
Graduate Theses, Dissertations, and Problem Reports 

2023 

Spatial processing of conspecific signals in weakly electric fish: Spatial processing of conspecific signals in weakly electric fish: 

from sensory image to neural population coding from sensory image to neural population coding 

Oak Everette Milam 
West Virginia University, oemilam@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Biology Commons, Computational Neuroscience Commons, and the Systems 

Neuroscience Commons 

Recommended Citation Recommended Citation 
Milam, Oak Everette, "Spatial processing of conspecific signals in weakly electric fish: from sensory image 
to neural population coding" (2023). Graduate Theses, Dissertations, and Problem Reports. 12120. 
https://researchrepository.wvu.edu/etd/12120 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/58?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/61?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/61?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/12120?utm_source=researchrepository.wvu.edu%2Fetd%2F12120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 
 

Spatial processing of conspecific signals in weakly electric fish:  

from sensory image to neural population coding 

 

 

 

Oak Milam 

 

 

 

 

A dissertation submitted 

to the Eberly College of Arts and Sciences 

at West Virginia University 

 

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy in 

Biology 

 

 

 

Gary Marsat, Ph.D., Chair 

Sadie Bergeron, Ph.D. 

Kevin Daly, Ph.D. 

Sarah Farris, Ph.D. 

Jorge Mejias, Ph.D. 

 

Department of Biology 

 

 

Morgantown, West Virginia 

2023 

 

 

Keywords: signal localization, topographic maps, network modeling, neural coding, pyramidal 

neurons 

 

Copyright 2023 Oak Milam  



 

 
 

Abstract: 

 

Spatial processing of conspecific signals in weakly electric fish:  

from sensory image to neural population coding 

 

Oak Milam 

 

 

 

In this dissertation, I examine how an animal’s nervous system encodes spatially realistic 

conspecific signals in their environment and how the encoding mechanisms support behavioral 

sensitivity. I begin by modeling changes in the electrosensory signals exchanged by weakly 

electric fish in a social context. During this behavior, I estimate how the spatial structure of 

conspecific stimuli influences sensory responses at the electroreceptive periphery. I then 

quantify how space is represented in the hindbrain, specifically in the primary sensory area 

called the electrosensory lateral line lobe. I show that behavioral sensitivity is influenced by the 

heterogeneous properties of the pyramidal cell population. I further demonstrate that this 

heterogeneity serves to start segregating spatial and temporal information early in the sensory 

pathway. Lastly, I characterize the accuracy of spatial coding in this network and predict the 

role of network elements, such as correlated noise and feedback, in shaping the spatial 

information. My research provides a comprehensive understanding of spatial coding in the first 

stages of sensory processing in this system and allows us to better understand how network 

dynamics shape coding accuracy. 
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Chapter 1: Introduction – Part 1 

Prologue 

I introduce my dissertation with an insightful discussion of sensory systems and the 

challenges they must overcome to efficiently collect information from their surroundings. In 

particular, the challenge that I focus on is the sensory problem of localizing signals in three-

dimensional space. I frame this problem around a reference animal, the weakly electric fish and 

its remarkable electrosensory system. These animals possess an aptitude for distinguishing very 

weak signals, relying only on the electric fields they generate to do so. What’s even more 

interesting, is that they can do this even when environmental conditions confound the signal, 

making it difficult to process information accurately. However, these animals are not the only 

ones with finely tuned nervous systems, tailored for solving difficult sensory tasks. Several 

organisms have evolved general mechanisms to efficiently process this type of information.  

Taking a comparative approach, I describe mechanisms that animals’ nervous systems use 

to address the challenge of localizing signals in their environment. I present solutions that are 

either generalized or unique to the electrosensory system and highlight other similar findings 

that have been observed across different species and sensory modalities (e.g., auditory, visual, 

olfactory, and somatosensory). Along the way, I emphasize the importance of taking a 

neuroethological perspective for providing insights to elusive sensory questions.  

Note: This first part of the introductory chapter has been published as: 

“Milam, O. E., Ramachandra, K. L., & Marsat, G. (2019). Behavioral and neural aspects of the 

spatial processing of conspecifics signals in the electrosensory system. Behavioral Neuroscience, 

133(3), 282.”  
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Abstract 

Localizing the source of a signal is often as important as deciphering the signal’s message. 

Localization mechanisms must cope with the challenges of representing the spatial information 

of weak, noisy signals. Comparing these strategies across modalities and model systems allows 

a broader understanding of the general principles shaping spatial processing. In this review we 

focus on the electrosensory system of knifefish and provide an overview of our current 

understanding of spatial processing in this system, in particular, localization of conspecific 

signals. We argue that many mechanisms observed in other sensory systems, such as the visual 

or auditory systems, have comparable implementations in the electrosensory system. Our 

review therefore describes a field of research with unique opportunities to provide new insights 

into the principles underlying spatial processing.  
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Introduction 

The role of sensory systems is to capture information about the environment. Although 

much of the behaviorally relevant information is contained in the quality and quantity of a 

signal, its spatial structure is also relevant (Bradbury & Vehrencamp, 2011; McGregor, 1993). 

Communication and conspecific signals carry much of their meaning in their spectral and 

temporal modulation: amplitude and frequency modulations in bird songs (Konishi, 1985; Lohr, 

Wright, & Dooling, 2003  Reid et al., 2005), colors of body ornaments (Doucet, Mennill, & Hill, 

2007; Guilford & Dawkins, 1993; Keyser & Hill, 2000), or chirping patterns in weakly electric fish 

(Dunlap, DiBenedictis, & Banever, 2010; Engler, Fogarty, Banks, & Zupanc, 2000). Even for 

olfactory signals, the message is represented by the quality (i.e., odor identity) and quantity of 

the odor (Aragón, 2009; Daly et al., 2016; de Bruyne & Baker, 2008). In most cases, the receiver 

also tries to determine the location of the signal’s source. Seeking out a signaling mate 

(Arikawa, Wakakuwa, Qiu, Kurasawa, & Stavenga, 2005; Byrne & Keogh, 2007; Mathis, 1990), 

localizing threats and the alarm calls they trigger in conspecifics (Cäsar, Zuberbühler, Young, & 

Byrne, 2013) or avoiding a competitor broadcasting its territorial claim (Bee, 2000; Behr, 

Knörnschild, & Von Helversen, 2009) are a few examples where the spatial aspect of the signal 

is key in guiding the behavior successfully. When localizing the source of a signal, sensory 

systems are faced with important challenges as a signal’s directionality and strength can be 

weakened as it propagates through the environment (Bradbury & Vehrencamp, 2011).  

Decades of research on the neural and behavioral mechanisms underlying signal 

localization in various modalities and model systems have led to rich insight into how these 

challenges are met. As always, comparing solutions across modalities and species can reveal 
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core principles of a mechanism and key adaptation permitting new functions. The study of 

sensory processing in weakly electric fish has provided important contributions to this 

comparative approach to understanding neural processing. An extensive literature on the 

temporal processing of electrosensory signals is matched by a relatively smaller but growing 

literature focused on the spatial aspects of communication signals. We provide in this review an 

overview of our current knowledge on the spatial processing of electrocommunication signals, 

but most importantly we point out key challenges faced by this system and commonalities with 

other sensory systems. We argue that the difficulty in localizing weak signals, signals in noise, or 

simply localizing accurately requires sensitive and efficient mechanisms that share many 

resemblances across modalities. 

 

The electrosensory system 

The ability to sense electric fields is thought to have evolved early in the vertebrate lineage 

(Bodznick & Northcutt, 1981) and is developmentally derived from lateral line placodes 

(Modrell, Bemis, Northcutt, Davis, & Baker, 2011). Electroreception was lost in teleost fish, but 

regained at least twice (in Osteoglossomorpha and Ostariophysi) thereby explaining the 

presence of electroreceptors in a variety of species, including catfish, elephantnose fish and 

knifefish (see Baker, Modrell, & Gillis, 2013 for a recent review on the topic). In teleosts, 

electroreceptors are thought to have evolved as a modification of neuromast (Baker et al., 

2013). Beyond their detailed evolutionary trajectory, electroreceptor origin is clearly linked to 

the lateral line and mechanosensory system, similar to the origin of vertebrate auditory 

receptors (Duncan & Fritzsch, 2012). As a reflection of their similar evolutionary origin, both 
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electroreceptors and auditory receptors travel along the VIIIth cranial nerve (Carr, Maler, & Sas, 

1982). Ampullary receptors are the most common type of electroreceptors across species, but 

in two orders of teleost (Gymnotiformes and Mormyriformes) a second type of electroreceptor 

evolved - tuberous receptors (Szabo, 1974). Where ampullary receptors are sensitive to low-

frequency electric signals, such as the ones produced by contracting muscles, tuberous 

receptors are sensitive to high frequencies (Bennett, Sandri, & Akert, 1989; Maler, 2009a; 

Maler, 2009b; Hopkins, 1976) and their evolution accompanies the evolution of electric organs 

(EO) that generate high-frequency weak electric fields (Fig 1). Derived from a modified muscle 

or a modified nerve terminal, EO produce pulsatile or continuously oscillating electric fields 

(Kramer, 1996). Weakly electric fish (Gymnotiformes and Mormyriformes) thereby possess an 

active electrosense where the electric organ discharges (EOD; Lissmann, 1958) are perceived by 

electroreceptors on the skin. Anything in their environment that is more or less resistive than 

water will cause a distortion of this electric field that will cast an “electric shadow” (Rasnow, 

1996) on the sensory surface (we refer to the electrosensory sensorium as the “sensory 

surface” throughout the review). They rely heavily on this active sense to navigate, localize 

prey, but also to communicate and interact with conspecifics (Bullock, Hopkins, Popper, & Fay, 

1986; Lissmann, 1963). Although Gymnotiformes and Mormyriformes have many similarities in 

the way they use and process electric signals, the fact that they evolved this active electric 

sense independently also leads to significant differences, in particular at the neural level. To 

facilitate the discussion in this review, we will focus on knifefish (Gymnotiformes), and more 

specifically the wave type species (e.g., glass knifefish or ghost knifefish) that produce 
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continuous EODs rather than pulsed EODs (Bass 1986; Bennett, 1971); we will simply refer to 

them as weakly electric fish. 

Knifefish are typically nocturnal species and thus rely heavily on this active electrosense to 

perceive their environment. The sensory image caused by objects close to them is quite 

accurate thanks to a relatively high density of receptors over the entire surface of the skin (Carr 

et al., 1982); allowing them to be efficient hunters of invertebrate prey (Nelson & MacIver, 

1999). Similarly, they can locate and identify a conspecific based on the EOD it produces or 

mediate social interactions via electrocommunication signals such as chirps (Engler & Zupanc, 

2001). The sensitivity of their ability to locate each other based on this sense is easily 

observable both in the field or in the lab (see below). For example, they will chase each other at 

high speed in a noisy environment with multiple other signal sources or locate each other at 

such distances that they must base this detection on extremely weak signals. 

 

Localization of conspecifics 

The localization of conspecific signals is a different sensory problem to the localization of 

small objects such as prey items. An object close to the body will cause a local disturbance in 

the EOD which will be picked up by a limited number of receptors on the corresponding portion 

of the skin (Rasnow, 1996). The localization strategy in this case is likely to be closer to visual 

localization or localization in the somatosensory system where exclusive activation of a subset 

of receptors encodes location in a labeled line code (Cichy & Teng, 2017; Hartmann & Bower, 

2001; Krekelberg, Kubischik, Hoffmann, & Bremmer, 2003; Okada & Toh, 2006). Localizing a 

conspecific based on the EOD it produces cannot rely on this strategy since the sender’s EOD 
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will impact the majority of electroreceptors over the entire skin surface (Kelly, Babineau, 

Longtin, & Lewis, 2008). Therefore, localization of conspecifics probably relies on comparison of 

the input at the various receptors and location would be computed by the nervous system 

based on the differences. This task shares similarities with localization in the auditory system, 

which relies on comparisons of binaural input (Brand, Behrend, Marquardt, McAlpine, & 

Grothe, 2002; Carr & Konishi, 1990; Jeffress, 1948). Localization in the electrosensory system 

might therefore be described as a hybrid mechanism that relies on a labeled line strategy for 

passive objects (e.g., small prey) that cause a local electrical disturbance, but needs to compute 

the spatial information about active electro-generating sources (e.g., conspecifics). As such, the 

electrosensory system is faced with many of the same challenges faced by the auditory or the 

visual system when localizing signal sources in complex environments. Whether it is a question 

of localization accuracy (e.g., auditory system), localizing in a noisy environment (cocktail party 

problem in the auditory system; Cherry, 1953; Liberman, Harris, Hoffman, & Griffith, 1957) or 

foreground-background separation (visual system; Ölveczky, Baccus, & Meister, 2003), there is 

a rich literature documenting the various neural and behavioral mechanisms in place to face 

these challenges.  

The electrosensory system has a long history of contribution to our understanding of 

sensory processing (Bastian & Heiligenberg, 1980). Issues of temporal coding have been 

particularly well explored in this system (Gabbiani, Metzner, Wessel, & Koch, 1996; Krahe, 

Bastian, & Chacron, 2008). Understanding localization in the electrosensory system has focused 

heavily on the spatial aspect of prey capture or the localization of small objects (Babineau, 

Lewis, & Longtin, 2007; Caputi & Budelli, 2006; Nelson & MacIver, 1999; Rasnow, 1996). Less is 
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known about the spatial processing of conspecific signals, but there are several new studies and 

a growing interest in the topic (Kelly et al., 2008). Our goal in this review is to provide an 

overview of what is known about localization of conspecific signals in weakly electric fish, 

pointing out along the way how this model system can contribute to our general understanding 

of sensory processing. We will first discuss the behavioral aspects of conspecific localization to 

provide a good understanding of the tasks that must be carried out by the nervous system. We 

will then describe the neural mechanisms underlying spatial processing and point out the issues 

that remain poorly understood. Finally, we compare the electrosensory system with other 

modalities to highlight the common challenges they face and discuss the similarities and 

differences in how they accomplish these tasks.  

 

Behavior and signal properties 

This electrosense is advantageous for navigating at night or in murky waters. Their ability to 

navigate and locate prey based on this sense is well documented (Nelson & MacIver, 1999; 

Postlethwaite, Psemeneki, Selimkhanov, Silber, & MacIver, 2009; Stamper, Roth, Cowan, & 

Fortune, 2012; Von Der Emde, Schwarz, Gomez, Budelli, & Grant, 1998). Similarly, they also rely 

heavily on this electrosense when interacting with conspecifics to identify, communicate and 

locate each other. Identity can be determined from the EOD pattern (Fig 2a): depending on the 

species; EOD frequency; shape or pulse pattern can be used to identify conspecifics from 

individuals of another species (Zupanc, Sîrbulescu, Nichols, & Ilies, 2006) or even differentiate 

amongst conspecifics (Zakon, Oestreich, Tallarovic, & Triefenbach, 2002). In wave type species, 
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the EOD frequency (and possibly shape; Kolodziejski, Sanford, & Smith, 2007; Petzold, Marsat, 

& Smith, 2016) is perceived indirectly.  

Indeed, when two or more individuals come into close proximity, the electric fields of each 

fish summate, and the resulting field contains amplitude and phase modulations, collectively 

known as a "beat” (Fig 2b; Heiligenberg, 1991). The beat frequency is equal to the frequency 

difference between the EOD of the sender and receiver (note that both fish send and both fish 

receive but we use this terminology throughout this article to describe the perspective we use 

(Stamper, Madhav, Cowan, & Fortune, 2012). Furthermore, phase modulations can indicate 

whether the other fish has an EOD frequency higher or lower than its own (see Carlson & 

Kawasaki, 2007; Metzner, 1999; Stamper et al., 2012 for more information). Determining beat 

frequency is important since each fish has a baseline EOD frequency and thus individual 

discrimination can be based on this signal. In some species, EOD frequency is sexually dimorphic 

leading beat frequencies to be lower during same-sex interactions and higher for male-female 

pairs (Engler & Zupanc, 2001). Since beat frequency can indicate species, sex, maturity and even 

individual identity, many species react differently when exposed to beat signals of various 

frequencies. For example, the rate of production of certain communication signals in black 

ghost or brown ghost knifefish depends on the beat frequency (Hupé, Lewis, & Benda, 2008). 

The most common type of communication signal produced by these fish -chirps- are brief 

increases in EOD frequency (see Kolodziejski et al., 2007 for more info). 
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Sensitivity of conspecific detection and localization 

In wave type fish, the beat signal results from the presence of a conspecific (see Fig 2), and, 

therefore, carries information about a conspecific’s location. The beat signal will strengthen as 

the conspecific gets closer and the strength of the signal across the sensory surface (i.e., the 

body’s surface) correlates with its relative position. Both lab and field studies clearly show that 

they monitor this information to detect the presence and position of a conspecific. In an 

insightful field study, Henninger et al (Henninger, Krahe, Kirschbaum, Grewe, & Benda, 2018) 

used grids of electrodes placed in river streams and creeks to triangulate and follow individuals 

in their natural environment during long periods of time. Besides revealing the behavioral and 

communication dynamic happening during various types of interactions -including courtship or 

aggression- this study showed the range of detection of conspecifics via this electrosense. 

Although their data suggests that fish routinely communicate with each other over distances of 

up to 30 cm, it also shows that two fish can detect and assess a conspecific at distances of 1 

meter or more. For example, they showed that a resident fish-initiated attacks on an intruder 

located as far as 1.7 m away. To emphasize how challenging this task is, they estimated the 

strength of the sender’s signal and showed that a fish 30 cm away creates a signal of 10 µV/cm 

and that a fish 1.7 m away causes a signal smaller than 1 µV/cm. Note also that this data 

suggests that these weak signals were not only detected, but also localized since it guided the 

resident to launch an attack directed at the intruder.  

Laboratory studies confirm the sensitivity of this system in detecting and locating a 

conspecific. Fish adjusted their EOD output (i.e., the response called “envelope tracking”) when 

presented with beats of 10-15% contrast (Metzen, Huang, & Chacron, 2018) which would 
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correspond to a conspecific 20-30 cm away (Fotowat, Harrison, & Krahe, 2013). In another 

study, fish exposed to a conspecific signal presented from various distances regularly produced 

chirps only in response to the stimuli located fairly closely (10 cm; Zupanc et al., 2006). 

However, conditioned responses to weak signals demonstrated that fish could detect signals 

weaker than 1 µV/cm corresponding to a distance of up to 1.6 m (Knudsen, 1974; Knudsen, 

1975). Therefore, despite coming to their conclusion through very different methods, the field 

and laboratory studies provide very similar estimates and identify a certain range within which 

fish actively interact with each other (e.g., chirp or envelope tracking) and a wider range 

delineating the limits of their detection and localization ability.   

 

Conspecific localization and EOD temporal modulation 

Information about conspecific location is present in two aspects of the signal: its temporal 

modulations and its spatial structure (see next section). Temporal modulations are indeed 

imparted by the relative movement of two fish. As a sender moves closer and further from the 

receiver, the beat will proportionally increase and decrease in strength (Fig 2c). The strength of 

the beat is also called its “contrast” and contrast modulations are called the “envelope signal”. 

The characteristics of these envelope signals have been determined experimentally by 

recording the signals received by a fish exposed to one or several other moving conspecifics 

(Fotowat et al., 2013; Yu et al., 2012). Since movement is relatively slow, envelope signals are 

typically low frequency (<10 Hz). The data also confirmed that the beat elicited by a conspecific 

nearby can be strong (often above 50% contrast at <10 cm), but decreases quickly with distance 

(a few % at 30 cm; Fotowat et al., 2013) since these electric fields decrease in strength as a 



12 

 
 

function of the cube of the distance (Caputi, Aguilera, Pereira, & Rodríguez-Cattáneo, 2013). 

Furthermore, these recordings illustrate another important principle that influences the 

properties of electric signals. The strength of the signal is not simply related to the distance but 

also to the relative orientation of the receiver and sender “dipoles” (Rasnow, Assad, & Bower, 

1993). To simplify, the EO can be thought of as a stimulus dipole and electroreceptors are 

sensing dipoles detecting the potential difference across the skin. Electric fields are 

characterized by isopotential lines and a sensing dipole positioned parallel to an isopotential 

line would not pick up the signal even if it is close to the stimulus dipole (Fig 1; Assad & Bower, 

1997; Rasnow et al., 1993). Consequently, the strength of the envelope can decrease to zero as 

the fish moves away or as it rotates 90° making the envelope signal picked up by a given 

receptor ambiguously related to the location of the sender. 

Envelope signals are common in various modalities. In the visual system they are linked to 

the ability to distinguish contrast based visual contours (Grosof, Shapley, & Hawken, 1993). 

They are also used by the auditory system for speech perception and sound localization (Lohuis 

& Fuzessery, 2000; Smith, Delgutte, & Oxenham, 2002). The electrosensory system has 

provided important insight into how these signals are processed by the nervous system (see 

next section), but we do not yet know how they are used to gauge the distance of the sender. 

Furthermore, azimuth and elevation of the sender relative to the receiver is not encoded in this 

temporal signal, it can only be estimated by comparing the strength of the signal across the 

sensory surface. 
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Electrosensory image 

The sensory surface is well suited to capture the spatial aspect of the sensory environment. 

Most of the body surface of knifefish contains a high density of electroreceptors each capturing 

the electrical potential within its vicinity (Carr, Maler, & Sas, 1982). Distortion of the fish’s own 

EOD caused by its environment can thus be mapped on this spatially organized sensory array. 

Distortions experienced by these fish can be categorized as either a passive electric image or an 

active electric image. The active electric image arises when an object or animal that is more or 

less conductive than the surrounding water locally influences the strength of the electric field 

generated by the fish. For example, a conductive prey item near the head (Fig 3) will locally 

increase the strength of the electric field and cast an “electrical shadow” (or a bright spot in this 

case) on the skin. A series of seminal studies using modeling, physiological and behavioral 

approaches have detailed the characterization of the electrosensory image of prey items during 

hunting behaviors (Nelson & MacIver, 1999; Nelson, MacIver, & Coombs, 2002). The authors 

measured the 3D relative position of the fish and its prey, modeled the electrosensory image 

that would result, estimated the activation strength of the various receptors and reconstructed 

a 3D activation map of the sensory surface. They determined that black ghost knifefish typically 

detect prey when they are 1-2 cm away that elicit a signal of 1-3 µV and can potentially detect a 

signal as weak as 0.2 µV. These studies point out once again the extreme sensitivity of this 

system and provide a clear understanding of how these signals are represented at the 

periphery. The neural mechanisms underlying prey localization and detection are also a good 

example of sophisticated neural processing strategies used to accomplish challenging tasks (see 
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next section; Chacron & Bastian, 2008; Clarke, Longtin, & Maler, 2014; Jung, Longtin, & Maler, 

2016).  

A conspecific in close proximity to the receiver will also cast such an active electrosensory 

image -albeit a bigger one- but few studies have characterized this sensory image. In a recent 

study combining behavioral recordings and modeling of the electric field and sensory image, 

Pedraja et al (2016) showed that this active image could guide behavior during aggressive 

encounters. However, they showed that the passive electrosensory image (see below), rather 

than the active one, was better correlated with the initiation of attack behavior at close range. 

This study also indicates that the image of the conspecific is fairly sharp at close range (a small 

portion of receptors are strongly activated and the others much more weakly), thereby giving a 

clear labeled-line representation of conspecific location. In contrast, the image elicited by a 

conspecific further away (>10 cm) is uniformly weak, thus detection most likely involves pooling 

all the responses together to average out the noise and localization must rely on comparing the 

weak responses to determine the even-weaker differences among them. This analysis highlights 

once again the challenging task that this system must perform. Although it is still not clear to 

what degree they rely on the passive image versus a combination of passive and active images 

in close range interactions, the active image cannot underlie the ability to detect and localize 

conspecifics far away (Knudsen, 1975).  

They must thus rely on the passive electrosensory image to detect and localize distant 

conspecifics. The passive image consists of the spatial pattern of distortion of the receiver EOD 

caused by the sender EOD. It is important to point out that this terminology, although well 

defined for prey and for pulse species, is more ambiguous for wave-type species since this 
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passive image is the result of both sender and receiver’s active signals (EODs and the resulting 

beat). Furthermore, the passive and active components will both be perceived through 

modulations of the receiver’s own EOD and thus, are not truly different images but different 

components of the electrosensory image. We nevertheless use this terminology for consistency 

with previous studies (e.g., Pedraja, Perrone, Silva, & Budelli, 2016). 

The strength of the beat signal at different points on the receiver’s skin will vary with 

position and orientation of the sender. A sender located in front, for example, would cause 

stronger beats on the rostral than caudal end of the receiver. The detailed activation pattern of 

the sensory surface also depends on receptor orientation (e.g., dorsal receptors are nearly 

orthogonal to the nearby receptors on the side of the body). For this reason, the activation 

pattern of areas like the head will be more complex than for relatively flat area like the side of 

the mid-body. Several researchers have modeled the electrosensory image caused by a 

conspecific either fixed (Kelly, Babineau, Longtin, & Lewis, 2008) or approaching (Castelló, 

Aguilera, Trujillo-Cenóz, & Caputi, 2016; Gómez-Sena, Pedraja, Sanguinetti-Scheck, & Budelli, 

2014) the focal fish. Despite being extremely valuable data, the studies typically have 

simplifications that make evaluating the strength of the input for all electroreceptors more 

difficult. For example, the models looking at conspecific signals were either limited to 2D or 

considered receptors only along a line on the side of the fish or did not take into account the 

various orientation of receptors. This complexity will be most obvious for regions like the head 

where receptors very close to one another will have very different orientation and thus very 

different activation levels. Considering how receptor activation will depend on the relative 

orientation, in 3D, of the receptor relative to the stimulus, further studies are required to 
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obtain a detailed characterization of the sensory image of conspecifics. An incomplete 

understanding of the spatial structure of these sensory signals limits our ability to understand 

how the sensory system extracts this spatial information. Nevertheless, a rich literature on 

sensory processing in this system documents many of the neural processes relevant to this task. 

 

Sensory system and neural processing 

Representation of space in sensory systems, for example through topographic mapping, is a 

key feature in most modalities. In the electrosensory system, the sensory images activate 

electroreceptors distributed everywhere across the skin. Ampullary receptors (mediating low-

frequency passive electrosensation; see Introduction) are less numerous (~700 total in brown 

ghost knifefish) compared to tuberous receptors (~13,000-17,000 total; Carr et al., 1982). The 

density of ampullary and tuberous receptors varies across the body surface. Regions of the 

mouth, face, and head are higher in receptor density, resulting in the formation of an 

electrosensory fovea. Similar to other sensory systems, this foveal arrangement of receptors 

permits a higher resolution of sensory input and its location near the mouth is well suited to 

guide the final stages of prey capture.  

There are two kinds of tuberous receptors involved in active electrosensation: T-units and 

P-units. Time coding units (T-units) are few in number and form a separate channel early in the 

sensory pathway through spherical cells of the electrosensory lateral line lobe (ELL) and onto a 

dedicated layer of the Torus semicircularis (Ts; Maler, Sas, & Rogers, 1981). Most tuberous 

receptors are amplitude coding (or probability coding units: P-units), providing direct input to 

ELL pyramidal cells. P-units are solely responsible for encoding the amplitude of the fish’s own 
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EOD and the amplitude modulations (AMs) arising from electrolocation and 

electrocommunication (Nelson, Xu, & Payne, 1997). All tuberous receptors split three ways 

providing trifurcated input unilaterally to the centromedial segment (CMS), centrolateral 

segment (CLS), and the lateral segment (LS), whereas ampullary receptors project exclusively to 

the medial segment (MS) of the ELL (Heiligenberg & Dye, 1982). Pyramidal cells across the 

different maps and different layers of the ELL (deep, intermediate or superficial) vary in their 

response properties (e.g., low-pass to high pass) or receptive field size and polarity (ON-center 

or OFF-center cells; Krahe, Bastian, & Chacron, 2008; Saunders & Bastian, 1984). The three 

tuberous-driven maps thus have properties adapted for processing different signals. For 

example, CMS is crucially involved in the jamming avoidance response (JAR), certain stages of 

prey capture might rely more heavily on CLS, while LS is best at encoding communication 

signals (Maler, 2009b ; Marsat, Proville, & Maler, 2009; Metzner & Juranek, 1997). ELL neurons 

project to the Ts in the midbrain and to areas providing feedback to the ELL (see below). Ts has 

a laminar organization and a complex network of inputs, outputs and connections between 

layers. Electrosensory input to the Ts is somatotopically conserved and restricted specifically to 

the dorsal Ts (Carr et al, 1981). The dorsal Ts is divided into twelve laminae, of which layers 3, 5, 

6, 7, 8b, and 8d receive electrosensory input. Cells that respond to communication stimuli likely 

lie within the deeper layers of the Ts. At higher levels the electrosensory pathway splits as Ts 

projects to the optic tectum (TeO) involved in spatial processing, to the nucleus 

electrosensorius (nE) processing communication signals, and the preglomerular nucleus (PG) 

that mediates connectivity with the forebrain (Fig 4; Giassi, Ellis, & Maler, 2012; Zupanc & 

Horschke, 1997). As expected, extensive feedback from forebrain areas but also from mid and 
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hindbrain areas interconnect these regions; most are not discussed further here (Bell & Maler, 

2005; Giassi et al., 2012). 

The processing of conspecific signals has been most extensively studied at the receptor and 

ELL levels and so we focus on the early sensory processing in the next sections of this review. 

Conspecific stimuli cause both phase and amplitude modulations in the input signal (Stamper, 

Fortune, & Chacron, 2013; Stamper et al., 2012; Yu et al., 2012). While phase information 

relayed by the T-unit receptors is essential to generate the JAR behavioral response, the bulk of 

the processing at this early stage focuses on the AM. Most notably, the beat AM present during 

conspecific interactions must be detected, localized and its frequency determined. As is typical 

with early stages of sensory processing, receptors encode the AM fairly linearly and ELL 

pyramidal cells -although possessing important non-linearities- still represent the shape of a 

broad range of AM signals in modulations of their firing rate. Various response properties and 

coding mechanisms have been described at this level such as interspike interval (ISI) 

correlations to reduce noise (Ratnam & Nelson, 2000), bursting to improve feature detection 

(Gabbiani, Metzner, Wessel, & Koch, 1996) or decorrelation to enhance information bandwidth 

and coding accuracy (Marsat & Maler, 2010). We also have a detailed understanding of how 

communication signals, chirps more specifically, are encoded in the early sensory pathway. 

Chirp coding crucially depends on the frequency of the beat that is present in the background 

of these interactions (Marsat, Longtin, & Maler, 2012; Walz, Grewe, & Benda, 2014). For 

example, the receptors can synchronize or de-synchronize in response to a chirp depending on 

whether the beat is low or high frequency (Benda, Longtin, & Maler, 2006) and ELL neurons 

might respond with bursts only for some chirp-beat combinations (Allen & Marsat, 2018; Benda 
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et al., 2006). For both chirp and beat coding, Ts neurons respond more sparsely and selectively 

(Vonderschen & Chacron, 2011) although some neurons still encode the signal AM in detail. 

Although the coding properties alluded to above could influence the conspecific localization 

mechanism, we will focus below on two mechanisms that play a large role in this process, 

namely envelope coding and beat cancellation.  

We described in the behavior section how the movements of interacting fish would cause 

an envelope modulation - a signal that could serve to gage distance between individuals. 

Several recent publications have clarified the neural mechanisms underlying envelope coding 

(Huang, Metzen, & Chacron, 2018; Metzen & Chacron, 2014; Savard, Krahe, & Chacron, 2011; 

Thomas, Metzen, & Chacron, 2018). For firing rate to reflect the envelope strength, a non-linear 

transformation must happen. To illustrate this point, consider an envelope signal that 

decreases as if the conspecific was moving away. During this decrease in envelope (beat 

contrast), the mean EOD strength that reaches the receptors does not change, it still varies 

around the same amplitude of the fish’s own EOD. Therefore, if mean firing rate is to change, 

even though mean EOD strength does not change, the nervous system must implement a non-

linear transformation. Several mechanisms might contribute to the envelope coding 

mechanism. At weaker intensities, ovoid cells can perform this task (Middleton, Longtin, Benda, 

& Maler, 2006) and direct feedback can enhance the sensitivity of the envelope responses 

(Huang et al., 2018). At higher intensities, the receptors provide the main mechanism 

implementing this non-linear transformation. Due to the threshold and saturation of receptors, 

the incoming signal is half-rectified and then low-pass filtered at the synapse with the 
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pyramidal cells (Savard et al., 2011). These mechanisms extracting the envelope strength could 

therefore contribute to evaluating conspecific distance. 

The ELL receives both direct feedback from the nucleus praeminentialis (nP; see Figs 4, 5) 

and indirect feedback from cerebellar granular cells (EGp; Figs 4, 5).The encoding of beats in the 

ELL is also influenced by indirect feedback inputs (Joseph Bastian, 1986a, 1986b).  The role of 

the latter in cancelling the response to beats has been extensively documented (Bol, Marsat, 

Harvey-Girard, Longtin, & Maler, 2011; Chacron, Doiron, Maler, Longtin, & Bastian, 2003). A 

subset of pyramidal cells, the superficial and to some degree the intermediate cells, receive 

massive parallel fibers inputs onto their apical dendrites. Plasticity at these synapses adjusts the 

relative contribution of each fiber so that the overall input is in antiphase to the feedforward 

input from the receptors thereby reducing the strength of the response in these cells (Bol et al., 

2011; Harvey-Girard, Lewis, & Maler, 2010). This mechanism operates for relatively low 

frequency beats but does not cancel the responses to beat frequencies higher than 15-20 Hz 

(Chacron, Maler, & Bastian, 2005). This feedback only affects a subset of cells; it does not 

influence the response of deep pyramidal cells and cancellation in the CMS and LS segments is 

less pronounced. Nevertheless, since it affects the coding of the beat, and because beat 

strength can mediate the localization of conspecifics, this feedback can potentially influence the 

localization mechanism (see below). 

