597 research outputs found

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio

    The promises of large language models for protein design and modeling.

    Get PDF
    The recent breakthroughs of Large Language Models (LLMs) in the context of natural language processing have opened the way to significant advances in protein research. Indeed, the relationships between human natural language and the language of proteins invite the application and adaptation of LLMs to protein modelling and design. Considering the impressive results of GPT-4 and other recently developed LLMs in processing, generating and translating human languages, we anticipate analogous results with the language of proteins. Indeed, protein language models have been already trained to accurately predict protein properties, generate novel functionally characterized proteins, achieving state-of-the-art results. In this paper we discuss the promises and the open challenges raised by this novel and exciting research area, and we propose our perspective on how LLMs will affect protein modeling and design

    Machine learning methods for predicting protein structure from single sequences

    Get PDF
    Recent breakthroughs in protein structure prediction have increasingly relied on the use of deep neural networks. These recent methods are notable in that they produce 3-D atomic coordinates as a direct output of the networks, a feature which presents many advantages. Although most techniques of this type make use of multiple sequence alignments as their primary input, a new wave of methods have attempted to use just single sequences as the input. We discuss the make-up and operating principles of these models, and highlight new developments in these areas, as well as areas for future development

    Explainable Artificial Intelligence for Image Segmentation and for Estimation of Optical Aberrations

    Get PDF
    State-of-the-art machine learning methods such as convolutional neural networks (CNNs) are frequently employed in computer vision. Despite their high performance on unseen data, CNNs are often criticized for lacking transparency — that is, providing very limited if any information about the internal decision-making process. In some applications, especially in healthcare, such transparency of algorithms is crucial for end users, as trust in diagnosis and prognosis is important not only for the satisfaction and potential adherence of patients, but also for their health. Explainable artificial intelligence (XAI) aims to open up this “black box,” often perceived as a cryptic and inconceivable algorithm, to increase understanding of the machines’ reasoning.XAI is an emerging field, and techniques for making machine learning explainable are becoming increasingly available. XAI for computer vision mainly focuses on image classification, whereas interpretability in other tasks remains challenging. Here, I examine explainability in computer vision beyond image classification, namely in semantic segmentation and 3D multitarget image regression. This thesis consists of five chapters. In Chapter 1 (Introduction), the background of artificial intelligence (AI), XAI, computer vision, and optics is presented, and the definitions of the terminology for XAI are proposed. Chapter 2 is focused on explaining the predictions of U-Net, a CNN commonly used for semantic image segmentation, and variations of this architecture. To this end, I propose the gradient-weighted class activation mapping for segmentation (Seg-Grad-CAM) method based on the well-known Grad-CAM method for explainable image classification. In Chapter 3, I present the application of deep learning to estimation of optical aberrations in microscopy biodata by identifying the present Zernike aberration modes and their amplitudes. A CNN-based approach PhaseNet can accurately estimate monochromatic aberrations in images of point light sources. I extend this method to objects of complex shapes. In Chapter 4, an approach for explainable 3D multitarget image regression is reported. First, I visualize how the model differentiates the aberration modes using the local interpretable model-agnostic explanations (LIME) method adapted for 3D image classification. Then I “explain,” using LIME modified for multitarget 3D image regression (Image-Reg-LIME), the outputs of the regression model for estimation of the amplitudes. In Chapter 5, the results are discussed in a broader context. The contribution of this thesis is the development of explainability methods for semantic segmentation and 3D multitarget image regression of optical aberrations. The research opens the door for further enhancement of AI’s transparency.:Title Page i List of Figures xi List of Tables xv 1 Introduction 1 1.1 Essential Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Explainable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Proposed definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Aims and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Image regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.4 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Zernike polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Explainable Image Segmentation 23 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Seg-Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Estimation of Aberrations 55 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1 PhaseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.2 PhaseNet data generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.3 Retrieval of noise parameters . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.4 Data generator with phantoms . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.5 Restoration via deconvolution . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.6 Convolution with the “zero” synthetic PSF . . . . . . . . . . . . . . . . 63 3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.1 Astrocytes (synthetic data) . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.3 Drosophila embryo (live sample) . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4 Neurons (fixed sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.1 Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.2 Conclusions on the results for astrocytes . . . . . . . . . . . . . . . . . . 74 3.5.3 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5.4 Conclusions on the results for fluorescent beads . . . . . . . . . . . . . . 81 3.5.5 Drosophila embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.6 Conclusions on the results for Drosophila embryo . . . . . . . . . . . . . 87 3.5.7 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4 Explainable Multitarget Image Regression 99 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.1 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.2 Superpixel algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.3 LIME for 3D image classification . . . . . . . . . . . . . . . . . . . . . . 104 4.3.4 Image-Reg-LIME: LIME for 3D image regression . . . . . . . . . . . . . 107 4.4 Results: Classification of Aberrations . . . . . . . . . . . . . . . . . . . . . . . . 109 viii TABLE OF CONTENTS 4.4.1 Transforming the regression task into classification . . . . . . . . . . . . 110 4.4.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.3 Parameter search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.4 Clustering of 3D images . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.5 Explanations of classification . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.6 Conclusions on the results for classification . . . . . . . . . . . . . . . . 117 4.5 Results: Explainable Regression of Aberrations . . . . . . . . . . . . . . . . . . 118 4.5.1 Explanations with a reference value . . . . . . . . . . . . . . . . . . . . 121 4.5.2 Validation of explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5 Conclusions and Outlook 127 References 12

    The promises of large language models for protein design and modeling

    Get PDF
    The recent breakthroughs of Large Language Models (LLMs) in the context of natural language processing have opened the way to significant advances in protein research. Indeed, the relationships between human natural language and the “language of proteins” invite the application and adaptation of LLMs to protein modelling and design. Considering the impressive results of GPT-4 and other recently developed LLMs in processing, generating and translating human languages, we anticipate analogous results with the language of proteins. Indeed, protein language models have been already trained to accurately predict protein properties, generate novel functionally characterized proteins, achieving state-of-the-art results. In this paper we discuss the promises and the open challenges raised by this novel and exciting research area, and we propose our perspective on how LLMs will affect protein modeling and design

    Data Compression Concepts and Algorithms and Their Applications to Bioinformatics

    Get PDF
    Data compression at its base is concerned with how information is organized in data. Understanding this organization can lead to efficient ways of representing the information and hence data compression. In this paper we review the ways in which ideas and approaches fundamental to the theory and practice of data compression have been used in the area of bioinformatics. We look at how basic theoretical ideas from data compression, such as the notions of entropy, mutual information, and complexity have been used for analyzing biological sequences in order to discover hidden patterns, infer phylogenetic relationships between organisms and study viral populations. Finally, we look at how inferred grammars for biological sequences have been used to uncover structure in biological sequences

    Joint Source-channel Coding Using Machine Learning Techniques

    Get PDF
    Most modern communication systems rely on separate source encoding and channel encoding schemes to transmit data. Despite the long-lasting success of separate schemes, joint source channel coding schemes have been proven to outperform separate schemes in applications such as video communications. The task of this research is to develop a joint source-channel coding scheme that mitigates some of the limitations of current separate coding schemes. My research will attempt to leverage recent advances in machine/deep learning techniques to develop resilient schemes that do not depend on explicit codes for compression and error correction but automatically learn end-to-end mapping schemes for source signals. The success of the developed scheme will depend on its ability to correctly approximate an input vector under inconsistent channel conditions
    • …
    corecore