right), consistent with effects of AP5 being exerted mainly or 

entirely through the elevated firing induced by non-associative potentiation of corollary 

discharge inputs.  

Finally, we measured behavioral NRs induced by prey-like stimuli before and after AP5 

injections.  NRs were evoked by prey-like stimuli delivered to a spatially restricted region of the 

skin, as in the experiments shown in Figure 2.9. Micropressure injections of AP5 were made 
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into the VLZ molecular layer, targeting a somatotopic location corresponding to the location of 

the prey-like stimulus delivered to electroreceptors on the skin.  AP5 injections strongly reduced 

the amplitude of NRs evoked by prey-like stimuli relative to baseline conditions, whereas saline 

injections had no effect (Figure 2.10F). Additional experiments showed similar reductions in 

NRs when AP5 injections were performed immediately after the baseline period (Figure 2.13).  

Agents that block non-associative potentiation in ELL have yet to be identified (Han et al., 

2000b). Hence we were not able to directly test the effects of blocking negative image formation 

on neural or behavioral detection performance. Nevertheless, the results described above indicate 

the potential for synaptic plasticity to powerfully shape the output of ELL and impact behavior. 

 

Discussion 

Extensive past studies of cerebellum-like structures at the first stage of electrosensory 

processing in fish (Bastian, 1996; Bell et al., 1997a, 2008; Bodznick et al., 1999; Harvey-Girard 

et al., 2010; Harvey-Girard and Maler, 2013; Bol et al., 2011; Marsat and Maler, 2011; Harvey-

Girard and Maler, 2013) and a more recent study of a cerebellum-like structure at the first stage 

of auditory processing in mice (Singla et al., 2017), suggest that the subtraction of internally-

generated predictions of the sensory consequences of behavior enhance the detection and 

processing of external sensory stimuli. The present study provides both neurophysiological and 

behavioral evidence supporting this hypothesis. We showed that the formation of negative image 

of the predictable electrosensory consequences of the fish’s own EOD was accompanied by 

improvements in the neural coding of external, prey-like stimuli in ELL principal cells. 

Importantly, the improvements could not be accounted for by other processes, such as spatial 
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filtering or gain changes.  Such improvements were also observed under several different 

experimental conditions (e.g. different relative strengths of external versus self-generated 

sensory inputs) intended to represent a range of behaviorally relevant conditions.  An additional 

set of experiments demonstrated an enhancement of behavioral responses to prey-like stimuli 

that paralleled negative image formation. Finally, disrupting synaptic plasticity in ELL interfered 

with both neural coding and behavioral responses to prey-like stimuli.  Together with past 

studies, these results provide an integrated account--spanning levels of synapses, circuits, 

sensory coding, and behavior--of how combining external sensory input with internally-

generated prediction enhances sensory processing.  

Although it is has long been hypothesized that cancelling self-generated inputs via the 

generation of negative images could enhance sensory processing (Sperry, 1950; von Holst and 

Mittelstaedt, 1950)(Figure 2.1), there are a number of reasons why implementing such a scheme 

in neural circuits could be problematic. First, while such models assume linear operations, actual 

neurons, including those in ELL, are non-linear in numerous respects (Gabbiani et al., 1996; 

Koch and Segev, 2000).  Cancellation in principal cells is hypothesized to be due to the linear 

summation of electrosensory input onto basilar dendrites and corollary discharge input onto 

apical dendrites. Such linear summation is desirable because it would allow negative images to 

cancel the effects of the EOD without altering the manner in which they encode behaviorally 

relevant sensory inputs.  However, studies of ELL in weakly electric gymnotid fish have shown 

that lesions or inactivation of the granule cells dramatically increase the gain of responses to 

electrosensory stimuli in principal cell (Bastian, 1986). Studies of gymnotid ELL have also 

demonstrated that non-linear, burst firing mechanisms are critical for encoding prey-like 

stimuli(Chacron et al., 2003; Gabbiani et al., 1996; Metzner et al., 1998; Oswald et al., 2004) and 
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that the dynamics of burst firing  can be altered by dendritic inputs (Chacron et al., 2005; 

Mehaffey et al., 2007; Turner et al., 2002).  Principal cells in the mormyrid ELL also exhibit 

burst firing (Sugawara et al., 1999), raising the possibility that the negative image—a large 

dendritic input—might interfere with burst dynamics and the coding of prey-like stimuli. 

Nevertheless, our results show that negative images improve neural detection performance 

(Figure 2.6 and Figure 2.7) without grossly altering responses to prey-like stimuli (Figure 2.8).  

Hence our findings are consistent with the notion that negative images perform a pure 

subtraction of the effects of the effects of the EOD. How linear behavior arises out of 

interactions between nonlinear components is an important general question in neuroscience that 

may be illuminated by further studies of ELL.  

Variability or noise is an additional key consideration for any scheme relying on the 

subtraction of two large signals. ELL neuron responses to prey-like stimuli are expected to be 

subject to noise (for example associated with synaptic transmission) proportional to the sum of 

the variance of the negative image and the variance of the response to the EOD.   Noise due to 

the subtraction of these two large signals might be expected to overwhelm responses to prey. 

Results of the present study indicate that this is not the case, as demonstrated for example, by the 

observation that negative images enhance neural detection performance across a range of prey-

like stimulus amplitudes (Figure 2.6). Whether ELL employs specific mechanisms for reducing 

noise is another topic for future studies.  Revising existing models of ELL to incorporate realistic 

assumptions regarding nonlinearities in the system and estimates of noise constrained by the data 

will further strengthen our understanding of how synaptic plasticity operating within the well-

defined circuitry of ELL shapes adaptive neural processing and behavior. Failure of more 

realistic models to match the data will motivate studies of additional aspects of ELL circuitry 
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that are not well understood. For example, current models largely ignore the role of inhibition 

and do not distinguish between two distinct classes of ELL neurons—the glutamatergic efferent 

cells studied here versus the GABAergic medium ganglion (MG) cells. Both classes integrate 

peripheral electrosensory input and plastic corollary discharge signals (Bell et al., 1997c).  MG 

cells inhibit efferent cells and share numerous similarities with cerebellar Purkinje cells (Bell et 

al., 2008). 

The dramatic effects of blocking NMDARs in ELL provide strong support for existing 

models of negative image formation based on anti-Hebbian spike timing-dependent plasticity 

(Kennedy et al., 2014; Roberts and Bell, 2000b).  Such models predict that with NMDAR-

dependent associative synaptic depression blocked, non-associative potentiation will proceed 

unchecked and the response of an ELL principal cell to the EOD command will reflect the sum 

of its granule cell inputs. The temporal profile of ELL principal cell responses after NMDAR 

blockade, indeed, closely resembled the summed granule cell corollary discharge response as 

determined by recordings from a large number of granule cells in a previous study (Kennedy et 

al., 2014).  Regarding the cellular mechanisms for synaptic plasticity in the mormyrid ELL, 

several comparisons to other systems can be drawn based on previous studies and our present 

results.  The NMDA receptor dependence of associative depression in the mormyrid ELL is 

shared by some forms of long-term depression (LTD) in the neocortex, hippocampus, dorsal 

cochlear nucleus, gymnotid ELL, and cerebellum (Bear and Malenka, 1994; Harvey-Girard and 

Maler, 2013; Harvey-Girard et al., 2010; Jörntell and Hansel, 2006; Tzounopoulos et al., 2007).  

However, unlike at mature parallel fiber-Purkinje cell synapses, transmission at parallel fiber 

synapse-principal cell synapses in ELL exhibits a prominent NMDA receptor-mediated 

component (Berman and Maler, 1998; Grant et al., 1998b). Moreover, the NMDA receptor-
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dependence of LTD in Purkinje cells is due to NMDA receptor-mediated calcium influx at 

climbing fiber synapses rather than at parallel fiber synapses (Piochon et al., 2010). Preliminary 

evidence from in vivo drug applications in the present study (Figure 2.12) suggests that kinase 

inhibitors may be necessary for associative depression in the momyrid ELL. This requires 

verification in vitro. However, if correct, it would indicate an additional similarity between 

plasticity in cerebellum-like structures (including the ELL of both mormyrid and gymnotid fish) 

and the cerebellum (Belmeguenai and Hansel, 2005; Harvey-Girard et al., 2010; Harvey-Girard 

and Maler, 2013).  In contrast, NMDA receptor-dependent LTD depends on phosphatases in the 

neocortex and hippocampus (Bear and Malenka, 1994).  More broadly, these observations are 

interesting in light of the evidence that dysregulation of synaptic plasticity may play a role in 

neurological disorders ranging from autism to tinnitus (Auerbach et al., 2011; Bear and Malenka, 

1994; Shore et al., 2016).   Our results provide a clear case in which dysregulation of synaptic 

plasticity leads to aberrant circuit output and disruptions of sensory processing and behavior. 

Methods 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Male and female Mormyrid fish (7-12 cm in length) of the species Gnathonemus petersii 

were used in these experiments.   Fish were housed in 60 gallon tanks in groups of 5-20. Water 

conductivity was maintained between 40-65 microsiemens. both in the fish’s home tanks and 

during experiments. All experiments performed in this study adhere to the American 

Physiological Society’s Guiding Principles in the Care and Use of Animals and were approved 

by the Institutional Animal Care and Use Committee of Columbia University. 
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METHOD DETAILS 

Surgery 

Fish were anesthetized (MS:222, 1:25,000) and held against a foam pad.  Skin on the 

dorsal surface of the head was removed and a long-lasting local anesthetic (0.75% Bupivacaine) 

was applied to the wound margins.  A plastic rod was cemented to the anterior portion of the 

skull to hold the head rigid.  The posterior portion of the skull overlying ELL was removed. In a 

subset of experiments the valvula cerebelli was reflected laterally allowing direct visualization of 

the molecular layer of the caudal lobe of the cerebellum and the eminentia granularis posterior 

(EGp).  Gallamine triethiodide (Flaxedil) was given at the end of the surgery (~20 µg/cm of body 

length) and the anesthetic was removed. Aerated water was passed over the fish’s gills for 

respiration.  Paralysis blocks the effect of electromotoneurons on the electric organ, preventing 

the EOD, but the motor command signal that would normally elicit an EOD continues to be 

emitted by the electromotoneurons at a variable rate of 2 to 5 Hz.  The timing of the EOD motor 

command can be measured precisely (see below) and the central effects of electric organ 

corollary discharge inputs can be observed in isolation from the electrosensory input that would 

normally result from the EOD.   

 

Electrophysiology 

Extracellular single-unit recordings were made using glass microelectrodes (2-10 

Mohms) filled with 2M NaCl, as described previously (Bell, 1982; Requarth and Sawtell, 2014).  

