
 Eindhoven University of Technology

MASTER

Simulating and Generating pre-miRNA using Variational Auto-Encoders

Petković, Marko

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/178c9f2b-c68a-41e5-8b65-a5d465d564db

Simulating and
Generating pre-miRNA

using Variational
Auto-Encoders

Master Thesis

Marko Petkovic

Department of Mathematics and Computer Science
Data Mining Research Group

Supervisors:
dr. Vlado Menkovski

prof. dr. Anna Vilanova
prof. dr. Sofia Calero

Version 1.0

Eindhoven, November 2022

Abstract

The genome of all organisms contains the code for all the processes used by a living organism,
to develop and survive. A part of the genome directly encodes proteins, which is referred to as
coding RNA, while the other part, which does not directly encode proteins, is called non-coding
RNA. Some of these non-coding RNAs are called micro RNAs (miRNA). These RNA sequences
regulate gene expression by prohibiting the translation of messenger RNA (mRNA) into proteins.
MiRNAs can be associated with diseases such as cancer, cardiovascular and neurological diseases
and serve as biomarkers for them. Next to this, they can also be used in personalized medicine.
Therefore, identifying the entire genome of miRNA can be of great relevance.

As experimental methods for novel miRNA detection are complex and expensive, computa-
tional methods for miRNA prediction have been developed. There is no clear way to recognize
which RNAs are part of the miRNA genome, and which are not. Since manually detecting pat-
terns which discriminate miRNA from other RNA is difficult, a solution is the use of Machine
Learning (ML). In these data-driven approaches, a predictive model can be created by looking at
examples of miRNA and non-miRNA. Even though these models can be highly accurate, they are
commonly black boxes, which makes it difficult to explain their predictions.

In this thesis, we are the first to our knowledge to use Deep Generative Models to model
miRNA. We propose a novel framework, in which we use Machine Learning in an interpretable
way to potentially develop a description of miRNA. In this framework, we utilize the generat-
ive factors of the data obtained from the latent representation developed by the model. We
use Variational Auto-Encoders (VAE) to model the data, and achieve excellent reconstruction
performance, as well as an organized and partitioned latent space. We also present how we can
use the model to sample new RNA strands by conditioning on the secondary structure of the RNA.

In our novel framework, we use Decision Trees on the latent space to develop an miRNA
description. Splits in the Decision Tree are made by making separations in the latent space
using a secondary classifier, based on predefined biological features of each RNA. The explainable
framework obtained an accuracy of 91.2%, and made splits based on features which are known
the be relevant to miRNA classification. In turn, this confirmed that the framework is successful
and could potentially be used in different domains.

ii Simulating and Generating pre-miRNA using Variational Auto-Encoders

Preface

Back in February, at the beginning of 2022 I started writing this thesis. At first, I was making
very little progress in modelling pre-miRNAs, due to the complexity of creating a proper model
for this problem. This made the master project (and the year) last very long and be quite tough.
However, once the model started working, the results were coming in, and I had the opportunity
to learn lots of interesting things about generative models and micro RNAs. Working on this re-
search topic broadened my horizon, and inspired me to pursue my career in research, by applying
for a PhD.

I want to thank my supervisor Vlado for the guidance he has given me to solve this problem,
as well as the discussions in which we talked about potential solutions. I would also like to thank
him, Anna and Sofia for taking the time to grade and evaluate my master project. Lastly, I want
to further thank Vlado and Sofia for offering me a PhD position in Machine Learning-based Sim-
ulation for Materials Discovery.

In addition, I am also grateful for the love and support my girlfriend Diana has provided me
over the course of this project. I would especially like to thank her for pointing out where I was
missing commas in this thesis.

Finally, I also wish to thank my parents Milan and Marija, and my siblings Miki and Marina.
They provided me with lots of support and fun times while working on this thesis.

Simulating and Generating pre-miRNA using Variational Auto-Encoders iii

Contents

Contents iv

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem Formulation . 2
1.2 Contribution . 4
1.3 Outline . 4

2 micro RNA 6
2.1 RNA interference . 6
2.2 MiRNomics . 6

2.2.1 Biogenesis . 6
2.2.2 Structure of (pre-)miRNA . 7
2.2.3 Function . 8
2.2.4 Detection . 9

3 Machine Learning 10
3.1 ML Algorithms . 10

3.1.1 Linear Regression . 10
3.1.2 Logistic Regression . 10
3.1.3 Support Vector Machine . 11
3.1.4 Naive Bayes . 11
3.1.5 Decision Tree . 11
3.1.6 Random Forest . 12

3.2 Deep Learning . 12
3.2.1 Training . 13
3.2.2 Convolutional Neural Networks . 13
3.2.3 CNN Architectures . 15
3.2.4 Deep Generative Models . 15

3.3 Variational Autoencoders . 16
3.3.1 Beta-VAE . 17
3.3.2 DIVA . 17
3.3.3 IAF . 18

4 Related Work 20
4.1 Interpretability in Machine Learning . 20

4.1.1 Interpretable Models . 20
4.1.2 Black-Box Models . 20
4.1.3 Interpretability in CNNs . 21
4.1.4 Interpretability in Deep Generative Models 21

iv Simulating and Generating pre-miRNA using Variational Auto-Encoders

CONTENTS CONTENTS

4.2 Computational pre-miRNA Detection . 22

5 Methods 24
5.1 Data . 24
5.2 Models . 26

5.2.1 Encoders . 26
5.2.2 Latent Space . 28
5.2.3 Decoders . 29
5.2.4 Full Model Architectures . 32

5.3 Interpretable Latent Space . 33
5.4 Experiments . 34

5.4.1 Model . 34
5.4.2 Experiment Structure . 36

6 Results 37
6.1 Model Performance . 37
6.2 Latent Space Analysis . 44
6.3 Interpretable Latent Space . 49

7 Conclusions 54
7.1 Limitations & Future Work . 55

Bibliography 56

Appendix 60

A Loss Curves 61

B Additional Reconstructions 65

Simulating and Generating pre-miRNA using Variational Auto-Encoders v

List of Figures

1.1 Framework for creating pre-miRNA descriptions. First, the nucleotide sequence
is encoded to an image by folding the sequence and applying the image encoding
algorithm. Then, the image is processed by a generative model to obtain a lat-
ent representation of the RNA. Using the sequence and image encoding, biological
properties of the RNA are calculated. By using the biological features to create
separations in the latent space, we can develop descriptions of miRNA using the
explainable predictions made by the framework. 3

2.1 Different pathways for the biogenesis of miRNA [20]. Pathway a is the canonical
pathway, while pathways b and c are non-canonical. 7

2.2 Artificial pre-miRNA strand [2], labeled with different properties which can be
present in (non) pre-miRNA. 8

3.1 Single MADE block [23]. Due to the masked connections, the model is autoregressive. 18

5.1 Taken from [14]. Encoding process of going from RNA sequence (a) with fold
indication (b) to RGB encoding (c). 24

5.2 RNA image encoding with corresponding mountain plot of the MFE and the (ab-
solute) first difference of the MFE. Yellow pixels indicate a value of 1, while purple
pixels indicate a value of 0. 25

5.3 General overview of the model architecture used to model pre-miRNA. 27

5.4 Process of going from the output of the bar length decoder (1) and bar color decoder
(4) to reconstructions (5). 30

5.5 Probabilistic graph model for inference and generation using a standard VAE ar-
chitecture. 32

5.6 Probabilistic graph model for inference and generation using a DIVA architecture. 33

6.1 Distribution of errors for the different models. The brightest yellow indicates that
in 64% of the cases, the reconstruction of that pixel was wrong. 40

6.2 Reconstructions of 5 random samples from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA. 41

6.3 Distribution of different biological concepts over the entire latent space of DC-β-
IAF-VAE and zm of DC-IAF-DIVA. For labels with continuous values, the colorbar
to the right of the figures indicates which color corresponds to which value. 42

6.3 Distribution of different biological concepts over the entire latent space of DC-β-
IAF-VAE and zm of DC-IAF-DIVA. For labels with continuous values, the colorbar
to the right of the figures indicates which color corresponds to which value. 43

6.4 Partitioned latent spaces colored by class labels and other concepts following di-
mensionality reduction using t-SNE. For labels with continuous values, the colorbar
to the right of the figures indicates which color corresponds to which value. 44

vi Simulating and Generating pre-miRNA using Variational Auto-Encoders

LIST OF FIGURES LIST OF FIGURES

6.4 Partitioned latent spaces colored by class labels and other concepts following di-
mensionality reduction using t-SNE. For labels with continuous values, the colorbar
to the right of the figures indicates which color corresponds to which value. 45

6.5 Linear Interpolation of the latent space. The top and bottom row represent the
original images. The second rows from top and bottom represent their reconstruc-
tions. The points in between were interpolated, with each step having an equal
size. 48

6.6 Reconstructions by sampling from the prior of the MFE. Colored bars below images
represent their MFE, with 1 being yellow. Top left image is the original. The second
row contains reconstructions where we sampled from the original prior of zm. Rows
below contain conditional samples after changing the MFE. 49

6.7 Decision Tree trained on the zm. First number at each node represents the amount
of pre-miRNA at each node, the second number the amount of non pre-miRNA. The
number in percentages represents the accuracy at each leaf, while a red leaf indicates
the non pre-miRNA is predicted, while a green leaf indicates that pre-miRNA is
predicted. 50

6.8 Approximate decision boundary of the first split visualized on the test set. 51
6.9 Approximate decision boundary of the second split visualized on the test set. . . . 52
6.10 Approximate decision boundary of the third split visualized on the test set. 53

A.1 Training and testing losses for different models at the end of each epoch. Dotted
lines represent the test losses. 62

A.2 Training and testing reconstruction losses for different models. Dotted lines repres-
ent the test losses. 63

A.3 Training and testing KL losses for different models. Dotted lines represent the test
losses. Since these were mostly equal during training, the difference is not visible
in most cases. 64

B.1 Reconstructions of 5 random sample from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA . 66

B.2 Reconstructions of 5 random sample from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA . 67

B.3 Reconstructions of 5 random sample from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA . 68

B.4 Reconstructions of 5 random sample from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA . 69

B.5 Reconstructions of 5 random sample from the test set using each model variant.
From top to bottom: original, VAE, β-VAE, β-IAF-VAE, DC-β-IAF-VAE, DC-
IAF-DIVA . 70

Simulating and Generating pre-miRNA using Variational Auto-Encoders vii

List of Tables

3.1 Overview of different activation functions used in neural networks. 12

5.1 Network architecture for VGG encoders . 26
5.2 Network architecture for ResNet encoders . 27
5.3 Network architecture for Fully Connected Decoders 31
5.4 Network architecture for Deconvolutional Decoders 32
5.5 Experiments for generative pre-miRNA modeling. Bold row indicates our final model. 36

6.1 Training statistics of different model types. Bold entries represent lowest obtained
losses. Entries in brackets for DC-IAF-DIVA indicate KL losses per latent space. . 37

6.2 Reconstruction statistics for different model types. Bold statistics represent lowest
obtained errors. 37

viii Simulating and Generating pre-miRNA using Variational Auto-Encoders

Chapter 1

Introduction

In living organisms, DNA encodes all the information used by the organism to develop and survive.
To make use of the information encoded in the DNA, it needs to be translated to RNA by one of
the RNA polymerase enzymes. A part of the DNA encodes proteins, which becomes messenger
RNA (mRNA) after translation. Then, when the mRNA reaches a ribosome, the protein is as-
sembled. In this process, transfer RNA (tRNA) transfers the amino acids needed to assemble the
protein, while the assembly of the protein is hosted by the ribosomal RNA (rRNA).

Sometimes it is desirable that the expression of certain mRNA is halted. In this process, micro
RNA (miRNA) plays a big role. MiRNA is involved in the development of various parts of an
organism, by inhibiting ”unnecessary” mRNA. However, overexpression of certain miRNA can
also lead to various diseases. Therefore, to better understand disease prevention and treatment,
mapping the entire miRNA genome can be of great use.

MiRNA is a form of non-coding RNA, with a length usually between 18 to 24 nucleotides.
MiRNA starts out from the transcription of primary miRNA (pri-miRNA), following which it is
processed by enzymes into precursor miRNA (pre-miRNA), from which mature miRNA is pro-
cessed by another enzyme [49]. The mature miRNA is then incorporated in the RNA Induced
Silencing Complex (RISC). This complex then binds to a target mRNA, which is done by the
miRNA being (partially) complement to the mRNA. Following this, RISC prevents the transla-
tion of the mRNA through degradation or cleavage.

Gene silencing done by miRNA affects various parts of an organism’s development. It affects
the development of the nervous system, muscles, blood vessel formation and apoptosis [67]. If
expression of certain miRNAs is affected, for example by gene mutation, multiple diseases can
result, such as cancer, neural and cardiovascular diseases [68]. Since some of these miRNAs ap-
pear in the serum of the blood, they could be used as biomarkers for these diseases [27, 32, 73].
Therefore, miRNA can be used to identify potential diseases in patients, and allow for preventive
interventions. In addition, miRNA analysis can be used to predict a patient’s reaction to certain
drugs [3], which can be used for personalized medicine. Furthermore, miRNA can be used as a
drug by itself, by amplifying or suppressing the effect of certain miRNAs. Overall, understanding
the properties of the different miRNA can be of great value to medicine.

Currently, around 2654 mature human miRNAs are documented, of which only 26% are clas-
sified as mature miRNA with high confidence [43]. Analysis suggests [1] that the actual number
of human miRNA is around 2300. Finding these new miRNAs can be done through experimental
detection. The three main methods used for miRNA detection use Real-Time quantitative PCR
(qRT-PCR), microarrays and Next-Generation Sequencing (NGS) [15]. These methods are con-
sidered reliable at finding miRNAs and their targets. However, performing these experiments
often requires complex lab conditions and intensive work [48, 55]. This is made more difficult by

Simulating and Generating pre-miRNA using Variational Auto-Encoders 1

1.1. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

the experiments being error prone, as well as the quick degradation of miRNA.

