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ABSTRACT 

Joint Source-Channel Coding using Machine Learning Techniques 

 

 

Inimfon I. Akpabio 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Krishna Narayanan 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

 Most modern communication systems rely on separate source encoding and channel 

encoding schemes to transmit data. Despite the long-lasting success of separate schemes, joint 

source channel coding schemes have been proven to outperform separate schemes in applications 

such as video communications. The task of this research is to develop a joint source-channel 

coding scheme that mitigates some of the limitations of current separate coding schemes. My 

research will attempt to leverage recent advances in machine/deep learning techniques to develop 

resilient schemes that do not depend on explicit codes for compression and error correction but 

automatically learn end-to-end mapping schemes for source signals. The success of the 

developed scheme will depend on its ability to correctly approximate an input vector under 

inconsistent channel conditions. 
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NOMENCLATURE  

 

ML  Machine-Learning 

DL  Deep-Learning 

JSCC  Joint Source-Channel Coding 

DNN  Deep Neural Network 

FCNN  Fully-Connected Neural Network 

SNR  Signal to Noise Ratio 

RNN  Recurrent Neural Network 

LSTM  Long Short-Term Memory 

BRNN  Bidirectional Recurrent Neural Network 

BLSTM Bidirectional Long Short-Term Memory 

MSE  Mean Squared Error 

BER  Bit Error Rate 

BLER  Block Error Rate 
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CHAPTER I 

INTRODUCTION 

 

Most modern communication systems perform two processes separately before 

transmitting data over a channel: source coding and channel coding. Source coding maps source 

symbols (or an original signal) to informational symbols in order to eliminate redundancy from 

the source symbols and transmit information in the most efficient way possible. Channel coding 

adds redundancy to the coded signal to increase its integrity and allow for error detection and 

correction. Shannon's source-channel separation theorem [1] implies that we can achieve 

optimality in communication systems using separate source and channel coders given discrete 

memoryless channels and infinite block-length.  

In reality, practical conditions preclude us from using large blocklengths. For example, 

modern engineering applications such as tactile internet require extremely low latency which 

ultimately prevent larger blocklength coding techniques [2]. Moreover, separation-based 

schemes cannot take advantage of improved channel conditions. Hence, once the source coding 

and channel coding rates have been set in place, the quality of reconstructions remains 

unchanged given that the channel capacity remains above the target rate. Conversely, if the 

channel conditions deteriorate beyond some threshold, the performance will decrease severely. 

In communication theory, this is known as the cliff effect.  

It has been shown that optimizing the source and channel coder jointly rather than 

separately can outperform separation-based schemes [3]. This is referred to as joint source-

channel coding (JSCC). Joint source-channel coding and decoding techniques for 

communication media have become a major research topic in the field of information and 
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communication systems. It has gained appeal amongst communication researchers due to its 

potential applications in areas like audio communications, video communications, space 

exploration and satellite transmission. JSCC schemes are also desirable for their ability to 

overcome the “cliff effect”. In this research, we will attempt to develop JSCC schemes using 

deep neural networks that can still perform normally under varying channel conditions. To show 

that this is possible, the inputs will be constrained to 8 unique 7-bit vectors. 

In recent years, the results of deep-learning (DL) research have become pervasive in 

different facets of technology and information sciences. DL techniques have found numerous 

applications in the field of communications which include quantization, compression, 

localization, channel modelling and prediction, modulation recognition, etc. [4]. Unfortunately, 

deep-learning research has not been successfully applied to communications systems on a 

commercial scale. The reason for this stems from the fact that the schemes utilized in 

communication technologies have to be optimally designed and perfected to guarantee reliable 

data transmission. Consequentially, any novel scheme or approach to data transmission is held to 

very high standards of performance. Nonetheless, deep-learning techniques have shown the 

potential to re-invent modern communications systems. The aim of this research is to investigate 

whether we can achieve better transmission error rates than separation-based schemes using 

deep-learning techniques. 