 

Topographic representation and spatial information  

Each receptor on the skin captures the strength of the electric signal at a given point on the 

skin and thus the pattern of activation of the array of electroreceptors covering the body will 
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reflect the spatial structure of the electrosensory image elicited by the presence of a 

conspecific. This spatial pattern of activation of receptors is conserved through the topographic 

projection into the ELL. Thereby each of the four segments of the ELL (from medial to lateral) is 

organized as a topographic map of the sensory surface (Lannoo, Maler, & Tinner, 1989). The 

three maps sensitive to EOD (CMS, CLS and LS) differ in size and in the shape of their 

topographic representation (see Krahe & Maler, 2014). CMS is the largest map containing 

~2800 pyramidal cells (in brown ghost knifefish) and the head representation is 

disproportionately big compared to the trunk. At the other extreme, LS is the smallest segment 

(~900 pyramidal cells on each side) and the head representation occupies a smaller portion of 

the maps compared to CMS. Pyramidal cells are organized in columnar functional units where 

three ON cells and three OFF cells located at various depths (deep, superficial or intermediate) 

have receptive fields with similar centers. Each of the six pyramidal cells within a column has 

different response properties and connectivity thus representing complementary channels of 

information. Taking digital images as an illustration, each column would represent a pixel and 

the spatial resolution of the sensory image on one side of the body would thus be of 150, 235 

or 470 total pixels (i.e., columns) for LS, CLS and CMS segments respectively (Maler, 2009b). 

As suggested by the anatomy, the receptive fields of ELL cells vary from segment to 

segment with smaller receptive fields in CMS (6–14 mm2 corresponding to the area covered by 

25–50 P-units), than CLS (26–60 mm2/100–240 P-units), and much larger receptive fields in LS 

(160–360 mm2/640–1400 P-units; Bastian, Chacron, & Maler, 2002; Shumway, 1989a; 

Shumway, 1989b). The segments also vary in amount of overlap between the receptive fields of 

neighboring cells (larger in LS than CMS). Pyramidal cells have a classical center receptive field 



22 

 
 

and a surround receptive field with an ON-center/OFF-surround (or vice versa) pattern similar 

to the well-known phenomenon in the visual system. The size of the surround relative to the 

center also varies across maps with LS maps having proportionally smaller surrounds and CMS 

having larger surrounds. 

These differences in feedforward convergence and receptive field sizes could lead to 

differences in spatial representation and sensitivity. The small receptive fields are often 

associated with high spatial resolution, but lower sensitivity and might thus be geared towards 

detecting nearby small objects such as prey. Larger receptive fields are typically thought to 

mediate lower spatial resolution but higher sensitivity, since the input from many receptors are 

pooled and the noise can be averaged out. They would be best at responding to weak, distant 

signals that cast spatially extended (diffuse) images such as a distant conspecific. The use of 

smaller receptive fields and higher density of receptors for higher spatial accuracy might be the 

simplest scenario, but it is not the only possible processing strategy. For example, it was shown 

that accurate localization can be achieved with a broad receptive field if the neurons responded 

with high signal-to-noise ratio (Snippe & Koenderink, 1992). No matter what strategy is used, 

differences in spatial mapping across the ELL should support the efficient processing of spatial 

information from a variety of signals. 

The topographic representation is preserved in the Ts where many of the layers contain a 

map of the body surface (Carr, Maler, Heiligenberg, & Sas, 1981). Similarly, the tectum is 

topographically organized but the other targets of Ts (nE and PG) are not (Fig 4). In non-

electrosensory fish species, the tectum is largely driven by visual inputs and directs visually 

guided behaviors. It is thus no surprise that this structure receives electrosensory inputs in 
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species that rely heavily on this sense to guide motor behavior. While the tectum projects to 

locomotive motor areas, the nE projects to electromotor areas to control EOD and 

communication signal generation. Note that nE and tectum are interconnected through 

feedback loops, therefore; a communication signal from a conspecific processed in nE can 

influence the spatial processing of the conspecific location in tectum or the spatially directed 

behavior it generates. 

The role of spatial differences in receptor activation has been highlighted in studies of the 

jamming avoidance response (Carlson & Kawasaki, 2007). However, spatial representation and 

coding of an active conspecific signal has not been detailed explicitly at any level of the nervous 

system. In contrast, spatial coding of passive objects has been the focus of several behavioral 

and neurophysiological studies (e.g., Caputi & Budelli, 2006; Nelson & MacIver, 1999; Sicardi et 

al., 2000). The electrosensory image of a daphnia at the time of detection can be as weak as 0.2 

µV and covers a small (2-3 cm diameter) diffuse area of the body surface (Chen, House, Krahe, 

& Nelson, 2005). This very weak signal barely causes any increase in the firing rate of 

electroreceptors or ELL pyramidal cells and researchers have investigated the mechanism that 

permits such a sensitive detection. For example, it was suggested that a 0.2 µV prey signal 

would elicit an increase in firing rate of 0.2 spikes corresponding to about 1/10th the SD of 

baseline firing rate (i.e., noise).  

The most obvious way to solve this problem is to pool and average the information over 

many receptors. Theoretical calculations based on the strength and size of these signals and the 

convergence of electroreceptors onto pyramidal cells of various maps determined that, given 

certain assumptions, the LS could achieve reliable detection of 0.2 µV prey signals but those 
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assumptions remain to be tested (Maler, 2009b). Coding accuracy could also be optimized and 

a noise-reducing mechanism to do so has been identified. The spiking pattern of 

electroreceptors at baseline is not random and displays negative serial correlation in interspike 

intervals (i.e., short interval followed by long and vice-versa) due to an adaptation process 

(Ratnam & Nelson, 2000). This pattern reduces the low-frequency content of baseline noise, 

thus enhancing the ability to detect the low-frequency signals typical of prey stimuli (Chacron, 

Lindner, Maler, Longtin, & Bastian, 2005; Chacron, Longtin, & Maler, 2001).  

It was further suggested that prey signals would cause a slight disruption in this patterned 

receptor spike train and that pyramidal cells could extract this change in pattern (Jung et al., 

2016; Nesse, Marsat, Longtin, & Maler, 2012). Although these mechanisms were revealed by 

focusing on prey capture mechanisms, they are also relevant to the detection of distant 

conspecific signals, and we expect that these concepts will be explored when investigating the 

mechanisms permitting sensitive conspecific detection and localization. 

 

Network dynamic and spatial processing 

Localization of a passive object like prey differs from localizing the active signal of a 

conspecific for several reasons. The sensing volume for prey or small passive objects is limited 

to a few cm around the body and even large objects, such as a tank wall, do not significantly 

affect the strength of the EOD signal when it is more than 10 cm away (Chen et al., 2005; 

Fotowat et al., 2013). Passive objects that are detected cause a disturbance of the EOD over a 

limited area of the skin (a spot for a prey, one side of the body for a wall, etc.). In contrast, a 

conspecific at distances of more than 10 cm causes a very diffuse image where the signal 
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strength at most points on the receiver’s body differs only by small amounts (Pedraja et al., 

2016). Furthermore, active conspecific signals will cause a complex activation pattern of the 

sensory surface because of the relative orientation of the sender fish EO and cutaneous 

receptor orientation. Consequently, two receptors situated equally far from the sender could 

perceive signals of very different strengths if they are oriented differently (e.g., along the 

ventral-dorsal axis for receptors on the back and medial-lateral for receptors on the side). In 

other words, the activation of the receptor array is not simply related to the x, y, z position of 

the conspecific but also to its orientation. 

Nevertheless, no matter what the relationship is between the spatio-temporal pattern of 

activation of the array of receptors and conspecific location, it carries the spatial information 

necessary for localization. As described above, the feedforward circuit preserves a spatially 

accurate representation of the sensory image due to its localized receptive field. The ELL 

network contains a variety of elements that can influence spatial representation, each driven by 

more or less localized receptive fields (Fig 5). Most notably, two types of feedback inputs are 

known to influence pyramidal cell responses. While the feedback pathway through bipolar cells 

of the nP is poorly understood, the inputs from stellate cells are well characterized. It is driven 

by a receptive field slightly larger than the pyramidal cell it projects to. This feedback has been 

proposed to function as a “searchlight” (Berman & Maler, 1999) and recent papers by (Clarke et 

al., 2014; Clarke & Maler, 2017), demonstrated how this feedback enhances the response to 

moving prey-like stimuli. This mechanism could also play a role in shaping the response to 

conspecifics in close proximity, but it is unlikely that it will affect responses to more distant 

individuals since its modus operandi relies on the activation of relatively small receptive fields. 
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The feedback through nP’s stellate cells has also been shown to enhance the response to 

envelope signals elicited by moving conspecifics (Metzen et al., 2018). The authors of this study 

showed that the sensitivity of a specific electromotor reaction to the envelope signals of 

medium to low strength (10-15% contrast) required this input. A 10-15% contrast corresponds 

to a fish 20-25 cm away (Fotowat et al., 2013) and it is unclear how this feedback affects the 

processing of signals from more distant individuals. Nevertheless, it would be interesting to 

determine whether this feedback pathway shapes the spatial representation of conspecific 

signals, particularly for a conspecific at short to medium distances. 

The indirect feedback through the EGp is described in the section above as mediating a 

cancellation of the response to beats, and thus could also affect the spatial representation of 

conspecific signals. The precise extent of the receptive field driving this feedback has been 

shown to be very large and thus is well suited to provide an input that reflects the activation 

pattern over a large area of the sensory surface. As described in the next section, this type of 

spatially diffuse input has been shown in other systems to shape spatial processing through 

background suppression and contrast enhancement, so we suggest it could influence spatial 

representation in this system too. 

 

Discussion 

We have outlined some of the challenges faced by weakly electric fish when trying to detect 

and locate a conspecific and presented some of the mechanisms involved in spatial processing 

in this system. We have argued in the introduction that the electrosensory system can compare 

in some ways with the visual system but in others with the auditory system. We hope that 
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some of the insight presented along the way has reinforced this statement. For example, we 

pointed out that topographic mapping from the periphery all the way to the optic tectum that 

can guide locomotion is a feature shared with the visual system. On the other hand, the 

auditory system must “compute space” by comparing the signal at the two ears. For conspecific 

signals that are not in the immediate vicinity, this same process must happen and considering 

the shared developmental and evolutionary origins we speculate that solutions to this common 

problem could share some features. To stress further the potential for insight we can obtain 

from comparing these sensory systems, we point out below a few important mechanisms that 

the auditory or visual system utilizes to perform challenging tasks and explain how they can 

relate to the electrosensory system.  

Sound localization has been thoroughly studied in a variety of systems but research on the 

barn owl, with its exquisite accuracy in sound localization, has a particularly rich history of 

insightful studies (Grothe, 2018). Research by Konishi, Knudsen, Carr and others have unraveled 

how the interaural time differences (ITD) of sound arrival at each ear, and interaural level 

differences (i.e., amplitude; ILD) enhanced, combined and how they support localization 

accuracy of just a few degrees (Carr & Konishi, 1990; Knudsen, 1981; Konishi, 1973). This 

corresponds to ITDs of a few µs and champions the sensitivity of most vertebrates’ auditory 

systems. Electrolocation of conspecific fish cannot rely on timing differences since the speed of 

light would not give rise to significant differences. However, the electrosensory signal will cause 

differences in amplitude similar to the ILD used by the owl auditory system. In this system, 

localization on the vertical plane (elevation) relies heavily on ILD and sensitivity to these cues 

first arises in the posterior nucleus of the ventral lateral lemniscus where neurons receive 
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excitation from one ear and inhibition from the other (Takahashi & Keller, 1992). In mammals, 

ILD sensitivity contributes to the localization on the horizontal plane (at least for high frequency 

sounds) and a binaural comparison occurs in the lateral superior olive. There, excitatory 

inhibitory inputs combine with contralateral inhibitory inputs driven indirectly by globular 

bushy cells driven by a large number of auditory receptors (Grothe & Pecka, 2014). 

Contralateral inhibition enhancing binaural contrast is common in auditory systems and can 

interact with the temporal processing of the signals (Koch & Grothe, 2000) to enhance sound 

localization specifically for behaviorally relevant signal patterns (Marsat & Pollack, 2005). The 

neural circuitry to perform a similar operation is present in the ELL of knifefish (Fig 6). The 

indirect feedback is driven by spatially diffuse inputs and can attenuate the response to 

conspecific signals particularly relevant in some interactions (i.e., low frequency beats). For a 

pyramidal cell that is only weakly excited by the conspecific signal because it is not ideally 

located relative to the conspecific location, the feedback might draw its inputs from a region 

that is maximally stimulated by the conspecific and thus the beat would be effectively cancelled 

in these pyramidal cells. For cells strongly excited by the feedforward stimulation from the 

conspecific, the feedback might not completely cancel the beat response. Although this 

mechanism is simply a hypothesis and remains to be tested, the elements to implement it seem 

to be present.  

Beyond localizing a single signal, the auditory system might be faced with the “cocktail party 

problem” where it must attend to one signal among many (Cherry, 1953). The mechanisms 

allowing the resolution of this issue have also been thoroughly investigated (e.g., Middlebrooks 

et al., 2017) and still lead to new discoveries regularly (e.g., Popham, Boebinger, Ellis, 
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Kawahara, & McDermott, 2018). Listening to a communication signal with only one ear in a 

noisy environment makes extracting the message more difficult than if binaural hearing is used. 

It is suggested that sound location allows to segregate elements from one stream and top-

down feedback inputs allow the enhanced coding of this signal stream (for a review on the 

topics see Haykin & Chen, 2005). Although most of the mechanisms suggested to contribute to 

solving the cocktail party problem focused on cortical network, mechanisms present as early as 

the dorsal cochlear nucleus have been suggested (Pressnitzer, Sayles, Micheyl, & Winter, 2008). 

It is common to see electric fish locate and chase one another in cluttered environments even 

when other conspecifics are present (e.g., Henninger fig 2; Henninger et al., 2018). Thus, we 

argue that they are likely faced with a similar “cocktail party problem”. This suggestion naturally 

leads to the question of how this issue is solved in the electrosensory system. Considering the 

proposed role of the direct feedback input from nP as a “searchlight” mechanism (i.e., a sort of 

low-level spatial attention mechanism) we suggest that it could contribute to segregating 

competing signals by enhancing the response (as in Metzen et al., 2018) to the most salient 

one.  

Mechanisms of scene analysis, such as the ones involved in solving the cocktail party 

problem, are also central issues in visual processing. In particular, foreground-background 

separation is required when trying to attend to an object – when fixating a moving object for 

example. Background suppression is largely influenced by the activity of wide field, polyaxonal 

amacrine cells. These polyaxonal amacrine cells mediate retinal ganglion cell (RGC) selectivity of 

an object over the background (Ölveczky et al., 2003). This background suppression mechanism 

relies on the amacrine cells receiving input from a wide receptive field surround and 
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suppressing RGC activity (Baccus, Olveczky, Manu, & Meister, 2008). As in the auditory 

mechanism described above, or the electrosensory mechanisms hypothesized, this visual 

mechanism enhancing spatial processing relies on inhibition with a different receptive field as 

its target, emphasizing that this contrast enhancement procedure is a common strategy in 

scene analysis (see Fig 6).  

The remarkable sensitivity of sensory systems has been the focus of a variety of studies in 

the auditory system (Fettiplace & Hackney, 2006; Hill & Boyan, 1977; Knudsen & Konishi, 1979), 

visual system (Jacobs et al., 2009), olfactory system (Daly, Carrell, & Mwilaria, 2007) and others. 

Mechanisms underlying the ability to detect extremely weak prey stimuli have been identified 

in weakly electric fish and are likely relevant to the detection of similarly weak conspecific 

signals. One of the mechanisms identified by Jung et al (2016), relies on a finely balanced 

inhibition and excitation from feedforward inputs. Balanced inhibition and excitation is a staple 

feature of many neural networks (e.g., cortex; Haider, 2006) and is involved in shaping sensory 

tuning in various systems (e.g., Anderson, Carandini, & Ferster, 2000). We also described how 

the presence of ISI correlation in receptors spike train enhances coding accuracy by decreasing 

variability, a process observed in a variety of neurons (e.g., Farkhooi, Strube-Bloss, & Nawrot, 

2009). Several other mechanisms enhance the sensitivity of this system but have not been 

discussed here (e.g., bursting serving the same function in this system as in others; Krahe & 

Gabbiani, 2004) for lack of space or because they are less obviously relevant to processing the 

spatial aspect of conspecific signals.  

Finally, it should be noted that behavioral strategies can contribute to the localization 

process. A good example of this phenomenon is calling song localization in crickets. Females will 
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approach a song source in zig-zag patterns but the angle of each turn is much greater than the 

angular resolution of localization in the frontal field (Schöneich & Hedwig, 2010). This suggests 

that the cricket lateralizes the sound, turns coarsely in that direction and after a few steps re-

evaluates whether the sound is still coming from that side or not. This zig-zag behavioral 

strategy can thus be explained by the reliance on accurate lateralization rather than all around 

accurate localization. In elephantnose (mormyrid) electric fish, behavioral strategies might also 

hint at the sensory mechanism in place. An individual moving towards a conspecific will tend to 

follow electric field lines rather than moving straight towards it (Schluger & Hopkins, 1987). This 

pattern arises presumably from the fish aiming to balance the strength of the electric field on 

each side of the body. Various active sampling strategies are also used in different organisms to 

enhance a sensory signal (Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010). A well 

described example is the microsaccades used in the visual system to prevent firing rate 

adaptation, thereby preventing the fading of visual images representations (Schroeder et al., 

2010). Similarly, knifefish use the motions of their body to enhance the localization of nearby 

objects (Stamper, et al., 2012). Furthermore, Heiligenberg found that tail bending enhances the 

electric image/shadow that the object of interest casts on the fish’s body (Heiligenberg, 1975; 

see also Sim & Kim, 2011). A variety of object localization and detection mechanisms involving 

movement have been suggested (Hofmann, Sanguinetti-Scheck, Gómez-Sena, & Engelmann, 

2017; Pedraja et al., 2018; Pourziaei, Lewis, Huang, & Lewis, 2019; Sim & Kim, 2011), and should 

be discussed in a separate dedicated review . 

Behavioral tests in knifefish have not yet identified behavioral strategies that are used 

during conspecific localization specifically (rather than simply object localization) and could be 
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the topic of future experiments. In particular, it would be useful to test explicitly whether the 

fish can accurately localize other distant individuals at any azimuth or if they simply rely on a 

lateralization of the signals. 

In conclusion, we would like to reiterate that weakly electric fish accomplish difficult tasks 

when detecting and localizing conspecifics. Many of these challenges resemble those faced by 

most modalities but the particularities of the electrosense allows us to probe the generality 

versus specificity of mechanisms observed across these sensory systems. Researchers studying 

weakly electric fish are continuing to build on a rich history of contribution to our 

understanding of behavior and its neural basis. Spatial processing in this system is one of the 

lines of research that has many unanswered questions and the potential for insightful 

discoveries.  
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Figures and Legends 

 

Figure 1. Spatial structure of an 

Apteronotus leptorhynchus’ 

weakly electric field.  

Illustration of an Apteronotus 

leptorhynchus, brown ghost 

knifefish, (center) surrounded 

by its electric field. Multicolored 

isopotential lines project 

outward from the fish. A small 

receiving dipole (blue) is shown 

measuring along an isopotential line (orange). The electric field potential is highest close to the 

fish and decreases as a function of distance. The gray line depicts the zero-potential plane of 

the fish’s electric field.   
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Figure 2. Conspecific signals 

and the influence of spatial 

interaction. 

(a). Two separate, individual 

fish are depicted with 

receiving dipoles (green and 

purple) measuring their 

respective EODs. EODs are 

shown as continuous quasi-

sinusoidal waveforms that 

differ slightly in frequency. 

Differences in frequency cause 

changes in phase, as depicted 

by the dotted black lines. 

Interactions of EOD waveform 

peaks and troughs create 

suppressions and additions in 

amplitude and are 

represented by [-] and [+], 

respectively.  

(b). A depiction of the combined EODs of two static fish. Constructive and destructive 

interferences created by EOD phase differences result in the formation of a “beat” (orange). 
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Arrows point to examples of decreases and increases of beat strength caused by EOD 

interactions.  

(c). Amplitude modulations of the beat (beat of the beat) result in the formation of an 

“envelope”. Receiving dipole recordings (blue) from a stationary, receiver fish (purple) shows 

how the envelope strength changes as a function of distance as well as orientation. (1) A 

distant, sender fish will produce a weaker envelope that increases in strength as the sender fish 

approaches. (2) Envelope strength greatly increases when the two fish are in close proximity 

but quickly decreases as the zero potential plane of the sender fish crosses over the receiving 

dipole. (3) The strength of the envelope is affected not only by distance but also by orientation, 

with an optimal orientation resulting in greater envelope strength.  
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Figure 3. Local activation of the receptor array enables spatial localization of prey.  

A representation of the tuberous electroreceptor array on an Apteronotus leptorhynchus. Local 

electrokinetic signals from a small prey item create a gradient of activation along the sensory 

surface of the body. Warmer and cooler colors depict a higher and lower amount of receptor 

activation, respectively. This pattern of receptor activity provides sensory information for 

spatially localizing prey.   
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Figure 4. Electrosensory pathway and topographically mapped brain regions.  

A depiction of an Apteronotus leptorhynchus brain with labeled brain regions and their 

respective connections. Electroreceptor afferents provide sensory input to the electrosensory 

lateral line lobe (ELL). The ELL is topographically mapped (globe symbol) and influenced by 

indirect feedback from the caudal lobe of the cerebellum (EGp) and by direct feedback from the 

nucleus praeminentialis (nP). Sensory information from the hindbrain ELL projects to the 

midbrain torus (Ts). Connections from the Ts project further to the optic tectum (TeO), the 

nucleus electrosensorius (nE), and the preglomerular nucleus (PG). A topographic organization 

is conserved to brain regions as far as TeO but is lost in the forebrain dorsal telencephalon 

(pallium). Dashed arrows represent brain areas additionally influenced by the pallium, though 

connections and interactions with the pallium have been less studied.   
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Figure 5. Circuitry of the ELL 

and immediate projections. 

A simplified schematic of the 

electrosensory lateral line lobe 

(ELL) focusing on a particularly 

relevant set of connections with 

pyramidal cells is depicted. The 

progressive, cool to warm color 

scheme shows the size of 

receptive fields for a given cell 

type. More local receptive fields are depicted by cooler colors (blue and green), global receptive 

fields are shown in warmer colors (red and orange), and mixed receptive fields are shown with 

an intermediate color scheme (yellow), as described within the lower left box of the figure. 

Each electroreceptor provides sensory input to the ELL. Within the ELL, initial input is received 

by granule cells (GC1 and GC2), ovoid cells, and pyramidal cells (black hub). Pyramidal cells are 

the sole output neurons of the ELL, sending sensory information to the midbrain Torus 

semicircularis. A major source of input to ELL pyramidal cells comes from feedback pathways 

through the nucleus praeminentialis (nP) and the caudal lobe of the cerebellum (EGp). Stellate 

cells of the nP regulate the local direct feedback pathway (green) and form the basis of the 

“sensory searchlight” hypothesis. Bipolar cells of the nP provide global direct feedback, 

however the role of bipolar cells and global direct feedback has not been extensively studied. 

An indirect feedback pathway from the nP travels through the EGp and influences pyramidal 
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cell activity. This schematic is not a comprehensive diagram of ELL connections, as other less 

obviously relevant pathways are not shown for the purpose of clarity.   
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Figure 6. Shared network elements and potential feedback / lateral inputs contributing to 

localization and spatial processing.  

In the visual system (a), photoreceptors convey topographically organized visual input to retinal 

ganglion cells (RGCs) through additional layers of retinal circuitry. Most notably, amacrine cells 

(AC) influence RGC output and contribute to mechanisms such as background-suppression. A 

simplified depiction of sound localization in the mammalian auditory system is shown in panel 

(b). Binaural input from the ipsilateral side is sent to the lateral superior olive (LSO), while 

sensory input from the contralateral side is sent to the LSO by way of the medial nucleus of the 
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trapezoid body (MNTB). Direct excitatory input to the LSO and indirect inhibitory input illustrate 

an early mechanism of spatial processing in the auditory system. Panels (c) and (d) show how 

electroreceptors provide topographical input to the ELL through a feedforward pathway, while 

the nucleus praeminentialis (nP) provides two forms of feedback input onto the ELL, an indirect 

feedback (c) and a direct feedback (d). Compared to the visual and auditory systems described 

above, different modes of feedback in the electrosensory system house shared network 

elements and are potentially involved in localization and spatial processing. In all panels, we 

color the pathway leading to feedback inputs or lateral inputs in red and the direct feedforward 

pathway in gray. Note that these diagrams are intended as simplified flow-charts.  
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Chapter 1: Introduction – Part 2 

Prologue 

I continue the introduction of my dissertation with a primer that focuses specifically on 

neural coding of weak signals across biological sensory systems. In the first part of Chapter 1, 

we provided support that weakly electric fish excel at encoding signals emitted by other weakly 

electric fish, even when conditions are unfavorable. However, it is unclear whether the 

mechanisms used by the electrosensory system are generalizable to other modalities. In this 

second part of Chapter 1, I expand on how different sensory systems operate to encode weak 

signals. In particular, I provide an encyclopedic-style discussion on the behavioral and neural 

mechanisms of weak signal coding. Importantly, this sensory challenge is one that nearly all 

organisms must face and requires that nervous systems adjust, in several ways, their typical 

coding strategies. Whether it be navigating the environment, finding food, or even escaping a 

potentially lethal situation, the survival of an organism can heavily depend on the sensitivity of 

the nervous system to encode weak signals reliably.  

Taking a comparative perspective, I provide a general overview of the early sensory 

pathways across modalities including the visual, auditory, olfactory, somatosensory, and 

electrosensory systems. In particular, I discuss three aspects of the nervous system (receptive 

field structure, adaptation, and feedback), that share similarities between modalities and 

contribute to modulating the sensitivity for weak signal coding. Using a neuroethological 

approach, I base this discussion on observable behaviors and delineate how the nervous system 

supports each behavior.   
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Abstract 

A central goal in neuroscience is to understand how sensory systems can efficiently and 

sensitively encode natural, ethologically-relevant stimuli while suppressing noise and 

redundant sensory input. Experimental and theoretical research, in all modalities, seeks to 

establish core principles by which these processes take place and provide a broader 

understanding of how these principles generalize across sensory modalities. Although extensive 

progress has been made over the last few decades, much less is known about the cellular and 

network strategies used by the nervous system to encode weak sensory signals particularly. In 

this focused primer, I delineate a selection of key physiological mechanisms and neural 

response properties that allow the nervous system to flexibly adapt its selectivity and enhance 

its sensitivity to increase the sensory limits.  

I begin by providing a brief overview on neural dynamics and the functional organization 

principles of sensory systems that are relevant to the coding of weak signals. Afterwards, I 

describe several neural strategies for encoding weak signals across sensory modalities, focusing 

on three key mechanisms: feedback, receptive field interactions, and adaptation via short-term 

synaptic plasticity. In addition, I provide examples of behavioral strategies that may optimize 

weak signal coding. Lastly, I present an integrated perspective, describing how a combination of 

the mechanisms discussed may function together to accomplish this challenging task.   
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Introduction 

For most neurons, the spiking response is the fundamental unit of information transmission 

in the nervous system and there are entire fields of research dedicated to quantifying how 

neurons can encode, transform, and convey information through patterns of action potentials 

(Rieke et al., 1999; Bullock et al., 2005). Information can be encoded in the mean firing rate 

(i.e., how many action potentials occur within a certain window of time), in precise temporal 

patterns of action potentials within a spike train, and from the timing of one neuron’s spiking 

activity relative to others in a population (Rieke et al., 1999).  

Research on neural coding principles led to the development and proposal of constraining 

theories based on computationally and biophysically efficient properties of biological systems. 

This concept was most notably formulated by Horace Barlow in his proposed “Efficient Coding 

Hypothesis”, stating that evolutionary pressures have driven nervous systems to encode 

sensory stimuli with as few action potentials as possible to limit computational load and 

increase metabolic efficiency (Barlow, 1961). Experimental support for this notion has been 

documented throughout different stages of the nervous system, but is most evident at higher 

levels of processing where the spiking activity of neurons is generally more sparse (Koch and 

Laurent, 1999; Lewicki, 2002; Denève and Machens, 2016). A key challenge in this respect is to 

reduce redundancy to improve efficiency while at the same time preserving and maximizing 

sensitivity. This discussion will focus on how this is achieved and the way the nervous system is 

organized enables these mechanisms to be implemented.  

The organization of sensory systems has a hierarchical structure where a stimulus is first 

received by receptors at the periphery and its information must be conveyed throughout 



63 

 
 

different functional regions and layers of the central nervous system (Liang et al., 2012; Lyons-

Warren et al., 2012). One structural organizing principle that determines how the stimulus is 

encoded is the use of a “labeled line” code where the identity of the neurons responding to a 

given stimulus feature specifies the information being represented. The clearest example of this 

principle is a topographic representation of space that is mapped in the early pathways and 

often preserved throughout higher level brain regions. In a topographic map, the peripheral 

spatial region where a neuron responds preferentially to a given stimulus is defined as the 

neuron’s receptive field. Therefore, the activation of a neuron’s receptive field at the periphery 

provides information about a signal’s spatial structure (Peterson et al., 2001; Seriès et al., 

2004). A neuron’s response strength will depend on the signal’s content (e.g., its temporal 

properties) and its location (Zhang and Sejnowski, 1999). Thus, by having multiple neurons with 

receptive fields that differ in their structure and spatial extent encoding different aspects of the 

stimulus, each neuron can encode a portion of the stimulus better and reduce redundancy 

across the population.  

Organization principles are not the only aspects of the nervous system that influence the 

efficiency of neural coding and the dynamics of the spiking response has a key influence on the 

coding scheme. In particular, a neuron’s spiking history at pre-synaptic and post-synaptic sites 

can largely influence a neuron’s spiking state, and its capacity to encode information in a 

context-dependent manner (Dayan and Abbott, 2001). There is now strong experimental and 

theoretical support for the role of active dendrites and synaptic sites in shaping the 

representation of sensory inputs. Combining the fact that synapses are plastic with the vast 

number of synaptic sites and highly intricate connectivity patterns of neurons within a network 
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lead to a flexibility that allows the system to fine tune to the properties of the signals it must 

encode. One specific example has been reported in weakly electric fish, where mechanisms of 

fast short-term depression (FSTD) operate to decrease the variability of the rate of synaptic 

output, thereby reducing noise (Khanbabaie et al., 2010). Under the context of weak signal 

coding, it is thus not surprising that synaptic plasticity can enhance the coding of weak signals 

at the cellular and circuit levels.  

This adaptation of a neuron’s response to the statistics of the natural sensory input (e.g., 

Woolley et al., 2006); is not entirely a bottom-up or local process. A bottom-up process refers 

to the fact that more peripheral inputs are relayed to the first-way station more centrally, then 

to the next, and so on. Growing evidence suggests the crucial role of top-down processes 

governed via feedback inputs that modify the feedforward on different temporal and spatial 

scales (Metzen et al., 2018; Pak et al., 2019). This feedback is often a precise and complex 

process achieved through the recruitment of several networks or cell-types (Maler, 2007; Boyd 

et al., 2012; Markopoulos et al., 2012; Layton et al., 2014; Clarke et al., 2015; Hofmann and 

Chacron, 2019). Feedback has been shown to significantly change the firing activity patterns of 

neurons in a population, alter the precision of temporal synchrony, and largely influence phasic 

responses and feature preferences (Bol et al., 2011; Marsat et al., 2012; Mejias et al., 2013; 

Tuthill et al., 2014; Liang et al., 2017). Thus, feedback plays an important role in optimizing 

neural coding of ethologically relevant sensory input, including weak signals by enhancing the 

responses to some features while filtering-out others. 

 

Receptive field structure 
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Across biological sensory systems, receptive fields of neurons cover the spatial extent of 

sensory sensitivity across the periphery and vary in their size, shape, and selectivity to stimuli 

(Woolsey and Van der Loos., 1970; Maler, 2009; Nishino et al., 2018; Turner et al., 2018). 

Receptive fields are often largely overlapping, leading to redundant and synergistic coding that 

is especially prevalent in the early stages of sensory processing. Redundancy is theoretically less 

efficient due to multiple neurons coding for the same information. That said, some amount of 

redundancy does offer many advantages as redundancy can help to overcome noisiness in 

signal transmission and signal coding. In this case, redundancy might act as a failsafe 

mechanism, a means to reduce error through redundant coding of the stimulus’ range 

(Schneidman et al., 2003; Latham and Nirenberg, 2005).  

In the visual system, space is encoded via a labeled line coding strategy and this topographic 

organization preserves the stimulus’ spatial structure. One well studied cell type in the early 

visual pathway is the retinal ganglion cells (RGC), which have a classical receptive field center-

surround topography. In a center-surround organization, the center and surround are arranged 

in a pair of concentric circles, with different center and surround activation patterns. ON-

centers will depolarize when stimulated with an increase in stimulus intensity on the receptive 

field center. They will be hyperpolarized when the surround is stimulated and respond to 

decreases in stimulus intensity. This leads to a varied, more complex response when both 

center and surround are stimulated to different extents. OFF-centers respond in the opposite 

fashion. RGCs serve as the sole output neuron of the retina, and I will explain below that the 

center-surround organization of the receptive field has a heavy influence on the information 

transmitted through different aspects of the neural response. Furthermore, there is a rich 
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literature documenting their connectivity and physiological response properties with respect to 

various bipolar and amacrine interneurons (Masland, 2001; Masland, 2012). The intricate 

connectivity patterns to interneurons within the retina can shape their physiological responses 

to a wide range of stimulus patterns as described in the next paragraph (Rodieck and Stone, 

1965; Famiglietti and Kolb, 1976).  

In the early stages of visual processing, thresholding can be influenced by neural 

mechanisms such as local contrast enhancement and redundancy reduction through receptive 

field surrounds (Durant et al., 2007). Generally, for receptive field centers, the threshold can be 

influenced by connections between bipolar cells and RGCs, whereas alterations to the threshold 

for receptive field surrounds occur largely through bipolar cell and amacrine cell interactions 

(Takeshita and Gollisch, 2014). For neurons with a center-surround receptive field organization 

(e.g., RGCs), the extent of the magnitude of surround suppression depends heavily on the 

spatial structure of the visual stimulus. Natural visual scenes contain visual stimuli that vary in 

size and intensity. Often, these visual signals can be received by multiple receptive fields 

leading to many neurons encoding similar visual stimuli. This redundant, overlapped coding of 

visual signals can be described as spatially correlated coding. RGCs are one neuron type that 

has been shown to encode weak visual signals by reducing spatial correlations. These spatial 

correlations can be reduced by introducing sparsifying nonlinearities through mechanisms such 

as gain control, thresholding, refractoriness, and overlapping receptive field antagonisms, that 

help to improve the efficiency of the neural code (Gollisch and Meister, 2008; Pitkow and 

Meister, 2012). Below, I describe a few common mechanistic functions as well as their 

contributions to weak signal coding.  
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One way the retinal network helps to enable a reduction in spatial correlations and increase 

its sensitivity is through receptive field antagonisms formed by contextual interactions between 

RGCs, bipolar cells, horizontal cells, and amacrine cells. Bipolar cells create excitatory synapses 

onto RGCs, acting as nonlinear synaptic subunits within the RGC’s receptive field center. A 

RGC’s receptive field surround is created in part by amacrine and/or horizontal cells, and can 

impact the responses of bipolar cells. The strength of the receptive field surround changes the 

degree of rectification of the nonlinear bipolar cell subunits. This results in a neural circuit for 

flexible spatial integration and adjustable sensitivity to a range of spatial contrasts across 

different visual stimuli. Receptive field antagonisms create distinct modes of operation, where a 

weaker/hyperpolarizing surround is associated with nonlinear integration, and a depolarizing 

surround is associated with linear integration (Turner et al., 2018). Thus, the surround can 

dictate the neuron’s sensitivity to different stimulus’ spatial structure by modifying the amount 

of integration of visual information at the receptive field center.  