On the other hand, computational methods can also be used for detection of novel miRNA. In
these computational methods, the targets of prediction are pre-miRNAs since these contain more
features to distinguish them from non pre-miRNAs. Almost all pre-miRNAs contain a hairpin
structure [75] and a substrate for the dicer enzyme [37]. Therefore, in computational miRNA
detection methods, the structure of the pre-miRNA can be used for prediction of novel miRNA
strands, as it contains more information than only the miRNA itself. The structure of the pre-
miRNA consists of the primary and secondary structure. Here, the primary structure is the order
of the nucleotides in the pre-miRNA, while the secondary structure explains the shape of the
pre-miRNA due to the bonds of the opposing nucleotides.

Some of these computational methods rely on handcrafted rules about known properties of a
miRNA, which makes it hard to find potential novel miRNAs with new features. Other compu-
tational methods rely on data-driven approaches and use Machine Learning (ML) [56] for making
classifications. These methods use handcrafted features from the primary and secondary structure
of pre-miRNA. Since these methods use handcrafted features derived from previous knowledge,
they might still suffer in performance when it comes to detecting novel miRNAs. More recently,
Deep Learning (DL) approaches for pre-miRNA prediction have been proposed which make use of
the entire primary and secondary structure of the miRNA. This way, DL models learn a represent-
ation of the data, and figure out by themselves which features are relevant. Some of these methods
make use of Convolutional Neural Networks (CNN) [14, 17, 79], Recurrent Neural Networks (RNN)
[50] or both [65] for classifying pre-miRNA. In [14], an image encoding algorithm for the hairpin
structure of the pre-miRNA was proposed, which encodes the primary and secondary structure of
the RNA in an image (see Section 5.1). Later, using concept whitening, limited interpretability
was introduced in the model [69].

Most ML approaches for detecting pre-miRNA rely on discriminative models. Given the data
and its class label, discriminative models are forced to learn to assign the correct label to each
datapoint. In general, these models try to learn the decision boundaries between classes. Thus,
they do not explicitly learn a representation of the data. On the other hand, generative models
usually develop a representation of the data, by learning the generative factors of the data. Using
a representation developed by a generative model, we can not only make label predictions for
new datapoints, but also make descriptions of (non) pre-miRNA data, which we can use to make
interpretations.

Mapping the entire human miRNA genome can be of great benefit for understanding diseases
as well as improving personalized medicine. The complexity of current experimental methods for
detection of pre-miRNA has led to the development of computational methods for their detection.
ML-based computational methods often rely on handcrafted features or have limited explainability
due to their complexity. In this thesis, we aim to develop a framework using a generative model,
that will enable making a precise description of what a miRNA is.

1.1 Problem Formulation

In this work, we aim to develop a framework which can be used for generating interpretable de-
scriptions of what constitutes a precursor micro RNA. An RNA with up to 200 nucleotides in
length can be represented by an B200×4 matrix, where each nucleotide is one-hot encoded. The
dataspace of all possible RNAs between 40 and 200 nucleotide long would contain 3.44 × 10120

different combinations. To develop a useful description of the pre-miRNA, we first need to de-
velop a representation of the genomic data, which we can then use for making explanations. The
representation can be made by reducing the dimensionality of the data, by mapping the RNA
data to a latent space of z latent variables (Rz) using a generative model. By enriching the latent

2 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 1. INTRODUCTION 1.1. PROBLEM FORMULATION

representation of the data with biologically relevant features, we can create linear separations in
the latent space based on these features. Using these separations, we can provide a description of
what a miRNA is. An overview can be found in Figure 1.1.

GUACUUAUGCA...

Image Encoding Generative Model

Latent
Representation

Explainable
PredictionsBiological Features

Figure 1.1: Framework for creating pre-miRNA descriptions. First, the nucleotide sequence is
encoded to an image by folding the sequence and applying the image encoding algorithm. Then,
the image is processed by a generative model to obtain a latent representation of the RNA. Using
the sequence and image encoding, biological properties of the RNA are calculated. By using the
biological features to create separations in the latent space, we can develop descriptions of miRNA
using the explainable predictions made by the framework.

To create a framework for generating pre-miRNA descriptions, we will define the following
research question:

Can we train a generative model to uncover the generative factors of pre-miRNA which we can
use to understand what differentiates pre-miRNAs from other similar RNAs?

To answer our main research question, we will look at multiple subquestions.

1. Can we train a Variational Autoencoder (VAE) which achieves good performance when mod-
elling pre-miRNA?
The encoder-decoder architecture of VAEs allows us to learn a relevant latent space, which
should model the generative factors of the pre-miRNA data well. In addition, there have
been multiple extensions to the VAE architecture which can be exploited for a better or-
ganized space, which can help understanding the generative factors. We will aim to obtain
a Mean Absolute Error (MAE) of less than 0.01 (1%) for reconstructions, and we want to
achieve an organized latent space with regards to already established biological pre-miRNA
features.

2. Is it possible to sample potential novel pre-miRNA from the latent space of the generative
model?
Using the decoder of a VAE, we can create new samples of (non) pre-miRNA. By introducing
conditionality in the VAE, in addition to generating random samples, we can specifically try
to create new samples conditional on class or other features of interest.

3. Can we shape (a part of) the latent space with regards to the shape of the RNA molecules?
By conditioning the latent space on the Minimum Free Energy (MFE) of an RNA, we can
(partially) control the shape of reconstructed RNAs. As many currently known biological
features which differ across pre-miRNA and non pre-miRNA are related to the shape of the
molecules [69], such a latent space could be used for making descriptions of pre-miRNA.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 3

1.2. CONTRIBUTION CHAPTER 1. INTRODUCTION

4. How can we make use of the latent space of the generative model to make a definition of
what constitutes a miRNA?
By organizing the latent space well, we can determine which biological features are of relev-
ance for pre-miRNA classification. By applying domain knowledge, we can label each data-
point with biological features. Due to the organization of the latent space, import features
should have a simple distribution over the latent space. Using these simple relationships, a
Decision Tree can be built to develop a description for pre-miRNA.

1.2 Contribution

The contribution of this work is threefold: (i) we create a VAE which models pre-miRNA, (ii)
we propose a method for reconstructing the highly structured pre-miRNA image encoding and
(iii) we provide a framework for defining a rule-based definition of pre-miRNA, which can also be
generalized to other domains.

To our knowledge, no other work has yet modeled miRNA using a VAE. For our first contri-
bution, we will make use of VAEs to model pre-miRNA, using the image encoding from [14]. In
addition to this, we also organize the latent space with regards to class (i.e. pre-miRNA or non
pre-miRNA) and shape of the RNA molecule, using the Minimum Free Energy. This way, we are
able to conditionally sample new strands of potential novel pre-miRNA while also conditioning on
their shape.

For our second contribution, we will propose a way to reconstruct the pre-miRNA image en-
coding. Unlike in other image datasets, there is a strong vertical dependence between pixels in
the RNA images. In the RNA image encoding, each nucleotide is represented by a bar, meaning
that there should be full dependence between the color of pixels within a bar. To ensure that the
reconstructions of RNA images respect this property, we propose a custom decoder for our model.
The decoder will contain two separate modules to make reconstructions. The first module is used
for reconstructing the shape of the molecule through the length of the bars, and the second module
is used to reconstruct the color of each bar. Finally, the outputs of both modules are multiplied
to obtain a reconstructed image.

Next to this, we will use our trained VAE to create a framework for making a rule-based
definition of pre-miRNA. By using the regularized latent space, we can find meaningful generative
factors of pre-miRNA. To use this framework, a domain expert can define features of pre-miRNA,
such as the presence of a terminal loop, or the existence of certain combinations of nucleotides.
Then, we train classifiers to find simple relationships of biological features in the latent space,
which aim to maximize the difference between pre-miRNA and non pre-miRNA. This way, we cre-
ate a Decision Tree which can provide a rule-based definition of what constitutes a pre-miRNA. In
addition to the domain of pre-miRNA, this approach could also be generalized to make rule-based
definitions for objects from different domains.

1.3 Outline

In Chapter 2, we will discuss the relevance of miRNAs further, as well as their biogenesis and
experimental detection. In Chapter 3, we will introduce Machine Learning, and explain how dif-
ferent algorithms and neural networks work. Towards the end of the chapter, we will delve deeper
into deep generative models, with the main focus on Variational Auto-Encoders and their vari-
ants. Following this, in Chapter 4, we will look at different existing interpretability approaches for
Machine Learning algorithms and neural networks in Section 4.1. Then, we will look at computa-
tional pre-miRNA detection methods in Section 4.2, and how interpretability has been applied in

4 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 1. INTRODUCTION 1.3. OUTLINE

these methods.

In Chapter 5, we will cover the data that will be used for modelling pre-miRNA, as well
as the model architectures we will use. Here, we will also introduce our framework for making
explainable predictions using the latent space. We will look at the different performances of our
models and explainable predictions method in Chapter 6. Finally, we will present a concluding
summary in Chapter 7, where we will also discuss limitations of the current work and potential
future experiments.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 5

Chapter 2

micro RNA

2.1 RNA interference

Many RNAs (like tRNA and rRNA) are not directly coding any proteins, and it is estimated
that in eukaryotes (organisms whose cells have a nucleus) around 98% of the RNA genome is
non-coding [64]. Part of these non-coding RNA’s are involved in RNA interference (RNAi). The
main two types of RNA involved in RNAi are miRNA and small interfering RNA (siRNA). Both
miRNA and siRNA are involved in the regulation of post-transcriptional gene expression. Both
types form a RISC with Argonaute proteins, in which the siRNA or miRNA guides the RISC
to a complementary mRNA. In the case of siRNA, the mRNA is fully complementary, meaning
the siRNA’s often have a single target. After binding, the RISC cleaves the mRNA, after which
it is recognised as a foreign object by the cell. On the other hand, miRNA is often partially
complementary to the target mRNA, meaning a single miRNA can have multiple targets. This also
results in the regulation not only occurring to cleavage, but also through translational repression
and degradation.

2.2 MiRNomics

The field which studies miRNAs has been named mirnomics. To better understand the role of
miRNA and the relevance of pre-miRNA to the computational prediction task, we will first take
a look at the biogenesis of miRNA.

2.2.1 Biogenesis

There exist several pathways for the biogenesis of miRNA [20]. The canonical pathway consists
of the transcription of the DNA into a pri-miRNA, following operations of different enzymes to
obtain a mature miRNA. For the alternative pathways, the miRNA is not directly transcribed
from the gene, but mainly from introns from other RNAs [20]. Then, they are processed by
different combinations of the enzymes used in the canonical pathway. A simple visual overview of
this process can be found in Figure 2.1.

Canonical Pathway

The canonical biogenenis of miRNA starts with the transcription of pri-miRNA by RNA poly-
merase. Following the transcription, the pri-miRNA is cleaved by a microprocessor complex, from
which pre-miRNA can be created. This complex consists of the Drosha enzyme and the DGCR8
binding protein (which is known as Pasha in invertebrates). The pre-miRNA is then transported
from the nucleus to the cytoplasm by Exportin 5. The pre-miRNA contains a hairpin loop and is
usually between 80 and 200 nucleotides long. Next to this, the pre-miRNA contains a substrate

6 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 2. MICRO RNA 2.2. MIRNOMICS

Figure 2.1: Different pathways for the biogenesis of miRNA [20]. Pathway a is the canonical
pathway, while pathways b and c are non-canonical.

for the Dicer enzyme. The Dicer enzyme binds to this substrate, and cleaves the terminal loop
of the pre-miRNA. This leaves a double-stranded RNA (dsRNA). Of this dsRNA, usually one of
the strands is degraded, which leaves a mature miRNA. The miRNA then becomes part of the
RNA-Induced Silencing Complex (RISC), in which it binds with Argonaute proteins. The miRNA
is then used in the RISC for targeting mRNA.

Alternative Pathways

Next to the canonical pathway, multiple alternative pathways for miRNA biogenesis have been
found. In one of these pathways, the pre-miRNA is produced from introns (mirtrons) of mRNA
by splicing [54]. This pathway does not make use of microprocessor complex consisting of Drosha
and DGCR8, but follows the canonical pathway after splicing the pre-miRNA from the intron.
Other pre-miRNA are produced from short-hairpin RNA (shRNA), which is cleaved by Drosha
and DGCR8 [76]. However, this pre-miRNA is not cleaved by Dicer due to being too short for a
Dicer substrate, and instead needs Argonaute proteins to finish maturation into miRNA.

2.2.2 Structure of (pre-)miRNA

In contrast to pre-miRNA, a mature miRNA is typically around 22 nucleotides long, and is a
single, not folded, strand. In Figure 2.2, the structure of an artificially designed pre-miRNA is
shown [2]. In each pre-miRNA, it is guaranteed that there is a terminal loop present, however,
this can vary in size. Furthermore, in pre-miRNA, the stem of the molecule often contains mainly

Simulating and Generating pre-miRNA using Variational Auto-Encoders 7

2.2. MIRNOMICS CHAPTER 2. MICRO RNA

strong bonds (A-U and C-G), and sometimes wobbles (G-U). Whenever there are no strong bonds
between molecules, it can result in a (asymmetric) bulge, where nucleotides go more ”outward” as
they are not pulling each other. Finally, at the end of an RNA molecule, the nucleotides do not
always have bonds.

Figure 2.2: Artificial pre-miRNA strand [2], labeled with different properties which can be present
in (non) pre-miRNA.

2.2.3 Function

The main function of miRNA is post-transcriptional gene regulation, by binding to mRNA to
inhibit translation. When the miRNA is fully complementary to the target mRNA, cleavage by
the Argonaute proteins in the RISC is induced [20]. In this case, each miRNA has one specific
mRNA target, which is usually the case in plants. In animals, the miRNA is often not fully
complementary to the target mRNA [49]. This disallows cleavage of the mRNA by the Argonaute
proteins. Instead of this, translational inhibition is achieved through mRNA degradation. Due
to the miRNA not being fully complementary to the mRNA, a single miRNA can have multiple
mRNA targets. In addition, there can be multiple variants of a single miRNA (isomiRs), which
makes prediction of the targets of a miRNA difficult [20].

Next to their canonical function, several other functions of miRNA have been found. One of
these functions is RNA activation [20]. The miRNA can target promoter elements of protein-
coding genes. For example, they can enrich the RNA polymerase binding. It is also suggested
that miRNA is involved in post- and co-transcriptional gene regulation in the nucleus [49], through
interaction of RISC and mRNA.

