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Abstract

Recent breakthroughs in protein structure prediction have
increasingly relied on the use of deep neural networks. These
recent methods are notable in that they produce 3-D atomic
coordinates as a direct output of the networks, a feature which
presents many advantages. Although most techniques of this
type make use of multiple sequence alignments as their pri-
mary input, a new wave of methods have attempted to use just
single sequences as the input. We discuss the make-up and
operating principles of these models, and highlight new de-
velopments in these areas, as well as areas for future
development.
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Introduction

The classic problem of predicting protein structures
from amino acid sequence remains unsolved, despite
significant advances in recent years. These advances
have mainly come about from applications of modern Al
techniques, particularly deep neural networks to the
problem. The most successful of these methods directly
produce atomic coordinates as their outputs, known as
“end-to-end” methods, which are distinct from prior
methods of accurate structure prediction that first
predicted inter-residue distances and then used them to
‘solve’ the 3D structure in a subsequent step, similar to
NMR structures. Prominent examples of this two-step
approach are the first version of the AlphaFold system
[1,2], trRosetta [3], RaptorX [4], CONFOLD [5], and
DMPfold [6,7].

In contrast to the two-step approach, end-to-end
methods do not require additional modelling tools to
build a model, and are thus faster and easier to run. More
importantly, though, they perform better because in
training the neural networks, the whole prediction pro-
cess can be optimised to produce better models. Another
advantage is the ability to use the trained model in ways
that were not possible using the two-step approach (e.g.
for protein design), where an end-to-end method can
effectively be just run in reverse. Most end-to-end
methods take multiple sequence alignments (MSAs) as
inputs, built from the target protein sequence and ho-
mologous sequences retrieved from protein sequence
data banks. Accurate structure prediction is dependent
on the number and diversity of homologous sequences in
the input MSA. Alternatively, a new group of methods are
designed to operate only on single sequences, which will
be explored in this review. Here, we take the term
“single-sequence” to mean that only a single sequence is
provided to the method for structure prediction, that is to
say, in an entirely MSA-free manner. Figure 1 illustrates
the operation of methods based on either single-
sequence or MSA inputs, in both the two-step and
end-to-end configurations.

Single-sequence methods based on
language models

Although deep learning methods that use MSAs have
clearly been successful in predicting protein structures,
the need for high-quality MSAs can be problematic.
Although far fewer than there were, there still exist so-
called orphan sequences or “lineage-specific genes” with
no or very few homologs in current sequence databases
[8—11]. Such genes have been theorised to have origi-
nated from several sources, including evolution from
non-coding sequences in specific species, or through
gene neofunctionalisation [12], whereby gene duplica-
tion events give rise to novel functions. MSA-based
methods typically do not produce good predictions for
these sequences. More broadly, there is also the argu-
ment that one should not need to resort to using a family
of related sequences in order to infer the structure of
one member of that family; after all, a protein chain
folding 2 vivo has no knowledge of its evolutionary
history. From a computational perspective, single-
sequence methods also offer advantages. MSA-based
methods rely on time-consuming database searching,
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Figure 1
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Overview of deep learning protein structure prediction methods. Both a) MSA-based and b) single sequence-based structure prediction methods

can be divided into those that produce coordinates in an end-to-end fashion,

and those that do not. Single sequence-based methods replace MSA

generation with pLMs which generate inputs for a deep learning network. Non-end-to-end methods rely on external programs for model generation.

and this can be a major bottleneck when trying to pre-
dict the structures of a large number of proteins.

Consequently, there is now a growing body of work starting
to look at prediction methods which can work from just
single-sequence inputs, and these methods have started
to show promise in a number of scenarios where MSA-
based prediction is either impossible or problematic
(Table 1). One such scenario would be in predicting the
effect of mutations; single sequence-based methods,
although far from perfect, have been shown to be at least
more sensitive to mutations than using MSA-based
AlphaFold2 [27,29]. Improving predictions in this area
may require specialised methods that are better equipped
to decode variant effects from single sequences.