Of particular interest amongst these techniques is self-supervised learning using an 

autoencoder [5]. Self-supervised implies that no label information is provided during learning 

instead the input signal is used as the target variable. The architecture of denoising autoencoders 

closely resembles that of an end-to-end communication system and can be used to find 

meaningful and concise representations of data.  
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Recurrent neural networks (RNN) paired with long short-term memory (LSTM) have 

also gained a lot of popularity in recent years. Due to their hidden states, RNN’s are able to 

retain deep contextual information. RNN’s have been successfully applied to sequential 

problems such as speech recognition.  

In this thesis, we show that using a bidirectional long short term memory autoencoder 

architecture, we can achieve better error rates (bit error rate, block error rate and mean squared 

error) than the Hamming code. Additionally, we will also show that our developed models our 

able to take advantage of improved channel conditions and degrade amicably when the channel 

condition deteriorates. 

The rest of the paper is divided into methods, results and a conclusion. The methods 

section offers an in-depth discussion of the techniques employed in this research. The results 

section contains the simulation results of the developed models including the comparison with 

the Hamming code. 

 

 

  



7 

CHAPTER II 

METHODS 

 

Deep neural networks 

A deep-feedforward neural network forms the basis of most modern deep-learning 

models. The name neural network is loosely inspired by neuroscience, particularly studies on the 

human brain. Neural network models typically consist of one or more layers of neurons. The 

structure of such a neuron is shown in figure 1. Each neuron is responsible for generating output 

for its respective layer and works in parallel with other neurons. Hence, the outputs of a neural 

network layer are usually vector valued. 

 

 

Figure 1. Structure of a neuron. Layers in feedforward networks are usually composed of one or 

more neuron units. The output, y is derived by passing the weighted sum of its inputs and an 

additional bias parameter through a non-linear activation function.  

Network formulation 

Feedforward neural networks are tasked with approximating a function f(𝑥0; 𝛳) that maps 

some input vector 𝑥0 ∈ ℝ𝑁0 to an output, 𝑥𝐿 ∈ ℝ𝑁𝐿 (𝑁0 and 𝑁𝐿 correspond to the length of the 

input and output layers of a feedforward network with 𝐿 layers. The number of layers in a network 
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is usually referred to as the depth of the network.). Note that 𝑥0 and 𝑥𝐿 could represent classes in 

a feature space or categories in a classification problem. Feedforward networks, as they are called, 

propagate information computed from the input through a series of non-linear transformations to 

finally arrive at an output. These non-linear transformations are known as activation functions (𝜎) 

and are quintessential to the operation of neural networks. The added non-linearity allows deep 

feedforward networks to fully realize the benefits of stacking multiple layers on top of each other. 

Unlike purely linear models like linear regression, feedforward networks are able to describe more 

complex functions. Popularly used non linearities include rectified linear unit (ReLU) [6], tanh, 

sigmoid and softmax which are given below. 

𝜎(𝑥) =  max (0, 𝑥) (RELU) 

𝜎(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (Tanh) 

𝜎(𝑥) =  
1

1+𝑒−𝑥          (Sigmoid) 

𝜎(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
         (Softmax) 

The ReLU is highly favored in deep-learning primarily because of the non saturation of its 

gradient which greatly improves the convergence of stochastic gradient descent compared to the 

sigmoid and tanh functions [7]. Others include: tanh, softmax, and sigmoid activation functions 

(see figure 2). The tanh activation function are heavily used in LSTMy units and are discussed in 

more detail in the recurrent neural network section. Softmax is often utilized in output layers of 

classification problem to output probability distributions for each output category. 
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Figure 2. ReLU, Sigmoid and Tanh activation functions. 

 

The operation of a feedforward network can be thought of an iterative mapping of the 

outputs of the previous layer’s output by the current layer up till the final layer: 

𝑧𝑖 =  𝑊𝑖𝑥𝑖−1 + 𝑏𝑖 

𝑥𝑖 = 𝑓𝑖(𝑥𝑖−1; 𝛳𝑖) =  𝜎(𝑧𝑖), i = 1,…, L 

The equations above apply to a standard fully-connected dense layer. Note that each mapping 

also depends on a set of parameters 𝛳. In this case, the parameters 𝑊𝑖 and 𝑏𝑖 constitute the 

parameter set for that layer. 𝑊𝑖 is a trainable layer of weights and 𝑏𝑖 is a trainable layer of biases. 