The role of miRNA of post-transcriptional gene regulation is important for multiple processes
in an organism. They play a role in nervous system development through repressing non-neuronal
gene activity [67]. In muscle development, miRNA plays a role in myotube formation [67]. Fur-
thermore, miRNA plays an important role in the cell cycle, by inhibiting cell cycle regulators [67].
Next to this, miRNAs also have a role in cell signaling, apopstosis and autophagy [67].

As a result of mutations, it is possible that a miRNA cannot be produced anymore, a miRNA
cannot bind to its target mRNAs anymore, or new target mRNA cannot be created [68]. For ex-
ample, failure of miRNAs involved in the cell cycle can result in cancer development. Furthermore,
failure can also lead to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis
[22], as well as other neurological diseases and cardiovascular diseases [68].

8 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 2. MICRO RNA 2.2. MIRNOMICS

MiRNAs were also found to be present in the serum of blood [68]. Some of the miRNAs
circulating in the blood have been associated with different diseases [27, 32, 73], which in turn
means these miRNAs could potentially be used as biomarkers.

2.2.4 Detection

To detect miRNAs, several experimental methods exist. These methods include high throughput
systems such as Real-Time quantitive PCR (qRT-PCR), microarrays and Next-Generation Se-
quencing (NGS). Of these techniques, qRT-PCR and microarrays can be used to identify already
known miRNA, but fail to detect novel miRNAs. On the other hand, NGS can detect novel
miRNAs, and is better at distinguishing similar miRNAs. A serious drawback of these methods
is that they often take a long time, starting from under 6 hours for qRT-PCT, to up to 2 weeks
for NGS [15]. In addition, these methods often require complex lab conditions and intensive work
and can still be error prone [48, 55], making the experiments costly to perform. To improve per-
formance, these methods can be combined with computational methods for miRNA prediction
(see 4.2).

Simulating and Generating pre-miRNA using Variational Auto-Encoders 9

Chapter 3

Machine Learning

In Machine Learning (ML), the main goal is to develop algorithms which can learn patterns in data
by themselves, without human input. Within ML, there are three basic categories: supervised
learning, unsupervised learning and reinforcement learning. The reinforcement learning category
is concerned with learning intelligent agents to take actions based on their environment, which
will lead to the highest future reward. In supervised learning, the ML algorithm is fed with data
x and its label y. Then, the algorithm is trained to learn a map f between the input data x and
the label y. On the other hand, in unsupervised learning, the ML algorithm only takes x as input.
The ML algorithm then finds similarities in the data, for example through clustering or learning
the probability density function of the data.

In addition to the distinction between supervised and unsupervised learning, there is also a dis-
tinction between generative and discriminative ML methods. The main difference between these
two types are the tasks which the models are trained to perform. Discriminative models try to
directly model the conditional distribution of the label given the data, i.e. p(y|x). This leads to
the models learning decision boundaries between the data classes which separate the data in the
best possible ways. Generative models learn the generative factors of the data through the joint
probability distribution p(x,y). Although a generative model does not directly learn p(y|x), it is
still possible to classify new observations x. This is done by computing the marginal probability
distribution p(x) and then calculating the conditional probability distribution p(y|x) by doing
p(x,y)/p(x).

3.1 ML Algorithms

3.1.1 Linear Regression

In linear regression, the goal is to model a dependent variable y against independent variable(s) X.
The formula of the fitted model is y = Xβ + ϵ, where X is the data (with the first column being 1
in case an intercept is fitted), β the coefficients estimated by the model and ϵ the residual variance.
The main method used to fit a linear model on the data is Ordinary Least Squares (OLS). In OLS,
we aim to minimize the squared difference between each observation and the prediction according
to the model (||y −Xβ||2). There exist variants of linear regression which introduce bias to the
model to improve generalizability. For example, ridge regression and lasso regression do this by
adding the l1-norm and l2-norm respectively to the penalty term.

3.1.2 Logistic Regression

Logistic regression makes use of the logistic function, which is defined as σ(t) = 1
1−e−t . In the

simplest case, where we want to predict the probability of two classes/events, the logarithmic odds

10 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 3. MACHINE LEARNING 3.1. ML ALGORITHMS

(log-odds) of the two events are modeled by a linear combination of the dependent variables. In
the logistic function, t represents these log-odds, which are estimated by Xβ. To fit a Logistic
Regression model, Maximum Likelihood Estimation (MLE) is used. Unlike in OLS, there is no
closed form solution available, and iterative methods are required for fitting the model. Logistic
Regression can also be extended to predict probabilities for more than two events, as well as having
different types of (categorical) variables, which are ordinal or nominal.

3.1.3 Support Vector Machine

Support Vector Machines (SVM) [13] are used for binary classification, by constructing hyperlanes
that separate the data. We can define the hyperplane which is separating the data as wTx−b = 0.
In addition to separating the two classes, SVM also aims to find a hyperplane which maximizes
the margin between datapoints of the two classes. In case perfect separation is possible, any point
which lies on or above wTx − b = 1 is classified as the positive class, while any point on or
below wTx − b = −1 is classified as the negative class. To calculate the optimal hyperplane, we
can rewrite the hyperplane equation into yiw

Tx − b ≥ 1. By minimizing ||w||2, we will maxim-
ize the width of the hyperplanes separating the classes, and we will obtain the parameters w and b.

However, it is often the case that the datapoints are not perfectly separable. In this case,
we optimize the hinge loss instead. The loss is calculated for each wrongly classified datapoint
using the distance to the hyperplane. Thus, we calculate the loss as the maximum between 0 and
1 − yi(w

Tx − b). In addition to minimizing this loss, λ||w|| is also minimized, where λ is the
weight to balance the two losses.

Along with the data not being perfectly separable, in many cases the ideal hyperplane is not
linear. To alleviate this problem, the kernel trick can be used. Using the kernel trick, the data is
mapped to a higher dimension, in which it is possible to find a linear separator. When minimizing
the loss of an SVM, the dot product of each pair of datapoints is calculated to solve the Lagrangian
dual of the loss. When using the kernel trick, the dot product is replaced with the kernel function.
Common kernels include the polynomial kernel

(
k(x1, x2) = (x1 · x2)d

)
and the Gaussian radial

basis function
(
k(x1, x2) = exp(−γ||x1 − x2||2)

)
.

3.1.4 Naive Bayes

Naive Bayes is a simple, probabilistic classifier, which makes strong assumptions of independence
between the features in the data. The classifier is a generative model, as it models the joint
probability of the class and the features. The classifier makes predictions by factorizing the joint
probability into the probability of the class, as well as the probability of each feature given the class.
To estimate the probabilities for each feature given the class, a Gaussian distribution can be used
to estimate the probabilities when dealing with continuous features, a multinomial distribution
can be used for features representing counts and a Bernoulli distribution can be used to represent
binary features. Using Naive Bayes for classification can be summed up with the following formula:
ŷ = argmax

k∈{1,2...K}
p(Ck)

∏n
i=1 p(xi|Ck). In this formula, Ck is the k-th class and xi is the i-th feature

of an observation.

3.1.5 Decision Tree

In Decision Tree Learning, the goal is to train a Decision Tree to perform classification or re-
gression. To use a Decision Tree to classify a new observation, we walk down the nodes of the
tree until we reach a leaf. At each node, the model checks whether the observation satisfies the
condition of the node, based on which the next node is visited. When a leaf is reached, the class
of the leaf is assigned as the predicted class of the observation.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 11

3.2. DEEP LEARNING CHAPTER 3. MACHINE LEARNING

Decision Trees are trained by learning the rules for each node, based on the information gain
of each rule. Usually, the information gain is calculated using entropy (C4.5 [52]) or the gini-index
(CART [7]). Both measures calculate the impurity of the data at a node, where having only 1
class at a node is considered pure, and having a (uniform) mixture of classes is considered impure.
When checking which split to make, each variable is tested, and the rule resulting in the highest
information gain of the child nodes is picked. In case of continuous variables, thresholds are used
to check for different possible splits. The Decision Tree stops making splits after no information
gain is possible, the data is pure at the node, or if a maximum depth is reached. Once the splitting
is finished, each leaf node is assigned the majority class at the node. Then, the tree is pruned by
recursively removing sibling leaf nodes which predict the same class.

3.1.6 Random Forest

Random Forests [6] are ensemble Machine Learning algorithms, which consist of multiple Decision
Trees. To classify an observation, it is ran through all the Decision Trees in the Random Forest,
and the final class prediction is obtained through a majority vote. When training each of the
individual trees in the Random Forest, two types of bagging are used. First, a random subset with
the size of the training set is sampled with replacement from the original training set, ensuring that
the dataset is different for each tree. In turn, this lowers the variance of the overall model, despite
individual trees not being very accurate. Then, a subset of features is selected for each tree, thus
disallowing them to split on all features. In this way, features which are strong predictors of the
output are not used in every tree, lowering the correlation between the trees.

3.2 Deep Learning

Deep Learning is a field of Machine Learning which is concerned with representation learning us-
ing Artificial Neural Networks (ANN) with multiple layers. In DL, Deep Neural Networks (DNN)
automatically learn feature maps from the raw data, by stacking multiple layers. DNNs can be
applied to a variety of problems, such as computer vision, natural language processing and speech
recognition.

ANNs are inspired by biological neural networks, which constitute animal brains. Each neuron
(or node) in an ANN is inspired by how neurons in an animal brain work. Each neuron takes
its input features (x) and applies a linear transformation z = wTx + b to it. In order to be
able to learn non-linear relationships in the data, an activation function a(z) is used. An over-
view of common activation functions and the functions used in this thesis can be found in Table 3.1.

The sigmoid activation function is similar to logistic regression, mapping the output between
0 and 1, whereas the tangent hyperbolic is a ”stretched” version of the sigmoid function, mapping
the output between -1 and 1. Calculating the gradient of these functions at very high or low values
of z will always result in a virtually non-existent gradient. During the training of ANNs, this can

Function Function(z)
Sigmoid 1

1+e−z

Tangent Hyperbolic ez−e−z

ez+e−z

ReLU max(0, z)
Leaky ReLU max(αz, z)

ELU

{
z, if z > 0

α(ez − 1), otherwise

Softplus ln(1 + ez)

Table 3.1: Overview of different activation functions used in neural networks.

12 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 3. MACHINE LEARNING 3.2. DEEP LEARNING

lead to the vanishing gradient problem.

The ReLU function is the identity functions for positive values of z, while it is 0 for negative
values. In turn, this means that the gradient of the function is always 1 for positive values and
0 for negative values, thus solving the vanishing gradient problem. Other variations of the ReLU
function also exist. The Leaky ReLU function allows for a small gradient to exist when the input
value is negative, while the Softplus function is a smooth approximation of the ReLU function.
Finally, the ELU function is a smoothed version of the shifted ReLU (max(−α, z)).

Depending on what the problem is, there are multiple options as to how to represent the
output of an ANN. In case of a regression problem, where the value of one or multiple features
needs to be predicted, we can use one neuron per output feature. In this case, the activation
function can be the identity or the ReLU function, depending on the range of values the output
features take. In case of binary classification, a single neuron with the sigmoid function can be
used. The output can be interpreted as the probability of the positive class. In classification with
any number of classes, the softmax function can be used, with the the amount of output neurons
equal to the amount of classes. The softmax function is defined as p(y = j|z) = ezj∑K

k=1 ezk
, where

zk is the output of the neuron associated with the k-th class, and zj is the output of the neuron
associated with class j. A network which uses the softmax function for the output, essentially
provides probabilities for each class when predicting an observation.

The simplest type of ANN is a fully connected network. Such a network has multiple layers of
neurons, where each neuron takes the outputs of all previous neurons as input. In case we would
have a network with 2 hidden layers h0 and h1, and output layer o, the network would make
predictions as follows: ŷ = o(h1(h0(x))).

3.2.1 Training

Since there is no closed form solution for optimizing these complex networks, an iterative approach
called Stochastic Gradient Descent (SGD) is used. In gradient descent, the loss is calculated after
passing a batch of datapoints through the network. This loss can be categorical cross-entropy in
case of classification, or Mean Squared Error (MSE) in case of regression. Then, the gradient of
the loss is calculated. To update the weights we make use of backpropagation. The gradient is
factorised over all the operations in the neural network using the chain rule. All parameters are
then updated by taking a step down the gradient, of which the size is determined by the learning
rate. Once the entire dataset (in batches) has been passed through the network and the weights
have been updated using backpropagation, an epoch has been completed. Then, the datapoints
are shuffled to create new batches and the process is repeated, until the network has converged.

Multiple extensions to the basic SGD optimizer exist. Momentum can be added to the update
of weights, to prevent the network getting stuck in local minima. Other optimizers like AdaGrad
[18] and RMSProp [66] have an adaptive learning rate. In AdaGrad, parameters which received
larger updates in the past receive a smaller learning rate, while parameters with smaller updates
get bigger learning rates. However, this can lead to some parameters not getting updated, which is
solved by introducing a decay in RMSProp. The Adam [38] optimizer combines both optimizers,
and also keeps track of a cumulative history of gradients. Typically, these algorithms will achieve
a faster convergence than SGD, but they will not necessarily achieve better results.

3.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are used in many computer vision tasks for analyzing im-
ages. Using fully connected networks will quickly prove to be a problem, as, while image size
increases, the amount of input variables also quickly increases. For example, an RGB image of 300
by 300 pixels has 270,000 input parameters (300 pixels * 300 pixels * 3 channels). In addition, fully

Simulating and Generating pre-miRNA using Variational Auto-Encoders 13

3.2. DEEP LEARNING CHAPTER 3. MACHINE LEARNING

connected layers also struggle to learn relevant features, as each node takes the entire previous
layer as input. For example, a node in the first hidden layer will receive both the pixel from the
top left and bottom right corner, while these pixels will very often have no relationship. On the
contrary, pixels close together in images often have meaningful relationships, as they represent a
part of the image.

To find these local relationships in images, a CNN makes use of layers containing filters (ker-
nels). A filter is usually of rectangular shape and has the same amount of channels as the input
it receives. It convolves over the input image, and detects local features. Since one kernel only
has input channels * kernel width * kernel height weights, this drastically reduces the amount of
parameters a layer has. In a single convolutional layer multiple kernels can be present, and the
amount of output channels is decided based on the amount of kernels used. After applying one
layer of convolutions, a feature map of the input image is obtained, to which more convolutional
layers can be applied. Following a convolution, usually the ReLU activation function is used, to
reduce vanishing gradients. By applying multiple layers of convolutions, we obtain feature maps
representing more abstract features in each consequent layer.