Recent developments in natural language processing have
been rapidly exploited in computational biology, and have

led to an emerging group of methods that employ language
models (LMs) to learn useful protein representations. In
this context, a protein language model (pLLM) is a deep
learning model that encodes protein sequences into rich,
high-dimensional, and “content-aware” representations,
which can be decoded to tackle a range of prediction tasks,
including fold classification, function prediction, and more
recently, in protein structure prediction and design.

Like their natural language cousins, pLLMs employ an
encoder-decoder architecture, trained in a self- or un-
supervised manner on sequence regeneration tasks.
The input sequence with some number of positions
masked out or randomly mutated is first provided to the
encoder, with the task of the decoder being to regen-
erate the original sequence, solely from the output of
the encoder. This encourages the decoder to learn what
amino acids to expect at a masked position from the
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Table 1

Some applications where effective single-sequence prediction methods would be useful.

Application Advantages Reference

Fast protein structure prediction Rapid execution enables large-scale analyses; reduces barriers to e.g. [26,27]
sequence similarity searching

Protein design Rapid generation and evaluation of many designed sequences [28]

Variant effect prediction Prediction of single and multiple mutations and splice variant effects, [27,29]
which need to be specific to just the modified target sequence.

Orphan protein structure prediction Hopefully more accurate predictions compared to MSA-based methods [30,31]

Understanding protein biophysics
Homology detection

May be more representative of real-world protein energy potentials [30]

Rapid assignment of novel proteins to protein families; detection of novel [20,27]
folds
More accurate antibody loop modelling (evolutionary information is not [21,32]

Antibody modelling
helpful here)

context available in the unmasked positions, while also
simultaneously encouraging the encoder to produce
embeddings to assist in this endeavour. Training can be
done either autoregressively, that is, starting from the
first position, all previous positions (none at all for the
first position) are used to help predict the next, masked
position, or bi-directionally, with a scheme known as
masked-language modelling [13,14].

The goal of pLLMs is to model the probability distribu-
tion of the training sequences, though where the out-
puts are conditioned on the single input sequence. This
last point is important, because it means that the rep-
resentation of the input sequence will model variations
expected for that sequence, and this can be thought of
as analogous to information we might try to extract from
an MSA and represent in the form of sequence profiles
or Hidden Markov Models. The embeddings produced
by pLLMs can be considered as alternatives to sequence
profiles, but with higher order statistics (pairs, triplets,
etc.) taken into account. In theory, such an embedding
could model all of the information that could be found in
an MSA, as long as there is sufficient data to learn from
and the model is sufficiently large to represent it.

Although pLLMs generally do not make explicit use of
MSAs for training, the embeddings they produce will be
strongly biased by the same evolutionary information,
and this must be taken into account when evaluating
results. The outputs of pLLMs are therefore not “ho-
mology free” in the sense of true ab initio methods.

The first attempts at using LLMs to learn universal repre-
sentations of protein sequences were in preprint articles
published by three different groups in early 2019. Tivo of
these, UniRep [15] and SeqVec [16], were Recurrent
Neural Network (RNN) pLLMs trained on UniRef se-
quences. These studies showed that encoded latent rep-
resentations of protein space had the capacity to predict
multiple levels of features, such as amino acid-level

physicochemistry, secondary structure, protein disorder,
subcellular location, whether a protein was membrane-
bound, as well as recognising the relationship between
sequences in different model organisms [15,16]. Rather
than using RNNs, ESM-1b [17] made use of self-
attention transformer models, and this produced embed-
dings that could be used to produce protein contact maps,
which could be offloaded to programs such as RaptorX [4]
to output structure coordinates. Although not end-to-end,
the methodology importantly demonstrated a way to uti-
lise single-sequence inputs for structure prediction,
bypassing the MSA generation bottleneck, as well as being
potentially capable of handling orphan and designed se-
quences which lack homologs.

Most recent single-sequence structure prediction
methods are end-to-end in terms of inference, but not in
terms of training. Generally, they follow the two-step
paradigm of first encoding the query sequence with a
pre-trained pLM, followed by coordinate generation
using either a neural network-based prediction head, or
by external programs. It is interesting to speculate
whether training a pL.M-based method, fully end-to-end
from sequence to structure, may have different prop-
erties to those trained using the two-step method,
although such a training method would be limited by
the number of training examples. So far, coordinate
generation by end-to-end methods has typically been
based on variations of AlphaFold2’s Evoformer stack plus
structure module, or RoseT'TAFold’s three-track archi-
tecture. A list of published single-sequence methods
can be found in Table 2.