Other layer types such as the Gaussian noise layer and the normalization layer exist in the 

following work. Although these layers are typically utilized for regularization purposes, we will 

use the Gaussian noise layer to simulate an additive white Gaussian noise channel and the 

normalization layer to satisfy the average power constraint. It is also worth noting that the mean 

and standard deviation used in normalization are calculated per batch. 

𝑥𝑖 = 𝑓𝑖(𝑥𝑖−1) =  𝑥𝑖−1 + 𝒩(0, 𝑎𝐼𝑁𝑖−1
)     (Gaussian noise layer) 

𝑥𝑖 = 𝑓𝑖(𝑥𝑖−1) =  
(𝑥𝑖−1−𝑥̅𝑖−1)

√(
1

𝑚
∑ (𝑥𝑖−1−𝑥̅𝑖−1)2 𝑚

𝑘=1 )2+𝜖

       (normalization layer) 
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Back-propagation 

When a neural network is created, its parameters are initialized (initial values could be 

randomly set, fixed to zero, Gaussian distributed, etc.). Before such a network can be used to 

properly approximate some function, the network must adjust its parameters to the right values. 

This is achieved through training using a process known as back propagation. The purpose of back 

propagation is to adjust the parameters of the NN enough so that it approximates the desired 

function as closely as possible. During training, a set 𝑇 of input/output pairs are fed to the network 

and the closeness of the predicted output (𝑥𝐿́) to the actual output (𝑥𝐿) is quantified. The closeness 

of such an approximation is measured using what is known as a loss function. 

𝐽(𝛳) =
1

||𝑇||
∑ 𝑗(𝑥𝐿,𝑡, 𝑥𝐿,𝑡́ )

𝑡∈𝑇
  

Many loss functions exist in machine-learning. For the purpose of this research, only 2 loss 

functions were used: mean squared error (MSE) and categorical cross-entropy. The MSE is simply 

the square of the Euclidean distance between the actual and predicted vector. 

||𝑥𝐿,𝑡 − 𝑥𝐿,𝑡́ ||2         (MSE) 

− ∑ 𝑥𝐿,𝑡. log (𝑥𝐿,𝑡́ )𝑡∈𝑇          (Categorical Cross-entropy) 

 Categorical cross-entropy on the other hand is a cross-entropy generally following a 

softmax function. The softmax function which was mentioned earlier, outputs probability for each 

possible output class. Cross entropy loss measures the performance of a classifier that outputs a 

probability between 0 and 1. This loss increases as the output distribution diverges from the actual 

label distribution. 

The next step is to solve for the set of parameters that minimize the loss function. In back-

propagation, the gradient with respect to the loss is spread back until the first layer per iteration 

until the loss converges. The most popular optimizer is stochastic gradient descent (SGD). In SGD, 
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we update the set of parameters iteratively by taking steps in the opposite direction of the gradient 

of the loss function, which is calculated per mini-batch rather than using the entire dataset. 

𝑊𝑖,𝑡 = 𝑊𝑖,𝑡−1  − 𝛾
𝜕𝐽

𝜕𝑊𝑖
 

The adjustments are usually regulated using a learning rate (𝛾). SGD has been proven to 

converge any convex loss function to a global minimum [8]. Another commonly used optimizer is 

the Adaptive moment estimation (ADAM) optimizer. Unlike SGD, ADAM computes an adaptive 

learning rate for each parameter. It achieves this by keeping track of a running average of 

exponentially decaying moments. In experiments involving deep feedforward NN’s with non-

convex objective functions, ADAM often outperforms other optimizers [9]. 