Next to the kernel size, a convolutional layer also has other parameters. One of these is
padding, which is used to control the output size of the layer. Padding is done by adding zeros
(other numbers/patterns are also possible) around the outside of the image, before being processed
by a kernel. In case we want the output to be the same size as the input, we make use of ”same”
padding. Another way of controlling the output size is using the stride of kernels. Stride controls
by how many pixels the kernel moves as it is convolving over an image. Dilation can be used to
make the network more memory efficient. It effectively increases the size of the kernel, while the
same amount of pixels are processed as usual, effectively adding spacing between kernel elements.
To calculate the output shapes of a layer, equation 3.1 is used. In this equation, Sin and Sout are
the width or height of the input and output, D is the amount of dilation, K is the kernel size in
that direction, P the amount of pixels of padding applied, and S the stride.

Sout =
Sin −D ∗ (K − 1) + 2P

S
+ 1 (3.1)

Next to padding, stride and dilation, pooling layers can also be used to reduce the size of the
processed data. For a pooling operation, a kernel is specified and performs an operation over a
single channel. Usually, the stride of this kernel is equal to the kernel size so no overlap is present,
but the stride can also have a lower value to introduce some overlap. The most commonly used
pooling operations are max-pooling and average-pooling.

In most CNN architectures, blocks consisting of convolutions, pooling layers and other regu-
larization layers are stacked on top of each other. Here, the output of lower layers typically has
less channels, but a bigger image size. Deeper in the network, the size gets reduced, while the
amount of channels increases, allowing the network to learn more spatial patterns of the input
image. After applying all convolutional blocks, the output is flattened. Following the flattening,
a fully connected layer is used to transform the data to the correct output shape, which can be
used for classification and regression.

CNNs are still prone to overfitting. One common technique used to reduce overfitting and
improve generalization is dropout [30]. When dropout is applied to a layer during training, each
node in that layer has a set probability of being deactivated. This way, the entire network can be
seen as an ensemble of multiple networks. Next to this, using dropout does not allow neurons to
rely on each other, and improves generalization performance this way.

Other methods for regularizing the network include batch normalization [34] and weight nor-
malization [58]. Both methods aim at speeding up the training process of a neural network, and
reducing overfitting. In batch normalization in CNNs, the output of each filter is normalized using

14 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 3. MACHINE LEARNING 3.2. DEEP LEARNING

the mean and standard deviation of the filter output. During training, the batch normalization
layer keeps tracks of these parameters and updates them the same as normal weights in a neural
network. In weight normalization, the weight matrix is parameterized as w = g

||v||v. Since the

scalar g is equal to the norm of the weights (||w||, the direction of the weight vector is decoupled.
When performing gradient descent, the gradient is calculated with respect to both v and g, speed-
ing up training and introducing regularization. Other regularization methods also exist, such as
l1 and l2 regularization, which effectively limit the weights from becoming too big.

3.2.3 CNN Architectures

Since CNNs have been introduced, various different architectures have been proposed. One of the
first well performing architectures were the VGG models [61]. These models consist of multiple
blocks, where each block consists of 2 or 3 convolutional layers with a 3 by 3 kernel, followed by
pooling.

Another popular architecture is the inception architecture [63]. In the inception architecture,
the input of a single block is processed (independently) by multiple convolutional layers of differ-
ent sizes, after the amount of channels is reduced by 1 by 1 convolutions. At the output of the
block, the output of the multiple smaller networks is concatenated, and passed through the next
block. Since the release of the first inception architecture, multiple updates have been made. For
example, in inception v4 [62], parts of the block which consists of k by k convolutions have been
replaced by 2 convolutional layers, with kernels of size k by 1 and 1 by k. This way, the amount
of necessary computations is further reduced.

One of the drawbacks of very deep Convolutional Neural Networks is the vanishing gradient
problem, where the gradient goes towards 0 at shallow layers in the network when performing
backpropagation, which in turn does not allow these layers to learn. To combat this problem,
Residual Networks (ResNets) have been introduced [28]. In these networks, skip connections are
introduced, meaning that the input of a block gets elementwise summed with the output of the
block. Since gradient flows over these skip connections, training them is easier. This allows these
networks to have much more layers while still being able to train. It is also possible to combine
the inception and ResNet architecture by adding skip connections between blocks, as shown in
[62].

3.2.4 Deep Generative Models

While many neural networks focus on classification and regression and are thus discriminative,
there also exist several deep generative models. In these models, neural networks are often used for
approximating probability distributions. Some of the most popular deep generative models include
Generative Adversarial Networks (GAN), Variational Auto-Encoders (VAE) and Normalizing Flow
(NF). These models all have different types of latent spaces, where the data is represented in a
lower dimensional space. During training, the models aim to learn lower dimensional representa-
tions of the data which contain its generative factors.

GANs consist of two networks [24], a generator which generates new samples G(z) from a noise
vector z, and a discriminator D which evaluates whether the samples are real or fake. Both net-
works are trained simultaneously, meaning that the generator is learning to fool the discriminator,
which in turn is trying to get better at ”catching” the generator. However, since both models are
being trained simultaneously, this may lead to a failure called mode collapse. Here, the generator
gets stuck in a local minimum, as it only learns to generate a small part of the data. This can
happen when at some point during training the discriminator prefers a certain part of the data. In
addition, vanishing gradients can also be problem when the discriminator trains too fast. In that
case, the gradients in the generator vanish, as the loss will always remain high no matter which
step the generator takes. Next to this, GANs do not explicitly model the likelihood function of

Simulating and Generating pre-miRNA using Variational Auto-Encoders 15

3.3. VARIATIONAL AUTOENCODERS CHAPTER 3. MACHINE LEARNING

the data, like NF or a lower bound of the likelihood in the case of VAEs.

Normalizing Flows [53] is a statistical method, where the change-of-variable law is used to
transform a simple distribution, like the standard normal, to a more complex data distribution.
These transformations are done using invertible functions fi, meaning that an inverse function f−1

i

exists. These invertible functions are modeled using neural networks. There are two requirements
for the neural network used to represent a transformation: the function should be easy to invert,
and it should be easy to compute the determinant of its Jacobian. This allows us to calculate
the log-likelihood of the target distribution as in equation 3.2. Here, z0 is the initial simple
distribution, zK the target distribution after K transformations. When training an NF model, the
negative log-likelihood is minimized using gradient descent. After training, it is possible to sample
new points by first sampling from the simple distribution and then passing the sample through
the transforming functions.

log pK(zK) = log p0(z0)−
K∑
i=1

log

∣∣∣∣det
dfi(zi−1)

dzi−1

∣∣∣∣ (3.2)

3.3 Variational Autoencoders

VAEs [39] try to model the generative factors of the data, through a latent space z. A VAE
consists of an encoder which maps the data x to latent space z and a decoder which reconstructs
the data from the latent space. By using a decoder, the network is forced to learn a lower di-
mensional representation of the data which contains meaningful generative factors, as otherwise
making reconstructions would not be possible.

In most VAEs, the prior distribution of the latent space is assumed to follow a standard normal
distribution with a diagonal covariance matrix, meaning that the all the latent variables are inde-
pendent. To model the latent space from an observation x, the observation is first passed through
an encoder qϕ(z|x). This encoder tries to approximate the posterior distribution p(z|x). Then,
we sample z from the approximate posterior distribution obtained from the encoder. Finally, z
is passed through the decoder pθ(x|z) to obtain reconstruction x̂. In a VAE, the encoder and
decoder are parameterized with neural networks ϕ and θ.

To train a VAE, we want to maximize the log-likelihood of the data, which is log(p(x)).
However, it is often computationally expensive or impossible to calculate this log-likelihood. One
of the parts of the model we want to optimize is approximating pθ(z|x) as well as possible using
qϕ(z|x). We can define the distance between the two distributions using the Kullback-Leibler
Divergence, which can be rewritten as in Equation 3.3.

DKL(qϕ(z|x)||pθ(z|x)) =

∫
qϕ(z|x) log

qϕ(z|x)

pθ(z|x)
dz

=

∫
qϕ(z|x) log

qϕ(z|x)pθ(x)

pθ(z,x)
dz

= log(pθ(x)) +

∫
qϕ(z|x) log

qϕ(z|x)

pθ(z,x)
dz

= log(pθ(x)) +

∫
qϕ(z|x) log

qϕ(z|x)

pθ(x|z)pθ(z)
dz

= log(pθ(x)) + Ez∼qϕ(z|x)(log
qϕ(z|x)

pθ(z)
− log pθ(x|z))

= log(pθ(x)) + DKL(qϕ(z|x)||pθ(z))− Ez∼qϕ(z|x)(log pθ(x|z))

(3.3)

16 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 3. MACHINE LEARNING 3.3. VARIATIONAL AUTOENCODERS

Using this formula, we can obtain a lower bound for the log-likelihood (Equation 3.4). Since the
KL Divergence is always non-negative, DKL(qϕ(z|x)||pθ(z|x)) will always be greater or equal to 0.
This function is the Evidence Lower BOund (ELBO), which we aim to maximize when training a
VAE. The first term of this loss function is the reconstruction error, while the second term is the
regularization term which ensures the learned latent space is close to the prior.

log(pθ(x))−DKL(qϕ(z|x)||pθ(z|x)) = Ez∼qΦ(z|x)(log(pθ(x|z)))−DKL(qϕ(z|x)||pθ(z)) (3.4)

During training, the encoder and decoder are trained to maximize the ELBO using backpropaga-
tion. To enable backpropagation over sampling of the latent space from the approximate posterior,
we make use of the reparameterization trick (see Equation 3.5). When using the reparameteriz-
ation trick, we sample a random variable ϵ from the standard normal distribution. Then, we
multiply ϵ with the standard deviation of the posterior σ and add µ, which allows us to sample
from the posterior while backpropagation remains possible.

z ∼ qϕ(z|x) = N (µ, σ)

ϵ ∼ N (0, I)

z = µ + σ ⊙ ϵ

(3.5)

3.3.1 Beta-VAE

To control the regularization of the latent space, we can introduce a scalar term β, by which the
KL-Divergence term of the loss is multiplied [29] (Equation 3.6). By setting β to a (relatively)
higher number, the model is forced to learn an efficient latent space, where all latent variables are
independent. This results in the model learning a disentangled latent representation.

Lθ,ϕ = Ez∼qΦ(z|x)(log(pθ(x|z)))− β ∗DKL(qϕ(z|x)||pθ(z)) (3.6)

In [8], the authors propose an extension to the β-VAE through an annealing scheme. If the KL
term of the loss is optimized, the result is a posterior distribution which is equal to the prior
distribution, which therefore will not have any capacity to encode information. Therefore, by
slowly increasing the capacity (C) of the latent space, the VAE is expected to first disentangle the
most relevant generative factors. To achieve this, the loss function is modified as in Equation 3.7.

Lθ,ϕ = Ez∼qΦ(z|x)(log(pθ(x|z)))− β ∗ |DKL(qϕ(z|x)||pθ(z))− C| (3.7)

3.3.2 DIVA

To improve disentanglement performance, the Domain Invariant Variational Autoencoder (DIVA)
was introduced [33]. Contrary to a normal VAE, this method is (semi) supervised, as it takes class
labels and the domain of the data into account. In the authors’ implementation of the model, the
latent space is factorized in three parts: a latent space corresponding with the class (zy), a latent
space corresponding to the domain (zd) and a latent space for remaining variance (zx). Each
of the three latent spaces has their own separate encoder to approximate the posterior, which
takes the entire data as input. In the example, the dataset used is a rotated MNIST, where the
digit represents the class label and the rotation angle represents the domain. Next to this, zy
and zd have conditional priors pθy (zy|y) and pθd(zd|d), which output parameters for the normal
distribution, used for the prior. zx has a standard normal prior. When reconstructing an image, we
concatenate all latent spaces, and pass them through a shared decoder pθ(x|zy, zx, zd). This gives
us a loss function as seen in Equation 3.8. The β terms introduced in this equation serve the same

Simulating and Generating pre-miRNA using Variational Auto-Encoders 17

3.3. VARIATIONAL AUTOENCODERS CHAPTER 3. MACHINE LEARNING

purpose as in the β-VAE, to reduce the capacity of the latent space and improve disentanglement.

Ls(y,x, d) = Eqϕy (zy|x),qϕx (zx|x),qϕd
(zd|x)[log(pθ(x|zy, zx, zd))]

− βy ∗DKL(qϕy
(zy|x)||pθy (zy|y))

− βx ∗DKL(qϕx
(zx|x)||p(zx))

− βd ∗DKL(qϕd
(zd|x)||pθd(zd|d))

(3.8)

To further improve disentanglement, on zy and zd auxiliary classifiers qωy (y|zy) and qωd
(d|zd) are

built. This gives us the loss function from Equation 3.9.

FDIVA(y,x, d) = Ls(y,x, d) + αyEqϕy(zy|x)
[log qωy (y|zy)] + αdEqϕd(zd|x)

[log qωd
(d|zd)] (3.9)

3.3.3 IAF

VAE with Inverse Autoregressive Flow (IAF) is a VAE which makes use of inverse flows to push
the posterior distribution closer to the prior [40]. In this architecture, x is first passed through
the encoder, which results in a posterior distribution from which we sample z0. In addition, the
encoder also creates a context h. After this, a chain of T autoregressive transformations is applied
to z0, which results in the final latent space zT. Then, zT is passed through a decoder, like with
a normal VAE. An example of an autoregressive transformation which can be used is Masked
Autoencoder for Distribution Estimation (MADE) [23].

A MADE block consists of two hidden fully connected layers, followed by an output layer
which is the same size as the input. By applying masks over the connections, the model becomes
autoregressive, since the output distribution of the variables can be written as a nested product
of the conditionals of each output node (Figure 3.1).

Figure 3.1: Single MADE block [23]. Due to the masked connections, the model is autoregressive.

The t’th autoregressive transformation consists of two seperate MADE blocks which both take
as input zt−1 and h. Each block produces one of the two real valued vectors mt and st. Then, to
calculate zt, we apply the transformation in Equation 3.10.