Single-sequence structure prediction
accuracy is approaching that of state-of-
the-art MSA-based methods

The state of the art in protein structure prediction is
evaluated biennially in the Critical Assessment of Struc-
ture Prediction (CASP) experiments [18]. In the most
recent CASP (CASP15), methods that utilised pLLMs
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Table 2

Single-sequence protein structure prediction methods.

Method e2e pLM Trunk Published® Reference
RGN2 Y AminoBERT Recurrent geometric network 4 Aug 2021 [30]
trRosettaX-Single N s-ESM-1b pyRosetta 18 Jan 2022 [31]
ESMFold Y ESM-2 AlphaFold2-like 21 Jul 2022 [26]
OmegaFold Y OmegaPLM AlphaFold2-like 22 Jul 2022 [33]
HelixFold-Single Y No name AlphaFold2-like 28 Jul 2022 [34]
EquiFold® Y None SE (3) equivariant network 8 Oct 2022 [21]
MonoFold Y ESM-2 AlphaFold2-like 18 Oct 2022 [35]
tFold-Ab® Y ProtXLNet AlphaFold2-like 13 Nov 2022 [32]
EMBER3D Y ProtT5-XL RoseTTAFold-like 18 Nov 2022 [27]

2 First preprint date.
b Designed for specific types of targets.

included EMBER3D (group 140: ‘EMBER3D’),
ESMFold (group 067: ‘ESM-single-sequence’), and a
variant of OpenFold using only single-sequence inputs
(group 433: ‘OpenkFold-SingleSeq’). As this excludes most
of the methods listed in "Table 2, we conducted an in-
house benchmark on the performance of each method
on CASP15 targets, using the domain sequences from pre-
computed alignments (generated by A. Elofsson during
the prediction season; Figure 2). As baselines, we also
compare against Alphalold2 using either only single-
sequence (AlphaFold2’), or full-alignment inputs
(AlphaFold2 (MSA)’). Several methods were excluded,
including EquiFold and tFold-Ab, which were trained to
predict specific types of target, as well as HelixFold-Single
and MonoFold, which we were not able to run.

Figure 2a shows that ESMFold and OmegaFold perform
the best amongst the pLLM-based methods, greatly
outperforming AlphaFold2, but only when it’s forced to
use single-sequence inputs alone. When AlphaFold2 is
used with MSA inputs, it outperforms the pL.M methods
significantly. Furthermore, although pLLM-based methods
sometimes produced models of comparable quality to
AlphaFold (using MSAs), this prediction success corre-
lates with the number of homologs available for the target
(Figure 2b). This suggests that prediction quality is still
limited by the size of the protein family that the pLLM has
seen during training. The same conclusions can be made
when comparing the CASP15 performance of ESMFold
and AlphaFold2 (MSA) in Figure 2c, where both methods
perform similarly for targets in the Template-Based
Modelling (TBM) category, but ESMFold performs
markedly worse on Free-Modelling (FM) targets (which
lack known structural homologs in the Protein Data Bank).

Outstanding issues in modelling the
language of proteins

Suboptimal positional encoding schemes

To date, most pLLMs have used the same model archi-
tectures used for tasks involving human languages, most

notably the Transformer [19]. At the core of the
Transformer is the attention mechanism, which provides
a way of learning dependencies between words or
sequence positions that are separated by arbitrary dis-
tances in the sequence. A key property of “vanilla”
attention is that it is permutation-invariant, that is, it
produces the same result for any given sentence and any
permutation of that sequence. This is of course prob-
lematic, both for natural and biological languages.
Therefore, most practical implementations of Trans-
former models include mechanisms for positional
encoding (PE), so that dependencies between tokens
can be learned as a function of their absolute or relative
positions in the sequence.