Recording locations within the VLZ were first established using characteristic field potentials 

evoked by the EOD command (Bell et al., 1992b). The precise location of the recording pipette 

with respect to the VLZ somatotopic map was subsequently determined by finding the skin 
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region for which low-frequency electrosensory stimulation delivered via a dipole electrode 

evoked multi-unit responses. Ampullary electroreceptor afferents, E cells and I cells are located 

in different layers of ELL and have distinctive electrophysiological characteristics (Bell, 1982; 

Bell and Szabo, 1986).  Ampullary afferents terminate in the deep layers of ELL, exhibit highly 

regular spontaneous firing at around 50 Hz, and increase firing rate in response to an 

electrosensory stimulus that makes the pore of the receptor positive with respect to the basal face 

within the body (Bell and Russell, 1978; Engelmann et al., 2010).  E cells are located in the 

plexiform layer and I cell in the ganglion layer. E and I cells both fire much more irregularly and 

at lower rates than afferents (Bell, 1982). E cells are excited by the same stimulus polarity as 

afferents while I cells are excited by the opposite polarity. Cross-correlation analysis confirmed 

that units identified as E and I cells are non-overlapping groups with respect to their responses to 

low-frequency electrosensory stimuli (Figure 2.3). Previous studies using intracellular recording 

and biocytin labeling and antidromic stimulation from the midbrain have shown that E and I cells 

correspond to two morphologically distinct types of ELL efferent cells known as large fusiform 

and large ganglion cells (Bell et al., 1997c).  In addition to efferent cells, the other major large 

cells of ELL are the medium ganglion cells (Bell et al., 1997c; Grant et al., 1998b; Han et al., 

1999).  Recordings were occasionally obtained from medium ganglion cells identified, as in 

previous studies, by the presence of two distinct spike types (Bell et al., 1997c; Grant et al., 

1998b).  Such recordings were not included in the present analysis. 

 

EOD mimics 

The EOD motor command signal was recorded with a Ag-AgCl electrode placed over the 

electric organ. The command signal is the synchronized volley of electromotoneurons that would 
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normally elicit an EOD in the absence of neuromuscular blockade. The command signal lasts 

about 3 ms and consists of a small negative wave followed by three larger biphasic waves. Onset 

of EOD command was recorded as the negative peak of the first large biphasic wave in the 

command signal. When locked to the electric organ motor command, the EOD mimic was 

presented 4.5ms following this time. For Figure 2.2 and Figure 2.6 the EOD mimic was a 200 

us duration square pulse delivered between an electrode in the stomach and another positioned 

near the electric organ in the tail. The amplitude was 200 uA at the output of the stimulus 

isolation unit for Figure 2.2 and 30-50 uA for Figure 2.6. For both experiments the electrode in 

the stomach was negative. A previous study has shown that the effects of such pulses on 

ampullary afferent firing are similar to those of the fish’s natural EOD (Bell and Russell, 1978).  

Past studies of the natural EOD in non-paralyzed mormyrid fish show that its effects on passive 

electroreceptors vary in magnitude depending on water conductivity (Bell and Russell, 1978), 

which is subject to large variation in the natural habitat of mormyrids (e.g. due to rainfall and 

seasonal flooding).  The spatial pattern of activation due to the EOD may also vary, for example 

depending on the location of the fish relative to large objects or non-conducting boundaries or 

due to physical damage to the skin. For these reasons, the amplitude and spatial patterns of EOD 

mimics were varied in our experiments (see STAR Methods). The amplitude of the EOD mimic 

used in Figure 2.2 was chosen to evoke firing rate modulations in ampullary afferents at the top 

of the range reported previously for the natural EOD (Bell and Russell, 1978). Smaller EOD 

mimic amplitudes were chosen for Figure 2.6 because their effects were cancelled relatively 

rapidly (within 1-2 hours), making it easier to study the significance of cancellation and negative 

images for prey detection.  The effects of EOD mimics in these experiments are still within the 

range reported previously for the natural EOD. For Figure 2.7 - Figure 2.10 EOD mimics were 
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delivered locally through a dipole stimulus. The mimic used in these experiments was a 

previously recorded natural EOD waveform digitized, stored on a waveform generator (Rigol 

DG1022U) and presented through an analog stimulus isolation unit (SIU) (A-M systems, Model 

2200). The peak-to-peak amplitude of the mimic measured at the output of the SIU was 8 uA. 

Local delivery of the EOD mimic in these experiments minimized the possibility that spatial 

filtering could play a role in suppressing responses to the EOD mimic relative to prey-like 

stimuli. Local delivery of EOD mimics also made it possible to tightly connect 

electrophysiological measurements of prey-like stimulus detection performance with behavioral 

responses to prey-like stimuli. For local stimuli, behavioral novelty responses are presumably 

driven by a spatially restricted set of cells including those from which we recorded. This is not 

necessarily the case if the mimic is delivered globally since the entire ELL map is activated.  

 

Prey-like stimuli 

Prey-like stimuli consisted of white noise to which a 5-20 Hz band-pass Butterworth 

filter was applied. Previous studies have shown that ampullary afferents in mormyrid fish 

respond well to stimuli within this frequency range (Engelmann et al., 2010). Sampling 

frequency was 10 kHz, and duration was 400 ms (Figure 2.2) or 2000 ms (remaining 

experiments). Stimuli were stored and delivered via a Cambridge Electronic Designs 

(Cambridge, UK) Power 1401 mkII device which performed digital to analog conversion. This 

signal was passed to an analog stimulus isolation unit (A-M Systems, Model 2200) which in turn 

was connected to a stimulating dipole (two Ag-AgCl balls 3 mm apart). For experiments in 

Figure 2.2 and Figure 2.6 the dipole was positioned 1 cm from the skin using a spacer 

connected to the dipole.  In the remaining experiments the dipole was positioned 1-2 mm from 
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the skin. The amplitude of prey-like stimuli used in Figure 2.7 - Figure 2.10 was 0.04 uA peak-

to-peak at the output of the stimulus isolation unit.  

 

AP5 injections 

Micropipettes for pressure injections were constructed immediately preceding use using 

three-barrel glass pipette (1.2mm OD per barrel, #3B120F-4, World Precision Instruments, 

Sarasota, FL ) pulled to a long taper and tips broken to ~20 uM under visual guidance.  One 

barrel was filled with 1 mM APV in 0.9% saline, and the remaining barrels filled with saline, and 

1 mM glutamate. In most experiments alexa 594 dextran was included in the pipette to allow for 

histological verification of the injection site. Prior to use, suitable ejection duration to deliver 15 

nL at 20 PSI was calculated for each pipette barrel using previously described techniques 

(Bastian, 1993; Malpeli and Schiller, 1979).  Typical ejection times were ~600 ms.  After finding 

a suitable site for recording VLZ principal neurons, the location was noted, the recording pipette 

retracted, and the injection pipette tip placed at the recording pipette tip's point of entry. Basic 

trigonometric calculation was used to target a point 125 uM lateral to the recording site to target 

the VLZ molecular layer.  The recording pipette was reinserted, and neurons within ±100um of 

the initial recording targeting site were recorded. Injection sites in the VLZ molecular layer were 

verified histologically using standard methods as described below. 

 

Novelty Response Experiments 

Experiments were performed in an isolation chamber. An open-bottomed chamber (60 x 

60 x 60cm) was constructed from ¼ inch plywood and lined with sound isolating open-cell foam.  

Following paralysis and resumption of spontaneous EOD commands, the chamber was lowered 
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over the preparation and fish were allowed to adapt for 60 min before initiation of the 

experiment. Experiments shown in Figure 2.9 consisted of three 40 minute periods in succession 

with each period consisting of 20 prey-like stimulus presentations. Each presentation was 2 sec 

in duration with an approximately 120 s interstimulus interval. Custom software was used to 

make delivery of a prey-like stimulus conditional on a stable EOD rate in the preceding 10 

seconds. This was done to avoid spontaneous EOD accelerations from contaminating the results. 

Both the prey-like stimulus and the EOD mimic were presented via a local dipole situated over 

the face, between the eye and nares. The amplitude of the prey-like stimulus and the EOD mimic 

were identical to those used in the electrophysiological experiments shown in Figure 2.7. 

Analysis included only those fish which the prey-like stimulus evoked an average command rate 

increase of  >1.5 standard deviations above baseline during the initial command-alone period, as 

calculated by bootstrap analysis described below. 

 

Modeling 

We used a previously described model of negative image formation to simulate the 

effects of blocking associative synaptic depression on ELL neuron corollary discharge responses 

(Kennedy et al., 2014). Briefly, we modeled an ELL neuron as a passive, current-based leaky 

unit receiving excitatory input from 20,000 model granule cells , with anti-Hebbian spike 

timing-dependent plasticity at granule cell-ELL neuron synapses , and EPSPs fit to granule 

cell-evoked EPSPs recorded intracellularly (Grant et al., 1998). Because effects of AP5 were 

observed on responses to the command alone without an electrosensory stimulus, sensory input 

(r i(t))

(wi )
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to the ELL neurons was not included in the model. The granule cell-ELL neuron learning rule 

has the form: . 

if the ELL neuron spiked at time t, and 0 otherwise; determines the time 

dependence of associative depression. In vivo and in vitro recordings have demonstrated an anti-

Hebbian synaptic plasticity rule in efferent cells of mormyrid and gymnotid fish (Harvey-

Girard et al., 2010), although the exact timing dependence has not been characterized in 

mormyrids. We simulated the effects of pharmacological blockade of NMDA receptors by 

setting  to zero, i.e. turning associative depression off. 

Histology 

After recording, fish were deeply anesthetized with a concentrated solution of MS:222 

(1:10,000) and brains removed and fixed in 4% paraformaldehyde for at least 24 hours. 60 uM 

sections of ELL were cut on a cryostat or vibratome and a fluorescent microscope was used to 

visualize AP5 injection sites marked by Alexa 594 dextran. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Analysis of spike train data 

Electrophysiological data was digitized with a CED Power1401 MkII (Cambridge Electronic 

Design, Cambridge, UK) and analyzed in accompanying Spike2 software (v7.12c). Extracellular 

voltages were digitized at 20 kHz, and action potentials times extracted using the built-in peak-

finding algorithm.  Further analysis was performed in Matlab using custom scripts. 

 

i!w = Δ+r i(t)− Δ−
postδ (t) r i(t ')ζ (t − t ')dt '

−∞

t

∫

postδ (t) = 1 ζ (t)

Δ−
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ROC analysis 

Spike trains were smoothed with a 10 ms symmetrical Gaussian kernel to create a 

continuous firing rate.  Maximum firing rate over the 100 ms period following either the EOD 

command in the case of command + mimic or command-alone periods, or the 100 ms period 

starting 4.5ms before an EOD mimic delivered independent of the command. Only time 

windows within which no other EOD commands or mimics appeared were analyzed. 

Additionally, time windows which include the start or end of a prey-like stimulus were ignored.  

Analysis was performed using custom Matlab scripts for calculating the ROC curve, and 

trapezoidal approximation was used to calculate the area under the ROC curve (AUC). Figure 

2.4 demonstrates that results are qualititatively similar across a range of such periods from 10-

300ms.  Additionally, performing the analysis over randomly chosen time points along the spike 

train, not locked to a command or mimic also shows qualitatively similar results. 