σt = sigmoid(st)

zt = σt ⊙ zt−1 + (1− σt)⊙mt (3.10)

The autoregressive transformations are an inverse normalizing flow, and due to the nature of
the transformations, the Jacobian dzt

dzt−1
is triangular with σt on its diagonal. Due to the simple

18 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 3. MACHINE LEARNING 3.3. VARIATIONAL AUTOENCODERS

Jacobian, we can easily calculate the change in density as in Equation 3.2. This results in the final
density of q(zT|x) as shown in Equation 3.11. To calculate the KL-divergence, we update qϕ(z|x)
with q(zT|x).

q(zT|x) = q(z0|x)−
T∑

t=0

log σt (3.11)

Simulating and Generating pre-miRNA using Variational Auto-Encoders 19

Chapter 4

Related Work

4.1 Interpretability in Machine Learning

When using ML models in real-life applications, interpretability of the models’ decision can be of
great value, or even required. For example, in the case of automatic cancer detection using CNNs,
the model could be used as an aid to the diagnosing doctor. It is important for the doctor to
understand why and how the model makes its prediction, to be able to verify whether the model
is making an accurate prediction. In this example, the model could show an activation map, by
highlighting areas of the image which were important in making the prediction.

4.1.1 Interpretable Models

Some ML methods are naturally interpretable. For example, it can be clearly seen which features
differentiate between two or multiple classes. In Decision Trees, the rules the model learns are
clearly interpretable. However, in a very deep Decision Tree, the rules can become very convoluted
and hard to interpret. Similarly, in case of linear regression and logistic regression, the models can
be interpretable with few variables. The coefficients directly indicate the effect of the variable in
case of linear regression or indicate the changes of odds ratio for logistic regression. When more
variables are added to these models, it can result in the coefficients losing relevance, or the model
getting harder to interpret due to its complexity.

4.1.2 Black-Box Models

Other ML methods such as Random Forests, SVMs and neural networks are considered black-box
models, and are harder to interpret. Due to the complex structure of these algorithms, it is not
intuitive to look at the weights or coefficients of these models to get a clear understanding of how
and why a prediction is made.

While a Random Forest consists of Decision Trees, there are usually too many Decision Trees
to make explanations. There are methods to make a random forest interpretable. For example,
the variable importance [6] can be calculated. This is done by permuting the data for each vari-
able in the training set, and testing how much each variable influences the error, with variables
which increase the error being seen as more important. This method tells us how important some
variables are for making classifications, but does not directly show how these variables influence
the decision of the forest. Other methods for Random Forest explainability attempt to create a
single decision tree from the forest, which mimics the behaviour of the forest [57, 71].

When using an SVM with a linear kernel, the decision boundary is interpretable, as it is defined
using coefficients for each variable. In most cases, SVMs use a different kernel, which maps the
data to a higher dimension. The learned coefficients are not interpretable due to them being

20 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 4. RELATED WORK 4.1. INTERPRETABILITY IN MACHINE LEARNING

used to create the boundary in a higher dimensional space. It is possible to interpret this bound
in case the data has only two dimensions, as in that case it is possible to visually interpret the
relationship.

4.1.3 Interpretability in CNNs

Naturally, Deep Neural Networks are not interpretable due to their highly complex structure of
multiple layers of neurons. In CNNs, there exist multiple methods for adding interpretability to
the model. Some of these methods, such as saliency maps and class activation mapping are applied
after training of the network, while other methods such as β-VAE and concept whitening change
the architecture of the network or how the network is trained.

Saliency maps [60, 77] highlight which input pixels are most responsible for a layer activation
or classification. Class Activation Mapping (CAM) [80] is a similar method, which can be applied
to networks where the fully connected layer is replaced by global average pooling over all the
channels. The activation maps of the final layer are then multiplied with the weights used for clas-
sification, which shows what the network is looking for. An extension to CAM, called Grad-CAM
[59] can also be used on networks using a fully connected layer instead of global average pooling.

One of the techniques which change the network itself to make it more interpretable is proposed
in [78]. Here, CNNs are made more interpretable by adding an additional loss term. This loss
term is the entropy of the activation map of a chosen convolutional filter. Since this entropy is
being minimized, the filter is forced to detect only a single feature, in a single place in the image.
The authors assume that if the filter is activated in multiple places, the specific filter is detecting
a low-level feature such as an edge. By applying this technique, the output of networks can be
understood in a similar way as saliency maps.

In the concept whitening technique [11], it is proposed that in addition to the dataset, the neural
network is also fed with images representing concepts which are relevant to class prediction. For
example, if one of the classes we are predicting are cats, we could add images of the heads, paws
and tails of cats as concepts representing this class. To apply these concepts, a fully connected
layer in the network is used. In this layer, individual neurons are assigned for learning concepts
and additional neurons learn the remaining variance in the data. Each of these neurons is then
trained to detect their assigned concepts. Simultaneously, whitening transformations are applied
on this layer to disentangle the output. While training, the neural network is fed images from the
training dataset as well as the concept dataset. Since each neuron corresponds to a single concept,
the network predictions can be interpreted by comparing the influence each neuron has on the
prediction.

4.1.4 Interpretability in Deep Generative Models

In the vanilla versions of many deep generative models, such as GANs and VAEs, the latent space
learned by these models is often entangled, meaning that, as we change a single variable in the
latent space, multiple features of the sampled data change. For example, in a model trained on
a dataset with faces, changing a single variable would result in both orientation of the face and
hair color changing. To counter this problem, multiple methods for training disentangled deep
generative methods have been proposed.

In the InfoGAN [10], the input vector has been decomposed in a noise vector z and a latent
code c, which is responsible for capturing the variation of structured features in the data. To
ensure the model learns a relevant latent code, an additional penalty term is added, consisting of
the mutual information between the latent code c and the output of the generator. The authors
have shown that the InfoGAN was able to disentangle factors on datasets like MNIST [44] and

Simulating and Generating pre-miRNA using Variational Auto-Encoders 21

4.2. COMPUTATIONAL PRE-MIRNA DETECTION CHAPTER 4. RELATED WORK

3D Faces [51], such as digit type and rotation for MNIST, and azimuth and elevation for 3D Faces.

To make the vanilla VAE more interpretable, a simple modification was proposed in [29], by
adding a penalty term β (>1) for the KL-divergence. This forces the VAE to learn an efficient
representation of the data. In turn, this leads to the latent factors being independent of each
other, meaning that a well trained model has latent factors directly related to a generative factor.
Compared to InfoGAN, it has been shown that β-VAE can disentangle even more factors. Fur-
thermore, by controlling the capacity of the latent space, it is possible to disentangle the data,
while also keeping high quality reconstructions [8]. By further decomposing the KL-term of the
loss, it is possible to additionally penalize the part of the term representing the Total Correlation
(TC) between the latent variables [9]. This method is called β-TCVAE, and the authors have
shown it has better disentanglement performance compared to β-VAE.

4.2 Computational pre-miRNA Detection

Most methods for computational miRNA prediction use pre-miRNA instead of miRNA. This is
due to the pre-miRNA containing more biologically relevant characteristics which can differentiate
it from other RNA, such as the terminal loop [75] and a substrate for the dicer enzyme [37].

Many algorithms use both the primary and secondary structure of the pre-miRNA for making
predictions. The primary structure consists of the order of nucleotides in the molecule, which can
be Adenine (A), Uracil (U), Cytosine (C) and Guanine (G). The secondary structure describes the
shape of the RNA molecule, by how it is folded. This is determined by the thermodynamic bonds
between the nucleotides [4]. In this structure, opposing C and G nucleotides (base pair) have the
strongest thermodynamic bond, followed by A and U (base pair), followed by C and U (wobble).
The other potential pairs of nucleotides are mismatches, and have no bonds or weak bonds. When
a nucleotide does not have a bond with an opposing nucleotide, it results in a bulge in the molecule.

To computationally obtain the secondary structure of a pre-miRNA, the raw nucleotide se-
quence is passed through a folding algorithm called RNAFold [31]. This algorithm determines
how the RNA molecule can best fold, by minimizing the Minimum Free Energy (MFE). RNAFold
indicates which nucleotides have a bond with opposing nucleotides, from which the shape of the
molecule can be inferred.

In 2005, [75] developed an SVM based method to distinguish pre-miRNA from pseudo pre-
miRNA, which are RNAs with similar characteristics to pre-miRNA. They only consider stem
portions of the molecules, and for each nucleotide in the stem, they take note of its bond and the
bond of the nucleotides next to it. This gives rise to 32 possible features, which are counted and
normalized for each RNA. On this data, an SVM was trained which achieved an accuracy of 90%
on human data, as well as correctly identifying 90% of the pre-miRNAs from other species. In [35],
they added two features: the MFE value from the RNAFold algorithm and a p-value, indicating
whether the MFE is significantly different than a random RNA sequence with similar nucleotides.
Both an SVM and RF were trained using these new features, and both algorithms outperformed
the SVM from [75], with the RF being slightly better.

Another approach was proposed in [48]. They proposed a feature vector containing 29 vari-
ables, such as dinucleotide frequencies and folding measures. The SVM achieved a 94% accuracy
on their test set. A similar approach was proposed in [5], where they achieved 90% sensitivity and
97% specificity. Another approach using an SVM [16] used a combination of features from [75]
and [48]. The methods achieved a 93% sensitivity and a 96% specificity rate on their test set.

Other ML approaches for pre-miRNA prediction mainly use SVM and RF [56]. These al-
gorithms were combined in [56], to create a good performing ensemble model.

22 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 4. RELATED WORK 4.2. COMPUTATIONAL PRE-MIRNA DETECTION

More recently, Deep Learning based approaches for pre-miRNA detection were proposed. In
[50], an RNN approach was introduced. The data was one-hot encoded based on the nucleotide and
its secondary structure. Then this data was passed through multiple Long Short-Term Memory
(LSTM) layers. A different approach was proposed in [17], where CNNs were used to represent
the data. In this representation, the image has 9 channels and is of size L by L, where L indicates
the length of the RNA in nucleotides. 8 of these channels are used to represent the nucleotide
sequence twice, as the nucleotide sequence is one-hot encoded, and is repeated once horizontally
and once vertically. The final channel indicates the bonds between nucleotides. Another CNN
approach [79] simply takes the primary sequence and one-hot encodes it. A similar method was
proposed in [65], where following convolutional layers also recurrent layers were applied.

To improve utilization of the secondary structure by models, a special image encoding algorithm
was developed in [14] (see 5.1). Using the images generated from this algorithm, a CNN with state-
of-the-art performance was built, outperforming many other ML models on various datasets and
achieving an accuracy of 95%. Later, concept whitening was applied to the model, which resulted
in a slight accuracy drop (92%). However, using this model, it was possible to make explainable
explanations using the defined miRNA concepts, which were the presence of a large asymmetric
bulge, and the stem of the RNA containing at least 90% base pairs and wobbles.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 23

Chapter 5

Methods

5.1 Data

To model the (non) pre-RNA, we make use of the modmiRBase dataset [12], which consists of
image encodings of folded RNA molecules. The RNA sequences used to generate the image en-
codings are taken from various datasets. The positive pre-miRNA sequences were taken from
mirbase.org [25] and mirgenedb.org [21]. The non pre-miRNA sequences were obtained using
various methods. Some negative datasets consist of existing non pre-miRNAs with similar charac-
teristics as pre-miRNA [26, 48, 74], while other datasets consist of shuffled or not optimally folded
pre-miRNAs [56].

Figure 5.1: Taken from [14]. Encoding process of going from RNA sequence (a) with fold indication
(b) to RGB encoding (c).

To fold the RNA sequences, the RNAFold algorithm is used [46], which indicates for each nucle-
otide whether they have a bond with an opposing nucleotide. Then, the sequences are arranged in
a top and bottom part, and gaps are introduced for nucleotides which have no opposing nucleotide.

Following the folding, each nucleotide and gap is assigned a color (A: blue, C: yellow, G: green,
U: red and Gap: black). Next, the height of each bar representing nucleotides is determined by
the bond strength, and an additional algorithm from [14] is used to increase the height of bars

24 Simulating and Generating pre-miRNA using Variational Auto-Encoders

mirbase.org
mirgenedb.org

CHAPTER 5. METHODS 5.1. DATA

when multiple weak bonds are next to each other. This way, the image encoding has a slight
resemblance with the actual physical shape of pre-miRNA. The resulting encoding is a 25 by 100
pixels image encoding of the RNA, where the top half consists of 13 pixels and the bottom half of
12. An example of the encoding process can be seen in Figure 5.1.

Since we want to use a VAE to model this data, it is important that we can calculate the
reconstruction loss well. Using mean squared error loss would result in unfair penalization. For
example, the squared distance between a yellow pixel (1,1,0) and red pixel (1,0,0) is smaller than
the distance between a yellow pixel and black pixel (0,0,0). Intuitively, these should be the same,
as in both cases the wrong color of pixel has been used. Therefore, we model the encoded images
as having 5 channels, where each channel is one-hot encoded with regards to pixel color. For white
pixels, the value of each channel is 0, since a white pixel indicates the absence of any structure in
the RNA encoding.

Figure 5.2: RNA image encoding with corresponding mountain plot of the MFE and the (absolute)
first difference of the MFE. Yellow pixels indicate a value of 1, while purple pixels indicate a value
of 0.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 25

5.2. MODELS CHAPTER 5. METHODS

Next to the image encodings, we also make use of the Minimum Free Energy of the folded
RNA molecules, which is also provided by RNAFold [46]. In the mountain plot of the MFE, slopes
indicate that a nucleotide has a strong bond, while plateaus indicate loop structures or gaps. To
make use of this data, we take the absolute value of the first difference of the mountain plot,
meaning that we assign a value of 1 to strong bonds, while we assign a value of 0 to nucleotides
without bonds or gaps. Then, we rearrange this data to follow the same shape as the RNA follows
in the image encodings. In Figure 5.2, an example of an RNA image encoding can be found with
the corresponding mountain plot of the MFE along with the first difference.

5.2 Models

To model the (non) pre-miRNA, we used multiple VAEs. For each VAE, the encoder, decoder
and latent space can differ in architecture and techniques used. In general, each model follows
a structure like in Figure 5.3. In the model, the encoded image of RNA is passed through the
convolutional encoder, and is mapped to the latent space. In the decoder, the latent space is
followed by a fully connected layer. This is followed by two separate decoders for the color and
length of each bar, which can consist of either deconvolutional or fully connected layers. In the
sections below, we will present an overview of the different architectures and their components in
more detail and explain how they are used in the context of modeling miRNA.