Autoencoders 

  Autoencoders are special types of feedforward networks that are applied to 

unsupervised learning tasks. These networks are tasked with reconstructing an output vector that 

is similar to its input. The architecture of an autoencoder shown in figure 3 is similar to that of an 

actual end-to-end communication system which makes it suitable for our experiments. In 

minimizing the error between the input and the output the network learns a hidden layer 

representation for mapping input signals. To avoid a trivial mapping of the inputs via an identity 

matrix, constraints are usually placed on the network. For instance, a noise layer could be added 

as a form of regularization. Such constraints usually allow the network to learn rich and 

informative latent representations about the data. In our experiments, we leverage this as the 

noisy channel and learn an encoding scheme that maps a 7 bit vector to length-6 vector of real 

numbers.  
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Figure 3. Structure of an autoencoder that maps 𝑥 (input vector) to 𝑟 (reconstruction of 𝑥) 

through ℎ (the hidden/latent representation). 𝑓 and 𝑔 are usually referred to as the encoder and 

decoder of an autoencoder network. 

Recurrent Neural Networks 

 RNN’s are a special type of feedforward deep network that leverage interactions 

between neighboring data points in sequential data. Typical RNN architectures involve a delayed 

output to allow the network to leverage information from previous elements of the sequence (see 

figure 4). The operation of RNN’s is as follows: Given a sequence 𝑥 = (𝑥1, … , 𝑥𝑇), it computes a 

hidden sequence ℎ = (ℎ1, … , ℎ𝑇) and output sequence 𝑦 = (𝑦1, … , 𝑦𝑇) by iterating the following 

equations from 1 to 𝑇: 

ℎ𝑡 =  ℋ(𝑊ℎ ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) 

𝑦𝑡 =  𝑊𝑦 ∙ ℎ𝑡 + 𝑏𝑦 

Note that 𝑊and 𝑏 represent the weight matrix and bias vectors respectively. ℋ is typically 

implemented as an element-wise sigmoid function. 

The chain-like structure of the RNN means that information can persist throughout the 

network making it a powerful tool for solving sequence-based problems. Despite the ability to 

retain information, basic RNN’s lack the ability to retain long-term information. This is a direct 

consequence of the exploding/vanishing gradient problem. The vanishing gradient problem occurs 

when continuous derivatives involved in the parameter update process begin to approach small 
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values, hence, resulting in little or no change to the network’s parameters. Fortunately, the 

introduction of LSTM in RNN models has helped to mitigate this problem. 

 

 

Figure 4. Recurrent Neural Network. 

 

Long Short-Term Memory 

LSTM’s are basically a connection of recurrent blocks memory cell units. Each cell 

consists of 3 gates: input, forget and output gates that are effectively used to calculate its output, 

as in Figure 5. The power of the LSTM lies in its ability to propagate previous information through 

the cell state 𝐶𝑡 (i.e. the line running through the top of the network). Each cell unit can alter this 

information based on its interaction with either of the 3 gates. Gates usually consists of a 

multiplication operation to extract the features and a non-linear activation function that outputs a 

probability to filter how much information can pass through them (i.e. the sigmoid function outputs 

values between 0 and 1 which when multiplied by an input will select only a portion of the signal). 

The first gate is the forget gate. The forget gate selects how much information to retain from the 

cell state based on new input 𝑥𝑡 and ℎ𝑡−1 from the previous cell unit. 
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Figure 5. Long Short-Term Memory. 

 

The computation for this gate involves passing a concatenation of  𝑥𝑡 and ℎ𝑡−1 through the sigmoid 

layer and multiplying the result elementwise by the cell state 𝐶𝑡.  

𝑓(𝑡) = 𝜎 (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

The next gate is the input gate. The input gate is responsible for adding new information to 

the cell state. The inputs 𝑥𝑡 and ℎ𝑡−1 are first passed through a tanh layer to extract new information 

to be added. This new information is then filtered in same manner as the forget gate. We pass the 

input through a sigmoid layer and multiply the output by the result from the tanh layer. The 

resulting filtered information is then added to the cell state. Note that ‘*’ represents element-wise 

multiplication. 