 

Novelty response analysis 

Novelty responses were quantified by taking the maximum EOD command rate during 

the 1 s following the onset of a prey-like stimulus presentation. A baseline rate was calculated by 

bootstrapping, as described below. Data is presented as deviation from this baseline. For 

bootstrapping we calculated the maximum command rate for all 1s long segments in the 

experiments (spaced 200 ms apart, so overlapping by 800 ms) and used the mean of that as 

baseline, deviations from which are plotted as the command rate change (Figure 2.9B and 

Figure 2.10G).  
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Introduction 

The first central stage of mammalian auditory processing occurs within the dorsal and 

ventral divisions of the cochlear nucleus (Cant, 1992).  Based on similarities in their evolution, 

development, gene expression patterns, and anatomical arrangement, the DCN is considered to 

belong to a class of so-called cerebellum-like sensory structures (Bell, 2002; Berrebi et al., 1990; 

Lorente de Nó, 1979; Mugnaini et al., 1980; Oertel and Young, 2004).  Other cerebellum-like 

structures include the first central stages of electrosensory and mechanosensory lateral line 

processing in several groups of fish. Numerous cell and fiber types are shared by all of these 

cerebellum-like structures and the cerebellum itself including: mossy fibers, granule cells, 

parallel fibers, Golgi cells, molecular layer interneurons, and Purkinje or Purkinje-like cells. A 

hallmark of the circuitry of cerebellum-like sensory structures is the integration of direct input 

from peripheral sensory receptors (e.g. electroreceptors in the case of cerebellum-like structures 

in fish and auditory nerve fibers in the case of DCN) with a diverse array of sensory and motor 

signals conveyed by a granule cell-parallel fiber system.  

A primary site of this integration within DCN is the fusiform cell. Fusiform cells are also 

the major output cell of DCN and project to higher stages of auditory processing such as the 

inferior colliculus. The basilar dendrites of fusiform cells are contacted by auditory nerve fibers, 

which form a tonotopic map within the deep layer of DCN (Figure 3.1) (Cant, 1992; Oertel and 

Young, 2004).  Their apical dendrites extend into a superficial molecular layer where they are 

contacted by parallel fibers. Parallel fibers arise from granule cells located in so-called granule 

cell domains (GCDs) around the margins of the nucleus and cross through different tonotopic 

regions of DCN (Mugnaini et al., 1980).  Granule cells receive a wide variety of signals, both 

auditory and non-auditory, from mossy fibers originating in a number of different brain 
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regions(Oertel and Young, 2004). Parallel fiber, but not auditory nerve fiber synapses, have been 

shown to exhibit forms of long-term associative synaptic plasticity in vitro (Fujino and Oertel, 

2003; Tzounopoulos et al., 2004; Zhao and Tzounopoulos, 2011).  Though previous in vivo 

studies of DCN have extensively characterized auditory response properties in anesthetized or 

decerebrate animals (Young and Davis, 2002), much less is known about the functional 

significance of its cerebellum-like circuitry (Kanold and Young, 2001; Shore and Zhou, 2006; 

Wigderson et al., 2016).  

 
Figure 3.1 Cerebellum-like circuitry of DCN.  
Fusiform cells integrate direct auditory nerve fiber input (orange) with a diverse array of auditory and 
non-auditory inputs conveyed by a mossy fiber-granule cell-parallel fiber system (blue) similar to that 
found in the cerebellum and cerebellum-like structures associated with electrosensory processing in fish. 
Cartwheel cells (green) also receive parallel fiber input but lack direct input from the auditory nerve. 
Cartwheel cells inhibit fusiform cells. Our hypothesis regarding DCN function is that mossy fibers 
convey information related to the animal’s own movements and behavior, which serves to cancel out 
responses to self-generated acoustic stimuli. Such cancellation could be achieved by anti-Hebbian 
plasticity at parallel fiber synapses onto fusiform and/or cartwheel cells, as has been shown for 
cerebellum-like sensory structures in fish. For clarity, some DCN cell types and inputs have been 
omitted.  
 

Some of the best clues come from studies of cerebellum-like structures associated with 

electrosensory processing in fish. Such studies have shown that anti-Hebbian synaptic plasticity 
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acting on proprioceptive, electrosensory, and motor corollary discharge signals conveyed by 

parallel fibers serve to cancel principal cell responses to self-generated electrosensory inputs, e.g. 

those arising from the fish’s own movements or electromotor behavior (Bell et al., 1997a, 2008).  

Cancellation of self-generated electrosensory inputs allows externally-generated, behaviorally 

relevant stimuli to be processed more effectively. Guided by these results, we set out to test the 

hypothesis that the cerebellum-like circuitry of the DCN functions to cancel responses to self-

generated sounds. 

To this end we developed a preparation to study neural responses to self-generated 

sounds in the auditory brainstem of awake, behaving mice. We chose licking behavior because it 

is stereotyped and repetitive, can be elicited in head-fixed animals during electrophysiological 

recordings, and, as we demonstrate, generates sounds which are a potential source of interference 

for the mouse auditory system. 

 

Results 

DCN neurons respond preferentially to external versus self-generated sounds 

We found that rhythmic licking generates sounds within the hearing range of the mouse 

and that such sounds exhibit stereotyped spectral and temporal profiles that were similar across 

mice (Figure 3.2a, Figure 3.3). The temporal profile of the licking sound is shown by the root 

mean squared (RMS) amplitude of the microphone recording aligned to tongue contact with the 

lick spout (Figure 3.2a, white trace). Though the exact physical origin of the licking sounds was 

not determined, tongue-to-spout contact appears not to be the main cause. As can be seen in both 

the spectrogram and RMS amplitude trace from the representative mouse shown in Figure 3.2a, 

licking sounds typically consist of an early component that begins before contact as well as a 
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larger late component that peaks ~50 ms after contact, during tongue retraction (Figure 3.2a and 

Figure 3.3) 

.  

Figure 3.2 Self-generated sounds strongly affect VCN but not DCN neurons. 
(a) Average spectrogram of self-generated sounds during licking for a representative mouse.  Arrow and 
dotted line indicate time of tongue contact with the lick spout. Solid white line indicates the root mean 
squared (RMS) amplitude of the microphone recording. (b) Left, dextran-conjugated Alexa 594 labeling 
(green) at recording sites in DCN and VCN (arrowheads). DAPI, red.  Right, higher magnification of 
dashed white box on left showing a labeled fusiform cell (arrowhead). (c) Example ventral cochlear 
nucleus (VCN) unit response during licking.  Arrows and dotted lines indicate times of tongue contact 
with the lick spout.  Traces represent the microphone recording (top), smoothed firing rate (middle), and 
the VCN unit recording (bottom; scale: 30 µV).  (d) Top, average RMS amplitude of the licking sound 
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during VCN unit recordings (scale bar: 1 a.u.). Bottom, average VCN lick-triggered firing rate (n = 21).  
Thin lines are s.e.m. (e) Example DCN unit response during licking. Scale bar and display same as in c.  
(f) Top, average RMS amplitude of the licking sound during DCN unit recordings.  Bottom, average lick-
triggered responses of all DCN units (n = 25), excluding those exhibiting complex-spikes.  Compared to 
VCN units, DCN units exhibited smaller temporal modulations related to licking (peak-to-trough firing 
rate for VCN: 43.8 ± 26.9 Hz, n = 21; for DCN: 19.7 ± 19.9 Hz, n = 25, mean and S.D.,  P = 0.0005, 
Wilcoxon Rank Sum Test). Scale bar and display same as in d. (g) Z-scored lick responses (see Methods) 
were significantly smaller in DCN compared to VCN units (P = 0.00002, Wilcoxon Rank Sum Test). 
Median responses are indicated by solid lines.  
 

 

 

Figure 3.3 Characteristics of self-generated licking sounds in head-fixed mice. 
(a) Video stills from a representative mouse.  Top, still of the mouse at rest.  Bottom, zoomed in stills of 
the dash white box at different points during the lick cycle: i. jaw opening, ii. tongue protrusion and lick 
spout contact, iii-iv. tongue retraction, v. jaw closure. (b) The average spectrogram of licking sounds 
across mice (n = 20) triggered on tongue contact with the lick spout. White circles show the time-
frequency peaks of the spectrograms of each individual mouse. Red crosses show time-frequency peaks 
of the average spectrogram.  Dotted white line indicates time of tongue contact with the spout.  Solid 
white line indicates the average RMS across mice.  Roman numerals indicate the timing of the video stills 
shown in a. (c) Four examples of lick-triggered spectrograms from individual mice. White crosses show 
time-frequency peaks.  Dotted line shows time of tongue contact with spout. (d) Histogram of the timing 
of the largest RMS peak of the licking sound with respect to onset of tongue contact with the lick spout. 
(e) Histogram of the timing of the largest RMS peak of the licking sound with respect to offset of tongue 
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contact with the lick spout. (f) Histogram of the frequencies at which peaks in the lick-triggered 
spectrogram occur, showing that the lick-triggered sound consists of three distinct spectral peaks (dotted 
lines). 
 

To determine whether licking sounds evoke neural responses that could interfere with 

auditory processing and, if so, whether such responses are cancelled out in the DCN, we 

compared neural activity during licking in well-isolated single-units in the ventral cochlear 

nucleus (VCN) and DCN. Since VCN receives direct auditory nerve input but lacks cerebellum-

like circuitry, we hypothesized that VCN units would respond to acoustic stimuli regardless of 

whether they are self- or externally-generated.  Recording locations were judged based on 

characteristic reversals of tonotopy at the DCN/VCN border (Luo et al., 2009; Muniak, 2013) 

and verified by iontophoresis of a dextran-conjugated fluorescent dye (Figure 3.2b, white 

arrowheads indicate recording sites, Figure 3.4 and Methods). Though unambiguous criteria for 

linking physiological response properties with morphological cell classes have not yet been 

established for the awake mouse DCN (Ma and Brenowitz, 2012), several properties of the 

recorded units indicate that they likely correspond to fusiform cells, including their high 

spontaneous firing rates and purely excitatory responses to acoustic stimuli (Figure 3.5 and 

Methods) (Davis et al., 1996; Hancock and Voigt, 2002; Rhode, 1999; Young, 1980; Young and 

Brownell, 1976). Units exhibiting complex spikes, putative cartwheel cell interneurons (Manis et 

al., 1994; Zhang and Oertel, 1993) (Figure 3.1), were also encountered and analyzed separately. 

Results for complex-spiking units are reported in Figure 3.8. 
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Figure 3.4 Identification and verification of recording sites in VCN and DCN. 
(a) Rectified extracellular multiunit activity (each row is the average of 15 presentations) recorded on an 
electrode penetration through the auditory brainstem in response to 100 ms tones ranging in frequency 
from 5-50 kHz (gray rectangles). As the electrode passes through DCN the frequency evoking the largest 
multiunit response smoothly decreases. DCN units were isolated in DCN at depths between 100 µm and 
300 µm.  A sudden increase in frequency (occurring between depths of 400 µm and 600 µm) indicated 
entrance into VCN.  VCN units were isolated at depths between 800 µm and 1000 µm. (b) Histological 
verification of recording sites in the same animal as the multiunit recordings shown in a. Dextran-
conjugated Alexa 594 (green) was iontophoretically injected at depths of 100 µm and 800 µm.  Scale bar 
= 200 µm. (c) Iontophoretic injections of dextran-conjugated Alexa 594 at recording sites (arrows) in 
DCN (top) and VCN (bottom) in 3 additional animals.  Scale bars = 200 µm. 
 