5.2.1 Encoders

We make use of two types of encoders. The models, which have a latent space where IAF is
applied, have an encoder based on the ResNet inspired architecture from [40]. The encoder for
the remaining models is VGG-isnpired, based on the miRNA classification model used in [14]. In
addition, models with IAF make use of the ELU activation functions, while the other models use
the ReLU activation function in all their modules.

VGG-inspired

The VGG-inspired encoders have an architecture consisting of blocks. Each block contains 2
convolutional layers, each followed by a batch normalization layer with a stride of 1 and same
padding, followed by a 2 by 2 max-pooling layer. For each convolutional layer, we use the ReLU
activation function. An overview of the architecture of these blocks is in Table 5.1a. For each
encoder, we stack 3 of these blocks, followed by a fully connected layer mapping to the parameters
of the latent space (µ and σ). The fully connected layer for µ has no activation, while the fully
connected layer for σ uses softplus activation. To sample z from this latent space, we make use of
the reparametrization trick from Equation 3.5. The full architecture of the network can be found
in Table 5.1.

Table 5.1: Network architecture for VGG encoders

(a) Convolutional Block architecture

Layer Params Input
Conv1 k1 × k2, f Input
BatchNorn1 f Conv1
RELU1 BatchNorm1
Conv2 k1 × k2, f RELU1
BatchNorm2 f Conv2
RELU2 BatchNorm2
MaxPool p1 × p2 RELU2

(b) Full VGG network architecture

Layer Params Input
ConvBlock1 k1 × k2, f1, p1 × p2 Input
ConvBlock2 k3 × k4, f2, p3 × p4 ConvBlock1
ConvBlock3 k5 × k6, f3, p5 × p6 ConvBlock2
Flatten ConvBlock3
zµ (FC) size(z) Flatten
zσ (FC) size(z) Flatten

26 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 5. METHODS 5.2. MODELS

Figure 5.3: General overview of the model architecture used to model pre-miRNA.

Table 5.2: Network architecture for ResNet encoders

(a) ResNet block architecture

Layer Params Input
Conv1 k1 × k2, f Input
BatchNorm1 f Conv1
ELU1 BatchNorm1
Conv2 k1 × k2, f ELU1
SUM α Input, Conv2
BatchNorm2 f SUM
ELU BatchNorm2

(b) ResNet downsample block architecture

Layer Params Input
Conv1 k1 × k2, f, s1 Input
BatchNorm1 f Conv1
ELU1 BatchNorm1
Conv2 k1 × k2, f, s2 ELU1
Conv0 k3 × k4, f, s1 Input
SUM α Conv0, Conv2
BatchNorm2 f SUM
ELU BatchNorm2

(c) ResNet stem architecture

Layer Params Input
Conv1 k1 × k2, f1 Input
BatchNorm1 f1 Conv1
ELU1 BatchNorm1
Conv2 k1 × k2, f2 ELU1
BatchNorm2 f2 Conv2
ELU2 BatchNorm2
MaxPool p1 × p2 ELU2

(d) Full ResNet network architecture

Layer Params Input
Stem k1 × k2, f1,2, p1 × p2 Input
RB1 k3 × k4, f3 Stem
RBdown1 k3 × k4, f4 RB1
RB2 k3 × k4, f4, RBdown1
RBdown2 k3 × k4, f5 RB2
Flatten RBdown2
zµ (FC) size(z) Flatten
zσ (FC) size(z) Flatten
Context (FC) size(context) Flatten

ResNet-Inspired

Similarly to the VGG-Inspired encoders, the ResNet-Inspired encoders also consist of blocks.
In the ResNet inspired network, we make use of two types of residual blocks: regular blocks and

Simulating and Generating pre-miRNA using Variational Auto-Encoders 27

5.2. MODELS CHAPTER 5. METHODS

downsample blocks. In each of the blocks, we pass the input through a convolutional layer, followed
by batch normalization and an ELU activation. We then pass it through another convolutional
layer, following which we perform a weighted elementwise sum between the input and the output,
where we give the output a weight of α. An overview of this architecture is in Table 5.2a. The
downsampling blocks follow a similar architecture. However, in the first convolutional layer we use
a stride of 2. To make elementwise summation possible, we also need to downsample the input.
We do this by applying a convolutional layer with a 1 by 1 kernel and a stride of 2. We then
perform the same summation as in the normal residual block and perform batch normalization and
ELU activation afterwards. See Table 5.2b for more details. Finally, to build the entire encoder
with residual blocks, we first have a stem (Table 5.2c) which consists of two convolutional layers
followed by batch normalization and ELU activation. We then have two pairs of regular residual
and residual downsampling blocks, where we increase the amount of filters at each downsampling
block. Finally, we flatten the output, which is followed by dense layers to calculate the posterior
as well as the context h which is later used for the autoregressive transformations. The full
architecture can be found in Table 5.2.

5.2.2 Latent Space

Depending on which model configuration we use, there are different ways in which the latent space
is calculated and how the KL Divergence is obtained.

Normal Latent Space

In the case of a vanilla VAE, or for the zx latent space of the DIVA, the distribution of the
posterior is obtained by passing x through the encoder. The prior is standard normal distribution,
i.e. N (0, I).

DIVA latent space

For a DIVA model, we partition the latent space in a latent space for the class of the RNA (zy),
the MFE of the RNA (zm) and the remaining variability in the data (zx). The latent spaces for
y and m function differently than a normal latent space. For these latent spaces, we make use of
a conditional prior, which is parameterized by a neural network.

The conditional prior of y is calculated by a neural network with a hidden layer of the same
size as the dimension of the latent space, which is followed by batch normalization and ReLU/ELU
activation. On this output, we apply a fully connected layer (without activation) to calculate the
mean of the prior distribution, and a fully connected layer (with softplus activation) to calculate
the standard deviation of the prior distribution.

Since the MFE follows a similar shape as the RNA images, we make use of 1-dimensional
convolutional layers to calculate the prior. We stack 6 convolutional layers, followed by 2 separate
fully connected layers to calculate the mean and the standard deviation, in the same way as for
the conditional prior for y. Following each convolutional layer, we apply batch normalization and
ReLU/ELU activation depending on the model.

In addition to conditional priors, these latent spaces also have auxiliary classifiers built on top
of them. The classifier for y is simple, using only fully connected layers on top of the latent space
with softmax activation. On the latent space of the MFE, we build an auxiliary reconstructor,
which follows the same architecture as the conditional prior, only reversed, where the convolutional
layers are replaced with transposed convolutional layers. In addition, an auxiliary predictor for y
is also built on this latent space, to encourage further separation between classes.

28 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 5. METHODS 5.2. MODELS

IAF

When applying IAF, we first sample z0 and h from the encoder. For the inverse flow, we stack
2 MADE layers to make one flow block. Multiple flow blocks are stacked to improve the trans-
formation of the latent variables. The output of flow block t is mt, st and log σt. The first two
allow us to calculate the transformation from Equation 3.10, while the last output is used to cal-
culate the density as in Equation 3.11, which is used in the KL-Divergence term of the loss function.

Naturally, we can also apply these flow layers on top of the latent spaces in a DIVA model. In
this case, the reconstructors and predictors are built on the final outputs of the flow layers instead
of on the initial samples from qϕ(z0|x).

5.2.3 Decoders

In the decoder, we have a separate module for decoding the color and the length of bars of the
RNA. Before passing z through the decoder, in the case of a DIVA model, all latent spaces are
concatenated. We make use of two different architectures for the decoder: one where the length
and color of bars is reconstructed using fully connected layers, and one where this is done using
deconvolutional layers.

To reconstruct the length of bars, we make use of a stamp matrix [72], which contains the
shape of all possible bars. In both fully connected and deconvolutional architectures, we calculate
for each bar the probability for each length. In other words, we calculate the probability of the
bar having a length of 0, a length of 2, a length of 3, all the way to having a length of 13. We
then multiply the stamp matrix with the probability distribution of the lengths to obtain a ”dis-
tribution” of the shape of the RNA. For the colors, we simply calculate the probability for each
color per nucleotide, which we multiply with the bar distribution to obtain reconstruction. When
sampling from the decoder, we sample from the probability distributions before taking the same
steps.

In Figure 5.4, a visual overview is represented of how the decoder works, using artificially data,
only for the top half of the reconstruction. At (1), we have the probability distribution of the bar
lengths of the top half of our image. We multiply this with (2), which is the stamp containing all
the possible bars. From this multiplication, we obtain (3), which is a ”distribution” of the shape.
This operation is summarized in equation 5.1, for the top half. Here, S is the 13 by 13 stamp
matrix (2), P is the matrix containing the probabilities for each length per bar (1), and D is the
output of the operation (3). For this example, we took a sample of the color at (4), while in reality
it would be the probabilities per color. We multiply (3) and (4), from which we obtain (5), which
is used to calculate the reconstruction loss. When sampling from the decoder, we take a sample
per bar at (1), instead of using the full distribution.

S =

0 0 . . . 0 1
0 0 . . . 1 1
...

. . .
...

0 1 . . . 1 1
0 1 . . . 1 1

 P =

 l1,1 . . . l1,100
...

. . .
...

l13,1 . . . l13,100

D = SP

(5.1)

Simulating and Generating pre-miRNA using Variational Auto-Encoders 29

5.2. MODELS CHAPTER 5. METHODS

Figure 5.4: Process of going from the output of the bar length decoder (1) and bar color decoder
(4) to reconstructions (5).

Fully Connected Decoder

In this architecture, the latent space is followed by 2 fully connected layers of 512 dense units,
which are both followed by batch normalization and (low) dropout layers (Table 5.3c). The output
of these layers is used by two other fully connected layers, which calculate the color of bars and
length of bars respectively.

The fully connected layer for bar length calculation has an output of shape (2, 100, 13), after
which a softmax layer is applied on the last dimension. The first index represents the top and
bottom bars, the second index represents the length of the image (100 pixels) and the final image
represents the probability distribution of length per bar. To obtain the lengths of bars, we per-
form (batched) matrix multiplication between this output tensor and our stamp matrix[72], which
results in a (2, 100, 13) tensor. We then reshape the matrix in such a way that it represents the
original image with a shape of 25 by 100, by removing the final row from the bottom bars. An
overview of this part of the decoder can be found in Table 5.3b.

30 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 5. METHODS 5.2. MODELS

The layer for color calculation has an output of shape (2, 100, 5), on which we apply a softmax
along the last dimension. We repeat elements of this tensor such that they cover the entire image,
and reshape it such that it matches the original image shape, resulting in a shape of (25, 100, 5).
The architecture of this part of the decoder can be found in Table 5.3a.

We then element-wise multiply the color output with length output, to obtain the reconstruc-
tion. Before doing this, we add an extra dimension to the output of the bars, and repeat this
dimension 5 times. The reconstruction loss is then calculated by taking the Mean Squared Error
(MSE) between the original input and the reconstruction. An overview of this architecture can be
found in Figure 5.3.

Table 5.3: Network architecture for Fully Connected Decoders

(a) Fully Connected Decoder Color

Layer Params Input
FC 1000 Input
Reshape (2,100,5) FC
Softmax Reshape
Expand (25,100,5) Softmax

(b) Full Connected Decoder Length

Layer Params Input
FC 2600 Input
Reshape (2,100,13) FC
Softmax Reshape
Stamp Softmax
Rearrange (26,100) Stamp
Slice 25,100 Rearrange

(c) Fully Connected Decoder Stem

Layer Params Input
FC1 512 Input
BatchNorm1 512 FC1
DropOut1 do1 BatchNorm1
FC2 512 DropOut1
BatchNorm2 512 FC2
DropOut2 do2 BatchNorm2

(d) Full FC decoder network architecture

Layer Params Input
Stem do1, do2 Input
Color Stem
Length Stem
Multiply Color, Length

Deconvolutional Decoder

Next to this, we also modeled the decoder for the length and color of the bars using transposed
convolutional layers. In this case, we first have a dense layer mapping the latent space to 1152
neurons, after which batch normalization and a ReLU activation are applied.

For the reconstruction of the length of the bars (Table 5.4b), we take the output of 1152 neurons,
and reshape it into a 3 by 12 matrix with 32 channels. On this matrix, we apply deconvolutional
blocks, which consist of a transposed convolutional layer, followed by batch normalization and
ReLU activation. The architecture of these block can be found in Table 5.4c. We stack 6 of this
blocks, where on 2 of the blocks we perform upsampling, by using a stride of 3.

For the color reconstruction (Table 5.4a), the output of 1152 neurons is also reshaped in a 3
by 12 matrix with 32 channels. We then take a sum over the height (3), to obtain a 1-dimensional
matrix with 32 channels. On this matrix, we perform 1-dimensional transposed convolutions, using
a similar architecture as for the length of bars. Following the output of both these networks, the
output is combined in a similar way as in the fully connected decoder. The full architecture can
be found in Table 5.4d.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 31

5.2. MODELS CHAPTER 5. METHODS

Table 5.4: Network architecture for Deconvolutional Decoders

(a) Deconvolutional Decoder Color

Layer Params Input
SUM height Input
CTB1 f1, k1, s1, p1 SUM
CTB2 f1, k1, s2, p2 CTB1
CTB3 f2, k1, s1, p1 CTB2
CTB4 f2, k1, s2, p2 CTB3
CTB5 f1, k1, s2, p2 CTB4
ConvT f3, k2, s2, p1 CTB5
Softmax ConvT
Reshape 2,100,5 Softmax
Expand 25,100,5 Reshape

(b) Deconvolutional Decoder Length

Layer Params Input
CTB1 f1, k1 × k2, s1, p1 Input
CTB2 f1, k1 × k2, s2, p2 CTB1
CTB3 f2, k1 × k2, s1, p1 CTB2
CTB4 f2, k1 × k2, s2, p2 CTB3
CTB5 f1, k1 × k2, s2, p2 CTB4
ConvT f3, k3 × k4, s2, p1 CTB5
Softmax ConvT
Stamp Softmax
Slice 25,100 Stamp

(c) Deconvolutional Decoder Block

Layer Params Input
ConvT f, k1(×k2), s, p Input
BatchNorm f ConvT
(R)ELU BatchNorm

(d) Full Deconvolutional decoder network architec-
ture

Layer Params Input
FC 1152 Input
Reshape 3,12,32 FC
BatchNorm 32 Reshape
(R)ELU BatchNorm
Color f1−3, k1,3, s1,2 (R)ELU
Length f1,2,4, k1−4, s1,2 (R)ELU
Multiply Color, Length

5.2.4 Full Model Architectures

In terms of the global architecture, there are two different types of models. While both models
are types of VAEs, there are a few differences between the models which use the standard VAE
architecture and models using an architecture based on DIVA.