Many forms of synaptic and intrinsic mechanisms have been identified as a potential source 

of spatial contrast gain control in retinal networks. In RGCs, levels of intrinsic ionic conductance 

are changed by fluctuations in stimulus luminance and contrast, causing transformations to the 

threshold. At the synaptic level, bipolar cells provide input to RGCs, allowing RGCs to adapt to 

changes in local contrast.  

Neural populations within the retinal network divide the inputs they receive to different 

types of cells while shifting their dynamic range for stimulus coding. This heterogeneity in cell 

types and response properties is another advantageous way the visual system is able to reduce 

spatial correlations for increased coding efficiency. Differences in refractoriness or response 



68 

 
 

latency within a neural population has been shown to be a candidate mechanism implemented 

by the visual system to detect changes in stimulus contrast across a visual scene (Gollisch and 

Meister, 2008). Where a mixed population of RGCs with fast/slow and ON/OFF cells encode 

information about visual stimulus identity by responding at different latencies, and with higher 

responses to regions of a visual scene with higher contrast levels.  

Somatotopically-organized maps are a key feature of the whisker-barrel system, with 

receptive fields conserved in the ascending pathway that correspond to specific regions of the 

face containing vibrissae. (Woolsey and Van der Loos, 1970). In layer 4 of the primary 

somatosensory cortex, clusters of neurons form barrels with topology that is matched to the 

whiskers along the snout. This organization enables the deflection of a single whisker to be 

represented as a spatially localized, multicolumn region of neural activity, allowing stimulus 

location to be coded quickly with few spikes per neuron (Peterson and Diamond, 2000; 

Peterson et al., 2001). The somatosensory system of rats displays a remarkable capacity for 

very fine texture discrimination, capable of detecting 30 μm grooves spaced at 90 μm intervals 

(Carvell and Simons, 1990). Rats rival humans in their ability to detect very small differences in 

textures through an active sensing strategy termed, “whisking”. Arabzadeh and colleagues have 

found that when whisking, rats sweep their vibrissae against an object of interest, generating 

kinetic signatures in the whisker-barrel cortex that vary with texture profile and whisker 

velocity (Arabzadeh et al., 2005). This insightful study also suggests that even a single whisker 

can transmit a large amount of somatosensory information to central processing areas, 

providing support for similar behavioral findings.  
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In experiments using naturalistic wall tracking, rats must use active whisking strategies to 

navigate through winding paths in a virtual reality environment. Sofroniew and colleagues 

found that neurons in layer 4 responded with graded activation and were sufficient to guide 

locomotion in a wall tracking, navigation task. This research suggests that the barrel cortex 

interprets increases in spike rate as a distance measure for calculating the next locomotor 

response, where distance from whisker to wall could be coded as inversely proportional to the 

spiking activity in layers 2/3, and 4 of the primary somatosensory cortex. However, neurons in 

layer 5 produced a more complex response, exhibiting close to a monotonic tuning curve, 

suggesting that a population of these gaussian tuned neurons could allow for higher coding 

accuracy (Sofroniew et al., 2015). Findings from a recent modeling study have found that 

activity in layer 4 neurons directly suppressed the activity of neurons in layer 5 via deep, fast-

spiking inhibition. The results from this insightful modeling study suggests that the population 

level response of layer 4 helps to sharpen the spatial representation of neurons in layer 5, 

improving the feature selectivity of somatosensory cortical output (Pluta et al., 2015).  

The receptive field surround of neurons in the somatosensory barrel cortex has been shown 

to influence neural activity at cellular and population levels. Complex somatosensory stimuli, as 

opposed to single whisker stimulation, induced noticeably sharper receptive fields, as an effect 

of adaptation. This enables the surround to facilitate, instead of suppressing, the responses to 

the whisker of interest. More optimal stimulation of the receptive field increased the firing rate 

of neurons within layers 4, 5, and 6, while having little effect on the firing rate of neurons in 

layers 2 and 3. These results suggest that the role of the surround helps to increase the range of 

stimulus discrimination during active sensing (Ramirez et al., 2014). Another insightful study by 
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Pluta and colleagues shows that the surround input can greatly change the amplitude of the 

neural response and modulate the preference of spatial coding at the single neuron level. This 

study also describes how the integration of surround input at the population level can provide a 

smoothened representation of the scanned space (Pluta et al., 2017).  

In the olfactory system, encoding an odor’s spatial distribution involves comparing intensity 

inputs and timing differences between bilateral olfactory organs. Cockroaches can encode the 

spatial position of a pheromone to locate a signaling mate by capitalizing on antennatopic 

organization of olfactory sensory neurons and subsequent compartmentalization of projection 

neurons into different compartments of the mushroom body (Nishino et al., 2018). Changes in 

the spatial geometry of an olfactory stimulus are further encoded in the excitatory and 

inhibitory receptive fields of macroglomerular projection neurons. In comparison to the visual 

system, largely overlapping receptive fields of small receptive field projection neurons can 

permit high spatial resolution at minimal spatial scales and enhance edge detection of odor 

plumes (De Bruyne and Baker, 2008). For projection neurons with small receptive fields, there 

are observable response latencies depending on receptive field location relative to antenna 

placement (Nishino et al., 2018). This dynamic sensory information is constantly updated as the 

animal navigates and actively samples its spatial environment.  

In the electrosensory system, multiple topographic maps in the electrosensory lateral line 

lobe (ELL) are comprised of a heterogeneous network of ON and OFF-type pyramidal cells 

(Heiligenberg and Dye, 1982; Shumway, 1989; Maler, 2009). The body of weakly electric fish is 

covered with electroreceptors, whose afferents provide trifurcated, unilateral input to the 

maps of the ELL: the lateral segment (LS), centro-lateral segment (CLS), and centro-medial 
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segment (CMS; for review see Krahe and Maler, 2014; Milam et al., 2019). Pyramidal cells 

within each map vary in their response properties and receptive field parameters (Chacron et 

al., 2001; Krahe et al., 2008). Receptive fields in the LS map are the largest, the CMS map 

contains the smallest receptive fields, and receptive fields in the CLS map are intermediate. 

Different neural maps are specialized for certain behavioral tasks (Maler, 2007; Allen and 

Marsat, 2018). The CMS map having the smallest receptive fields might be better for small prey 

detection or resolving finer details at close range, given the higher spatial resolution that small 

receptive fields support (Nelson and MacIver, 1999). In contrast, the LS map with much larger 

receptive fields might be a more sensitive map that is better for long range communication 

with other weakly electric fish (Litwin-Kumar et al., 2012; Allen and Marsat, 2019). This is a 

reasonable assumption, as a viable solution would be to trade high spatial resolution for greatly 

increased sensitivity at a much lower spatial resolution.  

In vivo recordings have shown that pyramidal cells across maps of the ELL displayed similar 

levels of correlation even though they differ in receptive field overlap. Using a modeling 

approach, Hoffman and colleagues showed that overlapping receptive field centers alone 

cannot determine correlations, but by varying the size and gain of the receptive field surround, 

they were able to match the experimentally observed correlated activity (Hoffman and 

Chacron, 2017). Thus, differences in the antagonistic center-surround receptive field 

organization across the multiple topographic maps of the ELL change the correlations among 

pyramidal cells, thereby affecting their redundancy and coding efficiency.  

 

Enhanced sensitivity through neural adaptation and synaptic plasticity 



72 

 
 

Synaptic plasticity occurs in many synapses of key neurons across the central nervous 

system and plays a critical role in shaping how sensory input is encoded. The dynamics of 

synaptic plasticity occur across a spectrum of temporal and spatial scales, capable of affecting 

both cellular and circuit states (Abbott and Regehr, 2004). Occurring on a time scale of 

milliseconds, short-term synaptic plasticity is a neurophysiological phenomenon that is 

dependent on the history of pre- and post-synaptic neural activity. From a network perspective, 

synaptic plasticity can allow for increased information coding by inducing flexible activity 

patterns within a finite pattern of connection. (Abraham and Bear, 1996; Abbott and Nelson, 

2000).  

One well-studied form of short-term synaptic plasticity is stimulus-response adaptation, 

where neurons adapt to either the stimulus intensity or the timing of stimulus occurrence. For 

example, some neurons display adaptation that can be mediated by synaptic plasticity and 

reduce the strength of the response to a repeated stimulus. (Schwartz and Simoncelli, 2001; Fu 

et al., 2014; Wissig and Kohn, 2013). Adaptation can also alter tuning by suppressing some 

responses more than others. Adaptation has been shown to reduce redundancy, improve 

discriminability, and mediate the feature-specificity of neurons in order to benefit distinct 

modes of adaptation (Ganmor et al., 2010; Ozuysal and Baccus, 2012; Piazza et al., 2018).  

A notable sensory modality to highlight the role of neural adaptation is the visual system, 

known for its remarkable sensitivity and capable of detecting as little as a single photon of light 

(Rieke and Baylor, 1998). After photon absorption under extreme light conditions, a light-

dependent gain modulation produces a dynamic change in the detection threshold occurring 

over a temporal span of several seconds, thus modulating the visual system’s sensitivity (Tinsley 
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et al., 2016). More generally, adaptation in the visual system has been shown to play a large 

role in allowing sensitivity to a wide range of contrast levels. In the retina, reducing the 

inhibitory activity of tonically active amacrine cells has been shown to be necessary to increase 

the sensitivity of the retina to weak visual stimuli (i.e., low-contrast; Kastner et al., 2019). 

Another functional example occurs further along in the early visual pathway, where 

magnocellular neurons of the lateral geniculate nucleus (LGN) display strong adaptation to 

visual contrast, whereas parvocellular neurons show little to no adaptation. This strong 

adaptation to visual contrast helps neurons in the magnocellular pathway to have higher 

light/dark contrast detection and to enhance their sensitivity to visual stimuli with low spatial 

frequency. The ability of magnocellular neurons of the LGN to detect changes in contrast levels 

is important for visual search related tasks, edge detection, and changes in luminance (Solomon 

et al., 2004).  

Neural adaptation to specific stimuli is also a common mechanism in olfaction (Stopfer and 

Laurent, 1999). In the context of sensory processing, odor adaptation is a mechanism that 

allows the olfactory system to adjust its sensitivity at different stimulus intensities to prevent 

saturation and maintain high sensitivity to olfactory stimuli. In the locust, projection neurons 

show a quick, intensity-adaptation response when exposed to a repeated stimulus yet respond 

with better synergy and precision with other projection neurons in the antennal lobe circuits 

(Assisi et al., 2007). A recent study on the AWC olfactory neuron in C. elegans describes how a 

history based adaptive-threshold mechanism helps to continuously filter noise and improve 

sensory detection of odor concentration (Levy and Bargmann, 2019). This insightful work also 

predicts animal navigation decisions based on the adaptive odor concentration threshold. 
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Similar findings in the whisker-barrel somatosensory system have suggested that adaptation in 

the whisker system is an optimal neural strategy to encode signal strengths that are greater 

than the baseline stimulus signal (Adibi et al., 2010; Adibi et al., 2012).  

Remarkably, the auditory system can encode a wide range of sound levels while maintaining 

high accuracy (Batchelor and Wilson, 2019; Zirkelbach et al., 2019; Ihlefeld et al., 2019). In 

certain areas of the auditory system, changes in firing rate are positively correlated with 

increasing sound level, but such changes are restricted to a subset of the entire range of 

auditory signals that are possible to encode. Dean and colleagues found that midbrain auditory 

neurons in the guinea pig adapt to the mean and variance of sound-level distributions to fine-

tune accurate encoding of sound level based on the local environment, thus forming a dynamic 

range of adaptive hearing that is context dependent (Dean et al., 2005). A well-established 

study on the investigation of distance coding mechanisms in the bat Myotis, observed an 

interesting phenomenon called the “paradoxical latency shift” (see Figure 2). Neurons which 

displayed this phenomenon responded to low amplitude sounds at a shorter latency than high 

amplitude sounds, thus serving as a potential mechanism for encoding weak signals that occur 

over short timescales (Sullivan, 1982).  

In the electrosensory system, one potential neural mechanism used to facilitate the 

detection of weak signals in the early sensory pathway, is to increase the sensitivity of a 

postsynaptic neuron by utilizing the correlated structure of input via short-term synaptic 

plasticity (Lüdtke and Nelson, 2006). This mechanism was proposed in an insightful modeling 

study by Lüdtke and Nelson, where they tested the theoretical capability of weak signal coding 

at the electrosensory afferent level. The authors proposed a two-part mechanism that relies on 
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negatively correlated interspike intervals (ISIs) and a fast short-term synaptic plasticity 

component. Under these conditions, they demonstrated that weak signal detection 

performance was increased due to synaptic plasticity serving as a way for the sensory system to 

address the computational challenge of representing conditional firing probabilities. From their 

findings, they speculated that neurons with high firing rates might be matched by small 

synaptic time constants.  

Mechanisms of fast short-term depression (FSTD) can decrease the variability of the rate of 

synaptic output to reduce noise (Khanbabaie et al., 2010). The decreased variability of ON-type 

pyramidal cell excitatory postsynaptic potentials (EPSPs) also results in a decreased gain caused 

by a lowered EPSP amplitude. In Apteronotus, this form of FSTD operates through a one-to-one 

linear relationship, where shorter (longer) ISIs result in smaller (larger) EPSP amplitude. The 

kinetics of FSTD act on a timescale of approximately 1.5ms, uniquely quicker than other 

standard forms of STD. Similarly, electroreceptor P-units display low levels of gain when 

encoding low-frequency signals due to negative ISI correlations (Ratnam and Nelson, 2000; 

Chacron et al., 2001; Goense and Nelson 2003; Chacron et al., 2005). Together, negative ISI 

correlations in combination with the noise and gain reducing effects of fast short-term synaptic 

plasticity present an interesting and open area of research for understanding how weak signals 

are encoded in early processing pathways. Therefore, it is essential to have a detailed 

characterization of different mechanisms that increase coding performance at the detection 

threshold level, where firing rate changes are insignificant (Nesse et al., 2021).  

Adaptation in the electrosensory system can allow for precise encoding of natural 

communication signals (Benda et al., 2006). Benda and colleagues showed that different forms 
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of adaptation can shift the onset of the frequency-intensity curve having been shown to affect 

gain linearly in biophysical experiments. They later demonstrated how changing the variability 

of spike thresholding and adaptation state, results in a shift of the frequency-intensity curve 

and dynamic gain modulation (Benda et al., 2010). Thus, whether the electrosensory system 

relies on a combination of previously defined neural mechanisms involving synaptic plasticity or 

novel ones for encoding weak signals remains an open area of research.  

 

Flexible selectivity by network feedback 

A common theme across sensory systems is the modification of feedforward input by top-

down feedback. In many systems, the number of feedback pathways far outweighs the number 

of feedforward pathways, suggesting that feedback makes essential contributions to sensory 

processing (Markov et al., 2014; Zagha, 2020). Across modalities many neurons display higher 

sensitivity (i.e., lower detection thresholds) to amplitude modulations in higher sensory 

processing areas of the brain. One possibility for this observed heightened sensitivity is that 

feedback plays a key role in driving and adaptively lowering detection thresholds to encode 

signals of interest.  

Feedback has been shown to be a critical component of visual perception. Recent studies 

have started to investigate the role of feedback for encoding illusory contours. The encoding 

and perception of illusory contours have revealed the importance of thalamocortical feedback 

to layer V1 of the visual cortex in mice and from V4 to V1 for lateral contours in primates (Liang 

et al., 2017, Pak et al., 2019). Thus, the encoding of illusory contours aided by feedback can be 
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thought of as a task of weak visual signal coding, where the nervous system must infer a 

complete signal using only a limited subset of visual cues.  

An incredible finding that is gaining more experimental support is that a finely tuned 

balance of excitatory and inhibitory activity can optimize neural coding performance, and is a 

candidate mechanism for encoding weak signals (Dodla et al., 2006; Large et al., 2016; 

Beiderbeck et al., 2018; Lankarany et al., 2019). In the auditory system, a precise timing of 

inhibition to increase the spatial sensitivity to weak sounds relies on finely-tuned timing 

changes through interaural time difference (ITD) and input latencies generated by interaural 

level difference (ILD) on the order of microseconds (Schnupp and Carr, 2009; Beiderbeck et al., 

2018). Neurons in the lateral superior olive (LSO) participate in comparing the timing and 

amplitude strength of incoming sound levels. If precisely timed, glycinergic inhibition of LSO 

neurons can facilitate spiking to increase the limits of sound source detection (Brand et al., 

2002). Specifically, in neural networks with high spontaneous firing rates, selective and precise 

inhibition through lateral inhibition or feedback can sharpen the differences among parallel 

inputs and increase the signal-to-noise ratio. Investigating the effects of feedback and a balance 

of excitation and inhibition on weak signal coding by heterogeneous networks of neurons is one 

area of research that remains largely unexplored.  

The organization of the olfactory system could be thought of as inherently noise limiting 

(Sachse and Galizia, 2003). The nature of odors is typically lingering and occurring in irregular 

intervals. The circuitry of the antennal lobe may have intrinsically low spike thresholds, but 

could have improved selectivity through finely tuned inhibition and feedback modulation 

(Laurent, 2002). An example of this in the early olfactory pathway can be seen in mitral and 
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tufted cells of the olfactory bulb. Activation of pyramidal cells of the olfactory cortex in vivo, 

strongly suppressed odor-evoked excitation and enhanced odor-evoked inhibition in mitral and 

tufted cells. In this study, feedback had little effect on the spontaneous firing rates, but the 

overall effect of cortical feedback on olfactory bulb mitral and tufted cells was an increase in 

odor-evoked inhibition. This cortical feedback can act to suppress background activity through 

broad inhibition and help shape the responses of olfactory bulb output neurons through 

temporally precise action potentials (Boyd et al., 2012; Markopoulos et al., 2012).  

Behavioral and neural experiments on spatial interaction between conspecifics in the 

electrosensory system allude to a high level of sensitivity for detecting weak signals (Henninger 

et al., 2018; Jung et al., 2016). On the sensory side, this elevated sensitivity could be enhanced 

by cerebellar feedback and the cancellation of reafferent signals. The ELL receives indirect, 

global feedback inputs that have been shown to cancel the response to beats produced by 

global amplitude modulations from the electric fields generated by interacting electric fish. 

Superficial pyramidal cells in the ELL receive parallel fiber input onto their apical dendrites 

(Bastian et al., 2004). The contribution of each fiber is adjusted by plastic synapses so that the 

total input is antiphase to the feedforward input from electroreceptors, cancelling the strength 

of the neural response (Bol et al., 2011; Mejias et al., 2013). Recent findings from field studies 

in the electrosensory system allude to their remarkable capacity for detecting very weak 

electric signals (<1μV) from over 1.7 meters away (e.g., Henninger et al., 2018); despite the 

large self-generated modulations that are cancelled by feedback. This challenging task involves 

not only the ability to detect a weak signal, but also to discriminate between the even smaller 
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differences between low contrast/low amplitude signals and background signals (Jung et al., 

2016; Longtin et al., 2019).  

Feedback has also been shown to mediate spatial attention by balancing polarity to 

establish a focal distance during object motion-tracking in the electrosensory system (Clarke 

and Maler, 2017). This top-down mechanism occurs through a nested inner and outer loop. The 

outer feedback loop synthesizes a neural code for motion reversal in ELL pyramidal cells and 

the inner feedback loop regulates the outer feedback loop by reducing pyramidal cell bursting 

and lowering responses to interfering sensory input. Thus, ELL feedback includes a strong 

positive feedback loop, tightly constrained by delayed negative feedback, resulting in a 

nonlinear influence on the response to approaching or receding objects.  

Additionally, Metzen and colleagues have shown that the threshold for detecting weak 

electrosensory signals in an envelope is approximately 9% stimulus contrast (corresponding to a 

conspecific 20-30 cm away, Fotowat et al., 2013; see also Chapter 1: Introuction - Part 1 for 

more information on envelope signals); and the perception of weak signals embedded in an 

envelope relies on a closed-loop feedback mechanism (Metzen et al., 2018).  

Many examples of feedback mechanisms in the early levels of the auditory system relate to 

self-generation of sound or to learning and memory of auditory signals (Köppl et al., 2000; 

Theunissen and Shaevitz, 2006; Tschida and Mooney, 2012). A smaller, but growing body of 

literature on the role of the inferior colliculus and the descending auditory pathways from the 

auditory cortex details other ways that feedback can influence the neural response (Huffman 

and Henson, 1990; Lee and Sherman, 2010). One excellent example of a feedback reliant 

mechanism to help encode weak auditory signals is prepulse inhibition, a highly robust 
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phenomenon that serves as a pre-attentive form of sensory gating. Prepulse inhibition of the 

startle response is an inhibitory mechanism driven by a weak, subthreshold stimulus that serves 

to reduce the magnitude of a much stronger, following stimulus (Li et al., 2009). Many 

examples of sensory gating occur at the level of the midbrain, but have been shown to be 

present as early as the first synaptic level of the brainstem in vertebrates (Tabor et al., 2018).  

 

Discussion 

In this primer, I compared the early sensory pathway and nervous system architecture 

across sensory modalities, describing how different neural mechanisms and network strategies 

could allow for enhanced neural coding of weak signals. Though these strategies operate via 

different biophysical, cellular, or network mechanisms across sensory systems, the general 

neural coding principles share commonality and are likely applicable to the task at hand.  

I described how the receptive field structure and the spatiotemporal properties of receptive 

fields in the early sensory pathway enables a dynamic range of stimulus encoding. The largely 

overlapping organization of antagonistic center and surround receptive fields helps to reduce 

spatial correlations for increased neural coding efficiency. I also highlighted how mechanisms 

such as short-term synaptic plasticity, lateral inhibition, gain control, and dynamic spike 

thresholds modulate the neural response in an adaptive manner to improve network flexibility 

for weak signal coding. Lastly, I explained that the role of neural feedback is versatile and 

enhances the system’s sensitivity by suppressing background activity through inhibition, 

cancelling responses in certain conditions, influencing temporal synchrony, and adapting to 

repetitive stimuli. These mechanisms are prevalent across sensory modalities, generally 
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operating in parallel and to different degrees depending on the sensory task. Though the scope 

of this primer focuses on common features of neural systems, this summary is not exhaustive, 

as many other mechanisms could be contributing to the neural coding of weak signals.  

Many neural strategies for optimizing the encoding of weak signals may depend on applying 

refined behavioral strategies to enhance a signal of interest. Such hallmark active sensing 

behaviors include edge detection and tracking of weak odor plumes in moth olfaction, as well 

as foveal sampling in the visual and electrosensory systems, to name a few examples (see 

Enikolopov et al., 2018; Pedraja et al., 2019). While studying prey capture, a recent study found 

that certain bat species take advantage of their angle of approach with respect to the 

background surface to increase the signal to noise ratio of a prey echo. Such acoustically 

camouflaged prey items would normally have their weak prey echoes masked by background 

echoes from other objects in the natural environment (Geipel et al., 2019). These behavioral 

observations hint at a finely tuned nervous system that uses precise behavioral strategies to 

help optimize signal detection and localization, through largely unknown neural mechanisms.  

Parts of this primer focus on the notion of optimizing signal coding efficiency at the cost of 

lowering spatial correlations and reducing redundant coding. It would be especially interesting 

to investigate how efficiency and redundancy trade off as the signal-to-noise ratio changes for 

different sensory stimuli in key neurons of the early sensory pathways. Additionally, dissecting 

the mechanisms of cellular and network function in a variety of stimulus conditions will be 

crucial for uncovering higher order processing and neural population dynamics. Pursuing these 

avenues of research will help us better understand how the nervous system transforms physical 
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signals from the environment into a neural code usable by the organism, provided a common 

theme of neural architecture and shared cellular and network strategies.   
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Chapter 2 

Prologue 

There has been extensive research on how wave-type weakly electric fish use their electric 

sense when foraging for food. Small prey items such as aquatic worms, will strongly stimulate 

only a very small portion of the total electroreceptor array (i.e., local stimulus). Signals 

generated by conspecifics (e.g., other weakly electric fish), stimulate the entire array of 

electroreceptors with different beat strengths at various points along the fish’s body (i.e., global 

stimulus). The exact pattern of stimulation changes based on one fish’s location, distance, 

and/or orientation relative to the other fish in three-dimensional space. Understanding the 

spatio-temporal structure of the signal as it reaches the receptors is essential to clarify how this 

signal is processed throughout the nervous system. Therefore, we must have a complete 

characterization of where the receptors are located and what the strength of the signal is at 

those locations to fully understand the sensory dynamic that occurs during realistic behavioral 

scenarios.  

In this chapter, I estimate the strength of the electric signal reaching the electroreceptive 

periphery during social interaction. To do so, I map out the electroreceptor array, implement an 

electric field model to simulate weakly electric fish interaction in a variety of spatial contexts, 

and use the signal strength as a stimulus input for an electroreceptor population comprised of 

8,195 leaky integrate-and-fire, computational models. My results provide a quantitative 

description of the signal as it reaches each receptor, thereby enabling us to estimate the limits 

of sensory detection and investigate more precisely the transformation imposed by the nervous 

system.  
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“Ramachandra, K. L., Milam, O. E., Pedraja, F., Cornett, J., & Marsat, G. (2023). Detection and 
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spatial organization of receptors and signals. Current Biology. Submitted” 

My contribution to this manuscript consisted of the histological characterization of the 

receptors’ locations and distribution, in addition to the enhancement of the EI model with 

spatially distributed receptors. I also contributed to the writing of the manuscript.  



99 

 
 

Abstract 

The detection and localization of signals relies on arrays of receptors and their spatial 

organization plays a key role in setting the accuracy of the system. Electrosensory signals in 

weakly electric ghost knifefish are captured by an array of receptors covering their body. While 

we know that spatial resolution for small objects, such as prey, is enhanced near the head due 

to a high receptor density, it is not clear how receptor organization influences the processing of 

global and diffuse signals from conspecifics. We investigated the detection and localization 

accuracy for conspecific signals and determined how they are influenced by the organization of 

receptors. To do so we modeled the signal, its spatial pattern as it reaches the sensory array, 

and the responses of the heterogeneous population of receptors. Our analysis provides a 

conservative estimate of the accuracy of detection and localization (specifically azimuth 

discrimination) of a conspecific signal. We show that beyond 20 cm the conspecific signal is less 

than a few percent the strength of the baseline self-generated signal. As a result, detection and 

localization accuracy decreases quickly for more distant sources. Detection accuracy at 

distances above 40 cm decreases rapidly and detection at the edge of behaviorally observed 

ranges might require attending to the signal for several seconds. Angular resolution starts to 

decrease at even shorter distances (30 cm) and distant signals might require behavioral or 

neural coding mechanisms that have not been considered here. Most importantly, we show 

that the higher density of receptors rostrally enhances detection accuracy for signal sources in 

front of the fish, but contributes little to the localization accuracy of these conspecific signals. 

We discuss parallels with other sensory systems and suggest that our results highlight a general 

principle. High receptor convergence in systems with spatially diffuse signals contributes to 



100 

 
 

detection capacities, whereas in systems with spatially delineated signals, receptor density is 

associated with better spatial resolution. 

Introduction 

Whether it is the early detection of a predator, the accurate localization of a mate, or 

finding food sources based on weak cues, the sensitive detection and localization of sensory 

signals can be an advantage. Signal detection and localization typically rely on an array of 

sensory receptors; their sensitivity, number, and spatial organization play a key role in setting 

the accuracy of the system. For example, visual resolution is enhanced by the high receptor 

density in the retina’s fovea, sound localization is largely enabled by the binaural configuration 

of the auditory system, and moths can detect the presence of just a few pheromone molecules 

due to the number and convergence of olfactory receptors (Ashida and Carr, 2011; Provis et al., 

2013; Rospars et al., 2014). While the spatial structure and size of the receptor array clearly 

shape the sensitivity of the system, it is not always clear how the configuration of the receptors 

is related to detection accuracy versus localization. 

The electrosensory system in fish is an exquisite example of sensitivity. In ghost knifefish in 

particular, survival depends on navigating, detecting prey, and communicating through this 

active sense. They generate a constant weak electric field with their electric organ (EO) and any 

distortions of this field by preys or objects in their environment are picked up by an array of 

receptors covering the skin of the fish (Nelson et al., 1997; Pedraja et al., 2014). Distortions 

from an object or prey will impact only a spatially defined subset of receptors on the 

corresponding portion of skin onto which the electric image (EI) of the object is projected. By 

activating the corresponding portions of the topographic maps higher in the sensory system, 
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spatial information is encoded in a sort of labeled-line code reminiscent of the way the visual or 

somatosensory system is organized. Furthermore, similar to these modalities (i.e., fovea of the 

retina), regions of higher receptor density towards the head and snout of the fish provides a 

higher spatial resolution particularly useful in the last stage of prey capture as the target 

approaches the fish’s mouth (MacIver et al., 2001; Nelson and Maciver, 1999). They also detect 

and communicate with one another through this electric sense (Allen & Marsat, 2018; Knudsen, 

1975; Petzold et al., 2016). The ongoing electric organ discharge (EOD) is a spatially diffuse 

signal that can reach globally all the receptors of the other fish’s body. Localization of such 

signals would thus have to rely on differences in the signal strength at different input locations, 

similar to the way the auditory system compares binaural inputs to localize sound sources (see 

Milam et al., 2019, for review). While it is clear that the high rostral density of receptors can 

enhance the spatial accuracy for objects, it is not clear how it influences the processing of 

diffuse and global signals from another fish’s EOD. More specifically, we are interested in 

determining how the spatial organization and density of receptors interact with the spatial 

structure of EOD signals to influence the detection and localization of conspecific signals.  

The EOD generated by the long EO located in the caudal 2/3 of the fish can be 

approximated as a dipole whose polarity switches during each EOD cycle (Rasnow et al., 1993). 

The resulting signal is a quasi-sinusoidal output with frequencies between 500 Hz and 1000 Hz 

(in A. leptorhynchus, the focal species in this paper; Zupanc and Maler, 1993). Although weak, 

this signal will travel several tens of cm and will permit the long-range detection of the 

conspecific (Pedraja et al., 2016). Behavior studies demonstrated that frequent interactions 

occur at distances of 30 cm or less, but there is evidence from field studies that these fish might 
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be able to detect and navigate toward one another at distances in the 1-meter range (this 

upper limit has not been quantified systematically; Henninger et al., 2018; Stamper et al., 2012; 

Stamper et al., 2013; Zupanc et al., 2006). These distant signals will reach the receptors with 

low intensity as the strength of electric signals decreases exponentially with distance. The signal 

from a distant fish will combine with the signal of the fish’s own EOD resulting in a combined 

electric field with sinusoidal amplitude modulations designated as the beat. If the distant fish’s 

signal reaches the focal fish with an amplitude 1/10th the strength of the self-generated EOD, 

this beat modulation will have an amplitude of 1/10th the undisturbed EOD. These weak beat 

contrasts are the signals that must be encoded to detect a conspecific and differences in 

contrast at receptors across the fish’s body constitute the localization cues. The mathematical 

framework to estimate the strength and structure of the electric field during social interactions 

has been detailed in previous studies (Caputi and Budelli, 2006; Castello et al., 2000; Gómez-

Sena et al., 2014; Kelly et al., 2008). It can be used to quantify the strength of the signal as it 

reaches each receptor to obtain a complete characterization of the sensory input structure due 

to an approaching conspecific. 

Ghost knifefish possess several types of electroreceptors, we focus here on p-unit tuberous 

receptors that constitute the vast majority of electroreceptors, are tuned specifically to encode 

conspecific signals, and are responsible for encoding the amplitude of these beat contrasts 

(Bennett et al., 1989). Previous estimates of p-units receptor density range from 9-15 per mm2 

on the head region to 0.6-3.4 over the trunk area (Carr et al., 1982). A thorough quantification 

of receptor density as a function of dorso-ventral/rostro-caudal location in A. leptorhynchus is 

not yet available. Receptor sensitivity and response properties have been extensively studied 
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and several neural models of p-units are available (Benda et al., 2005; Chacron et al., 2005; 

Goense and Ratnam, 2003; Gussin et al., 2007; Nelson et al., 1997; Ratnam and Nelson, 2000). 

This large population of several thousand receptors will converge to the primary sensory area in 

the hindbrain, the electrosensory lateral line lobe, and the information is then transmitted 

down the sensory pathway (Lannoo et al., 1989; Maler et al., 1991). To estimate the 

information carried by the population of receptors about realistic signals, two key elements 

must be considered. First, we must take into account the response properties of the receptors, 

their sensitivity/noisiness, and their heterogeneity across the population. Second, we must 

consider the structure of the stimuli and how signals from different locations will cause input 

strengths that vary across the receptor positions.  

In this paper, we aim to clarify how spatially realistic signals from conspecifics are encoded 

by the population of electroreceptors. Our approach includes using a model of the fish’s electric 

field to quantify the EI strength at each receptor location. This input drives a model of the p-

unit population consisting of heterogeneous leaky-integrate-and-fire units calibrated based on 

the extensively documented properties of this population. We then use a decoding analysis to 

estimate the information that can be extracted from the receptor population and provide a 

conservative estimate of the expected detection and localization accuracy. We specifically 

hypothesize that the high density of receptors rostrally will enhance detection and localization 

accuracy, particularly in the frontal quadrant. We tested this hypothesis by altering the 

structure and density of the receptor population and confirming that detection accuracy 

depends on receptor density. Surprisingly, we show that localization is relatively less influenced 

by receptor density and that the high rostral density does not enhance localization accuracy for 
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frontal azimuth. Our results highlight the intricate relationship between the spatial structure of 

signals and the spatial organization of sensory receptors.  