In pLLMs, absolute PE essentially assigns residue
numbers to each amino acid (token). This makes sense,
but can prevent generalisation to longer or shorter se-
quences. This is particularly problematic for proteins,
where different domain architectures can arise in
related longer sequences. Relative PE can be the better
choice here, however, long sequence separations are
handled poorly, resulting in tandem repeats of domains
being indistinguishable from one another (i.e. they all
produce the exact same embedding). This might be
useful in some cases, but not in many others (e.g. 3-D
modelling). Ideally, a hybrid of the two styles of PE
would make sense for proteins, but as yet, no well-
tailored PE, dedicated to protein sequences, has been
proposed. Solving this small but important aspect of
pLMs could have a big positive effect on future results.

Inconsistencies in predictive accuracy across
different protein families

It’s clear that the accuracy of pLM-based methods varies
greatly from target to target. Clearly, some learned rep-
resentations are more informative than others. An obvious
factor must be the underlying sizes of the protein families;
we would expect proteins from large families to be
predicted more accurately than those from smaller
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Performance of single-sequence methods and AlphaFold2 on
CASP15 targets. a-b) Benchmark on 30 CASP15 targets (9 FM, 2 FM/
TBM, 19 TBM), taken as those with ground truth structures released by
CASP organisers and with pre-computed alignments. Targets were
modelled using the domain sequences from pre-computed alignments. b)
TM-scores for each target plot against potential MSA depth. Shallow
alignments of fewer than 100 sequences have been isolated for clarity. c)
Comparison of AlphaFold2 (MSA) against ESMFold for 84 CASP15 FM
and TBM domains (TM-scores were accessed from CASP15 website).
AlphaFold2 scores were taken from entry ‘NBIS-AF2-standard’ (group
270).

families as larger families should have produced more ac-
curate probability distributions due to greater sampling.
However, we have observed numerous deviations from
this. DnyF from Micromonospora chersina (PDB 1D 6UBL,;
target 11010 in CASP13), which current single-sequence
methods fail to predict accurately, belongs to a medium-
sized family with >200 homologs in sequence databases.
For MSA-based methods, this is sufficient data to produce
an excellent 3-D model. We speculate that this might be
attributable to the highly scattered distribution of indels/
gaps between DynF and its homologs. In our opinion, a
likely reason for this failure is that Transformer-based
neural networks with only simplistic positional encoding
schemes are not able to deal with such variable insertions.
If there were many more related sequences to learn from,
though, we would expect a case like this to improve. The
current position is that both pLLMs and MSAs work well for
large families, but for smaller families, using an MSA re-
mains the best approach.

Similar inconsistencies in predictive performance can be
seen when modelling so-called orphan sequences (se-
quences with few or no known homologs in protein
sequence data banks) and &¢ novo-designed proteins.
When designing protein sequences de novo, it is
commonly desired that the designed sequences bear no
detectable evolutionary similarity to any sequence in
current databases, so that the success of the design is
not simply a function of its similarity to naturally
occurring sequences. Recent deep-learning methods
(both single-sequence and MSA-based) seem to predict
structure accurately for most of these designed se-
quences (Figure 3a), even though the MSA-based
methods usually require at least dozens or ideally hun-
dreds of related sequences for accurate prediction.
However, neither performs well for the majority of
orphan proteins.

Considering the median scores in Figure 3, structures for
designed sequences can be predicted much more readily
than for orphan sequences in general. Why should there
be such a difference between natural orphan sequences
and designed sequences? The likely explanation is that
the vast majority of designed sequences are designed
with only one goal — to fold into a specified 3-D struc-
ture. Most designed sequences are not functional, and
therefore do not need to balance the sequence con-
straints of folding with those of function. In other words,
every residue is selected purely to optimise the
sequence—structure relationship. This presumably
makes the structures of most designed sequences “easy”
to predict, as their sequences are overspecified in terms
of what is needed to find a stable 3-D structure (and are
likely hyperstable). In contrast, naturally occurring se-
quences will have some amino acids selected for func-
tional reasons (e.g. a binding site), and some amino acids
not selected at all, and simply present due to neutral
drift. Without the overspecification of the 3-D structure

www.sciencedirect.com

Current Opinion in Structural Biology 2023, 81:102627


www.sciencedirect.com/science/journal/0959440X

6 Sequences and Topology

Figure 3
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Benchmark on 198 de novo designed and 100 orphan sequences.
Sequences were taken from the RGN2 and trRosettaX-Single publica-
tions. All methods including AlphaFold2 used only the target sequence as
the sole input.

that most designed sequences demonstrate, natural
orphan sequences remain challenging prediction targets.