 

 
Figure 3.5 Baseline firing and sound-evoked responses in DCN units. 
(a) Histogram of spontaneous firing rates of all units recorded in DCN (n = 73), excluding complex-
spiking units.  The average spontaneous rate was 48.3 ± 28.2 Hz (mean and s.d.).  No DCN units met 
previously established criteria for type II or type I/III responses, i.e. a spontaneous rate less than 2.5 Hz 
(arrow). Type II and I/III responses are associated with a major class of DCN interneuron known as 
vertical cells. (b) Histogram of responses to sound stimuli in DCN units (n = 60), excluding units with 
complex spikes.  Stimuli included the mimic of the licking sound (12 dB SPL), 5-15 kHz bandpassed 
noise (15 dB SPL), and broadband noise used in pairing experiments recorded with a silicon probe. 
Average maximum noise response was 50.6 ± 26.3 Hz (mean and s.d.).  No units showed inhibitory sound 
responses, a criterion for type III-i response cell types. 
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Consistent with the possibility that licking behavior causes significant self-generated 

sounds, VCN units exhibited an overall firing rate elevation during licking as well as firing rate 

modulations (Figure 3.2c,d, blue traces) that tracked the RMS amplitude of the licking sound 

(black traces).  In contrast, DCN units exhibited substantially weaker firing rate modulations 

during licking (Figure 3.2e-g, red traces and circles).  Though these results are consistent with 

cancellation of self-generated sounds in DCN, an alternative explanation is that differences 

between VCN and DCN responses during licking are due to systematic differences in their 

auditory response properties.  

 

We evaluated this possibility in a subset of VCN and DCN units by comparing activity during 

licking to activity during delivery of an externally-generated acoustic stimulus with temporal and 

spectral properties that roughly matched the licking sounds recorded across mice (Figure 3.6a, 

Methods).  This stimulus is referred to henceforth as the lick mimic and was presented outside 

of licking bouts, when the mouse was still.  Though the match between actual sounds generated 

by licking and the lick mimic is not expected to be perfect, for example due to issues such as 

bone conduction, this stimulus nevertheless provided a simple and principled means of 

comparing auditory responses in VCN and DCN. Strong responses to the lick mimic were 

observed in both VCN (Figure 3.6b,c, blue traces) and DCN units (Figure 3.6d,e, red traces). 

The strength of responses during licking was highly correlated with the strength of responses to 

the lick mimic in VCN units (Figure 3.6f, blue circles). This is exactly what is expected if VCN 

licking responses are indeed due to self-generated sounds. In contrast, there was no significant 

correlation between mimic and licking responses in DCN units (Figure 3.6f, red circles), such 

that even units with strong responses to the lick mimic failed to respond during licking. These 
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observations suggest that weaker responses to licking in DCN compared to VCN cannot be 

explained by differences in auditory sensitivity between the two regions. What then is the 

mechanism underlying the apparent reduction of responses to self-generated sounds during 

licking behavior in DCN?  

 

Figure 3.6 Responses to self-generated versus external sounds in VCN and DCN 
(a) Spectrogram of the lick mimic generated from microphone recordings from 5 mice (Methods).  
Overlaid white line represents the RMS amplitude.  (b) Example VCN unit response to the lick mimic.  
Same unit as in Figure 3.2c. Traces represent a schematic of the RMS of the mimic (top), smoothed 
firing rate (middle), and the VCN unit recording (bottom; scale bar: 30 µV). (c), Top, schematic of the 
RMS of the lick mimic. Bottom, average VCN unit response to the lick mimic (n = 6). Thin lines are 
s.e.m.  The lick mimic was delivered at 12 dB SPL in all experiments. (d, e) Same scale bar and display 
as b, c but for DCN unit responses to the mimic (n = 13).  Traces in d are from same unit shown in 
Figure 3.2e. VCN and DCN unit responses to the mimic were not significantly different (P = 0.32, 
Wilcoxon Rank Sum Test). (f) Responses to licking were highly correlated to those observed in the same 
units to the lick mimic for VCN (n = 6, P < 0.001, r = 0.95, linear regression t-test) but not DCN 
recordings (n = 13, P = 0.79, r = 0.0007, linear regression t-test).   
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One possibility is that the overall sensitivity of DCN units to sound is reduced during 

licking behavior. Indeed, an overall suppression of auditory responsiveness during behavior has 

been reported in a variety of systems (Eliades and Wang, 2003; Poulet and Hedwig, 2002), 

including the mouse auditory cortex(Rummell et al., 2016; Schneider et al., 2014). To test this, 

we compared DCN unit responses to an externally-generated acoustic stimulus (bandpassed 

noise 5-15 kHz, 15dB SPL) delivered either during licking (Figure 3.7a, lick and noise) or when 

the mouse was still (Figure 3.7a, noise alone).  Responses to the acoustic stimulus were 

indistinguishable under the two conditions (Figure 3.7a,b). In addition, overall firing rates in 

DCN units were similar when mice were licking versus still (Figure 3.7c). Together, these 

results are inconsistent with an overall suppression of auditory sensitivity in DCN during licking 

and point instead to a mechanism for selectively canceling self-generated sounds.   

 

 

Figure 3.7 DCN responses to acoustic stimuli are not suppressed during licking. 
(a) Example DCN unit response to an acoustic stimulus (bandpassed filtered 5-15 kHz, 15 dB 
SPL) played while the mouse was still versus during licking.  Gray bar indicates stimulus 
duration. (b) No differences in responses were observed when the mouse was still versus licking 
(n = 9, P = 0.49, Wilcoxon Signed Rank Test). (c) Overall firing rates for DCN units were 
similar when the mouse was licking versus still. 
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Non-auditory signals related to licking revealed in DCN of deafened mice 

In addition to auditory nerve input, DCN receives non-auditory, behavior-related signals 

conveyed by mossy fibers. Previous studies of cerebellum-like structures in fish have shown that 

behavior-related signals conveyed by mossy fibers serve to selectively cancel self-generated 

electrosensory input(Bell et al., 1997a, 2008). Though electrophysiological correlates of non-

auditory mossy fiber inputs to DCN have been characterized in anesthetized or decerebrate 

preparations, e.g. using electrical stimulation of somatosensory brain regions projecting to DCN 

(Kanold and Young, 2001; Shore and Zhou, 2006; Wigderson et al., 2016), responses to non-

auditory inputs have not yet been demonstrated in awake, behaving animals. To isolate non-

auditory responses related to licking behavior we recorded from DCN in deafened mice (n = 3). 

Deafening (see Methods) was confirmed by a lack of observable behavioral responses to 

acoustic stimuli and by recording auditory-evoked field potentials in DCN before and after 

deafening (Figure 3.8a). For recordings in deafened mice we focused exclusively on units that 

exhibited both isolated action potentials, known as simple spikes, and brief, high-frequency 

bursts of action potentials, known as complex spikes (Figure 3.8b, green boxes). Such complex-

spiking units correspond to a class of DCN interneuron known as cartwheel cells (CWCs) that 

share numerous similarities with Purkinje cells in the cerebellum (Figure 3.1) (Manis et al., 

1994; Zhang and Oertel, 1993).  CWCs lack auditory nerve input, receive massive input from 

parallel fibers, and inhibit fusiform cells.  Our reasons for focusing on CWCs were twofold: (1) 

the complex spike is a distinctive electrophysiological signature of CWCs, which allowed us to 

be confident that we were recording in the DCN even in the absence of sound-evoked responses 

in the deafened mice and (2) CWCs provide a convenient readout of non-auditory inputs 
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conveyed by granule cells. Granule cells themselves are too small to be reliably isolated using 

conventional extracellular recording techniques.     

 

 

 

Figure 3.8 Non-auditory responses related to licking in DCN complex-spiking units. 
(a) Sound-evoked field potentials (50 ms, broadband noise, averaged over 50 presentations) recorded in 
DCN of the same mouse before (left) and after (right) surgical deafening.  Note complete absence of 
sound-evoked field potentials after deafening. (b) Example DCN complex-spiking unit recorded during 
licking in a surgically deafened mouse.  Arrows and dotted lines indicate times of tongue contact with the 
lick spout.  Top trace, microphone recording. Below, extracellular voltage from a DCN complex-spiking 
unit (scale: 30 µV).  i, ii, Expanded traces from boxed regions showing complex spike (CS) (shaded 
rectangle) and simple spike (SS) waveforms. (c,d) Lick-triggered SS and CS firing rates for two complex-
spiking units recorded in deafened mice. Thin lines are s.e.m. Gray traces show the average lick-triggered 
response of shuffled spike trains. Data in c are from same unit as example traces in b. Top trace (black) 
is the RMS amplitude of the licking sound (scale bar = 1 a.u.). (e) Summary of z-scored lick responses of 
11 complex-spiking units recorded in 3 surgically deafened mice. 8 showed significant lick responses in 
their SS firing and 3 showed significant lick responses in their CS firing (a=0.01, see Methods). Median 
responses are indicated by solid lines.  (f) Overall CS firing rates increased slightly during periods of 
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licking in deafened mice (n = 11, P =0.04, Wilcoxon Signed Rank Test). (g) Lick-triggered SS and CS 
firing rates for a complex-spiking unit recorded in a hearing mouse. Same display as in c. (h) Mimic-
triggered SS and CS firing rates for a complex-spiking unit recorded in a hearing mouse. Same unit as 
shown in g. (i) Summary of licking and mimic responses in complex-spiking units recorded in hearing 
mice.  Average Z-score responses to licking (n = 23) were 8.2 ± 4.4 for SSs and 3.8 ± 4.4 for CSs.  
Average Z-score responses to the mimic (n = 12) were 10.1 ± 4.9 for SSs and 3.2 ± 3.3 for CSs. 
 

In deafened mice, 9 of 11 complex-spiking units exhibited significant simple and/or 

complex spike firing rate modulations related to licking (Figure 3.8c-e, green traces). The 

overall rate of complex spike firing also increased slightly during licking (Figure 3.8f). These 

results indicate that DCN receives non-auditory information related to licking behavior. Granule 

cells provide the main excitatory input to CWCs. Hence the non-auditory, licking-related 

responses we observed in CWCs are likely due to signals conveyed by parallel fibers.  

We also recorded from complex-spiking units in hearing mice. Most complex-spiking 

units exhibited simple and complex spike firing rate modulations related both to licking (Figure 

3.8g) and to presentation of the mimic when the mouse was still (Figure 3.8h). Prominent 

responses to both licking and to the mimic (Figure 3.8i) are consistent with the notion that 

CWCs receive both non-auditory and auditory signals conveyed by granule cells. This is 

consistent with anatomical evidence for prominent non-auditory as well as auditory input to 

GCDs (Oertel and Young, 2004) and previous electrophysiological evidence for prominent 

auditory responses in complex-spiking units in awake mice (Portfors and Roberts, 2007).  