In the probabilistic graph model of the standard VAE architecture in Figure 5.5, x is generated
by sampling from the prior distribution and passing the sample through the decoder. Inference is
done by passing x through the decoder, and sampling from the obtained posterior distribution.

The DIVA architecture is slightly more complicated, as it can be seen in the probabilistic graph
model in Figure 5.6. For generation, zm and zy are sampled from conditional priors, which are
parameterized through neural networks. To obtain the conditional prior, both y and m are needed
as input. zx is sampled from a standard normal prior, following which the three partitions of the
latent space are concatenated and passed through the decoder to obtain x again. In inference
mode, the three posteriors are obtained by passing x through three separate decoders. Following
the sampling of the posteriors, inference on y is separately performed using zm and zy, while
inference on m is performed using only zm.

(a) Generation (b) Inference

Figure 5.5: Probabilistic graph model for inference and generation using a standard VAE archi-
tecture.

32 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 5. METHODS 5.3. INTERPRETABLE LATENT SPACE

(a) Generation (b) Inference

Figure 5.6: Probabilistic graph model for inference and generation using a DIVA architecture.

Sampling

To sample RNAs using the decoder, we take the outputs of the color and bar length predictions
following their softmax layers. We then have a choice whether we want to sample from these
distributions, or take the most likely length/color for each bar. We then can reconstruct these in
an RGB image of an RNA strand, in a similar way to how the decoder works.

5.3 Interpretable Latent Space

To make interpretable explanations using the latent space, we propose a framework using Decision
Trees to make interpretable classifications using the latent space. To make these classifications,
each datapoint should be labelled with multiple features, which are potential explanatory variables
for the classification task. The datapoints are labelled using the algorithms for calculating concept
values from [69]. Using the labelled datapoints and their representations in the latent space, a
Decision Tree is constructed. Using this tree, it is then possible to make explainable predictions
from the learned latent space.

The algorithm for learning our Decision Tree is similar to CART and C4.5, with some modifica-
tions. To calculate a split based on a variable, we make use of a secondary (simple) ML algorithm.
Using this second algorithm, we train a classifier for the current variable using the latent space.
Then, to evaluate the split, we check if the classifier achieves a good performance and how big
the information gain is. When making splits, the classifier with the highest information gain and
performance above a threshold is used. The data is then split according to the predicted classes
by the classifier. A complete overview of the algorithm can be found in Algorithm 1.

In the latent space, we expect that our model found distributions of the labelled features. For
relevant features, we expect that there are strong correlations with the latent variables, meaning
that in one side of the latent space we expect the feature to have a high value, while in the other
side we expect it to have a low value. In our Decision Tree algorithm, we make use of classifiers
which find a ”simple” decision boundary, such as an SVM with linear kernel. These classifiers are
then expected to perform well on the relevant features, as these should be easier to separate in
this case. Furthermore, by using a simple classifier, we prevent the classifier from ”ignoring” the
latent space, since a complex classifier could find a direct map between the latent space and the
features. In turn, this would allow the Decision Tree to only learn from the feature data, rendering
the latent space meaningless.

We apply the proposed Decision Tree to make a description of pre-miRNA, using the algorithm
for calculating concepts defined in [69]. We applied the concept calculating algorithm on both
training and test sets, and trained the Decision Tree on (a part of) the latent space with these

Simulating and Generating pre-miRNA using Variational Auto-Encoders 33

5.4. EXPERIMENTS CHAPTER 5. METHODS

Algorithm 1 MakeSplit(z, y, concepts, depth)

Require: max depth,min samples, thresholds,min acc
1: depth← depth + 1
2: Node← Node(z, y, concepts)
3: if depth ≥ max depth or len(y) < min samples or Node is pure then
4: return Node
5: end if
6: entropy← entropy(y)
7: gain← 0
8: cls← None
9: for i in columns(concepts) do

10: for j in splits using thresholds of concepts[i]) do
11: train classifier (X = z, y = j)
12: split z based on classifier predictions in z0, z1
13: new entropy ← weighted mean(entropy(z0), entropy(z1))
14: info gain← entropy− new entropy
15: if info gain > gain and acc(classifier)> min acc then
16: gain← info gain
17: cls ← classifier
18: end if
19: end for
20: end for
21: Split data into z0, z1, concepts0, concepts1, y0, y1 according to cls
22: Node.left child ← MakeSplit(z0,y0,concepts0,depth)
23: Node.right child ← MakeSplit(z1,y1,concepts1,depth)
24: return Node

concepts. The tree was trained using an SVM with a linear kernel as the concept classifier, which
needs to achieve an accuracy of at least 90% to be acceptable. We used a minimum amount of
samples of 10 per leaf and a maximum depth of 4. For continuous variables and other variables
with a large number of unique values, we have defined multiple thresholds, which split the data
in a class greater than the threshold, and a class smaller or equal to the threshold. The results
of the Decision Tree were compared to the biological knowledge about pre-miRNA. The results of
this method should only be considered as a proof of concept, as for proper performance the used
features should be defined using expert domain knowledge.

5.4 Experiments

5.4.1 Model

Using the previously defined model components, we use a DIVA model with 3 latent spaces and
IAF to model the pre-miRNA. In addition, we use the deconvolutional variant of the decoder.
Since we use IAF, the model uses the ResNet encoder architecture in all 3 encoders, with the same
hyperparameters for each encoder, using the architecture from Table 5.2d.

In the stem, the model uses a kernel size of 5 by 5 (k1, k2), 32 filters (f1) in the first convo-
lutional layer and 48 filters (f2) in the second convolutional layer. Finally, 2 by 2 max pooling
(p1, p2) is applied at the end of the stem.

The filters used by the ResNet network are increasing from 48 (f3), to 64 (f4), to 80 (f5). In
the ResNet blocks (Tables 5.2a and 5.2b), a kernel size of 3 by 3 (k1, k2) is used, with exception
from the identity downsampling, where a kernel size of 1 by 1 (k3, k4) is used. In all layers, we use

34 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 5. METHODS 5.4. EXPERIMENTS

”same” padding and a stride of 1, with exception of the downsampling blocks. The first convo-
lutional layers of these blocks, as well as the identity convolution (Conv0), use a stride of 2 (s2).
The elementwise sum operation of each block uses an α of 0.2.

After the ResNet blocks, the output is flattened. The flattened output is followed by 2 separate
fully connected layers, used to calculate the distribution of the posterior. For each latent space,
we use a size of 64. In addition, there is a separate fully connected layer for the context h, which
has 32 nodes. The latent space is followed by 8 stacked blocks of 2 MADE layers. Each MADE
layer has a hidden size of 1080 neurons.

In the decoder (Table 5.4d), we use a kernel size (k1, k2) of 3 (by 3) for all operations before
the final layer, both in the decoder for color and length. At layers without upsampling, we use
a stride of 1 (s1) and ”same” padding, while at layers with upsampling we use a stride of 3 (s2)
without padding. The final layer in both decoders uses a 1 (by 1) kernel (k3, k4), with 1 filter (f4)
for the bar length and 10 filters (f3) for the bar color.

For training the model, we used the Adam optimizer with a learning rate of 0.0005 and a batch
size of 32. As we include multiple auxiliary classifiers, we modify the loss function from Equation
3.9. The new function can be found in Equation 5.2. The auxiliary losses for predicting y on zy
(αy1

) and zm (αy2
) both have a penalty term of 12, and are calculated using categorical cross-

entropy, while the reconstruction loss of m on zm (αm) has a penalty term of 1 and is calculated
using MSE.

FDIVA(y,x,m) = Ls(y,x,m)

+ αy1
Eqϕy(zy|x)

[log qωy
(y|zy)]

+ αy2Eqϕy(zm|x)
[log qωy (y|zm)]

+ αmEqϕm(zm|x)
[log qωm(m|zm)]

(5.2)

We investigated the latent spaces of the model, to show that our model was able to find mean-
ingful generative factors of the data. Furthermore, we also investigated the model’s capability to
reconstruct pre-miRNAs and its (conditional) sampling and interpolation quality.

To showcase our latent space interpretation methods, we trained a Decision Tree on the latent
space. We analyzed the pre-miRNA description developed by the Decision Tree, by investigating
the relationships it found in the latent space. In addition, we compared these findings to biological
features of pre-miRNA.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 35

5.4. EXPERIMENTS CHAPTER 5. METHODS

5.4.2 Experiment Structure

To show how and why design choices for our model were made, we performed additional exper-
iments. We show how a vanilla VAE is unsuitable for the task, and how other design choices
improve performance of the model. We also show how using β-VAE improves model performance,
as well as how adding IAF, using a DIVA architecture and using a deconvolutional decoder helps
increase the performance of the model. For models without IAF, which use a VGG-inspired en-
coder, we increase the amount of filters the same way as in the ResNet encoders, starting from
48, to 64 and finishing with 80. However, unlike the ResNet encoder, the VGG encoder does not
have a stem. In Table 5.5, a concrete overview of the experiments can be found. The code used
for all experiments and results can be found on https://github.com/merkelmauer/mirna.

Table 5.5: Experiments for generative pre-miRNA modeling. Bold row indicates our final model.

Model Name β DIVA IAF DeConv z(zy, zx, zm)
VAE 1 No No No 192 (-)
β-VAE 0.05 No No No 192 (-)
β-IAF-VAE 0.5 No Yes No 192 (-)
DC-β-IAF-VAE 0.5 No Yes Yes 192 (-)
DC-IAF-DIVA 0.5 Yes Yes Yes 192 (64,64,64)

36 Simulating and Generating pre-miRNA using Variational Auto-Encoders

https://github.com/merkelmauer/mirna

Chapter 6

Results

6.1 Model Performance

We first investigated how the performances of the different models compare quantitatively. For
this, we looked at the different losses recorded during training and testing (Table 6.1). We calcu-
lated the reconstruction loss in terms of the sum of the mean squared error per pixel, while the
KL loss was calculated as the sum of KL losses per latent variable. In Appendix A, loss curves
for the different models can be found. In Table 6.2, we further investigated the reconstruction
performances of the different models. Here, we took the most likely reconstruction of each image
and calculated the MAE for the entire image, nucleotide color and the length of the bars.

We also assessed the quality of the reconstructions in more detail. In Figure 6.1, the MAE for
each reconstruction per pixel can be found. In addition, we also looked at how reconstructions
for some images compare between models in Figure 6.2. More reconstructions can be found in
Appendix B.

Table 6.1: Training statistics of different model types. Bold entries represent lowest obtained
losses. Entries in brackets for DC-IAF-DIVA indicate KL losses per latent space.

Loss Reconstruction Loss KL loss (zy,zx,zm)
Model Name Train Test Train Test Train Test

VAE 365.1 375.8 332.9 343.6 32.3 32.3
β-VAE 186.8 154.6 166.5 134.8 405.3 395.6
β-IAF-VAE 144.3 142.2 135.1 132.8 18.9 18.3
DC-β-IAF-VAE 16.9 24.1 14.7 21.8 4.4 4.6
DC-IAF-DIVA 117.9 126.1 26.2 32.1 154.2 155.4

(69.6, 35.7, 48.9) (69.5, 35.1, 50.8)

Table 6.2: Reconstruction statistics for different model types. Bold statistics represent lowest
obtained errors.

Model Name MAE MAE nucleotide MAE length

VAE 0.1363 0.3053 0.7844
β-VAE 0.0550 0.0919 0.4779
β-IAF-VAE 0.0531 0.0824 0.4443
DC-β-IAF-VAE 0.0085 0.0150 0.0670
DC-IAF-DIVA 0.0068 0.0122 0.0567

Simulating and Generating pre-miRNA using Variational Auto-Encoders 37

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS

In the vanilla VAE with a fully connected decoder, we can see that the network did not seem
to learn to model the data. The reconstruction error seems high, and throughout training the KL
divergence has constantly been going up (Figure A). By inspecting some of the reconstructions
from the model (Figure 6.2), we can see that the model is able to reconstruct the terminal loop,
as well as the rough length of each RNA. However, past the terminal loop the reconstruction
quality drops off severely, which is also backed up by the statistics from Table 6.2, showing that,
on average, around 30% of the nucleotides are reconstructed wrongly. Simultaneously, the MAE
for bar length is 0.78. While this seems like a low number, it should be noted that the error was
also calculated for ”non-existing” bars at the end of each image. Similarly, we see in Figure 6.1
that there are reconstruction errors in almost the entire stem region of most (non) pre-miRNAs,
which further indicates a poor reconstruction performance of the model.

A possible explanation for the poor performance of the model can be explained by the nature
of the dataset. While the image data is very structured, it is much more complex than common
datasets used in literature, such as MNIST (handwritten digits) and CelebA (faces) [45]. In these
datasets, most datapoints are similar in nature. For example, in CelebA, each image has common
features such as eyes, noses, ears and mouths, all being in roughly similar locations between the
images. Similarly, in MNIST, each number is written in roughly the same way with no major dif-
ferences. On the other hand, the stems of the modeled RNA molecules can be vastly different in
terms of structure and nucleotide sequence. Having a too high penalty term on the KL-divergence
in turn makes it harder to differ between points in the latent space, which does not enable the
model to make good reconstructions.

By lowering the β parameter to 0.05 (β-VAE), the model achieved a drastically better recon-
struction performance. As can be seen in Figure 6.2, the reconstructions are more accurate. It
should be noted that the model still made mistakes in bar lengths and sometimes made mistakes in
terms of color. In Figure 6.1, we can also see that the model frequently made mistakes in the length
of bars with strong bonds, making them slightly too long or too short. In addition, due to setting
β to 0.05, the KL divergence increased more than tenfold compared to the normal VAE (Table 6.1).

In the β-IAF-VAE, we introduced IAF on top of the latent space, and increased the β parameter
to 0.5. Compared to the β-VAE, this model achieved a slightly better reconstruction performance,
while it achieved a significantly more regularized latent space (Table 6.1). However, like with
the normal β-VAE, the reconstructions this model produces still contain visible mistakes, and the
errors are distributed somewhat similarly.