 

Methods  

Quantification of electroreceptor distribution 

Weakly electric brown ghost knifefish, Apteronotus leptorhynchus, were obtained from a 

tropical fish supplier (Segrest Farms, FL, USA). Fish care and use were approved by West 

Virginia University IACUC. 

Fish were euthanized then fixed in a 50mL aliquot containing a 40mL solution of 4% 

paraformaldehyde, and preserved for up to 7 days. After tissues were completely fixed, 5mg of 

eosin Y was added to the aliquot containing the preserved fish. Stained fish were analyzed 

under a fluorescent microscope with a light wavelength of 530nm. A stereotaxic system was 

used to move the fish and place a 1mm2 sampling grid at different locations along the fish’s 

body, tuberous receptors inside the grid were visually identified and counted. We collected 581 

samples from 18 fish measuring on average 14 cm in length. 

A coarse 3D mesh model of the fish was created using Maya 2019 (Autodesk, Inc) based on 

average measurements of our fish and images of the rostral, dorsal, and lateral profiles. The 

quadrangle mesh model has 218 planar faces. For each face, the corresponding measured 

receptor densities were averaged. Average receptor densities for each face were mapped along 

a rostro-caudal and dorsal-ventral plane. A 3-dimensional 5th-degree polynomial was fitted to 

obtain a smooth, interpolated, estimate of receptor density as a function of body location. 



105 

 
 

Using a more detailed mesh model (the same used for EI calculation; see below), we randomly 

generated receptor locations for each face according to our density function. 

 

EI model 

The electric image model used in this study was based on the established methods 

developed by Caputi and Budelli (Caputi and Budelli, 1995; Caputi and Budelli, 2006; Caputi et 

al., 1998), and implemented using software developed by Rother (Rother et al., 2003). More 

details on the model can be found in these publications and it is described here briefly. The EI 

model requires the creation of a reconstruction of the geometry and electrical properties of the 

fish bodies and their placement in the surrounding water. This information is used to calculate 

the transcutaneous voltage at specific nodes along the skin of the fish. The model makes the 

following assumptions:  

1. All the media are ohmic Therefore,  𝐽(𝑥) = 𝜎(𝑥)𝐸(𝑥), 𝜎(𝑥) > 0    (1)  

Where J(x) is the current density at point x and E(x) is the electric field at the same point. 

2. There are no capacitive effects so at no point in space is there an accumulation of 

charge.   
𝛿𝑝(𝑥)

𝛿(𝑡)
= 0         (2)  

3.  The model is an electrostatic approximation (Bacher, 1983)  

4. The fish and other objects that make up the environment are immersed in an infinite 

water medium. Each object in the environment is covered by a thin resistive layer (the 

skin in the case of the fish), which can be homogeneous or heterogeneous. 

The model is based on the charge density equation which, under the above assumptions, 

implies that the charge generated by the sources f(x) is equal to the charge diffusion: 
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𝛿𝑝(𝑥)

𝛿(𝑡)
= 𝑓(𝑥) − ∇. 𝐽(𝑥)          (3) 

Combining equations 1 and 2 we get  

∇. 𝐽(𝑥) = 𝑓(𝑥) ⇒ 𝜎∇. 𝐸(𝑥) = 𝑓(𝑥)         (4) 

The electric field E(x) can be expressed as 𝐸(𝑥) = −∇𝜑 therefore:  

𝜎∇2𝜑(𝑥) = −𝑓(𝑥)           (5) 

Equation (5) is a partial differential equation known as the Poisson equation and can be 

solved for every point in space, in our case the fish boundaries by using the boundary element 

method (BEM) as proposed by Assad (Assad and Bower, 1997). The method determines the 

boundary conditions by solving a linear system of M•N equations for M poles and N nodes, with 

the unknown variables being the transepithelial current density and voltage at each node 

(Pedraja et al., 2014). The shape of the 3D fish mesh model consists of 49 ellipses composed of 

17 nodes each (i.e., 835 nodes) defining 1,666 triangular faces between the nodes (Rother et 

al., 2003). The size of the fish was kept constant at 14 cm in length in this paper and the water 

conductivity is 300 µS and the skin and internal conductivity of the fish were 100 and 10,000 µS 

respectively. The 2 poles for each fish were positioned 9.3 and 10.5 cm from the rostral tip of 

our 14 cm fish. We use the middle of this dipole (i.e., the center of our “electric organ”) to 

define the position from which the signal originates. 

 

Calculations of signal strength at receptor locations 

We calculate the transdermal voltage when only the focal fish is present (Vf) or when both 

focal and sender fish are present (Vfs), in which case the peak voltage is determined at the top 
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of the beat cycle (EODs in phase). The strength of the EI caused by the sender fish at each node 

i on the surface of the focal fish was defined as a contrast c:  

𝑐 =  
𝑉𝑓𝑠𝑖−𝑉𝑓𝑖

𝑉𝑓
            (6) 

The contrast value for receptor location within each triangular face was interpolated from 

the values at the nodes that define the face using a barycentric coordinates system. Considering 

a triangle with values N at the nodes (vertices) and coordinates X, Y, Z. A receptor inside the 

triangle will have a contrast value R according to the weighted value of the nodes. The weights 

W can be found by solving: 

𝑋𝑅 = 𝑊1 · 𝑋𝑁1 + 𝑊2 · 𝑋𝑁2 + 𝑊3 · 𝑋𝑁3        (7) 

𝑌𝑅  = 𝑊1 · 𝑌𝑁1 + 𝑊2 · 𝑌𝑁2  + 𝑊3 · 𝑌𝑁3        (8) 

𝑍𝑅 = 𝑊1 · 𝑍𝑁1 + 𝑊2 · 𝑍𝑁2 + 𝑊3 · 𝑍𝑁3        (9) 

And contrast at the receptor location is calculated as: 

𝑅 = 𝑊1 · 𝑁1 + 𝑊2 · 𝑁2 + 𝑊3 · 𝑁3        (10) 

Although the EI model was thoroughly calibrated based on experimental recording on 

actual fish (Pedraja et al., 2014; Pedraja et al., 2016), we performed transcutaneous recordings 

on 3 pairs of fish and verified that the transdermal voltage contrast values that we are 

calculating correspond to the range of values that can be measured experimentally. 

 

Receptor Modeling  

We used a leaky integrate and fire (LIF) framework to model the receptors. The model 

includes noise σ and adaptation current with conductance gα and reversal potential Eα, and is 

driven by an input I. The membrane voltage is calculated as: 
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𝜏𝑚
𝑑𝑉

𝑑𝑡
= 𝐸𝑚 − 𝑉 + 𝑅𝑚(𝐼 + 𝜎 − 𝑔𝛼(𝑉 − 𝐸𝛼))     (11) 

The initial parameters of the model were based on existing models (Benda et al., 2005; Carlson 

and Kawasaki, 2006; Chacron et al., 2001; Nelson et al., 1997). Particularly, the noise was the 

product of a strength variable Aσ and a random process (specifically, two Ornstein–Uhlenbeck 

processes; refer to Chacron et al., 2001, for details). Adaptation current α was adjusted to 

match the time course of adaptation described experimentally (Benda et al., 2005). 

Conductance gα is augmented by Δα after each spike and decays with time constant τα. When 

the membrane voltage reaches the threshold VT it is reset to VR and kept constant during a 

refractory period tR. The input I to these p-unit model neurons replicates the input they would 

receive from receptor cells during social interactions. A sinusoidal EOD carrier signal with 

amplitude AEOD was created with a frequency of 1000 Hz (the upper range of the naturally 

occurring EOD frequencies in this species was used for convenience), and modulated with a 

sinusoidal amplitude modulation (the “beat”) of 30 Hz (other AM envelopes are used to 

validate our model, see Supplementary Material). This AM envelope signal was adjusted to a 

specific contrast as specified in the Results. A contrast of 0% indicates that the baseline EOD is 

unmodulated. Whereas a beat contrast of 100% causes the EOD amplitude to be 0 during the 

trough and twice the baseline EOD amplitude at the peak of the beat. To emulate the current 

direction and sensitivity as the signal passes through the receptor cells before it reaches the p-

unit neurons, the modulated EOD is halfwave rectified after a baseline bias β was subtracted. 

Parameters were adjusted to create a prototypical neuron with response properties 

matched to published data (Bastian, 1981; Benda et al., 2005; Chacron et al., 2005; Grewe et 

al., 2017; Gussin et al., 2007b; Nelson et al., 1997; Ratnam and Nelson, 2000). We used a wide 
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range of response parameters to validate our model: firing rate, coefficient of variation, 

response sensitivity to random amplitude modulations, response sensitivity and time course to 

steps and responses to beat stimuli (see Supplementary Figure S1). This prototypical neuron 

with response properties matched to the average experimental values served as our original 

seed; this set of parameter values are given in Supplementary Information Table S1.  

We then used this original seed to create a heterogeneous population that replicates the 

range of response properties observed experimentally through an iterative process of 

diversifying the population and constraining the response properties. A heterogeneous array of 

parameters sets was created (8,000 sets) from the original seed values by slightly varying 

randomly several parameters: tR, Rm, τm, VT, Aσ, τα, Δα, and β. From this array, 12 seeds were 

selected by choosing sets of parameters that, again, best replicate the average response 

properties. These sets were further diversified randomly, and from these new arrays, 26 seeds 

were chosen by selecting neurons that replicate the average coding properties, but that span 

the range of spontaneous firing rates measured experimentally (Chacron et al., 2001; Gussin et 

al., 2007; Ratnam and Nelson, 2000). From these 26 seeds, the parameter sets were further 

diversified, and we retained 9,200 sets of parameters by rejecting sets for which the response 

properties do not fit in the range of response properties determined experimentally. Therefore, 

our pool of neurons replicates the average and range of response properties measured 

experimentally. From this pool, 5 equivalent but different populations of 8,195 receptors were 

created by randomly assigning one of the 9,200 neurons to each receptor location. All data 

shown in the results reflect averages across these 5 populations.  
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Decoding analysis  

Population responses to different stimuli were compared with our decoding analysis to 

determine how accurately signals could be detected or discriminated considering the 

differences in response patterns for these stimuli. The framework used for our decoder has 

been described and validated thoroughly in previous publications (Marsat et al., 2023; Allen 

and Marsat, 2018; Allen and Marsat, 2019; Allen et al., 2021; Marsat and Maler, 2010). It was 

shown that this analysis measure is directly correlated with the information content of the 

responses about the stimuli. We describe the method briefly here. Importantly, the only 

difference with the established measure described in Marsat et al. (2023), is that we do not use 

the detailed time-course of each neural response (i.e., the full spike trains), but use the peak-to-

though firing rate to quantify the response of the neuron. To calculate the peak-to-trough firing 

rate, the binarized spike trains are smooth with a sliding square window of 16.67 ms (half a 

beat cycle) to obtain an instantaneous firing rate. For each beat cycle, the difference between 

the maximum of the instantaneous firing rate and the minimum gives us our measure of peak-

to-trough firing rate. These peak-to-trough measures can be averaged over several cycles of the 

beat, or we can use the values for single beat cycles as specified in the different Results section. 

When no beat stimulus is provided, the analysis is unchanged and the peak-to-trough is 

calculated over each consecutive 33.34 ms segments of response (i.e., a 30 Hz period). 

Pairs of responses are compared by the analysis: responses to stimuli from two different 

azimuths are compared in the angular resolution analysis while in the detection analysis the 

response to the sender fish’s signal is compared to the response when no second fish is present 

(i.e., baseline firing due to the focal fish’s own signal). For each individual neuron i (out of n 
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total neurons), the similarity between the probability distributions P(x) of responses (the peak-

to-trough firing rate x) to the two stimuli (R and B) is calculated based on the area difference 

𝛺(𝑃𝑅,𝑃𝐵) between the two distributions: 

𝛺(𝑃𝑅𝑖,𝑃𝐵𝑖) = ∑ |𝑃𝑅𝑖(𝑥) − 𝑃𝐵𝑖(𝑥)|𝑥         (12) 

AD values are normalized to 1 across the n neurons to obtain a weight W: 

𝑊𝑖 = 𝐻0(𝛺(𝑃𝑅𝑖,𝑃𝐵𝑖) −
1

𝑛
∑ 𝛺(𝑃𝑅𝑛,𝑃𝐵𝑛)𝑛 + 1)      (13) 

where H0 is the Heaviside step function. The peak-to-trough firing rates for each neuron are 

multiplied with these weights before being used in our Euclidean distance calculations (see 

below). As a consequence of this weighting, the neurons that respond very differently to the 

two stimuli will contribute more to Euclidean distance between the population responses and 

the neurons that respond similarly to the two stimuli will contribute little to the Euclidean 

distance. Since the sum of the weight for a population is 1, the overall firing rate of the 

population is unchanged by the weighting procedure.  

The Euclidean distance D between pairs of weighted responses (Ra and Rb) is calculated 

between responses to the same stimulus or between responses to the two different stimuli 

being compared:  

𝐷 = √∑ (𝑅𝑎 − 𝑅𝑏)2
𝑛𝑡          (14) 

These Euclidean distances are used to determine how well an ideal observer could discriminate 

between responses to the two stimuli. The distribution of distances between responses to the 

same stimulus Dxx and the distribution of distances between responses to the two different 

stimuli, Dxy, are used for an ROC analysis. In this analysis, a threshold distance T is varied. For 

each threshold, the probability of non-discrimination (PD) is calculated as the sum of P(Dxy>T) 
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and the probability of false discrimination (PF) is calculated as the sum P(Dxx>T). The error rate E 

is taken as the minimum error across threshold given: 

𝐸 =
1

2
𝑃𝐹 +

1

2
(1 − 𝑃𝐷)         (15) 

This error rate is used in the various parts of the result as specified therein, and we consider 

that reliable detection or discrimination happens when the error rate is below 0.05.   

 

Results 

Since ghost knifefish can detect and localize each other based on the electric signals they 

continuously emit; both fish are thus senders and receivers at the same time. To simplify the 

description of our results we describe the fish for which we describe the electric image (EI) and 

sensory responses as the focal fish. The “other” fish that needs to be detected and localized by 

the focal fish is designated as the sender fish. A number of studies have characterized the EI 

that one fish causes on another fish’s body (Kelly et al., 2008; Pedraja et al., 2016). The results 

presented in these papers are not always easily related to electrophysiological studies because 

many experiments on the responses of sensory neurons in this system calibrate the signals as a 

relative contrast in the measured voltage. For example, many studies present the response 

properties to conspecific signal of 5-10% contrast (Fotowat et al., 2013; Metzen et al., 2018). 

Since our goal is to use the estimate of signal strength as an input to neuron models that match 

their known response properties, we quantify the EI strength as a relative contrast in the 

transdermal potential difference. If the signal from the sender is as strong as the focal fish’s 

own baseline signal at a given point on their body, the signal strength will be 100% and the EOD 
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will vary from close to 0 mV (at the trough of the beat) to twice the baseline EOD strength (at 

the peak of the beat cycle). 

Expressing the signal as a contrast highlights the challenges that the fish encounters when 

interacting with a conspecific due to the rapid decay of signal strength with distance. Figure 1 

displays the signal strength during a common scenario a sender fish approaching and then 

moving away from the focal fish. When the fish are separated by only a few centimeters 

(position 2), the EI has a strong gradient that goes from a strong signal (25% contrast) on 

portions of the body closest to the sender to a very weak signal close to 0% contrast. For 

convenience, we will refer to the region of the electric image with the strongest signal as the 

hot spot. While this hotspot is well defined when the sender is close-by, the EI is much more 

diffuse when the sender is further away and there is a weaker gradient between the hotspot 

and the areas with a weaker signal. For example, in Fig 1B, the difference between the hot spot 

near the head (position 1) or tail (position 3) is less than 1% stronger than the portions with the 

weakest signal. The positions 1 and 3 depicted here correspond to a distance (30 cm) at we 

know fish can detect each other and display active interactions (Henninger et al., 2018; Zupanc 

and Maler, 1993; Zupanc et al., 2006). The known extreme sensitivity of this system is thus 

highlighted here since detecting the sender 30 cm away involves detection of a 1% modulation, 

and localizing this signal requires deciphering a gradient in this signal of less than 1% across the 

body surface. 

The EI stimulates an array of receptors covering the fish’s skin and the spatial structure of 

this sensory array will dictate how the spatial structure of the signal is captured. Receptor 

density for different portions of the fish’s body has been characterized in a closely related 
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species (Carr et al., 1982), but we needed a more detailed quantification of variations in 

receptor density across the fish’s body (Fig 2A). Our data confirm the general organization of 

receptor density: a region of high density on the snout and head, of medium density on the 

dorso-rostral portion of the trunk that decreases both ventrally and caudally (Fig 2B). Based on 

this spatially precise empirical data, we incorporated a population of p-unit receptor locations 

on the 3D mesh model used for EI calculations that varies smoothly in density as a function of 

rostro-caudal and dorso-ventral position (Fig 2C). In the rest of this study, we will use an 

“average” fish that measures 14 cm long and includes ~8,195 receptor locations. 

We calculated the stimulus intensity for each receptor location for the various iterations of 

the EI calculation; the result for the 3 positions illustrated in Fig 1 is shown in Fig 3A (note that 

for this figure, the blue-red color scale covers the contrast range for each position). We wanted 

to quantify how the strength of the EI changes with the position of the sender relative to the 

focal fish. To do so, we ran the model for 864 relative positions where the two fish are at 12 

distances that vary from nearly touching to 75 cm apart and for 72 different azimuths around 

the focal fish while always having the sender fish’s heading towards the focal fish. To estimate 

the maximal strength of the signal for each location, we used the strength of the signal at the 

center of the hot spot on the focal fish. We plot this value as a color scale at the position of the 

middle of the electric organ of the sender fish (Fig 3B). We can see that the strength of the 

signal decreases sharply with distance as expected. The portions of the figure with contrast 

above 20% (yellow-white shades) represent positions where the fish are nearly touching (with 

the sender fish head-on). The decrease in signal strength with distance follows the expected 
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power law such that contrast drops to 10% by 10-15 cm and is only a few percent when the 

sender is 20-30 cm away (Fig 3C). 

The EI model helps us quantify the cues that the sensory system can use to detect and 

localize the source of these signals. To better understand the accuracy with which detection 

and localization could occur, the strength of these signal must be compared with the noise that 

the sensory system experiences. We therefore use the deterministic model of EI signal strength 

described above as an input to a population of model neurons that includes realistic noise. We 

based our receptor model on established parameters of leaky-integrate-and-fire that includes 

adaptation, noise, and a refractory period, to replicate the response properties of p-units 

(Benda et al., 2005; Chacron et al., 2005; Grewe et al., 2017; Gussin et al., 2007; Nelson et al., 

1997). Based on this prototype p-unit model, with properties matched to the average 

characteristics of p-units, we diversified the model parameters to create a heterogeneous 

population matching the range of properties observed experimentally (see Methods for 

details). For the model to provide a biologically reasonable estimate of how accurately this 

population encodes spatial cues, it is vital to calibrate the sensitivity, heterogeneity and 

noisiness of the responses to reflect the measured properties of the neurons. Our calibration 

involved matching the model responses to published values for a range of stimulus types and 

analysis methods (see Methods and Supplementary Figure S1). The population is then 

stimulated with conspecific signals (beat stimuli) at intensity levels that is dictated by the EI 

image for various relative fish positions. Figure 4 shows the response pattern of the population 

for two of the positions used in Figure 1 and 3. Response strength is quantified as the 

difference between the peak and though of the instantaneous firing rate during each stimulus 
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cycle (here normalized relative to spontaneous activity). We can see differences in response 

strength due to the spatial contrast in the EI but also differences across receptors due to 

heterogeneity that makes some neurons more sensitive.  

Firing rate modulation across one stimulus cycle replicates the experimentally measured 

sensitivity (Fotowat et al., 2013; Henninger et al., 2018; Pedraja et al., 2014; Pedraja et al., 

2016; Zupanc et al., 2006) The strength of the electric image quickly decreases with distances 

and reaches levels below 1% contrast at ranges where the fish still detect and interact with 

each other (e.g., 30 cm). Our model replicates the fact that for these weak signals, the response 

modulation is barely above variations in firing rate that naturally occur in the absence of a 

second fish (Fig 5). Figure 5C shows that, although the responses for nearby fish (14 cm and 

22.5 cm in this figure) are visibly different from spontaneous response, signals from more 

distant fish (40 cm, 75 cm in this figure) cause much more subtle differences in response 

strength. This is true when looking at the distribution of responses for cycles of the beat, for 

responses averaged across time (gray or color portion of the distribution plots), or overall 

responses averaged across time and neurons (white lines).  

The sensitivity with which a conspecific signal would be detected will depend on the coding 

and decoding mechanisms implemented by the nervous system. It is beyond the scope of this 

article to explore all possible coding and decoding algorithms that could contribute to the 

sensitivity of the system, but as a first step towards understanding the sensitivity of this system, 

we aim to provide a lower-bound on accuracy. To do so, we only consider peak-to-trough firing 

rate to quantify response strength as it is the most salient aspect of the response that varies 

with stimulus strength. The responses of individual receptors will be combined at higher levels 
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of the nervous system and this can help average out noise in the responses. However, the way 

these responses are combined would require various assumptions, matched to the architecture 

of high brain areas, that would lead to a complex modeling effort and speculations on decoding 

procedure. For this reason, and to remain within a “lower-bound” perspective, we map each 

population response in Euclidean space where each dimension represents the response 

strength of a neuron (i.e., response strength is not averaged across neurons). Reliable detection 

would occur if the strength of the population response is markedly different from the response 

when no signal is present; in other words, when the stimulus response is far from baseline 

responses in this Euclidean space representation. Our analysis therefore uses a weighted 

Euclidean distance followed by an ROC analysis to quantify the reliability with which stimulus 

responses can be differentiated from baseline. This analysis could be done on “instantaneous 

responses”, considering the response of the population (peak-to-trough for each receptor) for a 

single cycle of the stimulus which would give us a response accuracy (i.e., probability of error) 

for each fish positions. Behavioral responses typically occur after attending the signal for a 

certain period of time, and more accurate detection occurs after several seconds of the 

stimulus than after the first cycle. We therefore integrate the response of each neuron across 

time (average the peak-to-trough across several beat cycles) to estimate how detection 

accuracy would change as information is accumulated with time. We consider that accurate 

detection occurs when less than 5% detection error would occur and plot the amount of time 

that accurate detection would require (see Fig 6). Our analysis shows that accurate detection 

could occur within a single cycle of the stimulus for fish that are within 20 cm of the focal fish 

(Fig 6A, 6C). Detection accuracy decreases with distance and thus it takes more time to reliably 
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detect the stimulus. As a result, a fish 60-70 cm away would require integrating the signal for 

several seconds to be able to reliably tell that another fish is present. 

Detection accuracy is undoubtedly influenced by the fact that thousands of receptors 

contribute to transmitting this information. The distribution of these receptors is not uniform 

across the fish’s body. In particular, the rostral end of the fish (head region) has a density of 

receptors 5-10 times higher than the caudal end (tail region). We hypothesize that this foveal 

organization supports an enhanced sensitivity in the frontal quadrant relative to the fish. 

Alternatively, the increased density in receptors plays an important role in localizing small 

objects like prey with higher resolution, but does not enhance perception of conspecific in 

specific regions of space. This is a plausible alternative because conspecific signals cause a more 

diffuse EI that stimulates a majority of the receptors over the receiver’s body. To test our 

hypothesis, we reduced the density of receptors to make it uniform over the entire body and 

equal to the low density found at the caudal end of the fish (Supplementary Figure S2). Our 

resulting population has 2,770 receptors compared to 8,195 for the full population. The 

difference in detection sensitivity is displayed in Figure 6B and reveals the enhancement in 

sensitivity afforded by the increased density in the rostral portion of the body. The difference is 

negligeable when the sender is very close because accuracy is high and a decrease in the 

number of receptors encoding the stimulus is not sufficient to affect performance. For very 

distant signals (e.g., 75 cm), the lower rostral density causes a decrease in sensitivity that is 

fairly uniform across azimuth (see also Supplementary Figure S3). This can be explained by the 

fact that distant signals cause diffuse EI patterns that vary by less than 1% across the body (e.g., 

see Figure 1). As a result, the head region is stimulated at a level nearly identical to the tail 
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region even if the sender fish is located behind the focal fish. There is, however, a clear 

difference as a function of azimuth for medium distances (35-50 cm; Figure 6B and 

Supplementary Figure S3). The higher density of receptors on the head provides a clear 

advantage in detection accuracy in the frontal quadrants (i.e., requires less time until accurate 

detection occurs). We further verified the idea that having a larger population of receptors 

allows the population to encode the presence of the stimulus more reliably by decreasing 

further the density of our uniform population of receptors by 2-, 4- and 8-fold (resulting in 

population sizes of 1,385, 693 and 347 receptors respectively). Our analysis confirms that a 

higher density of receptors allows more accurate detection for distances where the signal is 

faint (Figure 6C). 

We next inquire about the spatial information about the angular position of the sender fish 

relative to the focal fish: its azimuth (in front=0°; behind= 180°). To do so, we compare the 

responses to stimuli at various positions and quantify how reliably these responses could be 

discriminated based on the same weighted Euclidean distance analysis used above. Error 

probability will thus depend on two factors, angular separation between the two stimuli and 

duration of stimulus evaluated whereas in our previous detection analysis the latter was the 

only factor considered. To be able to display our results conveniently, we chose to keep the 

duration of the stimulus integration to 1s. This value is a compromise between expecting 

accurate angular discrimination instantaneously (~1 cycle) and expecting the sender fish to 

remain in a relatively fixed position for seconds in order for angular position to be accurately 

estimated. Using this 1s integration time, we determined the angle that needed to separate 

two stimuli to lead to reliable discrimination (<5% error) and call this value angular resolution 
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(Figure 7). Our results show that angular resolution is accurate to a few degrees (<5°) when the 

sender is within 10-20 cm and decreases sharply between 20 and 40 cm such that beyond 40 

cm, azimuth could not be reliably determined (angular resolution>180°). If we repeat the 

analysis using different integration times (Fig 7B); as expected, the sharp decrease in angular 

resolutions moves from being for positions 20 cm away when a single cycle of the beat is 

considered to being 40-50 cm away when 3.3s of the stimulus is being averaged. Our analysis 

suggests that for the most distant positions tested (75 cm) angular position could not be 

resolved even when the stimulus is being integrated for several seconds. Together with the 

results of Figure 6, these finding thus suggest that for the more distant signals only detection 

would occur, and the position of the sender would not be accurately determined without 

relying on additional behavioral or neural mechanisms (see Discussion). 

Angular resolution does not appear to be equally good for a given distance as a function of 

the azimuth of the sender (e.g., front vs. side vs. back). This can be seen in Figure 7A where the 

color patterns around the focal fish are not perfectly circular. In particular, worse angular 

resolution occurs at a shorter distance in the back quadrant compared to the front. We 

suspected that the way we equalized distance across angle could cause a bias. The center of the 

focal fish is taken as the average receptor position and the center of the sender as the middle 

between the two emitting poles that constitute the EOD source. Center-to-center distance and 

azimuth were used to set our relative positions. In this arrangement, a fish at 130° (in the back 

quadrant, see fish illustrated in Fig 7A) rotating 5° would not only change azimuth but also 

come closer to the focal fish if we consider the two closest points on each fish’s bodies. Note 

that this is not an issue in our detection analysis since our accuracy measure does not depend 
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on the comparisons between two stimuli locations but only on the absolute location of a single 

stimulus. We therefore repeated our angular resolution analysis by comparing angular 

resolutions where the distance between the rostral tip of the sender and the closest point on 

the body of the receiver is kept constant (the dots in Fig 8A show the positions of the rostral tip 

of the sender used in our analysis). We found that angular resolution is better in the frontal 

quadrants than at the back (Fig 8A, 8C). Surprisingly, it is not best directly in front of the focal 

fish (0°) but rather on the side (90°). Since we expected the high density of receptors on the 

head of the fish to help enhance localization accuracy, we hypothesize that angular resolution is 

particularly good as the edge of the hotspot caused by the sender sweeps across the region of 

high receptor density (which could correspond to sender positions around ~90°). To test the 

contribution of higher receptor density towards the heads, we repeated the analysis with the 

“uniform” receptor population used in the previous section that has an equally low receptor 

density across the whole body. This uniform population of receptors did not perform much 

worse than our full population, and in particular there is no striking difference directly in front 

(0°) or the side (90°) of the fish where resolution is best. Azimuth determination was not 

possible (angular resolution>180°) when the fish were two body lengths apart (28 cm) but at 

one body length, the higher density of receptors provided a small advantage. Specifically, there 

are only a few spots at ~45° and ~125° where the higher receptor density on the rostral portion 

of the body helps to enhance angular resolution (Fig 8B, 8C). We confirm that decreasing the 

population density further decreases angular resolution and this is particularly obvious for more 

distant stimuli (one body length), where localization is still possible but angular resolution is not 

great (Fig 8D). 
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Our results demonstrate that the angular resolution is relatively poor at the back and is 

slightly better on the side than the front. This effect cannot be attributed to the higher density 

of receptor towards the head. Therefore, we questioned whether this effect could be due to 

the geometry of the fish’s body and how it interacts with the geometry of the electric field. We 

hypothesize that a small change in angle on the side will cause a relatively bigger change in the 

electric image than a similar angle difference at the back. A sender fish at 90° azimuth would 

have its EI hotspot centered on the flat surface of the side of the focal fish whereas for frontal 

(0°) or caudal (180°) azimuth, the EI hotspots are centered on the pointy rostral and caudal 

ends of the fish. We quantified how much difference in EI a sender at various azimuth would 

cause on the focal fish and integrated this difference across the body surface. We found that it 

correlates strongly with the differences in angular resolution that we have estimated for 

various azimuth and distances (Figure 8E). Our analysis supports the conclusion that differences 

in angular resolution as a function of azimuth is in part due to the geometry of the fish and their 

electric fields. 

 

Discussion 

By using a model of weakly electric fish EI and carefully normalizing how we calculate the 

distance between the relevant points on the two fish, we presented a clear quantification of 

the strength of the EI as a function of distance. Our results suggest that strong signals of more 

than a few percent beat contrast, only occur at distances below 15-20 cm. This finding is in 

agreement with empirical data and consistent with the fact that when two fish actively interact 

(e.g., chasing each other and courtship), they are typically in close proximity (Fotowat et al., 
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2013; Zupanc and Maler, 1993).The relationship we show is quantitatively informative only in a 

simplified case: a given fish size (and EOD strength) with a fixed heading angle (sender head-on 

towards focal fish). The strength of the electric image as a function of distance will depend on 

environmental factors (water conductivity), the individuals interacting (their size and EOD 

strength), and on moment-by-moment changes in the relative heading angle of each fish. All 

these factors could be taken into account in a more extensive analysis of EI during social 

interactions, but it is beyond the scope of our paper. It is also important to point out that 

additional improvements on the model could provide additional details on the structure and 

dynamics of the EI such as replicating the bending of the fish’s body or having the EO modeled 

with more spatio-temporal details rather than being a simple fixed dipole. We note that since 

the strength of the EI at a given receptor location depends on distance and relative heading 

angles, the strength of the beat AM (i.e., its envelope) cannot serve as a reliable indicator of 

distance or movement towards/away. Rather, reliable spatial information must take into 

account the differences in EI strength over the body of the receiver. This is obvious for localizing 

the azimuth of the target but can also help resolve the distance since a fish close-by will cause 

EIs with sharper contrasts across the body while distant fish will elicit more uniform EIs.  

We used, for the first time in this system, a model of the full population of receptors, 

replicating their heterogeneous response properties and their spatially realistic input patterns. 

This allowed us to provide a conservative estimate of the detection range that this sensory 

input could support. We found that, depending on how the information is extracted, detection 

would still be possible at 75 cm. This range is comparable to behavioral interactions that report 

instances where a fish detected and moved towards another or simply interacted electrically 
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with one another at ranges above 60 cm (Henninger et al., 2018; Stamper et al., 2012; Yu et al., 

2012). Our sensitivity estimates might, in fact, come short of the sensitivity observed 

behaviorally, but this might be because we intentionally provide a conservative estimate. Our 

estimate relies on a decoding analysis that does not try to replicate sophisticated decoding 

procedures that could be implemented by the nervous system. Our analysis uses a “Euclidean 

distance” perspective to quantify similarity in responses where the response of each neuron is 

kept as separate dimensions. The nervous system will, in various steps of its pathway, combine 

neural responses and thereby average out noise. An optimized procedure (e.g., using a principal 

component approach) could be implemented but it would need to be tailored to each 

stimulus/task being considered. Any realistic attempt to leverage the convergence of receptor 

input that is performed by higher sensory area would be a major undertaking that could not be 

simply added to this study. We also use a simple measure of response strength (peak-to-trough 

firing rate) and although it is likely one of the key elements of the response, other aspects could 

be considered. Particularly, synchrony among receptors has been shown to encode frequency 

modulations that occur during communication (Benda et al., 2006; Metzen et al., 2020). It is 

possible that changes in synchrony occur as the stimulus strength changes and encode 

information that could enhance the detection and localization accuracy. Further experiments 

are required to better understand the importance of population synchrony in this context. 

Other neural mechanisms could be present and enhance the sensitivity of the system. We know 

for example that the presence of negative correlations in inter-spike intervals suppresses noise 

at low frequencies and could enhance the coding of low-frequency stimuli (lower than the 

frequency we use in this paper; Chacron et al., 2001). For this reason, we propose that our 
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sensitivity estimates are conservative estimates that can serve as a starting point in estimating 

the limits in detection and localization abilities.  

Our analysis indicates that reliable detection or localization would require integration of the 

signals over a certain period of time by higher brain areas. This is a realistic perspective as 

behavioral performance in various systems will be more accurate for ongoing than for brief 

stimuli (Dizon and Litovsky, 2004; Gai et al., 2013). For example, estimates of the direction of 

motion in a “random dot display” integrates over time in the visual system of primates to reach 

a reliable decision after seconds of attending the stimulus (Ditterich et al., 2003; Kim and 

Shadlen, 1999). For weakly electric fish, it is not unrealistic to assume that the stimulus can be 

integrates over several hundred ms to support accurate detection and localization, but it is not 

clear that this integration could occur over tens of seconds particularly when relative 

movement could require location estimate to be updated frequently. As a first step, our 

analysis considered spatially fixed signals, but it will thus be imperative in future studies, to take 

into account both the spatial and temporal dynamic of the conspecific signals. According to this 

perspective, localization accuracy, and thus behavioral decisions, depends on the spatial 

dynamic during the interaction. Moreover, this spatial dynamic can be leveraged as a means to 

collect spatial information. Various behavioral strategies can contribute to localizing a stimulus. 