 

A role for the spinal trigeminal nucleus in cancelling self-generated sounds 

Based on previous microstimulation and anatomical tracing studies, the spinal trigeminal nucleus 

(Sp5) is expected to be the major source of mossy fiber input to DCN conveying somatosensory 

information related to licking behavior (Haenggeli et al., 2005; Shore and Zhou, 2006; Zhou and 

Shore, 2004). As expected from past studies in other mammals, injection of an anterograde viral 
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tracer (AAV2-GFP) into mouse Sp5 resulted in labeled mossy fibers in the granule cell domains 

(GCDs) of DCN (n = 3; Figure 3.9a, arrowheads) as well as in the cerebellum (data not shown).  

If non-auditory, licking related inputs from Sp5 serve to cancel out responses to self-generated 

acoustic stimuli in DCN, transiently silencing such inputs should reveal prominent licking-

related responses in DCN neurons. Indeed, micropressure injection of the action potential 

blocker lidocaine into Sp5 led to an increase in overall firing in putative DCN output cells during 

licking as well as an increased modulation of firing (Figure 3.9b,d red) that tracked the 

amplitude of the licking sound (Figure 3.9b, black lines). No such changes were observed after 

saline injection (Figure 3.9c,d, purple). Furthermore, increases in licking responses after 

lidocaine injection cannot be explained by differences in sensitivity to acoustic stimuli between 

lidocaine and saline groups (Figure 3.9e), changes in licking rate after lidocaine injection 

(Figure 3.9f), or changes in the amplitude of licking sounds after lidocaine injection (Figure 

3.9g).  
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Figure 3.9 A role for the spinal trigeminal nucleus in cancelling self-generated sounds in DCN. 
(a) Labeled mossy fibers were observed in DCN granule cell domains (GCD) after injection of an 
anterograde viral tracer (AAV2-GFP) into the ipsilateral Sp5. Scale bars: 200 µm. Right, higher 
magnification views of areas indicated by dotted rectangle. Scale bars: 100 µm.  White arrowheads 
indicate labeled mossy fibers in GCDs.  (b,c) Lick-triggered response of DCN cells before (left) and after 
(right) injection of lidocaine (b, n = 10) or saline (c, n = 8) into Sp5.  Thin lines are s.e.m. Solid black 
lines show the RMS amplitude of the licking sound (scale bars: 1 a.u.). (d) Lidocaine injection resulted in 
a significant increase in z-scored lick responses in DCN units (P = 0.0098, Wilcoxon Signed Rank Test, 
red) while no significant increases in z-scored lick responses occurred after saline injection (P = 0.31, 



 

106 
 

Wilcoxon Signed Rank Test, purple). (e) Auditory responses to the mimic were not significantly different 
in lidocaine and saline groups (P = 0.87, Wilcoxon Rank Sum Test). (f) Lick rate did not differ before and 
after injection of lidocaine (P = 0.77, Wilcoxon Signed Rank Test) or saline (P = 0.25, Wilcoxon Signed 
Rank Test). (g) Changes in z-score lick responses were not correlated with changes in the maximum RMS 
of the licking sound after lidocaine injection (red, P = 0.36, linear regression t-test).  Changes in the 
maximum RMS of the licking sound did not differ between lidocaine and saline groups (P = 0.51, 
Wilcoxon Rank Sum Test). 
 
Adaptive cancellation of sounds correlated with behavior in DCN neurons 

Studies of cerebellum-like structures in fish have shown that cancellation of self-generated inputs 

is not fixed but reflects an adaptive filtering process in which anti-Hebbian synaptic plasticity 

reduces correlations between principal cell activity and behavior-related signals conveyed by 

granule cells (Bell et al., 1997a, 2008).  Similar anti-Hebbian plasticity rules have been described 

at granule cell synapses in DCN (Fujino and Oertel, 2003; Tzounopoulos et al., 2004; Zhao and 

Tzounopoulos, 2011). Adaptive filtering in DCN would explain both how diverse sources of 

mossy fiber input are sculpted into patterns of synaptic input that selectively cancel responses to 

self-generated sounds and how such patterns are updated if the auditory consequences of a given 

behavior change. To test whether DCN is capable of adaptive filtering we delivered an external 

sound (broadband or bandpassed noise 5-15 kHz) temporally correlated with licking (30 ms after 

tongue contact). The conditions were the same as those for the experiments shown in Figure 3.7, 

except that many more sound presentations were used. Recordings were made using both glass 

microelectrodes and multi-site silicon probe electrodes (Figure 3.11). Use of the latter aided the 

maintenance of single-unit isolation through long bouts of licking. Responses of putative DCN 

output cells to the correlated sound declined over the course of several minutes of pairing (>1000 

paired lick-sound presentations) (Figure 3.10a-d,h, red lines).  Such declines were not due to 

overall changes in firing rate, but rather were specific to the period of the noise-evoked response 

(Figure 3.10a-d,h, black lines). Decreases in DCN responses to sounds correlated with licking 

are unlikely to reflect adaptation of peripheral auditory input as they were not observed in a 
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separate group of DCN units in which an identical external sound was presented at the same rate 

but at random times relative to lick contact (Figure 3.10e,f,h, yellow lines). Furthermore, no 

changes in sound-evoked responses were observed in VCN units when the external sound was 

temporally correlated with licking (Figure 3.10g,h, blue lines). The magnitude of the reductions 

in response to acoustic stimuli correlated with licking varied substantially across DCN units 

(Figure 3.10i). We found no relationships between the magnitude of such reductions and a 

number of behavioral and neural parameters, including licking rate, licking variability, baseline 

firing rate, and the initial magnitude of noise-evoked responses (Figure 3.12). More definitive 

criteria for identifying DCN cell types, such as juxtacellular labeling and antidromic stimulation, 

along with a thorough characterization of auditory response properties may, in future, provide 

insights into the source of this variation.  Overall, these results are consistent with a plastic 

cancellation or adaptive filtering of self-generated stimuli in DCN similar to that described 

previously in cerebellum-like structures in fish. 
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Figure 3.10 Adaptive cancellation of sounds correlated with behavior in DCN. 
(a-d) Top, response of an example DCN unit to an acoustic stimulus (broadband or bandpassed filtered 
noise 5-15 kHz) presented correlated with lick onset. Lighter traces show responses to later licks, 
averaged in bins of 150 licks. Bottom, final response of this cell minus initial response to the sound plus 
lick. Thin lines are s.e.m. Left gray area shows the stimulus presentation period. Left dashed line shows 
the time of lick onset. Right dashed line and gray box show the mean and standard deviation, respectively, 
of the time of the next lick. (e, f) Same display for two DCN units for which the acoustic stimulus was 
played uncorrelated with the onset time of a lick. (g) Same display for an example VCN unit in which the 
acoustic stimulus was presented correlated with the onset time of a lick. (h) Group data showing average 
changes in noise-evoked responses over the course of repeated stimulus presentations.  For DCN 
correlated units (red) the best fit decay rate was 0.0225 per 100 licks (n = 20, P = 6 x 10-15, linear 
regression t-test), for DCN uncorrelated units (yellow) the best fit decay rate was 0.001 but was not 
significantly different from 0 (n = 11, P = 0.42, linear regression t-test), and for VCN units (blue) the best 
fit decay rate was 0.001 but was not significantly different from 0 (n = 7, P = 0.56, linear regression t-
test). Error bars are s.e.m. (i) Scatter plot of decay rates of best-fit exponentials fit separately for every 
unit. Horizontal black lines show the median value for each group. Open symbols correspond to the units 
used as examples in panels a-g. 
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Figure 3.11 Silicon Probe Recordings in the DCN. 
Representative 16-channel silicon probe recordings from the mouse dorsal cochlear nucleus. Electrode 
sites were arranged in a vertical linear array with individual sites separated by 25 µm. Tracks were made 
until a well-isolated unit emerged on a single electrode site. (a) A single unit with clear responses to 25 
kHz and broadband noise (bottom trace). (b) A recording from the dorsal cochlear nucleus in another 
mouse showing multiunit responses to 35 kHz, 40 kHz, and broadband noise across multiple sites. A 
well-isolated single unit appears on the fourth most ventral site and has clear responses to 30 kHz (bottom 
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trace), 35 kHz, and broadband noise. 

 
 

Figure 3.12 Pairing induced reductions in DCN responses to correlated sounds are not related to 
variability in behavior or neural responses. 
(a) Changes in licking behavior cannot explain pairing induced reductions in DCN responses.  Lick rates 
at the start (first 150 licks) and end (last 150 licks) of the pairing experiments shown in Figure 3.10.  
There was no difference in early versus late lick rates in DCN correlated (n = 20, P = 0.9, Wilcoxon 
Signed Rank Test), uncorrelated (n = 11, P = 0.9, Wilcoxon Signed Rank Test), or VCN correlated 
conditions (n = 7, P = 0.56, Wilcoxon Signed Rank Test).  There also was no difference in lick rates 
between the three groups (P = 0.08, Kruskal Wallis test). (b-h) To examine possible sources of the 
variance in cancellation amongst DCN units in which acoustic stimuli were paired with licking, we also 
performed a multilinear regression with the variables shown in the figure as regressors. (b) The slope of 
the change during the pairing period (if any) in the lick rate did not correlate with decay rate during 
pairing (n = 20, P = 0.81). (c) The variability of licking, defined as the standard deviation of the interlick 
intervals between the twenty most recent licks, did not correlate with the decay rate during pairing (n = 
20, P = 0.29). (d) The mean lick rate did not correlate with the decay rate during pairing (n = 20, P = 
0.86). (e) Initial magnitude of DCN unit responses to the correlated sound did not correlate with the decay 
rate during pairing (n = 20, P = 0.19). (f) Mean baseline firing rate calculated for the entire recording did 
not correlate with decay rate during pairing (n = 20, P = 0.17). (g) The slope of the change (if any) in a 
unit’s baseline firing rate, defined as the mean firing rate in periods at least 20 ms before the next lick and 
150 ms after the previous lick, did not correlate with decay during pairing (n = 20, P = 0.98). (h) 
Magnitude of a unit’s response to licking alone before pairing did not correlate with the decay rate during 
pairing (n = 10, P = 0.73). 
 

Discussion 

Distinguishing between external and self-generated sensory stimuli is fundamental for 

perception, and is thought to involve a comparison between external sensory input and internal 
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reference signals related to the animal’s own behavior, for example motor corollary discharge or 

proprioception (Cullen, 2004). The present study provides evidence that such a comparison takes 

place at the first central stage of mammalian auditory processing in the DCN.  More specifically, 

our results suggest a scheme similar to that already well-established in cerebellum-like structures 

in fish, in which behavior-related signals conveyed by a mossy fiber-granule cell-parallel fiber 

system cancel out responses to self-generated sensory stimuli in principal neurons (Bell et al., 

1997a, 2008).  Several independent lines of evidence from the present study support such a 

function for DCN. First, responses to sounds generated by licking are substantially weaker in 

DCN compared to VCN and such differences are not accounted for by weaker responses to 

external acoustic stimuli in DCN or by an overall suppression of DCN responses during licking. 