𝑖(𝑡) = 𝜎 (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶(𝑡) = 𝑡𝑎𝑛ℎ (𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 
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The output gate determines what information is output (ℎ𝑡) from each cell. It does this by 

applying a tanh layer to the cell state and filtering out the result with a sigmoid layer similarly to 

the input and forget gates. 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝐶𝑡) ∗ 𝜎 (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

Although traditional LSTM’s have successfully been applied in areas such as speech 

recognition [10] and stock market analysis, they can only utilize sequential information in one 

direction (i.e. before or after). In order to fully overcome the aforementioned problem, we will 

introduce Bidirectional RNN’s (BRNN) which are able to utilize sequence information in both 

directions. 

BRNN’s basically have 2 layers of RNN’s in parallel that handle training sequences in 

forward and backward directions (see figure 6). Both networks are connected to the output layer 

and this ensures that at every step in the sequence, the network can utilize past and future 

contextual information to minimize its loss. This also eliminates concerns over restrictions of the 

time-window since the network has enough contextual information at its disposal. A combination 

of BRNN’s and LSTM’s gives rise to the bidirectional LSTM (BLSTM). BLSTM’s leverage the 

bidirectional flow of information in RNN’s to retain past and future contextual information [11]. 

Alex and Jurgen in their experiments on Phoneme classification showed that bidirectional 

networks perform better than traditional unidirectional networks [12]. Bidirectional networks have 

also displayed great potential in various sequential problems [13], [14]. The next section describes 

the structure of our target model. 
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Figure 6. Bidirectional Recurrent Neural Network. 

 

Implementation 

A typical end-to-end communication system is made up of a transmitter, channel and 

receiver. The transmitter can send any of the allowed messages of blocklength 𝑘 with 𝑛 discrete 

uses of a channel. Hence the transmitter performs the mapping 𝑓 ∶ ℝ𝑘 ⟶ ℝ𝑛. Moreover, most 

communication systems place constraints on the transmitted signal (e.g. amplitude 

constraint |𝑥𝑖| ≤ 1 ∀𝑖). The transmitted signal is mapped using the transformation 𝑔 ∶ ℝ𝑛 ⟶ ℝ𝑘 

to approximate the input signal. 

Figure 7 shows a structural representation of the target model architecture. The model 

will accept a 7-bit vector as input which will be mapped to a vector 𝑧 ∈ ℝ6. The encoded signal 

is then passed through a noisy channel which is simulated as an untrained layer of additive white 

Gaussian noise. The output of this channel is a corrupted signal which is then passed to the 

decoder that tries to recover/reconstruct the original signal. The 7-bit input vector is 

representative of the source signal that is fed into a typical network communication systems. 

Such signals could be images, video or text. Each time the encoded input passes through the 

channel, noise is added, and hence, the model has to be trained to correctly reconstruct the 

original input from the corrupted signal.  
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Figure 7. Structural diagram of JSCC model architecture.  

 

Despite using only 8 symbols, the addition of noise creates infinitely more input combinations to 

train the network with since the noise is modeled as a continuous random variable. 

The models were trained using both MSE and categorical cross-entropy. Note that the 

model’s performance is measures using 3 major error metrics: bit error rate (BER), block error 

rate (BLER) and MSE. The bit error rate is simply a ratio of how many bits are incorrectly 

reconstructed/altered during transmission over all transmitted bits. Similarly, the block error rate 

is a ratio of how many vectors as a whole are wrongly reconstructed over all transmitted vectors. 

The mean squared error, on the other hand, is defined as the Euclidean distance between the 

reconstructed vector and the input vector and represents how far off the approximation is from 

the original input. 

𝑀𝑆𝐸 =  
1

7
∑(𝑣𝑖 − 𝑣𝑖) 

Multiple models were simulated and compared against the Hamming code in order to 

select the best model. The architectures for the deep-learning models were developed using 

Python2.7’s Keras libraries with Google’s TensorFlow as the backend. The results section 

focuses on the performances of the fully-connected neural network (FCNN) autoencoder and the 
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BLSTM autoencoder. To evaluate the reconstruction accuracy, the bit error rates and mean 

squared errors were measured and plotted against training epochs for different values of channel 

SNR. 