For example, when localization is difficult, movements towards the target that result in the 

signal strength increasing can help confirm the position of the second fish (Fagan et al., 2013; 

Kaushik et al., 2020). Lateralization, rather that precise azimuth localization, can be used while 

a fish moves towards a target: if a stimulus is perceived as coming from the left or right, 

corrective turns realign the target. The individual would therefore move towards the target in a 
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zig-zag pattern; this mechanism has been proposed to contribute to behavior in various 

systems (Beetz and el Jundi, 2023; Gerhardt et al., 2023; Pollack et al., 1984).  

Detection could rely on the convergence of the whole population of receptors thereby 

efficiently averaging out noise. Furthermore, the high receptor density rostrally improves 

detection for frontal azimuth because the EI hotspot will be centered on this high receptor 

density area and thus lead to a high convergence of strong responses. Localization, however, 

must rely on comparison of the EI strength across the body. When comparing the responses to 

stimuli from different azimuths, our analysis focuses on the neural responses that differ 

between the stimuli by weighing heavily the contribution of these neurons. This procedure to 

optimize the extraction of spatial information is essential because the EI might differ only 

slightly between two stimuli and thus the responses of most neurons will be identical across the 

stimuli locations. For localization, it is thus the convergence of the responses of a subset of 

neurons, that differ in activation between the locations being compared, that can support the 

accurate discrimination of azimuth. Surprisingly, we found that the high density of receptors on 

the rostral portion of the fish does not lead to a better discrimination of the frontal azimuth. 

This result could reflect the fact that the receptors on the head will have a stronger difference 

in response at the edge of the hot spot elicited by the sender moving across these receptor 

locations. We suggest that this would occur as the leading, or trailing, edge of the hotspot 

sweeping across high density areas. This could explain the modest increases in spatial 

resolution due to the increased rostral receptors density that we observed around 60° and 

120°. This is in contrast with the contribution of the high density of receptors during prey 

capture (i.e., small objects) where localization accuracy is enhanced for the head and snout 
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regions. The structure and convergence of receptors thus play different roles in the detection 

and localization of objects and conspecifics: while high density and convergence contribute 

markedly to spatial coding of objects, it mostly contributes to detection accuracy for conspecific 

signals.  

In other systems, regions of high receptor density are typically associated with high spatial 

resolution. It is the case of the foveal region of the retina and of high receptor density regions 

of the somatosensory system like the fingers or lips in humans (Catania and Catania, 2015; 

Dacey, 1994; Nakamura et al., 1998). In other systems faced with spatially diffuse signals, like 

the auditory or olfactory systems, the extraction of spatial information typically relies on the 

comparisons between a limited number of input (e.g., 2 ears) and high convergence of 

receptors is more tightly involved with the accurate detection, rather that localization, of the 

signals (Carr and MacLeod, 2010; Chapman, 1982; Okada and Toh, 2006; Schnupp and Carr, 

2009). Our result on the electrosensory system suggests that this is a general principle guiding 

the relationship between signal structure and the organization of the sensory arrays. We argue 

that for signals that are spatially diffuse, receptor density and convergence will benefit 

detection abilities and spatial information is extracted by comparing inputs at different 

locations without relying on a higher number of inputs to enhance localization. For signals that 

are spatially localized, a topographic mapping system is advantageous and localization accuracy 

directly depends on the spatial resolution of the input array. The electrosensory system 

provides a powerful way to compare these systems and reveal organizing principles because it 

processes both localized and diffuse signals for which receptor organization and convergence 

play different roles.   
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Figures and Legends 

Figure 1: Model of the electric image 

during social interactions. The model takes 

into account the relative position of the two 

fish to estimate the strength of the EI 

caused by one fish (designated as “sender”) 

onto the body of the other (“focal” fish). A. 

Three relative positions are illustrated here 

representing different phases of a fish 

approaching the focal fish. B. The EI is 

quantified based on the strength of the 

transdermal voltage at the peak of the beat 

AM caused by the interaction of the fish’s 

EODs. The strength of this AM is then 

normalized to the baseline EOD strength 

(i.e., EOD amplitude when only the focal fish 

is present) to obtain an EI strength 

expressed as percent contrast. 0% contrast 

indicates that the signal from the sender 

fish has no impact on the receiver and 100% 

contrast indicates that the sender’s signal is 

as strong as the focal fish’s own EOD. We 



137 

 
 

can see that for the 2 more distant positions, the signal strength is weak (<1%) and there are 

only minute differences in signal strength across the receiver’s body. When the sender is very 

close, however, a salient “hot spot” has a much stronger EI strength than other portions of the 

body (note the different color scales for each image). We show as an inset on the right, the 

electric field with current lines (gray lines) and the iso-potential lines are depicted for the near-

field range as a color gradient (red or blue depending on polarity). The perspective in this inset 

is from the top as in A) while the EI illustrations in B) present a perspective of the side of the 

focal fish being approached by the sender.  



138 

 
 

Figure 2: Spatial structure of the 

receptor array. A. Receptor density 

across the body of the fish was 

determined experimentally. Eosin Y 

stained specimen were examined 

and cutaneous receptors of different 

types were identified (e.g., 

Neuromast labelled N, ampullary 

labelled A, or tuberous receptors, 

labelled T in the inset on the top 

right). The number of tuberous 

receptors in 1mm2 areas was 

averaged across samples for each 

face of a coarse 3D mesh model of 

the fish (B). Receptor density as a 

function of body position was then 

smoothed by fitting a 5th degree 

polynomial and mapped onto the 

fine mesh model used in the EI model (C). For each face of this 3D mesh, random receptor 

positions were selected according to the receptor density attributed to each face. The receptor 

positions that we generated are marked by the dots in B) and C) and their color reflect the 

density of receptors for the corresponding position.  
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Figure 3: EI strength as a 

function of relative 

position of the two fish.  A. 

The strength of the EI from 

the sender was calculated 

for each receptor position. 

It is displayed here for the 3 

relative fish positions 

illustrated in Figure 1 (note 

the difference in color scale 

for position 2 vs 1 and 3). 

The focal fish are presented 

here from a top 

perspective. B. The strength 

of the electric image is 

characterized as a function 

of distance and azimuth. 

The EI for 864 relative 

positions (12 distances x 72 

azimuths) was calculated 

and the strength of the 

signal in the “hot spot” (HS; taken as the average of the 5% most strongly activated receptors) is 
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depicted by the color scale. The position of the sender fish for position is based on the center of 

the EO and the data points have been repositioned to reflect the distance between the center 

of the HS on the focal fish and the EO of the sender rather than the center of the focal fish. The 

EI strength values (contrast %) have been interpolated between data points. C. Average 

contrast values in the HS across azimuth and for fish displayed as a function of the distance 

between the hot spot and EO centers. The relationship follows a cubic power law (red best fit 

curve: c=1.6·104·x-3).   
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Figure 4: Heterogeneous population response in modeled receptors. A. LIF models with 

heterogeneous response properties were stimulated with realistic inputs that match the spatio-

temporal structure of conspecific signals. In the color map (top), each receptor’s response is 

quantified as the peak-to-trough firing rate modulation and normalized relative to spontaneous 

modulations in firing rate occurring when no second fish is present (i.e., a relative response of 1 

reflects modulations in firing rate similar to spontaneous activity). The two raster plot insets on 

the left show the response patterns of two individual neurons from portions of the fish’s body 

that are more or less strongly stimulated. The raster plot on the right shows the population 

response: we show a stack of 800 randomly selected receptor responses ordered from weakest 

peak-to-trough responses (bottom) to strongest responses (top). B. We display the same 
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elements as in panel A. but the position of the sender fish is more distant (position 1 of Figure 

1) compared to nearby relative position used in A. (position 2 from Figure 1).  
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Figure 5: Sensitivity of the 

receptor model replicates 

responses to beat stimuli. A. 

Mean firing rate (averaged across 

all receptors) during a single cycle 

of a 30 Hz AM beat stimulus for 

different contrast intensity. The 

model produced modulations in 

firing of just a few spikes/s peak-

to-trough for the weakest 

intensities and of a few hundred 

spikes/s for the stronger 

intensities. B.  F-I curves display 

the strength of the response as a 

function of the stimulus intensity 

(mean across the population ± 

s.d.). Average peak-to-trough firing 

rate quantified in a similar way but 

during spontaneous activity (no 

sender fish) is display (gray dashed 

line) and we can see that for the weakest stimuli the average response is similar to 

spontaneous activity. Response sensitivity has been calibrated to match published data 
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(Bastian, 1981; Nelson et al., 1997; see also Methods and Supplementary Figure S1). C. The 

distribution of responses strength across the population of receptors is displayed for sender fish 

positioned at different distances (azimuth 90º). The outer distributions (black violin plots) show 

the variability of peak-to-trough firing rate on single cycles of the beat for single neurons. The 

inner distributions (colored violin plots) show the variability across neurons but for each neuron 

peak-to-trough firing rate is averaged across the whole stimulus (900 cycles, 30 s). The mean of 

this distribution (i.e., also averaged across neurons) is displayed as a white line. Dotted grid 

lines (in gray) are provided in the background to help notice minute differences in the 

distributions. The fact that only subtle differences between the distributions for stimuli at 

distances of 40 cm or more compared to responses in the absence of second fish highlights the 

difficulty in detecting these distant signals.  
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Figure 6: Estimates of detection 

sensitivity as a function of relative 

fish position and the influence of 

receptor density distribution. A. 

Detection sensitivity is quantified as 

the time it would take to reliably 

detect the presence of the sender’s 

signal and is displayed as a function 

of the relative position of the 

sender. For each position (12 

distances x 72 azimuth) the peak-to-

trough responses of the population 

are compared to spontaneous 

responses. As peak-to-trough is 

averaged across cycles of the beat 

(increased time to detection), 

detection becomes more reliable 

because noise is averaged out. We 

display the stimulation time required 

for our decoder to reach reliable 

detection (<5% error; see Methods for more details). Each position is defined by the distance 

and azimuth between the center of the receptor positions in the focal fish and the center of the 
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EO in the sender fish. Values for each data point are then interpolated across space to obtain 

the smoothly varying color plots. B. Decrease in detection sensitivity (increased time to 

detection) caused by reducing the density of receptors in dense areas (i.e., making it uniformly 

low like the density in the caudal portion of the body). The decrease in density makes uniformly 

no difference nearby (black region). It uniformly increases time to detection when the sender is 

very distant (distant black area in panel A). It has a most pronounced effect at mid distance (40-

50 cm) in the frontal azimuth (yellow area) where time to detection increases from 1-2 s to 2-6 

s (see also Supplementary Figure S3) showing that the rostral high density of receptors can 

increase detection sensitivity in the frontal quadrant. C. The overall detection sensitivity (time 

to detection averaged across azimuth) decreased markedly at distances above 30 cm when 

receptor density is made uniformly low (black line compared to red line) and decreases further 

when receptor density is made even sparser (1/2, 1/4 or 1/8 the size of the uniform population; 

gray curves).  



147 

 
 

Figure 7: Estimates of angular 

resolution supported by the 

receptors’ response accuracy. 

A. Angular resolution 

estimated as a function of 

distance and azimuth of the 

sender. The analysis is based 

on the average peak-to-trough 

firing rate (30 cycles average, 

i.e., 1 s) of each receptor for a 

given stimulus location. 

Population responses for a 

sender at a given test azimuth 

was compared, by our decoder, 

to responses for a sender at various angular displacement (clockwise or counter-clockwise; 

distance kept fixed). The smallest angle that allows 95% accurate discrimination between the 

responses was taken as the angular resolution. Failure to discriminate responses for stimuli 

locations 180º apart (black regions on the graph) indicates an inability to localize reliably the 

azimuth of the sender’s location. Data points for 72 test azimuths and 12 distance (i.e., 864 

positions) were generated, taking the center of receptors location for the focal fish and the 

center of the EO for the sender fish as position values. Data values are then interpolated to 

obtain the smoothly varying color plot. B. The angular resolution (mean ± s.d. across azimuth) 
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can be calculated based on peak-to-trough responses of the receptors to a single cycle of the 

stimulus or on the peak-to-trough averaged across several cycles. Averaging the response 

across cycles corresponds to a decoder that integrates the response across time to get a more 

accurate estimate of response strength. Consequently, angular resolution improves as the 

decoder integrates across more time, but in all cases we still see a sharp change in resolution 

from very accurate (e.g., at distances below 20 cm) to very poor (e.g., above 50 cm).  
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Figure 8: Receptor density and angular resolution as a function of azimuth. A.  Angular 

resolution for a sender fish at various positions around the focal fish was calculated as in Figure 

7, but the way distance is normalized across angles is different. We still compare, with our 

decoder, positions at different angles while keeping the distance equal. Here distance is set by 

the distance between the rostral tip of the sender and the closest point on the surface of the 

focal fish. The fish are thus separated by a fixed gap set to 1/4, 1/2, 1 or 2 body lengths (i.e., 

3.5, 7, 14 and 28 cm respectively). In Figure 7, the gap between the fish was not consistent 

across azimuth since distance was set between the center of receptor locations in the focal fish 
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and center of the EO in the sender. For example, the rostral tip of the sender was closer to the 

skin of the receiver when it was at 180º than when it was at 0º. The positions of the rostral tip 

of the sender, for the 72 angles and 4 distances, are marked with dots on this figure. Datapoints 

for various positions are still mapped on the color graph at the position of the middle of the 

EOD of the sender and the color gradient interpolated between datapoints. B. Decreasing the 

density of receptors in dense areas (i.e., making receptor density uniformly as low as density in 

the caudal portion of the body) causes decreases in angular resolution. This resolution decrease 

is strongest in the red area of the graph. We note that this decrease is relatively limited and not 

concentrated in the frontal quadrant. C.  Angular resolution as a function of azimuth, distance 

and receptor density. This is the same data used to generate panels A and B but shown here in 

2D. The change in resolution as a function of azimuth is clearly visible even when receptor 

density is uniform across the body D. Angular resolution averaged across azimuths for different 

receptor density patterns. The full population is compared to a uniform lower density 

population or to populations made even sparser (1/2, 1/4 or 1/8 the uniform population). 

Decreasing the receptor density decreases angular resolution. E. Changes in EI for small angular 

displacements (averaged across 5°, 10° and 15° displacements) are compared across azimuth 

and related to the angular resolution of the system. For a given displacement, the difference in 

EI was characterized by integrating the difference in EI strength across the body surface. This EI 

difference was calculated for various azimuth and at the 2 distances (1 or 1/2 body length 

apart) that give medium angular resolutions. We show that the EI difference correlates with 

angular resolution with an exponential relationship (black best-fit curve, r2=0.98). 
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Supplementary Information 

 

Table S1: Model parameters used for the prototypic seed neuron (see Methods for details). 

Description Name Value Description Name Value 

Membrane time constant 

(s) 

τm 15·10-4 Noise strength (A) Aσ 15·10-9 

Lean reversal potential 

(V) 

Em -70·10-3 Adaptation reversal 

potential (V) 

Eα -80·10-3 

Membrane resistance (Ω) Rm 15·105 Adaptation increment (V) Δα 14.5·10-

8 

Spiking threshold (V) VT -49·10-3 Adaptation time constant 

(s) 

τα 50·10-3 

Reset potential (V) VR -70·10-3 EOD amplitude (A) AEOD 1.7·10-7 

Refractory period (s) tR 9·10-4 EOD baseline bias (A) β 3·10-8 
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Figure S1: Average response properties of the heterogeneous population of modeled 

receptors. 

A. Example of the membrane potential and spiking pattern of a model response (spontaneous 

activity). B. Inter-spike interval histogram of 2 different model neurons (spontaneous activity) 

showing phase locking to the EOD period and different firing tendencies. Note that the x axis is 

expressed in multiples of the EOD period but since we used an EOD frequency of 1,000 Hz for 

simplicity, this also corresponds to ms. C. Distribution of spontaneous firing rate across our 

entire population. This distribution was achieved by selecting 26 seed neurons with firing rates 

unevenly distributed along this range and diversifying model parameters based on these seeds 

(see Methods). This range and distribution replicates published data (Bastian, 1981; Grewe et 

al., 2017; Ratnam and Nelson, 2000). In particular, the mean spontaneous firing rate was 251 

spk/s with a CV of 0.45. D. Responses to step increases in EOD intensity. The strength of the 

peak response, the steady-state response, and the adaptation time course was matched to 

published data (Benda et al., 2005). E. Response gain to beat stimuli of different AM 

frequencies. Although we did not explore systematically the response of our model at different 

beat frequencies in the results section, we calculated the gain for a range of AM frequencies. 

This analysis helps us to evaluate the sensitivity of the neurons (see the absolute scale on the 

left) and it also helps to assert that the adaptation dynamic replicates some of the tuning 

properties of the neurons (see the relative scale on the right; gain for an AM of 1 Hz is 

normalized to 1). This average gain curve is comparable to experimental data (Chacron et al., 

2005; Nelson et al., 1997). F. Relative firing rate during random amplitude modulations. We 

replicated a published analysis of receptors sensitivity (Gussin et al., 2007a) that measure the 
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relative firing rate (relative to average) in successive 32 ms windows during the response to a 

low frequency (0 to 4 Hz) random amplitude modulation. We note that our scale is different 

than theirs: our ± 5% values correspond to the absolute contrast of the stimulus (i.e., s.d. of 

10% contrast) whereas the scale in their Fig 3 has ± 50% being the min-to-max of their 10% 

contrast stimulus. When converted to the same scale, we find a gain slope of 23.7 spk/s/% (± 

5.8 s.d.) comparable to the 17.7 spk/s/% (range 3.2 to 40.2) they found. G. Mean coherence at 

10-30 Hz for random amplitude modulations (0-100 Hz) of different overall intensities 

(contrast). We qualitatively matched the coherence to values found in previous publications 

(Chacron et al., 2005; Grewe et al., 2017). H. Firing rate modulation in response to random 

amplitude modulations (0-300 Hz). We replicated the analysis in Grewe et al. (2017; see their 

figure S1A) that plots the standard deviation of the response (averaged over trials) as a function 

of stimulus contrast. Their population averages go from approximately 100 spk/s for 2.5% 

contrast to 200 spk/s at 20% contrast with a large variability among the population; we have a 

population average between 90 spk/s and 250 spk/s respectively.  
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Figure S2: Receptor density compared between our full population (A) and our uniformly low-

density population (B). Each dot shows the position of a receptor and the color reflects the 

density of receptor at this location. The uniform population was created by selecting, for each 

face of the mesh model, a subset of receptors from the full population to match the density of 

2 receptors per mm2.  
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Figure S3: Detection performance as a function of source location and receptor structure. We 

compare a full population of receptors that includes a high density in rostral regions with a 

population that has a uniform density across the body matching the low density of the caudal 

region of the body (see Figure S2B). We present here the results for distances above 25 cm 

where we can see differences across azimuth and population structures. Our decoder considers 

that the response strength of receptors can be integrated across time and thus more noisy, 

weak responses require integration across longer periods to reach a reliable detection 

performance. We plot here the integration time required for our decoder to reach 95% 

detection accuracy and plot this here as a function of stimulus location.  
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Chapter 3 

Prologue 

The previous chapter demonstrates how social interaction between weakly electric fish 

affects the contrast and spatial pattern of the beat signal received by electroreceptors at the 

periphery and how accurately this signal is encoded. It is unknown how this spatial information 

is represented at the next level of sensory processing in the electrosensory lateral line lobe 

(ELL). In this chapter, I use a combination of neurophysiological and computational approaches 

to understand how the spatial information is represented by the population of pyramidal cells 

and clarify how the heterogeneity in the population influences coding. I demonstrate that 

spatial information begins to segregate at the level of the ELL by evaluating how well spatial 

information is encoded by populations of ELL pyramidal cells.  

 

Note: This chapter has been submitted for publication as: 

“Milam, O.E., and Marsat, G. (2023). Spatial coding of conspecifics in subpopulations of 

pyramidal cells of the gymnotiform electrosensory system. Frontiers in Neuroscience. 

Submitted” 

I performed all of the experiments and data analysis. Gary Marsat helped in a supervisory role 

and in drafting the manuscript. 
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Abstract 

Localizing the source of a signal requires sophisticated neural mechanisms and we are still 

uncovering the coding principles that support accurate spatial processing. Weakly electric fish 

can detect and localize distant conspecifics, but the way this spatial information is encoded is 

unclear. Here, we investigate the spatial representation of conspecific signals in the hindbrain 

to determine how the properties of the heterogenous population of pyramidal cells affect the 

spatial coding accuracy of conspecific signals. We hypothesize that specific subsets of cells 

provide more accurate spatial information about conspecific location. We stimulated the fish 

with an artificial signal that replicates both the spatial and temporal structure of conspecific 

signals. We recorded from cells with various receptive field positions covering the entire body 

surface and analyzed the spike train with spike-train distance metrics to determine how 

accurately the location of the stimulus is encoded. We found that some pyramidal cells (such as 

ON-type, and those within the deep layer) encode the spatial information more accurately 

while other subgroups (OFF-type, and superficial layer) provide less accurate information. Our 

results help us understand how the heterogeneity of a population of cells allow the efficient 

processing of signals and suggest that a segregation of the spatial information stream starts 

earlier in the sensory pathway.  

Keywords: population coding, discrimination, localization, topographic maps, weakly 

electric fish  
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Introduction 

Nervous systems must accurately encode sensory information about environmental stimuli 

and a central goal of neuroscience is to reveal how this is accomplished efficiently (Barlow, 

1961; Bialek and Rieke, 1992; Bullock et al., 2005; Dayan and Abbott, 2001; Shannon, 1953). 

Courting a signaling mate or surviving an agonistic encounter between a competitor are a 

couple of behavioral examples where encoding spatial information reliably is essential for 

piloting social interaction (Bradbury and Vehrencamp, 2011; Pedraja et al., 2016). Yet, how this 

spatial information is represented by populations of neurons to guide such behaviors remains 

poorly understood. Here, we investigate the spatial coding accuracy of heterogeneous 

pyramidal cell populations in the hindbrain collected via in-vivo electrophysiological recordings.  

Apteronotus leptorhynchus, a gymnotiform wave-type weakly electric fish, produces a 

continuous, quasi-sinusoidal, electric organ discharge (EOD) via an electric organ located in the 

tail (Lissmann, 1951; Lissmann, 1958). The EOD drives the baseline discharge of tuberous 

electroreceptors (P-units) distributed across the entire body. P-units are the electroreceptor 

type most relevant for encoding electrosensory input, used for communicating with 

conspecifics and navigating the environment (Bullock, 1969; Bullock, 1982). The afferents from 

each P-unit provide trifurcated, unilateral input to different subtypes of pyramidal cells located 

in the maps of the electrosensory lateral line lobe (ELL): the lateral segment (LS), centro-lateral 

segment (CLS), and centro-medial segment (CMS; for review see Krahe and Maler, 2014; Milam 

et al., 2019). Multiple topographic maps in the ELL are comprised of a heterogeneous network 

of ON and OFF-type pyramidal cells (Heiligenberg and Dye, 1982; Maler, 2009a; Shumway et al., 

1989). Pyramidal cells are organized in a columnar layout, containing superficial, intermediate, 
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and deep-type pyramidal cells. Within each map, pyramidal cells vary in their response 

properties and center-surround receptive field parameters (Chacron et al., 2001; Krahe et al., 

2008). Receptive fields in the LS map are the largest, the CMS map contains the smallest 

receptive fields, and receptive fields in the CLS map are intermediate. It has been suggested 

that different neural maps are specialized for certain behavioral tasks (Allen and Marsat, 2018; 

Maler, 2007). However, besides a few focused studies, little is known about how pyramidal cells 

(at the individual neuron or population level) respond to spatially realistic, conspecific stimuli 

(Kelly et al., 2008; Litwin-Kumar et al., 2012).  

Recent field and lab studies on interacting weakly electric fish indicate that these animals 

possess an aptitude for detecting and localizing conspecific signals in their environment, even in 

conditions where sensory cues are limited (Zupanc and Maler, 1993; Stamper et al., 2012; 

Henninger et al., 2018; Knudsen, 1975; Berman and Maler, 1999; Yu et al., 2012; Fotowat et al., 

2013; Jung et al., 2016). The diffuse nature of these signals (affecting peripheral receptors 

covering the entire body, i.e., “global signal”) suggests that the central nervous system must 

discriminate between small differences in the spatial signal to encode conspecific location 

accurately. Though behavioral observations clearly demonstrate their sensory capacity, how 

the nervous system accomplishes this task remains unknown. Our goal in this study is to 

understand how the primary electrosensory area of the nervous system encodes the location of 

a conspecific based on their self-generated signal. We aim to uncover how multiple receptor 

inputs are integrated by pyramidal cells in the hindbrain so that relevant spatial information is 

encoded in a way that enables accurate localization of conspecifics. We argue that efficient 

extraction of spatial information should involve implementing different neural streams and 



161 

 
 

codes. We hypothesize that a heterogeneous population of pyramidal cells uses different 

neural coding strategies for efficiently processing conspecific stimuli that vary based on their 

spatial parameters.  

In this study, we directly compare neural heterogeneity at the lowest level of the electric 

fish’s central nervous system – the ELL – and accurate neural coding of conspecific location. We 

first show that the spatially realistic, conspecific stimulus elicits responses from ELL pyramidal 

cells represented in both rate and temporal aspects of the spike train. After single cell analysis, 

we quantify a population response from a heterogeneous pool of pyramidal cells and 

demonstrate that information about the spatial stimulus is encoded in the pattern of the 

population response. We calculate the discrimination performance of the population and find 

that spatial stimuli are accurately and efficiently encoded. This confirms that combining sensory 

input from multiple pyramidal cell receptive fields yields higher discrimination performance for 

coding conspecific position. We separate the population into categories and reveal a pyramidal 

cell type specialization for spatial coding of conspecific information based on the aspect of the 

response used for discrimination. Finally, we assess neural coding performance across a range 

of stimulus spatial scales, and using a weighted analysis, confirm that a segregation of 

conspecific spatiotemporal information begins in the primary sensory area of weakly electric 

fish.  

 

Materials and Methods 

Animals 
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Wild-caught Apteronotus leptorhynchus were obtained from commercial fish suppliers. 

Tanks water conductivity were maintained at 200-300 µS and at temperatures of 26-27°C. All 

procedures were approved by the West Virginia University IACUC. 

 

Electrophysiology 

Surgical techniques were as previously described (Allen and Marsat, 2019; Marsat and 

Maler, 2010; Marsat et al., 2009). Briefly, A. leptorhynchus was anesthetized with tricane 

methanesulfonate (Western Chemical, Inc.) and respirated during surgery. A local anesthetic 

(Lidocaine HCL 2%, Hospira, Inc.) was applied, and the skin overlying the craniotomy site was 

removed. A fixed post with a circular opening was glued to a portion of the exposed skull for 

stability. The fish was immobilized with an injection of tubocurarine chloride pentahydrate (0.2 

mg ml-1, TCl). The experimental tank contained water with conductivity at 250 (±10) µS and 

temperature at 26 (±1) °C. The portion of the skull above the ELL was removed. A cone was 

secured to the fixed post, allowing top-down access to the exposed ELL. Melted resin was used 

to form a watertight seal between the ventral opening of the cone and the skull around the 

exposed ELL. ACSF was applied to the brain. This cone allows for full body submersion into the 

experimental tank during recordings while preventing the brain from coming in contact with 

tank water. Respiration was switched from general anesthesia to anesthetic-free water for 

respiration. In vivo, single-unit recordings of the lateral segment (LS) and centrolateral segment 

(CLS) were performed using metal-filled extracellular electrodes (Frank and Becker, 1964). 

Recordings were amplified (A-M Systems, Model 1700) and data recorded (Axon Digidata 1500 

and Axoscope software, Molecular Devices) at a 20kHz sampling rate. Pyramidal cells of the LS 
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and CLS were identified based on the blood vessel landmarks, depth of penetration (in the 

dorsal-ventral plane), and response properties of the (Maler et al., 1991; Saunders and Bastian, 

1984).  

 

Stimulation 

All stimuli were sampled at 20 kHz and created in MATLAB (MathWorks, Inc.). Our 

stimulation procedure replicates the amplitude modulations (AM) experienced during social 

interactions. The baseline EOD was recorded between the head and tail of the fish. Each EOD 

cycle triggered a sine wave generator (Rigol DG1022A) to output one cycle of a sinusoidal signal 

with matching frequency to the fish’s EOD. This signal was then multiplied using a custom-built 

signal multiplier by the AM stimulus to create the desired modulation of the electric field. 

Stimuli were played through a custom made stimulus isolator into the experimental tank using 

one of three configurations: a global stimulation, via two 30.5 cm carbon electrodes arranged 

parallel to the longitudinal axis of the fish; a local stimulation, via two silver chloridized 

electrodes 0.5 cm apart positioned at various positions near the skin surface; an artificial 

conspecific stimulation (i.e., fishpole), via two silver chloridized electrodes embedded in 

agarose with a conductivity of 35 µS (Hupé and Lewis, 2008; Kelly et al., 2008; Walz et al., 

2013). Stimulation for global and local configurations were adjusted to provide ~20% contrast 

relative to the baseline EOD strength.  

The fishpole signal was calibrated to match the amplitude of the electric field potential of 

real fish recorded from 24 different positions and distances around the fish (n=7, of mixed 

gender and size). One of the silver wires represented the rostral end of the fishpole (5.5 cm 
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long), and the other silver wire represented the caudal end (0.1 cm long). The two wires were 

separated by 4 cm, yielding a fishpole with 9.6 cm in length and a zero-plane potential located 

at ~70% of the rostral to caudal body length, in accordance with previous observations (Assad 

and Bower, 1997). The solidified, agarose body was carved to match the body shape of a real 

fish. The fishpole was positioned in the experimental tank at three different 

orientations/azimuths (0, 45, 90°), and 7 different locations around the fish 10 cm away. The 7 

locations were the operculum, mid-body, and the zero-potential plane for both ipsilateral and 

contralateral sides of the fish (6 locations), and 1 location directly caudal to the fish (see Figure 

1A). We use the term, orthogonal, to describe stimulus positions where the rostral end of the 

fishpole is oriented toward the receiving fish. Sinusoidal AM (SAM) stimuli were 40 s long, 

modulated at 30 Hz, and were played through the fishpole during the experiments.  

 

Data Analysis 

All analyses described here were performed using MATLAB. Spike trains collected from 

experimental recordings were first binarized into a sequence of zeros (no spike) and ones 

(spike). The binarized sequence was transformed into instantaneous firing rates by convolution 

with a gaussian filter. We used either the binarized spike train or the instantaneous firing rate 

(see below) that were separated into 1 second, 50% overlapping segments. Statistical analyses 

were performed using the MATLAB statistical analysis toolbox and custom-made scripts. Data 

was tested using a 2-way (or n-way) ANOVA. Following all ANOVAs, post hoc comparisons were 

made using a Tukey-Kramer test. Mean differences were considered statistically significant 

when p < 0.05.  
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Gain 

The stimulus-response gain (G) to SAM stimulation was calculated by:  

𝐺(𝑓) = ∑ 𝑄 (𝑓)        (1) 

where Q is the power spectral density of the convolved spike train, f are the frequencies within 

± 0.5 Hz of the target SAM frequency (30 Hz). A larger stimulus-response gain value indicates a 

larger response from the neuron to a stimulus at the target frequency.  

 

Vector Strength 

The strength of phase locking to SAM stimulation was calculated by:  

𝑠 =
√(∑ 𝑥𝑖

2)+(∑ 𝑦𝑖
2))

𝑝
        (2) 

where p is the number of spikes, and x and y are the sine and cosine phases of the stimulus at 

which the i spike occurs (Goldberg and Brown, 1969; Marsat and Pollack, 2004). The vector 

strength, s, quantifies the precision and clustering of responses to a given phase of the stimulus 

cycle, with 0 being equal response at all phases of the beat, and 1 being a perfectly precise 

response at a single phase of the beat.  

 

Discrimination Analysis 

Our discrimination analysis is based on a weighted Euclidean distance analysis that relates 

directly to the information carried by a population of neurons to discriminate between stimuli 

(see Marsat et al., 2023, for more details). Here, we compare stimuli from different locations 

and used one of three measurements to quantify response strength: mean firing rate, vector 
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strength, or gain for each 1 s response segment. A weight is assigned to each neuron for each 

pair of stimuli being compared. The weight is based on the Kullback-Leibler divergence in the 

response distributions for each stimulus. The weight is normalized to 1 across neurons within a 

population response, the response strength is then multiplied by this weight. Population 

responses are then taken as data point in Euclidean space where each dimension is the 

weighted response of one neuron in the population. An ensemble of population response is 

thus considered, each of which is composed of a random 1 s segment of response from a subset 

of n neurons from the population (n will be varied, see below). The Euclidean distance between 

responses to the same stimulus and across different stimuli are then compared. Larger 

distances indicate less similarity between spike trains. Stimuli that can be easily discriminated 

will elicit responses that are very different (i.e., large Euclidean distance) relative to the 

variability across responses to the same stimulus. The weighting procedure allows to optimize 

the decoding efficiency by assigning a stronger contribution to the Euclidean distance to 

neurons that carry more information about the difference in the stimuli. The distributions of 

Euclidean distances for responses to the same stimulus P(Dxx) and across the two stimuli being 

compared P(Dxy) are then used in a receiver operating characteristic (ROC) analysis. Receiver 

operating characteristic (ROC) curves were generated by varying a threshold distance value T; 

for each threshold, the probability of non-discrimination (PD) is calculated as the sum of 

P(Dxy>T) and the probability of false discrimination (PF) is calculated as the sum P(Dxx>T). The 

error probability is taken as the minimum error, E, across thresholds: 

𝐸 =
1

2
𝑃𝐹 +

1

2
(1 − 𝑃𝐷)        (3) 



167 

 
 

Error probability of 0.5 indicates chance-level discrimination while an error rate of 0 indicates 

that the responses are different enough to support perfectly accurate discrimination. 

 

Efficiency Rate 

The size of the population of neurons used in the discrimination analysis can be varied. If it 

is based on the information contained in a single neuron, discrimination will be less accurate 

than if the information from many neurons is considered. By plotting the error probability as a 

function of the number of neurons included in the analysis, we can estimate how quickly the 

error rate decreases with increasing population size. This rate of decrease is representative of 

efficiency in population coding since it reflects how much information each neuron contributes. 