Second, non-auditory responses to licking behavior are observed in putative CWCs, presumably 

due to non-auditory signals conveyed by mossy fibers and granule cells. Third, inactivation of 

Sp5, a prominent source of somatosensory mossy fiber input to DCN, revealed responses to self-

generated sounds in DCN units that resembled those observed in VCN units, suggesting that 

such input normally functions to cancel DCN responses to self-generated sounds.  Finally, 

repeated pairing of acoustic stimuli with licking resulted in a gradual reduction of DCN 

responses to the paired stimulus. Importantly, such reductions were not observed when stimuli 

were presented at the same rate but uncorrelated with the time of lick contact.  

 

Cancellation of self-generated sounds at an early processing stage could provide 

mammals with a dedicated channel through which salient or unexpected auditory signals can 

rapidly guide motor output, such as escape or orienting behavior. This interpretation is consistent 

with effects of DCN lesions, which disrupt orienting towards but not discriminating between 
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sound source locations (May, 2000; Sutherland et al., 1998) and the fact that, in addition to 

projecting to the inferior colliculus, DCN projects directly to auditory thalamus (Malmierca et 

al., 2002), auditory cortex (Anderson et al., 2009), and regions involved in the acoustic startle 

response (Lingenhöhl and Friauf, 1994). To our knowledge, responses to self-generated sounds 

have not been studied at the level of the inferior colliculus. Based on the present results, we 

would predict that a subset of inferior colliculus neurons selectively encodes external sounds and 

that this subset receives its dominant input from DCN rather than VCN.  Though we focused on 

a single behavior and a single source of mossy fiber input, the fact that DCN receives mossy 

fiber inputs from numerous brains regions conveying a wide range of sensory and motor signals 

implies a much broader capacity for canceling predictable auditory input (Oertel and Young, 

2004). We also note that our results by no means rule out the possibility that additional sources 

of mossy fiber inputs (besides those originating from Sp5) play a role in cancelling self-

generated sounds caused by licking behavior. For example, mossy fiber input to DCN granule 

cell domains originating from the pontine nuclei could provide motor-related signals relevant for 

cancelling the auditory consequences of the animal’s own movements, including licking 

(Ohlrogge et al., 2001). 

 

Though our results suggest that the integration of non-auditory and auditory inputs to 

DCN serves to cancels responses to self-generated stimuli, they do not rule out other functions 

for multimodal integration in DCN. Numerous lines of evidence suggest that the DCN plays an 

important role in processing spectral cues for sound localization (May, 2000; Oertel and Young, 

2004; Young and Davis, 2002). A recent study provided evidence that the integration of auditory 

and vestibular information in DCN could aid in distinguishing changes in auditory input due to 
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motion of an external sound source from those due to self-motion (Wigderson et al., 2016). 

Specifically, Wigderson et al. demonstrate that vestibular and auditory inputs are combined 

nonlinearly in putative DCN output cells. This is a different mode of integration from that 

suggested here and by studies of other cerebellum-like structures in fish in which behavior-

related signals conveyed by mossy fibers are used to subtract out self-generated signals. Since 

vestibular inputs would not have been engaged during the head-fixed licking behavior we 

studied, no direct comparison between the two studies is possible. However, determining 

whether different sources of mossy fiber inputs to DCN, e,g. vestibular versus somatosensory, 

perform similar or different computations is an important question for future studies. 

 

Key questions remain regarding the circuit mechanisms underlying the cancellation of 

self-generated sounds in DCN reported here. In cerebellum-like structures in fish cancellation is 

due to the generation and subtraction of negative images of the responses of principal cells to 

self-generated inputs.  Such negative images are formed by anti-Hebbian synaptic plasticity 

acting on corollary discharge, proprioceptive, and electrosensory signals conveyed by parallel 

fibers (Bell et al., 1997a, 2008). Due both to limits on data collection imposed by satiation as 

well as the technical difficulty of maintaining stable single-unit recordings in brainstem through 

long bouts of licking we focused exclusively on providing evidence for cancellation. A crucial 

next step will be to determine whether cancellation of self-generated sounds in DCN is due to the 

generation of negative images.  Furthermore, genetic tools available in mice should make it 

possible to perform a detailed dissection of the mechanisms underlying the cancellation of self-

generated sounds in DCN. Key questions include the functional roles of specific cell types, such 

as the CWCs, and the roles of specific sites and mechanisms of plasticity, such as spike timing-
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dependent plasticity at parallel fiber synapses onto fusiform cells and CWCs described in vitro 

(Fujino and Oertel, 2003; Tzounopoulos et al., 2004, 2007).  

 

Finally, our results are intriguing from evolutionary and comparative perspectives. The 

brains of most vertebrates contain both a cerebellum and one or more sensory structures with 

circuitry closely resembling that of the cerebellum (Bell, 2002; Bell et al., 2008; Oertel and 

Young, 2004).  Though similarities between different cerebellum-like structures and the 

cerebellum are well-established in terms of their evolution, development, gene expression 

patterns, circuitry and synaptic plasticity, the question of whether they perform similar functions 

has been more difficult to address. Cerebellum-like structures associated with electrosensory 

processing in three distinct groups of fish have been shown to act as adaptive filters (Bell et al., 

1997a, 2008) and numerous lines of evidence also exist supporting such a role for the 

mammalian cerebellum (Dean et al., 2010; Fujita, 1982).  In both cases granule cells convey a 

rich variety of signals (Chabrol et al., 2015; Huang, 2013; Ishikawa et al., 2015; Kennedy et al., 

2014; Sawtell, 2010) and a separate, non-plastic input (peripheral sensory input in the case of 

cerebellum-like structures and climbing fiber input in the case of cerebellum) instructs plasticity 

at granule cell synapses such that output that is predictable (in the case of cerebellum-like 

sensory structures) or associated with errors in motor performance (in the case of the cerebellum) 

is gradually reduced.  Interestingly, adaptive cancellation of self-generated vestibular inputs has 

been demonstrated in neurons of the fastigial nucleus and vestibular nucleus in primates (Brooks 

et al., 2015; Roy and Cullen, 2001).  Hence evidence provided here for sensory cancellation and 

adaptive filtering in DCN suggests that a core function may be shared by cerebellum-like 

structures and the cerebellum across vertebrate phylogeny.  
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Methods 

All experimental protocols were approved by the Columbia University Institutional Animal Care 

and Use Committee. Adult male wild-type mice (129S6/SvEvTac) were used for all experiments.  

Mice were purchased from Taconic Biosciences (Hudson, NY) and housed in an on-site animal 

facility on a 12 hour light-dark cycle. Most experiments were performed during the light cycle.  

Data collection and analysis were not performed blind to the conditions of the experiments.  

 

Surgery 

Mice were anesthetized with isoflurane (1.5-2%) and placed in a stereotax equipped with 

zygomatic ear bars (Kopf Instruments).  The skull was exposed and a small craniotomy 200-500 

µm in diameter was made over the right dorsal cochlear nucleus (5.5 mm posterior to bregma 

and 2.3 mm lateral to the midline).  The craniotomy was covered with silicon elastomer  (Kwik-

Sil, WPI, Sarasota, FL).  A custom headplate was attached to the skull using dental cement 

(C&B Meta-bond, Parkell, Edgewood, NY).  Mice were allowed to recover for 3 days prior to 

the start of experiments. 

 

Experimental apparatus and auditory stimulus presentation 

All mouse behavior and neurophysiology experiments were performed in a double walled sound-

attenuating chamber (Double Deluxe Model, Gretchken Industries).  The ambient noise within 

the chamber was <30 dB SPL as measured by a sound pressure level meter (Bruel and Kjaer 

Type 2240).  A custom head fixation device was used to secure the animal via two attachment 

points to a stainless steel headplate and allowed for consistent positioning across multiple 
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recording sessions. The animal’s body was additionally secured between two pieces of styrofoam 

molded to its body.  A stainless steel lick spout was positioned in front of the animal’s mouth 

and licks were detected using standard methods.  Acoustic stimuli were generated using Spike2 

software (Cambridge Electronic Design) and delivered using an electrostatic speaker (ES-1 

Tucker Davis Technologies) positioned approximately 10 cm in front of the mouse just to the 

right of the midline.  Sound pressure levels of acoustic stimuli as measured in dB SPL were 

calibrated to the location of the animal’s right ear.  The frequency response of the sound system 

was measured to be flat (+/- 4dB) from 1 kHz to 50 kHz using a ¼’’ condenser microphone 

(377C01, PCP piezotronics), attached to a preamplifier (426B03, PCP piezotronics) positioned at 

the location of the mouse’s right ear.  Sounds caused by licking were monitored by a small 

electret microphone (Knowles model 23329N) placed just above the lick spout.  Microphone 

signals were sampled at 100 kHz and digitized using an analog to digital converter (Power 1401, 

Cambridge Electronic Design). 

 

The lick mimic was constructed from segments of microphone recordings 50 ms before tongue 

contact to 150 ms after tongue contact, and bandpass filtered between 1 and 50 kHz (n = 5 mice).  

We transformed each segment to a spectrogram using a short-time Fourier transform (Hamming 

window with a width of 10.24 ms and a stride of 5.12 ms). We then constructed the mimic by 

performing principal component analysis on this set of lick-triggered spectrograms and making a 

weighted sum of the first five principal components. This resulted in a mimic spectrogram, 

which we used as a spectro-temporal filter to convolve with a random signal. This resulted in a 

stimulus (the lick mimic) which contained the most prominent spectro-temporal features of the 

licking sound (including distinct spectral peaks at 2, 8, and 30 kHz) with little power elsewhere.  
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Due to issues such as bone conduction we could not measure the exact loudness of natural 

licking sounds. The lick mimic was replayed at a loudness that evoked a response in VCN units 

that was, on average, similar to that evoked by licking. This same loudness (12 dB SPL) was 

used subsequently for all experiments involving the mimic. 

 

Behavioral training 

Mice were allowed to recover 3 days after surgery before to beginning water deprivation and 

habituation to head restraint in the experimental apparatus. Weight was monitored daily and 

additional water was given in the home cage if the animal’s weight fell below 80% of its initial 

pre-surgical weight.  Extracellular recordings from DCN and VCN units were then performed 

during daily sessions lasting 2-3 hours. Mice licked roughly 3,000 times per session. 

 

Extracellular recording and identification of DCN and VCN neurons 

Standard procedures were used for extracellular recording using glass microelectrodes (5-20 MW 

resistance). Pipettes with a long taper were used to avoid tissue damage.  On the day of 

recording, mice were placed into the head restraint and the silicone elastomer was removed and 

0.9% saline was placed over the exposed craniotomy.  The microelectrode was lowered into the 

craniotomy vertically.  As the electrode was advanced through the cerebellum a series of 200 ms 

long search tones from 5 kHz to 50 kHz (in 5 kHz steps) were delivered.  Entrance into DCN 

was marked by a transient increase in electrode resistance along with the sudden appearance of 

tone-evoked multi-unit activity which occurred ~2700-3200 µm below the surface of the 

cerebellum.  The microelectrode was then advanced in 1 µm steps until a unit was isolated.    