Fully-Connected Autoencoder 

The network accepts the input and propagates it through a system of dense feedforward 

NN layers which will attempt to automatically learn an encoding scheme for the input (see figure 

8). The encoding portion of the network consists of 2 hidden layers with 3 and 6 neurons 

respectively connected to a normalization layer. The decision to use 3 neurons in the first hidden 

layer is incentivized by the number of information bits needed to encode 8 distinct symbols 

(source-coding). Additionally, it allows for a fair comparison to the Hamming code (see 

Hamming code section). The second layer is fixed at 6 neurons to satisfy the desired number of 

discrete channel uses. The encoded signal is then normalized to satisfy the average signal power 

constraint according to  
1

𝑛
𝔼[𝑧 ∗ 𝑧] < 1 (where z is the encoded signal and 1 is the signal power 

constraint). This output of the encoder is a concise representation of the original input signal. 

The output of the encoder is then corrupted by the noisy channel simulated as a layer of additive 

white Gaussian noise before being passed on to the decoder. The decoder, on the other hand, 

decodes the channel codes by applying the learned decoding scheme and tries to find an 

approximate reconstruction of the source signal. Both the decoder and the encoder are trained 

simultaneously to maximize the conditional likelihood of a target vector given some input vector. 

Each dense layer uses ReLU activation function excluding the output layer which utilizes a 

softmax to output a probability distribution. 
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Figure 8. Functional Block diagram of FCNN autoencoder. 

 

BLSTM Autoencoder 

The BLSTM autoencoder model possesses a similar architecture to the FCNN 

autoencoder albeit with different structural components as shown in figure 9. The encoder starts 

with a BLSTM stack/cell containing 7 hidden state units for each time step (see in figure 5).  The 

dimensionality of the hidden units is set to 32 (see Recurrent Neural Network section for more 

details on the hidden state). Also recall from our earlier discussion on Bideirectional RNN’s that 

BLSTM contain 2 layers of LSTM working in parallel. Since these layers are not directly 

connected to the final output, we will pass their hidden state values as output to the next layer. 

Hence the output dmiension of the BLSTM stack is (batch size, 7, 2*32). The next layer is an 

untrained reshape layer which squashes the 3-dimensional output of the BLSTM to a 1-

dimensional vector of size (1, 2*7*32). The squashed vector is then passed on to a time 

distributed layer which maps it to a length-6 encoded vector as desired. The time distributed 

layer is a special type of layer in deep learning that is often used in conjunction with LSTM to 
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flatten the output from the preceding layer. Each time-step employs the same set of parameter 

values to perform its mapping. Similarly to the NDD autoencoder, we normalize the encoded 

vector and pass it through a channel to the decoder. The decoder in this case is simplistic and 

consists merely of an output layer with a softmax activation function. 

 

 

Figure 9. Functional Block diagram of BLSTM autoencoder. 

 

Hamming code 

 A shortened version of the (7, 4) hamming code is used as a benchmark for our 

experiments. This modification involves fixing one of the information bits to zero. Hence this bit 

never changes and need not be transmitted resulting in a (6, 3) Hamming code.  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠: 𝑑1, 𝑑2, 𝑑3, 0 

Parity bits: 𝑝1 = 𝑑1⨁ 𝑑2⨁ 𝑑3, 𝑝2 = 𝑑1⨁ 𝑑3⨁ 0, 𝑝3 = 𝑑1⨁ 𝑑2⨁ 0 

𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑: [𝑑1, 𝑑2, 𝑑3, 𝑝1, 𝑝2, 𝑝3] 
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The resulting codewords are first modulated using BPSK and decoded using 2 different methods: 

soft/block-wise decoding and hard/bit-wise decoding. For hard decoding we first the transmitted 

bits are converted to -1 or +1 based on the threshold (i.e. positive values are converted to +1 and 

negative values are converted to -1). Next we match the converted vector to the codeword with 

the minimum Hamming distance. For soft decoding the received vector is matched to the 

codeword with the minimum Euclidean distance. 
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CHAPTER III 