Based on this principle, we quantify a population coding efficiency by fitting an exponential 

function to the error probability as a function of population size:  

𝐹(𝑥) = 𝛼𝑒−𝜆𝑥         (4) 

Where 𝜆 is the efficiency rate value and x is the neural population size. A higher efficiency rate 

value, the more efficient the population is at discriminating between conspecific stimuli 

presented from different spatial positions or orientations.  

 

2D Activation Heatmaps 

Two-dimensional activation heatmaps are valuable as a qualitative tool for visualizing 

differences in neural responses when the stimulus is presented from different spatial locations 

and orientations around the fish. We used a 3D model of a fish on which a population of 

electroreceptor locations have been placed (i.e., each dot on the fish) that was used previously 
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(Ramachandra et al., 2023). The receptive field center of each neuron was delineated 

experimentally by moving a local dipole across the body surface and determining the edge of 

the classical receptive field where the neurons responded with their characteristic ON-center or 

OFF-center responses. All tuberous receptor locations within a neuron’s receptive field 

boundary were assigned to that neuron, such that one receptor could belong to several 

neurons’ receptive field centers. Values from the neural response measures (e.g., firing rate, 

gain, vector strength) for a given stimulus were appended to all receptors within the neurons’ 

receptive field centers, and then averaged so that each receptor’s location represented a single 

activation value for all its represented neurons.  

 

Results 

Conspecific stimuli played from an artificial, conspecific dipole mimic (i.e., “fishpole”), were 

presented to an immobilized A. leptorhynchus while recording extracellularly from ELL 

pyramidal cells in vivo. After mapping the cell’s receptive field, the fishpole stimulus was 

positioned at one of three orientations (0,45,90°), and one of seven spatial positions (Fig 1A; 

see Methods) around the immobilized fish in random combination until all combinations of 

spatial stimuli were used. To replicate the signals experienced when a conspecific is present, we 

replicated the beat AM (i.e., sinusoidal amplitude modulations of the fish’s own EOD) and used, 

in this paper, a beat frequency of 30 Hz because all pyramidal cells respond strongly at this 

frequency. 

We examined how the location or orientation of the stimulus fish would influence the 

pyramidal cell responses. We noticed obvious qualitative differences in the neural response 
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that ranged across the spectrum of temporal to rate aspects of the spike train. The stimulus-

elicited changes in response pattern were heterogeneous with some neurons showing 

pronounced changes in their mean firing rate whereas other cells responded with clear 

differences in vector strength with little to no change in rate (Fig 1B). We could not readily 

identify a single aspect of the response that most clearly correlated with changes in stimulus 

position. We therefore used three measures in our analysis that cover the range of rate vs 

temporal coding: mean firing rate, gain (which reflect changes in both timing and rate of the 

response), and vector strength (i.e., how tightly the response is concentrated at one phase of 

the stimulus). 

Our aim is to compare how accurately the population of pyramidal cells encode that spatial 

location of the stimulus. To do so, we compare pair-wise population responses to different 

stimuli locations and quantify how different the pattern of responses are. The similarity in 

response pattern is based on a weighted Euclidean distance analysis that tightly correlates with 

the amount of information that the population carries about stimuli differences (i.e., location). 

This analysis results in an estimate of the error rate in stimuli discrimination that would occur 

by comparing population responses. This error rate is estimated as a function of the number of 

neurons included in the population response, a faster decrease in error rate with increasing 

population size (efficiency λ in Figure 2) indicates that the neurons carry more spatial 

information. We found that all unique pairs of spatial stimuli were able to be discriminated 

effectively, with the average of all unique stimulus pairs being discriminated reliably (<5% error) 

with populations of less than 20 neurons (Fig 2B). Thus, this data showed that the spatial aspect 

of the conspecific stimulus was reliably encoded within the pattern of the population response. 
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Some neurons clearly changed their response pattern for different stimuli positions whereas 

others showed more subtle changes. By comparing subpopulations of neurons with clear 

difference for a given stimulus pair, to a subpopulation with less obvious differences, we 

demonstrate in Figure 2C how our efficiency measure reflects how accurately stimulus position 

is encoded in the response pattern. 

ELL pyramidal cells are heterogenous and many differences in their response properties 

have been documented. Yet, it is not known whether the different subpopulations differ in 

their encoding of the spatial aspect of conspecific signals. To answer this question, we compare 

the coding accuracy across categories: ON-type vs OFF-type cells, neurons of the LS vs CLS 

maps, and superficial/intermediate vs deep pyramidal cells. ON and OFF-type pyramidal cells 

were easily distinguished based on their preference of stimulus polarity (increases vs decreases 

in stimulus amplitude). Location of each recorded neuron relative to the different ELL maps was 

estimated based on the stereotaxic position of the recording electrodes and on the response 

properties of the neurons (see Supplementary Figure S1). In this study, we focus on the LS and 

CLS segments that are most relevant for processing conspecific signals. Important differences 

exist between deep pyramidal cells and cells that are more superficial. We pooled together 

putative superficial and intermediate cells because they occupy a similar place in the circuitry of 

the electrosensory system whereas deep pyramidal cells are functionally separate (Maler, 

2009b). We categorized deep-type pyramidal cells based on their characteristically high 

spontaneous firing rate, lower coefficient of variation, and their better synchronization to the 

EOD compared to superficial and intermediate-type pyramidal cells (S 1D; S 1E; Bastian, 1986; 

Bastian et al., 2002; Krahe et al., 2008).  
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The classical receptive field of each neuron was delineated based on their response to a 

small local dipole that was moved across rostro-caudal and ventro-dorsal locations. The 

neurons we recorded had receptive fields in various positions from head to tail (Fig 3A, 3B). We 

note that, while most electrophysiological studies avoid sampling cells from the fish’s head 

because the typical experimental configuration has the fish’s head close to -or above- the water 

surface, we performed the experiment with the fish completely submerged in a more realistic 

position. We did not observe striking differences in response properties for cells of the head, 

despite the fact that they receive inputs from much more densely pack receptors than 

pyramidal cells from the trunk of the fish. Receptive field size varied from cell to cell (Fig 3B). As 

expected, CLS neurons had smaller receptive field sizes than LS neurons  (Carr et al., 1982; see 

also Supplementary Figure S2). The receptive field sizes for deep-type and 

superficial/intermediate-type pyramidal cells were similar (Maler, 2007; Maler, 2009b; Maler, 

2009a).  

To visualize how ELL pyramidal cells varied in their response to stimuli from different 

locations, we constructed two-dimensional activation heatmaps based on one of the three 

response strength measurements (see Fig 1). These heatmaps (Fig 4) highlight a few key 

observations. First, as expected, stimuli from different locations lead to clear differences in the 

pattern of activation across the body. Also, the heatmaps highlight the heterogeneity and 

variability in the response pattern of pyramidal cells. Although an overall pattern of activation is 

visible, with receptive field facing the stimulus location being more strongly activated, 

pyramidal cells showed uneven patterns of activation with movement relative to their receptive 

field. Finally, these heatmaps illustrate that different subpopulations of pyramidal cells might 
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have a more obvious relationship between their response strength and the stimulus location. 

Specifically, we displayed responses of ON vs. Off and deep vs. superficial/intermediate where 

the ON and the deep cells show clearer differences across stimuli locations. 

Further analysis revealed that the discrimination error for specific spatial stimulus pairs 

varied based on the response measure used in the analysis. Overall, we found that using the 

mean firing rate of the vector strength to quantify the response led to better spatial coding 

than using the gain (Fig 5A). It is worth mentioning that we also investigated how the phase of 

the response changed with the spatial stimulus. Some neurons showed noticeable shifts in 

response phase to a conspecific stimulus changing either orientation or location 

(Supplementary Figure S3). However, this measure proved less informative for population 

analysis, when their responses were combined with either cells that also exhibited phase 

changes or cells that showed no phase changes in their response.   

The full population was separated into distinct categories of pyramidal cell types, and we 

asked if specific pyramidal cell types would discriminate spatial stimuli more efficiently 

depending on the aspect of the spike train response used for discrimination. We found that ON-

type pyramidal cells can discriminate the spatial stimulus more efficiently than OFF-type 

pyramidal cells across all three measures (Fig 5B). Similar to the full population, both ON and 

OFF-type pyramidal cells obtained the highest efficiency rate using the vector strength, and the 

lowest when using stimulus-response gain. This exact finding was also observed when 

comparing deep-type pyramidal cells vs superficial/intermediate-type pyramidal cells (Fig 5D). 

However, when comparing efficiency between CLS and LS pyramidal cells, there was a flip in the 

measures that resulted in the highest efficiency rate. The population of CLS neurons was found 
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to be most efficient when using mean firing rate, whereas the LS population was most efficient 

using vector strength (Fig 5C). The same trend is observed when comparing neurons with large 

receptive fields (> 0.2 body proportion) against neurons with small receptive fields (< 0.2 body 

proportion; Fig 5E). This might reflect the fact that LS neurons tend to have larger receptive 

fields than CLS neurons. Our data thus indicates that CLS and LS neurons encode spatial 

information with a different proportion of rate vs. temporal coding, with CLS cells relying more 

on rate coding compared to LS cells that encode spatial information better in the timing of the 

response. 

An alternative approach to characterizing how different neurons encode spatial information 

is to describe the properties of neurons that carry relatively more information about stimulus 

location. Our decoding analysis assigns a weight to each neuron based on how different their 

response is to the stimuli locations being compared. This weight is based on the Kullback-

Leibler divergence between response distributions which relates to the information present in 

the spike trains (Allen and Marsat, 2018; Allen and Marsat, 2019; Marsat and Maler, 2010; 

Marsat et al., 2023; van Rossum, 2001). By using the average weight assigned to a neuron 

across stimuli comparisons, we categorized the cells as being associated with high weights (> 

0.7; Fig 6A) or low weights (< 0.7). Consequently, the cells in each group have a higher vs. lower 

coding efficiency (Fig. 6B). This approach is complementary to our previous analysis because it 

allows us to determine the characteristics of cells that encode spatial information particularly 

well. We found that the high-weight group carried more information in their response timing 

(i.e., vector strength; Fig 6B), whereas the low-weight group encoded more spatial information 

in their mean firing rate. Interestingly, this trend parallels the differences we observed 
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comparing LS and CLS cells and cells with large vs. small receptive fields (see Fig 5). Our analysis 

of cell properties in each weight category also confirms the previous findings. Specifically, cells 

in the high weight category had a higher average spontaneous firing rate, lower average 

coefficient of variation, and larger average receptive field size than neurons in the low weight 

category (Fig 6C; Fig 6D; Fig 6E). We verified that putative deep pyramidal cells were more likely 

to be in the high-weight category (Fig 6F).  

The results presented in previous figures averaged the analysis of pairs of stimuli locations. 

We now ask if the difficulty in discriminating between spatial stimuli could be influenced by the 

proximity of the stimulation sites. For example, two spatial stimuli that are close to one another 

may be a more difficult discrimination task than two spatial stimuli that are far apart. We 

hypothesized that the differences we observed in spatial coding efficiency across cell types 

were even more apparent when considering only the more difficult discrimination tasks. 

Surprisingly, we found only modest differences in coding efficiency when comparing stimuli 

that are next to each other (ipsilateral, Fig 7) or on opposite sides of the body (contralateral). 

Overall, coding efficiency was better for coarse discrimination (contralateral) than fine 

discrimination (ipsilateral). The cell sub-type performing best, and the response properties 

encoding the most information were the same as noted in the previous analysis and there were 

no qualitative differences when considering coarse vs. fine discrimination tasks. Our stimuli 

locations and intensity mimicked a medium-sized fish relatively close to the fish being tested. 

Recent finding suggests that the spatial information present in the population of receptors 

should be relatively accurate for stimuli at these distances (Ramachandra et al. 2023). It is thus 

probable that even when comparing our closest stimuli locations, we are not testing the lower 
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limits of the cell’s sensitivity. Using weaker stimuli (Supplementary Figure S5), placing the 

stimulus source further away or comparing locations with less separation would result in lower 

coding performance and potentially increase the modest differences we observe between fine 

and coarse discrimination tasks. 

 

Discussion 

We investigated spatial coding of conspecific stimuli by electrosensory neuron populations 

in the hindbrain. To do so, we performed in-vivo electrophysiological recordings on immobilized 

A. leptorhynchus, as an artificial dipole mimic (i.e., “fishpole”) was used to stimulate from 

various positions within the experimental tank. Specifically, we targeted the topographic maps 

of the hindbrain ELL, which contain heterogeneous populations of pyramidal cells that vary in 

their anatomy and physiological response properties. Using our full dataset of recorded 

neurons, we found that this full population could discriminate accurately (< 5% error) between 

all unique pairs of spatial stimuli presented (see Methods). In addition to heterogeneity in 

anatomy and physiology, ELL pyramidal cells also vary in their functional connectivity based on 

their layer in the map. For example, pyramidal cells in the deep layer have no receptive field 

surround and do not receive feedback from either the nucleus praeminentialis or via cerebellar 

granular cells from the posterior eminentia granularis. In fact, deep pyramidal cells are the 

source of feedback to superficial and intermediate-type pyramidal cells in the ELL (Maler et al., 

1991; Berman and Maler, 1999; see also Milam et al., 2019, for review). We therefore 

investigated how the discrimination ability differs between subpopulations in the ELL. Briefly, 

we found that: (1) ON-type pyramidal cells displayed lower error than OFF-type; (2) deep 



176 

 
 

pyramidal cells outperformed superficial and intermediate-type; (3) pyramidal cells with larger 

receptive fields were better than those with small receptive fields; and (4) LS neurons 

discriminated more accurately than CLS neurons on average. By far, the clearest difference we 

observed in spatial coding was between the deep and superficial pyramidal cell populations. 

Previous studies have shown that superficial pyramidal cells excel in temporal coding of 

communication signals (e.g., chirps). Interestingly, in this study we found that superficial cells 

performed poorly in encoding spatial information from conspecific signals. When contrasted 

with deep cells, which excelled in the same spatial coding task, this result complements findings 

from Vonderschen and Chacron (2011). In their study, they describe a dichotomy of sparse and 

dense coding strategies by neural subpopulations, downstream from the ELL in the midbrain 

torus semicircularis. Sparse coders in the torus were specialized for encoding sensory 

information related to specific chirp features, whereas dense coders were more broadly 

responsive to electrosensory stimuli. Similar to the torus, the ELL has a laminar structure, as 

well as a complex network of connections. Electrosensory input from the ELL to the torus is 

topographically conserved and confined to the dorsal torus (Carr et al., 1981). Downstream, the 

electrosensory pathway separates as the torus outputs: to the optic tectum involved in spatial 

processing; to the nucleus electrosensorius involved in processing communication signals; and 

to the preglomerular nucleus that mediates connectivity with the forebrain (Giassi et al., 2012; 

Zupanc and Horschke, 1997a; Zupanc and Horschke, 1997b). Topography is conserved to brain 

regions as far as the optic tectum, but is lost in the nucleus electrosensorius, the preglomerular 

nucleus, and the forebrain dorsal telencephalon (pallium). It is for this reason that the optic 

tectum is considered to be an important area for multisensory integration, and putatively an 
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ultimate localization center. Taken together, our findings suggest that the separation of spatial 

vs identity (e.g., communication) coding begins as early as the ELL with an early split starting 

between deep vs superficial pyramidal cells, albeit a large overlap in function. Further studies 

are needed to investigate spatial coding in higher brain areas where topography remains 

conserved.  

Our results show that certain neural subpopulations allow for more accurate discrimination 

when using mean firing rate, while others encode more accurately in their response synchrony. 

We found that this pattern is most obvious when comparing population responses between the 

LS and CLS maps. Pyramidal cells in the LS map displayed less discrimination error when using 

vector strength, whereas CLS cells performed better, on average, when using mean firing rate. 

This response preference is indicative of a switch in the neural coding strategies used by 

different topographic maps. Several factors might be contributing to the differences in coding 

preference that we observed here, such as: receptive field parameters, adaptation, and the 

influence of feedback. Nonetheless, this finding provides an opportunity for speculation as to 

what measures of the spiking response are most relevant for spatial coding in downstream 

sensory areas. For example, it is unclear what aspects of the pyramidal cells’ response influence 

spatial coding in the midbrain torus. While we know that dense coders in torus will modulate 

their firing rate with peak and trough of a conspecific beat, the strength of the response can be 

affected by the average number of spikes or by having a spike that clusters more around a 

single phase, such that both spike rate and timing could be relevant. Preferences in the neural 

response tailored to specific stimulus features have been well documented, some good 

examples being combinatorial and multiplexed neural codes (Bodnar and Bass, 1999; Lankarany 



178 

 
 

et al., 2019). For example, studies on human sound localization have shown how neurons that 

receive shared input can use asynchronous firing rate to encode the intensity of low-contrast 

features, while also using precise timing of synchronous spikes to encode high-contrast features 

(Lankarany et al., 2019). Similarly, other behavioral experiments on human sound localization 

have found that softer sounds can be perceived closer to the midline than louder sounds, 

favoring a rate-coding strategy (Ihlefeld et al., 2019). Furthermore, research on spatial 

navigation has shown that the time of firing can represent an animal’s location within a place 

field, whereas the firing rate can represent the animal’s velocity through the field (Huxter et al., 

2003). Information can also be transmitted through short interspike intervals within a burst 

(Krahe and Gabbiani, 2004; Oswald et al., 2007). Thus, it is well supported that in 

heterogeneous neural populations spatial information about a conspecific’s location can be 

represented in different aspects of the spiking response. Indeed, further studies are necessary 

to dissect the role of information coding related to conspecific location.  

Our results demonstrate that spatial coding efficiency is high across most subpopulations of 

pyramidal cells in the ELL. Accurate discrimination between pairs of stimulus positions is 

possible using a small number of cells relative to the full population. Specifically, the 

discrimination accuracy is high for conspecifics located at distances of 10 cm away. At this 

distance, we are not testing stimuli at the edge of sensitivity, as recent studies have estimated 

that difficult discrimination tasks start at distances of approximately 30 cm away (Ramachandra 

et al., 2023). Furthermore, our discrimination analysis takes 1 s averages of neural responses 

and assumes that a decoder can integrate these inputs over time. If integrating over less time, 

because the neural system does not operate on long time scales or because the fish does not 
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remain in a fixed location, the discrimination accuracy will decrease. Moreover, this decoding 

analysis might not encompass the relevant aspect of the neural response, or could 

underestimate coding accuracy. An alternative decoding method might implement a principal 

component approach to average out noise more effectively. On the other hand, our analysis 

could also be overestimating the coding efficiency. In our analysis, we weigh each neuron and 

thus leverage the most informative neurons over those that provide less information. It is 

possible that this may not be the exact computation that subpopulations of ELL pyramidal cells 

are performing, as our measure relates directly to the amount of information present in the 

system (Marsat et al., 2023). Additionally, the gathering of information can be enhanced via 

active sensing behaviors. Such specialized and often stereotype-patterned behaviors occur 

across systems and include edge detection and tracking of odor plumes in moth olfaction, and 

foveal sampling in the visual and electrosensory systems, to name a few (Enikolopov et al., 

2018; Pedraja et al., 2019). Certain bat species have been shown to take advantage of their 

angle of approach with respect to the background surface to increase the signal to noise ratio 

of a prey echo during prey capture behavior. Such acoustically camouflaged prey items would 

normally have their weak prey echoes masked by background echoes from other objects in the 

natural environment (Geipel et al., 2019). High accuracy steering towards the location of a 

sound source at a fixed azimuth has been documented in crickets (Schöneich and Hedwig, 

2010). This finding suggests that localization ability could be high when integration over time 

can happen. Cricket zig-zag walking and other corrective repositioning behaviors, could help to 

re-evaluate the localization error during movement. Thus, localization during behavior should 

consider the motion component and that the process from sensory to motor and back is highly 
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dynamic. Further studies on the role of active sampling and dynamic sensorimotor adjustments 

are needed to better understand how the spatial aspect of signals are encoded by the nervous 

system.  

Our results provide new insights for population coding of spatially realistic conspecific 

signals and what aspects of the neural response are most important for localization. Overall, 

our data suggests that the start of segregation of spatial processing occurs in ELL pyramidal 

cells. It is likely that the experimental findings we present here for quantifying spatial coding 

performance in pyramidal cells are generalizable to other sensory systems. The neural circuitry 

in the ELL contains several network elements that are shared across modalities, such as classical 

receptive field center-surround organization, topographic maps of the body, and feedback 

influences that contribute to shaping the neural code. Taken together, this study serves as 

foundational work for understanding how a primary sensory area of the hindbrain represents 

the location of conspecifics. Future studies will be necessary to gain a better understanding of 

the complex interaction between extracting the location and the “message” in sensory signals.   
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Figures and Legends 

Figure 1. Spatially realistic conspecific 

signals and response strengths in the ELL.  

(A) Schematic of the experimental design. An 

immobilized A. leptorhynchus (center, light 

blue) is stimulated using a conspecific dipole 

mimic (i.e., “fishpole”) positioned at various 

spatial locations and azimuths around the 

experimental tank (at distances of 10 cm), 

while recording extracellularly from ELL 

pyramidal neurons in vivo. Neural responses 

to two cycles of the conspecific stimulus (top, 

black) are shown as raster plots layered with 

a trace of the raw neural recordings. The 

examples highlight differences in the pattern 

of the spike train responses for encoding 

spatial stimuli (orange and green).  

(B) Measurement of response strength to 

stimulations with conspecific stimulus from 

different stimulation sites (yellow site for A.: 

left column; green site: right column). Raster 

plots of the response are shown above, and 
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the corresponding peristimulus time histogram (PSTH) are shown below. Changes in spatial 

location and orientation of the conspecific stimulus can elicit increases or decreases in the spike 

train response of ELL pyramidal cells. Responses to the spatial stimulus vary in stimulus-

response gain (top, purple), vector strength (middle, red), and mean firing rate (bottom, blue).   
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Figure 2. Coding efficiency quantified by 

the rate of decrease of the discrimination 

error as the information from more 

neurons are included in the analysis.  

(A) Schematic detailing how coding 

efficiency is related to the rate of 

discrimination error. For a pairwise 

stimulus discrimination task, the 

efficiency (𝜆) can be defined as the 

change in discrimination error as a 

function of neural population size. A slow 

decrease in error as the information from 

more neurons is pooled indicates a low 

coding efficiency (each neuron has little 

information or redundant information). A 

faster decrease (left plot compared to the 

right) indicates a higher efficiency.  

(B) Pairwise stimulus discrimination using 

vector strength on the full population of 

recorded pyramidal cells (n=70). All 

unique paired combinations of spatial stimuli are shown in the background (light gray), with the 
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mean across all stimulus pairs in the foreground (dark gray). A discrimination accuracy level of 

95% is obtained with fewer than 20 neurons.  

(C) Stimulus discrimination and efficiency across different neural populations. We selected two 

subsets of neuron (n=14 each): one where we could see obvious differences in responses 

between two stimuli locations and one where differences were not obvious. We used our 

analysis on these two subsets simply to illustrate the results expected from efficiently coding 

neurons (Sub-Population 1) and from a population with low coding efficiency.  
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Figure 3. Receptive field of 

pyramidal cells sampled.  

(A) Boundaries of receptive 

field centers from recorded 

LS (n=55) and CLS (n=15) 

pyramidal cells on a two-

dimensional outline of an 

A. leptorhynchus.  

(B) Boundaries of receptive 

field centers from recorded 

deep-type (n=18) and 

superficial/intermediate-

type (n=52) pyramidal cells.  

(C) Histogram of all recorded pyramidal cell receptive field sizes (n=70). Size is represented as a 

fraction of the length in the rostro-caudal axis compared to the total body length. 
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Figure 4. Responses to spatially realistic 

conspecific signals visualized as topographic 

heatmaps for different subsets of pyramidal 

cells. 

The heatmaps allow a visualization of the 

population response to a conspecific stimulus 

played from various relative positions and 

orientations (shown on the left insets). Each 

colored point on the heatmap represents a 

putative receptor on the skin of the fish (see 

Methods and Ramachandra et al., 2023). A 

receptor can contribute to several neurons’ 

receptive field and its color will reflect the 

average responses (e.g., gain) across these 

neurons. For each neuron to contribute equally 

to the heatmap, their responses are 

normalized to 1 where 1 is the strongest 

response of the neuron across all stimuli 

positions. In the 5 pairs of heatmaps presented 

here for different subpopulations of cells, we see differences across stimulus locations that vary 

from obvious (A, B, D) to more subtle (C, E) 
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(A) Heatmaps of the full population of recorded pyramidal cells (n=70) using gain as a response 

measure.   

(B) Heatmaps of the ON-type pyramidal cells subpopulation (n=46) using vector strength as 

response measure.  

(C) Heatmaps of the OFF-type pyramidal cells subpopulation (n=24) using vector strength as 

response measure. 

(D) Heatmaps of the deep pyramidal cells subpopulation (n=18) using vector strength as 

response measure. 

(E) Heatmaps of the superficial/intermediate pyramidal cells subpopulation (n=52) using vector 

strength as response measure.  
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Figure 5. Spatial coding efficiency varies 

with pyramidal cell type and is dependent 

on the aspect of the neural response 

relevant for stimulus discrimination.  

(A) Mean coding efficiency (± s.e. across 

stimuli pairs) of all pairwise stimulus 

combinations (orthogonal orientation; see 

Methods) using the full population (n=70). 

The highest efficiency is obtained when 

using vector strength to characterize 

neural responses; and the lowest 

efficiency is obtained when using response 

gain (p < 0.0001).  

(B) Mean coding efficiency (± s.e. across 

stimuli pairs) for populations of ON (n=46) and OFF-type pyramidal cells (n=24). The highest 

efficiency results from vector strength, with the lowest efficiency from stimulus-response gain 

(ON - p < 0.0001, OFF - p < 0.0001). ON-type pyramidal cells have higher efficiency than OFF-

type pyramidal cells across all measures (p < 0.0001). 

(C) Mean coding efficiency (± s.e. across stimuli pairs) for populations of CLS (n=15) and LS 

pyramidal cells (n=55). There is a higher efficiency result from mean firing rate compared to 

gain for CLS (p < 0.0001), and for vector strength compared to gain for LS (p < 0.0001). 



197 

 
 

(D) Mean coding efficiency (± s.e. across stimuli pairs) for populations of deep (n=18) and 

superficial/intermediate-type pyramidal cells (n=52). The highest efficiency results from vector 

strength, with the lowest efficiency from stimulus-response gain (Deep - p < 0.0001, SI - p < 

0.0001). Deep-type pyramidal cells have higher efficiency than superficial and intermediate-

type pyramidal cells across all measures (p < 0.0001). 

(E) Mean coding efficiency (± s.e. across stimuli pairs) for cells with large receptive fields (n=33) 

and small receptive fields (n=37). The highest efficiency results from using vector strength for 

large receptive field neurons (p < 0.01), and is highest using mean firing rate for small receptive 

field neurons (p < 0.01). Large receptive field pyramidal cells have higher efficiency than small 

receptive field pyramidal cells across all measures (p < 0.0001).  
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Figure 6. Properties of neurons with 

more informative responses.  

(A) Distribution of average weight value 

assigned to each neuron in the analysis 

that reflects the separation in their 

response distribution to the stimuli being 

compared (here averaged across stimuli 

pairs). A threshold was established to 

divide this distribution with two peaks 

into two different populations of neurons 

(low weight in pink, n=50; high weight in 

red, n=20).  

(B) Mean coding efficiency (± s.e. across 

stimuli pairs; orthogonal orientations 

only), of the two weight-groups show the 

expected overall difference, the high-

weight performs much better (p < 0.01).  

(C) The mean spontaneous firing rate (± 

s.e. across neurons) for the high-weight 

group is higher than that of the low-weight neurons (p < 0.01).  

(D) The mean coefficient of variation (± s.e. across neurons) for the high-weight group is lower 

than that of the low-weight neurons (p < 0.001).  
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(E) The average receptive field size (± s.e. across neurons) for the high-weight group is higher 

than that of the low-weight neurons, though this difference is not statistically significant (p ~< 

0.05).  

(F) Scatter plot of spontaneous firing rate and coefficient of variation of every neuron in each 

weight category. We delineated the groups with a dashed line to highlight the 

separation/overlap between groups. Pie charts showing the proportion of deep pyramidal cell 

types within each weight category (right). Note that only 18 of 70 recorded neurons are deep 

pyramidal cells which represents 25.7%. deep pyramidal cells are thus under-represented in the 

low-weight group and over-represented in the high-weight group.   
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Figure 7. Fine and coarse spatial discrimination across 

cells-types and response measures.  

Mean coding efficiency (± s.e. across stimuli pairs) for 

discrimination tasks where we compare: locations on 

the same side of the fish (ipsilateral); locations on 

opposite sides (contralateral); or locations on the sides 

compared to the caudal location. We compare 

different subpopulations and groups of pyramidal cells: 

(A) ON-type vs. OFF-type pyramidal cells; (B) CLS vs. LS, 

(C) deep-type vs. superficial/intermediate-type 

pyramidal cells; (D) large receptive field vs. small 

receptive field neurons, (E) high weight vs. low weight 

neurons.   
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Supplemental Figure 1. Confirmation of pyramidal cell type. 

(A) Upper and lower bound coherence of ON and OFF-type pyramidal cells. Insets show spike 

triggered average waveforms in response to RAM stimuli presented globally. Coherence 

analyses are standard and described in previous publications (Allen et al., 2019; Krahe et al., 

2008). The upper-bound coherence reflects the coding accuracy including both linearly and 

non-linearly encoded information, whereas lower-bound coherence is based on the linear 

correlation between the stimulus and the response, gray shaded areas represent ±1 s.d. across 

neurons. 

(B) Upper and lower bound coherence of LS ON and LS OFF-type pyramidal cells.  

(C) Upper and lower bound coherence of CLS ON and CLS OFF-type pyramidal cells. 

(D) Synchronization to the EOD between deep and superficial/intermediate-type pyramidal 

cells. The synchronization uses the vector strength measure (ranging from 0 to 1) in response to 

cycles of the EOD rather than cycles of a SAM stimulus. Deep-type pyramidal cells show higher 

EOD phase locking (p < 0.05). Vertical, black lines indicate ±1 s.e.  

(E) Scatterplot of the baseline firing rate and coefficient of variation for each neuron recorded 

from the full population (n=70). Deep-type pyramidal cells are shown in blue, outlined manually 

for visualized grouping. Superficial and intermediate-type pyramidal cells are shown in black 

with manually outlined grouping to better visualize clustering of cells.   
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Supplemental Figure 2. Receptive field size by pyramidal cell type.  

(A) Histogram of receptive field sizes measured as a fraction of total body proportion for deep 

and superficial/intermediate-type pyramidal cells.  

(B) Histogram of receptive field sizes measured as a fraction of total body proportion for LS and 

CLS pyramidal cells.   
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Supplemental Figure 3. 

Observed phase-shifted 

responses in ELL pyramidal 

cells.  

(A) Effect of stimulus 

orientation a single ON-type ELL 

pyramidal cell. Certain neurons 

showed clear changes in phase 

to the spatially realistic 

conspecific stimulus. The 

average phase in the response is 

represented as θ.  

(B) 4 ON-type ELL pyramidal 

cells and their phase response 

to a stimulus with orthogonal 

orientation and placed in a singular location ipsilaterally to the receptive field. Each pyramidal 

cell response is shown as an unfilled histogram in color scale (in similar fashion to A).   
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Supplemental Figure 5. Fishpole intensity and its effects on discrimination efficiency.  

Discrimination efficiency of pyramidal cells (n=23) to the spatial stimulus using two different 

stimulus intensities. Discrimination occurs even at lower stimulus intensity (p < 0.05).   
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Chapter 4 

Prologue 

In the previous two chapters, I demonstrated how electrosensory signals reaching the 

periphery are modulated in contrast and spatial extent during social interaction, and that 

spatial information from conspecific signals are accurately encoded by pyramidal cells of the 

ELL in A. leptorhynchus. In the previous study, I characterized the spatial coding response of 

pyramidal cells through sampling and empirical recordings, which is essential for determining 

the response pattern and coding accuracy of the population. However, a complete population 

response requires extrapolating from a small representative sample to a full population of 

thousands of neurons. Furthermore, the electrophysiological approach offers few opportunities 

for manipulation that probe the role of different coding mechanisms. 

In this chapter, I create a large-scale neural model of the ELL to perform a quantitatively 

accurate characterization of population coding of spatial information. Using this comprehensive 

analysis, I make predictions on how the network elements that contribute to the population 

response, such as noise correlations and feedback, influence the spiking activity of ELL 

pyramidal cells, and thus the spatial representation of conspecific signals.  

 

Note: This chapter will serve as the base of an article that will be submitted as:  

“Milam, O.E., and Marsat, G. (2024). Large-scale population modeling provides insights for 

localizing weakly electric fish.“ 

I performed all of the experiments and data analysis. Gary Marsat helped in a supervisory role 

and in drafting the manuscript.  
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Abstract 

How populations of sensory neurons encode the location of a conspecific remains a mostly 

unanswered question in neuroscience. We address this question by using a large-scale 

modeling approach of the electrosensory lateral line lobe (ELL) of gymnotid weakly electric fish, 

who display a remarkable sensitivity for localizing others in suboptimal conditions. Our specific 

goal is to determine how spatial coding in the ELL permits accurate conspecific localization. The 

ELL is comprised of a heterogeneous pyramidal cell population that is affected by several 

network elements, such as noise correlations and feedback. We hypothesize that spatial 

information is carried in the both firing rate and synchrony in the spiking response, and that this 

information is further shaped by noise correlations and feedback. To test our hypothesis, we 

created leaky integrate-and-fire model neurons of the 12 different pyramidal cell subtypes 

found in the topographic maps of the ELL and matched their responses to those reported in-

vivo. We varied the parameters of each ELL neuron type and upscaled each model variant to 

create a full heterogeneous population of 4,620 neurons. We used previously published models 

of electric field simulation and electroreceptor populations, to provide as inputs to the ELL 

model. This allowed us to create population responses to spatially realistic conspecific stimuli. 

Using a weighted Euclidian decoder, we determined how accurately the population can 

discriminate between conspecific stimuli presented from different locations in three-

dimensional space. We analyzed several aspects that affect the population response, and show 

that noise correlations impose a limit to spatial information at the population level. Overall, our 

results highlight that different sub-populations of ELL pyramidal cells contribute more spatial 
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information to the population code than others, and that noise correlations are detrimental for 

accurate localization of weakly electric fish.  