Complex-spiking units were the first units encountered on an electrode penetration through DCN 
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and could be unambiguously identified based on their distinctive complex spikes. Complex 

spikes are stereotyped, high-frequency action potential bursts superimposed on a slower 

depolarization and are not observed in any DCN cell types except CWCs (Manis et al., 1994; 

Zhang and Oertel, 1993). Similar to previous in vivo extracellular recording studies of DCN in a 

variety of species, including mouse (Ma and Brenowitz, 2012), we defined complex spikes as 

high-frequency bursts (ISIs < 3.5 ms) of 2-5 action potentials.  Complex spikes were identified 

automatically in Spike2 using custom written scripts and then confirmed individually.  Within 

such bursts, action potentials successively widened and decreased in amplitude (Figure 3.8b).  

Complex-spiking units were isolated 50-200 µm from the surface of the DCN. DCN units 

lacking complex spikes, referred to here as simple spiking units, were isolated 100-300 µm from 

the surface of the DCN.  Complex-spiking units were never found ventral to simple spiking units 

on the same electrode penetration consistent with the known cytoarchitecture of the DCN.  

Passage from DCN into VCN was determined by monitoring the tone frequency that most 

strongly drove multi-unit activity for each 50 µm advance of the electrode.  As the electrode 

advanced ventrally, the best frequency for driving multi-unit activity progressively decreased.  A 

sudden increase in the best frequency (generally from ~5 kHz to ~20 kHz and usually occurring 

500-600 µm below the surface of DCN) signified entrance into the VCN.  Units which were 

isolated at least 100 µm ventral to the best frequency reversal (~800-1000 µm below the surface 

of the DCN) and which showed clear tone-evoked responses were classified as VCN units.  Units 

isolated less than 100 µm from the best frequency reversal were not included in the analysis.  

Histological verification of DCN and VCN recording sites was performed by iontophoresis of 

dextran conjugated Alexa Flour 594 (D22913, Thermo Fisher Scientific) at recording sites 

between 100 and 300 µm below the surface of DCN (depths at which most DCN simple spiking 
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units were isolated) and at 900 µm (the depth at which most VCN units were isolated). Only 

units that remained well-isolated through at least 75 licks were included in the analysis.  Sounds 

associated with licking contain most power between 2-15 kHz, which corresponds to the lower 

portion of the mouse hearing range. For this reason we focused our recordings on regions of the 

cochlear nucleus that represent these frequencies.  A subset of the recordings in Figure 6 (DCN 

correlated, n = 10/20; DCN uncorrelated, n = 5/11; VCN correlated, n = 3/7) were performed 

using a 16 channel silicon probe (Neuronexus, A1x16-5mm-25-177-A16). Silicon probe 

recordings proved superior to glass microelectrode recordings in terms of their stability during 

licking behavior. Probes consisted of a vertical linear array of 15 micron diameter electrode sites 

spaced 25 microns apart. Impedances ranged from ~2-6 kOhms. Recording tracks were made in 

DCN or VCN until a well-isolated single unit emerged on at least one electrode site. Most sites 

exhibited only multi-unit activity and were not analyzed. The same electrophysiological 

signatures described above were used to identify the dorsal and ventral cochlear nuclei. Rank 

sum tests revealed no difference between probe and glass recordings in the median decay rate of 

cells in all three groups shown in Figure 6 (DCN correlated: P = 0.09, DCN uncorrelated: P = 

0.79, VCN: P = 0.63). 

 

Viral Injections 

A nanoliter injector (504126, WPI instruments) was used to inject adeno-associated virus 

expressing green fluorescent protein.  The pipette was positioned over the coordinates 7.2 mm 

posterior to bregma and 1.8 mm right of the midline and lowered until the tip touched the surface 

of the cerebellum.  The pipette was then lowered 3.5 mm below the surface of the cerebellum to 

the base of the spinal trigeminal nucleus.  27 nL of the virus was injected in three 9 nL pulses.  
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Virus was also injected at depths of 3.2, 2.9, and 2.7 mm below the surface of the cerebellum.  

The pipette was then slowly raised out of the cerebellum and the incision was closed using 

cyanoacrylate glue (Vetbond, 3M, Maplewood Minnesota).  Two weeks after surgery, mice were 

anesthetized with ketamine/xylazine and perfused with 4% formaldehyde.  The brains were 

dissected from the skull and allowed to post-fix in 4% formaldehyde overnight.  They were then 

cryoprotected in a 30% sucrose solution and sectioned on a cryostat.  Sections were then 

mounted on glass slides (Superfrost, Fisher Scientific, Waltham, MA), counterstained with 

DAPI, and imaged on a confocal microscope (Carl Zeiss Microscopy, Peabody, MA).   

 

Deafening 

Mice were deafened bilaterally.  Surgery for deafening mice was performed using 2-4% 

isoflurane. An incision was made just posterior to the tragus and extended ventrally.  The 

tympanum, malleus, and incus were visualized through the auditory meatus.  Using fine forceps 

the tympanum was ruptured and the malleus and incus were removed.  The stapes was removed 

exposing the oval window with care taken not to damage the stapedial artery.  Using a 30 gauge 

needle, approximately 10-20 µL of 1.0 mg/mL kanamycin was injected through the oval window 

and into the cochlea.  The middle ear was packed with gel foam and the mouse was allowed to 

recover in its home cage. Deafening was verified by lack of observable behavioral responses to 

acoustic stimuli and by recording sound evoked field potentials to broadband noise (50 ms, 6-90 

dB SPL) in DCN ~75 µm below the first observed complex-spiking unit. This was done both 

before and 2 days after surgical deafening in each mouse.  DCN recordings were performed 2-4 

days after surgery.  Recording locations within DCN were confirmed histologically using 

iontophoresis of dextran-conjugated Alexa 594 as described above. 
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Lidocaine injections into Sp5 

A small craniotomy (~300 µm diameter) was made prior to attachment of the headplate at 

coordinates 7.2 mm posterior to bregma and 1.8 mm lateral to the midline and covered with 

silicon elastomer.  On the day of the experiment, a glass micropipette with a long taper was 

pulled using a pipette puller (PC-10, Narishige Group) and manually broken to 3.5 um diameter 

under a microscope.  The pipette was then filled with 2% lidocaine in 0.9% saline with care 

taken to avoid air bubbles in the tip.  The pipette was then coupled to a micropressure injector 

(Pikospritzer MK III, Parker Instrumentation) and successful ejection of lidocaine was confirmed 

visually to ensure tip was not clogged.  The lidocaine pipette was advanced into Sp5 at an angle 

of 12.8 degrees. For Sp5 inactivation DCN unit responses were recorded for ~200 licks before 

~100 nL of lidocaine was injected in a single pulse.  Location of the lidocaine pipette within 

DCN was verified histologically using iontophoresis of dextran-conjugated Alexa 594 as 

described above. 

 

Lick-sound pairing 

After isolation of a unit, access to water was given and contact to the lick spout by the animal’s 

tongue was paired with a 30 ms noise (15-71 dB SPL, broadband or bandpassed filtered 5-15 

kHz).   In the correlated condition the noise was presented 30 ms after contact with the lick 

spout. The pairing was conducted continuously until the animal stopped licking or unit isolation 

was lost.  In the uncorrelated condition presentation of the noise during licking was unrelated to 

the tongue’s contact with the spout and was instead presented at random intervals of 120-160 ms. 

Since these intervals are similar to inter-lick intervals the overall rate of sound presentations was 
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similar in the correlated and uncorrelated conditions. Correlated versus uncorrelated conditions 

were tested in the same mice on alternating sessions.  The condition to be tested during a given 

session was pre-determined prior to isolating a unit.  

 

Data analysis and statistics 

All analyses were performed using custom written scripts for Matlab (Mathworks, Natick, MA) 

and Spike 2.  No statistical methods were used to predetermine sample sizes. Comparisons 

between two groups were made by Mann–Whitney U-test or Wilcoxon signed rank test for 

paired groups. Tests of the significance of linear regression slopes used a linear regression t-test. 

For the linear regression t-test residuals were assumed to be normally distributed but this was not 

formally tested. Differences were considered statistically significant at P < 0.01. Data are 

presented as mean ± s.e.m. unless indicated otherwise. 

 

Lick sound spectrograms: To compute the average spectrogram of the sound associated with 

licking we first bandpass filtered raw microphone traces removing frequencies below 1 kHz and 

above 50 kHz (the highest frequency that could be detected by our equipment).  300 ms 

segments of the filtered microphone recording centered on the onset of each lick were 

transformed with a short time Fourier transform (Hamming window with a width of 10.24 ms 

and a stride of 5.12 ms) to obtain a set of lick-centered spectrograms. These were averaged to 

obtain a lick-triggered average spectrogram.  Time-frequency peaks were found by first applying 

a 2-D median filter (widths 290 Hz, 3 ms) to individual spectrograms and then convolving with a 

2-D Gaussian kernel with widths 1.5 kHz and 20 ms.  We then calculated local time-frequency 

maximums by finding local maximums of the filtered spectrograms. 
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RMS amplitude of microphone traces: To compute the RMS amplitude of the sound associated 

with licking microphone recordings were first bandpass filtered (1-50 kHz). We then computed 

the RMS amplitude of this filtered microphone trace by convolving the squared trace with a 

moving average kernel of width 1 ms and taking the square root of the result. These recordings 

were then aligned to the time of tongue contact with the lick spout and averaged across licks. 

 

Average and Z-scored electrophysiological responses during licking and mimic presentation: To 

compute average responses to licking or during delivery of the mimic spike trains were 

convolved with a normalized sum-of-two-exponentials kernel, with a rise time of 5 ms and a 

decay time of 20 ms.  Averages were aligned either on tongue contact with the lick spout or 

mimic delivery and average baseline firing was subtracted.  Baseline firing rates was taken to be 

the average firing rates in periods at least 25 ms before the next lick or mimic onset and at least 

150 ms after the previous lick or mimic onset.  Peak-to-trough firing rates were computed by 

taking the average licking or mimic response in a 200 ms window centered on the tongue-to-

spout contact or mimic onset and determining the difference in the maximum to minimum firing 

rates.  To compute z-scores we first took the maximum of the average licking or mimic response 

in a 200 ms window centered on tongue-to-spout contract or mimic onset. We then created 

shuffled spike trains of approximately the same length as the original spike train by randomly 

sampling from the inter-spike-interval distribution of the real spike train. Each shuffled spike 

train was convolved with the same kernel as the real spike train, its lick- or mimic-triggered 

average computed, and the maximum firing rate of this triggered average taken in the same 200 

ms window. This was repeated 500 times and the maximum of the triggered average of the real 
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spike train was expressed in units of the standard deviation from the mean of the shuffle 

distribution, i.e. z-scored based on the shuffle distribution.  We determined the significance of 

neural responses by computing approximate p-values for the recorded maximum lick-triggered 

rate, which were estimated by the fraction of shuffled-spike trains showing maximum lick-

triggered responses greater than that of the real spike train. 