So what about the 24% of orphan sequences that are
predicted well (TM-score >0.7) by at least one of the
single-sequence methods considered? Barring the pos-
sibility of inclusion of the target structures in the
training data, the most likely explanation is simply that
those orphan sequences are actually distant members of
an existing family, but that detecting the relationship is
beyond the abilities of available sequence-based ho-
mology detection methods. In that case, efficiently
comparing the predicted structures to known structures
(e.g. with methods such as Foldseek) [20] might help
reveal such relationships. Maintaining a benchmark set
of “reliable” orphan sequences, that have been run
through different deep-homology tests [9,12] to deter-
mine whether they are likely to be distant relatives of
existing protein families might help stimulate progress

in this difficult area. Such a list would need to be
regularly updated, however, as we would expect that as
the sequence databases grow, fewer and fewer true or-
phans will remain.

At least for the sequences considered here, though, we
have already tried to use the best methods to detect
distant sequence relatives, so it is possible that high
predictive performance could be down to a genuine ability
of the pLLMs to identify relationships between sequences
that are beyond the ability of current homology detection
algorithms. Further work is clearly needed here.

Discussion and future directions

It is evident that structure prediction tools able to use just
single target sequence inputs could present a great
number of advantages in computational biology, compared
to MSA-based methods. Prediction based on single-
sequence inputs is still, however, a nascent area of
research, certainly in the area of modern Al methods, but
one that s likely to very rapidly advance. As these methods
become better at predicting monomers, a natural next
step would be to extend the single sequence approach to
predicting protein complexes.

Although the current family of single-sequence methods
do show great promise, they are still dependent on their
ability to leverage similarity information between se-
quences. We are starting to see methods that move
beyond this framework and instead truly use individual
sequences for prediction. EquiFold [21] produces struc-
tures from single sequences without the use of MSA or
even pLLM inputs. Although limited to very narrow use
cases (mini-proteins and antibody structures), the study
does suggest that it may be possible to do away with
separate large LLMs altogether, though this remains to be
seen in any meaningfully general or large-scale setting.
Furthermore, there are speculations that AlphaFold2 may
have inadvertently learned a sufficiently accurate energy
function that permits it to map co-evolutionary signals
from MSAs into structures, given that it can be used to
assess model quality even without an MSA input [22].

One note of caution here, however, is that for true
single-sequence prediction using machine learning, we
may be heavily data-limited in terms of what can be
done. A recent study from our lab [10] suggested that to
improve secondary structure prediction for orphan se-
quences, as many as 160 billion labelled protein se-
quences might be needed to reach the same levels as
reached by MSA-based methods. Obviously, this
number is highly speculative and based just on sec-
ondary structure prediction, but nonetheless, we should
not forget how little experimental structural data we
really have once we exclude homologs.

More broadly, current end-to-end structure prediction
methods still only produce a single most-likely structure
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as an end result from a single run of each method, and no
information about folding pathways or thermodynamic
ensembles can be gleaned from such predictions. Mo-
lecular simulations can provide these, but accurate
simulations are often prohibitively expensive, especially
for larger systems. Consequently, there is a growing body
of work that seeks to accelerate molecular simulation
using machine learning. For example, Jumper et al. [23]
used a contrastive learning approach to fit the parame-
ters of a coarse-grained force field. Differentiable mo-
lecular simulation [24,25] is another approach which
works by explicitly modelling the folding process using
the same mathematical and computational frameworks
used to develop neural networks, which allows the force
fields and other parameters to be trained to improve the
end results. We speculate that these directions for
research will provide more feasible routes to identifying
folding intermediates, alternative conformations, and
other key dynamic features of proteins, that are
currently very difficult or impossible to obtain, but
which are likely to be crucial for understanding function.
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