 

Keywords: population coding, topographic mapping, feedback, electrosensory system, 

spatial processing  
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Introduction 

Across sensory modalities, localizing communication signals from background noise is 

essential for guiding navigational behaviors. Several mechanisms for signal encoding have been 

studied extensively, both theoretically and experimentally (Allen and Marsat, 2018; Bodnar and 

Bass, 1997; Clarke et al., 2015; Franke et al., 2016; Gussin et al., 2007; Ihlefeld et al., 2019; 

Lankarany et al., 2019; Marsat et al., 2012; Seriès et al., 2004). Despite a growing body of 

literature, how populations of neurons represent the spatial aspect of communication signals 

remains poorly understood (Dayan and Abbott, 2001; Litwin-Kumar et al., 2012; Maler, 2007; 

Maler, 2018). This lack of knowledge in spatial processing is due in part to an incomplete 

understanding of several components that affect population coding, including: topographic 

representations of space; neural heterogeneity; signal and noise correlations; and network 

interactions such as feedback (Bastian et al., 2002; Bialek and Rieke, 1992; Chacron and Bastian, 

2008; Hofmann and Chacron, 2017; Hofmann and Chacron, 2018; Krahe and Maler, 2014; 

Maler, 2009a; Maler, 2009b; Marsat and Maler, 2012; Mejias et al., 2013; Metzen et al., 2018; 

Milam et al., 2019; Simmonds and Chacron, 2015). In-vivo studies on spatial coding offer 

valuable insight, however these experimental frameworks often lack the resolution necessary 

for extrapolating a full population code. Here, we implement a large-scale modeling approach 

to investigate how heterogeneous pyramidal cell populations in topographic maps represent 

the spatial aspect of communication signals, thereby enabling accurate signal-source 

localization.  

Apteronotus leptorhynchus, are a species of gymnotiform wave-type weakly electric fish and 

serve as an ideal model system for studying the neural basis of localization behavior. The neural 



210 

 
 

circuitry in the early electrosensory pathways is well characterized and amenable to 

experimental and modeling studies on spatial coding (Carr et al., 1981; Carr et al., 1982; 

Chacron et al., 2005a; Clarke and Maler, 2017; Maler et al., 1991). These fish possess a 

neurogenic electric organ located in their tail that discharges at high frequency to produce a 

carrier signal, called an electric organ discharge (EOD; Lissmann, 1958). High frequency 

discharges of the electric organ produce a continuous electric field surrounding the fish’s body 

(Lissmann, 1951). Electroreceptors covering the entire body surface detect any perturbations 

impinging on the electric field (Bullock, 1969). These receptors transmit electrosensory 

information to the electrosensory lateral line lobe (ELL), where they synapse directly onto 

pyramidal cells (Carr et al., 1982; Maler et al., 1991). ELL pyramidal cells are the key neurons for 

electrosensory processing in the hindbrain, as they are the sole output to the midbrain torus 

semicircularis, creating a funnel for sensory information to higher processing areas (Carr et al., 

1981). These neurons possess receptive fields with antagonistic center-surround organization, 

integrating hundreds to thousands of spatially localized electroreceptor inputs (Clarke et al., 

2014; Maler, 2009b). The ELL population is known to be largely heterogeneous, varying in 

receptive field size, morphology, physiological response properties, and sensitivity to feedback 

(see Krahe and Maler, 2014; Maler, 2007; Milam et al., 2019 for review). Behavioral studies in 

the field and in the lab have shown that these fish can localize electrosensory signals generated 

by their conspecifics often in difficult conditions where the signal is weak, masked by several 

sources of noise, and/or in a cluttered environment (Henninger et al., 2018; Hupé and Lewis, 

2008; Jung et al., 2016; Stamper et al., 2012a; Stamper et al., 2012b; Stamper et al., 2013). This 

implies that these fish are not only able to detect the conspecific signal in difficult conditions, 
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but that they can successfully discriminate the detected signal from other backgrounds signals 

over time to localize the signal’s source. Recent studies on conspecific localization have 

characterized the electric image produced between interacting weakly electric fish, or have 

quantified conspecific beat and envelope coding without the signal’s spatial component (i.e., 

under “global” configuration; Metzen et al., 2018; Pedraja et al., 2016; Stamper et al., 2013; Yu 

et al., 2012). Thus, there remains a current gap in knowledge of how the spatial aspect of a 

conspecific signal is encoded at the population level and topographically represented in the ELL.  

Here, we used an electric field model to simulate spatial interaction between two weakly 

electric fish positioned in different locations (Ramachandra et al., 2023). The different stimulus 

locations create a series of electric images that represent changes in the beat contrast 

produced by the interacting electric fields. The resulting electric image is displayed onto a 

three-dimensional mesh model of a weakly electric fish that is covered with electroreceptors. 

Each electroreceptor is a leaky-integrate-and-fire model (with x, y, z coordinates) that responds 

to spatially localized changes in beat contrast (Ramachandra et al., 2023). The population of 

model electroreceptors provides current inputs to our ELL model. This ELL model is composed 

of leaky integrate-and-fire neurons with columnar-specific receptive field coverage, 

antagonistic center-surround organization, spike-frequency adaptation, and cancellation via a 

negative image feedback component. The model pyramidal cells are matched to the in-vivo 

responses of different pyramidal cell types in topographic maps of the ELL to a conspecific 

dipole mimic positioned in different locations (Milam and Marsat, 2023). Based on the output 

of the ELL model, we recreate an estimate of the location of the sender fish and assess the 

accuracy of the model. Overall, we argue that this population of model neurons can accurately 
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localize the position of a conspecific in three-dimensional space. Additionally, we investigate 

noise correlations and confirm that correlated noise provides a limitation on information 

content, but due to the small extent of spatial correlations, has only a small impact on the 

population code. Lastly, we show that a model feedback component shapes the spatial 

representation of conspecific signals. Taken together, our data corroborates the idea that 

generic principles of spatial processing are used across sensory modalities, since the way the 

early sensory system shapes spatial information shares design features with the visual and 

auditory systems.  

 

Methods 

Electroreceptor modeling 

The electroreceptor model is based on a simple leaky integrate-and-fire framework that 

includes noise and spike-frequency adaptation. This electroreceptor model has been previously 

published in (Ramachandra et al., 2023), and the responses were matched to biologically 

accurate responses and in-line with other previously published electroreceptor models (see 

Benda et al., 2005; Chacron et al., 2005). Our full heterogeneous population of 8,195 different 

electroreceptor models were placed onto a 3D mesh model (as described in Ramachandra et 

al., 2023). The resulting combined input to the ELL model is the electroreceptor population 

response to the beat contrast created by conspecific electric field simulation in a variety of 

spatial configurations (for more information on the electric field model see Ramachandra et al., 

2023; Pedraja et al., 2016).  
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LIF ELL model 

The models of different ELL pyramidal cells are based on a leaky integrate-and-fire 

framework. The voltage evolves according to the following equation:  

𝜏𝑚𝑑𝑡
𝑑𝑉 = −𝑉 + [𝐼 + 𝜎𝜉(𝑡) − µ(𝑡)] + 𝛬{−𝑔𝑉} 

When the membrane potential, V, crosses the spike threshold, Vthresh, a spike is recorded and V 

returns to the resting membrane potential. After the refractory period, 𝜏𝑚, the voltage 

continues to integrate according to the leaky integrate-and-fire model equation above. The 

feedforward electroreceptor input is modeled as an input current, 𝐼, with noise, 𝜎𝜉(𝑡). The 

spike-frequency adaptation is modeled as, µ(𝑡). The adaptation time constant is smaller in 

superficial-type pyramidal cells compared to intermediate-type pyramidal cells (Maler, 2009a; 

Maler, 2009b; Zhang and Chacron, 2016). Adaptation is also modeled to be slightly stronger in 

the LS than in CLS. The feedforward electroreceptor input is rectified as symbolized by the 

section of the equation in brackets, [. . .].  

The receptive field surround is convolved with an alpha function, and low pass filtered with 

a first order Butterworth filter with a cutoff frequency of 50 Hz (Hofmann and Chacron, 2017). 

ON-type pyramidal cells have an excitatory polarity preference and respond to increases in 

stimulus amplitude, whereas OFF-type pyramidal cells have an inhibitory polarity preference 

that is mediated by synaptic connections with GABAergic inhibitory interneurons and respond 

to decreases in stimulus amplitude (Berman and Maler, 1998). This polarity preference is 

modeled by separating the input current, 𝐼, into two parts, 𝐼𝑅𝐹𝐶  and 𝐼𝑅𝐹𝑆. The first part is the 

electroreceptors that contribute a current input via a receptive field center, 𝐼𝑅𝐹𝐶, and the other 

part composes the receptive field surround, 𝐼𝑅𝐹𝑆. For ON-type pyramidal cells, the receptive 
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field center is positive polarity and is subtracted from a positive polarity receptive field 

surround, as the input is in the same phase (Berman and Maler, 1999; Bratton and Bastian, 

1990; Shumway and Maler, 1989). For OFF-type pyramidal cells, the receptive field center is 

negative polarity and is added to the receptive field surround that is positive polarity, as the 

input is in anti-phase due to interactions with GABAergic inhibitory interneurons affecting the 

receptive field center. The sizes of the receptive field centers were matched to those mapped 

during in-vivo electrophysiology experiments (Milam and Marsat, 2023). Receptive field centers 

were larger for the LS map than for the CLS map. Receptive field surrounds were made using an 

absolute distance around the perimeter of each receptive field center. The size of the surround 

varied for each pyramidal cell, with CLS pyramidal cells having a larger surround than LS, in 

accordance with previously published observations (Hofmann and Chacron, 2017; Maler, 

2009a; Maler, 2009b; Shumway, 1989; Shumway et al., 1989).  

Feedback input from the parallel fibers is modeled as a current input of strength, 𝛬. Due to 

a gap in the literature regarding the precise spatial extent of the feedback’s receptive field 

coverage, the feedback input is modeled here as a negative image of the entire electroreceptor 

population response. The feedback is then convolved with an alpha function, and low pass 

filtered with a first order Butterworth filter with a cutoff frequency of 20 Hz (similarly to 

Chacron et al., 2005b; Simmonds and Chacron, 2015). The strength of the feedback is adjusted 

by a positive DC offset with a smaller offset for superficial-type pyramidal cells than for 

intermediate-type pyramidal cells. This replicates the inhibitory disynaptic input and results in a 

larger effect of cancellation in the superficial-type pyramidal cells (approximately 30% 

stronger), supported by experimental data (Bol et al., 2013; Marsat and Maler, 2012).  
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Network structure 

The population of electroreceptor models positioned on a three-dimensional mesh model 

of an Apteronotus leptorhynchus is a key component to the ELL modeling process. This 

approach allows for each electroreceptor to have a coordinate in x, y, z, space. When paired 

with the electric field simulation model, the result is each electroreceptor receiving a precise 

spatial input of beat contrast. The network’s architecture operates on a feedforward (bottom-

up) configuration with a feedback (top-down) component (Berman and Maler, 1999; Clarke and 

Maler, 2017; Milam et al., 2019). The electroreceptors constitute the feedforward, providing 

direct input to the pyramidal cells in the ELL model network. Each pyramidal cell within a 

column (150 columns for LS; 235 for CLS) receives input from a cluster of electroreceptors 

within the receptive field center and surround. A column includes an ON-type and OFF-type of 

each different pyramidal cell layer (superficial, intermediate, and deep; Maler, 2009b). The 

feedback affects superficial-type and intermediate-type pyramidal cells, while deep-type 

pyramidal cells receive no feedback (Berman and Maler, 1999; Krahe and Maler, 2014; Maler, 

2007; Maler, 2009a; Maler, 2009b; Milam et al., 2019). The feedback input is a negative image 

of the feedforward input with an added DC offset (Bol et al., 2013; Marsat and Maler, 2012; 

Mejias et al., 2013). The strength of the feedback is slightly stronger for superficial-type 

pyramidal cells than for intermediate-type pyramidal cells, and is set by the level of the DC 

offset with superficial-type pyramidal cells having a smaller DC offset (more cancellation).  

 

Data analysis 
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All stimulation, modeling, and analyses described here were performed using MATLAB. 

Spike trains collected from leaky integrate-and-fire model simulation were first binarized into a 

sequence of zeros (no spike) and ones (spike). The binarized sequence was convolved with a 

gaussian filter and separated into 1 second, 50% overlapping segments. Discrimination errors 

are a type of statistical analysis as distributions are compared and a probability of error is 

calculated, therefore, additional statistical analyses were not necessary for the results 

presented here.  

 

Gain 

The stimulus-response gain (G) to SAM stimulation was calculated by:  

𝐺(𝑓) = ∑ 𝑄 (𝑓) 

where Q is the power spectral density of the convolved spike train, f are the frequencies within 

± 0.5 Hz of the target SAM frequency (5 or 30 Hz). A larger stimulus-response gain value 

indicates a larger response from the neuron to a stimulus at the target frequency.  

 

Vector strength 

The strength of phase locking to SAM stimulation was calculated by:  

𝑠 =
√(∑ 𝑥𝑖

2) + (∑ 𝑦𝑖
2))

𝑛
 

where n is the number of spikes, and x and y are the sine and cosine phases of the stimulus at 

which i occurs (Goldberg and Brown, 1969; Marsat and Pollack, 2004). The vector strength, s, 
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quantifies the precision of responses to a given phase of the stimulus cycle, with 0 being equal 

vectors or a flat response, and 1 being a perfectly precise response.  

 

Discrimination analysis 

The discrimination analysis relates directly to the information carried by a population of 

neurons to discriminate between stimuli (see Marsat et al., 2023, for more details). For our 

discrimination analysis, to compare our model’s output to in-vivo recordings in the ELL that are 

from just one side of the brain, we perform this analysis using only the ipsilateral side of the 

brain (i.e., the fish’s left side, Milam and Marsat, 2023). We compare stimuli from different 

locations and used one of three measurements to quantify response strength: mean firing rate, 

vector strength, or stimulus-response gain for each 1 s response segment with a 50% overlap 

between segments. A weight, based on the Kullback-Leibler divergence in the response 

distributions for each stimulus, is assigned to each neuron for each pair of stimuli being 

compared. The weight is then normalized to 1 across neurons within a population response, 

afterwards the response strength is multiplied by this weight. Population responses are 

represented as data points in Euclidean space, where each dimension is the weighted response 

of one neuron in the population. Several population responses are considered, each consisting 

of a random 1 s segment of response from a subset of n neurons from the population (n will 

vary, as described further). Euclidean distances between all possible stimulus pairs are then 

compared. Larger distances between stimulus pairs indicate less similarity between the 

responses. Stimuli that can be easily discriminated will elicit responses that are very different 

(i.e., a large Euclidean distance) relative to the variability across responses to the same 



218 

 
 

stimulus. The weighting procedure optimizes the decoding accuracy by assigning a stronger 

contribution to the Euclidean distance to neurons that carry more information about the 

difference between stimuli.  

The probability distributions of the values in these matrices P(Dxy) or P(Dxx) were used for 

ideal observer analysis. Receiver operating characteristic (ROC) curves were generated by 

varying the threshold distance to separate responses to conspecific stimuli from different 

locations or orientations. ROC curves were generated by varying a threshold distance value T; 

for each threshold, the probability of non-discrimination (PD) is calculated as the sum of 

P(Dxy>T) and the probability of false discrimination (PF) is calculated as the sum P(Dxx>T). The 

error probability is taken as the minimum error, E, across thresholds: 

𝐸 =
1

2
𝑃𝐹 +

1

2
(1 − 𝑃𝐷) 

 

Three-dimensional population response heatmaps 

Heatmaps were represented as an array of fixed points (tuberous electroreceptors with x,y 

z coordinates) across the fish’s body surface. The receptive field centers for each neuron within 

a column were mapped onto the body. All tuberous receptors within a neuron’s receptive field 

boundary were assigned to that neuron, such that one receptor could belong to several 

neurons’ receptive field centers. Using several neurons, we created a population response 

heatmap. Values from the neural response measures (e.g., firing rate, gain, vector strength) to 

the different spatial stimuli were appended to all receptors within the neurons’ receptive field 

centers, and then averaged so that each receptor represented a single activation value for all its 

represented neurons. Unlike the discrimination analysis, for our heatmap analysis, we include 
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responses from both sides of the brain (i.e., left and right hemispheres). The purpose of the 

heatmaps is to provide a holistic representation of the population response, rather than to 

compare discrimination performance of stimuli.  

 

Results 

We investigated how a beat stimulus resulting from conspecific spatial interaction is 

encoded by ELL pyramidal cell populations. Importantly, the information content in a 

population of cells will depend on the number of units contained in the population, their 

sensitivity, and the amount of overlap (signal and noise correlations) in their responses. 

Previously published findings on in-vivo electrophysiological experiments have shown that 

there are differences in spatial coding accuracy across the ELL pyramidal cell populations 

(Milam and Marsat, 2023). To briefly summarize, it is known that deep-type pyramidal cells 

encode more accurately than superficial-type and intermediate-type pyramidal cells in spatial 

discrimination tasks. Furthermore, ON-type pyramidal cells outperform OFF-type, and 

pyramidal cells with larger receptive fields outperform those with smaller receptive fields. Here, 

we used an electric field model to simulate a sender fish at different locations around a focal 

fish (Ramachandra et al., 2023; we use sender’ and ‘focal’ terminology, however both fish send 

and receive). A resulting electric image consisting of changes in beat contrast provided the 

input to the electroreceptor population model. The electroreceptor population provided a 

current input to the ELL pyramidal cells. To determine how the ELL network encodes spatial 

information from conspecific signals, we created model populations of leaky-integrate and fire 

model neurons were matched to empirical data on the response properties of the different ELL 
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pyramidal cells: ON and OFF; Superficial / Intermediate and Deep; and LS or CLS; resulting in a 

total of 12 LIF neuron subpopulations and a total of 4,620 neurons (Fig 1). The properties of 

each population were matched to the empirical average. Additionally, the various model 

parameters (threshold, noise, membrane time constant, etc.) were varied to replicate the range 

and distribution of properties observed in-vivo (Figure 2; Milam and Marsat, 2023; Bastian, 

1986; Bastian et al., 2002; Bol et al., 2013; Krahe and Maler, 2014; Krahe et al., 2008; Maler, 

2009a; Maler, 2009b). Pyramidal cells occupying the same column (150 columns for LS; 235 for 

CLS) received current inputs from electroreceptors within the associated receptive field center 

and surround (see Fig 3). Specific measures of the spiking response such as changes in firing 

rate, stimulus-response gain, and vector strength were quantified. The responses of several ELL 

pyramidal cells could then be pooled to create different population responses.  

 

ELL pyramidal cell population modeling replicates encoding patterns for conspecific 

localization observed in-vivo 

We first separated our full population of pyramidal cells into subpopulations based on the 

cells’ response polarity (ON-type or OFF-type), position in the ELL layer (Superficial-type, 

intermediate-type, or deep-type), and location within a topographic map (LS or CLS). Using 

population heatmaps (see Methods), we assessed the subpopulations’ responses to conspecific 

stimuli presented from different locations (Fig 4A). To compare differences between the 

subpopulations’ responses we focused on stimulus-response gain as it quantifies information 

about response synchrony as well as amplitude. Overall, we found that for the model ON-type 

and deep-type ELL pyramidal cell subpopulations, stimulus-response gain varied as a function of 
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stimulus location. Furthermore, the contrasts of the heatmap pattern for these specific 

subpopulations were indicative of spatial dependency (Fig 4B). On the other hand, OFF-type, 

superficial-type, or intermediate-type pyramidal cells showed less of an indication of spatial 

dependency to conspecific stimuli in their heatmap population responses. Thus, a preliminary 

evaluation of gain responses to conspecific beat stimuli suggests differences at the population-

level for encoding relevant spatial information.  

 

ELL modeling validates known spatial coding differences observed in-vivo across pyramidal 

cell populations during a signal-source discrimination task 

Knowing the spatial response pattern of heatmaps across different ELL subpopulations is 

particularly valuable for qualitative analysis, yet does not provide a quantitative measure for 

spatial coding. Therefore, we quantified the ability of ELL subpopulations to discriminate 

between conspecific stimuli presented from different locations, by comparing their responses 

using a weighted Euclidean decoder. Briefly, the analysis takes responses from several neurons 

in a subpopulation, runs a pairwise stimulus-discrimination task, and returns an accuracy 

estimate value to quantify successful discrimination (see Methods).  

For our discrimination analysis, we used only the fish’s left hemisphere of the brain to make 

a direct comparison to recordings in the ELL that are from just one side (Milam and Marsat, 

2023). We first compared LS deep-type pyramidal cells to LS superficial-type pyramidal cells. 

We found that LS deep-type pyramidal cells displayed higher accuracy for signal-source 

discrimination. Whereas LS superficial-type pyramidal cells had lower discrimination accuracy 

(Fig 5A, 5B). We decided that because the deep-type cells were performing with higher 
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accuracy, we would ask whether there is any difference in discrimination accuracy between 

deep-type pyramidal cells with ON-type response polarity and those with OFF-type response 

polarity. Doing so, we found that deep-type pyramidal cells with ON polarity displayed higher 

accuracy than those with OFF polarity (Fig 5A, 5C). We then asked whether there were any 

differences in discrimination accuracy between topographic maps of the ELL. We compared 

deep-type pyramidal cells of the LS map with deep-type pyramidal cells of the CLS map. Deep-

type LS cells achieved higher discrimination accuracy than deep-type CLS cells (Fig 5A, 5D). 

Overall, our modeling of full-scale ELL populations confirms patterns reported in experimental 

findings and supports that across subpopulations, accurate discrimination was feasible for all 

unique stimulus pairs that were simulated (7 locations, 3 azimuths, at a distance of 10cm away; 

see Methods). Thus, these findings show that there are differences between ELL pyramidal cell 

populations in their ability to accurately distinguish between conspecific beat stimuli across a 

multitude of spatial configurations.  

 

Noise correlations are detrimental for localization accuracy 

Noise correlations are inherent in the electrosensory system and most other sensory 

systems (Ecker et al., 2011; Ghim et al., 2008; Sompolinsky et al., 2001; Stein et al., 2005; Wiley, 

2015). Each ELL pyramidal cell must integrate sensory information transmitted by several 

hundreds to thousands of electroreceptors located within the pyramidal cell’s receptive field. 

Therefore, when comparing across several pyramidal cells, this shared input causes correlations 

in the transmitted signal as well as the background noise. Correlated noise can be beneficial in 

some situations, but is largely considered to be detrimental to information coding, particularly 
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at the population level when the noise cannot be averaged out (Bauermann and Lindner, 2019; 

Hunsberger et al., 2014; McDonnell and Ward, 2011; Nassar et al., 2021). To investigate the 

effect of noise correlations on stimulus encoding, we repeated the discrimination analysis using 

the same repetition to simulate recording from all cells at the same time. We found that noise 

correlations generally reduced the accuracy of discriminating between different stimulus pairs 

(Fig 6). This reduction in discrimination accuracy was consistent across various aspects of the 

neural response (i.e., mean firing rate, stimulus-response gain, vector strength). When noise 

correlations are present, we noticed a plateau in the accuracy as more neurons are added to 

the discrimination analysis, and that this trend was especially prevalent for populations in the 

CLS map (Fig 6C, 6D). For spatial coding, only a limited number of neurons overlap with each 

other, so the spatial information relies on averaging across a limited number of neurons. 

Interestingly, this means that correlated noise cannot be completely averaged out even when 

several neurons are considered. Overall, our analysis of noise correlations did not find any 

improvements in spatial coding of the unique pairwise stimulus combinations tested. Thus, 

noise correlations were detrimental to spatial discrimination accuracy of ELL pyramidal cell 

subpopulations.  

 

Feedback and population response for conspecific localization 

So far, we have shown that the electroreceptor population transmits the information 

necessary for permitting accurate spatial processing of conspecific beat stimuli by ELL pyramidal 

cell populations (see also Milam and Marsat, 2023). In addition to feedforward inputs, ELL 

pyramidal cells also receive feedback inputs that affect their spiking response. The indirect 
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feedback pathway, in particular, is driven by large receptive fields and we hypothesize that it 

influences the spatial representation across the population of cells (Berman and Maler, 1999; 

Maler, 2007). The impact of this feedback input on pyramidal cells response has been 

thoroughly characterized: it partially cancels the response to beats, be it on a cycle-per-cycle 

basis for low frequencies (Bol et al., 2013; Mejias et al., 2013). Responses to high frequencies 

are also affected, but not in a phase-specific manner (unpublished observations, Marsat). 

Despite this, it remains unclear how feedback affects spatial coding of conspecific signals at the 

population level.  

We investigated the role of indirect feedback on spatial coding in subpopulations of ELL 

pyramidal cells. In our model of the ELL, only the superficial-type and intermediate-type 

pyramidal cells were supplemented with a feedback input, as the deep-type pyramidal cells 

serve as the source of the feedback (Berman and Maler, 1999; Clarke and Maler, 2017; Krahe 

and Maler, 2014; Maler, 2009a; Maler, 2009b; Milam et al., 2019). We determined its influence 

on spatial representation and accuracy of coding and compared them to model responses that 

did not include feedback. In adjusting our model to accommodate a feedback input, we had to 

alter the parameters slightly so that the response with feedback showed the characteristic 

suppression of low-frequency beats according to published data (Bol et al., 2011). The result of 

this adjustment was a decrease in coding accuracy even before the feedback is turned on 

(compare Figures 5B and 8C). Making the feedback active in this version of the model reduced 

the responses to the 5Hz beat (Fig 7). The quantitative coding analysis suggests that the 

feedback did not influence the accuracy of spatial coding. We suggest this might be due to the 

fact that the reduction in the response affects pyramidal cells uniformly for all locations. Our 
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analysis suggests that the spatial contrasts that support localization are not influenced by the 

feedback in this form. It is likely that feedback with additional non-linearities would affect 

spatial coding in a different manner. Further modelling efforts, paired with experimental data, 

will be required to assess more precisely how feedback affects spatial coding.  

 

Discussion 

In this study, we investigated how different neural populations in the ELL encode 

conspecific location. To do so, we implemented a large-scale modeling approach that: (1) 

characterizes the electrosensory signals generated during spatial interaction between two 

weakly electric fish; (2) quantifies the electroreceptor population response to changes in beat 

contrast; (3) computes the accuracy of spatial coding across ELL pyramidal cell populations 

using the output from the electroreceptor population as the input to the ELL model (see Fig 1 

for more information). To accomplish this, we first generated a behavioral signal by using a 

previously published electric field model to simulate the electrosensory signals created during 

spatial interaction between two weakly electric fish. The combined signals created a series of 

beat contrasts that were fed into a population of electroreceptor model neurons (Ramachandra 

et al., 2023). Then, the output from the electroreceptor population was used as a current input 

to an ELL pyramidal cell population model. Our ELL model included several different types of 

pyramidal cell populations with heterogeneity, spatially mapped receptive field centers and 

surrounds, spike-frequency adaptation, noise correlations, and feedback cancellation (see Fig 2, 

Fig 3). We present for the first time in this system, a large-scale model of the ELL comprised of 

4,620 heterogeneous pyramidal cells with a complex network dynamic that includes feedback. 
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The result is a full-scale model from signal to the output of the first sensory area. Lastly, we use 

a decoding algorithm to better understand the information contained in this population 

response. After simulating conspecific interaction in a variety of spatial arrangements, we 

analyzed the spike train output for changes in firing rate, stimulus-response gain, and vector 

strength. Using these measures, we pooled the responses of several neurons together to create 

a population response. This allowed us to compare the population responses between different 

stimulus locations, and to compute the populations’ accuracy of encoding using a spike-

distance metric (see Methods; Marsat et al., 2023).  

Overall, our model confirms findings from electrophysiological data that pyramidal cells of 

the ELL are able to discriminate between beat signals that are emitted by a conspecific from 

different spatial locations. Specifically, we show that integration of feedforward electroreceptor 

inputs leads to accurate spatial coding. Our results support previous in-vivo findings that 

conspecific localization is possible for all subpopulations of pyramidal cells found in the ELL. In 

addition, our model replicated known performance differences across ELL subpopulations. We 

evaluated how accurate each subpopulation was by quantifying discrimination accuracy as a 

function of neural population size. The findings from our discrimination analysis support that 

pyramidal cells residing in the deep layer are more accurate discriminators of conspecific 

location, compared to pyramidal cells found in more superficial layers (see Fig 5). In addition, 

pyramidal cells with an ON-polarity preference were more accurate than those with OFF-

polarity preference. Moreover, when separating pyramidal cells based on their topographic 

map position, we found that pyramidal cells of the LS map were more accurate than pyramidal 

cells in the CLS map (see Fig 6). Previous studies have shown that the LS map is more 
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specialized at coding for conspecific signals (e.g., chirps; Allen and Marsat, 2019; Krahe and 

Maler, 2014; Krahe et al., 2008; Marsat and Maler, 2010; Marsat and Maler, 2012; Marsat et al., 

2012). Similarly, our data suggests that the LS map provides more accurate spatial coding of 

conspecific signals. Taken together, our model provides insights for what aspects contribute to 

spatial coding differences observed in ELL pyramidal cells. Future research using this model can 

explicitly test these aspects by varying the relevant parameters in a systematic way.  

Our simplified model of an ELL population was calibrated using peak to trough firing rate 

across different beat contrasts, but not specifically to replicate changes in mean firing rate. We 

included an adaptation component, and while it was adjusted to provide reasonable changes to 

the pattern of the spiking response, the focus of the model was not to precisely match the rate 

of adaptation. This element could explain some of the discrepancies we observed in the model 

compared to responses observed in-vivo (Milam and Marsat, 2023). Certainly, further modeling 

and electrophysiological studies are needed to better understand the role ELL pyramidal cells 

for conspecific localization.  

An especially interesting finding was that CLS deep-type pyramidal cells had lower spatial 

discrimination accuracy compared to LS deep-type pyramidal cells (see Fig 6). These differences 

between LS and CLS are particularly visible with noise correlations, and are likely the result of 

differences in averaging out noise based on variations in the size of the receptive field centers 

and surrounds for pyramidal cells in the LS and CLS maps. CLS pyramidal cells have smaller 

centers, with larger and stronger surrounds than LS pyramidal cells (Hofmann and Chacron, 

2017; Maler, 2009a; Maler, 2009b; Shumway, 1989; Shumway et al., 1989), and our model is 

consistent with this pattern. In fact, the exact role of noise correlations is a topic of heavy 



228 

 
 

debate in the neuroscience research community. However, the overall consensus being that 

noise correlations are generally detrimental to information coding (Dayan and Abbott, 2001; 

Metzen and Chacron, 2021). This is met with several context-dependent exceptions that 

support the beneficial role of noise correlations (Bauermann and Lindner, 2019; Ecker et al., 

2011; Hunsberger et al., 2014; McDonnell and Ward, 2011). In particular, one study 

demonstrated that higher noise correlations led to improvements in speed and robustness 

while learning a perceptual discrimination task (Nassar et al., 2021). Here, our results show that 

noise correlations are detrimental for encoding the spatial aspect of conspecific beat signals, 

specifically in a signal-source discrimination task. Across subpopulations in both the LS and CLS 

maps, a plateauing in the discrimination accuracy occurs even as more neurons are added to 

the discrimination analysis. This result indicates that correlations in the noise are lowering the 

amount of spatial information that is encoded by placing a limit on the population code. Each 

electroreceptor transmits a unique noise signature to several pyramidal cells in the population. 

However, due to the limited amount of receptive field overlap in the pyramidal cell population, 

noise correlations cannot be averaged out even when several neurons are considered. The 

situation we describe here differs from a temporal coding task, where discrimination curves will 

eventually reach perfect discrimination accuracy with enough neurons (albeit with a shallower 

slope). This is because even though some noise correlations exist, eventually with a sufficiently 

large population size, noise correlations can be averaged out. Here, however, they cannot be 

averaged out because only a limited number of neurons share a given “spatial information” 

(i.e., how the stimulus strength differs at a given location). Adding the spatial component 

provides a novel result for the role of noise correlations on neural coding and we did not find 
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any improvements in spatial coding accuracy of the unique pairwise stimulus combinations 

tested. Further studies are needed to investigate the effect of correlated noise on spatial coding 

during social interaction between multiple fish.  

Field studies on interacting weakly electric fish have demonstrated that these fish are 

capable of detecting one another from over a meter away in difficult conditions (Henninger et 

al., 2018). Therefore, this challenging task requires the animal’s nervous system to compute 

small differences in the low contrast beat signal. Pyramidal cells in the ELL must integrate 

responses from electroreceptors to the low contrast beats. This information must be 

transmitted downstream, from the ELL bottleneck to higher order brain areas, to guide social 

behaviors. To evaluate neural activity at the population level, we visualized the ELL population 

response to a conspecific beat stimulus by layering the receptive fields of each pyramidal cell 

along the fish’s body. Our heatmap analysis qualitatively showed that there is a diffuse gradient 

with higher spatial contrast that corresponds to the stimulus location, indicative of a spatial 

dependency in the population response to a conspecific’s location (see Fig 4). Our results 

indicate that the spatial contrast is higher in the ON-type pyramidal cell population than the 

OFF-type pyramidal cell population, though the topography of the gradient pattern is similar. 

One explanation for this finding might be attributed to the low-pass filtering that affects our 

model OFF-type pyramidal cells. The filtering will influence, to some extent, the spiking 

response and could alter the information used for discrimination. These findings suggest that 

ON-type cells might play a more direct role in neural coding of a conspecific’s location. 

Furthermore, the heatmaps revealed that the deep-type pyramidal cell population responds to 

conspecific location similarly to the full electroreceptor population (Ramachandra et al., 2023). 
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An important distinction here is that the deep-type pyramidal cells do this while integrating the 

responses of up to several thousand electroreceptors per receptive field. Though the sensory 

image was weaker at the pyramidal cell level than at the electroreceptor level, the difference in 

integration might offer a higher resolution sensory image in downstream, higher order brain 

areas. This could allow for the sensitivity needed for localizing at further distances, where the 

higher image contrast indicates the direction of the conspecific’s location in three-dimensional 

space. Importantly, this sensory problem is generalizable to other organisms that rely on 

various sensory modalities to navigate and interact within their environment. Further studies 

on distance coding and directional coding of conspecifics in three-dimensional space will be 

needed to support these hypotheses.  