 

Correlated and uncorrelated sound-lick pairings: The noise-evoked response is defined in bins 

of 150 stimulus presentations. For each 150 presentations the response is defined as the 

maximum of the average noise-evoked response during that stimulus period minus the baseline 

rate during that period. For each unit the response is normalized to equal one in the first bin. We 

performed a linear regression between the stimulus bin and the log of the noise-evoked responses 

for each population, in order to extract a decay rate for each population. 
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Conclusion 
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The work described in this dissertation aims to provide a more functional description of 

the role of sensory cancellation, higher order corollary discharge, and more specifically, 

cerebellum-like systems, in sensory processing, than exists.  In Chapter 2, we demonstrate for the 

first time that negative images created through plastic corollary discharges have a functional role 

in both neural coding of sensory input and behavior.  In Chapter 3, we demonstrate the long-

predicted role of the mammalian dorsal dorsal cochlear nucleus in cancelling self-generated 

sound. 

In cancelling the sound of licking, the DCN allows higher order auditory processing areas 

to have access to two streams of information – one, coming from the VCN, a complete 

representation of acoustic inputs to the cochlea, including self- and other-generated sounds. The 

other, from the DCN, a filtered stream of information which actively excludes predictable inputs 

generated by the self, retaining, potentially, an accurate representation of only externally-

generated sounds – what the world would sound like in the absence of the agent of sensation.  

The extent to which this latter idea holds for the broad variety of self-generated sounds which 

corrupt the attempts by the auditory system to sense the world around it remains to be seen and is 

an area ripe for further study.  

Concerning the dorsal cochlear nucleus  

The auditory system is subject to a wide range of interfering self-generated signals that 

arrive through acoustic vibration of the air and impinge on the tympanic membrane (that is, 

signals that leave the body and re-enter it) and through bone conduction, directly acting on the 

sensory machinery of the middle and inner ear.  Breathing, mastication, locomotion all actively 

produce sound, and rotations of the head, changes in body position, and motion of the external 

ear, the pinna, all modify the amplitude and spectral properties of external sounds, resulting in a 
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type of reafference. In unpublished work, colleagues and I have demonstrated that principal cells 

of the DCN are driven by breathing, motion of the jaw, and movement of the pinnae in the 

absence of external sound. The wide range of mossy fiber inputs to the granule cell domains, and 

the position of the DCN early in the auditory processing cascade lend themselves to a unique 

filtering role for the DCN.  Locomotion has been shown to have suppressive effective on cortex, 

but it would be interesting to see whether some of the reafferent effects of locomotion are also 

dealt with at this earlier stage.  Additionally, it’s noteworthy that for small animals such as the 

mouse studied here, the reafference originates from processes that are often only a few 

centimeters, sometimes millimeters, from the ear.  The concordant pressure levels at the ear for 

some behaviors may be considerably larger than breathing, the example dealt with in Chapter 3, 

and it would be instructive to know whether such cancellation works only for sounds near the 

threshold of auditory detection, or for higher pressure levels as well.  For comparison, we used a 

breathing mimic of 15dB SPL, which is somewhere between “Grand Canyon at night” and 

“rustling leaves” (Berger et al., 2006).  The related earlier (failed) efforts mentioned above 

looking at pinna-, jaw-, and breathing-related modulations in DCN focused on sounds at pressure 

levels some 50-150 times larger.  While the experimental preparation was significantly different 

between the two attempts, continuing the current line of experiments for other behaviors known 

to have an effect on the DCN, and at a broader range of amplitudes, may well be fruitful. 

As an aside, the above point that the auditory sensory organ is much closer to the sources 

of reafference in smaller animals isn’t so clear – while the distance between the ear and the joints 

and muscles, jaws and feet generating such sound grows linearly as you scale the animal, and the 

sound pressure varies in inverse proportion to that distance, the dimensional volume, and mass, 

of these parts grows with the cube.  A rat’s jaw may be twice as far from its ear as that of a 
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mouse, and a given sound originating at the jaw of each would have half the pressure reaching 

the ear of the rat versus the mouse, but the rat’s jaw is 8 times more massive.  A theoretical and 

empirical accounting of the effect of body size would be useful in understanding the issues 

facing sensory systems in dealing with reafference.  

The initial focus on the DCN for these experiments came directly from its resemblance to 

the mormyrid ELL and the well-studied system of reafferent cancellation and negative image 

formation therein (Oertel and Young, 2004). However, while cancellation has been 

demonstrated, negative images have not been, though the similarity between the ELL and DCN, 

including the existence of anti-Hebbian plasticity  at PF-cartwheel cell and conditionally, PF-

fusiform cell synapses (Tzounopoulos et al., 2004) strongly suggest negative images as an 

underlying mechanism for cancellation. Further work in that direction is necessary. In general, 

the circuit, cellular, and synaptic mechanisms for cancellation need to be explored, including the 

role of other cell types, in particular the Purkinje-like cartwheel cell, as well as unipolar brush 

cells and stellate cells. Preliminary work on cartwheel cell responses to self- versus externally-

generated sounds was described by Singla (Singla, 2016). The general history of research in the 

ELL can serve as a blueprint for such work. 

Finally, the current findings need to be integrated with the other putative role of the 

DCN, that of monoaural sound localization.  The findings on this are less clear when applied to 

the mouse. While May (May, 2000) showed that lesions of DCN output disrupted vertical sound 

localization in cats, mice in fact perform poorly at localizing sound sources in the vertical axis as 

opposed to the horizontal  even with an intact DCN. This may be due either to inter-species 

differences in DCN structure or to the demonstrated relative paucity of elevation-related spectral 

cues imposed by directional acoustic filtering of incoming sound by the mouse head and pinna 
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(Lauer et al., 2011).  Fusiform and vertical cells in cats display non-linear, feature-detecting 

responses to spectral notches, which are the cues thought to be used in monaural sound 

localization (Reiss, 2005), but such results have not been reported in mice.  Though these two 

roles, cancellation and localization, are at first blush functionally unrelated, spectral cues are 

themselves a form of reafference, but rather than cancellation of reafference as demonstrated in 

mouse, notch-detection in cat can be thought of as a kind of reafference detection.  Extending the 

work in mouse to cat, or other species with demonstrated spectrally-based localization, would be 

informative.  

Concerning the electrosensory lobe 

In the mormyrid ELL we have demonstrated that negative images based on corollary 

discharge are utilized by the animal to improve neural coding and effect behavior, but many 

questions persist.   Our work focuses on the glutamatergic output neurons of the ELL, the E-type 

Large Fusiform Cell and the I-type Large Ganglion Cell, but these cells are outnumbered by the 

other class of principal cell of the ELL, the Purkinje-like MG cells”.  The functional significance 

of these two classes of cells is an outstanding problem for the field, and no one has of yet been 

able to dissect their relative contributions to the function of the ELL, including in the formation 

of negative images.  Both classes of cells, output and MG, produce negative images. The MG 

cells inhibit each other and the output cells. Output cells do not synapse directly onto MG cells, 

but may indirectly influence them by way of feedback from the preeminential nucleus (PE), 

which receives input from the output neurons.  Excitatory inputs from PE terminate deep in the 

molecular layer with somatotopic organization.  The effect of this feedback on negative images 

is unknown.  An outstanding question is the spatial extent of negative images – what positive 

image are they being constructed to. It may be that the spatial extent of the electrosensory 
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receptive fields of ELL neurons is not the same as the spatial area for which they create a 

negative image. The previously described plastic mechanisms for generating negative images 

work on extracting predictable signals from the receptive field of that particular neuron, but 

network effect within the ELL may create a different net negative image. The negative image 

may represent, for example, negation of the reafferent response across some larger part of the 

body.  Some evidence of this exists in ‘over-cancellation’ that we have observed.  In a 

preparation where the EOD motor signal is paired with an EOD mimic, and presented globally – 

that is, affecting cells all over the body, not only at the receptive field of the recorded cell – the 

response of cells to the mimic and command presented together showed a kind of 

overcompensation for the excitatory or inhibitory response of E or I cells to the mimic alone.  

Figure 4.1 demonstrates a case of over-cancellation. Under-cancellation, also observed, could 

result from the same effect. These observations imply that the negative image at a given cell may 

effectively be formed to some pooled response to reafference.  Alternatively, the two cell classes 

may underlie multiple time scales of cancellation.  The dynamics of PF-MG plasticity are known 

to be affected by feedback (Sawtell et al., 2007). 

 

 

Figure 4.1 Over-cancellation in an ELL output cell. 
(A) Peristimulus time histogram of extracellular recording of an I-type output cell in the VLZ of the ELL, 
response to EOD mimic presented globally and synchronized to an EOD motor command, after pairing 
for several hours. T=0 locked to onset of command. (B) Response of the same cell to EOD mimic 



 

131 
 

presented out of synchrony with the EOD motor command. (C) Response in same cell to the EOD motor 
command alone.  This is the negative image. 
Note that the prominent ‘over-cancellation’ (A) shortly after onset of command and mimic. The strong 
negative image demonstrated in (C) over-cancels the inhibited response of the cell to the EOD mimic 
shown to (B), bringing the total response past baseline.  

 

Our work has focused on the VLZ of the ELL as a circuit for removing correlations 

between external electrosensory and self-generated input, in this case the electromotor EOD. 

Another possible role for the ELL, by no means mutually exclusive with any of the above, is in 

removing autocorrelation across time or space from the exafferent electrosensory input itself. 

Electrosensory inflow may contain predictable information across either spatially, across 

the extent of the body because of local conditions, or across time, and removing it would 

increase information density in the signal.  For example, wave-induced mixing of water 

oxygenated by photosynthetic activity can produce oxidation-reduction potentials of up to 

500mV (Keller, 2004; Koch-Rose et al., 1994), 10-15 times the threshold of detection by 

ampullary afferents.  Such a role is supported by the existence of indirect feedback from EGp 

onto granule cells, which provides a basis by which to perform such subtractions (Bastian, 1986; 

Bastian and Bratton, 1990; Bell et al., 1981; von der Emde and Bell, 1996; Sawtell, 2017).  This 

is similar to proposed predictive coding schemes in visual cortex (Rao and Ballard, 1999) and 

auditory cortex (Crapse and Sommer, 2008b; Eliades and Wang, 2008), and in particular to a 

mechanism dependent on anti-Hebbian plasticity proposed to exist in the retina (Hosoya et al., 

2005).  Development of work in this direction is particularly interesting, and it would be 

informative to try to detect changes in signal detection of novel stimuli, by ROC or other 

methods, on a background of either spatially or temporally predictable electrosensory inputs.  

In toto, I see this work as contributing to an understanding of the brain which is more 

directly concerned with function while insisting on ground-level mechanistic explanations of 
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phenomena, particularly in regard to how we sense the outside world and ourselves. In 

conclusion, thinking back to the Greeks in whose minds the first inklings of these questions 

developed, it’s fitting to consider that the maxim famously inscribed on the entrance to the 

Temple of Apollo at Delphi, Γνώθι Σεαυτόν, “know thy self”, may suitably be completed “… 

and learn to ignore it”. 
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