RESULTS 

 

Training Results 

Figure 10 and figure 11 show the training and testing error results for FCNN autoencoder 

models trained on channels with 0.0 dB and 8.0 dB SNR respectively. The models were trained 

using 80,000 samples of data and tested on 20,000 samples using categorical cross-entropy loss. 

In our experiments, the ADAM optimizer displayed better convergence than other optimizers 

such as SGD and AdaGrad and was initialized with the following values: learning rate (0.001), 

beta1 (0.9), and beta2 (0.999). A lower batch size of 40 was found to yield better training results 

than using larger batch sizes like 256 or 512.  We utilized checkpointing to retain the model state 

that yielded the best loss.  

 

 

Figure 10. Training/Test Error for FCNN Autoencoder trained with 0.0 dB channel. 
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Figure 11. Training/Test Error for FCNN Autoencoder trained with 8.0 dB channel. 

 

Figure 12 and figure 13 show the training and testing error results for BLSTM 

autoencoder models trained on channels with 0.0 dB and 8.0 dB SNR respectively. Our BLSTM 

model converges faster than the FCNN and appears to reach a better global solution. This 

improved performance is due to the BLSTM’s ability to utilize contextual information in both 

the forward and backward direction as explained in the RNN section. The training parameters are 

similar to that of the FCNN. 

The capacity of these models to converge to almost zero loss answers the major question 

of this research by showing that proving that deep-learning can indeed be used to develop Joint 

source-channel coding schemes. This is most likely due to the FCNN treating the noise layer as a 

regularization constraint. Consequentially, it is able to learn strong and robust hidden 

representation as opposed to a trivial identity mapping. 
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Figure 12. Training/Test Error for BLSTM Autoencoder trained with 0.0 dB channel. 

 

 

 

Figure 13. Training/Test Error for BLSTM Autoencoder trained with 8.0 dB channel. 
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Comparison with Hamming code 

Figure 14 and 15 show the BER and BLER comparisons with the Hamming code. 

Surprisingly, the BLSTM autoencoder was able to match the Hamming code in terms of 

performance. This means that our BLSTM model was able to leverage its non-linearity to 

successfully learn a robust, Joint-coding scheme unlike the Hamming code which uses a linear 

transformation. It is worth noting that the Hamming code is not the fairest comparison since it is 

technically just a channel coding algorithm.  

 

 

Figure 14. Bit Error Rate comparison with hard and soft decision Hamming code.  
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Figure 15. Block Error Rate comparison with hard and soft decision Hamming code. 

 

Figure 16 shows the result of the MSE comparisons. To simulate the models against 

mean squared error loss, the output was modified to have the same dimension as the input. The 

results show that our models are still able to match the Hamming code in performance when 

trained with MSE loss for lower SNR values and levels off for higher values. Unlike the FCNN, 

the BLSTM’s ability to use bidirectional contextual information precludes it from getting stuck 

at a local minimum. Further improvements could possibly be realized by using regularization 

techniques such increase sparsity so as to obtain a stronger hidden representation of the inputs. 
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Figure 16. Mean Squared Error comparison with hard and soft decision Hamming code.   
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CHAPTER IV 

CONCLUSION 

 

The results show that it is possible for deep learning architectures to perform as well as 

separate schemes without the need for expressly specified codes. We were also able to show that 

the BLSTM autoencoder is robust and performs better than the Hamming code for varying 

channel SNR values. One of the shortcomings of this research is that the source blocklength is 

small compared to typical transmissions such as images. For such models to be deployed in 

practical applications, it might be necessary to develop different architectures to deal with 

different input types like text, images, etc. The models also need to be scalable and will require 

more rigorous training to properly operate in real-time. 
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