Lastly, we highlighted the possibility that in A. leptorhynchus, feedback pathways may 

influence the pyramidal cells’ response properties to shape spatial coding. Visual inspection of 

the effect of feedback on the response of the pyramidal cells, as seen on the heatmaps, 

suggests that it reduces the response to the beat as expected. However, this reduction seems 

to be uniform for all the cells and consequently, feedback did not alter the accuracy of spatial 

coding (see Fig 8). Our simplified, negative-image feedback component contains a global 

receptive field and a static DC offset. It is possible that we have not included the key aspects of 

feedback that play a role in how it influences spatial coding of conspecific signals. Here, we 

cancelled the response in a uniform way using a negative-image feedback component that 

scales linearly with input strength. It is likely that the discrimination accuracy with and without 

feedback is similar because feedback is having the same effect on every cell, resulting in a 

uniform decrease in the population response, therefore the discrimination task is relatively 
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unchanged. However, one possibility for changing the feedback in a realistic way to elicit a 

stronger effect on spatial coding, could be to implement a non-linear intensity-response 

function for the feedback, particularly one that saturates at higher rates (e.g., an adaptation 

function). This would create less of an effect for the pyramidal cells that contribute more to the 

population coding (i.e., more pronounced changes in their spiking response). Certainly, more 

experiments and testing of population model interactions are necessary to determine the 

influence and mechanisms of how feedback shapes spatial coding. The way this spatial 

information is transformed and how it is used downstream may be an important mechanism for 

mediating accurate spatial processing of conspecifics.   
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Figure 1. Schematic of the sensory transformation from electroreceptor input to neural 

representation by a heterogeneous model network in the ELL. 

Schematic depicting how the model replicates the network elements present in the ELL, 

including population density, ON/OFF-type polarity preference, integration of electroreceptor 

input, r, for processing the spatial aspect of a conspecific stimulus, (top, gray), from overlapping 

receptive fields (left, colored circles on fish), and population specific feedback (F, purple) 

Pyramidal cells (center, multicolored triangles) in topographic maps of the ELL (right, colored 

boxes) have receptive fields mapping the electrosensory surface of the fish’s body. Each leaky 

integrate-and-fire neuron (pyramidal cell of the ELL) will pool the stimulus-driven 

electroreceptor input and unique noise within the spatial extent of the pyramidal cell’s 

receptive field. The parameters of each pyramidal cell will differ to precisely replicate the 

physiological responses of subpopulations of pyramidal cells as recorded from in-vivo 

extracellular electrophysiological recordings (w is the weight that will be determined based on 

the pattern of activation given by the electric field model, ξ is noise, τ is the time constant, V is 

voltage, EL is the reversal-potential or “leak”). A spatially diffuse feedback component will only 

target the superficial and intermediate pyramidal cell types in both LS and CLS maps, and not 

the deep pyramidal cell types.   
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Figure 2. Model calibration for an example ELL subpopulation.  

(A) Interspike interval histograms during spontaneous activity of the original seed for a deep 

pyramidal cell from the LS map with ON-type polarity. The mean firing rate and mean 

coefficient of variation are shown in the top right corner.  

(B) Histogram of the mean firing rate during spontaneous activity for the full LS deep ON-type 

model pyramidal cell population (n=150).  

(C) Histogram of the coefficient of variation during spontaneous activity for the full LS deep ON-

type model pyramidal cell population (n=150). 

(D) Comparisons of the stimulus-response gain from the experimentally documented average 

for LS deep ON-type pyramidal cells (Data, in black) to the original seed of an LS deep ON-type 

model pyramidal cell (Model, in red) using the output of the electroreceptor population to a 30 

Hz SAM stimulus with different beat contrasts as the input.  
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(E) Lower-bound coherence of the original seed of an LS deep ON-type model pyramidal cell. 

The coherence is in response the output of the electroreceptor population to a RAM stimulus 

ranging from 0-100 Hz with different beat contrasts as the input.  

(F) Mean lower-bound coherence of the original seed of an LS deep ON-type model pyramidal 

cell. The coherence is in response the output of the electroreceptor population to a RAM 

stimulus ranging at 30 Hz with different beat contrasts as the input. Coherence analyses are 

standard and described in previous publications (Allen and Marsat, 2019; Borst and Theunissen, 

1999; Krahe et al., 2008). The lower-bound coherence represents the linear correlation 

between the stimulus and the response.  

(G) Responses of the original seed of the LS deep ON-type model pyramidal cell to step 

increases in EOD intensity. The strength of the peak response, the steady-state response, and 

the adaptation time constant were approximately matched to experimental and published data 

(Milam and Marsat, 2023; Bastian, 1986; Bastian et al., 2002; Krahe et al., 2008; Maler, 2009a; 

Maler, 2009b). The dashed gray line indicates the starts of the window for averaging the 

steady-state response.  

(H) Responses of the original seed of an LS deep ON-type model pyramidal cell to increasing 

beat contrast of a SAM stimulus at a 30 Hz beat frequency. The strength of the average peak-to-

trough firing rate was fit to experimental and published data (Milam and Marsat, 2023).  

(I) Histograms of the vector strength in response to a SAM stimulus with a 30 Hz beat frequency 

and different beat contrasts for the full LS deep ON-type pyramidal cell population (n=150).   
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Figure 3. Spatial organization of 

pyramidal cell receptive fields.  

(A) Unfilled outlines of the 

perimeter of the receptive field 

centers for LS pyramidal cells 

recorded in-vivo using 

electrophysiology (n=55; Milam 

and Marsat, 2023).  

(B) Unfilled outlines of the 

perimeter of the receptive field centers for model LS pyramidal cells. There are 150 unique 

receptive field centers for the 150-column resolution of the model LS map. The LS map consists 

of 6 subtypes of pyramidal cells (ON and OFF; superficial, intermediate, and deep) using 150 

receptive field centers resulting in (n=900) total LS model neurons. Note that both the data and 

model provide complete receptive field coverage of the body if receptive field outlines were 

illustrated as being filled in. For ease of visibility, a small subset (n=15) of receptive field 

outlines is shown in red. 

(C) Histograms of receptive field center size represented as a proportion of the total body area 

of the 3D mesh model. We show the histograms as an approximate comparison of the 

distribution of receptive field center sizes between the data and the model. However, we note 

that these two are not fully comparable as the body proportion for the data are calculated as 

the length along the rostral to caudal axis of the fish, whereas the body proportion for the 
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model are calculated using the ratio of electroreceptors within a receptive field center to the 

total electroreceptor amount on the respective unilateral side of the body.   
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Figure 4. Responses to spatially 

realistic conspecific signals visualized 

as topographic heatmaps for the 

model electroreceptor population 

and model ELL subpopulation. 

The heatmaps allow a visualization of 

the population response to a 

conspecific stimulus played from 

various relative locations (from a 

distance of 10 cm away and oriented 

90 degrees, shown in A). Each 

colored point on the heatmap 

represents a putative receptor on the 

skin of the fish (see Methods; and 

Ramachandra et al., 2023). A 

receptor can contribute to several 

neurons’ receptive field and its color will reflect the average responses (e.g., gain) across these 

neurons. In the 6 heatmaps presented here, we see differences in the average gain across 

stimulus locations for (B) the electroreceptor population (n=8,195) and (C) the LS deep ON-type 

pyramidal cell population in the ELL (n=300 neurons with overlapping receptive fields 

integrating from 8,195 electroreceptors). The population responses show a spatial dependency, 

as the mean gain is higher on the side the body that corresponds to the source of the 



247 

 
 

conspecific stimulus. It is worth noting that we use individualized color scaling to highlight small 

differences in the patterns for a single location between populations, with a value range 

indicated by “Min” and “Max”. A normalized color scale to compare level differences between 

the stimulus locations could also be used, but occludes the spatial effect in the electric image so 

it is not shown here.   
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Figure 5. Deep pyramidal cells are highly accurate coders of conspecific location.  

Pairwise stimulus discrimination using stimulus-response gain on full subpopulations of model 

pyramidal cells (n=150 for LS; n=235 for CLS). All unique paired combinations of conspecific 30 

Hz beat stimuli are depicted by the top right inset of (A) and refer to the stimulus locations 

shown in Figure 4A. A discrimination accuracy level of 95% is obtained with fewer than 20 

neurons for deep ON-type pyramidal cells in the LS map across all unique pairs of stimulus 

locations. (B) Superficial ON-type pyramidal cells reach a 95% accuracy level with less than 65 

neurons across all unique pairs of stimulus locations. (C) A discrimination accuracy level of 95% 

is obtained with fewer than 25 neurons for deep OFF-type pyramidal cells in the LS map across 
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all unique pairs of stimulus locations. (D) A discrimination accuracy level of 95% is obtained 

with fewer than 100 neurons for deep OFF-type pyramidal cells in the CLS map, for certain 

stimulus pairs.   
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Figure 6. Noise correlations are detrimental to coding accuracy of conspecific location.  

Pairwise stimulus discrimination using stimulus-response gain on full subpopulations of model 

pyramidal cells (n=150 for LS; n=235 for CLS). All unique paired combinations of conspecific 30 

Hz beat stimuli are depicted by the top right inset of (A) and refer to the stimulus locations 

shown in Figure 4A. Without noise correlations, a discrimination accuracy level of 95% is 

obtained with fewer than 20 neurons for deep ON-type pyramidal cells in the LS map across all 

unique pairs of stimulus locations. (B) With noise correlations, deep ON-type pyramidal cells in 

the LS map achieve a discrimination accuracy of 95% for certain populations, but the accuracy is 

limited and remains mostly invariant to increasing population size. The population fails to 
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maintain a stable 95% accuracy level with 150 neurons for certain pairs of stimulus locations. 

(C) Without noise correlations, a discrimination accuracy level of 95% is obtained with fewer 

than 100 neurons for deep ON-type pyramidal cells in the CLS map, for certain stimulus pairs. 

(D) With noise correlations, deep ON-type pyramidal cells in the CLS map achieve a 

discrimination accuracy of 95% for certain populations, but the accuracy is limited and remains 

mostly invariant to increasing population size. The population fails to maintain a stable 95% 

accuracy level with 150 neurons for certain pairs of stimulus locations.   
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Figure 7. Responses to spatially 

realistic conspecific signals visualized 

as topographic heatmaps for an ELL 

subpopulation with and without 

uniform feedback. 

(A) Illustration of a 5 Hz conspecific 

beat stimulus played from various 

relative locations (at a distance of 10 

cm away and oriented 90 degrees). 

(B) Heatmaps of the mean gain across 

a population of superficial ON-type 

pyramidal cells of the LS (n=300) with 

feedback inputs (C) and without 

feedback inputs in response to 

different conspecific stimulus 

locations. Color scaling is indicated by the value range, “Min” and “Max”. Changes in the mean 

gain from the side of the body corresponding to the stimulus location compared to the other 

side are less pronounced in the population with feedback.   
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Figure 8. Feedback with uniform strength has minimal effects on coding accuracy of 

conspecific location.  

Pairwise stimulus discrimination using stimulus-response gain on full subpopulations of model 

pyramidal cells (n=150 for LS). All unique paired combinations of conspecific 5 Hz beat stimuli 

are depicted by the top right inset of (A) and refer to the stimulus locations shown in Figure 4A 

and 7A. Deep pyramidal cells are the source of the feedback and achieve a discrimination 

accuracy level of 95% is obtained with fewer than 20 neurons for deep ON-type pyramidal cells 

in the LS map across all unique pairs of stimulus locations. (B) With noise correlations, deep ON-

type pyramidal cells in the LS map achieve a discrimination accuracy of 95% for certain 
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populations, but the accuracy is limited and remains mostly invariant to increasing population 

size. The population fails to maintain a stable 95% accuracy level with 150 neurons for certain 

pairs of stimulus locations. (C) Without noise correlations, a discrimination accuracy level of 

95% is obtained with fewer than 100 neurons for deep ON-type pyramidal cells in the CLS map, 

for certain stimulus pairs. (D) With noise correlations, deep ON-type pyramidal cells in the CLS 

map achieve a discrimination accuracy of 95% for certain populations, but the accuracy is 

limited and remains mostly invariant to increasing population size. The population fails to 

maintain a stable 95% accuracy level with 150 neurons for certain pairs of stimulus locations.   
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Chapter 5: Discussion 

Summary of the Data 

With this dissertation, I have evaluated how space is represented and transformed at 

different stages of electrosensory processing and demonstrated several important principles of 

neural coding and network properties that support population coding of conspecific signals. 

Specifically, I have shown how a signal’s location modulates the activation pattern of the 

electroreceptor array (Chapter 2), and that this spatial information is encoded accurately by the 

heterogeneous population of pyramidal cells in the ELL (Chapter 3). I have provided evidence 

for the segregation of sensory information streams in the neural code, showing that neurons 

have specific functional roles based on their response properties, morphology, and connectivity 

in the network (Chapter 3 and 4). I have also examined aspects of the network dynamic that 

could influence spatial processing and thereby revealed core computational mechanisms 

operating in the early electrosensory circuit (Chapter 4).  

 

The spatial aspect of conspecific signals is encoded by the electroreceptor sensorium 

Chapter 2 of this dissertation demonstrates that in A. leptorhynchus, information about 

conspecific azimuth, position, and distance is carried within the beat and accurately captured 

by the electroreceptor array. The response of a single electroreceptor reliably encodes the 

strength of the beat at a single point on the skin, but does not convey substantial information 

about the location of the stimulus. However, by pooling several electroreceptors sensitive to 

different points along the body to create a population response, conspecific signals from 

different distances and locations can be discriminated accurately by the electroreceptor 
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population. I showed that spatial information from conspecific signals is encoded by differences 

in the peak-to-trough firing rate of the linear spiking response across several electroreceptors.  

I quantified the spatial resolution ability of the electroreceptor population by testing the 

discrimination performance between different magnitudes of angular change. The 

electroreceptor populations tested can accurately discriminate small differences in angular 

resolution, and the accuracy performance is contingent on the number of beat cycles processed 

by the electroreceptor population. To investigate further the sensitivity of the electroreceptive 

periphery, I estimated the detectable range of conspecific signals and found that the full 

electroreceptor population could detect beat contrasts of less than a few percent at distances 

up to 75 cm away if integrating information over several EOD cycles. Furthermore, I show how 

the density distribution of electroreceptors enhances detection accuracy for signal sources 

around the fish, but contributes less towards accurately localizing conspecific signals. This is 

particularly true for the rostral end of the fish, which displays a much higher electroreceptor 

density, and is characteristic of an electrosensory fovea (Nelson and MacIver, 1999; Hofmann et 

al., 2017). I argue that the role of the electroreceptor distribution is multi-functional and 

dependent on the spatial structure of the sensory signal. For spatially diffuse signals, high 

receptor convergence contributes to increasing detection capacities, whereas for spatially 

delineated signals, receptor density can increase spatial resolution. These findings are in line 

with previously published behavioral observations of interacting fish from field and lab studies, 

and allude to the cues acquired by the peripheral nervous system to accomplish difficult 

conspecific localization tasks (Knudsen, 1975; Stamper et al., 2012; Henninger et al., 2018).  
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To gain a better insight into the mechanisms underlying the system’s sensitivity for 

detecting and discriminating beat contrasts from conspecific signals, we must have a 

quantitative understanding of the transformation from the spatio-temporal structure of the 

signal at the electroreceptor level to its spatial representation in the ELL.  

 

Population coding indicates that spatial information is segregated in the ELL 

Neural coding of the temporal aspect of communication signals has been well documented 

in ELL pyramidal cells of A. leptorhynchus (Krahe et al., 2008; Marsat and Maler, 2010; Marsat 

and Maler, 2011; Marsat et al., 2012; Allen and Marsat; 2018). However, much less is known 

about how spatial information is processed by pyramidal cells of the ELL network. In this 

dissertation, I present foundational work that investigates extensively how the spatial aspect of 

conspecific beat signals are processed at the primary electrosensory level. I show that 

accomplishing a conspecific localization task relies on a heterogenous population of cells, and 

explain how the different elements of the population are leveraged to support accurate spatial 

coding.  

In Chapter 3, I use a neurophysiological approach to investigate the accuracy of spatial 

coding for each pyramidal cell type of the ELL, by quantifying the localization performance 

based on the relevant information embedded in the beat stimulus. These data allow us to 

demonstrate that all ELL pyramidal cells are able to accurately discriminate signal location 

regardless of a change in azimuth. When evaluating the response of single neurons, I did not 

find a systematic pattern in the spiking response to different spatial stimuli. Indeed, the 

response of several neurons were largely heterogeneous, with some neurons displaying 



258 

 
 

distinct, spatially dependent responses, and other neurons where their responses were much 

noisier. Additionally, some neurons seemed to evoke more of a change in their firing rate 

response, whereas other neurons showed more of a shift in their response synchrony to 

different spatial stimuli. However, while this observation is unexpected from my initial 

predictions, I found that by pooling together a population of approximately 70 neurons, the 

population can achieve perfect accuracy when challenged with the location-based 

discrimination tasks that I tested in this study.  

In Chapter 3, I assess the performance of the pyramidal cell subpopulations by estimating 

the spatial coding efficiency based on the discrimination accuracy rate for different azimuths 

and location of stimuli. The vector strength or synchronization coefficient was the most 

informative aspect of the neural response for localizing conspecific signals most efficiently. 

These results were significantly higher than the efficiency rates produced from measurements 

of firing rate and stimulus-response gain in most stimulus regimes.  

Notably, I show that ON-type pyramidal cells perform better than OFF-type pyramidal cells 

of the ELL. The idea that ON-type cells are encoding a majority of the relevant spatial 

information could imply a supportive role for neighboring OFF-type cells in adjacent 

topographic columns. This disparity could act to increase contrast at small and large spatial 

scales, and has been alluded to in other recent studies (Clarke and Maler, 2017; Clarke et al., 

2015; Haggard and Chacron, 2023).  

Moreover, when exploring the dimensions of pyramidal cell receptive fields, I found that 

larger sized receptive fields outperformed smaller sized receptive fields. For conspecific stimuli 

that affect electroreceptors covering the entire body (i.e., a global stimulus), the high-
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performing large receptive field neurons may have the advantage as they are able to integrate 

sensory information over a larger surface area containing more electroreceptors. Neurons with 

smaller receptive fields may be sufficient for this sensory task, but the results from the 

performance analysis provide clear support that larger receptive field neurons can accomplish 

this same task with significantly higher efficiency.  

One of the most remarkable findings from the performance analysis is that the deep-type 

pyramidal cells are much more efficient than the superficial or intermediate-type pyramidal 

cells. Superficial-type neurons have been well-documented for excelling at temporal coding of 

communication signals (e.g., chirps). Here, I show for the first time that the deep-type 

pyramidal cells excel at spatial coding of conspecific signals. This is an especially important 

finding, given that deep-type pyramidal cells are the source of feedback to the superficial and 

intermediate-type pyramidal cells of the ELL, and receive no feedback themselves (Bratton and 

Bastian, 1990; Maler et al., 1991; Berman and Maler, 1999; see also Milam et al, 2019 for 

review). The differences in network connectivity combined with a clear distinction in spatial 

coding efficiency is indicative of a segregation of spatial information that begins at the ELL level.  

In Chapter 4, I investigate population coding and the effects of correlated noise for spatially 

processing conspecific signals. Single unit recordings from pyramidal cell variants, while 

invaluable as a data source, are limited in sample size and offer a restricted scope for proposing 

candidate population codes. To circumvent this, I implement a large-scale modeling approach 

of all pyramidal cell types present in the lateral segment and centrolateral segment topographic 

maps of the ELL. The advantage to this modeling method is that it provides a way to expand on 

findings from in-vivo electrophysiological experiments at the full population scale. For certain 
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analyses, I combine the responses of the intermediate-type pyramidal cells with those of the 

superficial-type pyramidal cells, as their morphology, functional connectivity, and physiological 

responses overlap significantly. In support of my earlier findings from Chapter 3, ON-type 

pyramidal cells outperform OFF-type pyramidal cells, deep-type pyramidal cells are more 

efficient than those of the superficial or intermediate-type, and pyramidal cells with large 

receptive fields perform better than pyramidal cells with small receptive fields. Furthermore, 

the vector strength and stimulus-response gain provide significantly more information for 

accurately discriminating conspecific location than mean firing rate.  

In Chapter 4, I quantify the effect of correlated noise that stems from the shared 

electroreceptor input that pyramidal cell populations receive due to their overlapping receptive 

field topography. In agreement with my hypothesis, I find that noise correlations are 

detrimental to the efficiency of the population, contributing to lower accuracy when resolving 

conspecific location. This is truly a remarkable insight from the model because it demonstrates 

that, in this specific network, noise correlations cannot be averaged out for spatial coding. For 

temporal coding, with a large enough number of neurons, noise correlations will eventually be 

averaged out. However, the mechanism is different for spatial coding because there is a limit to 

the amount of spatial information that can be shared between neurons within the population. I 

clearly demonstrate this principle as a stabilized plateauing in the discrimination accuracy even 

as neural population size increases. Despite the negative effects of noise correlations, 

discrimination of signal source location remains feasible (i.e., accuracy greater than chance 

level) even with a population of less than one hundred neurons. These findings suggest that by 
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pooling the information from all the different cell subtypes and topographic maps, less 

plateauing in the discrimination would occur as more cells with overlapping fields are included. 

In Chapter 3, I employ a two-dimensional heatmap analysis to visualize qualitatively the 

response of specific pyramidal cell populations to different spatial stimuli. Though these tools 

are useful for visualizing the topographic responses to different conspecific locations, the 

heatmaps yield coverage that is incomplete and patchy resulting in a weak representation due 

to a restricted sample size. To circumvent limitations in sample size, I used computational 

modeling to expand my population to include several thousand neurons with complete 

receptive field coverage of the body. Surprisingly, this model that I presented in Chapter 4 was 

based on representative samples of neurons from electrophysiological experiments, and 

provides full coverage yet still shows a patchy heatmap (e.g., when compared to the 

electroreceptor heatmaps or to the EI). Therefore, this patchiness may not only be a 

consequence of low sample size, but might represent the reality of the variability of responses 

in this area. The response patterns produced by the heatmaps analysis revealed clear 

differences in population activity to stimuli presented ipsilaterally vs contralaterally. The 

response pattern differed most when comparing the vector strength of ON-type and OFF-type 

pyramidal cells, and also when comparing deep-type to superficial-type and intermediate-type 

pyramidal cells.  

I show that producing heatmaps with increased population size and coverage result in a 

diffuse gradient with higher spatial contrast that corresponds to the stimulus location, 

indicative of a spatial dependency in the population response. The spatial contrast is higher in 

the ON-type pyramidal cell population than the OFF-type pyramidal cell population, though the 
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topography of the gradient pattern is similar. These results support the preliminary heatmaps 

findings made with responses from electrophysiological data, and suggest that ON-type cells 

are playing a more direct role in neural coding of a conspecific’s location. Furthermore, the 

improved heatmaps reveal that the deep-type pyramidal cell population responds to 

conspecific location similarly to the full electroreceptor population. An important distinction 

here is that the deep-type pyramidal cells do this while integrating the response of up to 

several thousand electroreceptors per receptive field. In downstream brain areas, this could 

result in a higher resolution sensory image, where the higher image contrast indicates the 

direction of the conspecific’s location in three-dimensional space.  

 

The role of feedback in shaping spatial coding through a background suppression 

mechanism 

Mechanisms of background suppression across modalities relies on spatially diffuse 

feedback to cancel noisy inputs and enhance contrast (Ölveczky et al., 2003; Baccus et al., 2008; 

Chen et al., 2005; Bratton and Bastian, 1990; Clarke and Maler, 2017). Similar elements are 

present in the electrosensory system, as the indirect feedback is driven by spatially diffuse 

inputs and can attenuate the response to conspecific signals (Milam et al., 2019; Bratton and 

Bastian, 1990; Berman and Maler, 1999; Clarke and Maler, 2017). The ELL receives indirect 

feedback inputs that influence the encoding of beats by canceling the response on a cycle-to-

cycle basis (Bastian, 1986; Bol et al., 2011; Chacron et al., 2005). Superficial and intermediate-

type pyramidal cells receive massive parallel fibers inputs onto their apical dendrites. Plasticity 

at these synapses adjusts the relative contribution of each fiber so that the overall input is in 
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antiphase to the feedforward input from the receptors, thus reducing the strength of the 

response in these cells (Bol et al., 2011; Harvey-Girard et al., 2010). For a pyramidal cell that is 

only weakly excited by the conspecific signal, because it is not ideally located relative to the 

conspecific location, the feedback might draw its inputs from a region that is maximally 

stimulated by the conspecific, and thus the beat would be effectively cancelled in these 

pyramidal cells. For cells strongly excited by the feedforward stimulation from the conspecific, 

the feedback might not completely cancel the beat response. 

Chapter 4 of this dissertation explores the role of feedback pathways in influencing spatial 

coding in pyramidal cells. The effects of feedback on single neurons during parameter 

calibration to 5 Hz and 30 Hz beat stimuli, in addition to visual inspection of the population 

response from the heatmap analysis, suggest that it reduces the response to the beat as 

expected. However, this reduction appears to be affecting all cells uniformly and consequently, 

feedback did not alter spatial coding accuracy. Therefore, it is likely that I have not included the 

key aspects of feedback that influence spatial coding of conspecific signals. Specifically, the 

feedback component that I implemented cancelled the response in a uniform way using a 

negative-image that scales linearly with input strength. An alternative approach to 

incorporating feedback could be to include a non-linear intensity-response function, particularly 

one that saturates at higher rates (e.g., an adaptation function). This would create less of an 

effect for the pyramidal cells that contribute more to the population coding (i.e., more 

pronounced changes in their spiking response).  

In the visual system, photoreceptors convey topographically organized visual input to 

retinal ganglion cells, whose activity is further influenced by amacrine cells to contribute to 
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mechanisms such as background-suppression (Ölveczky et al., 2003). However, for sound 

localization in the mammalian auditory system, the process operates differently and depends 

on a comparison of binaural inputs. Input from the ipsilateral side is sent to the lateral superior 

olive (LSO), while sensory input from the contralateral side is sent to the LSO by way of the 

medial nucleus of the trapezoid body. Direct excitatory inputs to the LSO and indirect inhibitory 

inputs illustrate an early mechanism of spatial processing in the auditory system (Carr and 

Konishi, 1990). Compared to the mechanisms operating in the visual and auditory systems, 

feedback in the electrosensory system contains the elements necessary to mediate localization 

and spatial processing of conspecifics.  

As spatial information is transmitted from electroreceptors to the ELL, the suppression that 

originates from the high spatial contrast responses in deep-type pyramidal cell population, 

influences the responses of superficial-type and intermediate-type pyramidal cells through the 

feedback pathway. Here, the topography is conserved, and each deep-type pyramidal cell 

provides information to superficial-type and intermediate-type pyramidal cells in the same 

column of the topographic map. I posit that superficial-type and intermediate-type pyramidal 

cells play an important role for information transmission downstream, because the response 

with feedback appears suppressed relative to the response when feedback is absent. If spatial 

information from different pyramidal cell types or ELL layers are integrated in higher brain 

areas, then I argue that this suppression might be an important contributor for successfully 

localizing a conspecific signal from noisy background signals. Thus, supporting a topographically 

conserved, background suppression mechanism that helps to segregate spatial and temporal 

information to enable accurate spatial processing at the population level. Indeed, further 
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research on population model interactions will be needed to determine the role of feedback in 

shaping spatial coding. 

 

Future Directions 

Investigation of signal localization mechanisms in the vertical plane 

I have shown in my work that there are several ways to encode spatial information, and 

that the method can differ depending on cell type and level of sensory processing (e.g., 

receptors, different maps of the ELL). From my physiological data, there is supporting evidence 

that some conspecific locations are more easily discriminable than others (e.g., lateral azimuth), 

and that certain pyramidal cell types outperform others in a localization task. Particularly, the 

ON-type, deep-type, and larger receptive field pyramidal cells achieve the highest efficiency, 

while other cell types provide significantly less spatial information. However, these findings 

resulted from experiments that presented conspecific stimuli along the horizontal plane of the 

fish’s body. A more complete analysis of the spatial processing of conspecifics would require 

investigating localization along the vertical plane.  

Using my current physiological data, I am limited to theorizing what specific aspects of the 

neural response and network dynamics might contribute most to spatial coding in the vertical 

plane. However, I would expect that responses at the electroreceptor level and deep-type 

pyramidal cell level would follow the same straightforward response pattern to conspecific 

stimuli presented from different locations along the vertical plane. The big difference being that 

the response pattern would be shifted more along the dorsal-ventral axis of the fish’s body 

rather than the rostral-caudal axis. What is more variable might be the responses of the 
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superficial-type and intermediate-type pyramidal cells. These cells have much stronger 

receptive field surrounds, are more susceptible to feedback, and contain more dendritic sites 

for synaptic plasticity. This could mean that the responses of these cell types to conspecific 

stimuli presented along the vertical plane could be vastly different to those presented along the 

horizontal plane, as each of these mechanisms have complex, nonlinear effects on the neural 

response. In this scenario, one possibility is that the vector strength becomes a less informative 

measure of the neural response, and instead, cells must rely more heavily on changes in firing 

rate, stimulus-response gain, or another measure to accurately assess conspecific localization. 

Of course, this leaves much to the imagination, as a complete population code for localizing a 

conspecific in three-dimensional space may require a highly complex, and intricate balance of 

response synchrony and level differences across specific neuron subtypes.  

Another insightful study to conduct with methods already accessible, would be to simply 

model the electric field interactions between two fish, while changing the vertical location and 

tilt of the fish, and keeping the horizontal location and azimuth unchanged. This would provide 

an electroreceptor population response and could enable a prediction of the deep-type 

pyramidal cell responses. This would certainly be a step in the right direction and similar to 

predictions based on the physiology data, I would expect that responses at the electroreceptor 

level and deep-type pyramidal cell level would follow the same straightforward response 

pattern to conspecific stimuli presented from different locations along the vertical plane (i.e., a 

population-wide spatial dependency). Thus, it is imperative to conduct follow-up modeling and 

electrophysiology studies to test whether the localization mechanism explained from Chapter 4 
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is a generalized, three-dimensional localization strategy and not restricted to localization only 

along the horizontal plane.  

 

Spatial coding during motion 

My work in this dissertation shows that the electroreceptor population and several 

subpopulations of pyramidal cell types in the ELL can accurately discriminate between 

conspecific stimuli presented from different locations. In the experiments conducted in Chapter 

3, I deliver conspecific stimuli from different locations and azimuth from a stationary 

conspecific mimic. One behavioral component that remains unaddressed is the effect of motion 

on the spatial aspect of the signal and its influence on spatial processing. A stationary stimulus 

creates a beat (i.e., a first order stimulus) when the stimulus interacts with the electric field of 

the receiving fish. However, fish seldom remain completely stationary and even when they stay 

in the same location, they continually make small movements for active sampling. When a 

stimulus is moving, an envelope (i.e., a second order stimulus) is created between the stimulus 

and the electric field of the receiving fish. A beat arises in the presence of a conspecific and thus 

contains spatial information about the conspecific. Whereas envelopes arise during social 

contexts of more than two fish or when a conspecific is moving, thereby containing spatial 

information about motion (Metzen and Chacron, 2014; Stamper et al., 2013; Yu et al., 2012; 

Thomas et al., 2018).  

Logically, a candidate future study would be to investigate neural coding of a moving 

conspecific stimulus. This study could quantify at several stages of analysis, how the strength of 

the envelope, the electroreceptor population, pyramidal cells of the ELL, and the influence of 
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feedback changes as one fish moves relative to another. An alternative study could investigate 

spatial processing in a freely swimming fish by using tethered or wireless recordings on 

pyramidal cells of the ELL. The freely swimming fish could be tasked with moving around a 

stationary conspecific stimulus, or by interacting with a moving conspecific stimulus with a 

programmed motion path. Certainly, further experiments on the spatiotemporal dynamics of 

beat and envelope coding are necessary to gain a more complete understanding of conspecific 

motion processing in the electrosensory system.  

 

Spatial representation of conspecific signals in downstream topographic maps 

In Chapter 3, I explore how the topographic representation of the ELL contributes to 

effectively encoding stimulus space, by mapping the receptive fields of pyramidal cells and 

quantifying their responses to a conspecific stimulus. I show that certain pyramidal cell 

populations, such as the deep-type pyramidal cells, display a straightforward pattern in their 

population response for encoding a spatial stimulus. Implementing a modeling approach, I 

show that the feedback acts to suppress the superficial and intermediate-type pyramidal cell 

populations’ responses during spatial coding. However, the ELL is not the only area that 

contains topographic maps. In fact, electrosensory topographic maps are conserved 

downstream, in areas such as the midbrain torus semicircularis and the optic tectum (Carr et 

al., 1981, Carr et al., 1982, Maler et al., 1991). In the midbrain torus, there are several 

topographic maps that receive input from specific pyramidal cell types in the ELL. This begs the 

question, how is spatial information transformed from the ELL to the midbrain and optic 

tectum, and what are the functional consequences for localization? Furthermore, the midbrain 
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torus and optic tectum are areas that contain several connections for multisensory integration. 

This could mean that at these levels, information from several modalities (visual, 

mechanosensory, electrosensory, and sensorimotor) are contributing to successfully guide 

localization behavior. There are thus several open-ended questions that need to be researched 

further. What is the role of multiple topographic maps in the hindbrain, in the midbrain, and 

beyond? Are there certain aspects of the neural response that are more informative for a 

specific topographic representation? To what extent does feedback affect different topographic 

maps and what is the impact on behavior? Certainly, further studies will be required to 

elucidate mechanisms of spatial processing in higher brain regions that may serve as ultimate 

localization areas.  

 

Conclusion 

Detailing of how spatial information is processed requires analyzing the responses of the 

principal neurons in the primary sensory area as well as their network interactions (e.g., 

feedforward and feedback inputs). Such an analysis allows to clarify the role of the population 

and network dynamic in shaping spatial information and contributes to our general 

understanding of the mechanisms underlying spatial processing. This dissertation dissects how 

spatial information is represented in the electrosensory system, from the conspecific signal and 

its input onto receptors, to the primary electrosensory area (i.e., ELL). The significance of the 

contributions at each level of analysis is essential for uncovering how spatial information is 

coded in the early sensory system and how precise behavioral sensitivity is achieved. The 

research in this dissertation addresses this by: (1) characterizing the spatio-temporal structure 
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and the contrast of the conspecific signal as it reaches the receptors across the fish’s body; (2) 

quantifying the coding of spatial information by heterogeneous pyramidal cells from empirical 

recordings in topographic maps of the ELL; and (3) upscaling to full populations through 

computational modeling to simulate the effects of feedback, receptive field interactions, and 

noise correlations on subpopulations of pyramidal cells in the ELL. Each finding in this 

dissertation provides unique insights into the functional role of the heterogeneous early 

electrosensory pathways for localizing conspecific signals. The results presented in this 

dissertation push sensory neuroscience research forward by laying the bases of a new area of 

focus using this model system, thereby allowing our understanding of spatial processing to 

benefit from a richer comparative perspective.   
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