By using a deconvolutional decoder for bar length and color, the reconstruction performance
increased significantly. Reconstructions in Figure 6.2 show few mistakes, which is further backed
up by the statistics in Table 6.2. Furthermore, this model also achieved the lowest overall loss, as
well as lowest reconstruction loss and KL loss (Table 6.1). Looking at Figure 6.1, we can see that
the model produces fairly few errors in the left part of the image, while it produces somewhat
more errors in the latter part of the image. This is likely a result of the dataset having relatively
few long (non) pre-miRNAs, which limited the model’s ability to learn how to reconstruct that
part of the image.

In terms of the MAE for the different reconstruction statistics, the DIVA model performed
better, despite having a worse reconstruction loss than the DC-β-IAF-VAE. Since the reconstruc-
tion loss is calculated based on the distribution of the bar length and color, it is possible that the
DIVA model has more uncertainty in the reconstruction of the bar length and color. However, if
the most likely choice was still the correct one, it can result in the lower MAE statistics as seen in
Table 6.2. We can also see this in Figure 6.1, that the DIVA model made less mistakes than the
DC-β-IAF-VAE. On the other hand, the DIVA model has a significantly higher KL Loss than the
DC-β-IAF-VAE, as a result of its partitioned latent space.

38 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.1. MODEL PERFORMANCE

To compare the latent space between the two models, we compared zm from the DIVA model
and the entire latent space of DC-β-IAF-VAE. For this, we reduced the dimensionality of both
latent spaces to 2 using t-SNE [70]. In this dimensionality reduction method, the distance between
points is preserved in such a way that similar points are close together, while more dissimilar points
are further apart. Therefore, we expect that in a well organized latent space, points close together
will have similar properties. Likewise, we expect that when relevant properties change, the change
will be happening gradually in its cluster of similar points. Using the class labels and concepts
defined in [69], we colored each datapoint according to their label or concept value.

In Figure 6.3, we compared the latent spaces of the two models, and colored the datapoints
according to class label, the presence of the terminal loop, the vertical size of the loop (in pixels),
the length of the stem and the fraction of base pairs in the stem. For the class labels and the
presence of a terminal loop, we can see clear separations in the latent space of the DIVA model,
while especially for the class label this separation is not present in the VAE. For the size of the
terminal loop, there is a clear trend in the DIVA latent space. On the other hand, in the VAE
latent space some datapoints with similar loop sizes are clustered together. However, there does
not seem to be a clear between datapoints with different loop sizes. Likewise, we see that the stem
length and the fraction of base pairs is smoothly changing in the DIVA latent space, while in the
VAE latent space datapoints with similar values are scattered throughout the latent space. While
there are still datapoints with similar values clustered together, it is not to the same extent as for
the DIVA latent space.

Overall, we can conclude that the additions of IAF, separate latent spaces through DIVA and
using a deconvolutional decoder all provided performance gains for the modelling of pre-miRNA.
We have shown that each addition improves the reconstruction performance, which resulted in a
final model achieving a high performance, with a MAE of 0.0068. Finally, we have also shown
that partitioning the latent space allowed our model to learn biological features, without showing
them explicitly to the model.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 39

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS

VA
E

-V
AE

-IA
F-

VA
E

DC
-

-IA
F-

VA
E

DC
-IA

F-
DI

VA

Figure 6.1: Distribution of errors for the different models. The brightest yellow indicates that in
64% of the cases, the reconstruction of that pixel was wrong.

40 Simulating and Generating pre-miRNA using Variational Auto-Encoders

C
H
A
P
T
E
R

6.
R
E
S
U
L
T
S

6.1.
M
O
D
E
L
P
E
R
F
O
R
M
A
N
C
E

Figure 6.2: Reconstructions of 5 random samples from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA.

S
im

u
latin

g
an

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers
41

6.1. MODEL PERFORMANCE CHAPTER 6. RESULTS

60 40 20 0 20 40 60

60

40

20

0

20

40

60

DC-IAF-DIVA zm latent space

non pre-miRNA
pre-miRNA
non pre-miRNA
pre-miRNA

60 40 20 0 20 40 60

DC- -IAF-VAE z latent space

non pre-miRNA
pre-miRNA
non pre-miRNA
pre-miRNA

(a) Class values

60 40 20 0 20 40 60

60

40

20

0

20

40

60

DC-IAF-DIVA zm latent space

No Terminal Loop
Terminal Loop
No Terminal Loop
Terminal Loop

60 40 20 0 20 40 60

DC- -IAF-VAE z latent space

No Terminal Loop
Terminal Loop
No Terminal Loop
Terminal Loop

(b) Presence Terminal Loop

Figure 6.3: Distribution of different biological concepts over the entire latent space of DC-β-IAF-
VAE and zm of DC-IAF-DIVA. For labels with continuous values, the colorbar to the right of the
figures indicates which color corresponds to which value.

42 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.1. MODEL PERFORMANCE

60 40 20 0 20 40 60

60

40

20

0

20

40

60

DC-IAF-DIVA zm latent space

60 40 20 0 20 40 60

DC- -IAF-VAE z latent space

0

5

10

15

20

25

lo
op

 si
ze

(c) Terminal Loop Size

60 40 20 0 20 40 60

60

40

20

0

20

40

60

DC-IAF-DIVA zm latent space

60 40 20 0 20 40 60

DC- -IAF-VAE z latent space

20

40

60

80

st
em

 le
ng

th
(d) Stem Length

60 40 20 0 20 40 60

60

40

20

0

20

40

60

DC-IAF-DIVA zm latent space

60 40 20 0 20 40 60

DC- -IAF-VAE z latent space

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

ba
se

 p
ai

rs
 in

 st
em

(e) Fraction Base Pairs in Stem

Figure 6.3: Distribution of different biological concepts over the entire latent space of DC-β-IAF-
VAE and zm of DC-IAF-DIVA. For labels with continuous values, the colorbar to the right of the
figures indicates which color corresponds to which value.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 43

6.2. LATENT SPACE ANALYSIS CHAPTER 6. RESULTS

6.2 Latent Space Analysis

50 0 50

60

40

20

0

20

40

60

zm latent space

non pre-miRNA
pre-miRNA
non pre-miRNA
pre-miRNA

50 0 50

zx latent space

non pre-miRNA
pre-miRNA
non pre-miRNA
pre-miRNA

50 0 50

zy latent space

non pre-miRNA
pre-miRNA
non pre-miRNA
pre-miRNA

(a) Class Values

50 0 50

60

40

20

0

20

40

60

zm latent space

no terminal loop
terminal loop
no terminal loop
terminal loop

50 0 50

zx latent space

no terminal loop
terminal loop
no terminal loop
terminal loop

50 0 50

zy latent space

no terminal loop
terminal loop
no terminal loop
terminal loop

(b) Presence Terminal Loop

Figure 6.4: Partitioned latent spaces colored by class labels and other concepts following dimen-
sionality reduction using t-SNE. For labels with continuous values, the colorbar to the right of the
figures indicates which color corresponds to which value.

To investigate whether the DIVA model learned relevant latent spaces, we performed dimen-
sionality reduction on all 3 latent spaces of the model. In Figure 6.4, visualizations of the 3
different latent spaces can be found after applying t-SNE and coloring the datapoints by their
class label as well as different concepts. As expected, we see clear separations between classes in
zy and zm, indicating that for both latent spaces the model seemed to have learned a relevant
representation. On the other hand, there does not seem to be any separation between class labels
in zx. From this, we can assume that the model has indeed used this latent space to capture any
remaining variance in the data.

We can observe similar patterns for the different biological concepts. In the zm latent space,
there seems to be a clear distribution of all the different concepts over the latent space. In the
latent space for zy, we see that the distribution of the different concept values over the latent

44 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.2. LATENT SPACE ANALYSIS

50 0 50

60

40

20

0

20

40

60

zm latent space

50 0 50

zx latent space

50 0 50

zy latent space

0

5

10

15

20

25

lo
op

 si
ze

(c) Terminal Loop Size

50 0 50

60

40

20

0

20

40

60

zm latent space

50 0 50

zx latent space

50 0 50

zy latent space

20

40

60

80

st
em

 le
ng

th

(d) Stem Length

50 0 50

60

40

20

0

20

40

60

zm latent space

50 0 50

zx latent space

50 0 50

zy latent space

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

ba
se

 p
ai

rs
 in

 st
em

(e) Fraction Base Pairs in Stem

Figure 6.4: Partitioned latent spaces colored by class labels and other concepts following dimen-
sionality reduction using t-SNE. For labels with continuous values, the colorbar to the right of the
figures indicates which color corresponds to which value.

space is not as clearly separated. This is likely due to no concept having a full correlation with
class labels, which likely did not force the model to separate these concepts in this latent space.
Finally, we see that the latent space for the remaining variance in the data does not capture these
concepts to any degree, showing that it indeed captures remaining variance.

When investigating the quality of the latent space, there are often no quantitative metrics

Simulating and Generating pre-miRNA using Variational Auto-Encoders 45

6.2. LATENT SPACE ANALYSIS CHAPTER 6. RESULTS

which can be used. Interpolating between pairs of points in the latent space is a possible qualit-
ative measure which can be used instead. If the reconstructions of the interpolated points show a
smooth transition, it indicates that the probability mass is not centered exclusively around train-
ing datapoints and that the learned latent factors generalize well [47, 19].

To make interpolations, we sampled five pairs of datapoints, which we put through the encoders
and IAFs to obtain the latent representation of each datapoint. Then, we linearly interpolated
between each pair, and decoded multiple steps from the interpolation. The results can be seen in
Figure 6.5. In this figure, the top and bottom rows represent the original images, while the images
second from top and bottom represent their reconstructions. During the interpolation, the images
slowly change from the initial image to the other image, suggesting that the coverage of the data
manifold is good. However, some steps result in images which are impossible, by either containing
gaps (column 4, row 4 & 5) or by containing bar lengths which should not be possible (column 5,
row 5 & 6).

These impossible images could be caused by (slight) gaps in the latent manifold. Due to the
large latent space of 192 variables, it is possible that some combinations of variables were never
learned by the model. When an interpolation passes through one of these gaps, it can result in
producing unrealistic reconstruction. However, this does not imply that the model has a poor
performance. Another explanation for the failed reconstructions of the interpolations is the de-
coder not being perfect. In the final column, the reconstruction of the second picture contains an
error after the terminal loop (red rectangle). We see a similar error in the reconstruction of the
interpolations. Likewise, the actual gaps appearing in the interpolation of column 4 can also be
the results of the model struggling with reconstructing longer RNA strands.

Another qualitative measure for the latent space is the models’ performance in conditional
generation [47]. Here, for a datapoint from the test set, the latent space representation is calcu-
lated. Then, we conditioned on (a part of) the latent space, and investigated if the reconstructions
indeed follow the conditioning.

To investigate the conditional generation, we analyzed how reconstructions were changing by
modifying the MFE of the molecule. We sampled a random RNA from the test set, and passed it
through the encoders to obtain zx and zy. In addition, we defined multiple changes to the base
MFE of the RNA. To sample zm, we passed the MFE through the conditional prior network, from
which we sampled multiple times, where we once sampled the mean of the prior (first column),
and three times randomly from the prior (second to fourth column).

In Figure 6.6, we have the original RNA image in the top left. In the row below, we have
the reconstruction of the original RNA by sampling from the prior. In the rows below, we have
conditionally generated RNAs, where we condition on the MFE. In these pictures, the conditional
MFE is visualized below each generated picture. We can see that the change of MFE is reflected
in the pictures. For example, the MFE for the RNA in the third row was modified such that the
first strong bond appears later. We can see that this change in MFE is indeed reflected in the
reconstructions, since the terminal loop grew bigger and a part of the asymmetric bulge disap-
peared. Similarly, in the RNA in the sixth row, the asymmetric bulge completely disappeared, as
we conditioned on a lot of strong bonds early in the molecule. On the other hand, in the RNAs in
the fifth and last row, we see that the molecules increased in length. However, the model seems to
struggle with making the ”new” extension of the RNA look realistic. This can possibly be caused
by the model in general not being able to reconstruct the end of long molecules well, due to a lack
of these in the dataset.

Since these reconstructions are adapting as expected when changing the MFE, we can conclude
that the model understands the significance of zm well. While some of the changes are not perfect,
this could again be explained by a gap in the manifold of the latent space. Potentially, this issue

46 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.2. LATENT SPACE ANALYSIS

could be alleviated by increasing the regularization parameter (β) of this part of the latent space,
to ensure the distribution sampled from the encoder is closer to the prior.

Through the analysis on the latent space, we have seen that our DIVA model has learned a
meaningful representation of the latent space for pre-miRNA. We have seen that several relevant
pre-miRNA characteristics seem aligned with the latent space (Figure 6.3), which implies that the
model has been successful in learning generative factors of (non) pre-miRNA. In addition, we have
seen that the model learned the influence of the MFE on the structure well, as, when changing
the MFE, the newly sampled molecules look as expected.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 47

6.2
.

L
A
T
E
N
T

S
P
A
C
E

A
N
A
L
Y
S
IS

C
H
A
P
T
E
R

6.
R
E
S
U
L
T
S

Or
g

1
Re

c
1

Re
c

2
Or

g
2

Figure 6.5: Linear Interpolation of the latent space. The top and bottom row represent the original images. The second rows from top and bottom
represent their reconstructions. The points in between were interpolated, with each step having an equal size.

48
S

im
u

latin
g

a
n

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers

CHAPTER 6. RESULTS 6.3. INTERPRETABLE LATENT SPACE

Figure 6.6: Reconstructions by sampling from the prior of the MFE. Colored bars below images
represent their MFE, with 1 being yellow. Top left image is the original. The second row contains
reconstructions where we sampled from the original prior of zm. Rows below contain conditional
samples after changing the MFE.

6.3 Interpretable Latent Space

As we have seen previously, the latent space for the MFE (zm) was organized well with regards
to the different concepts we checked for. We trained the Decision Tree on the latent space zm
of the training set. From this, we obtained the tree in Figure 6.7. Despite setting the maximum
depth to 4, the Decision Tree only reached a depth of 3. We also plotted the approximate decision
boundaries on the latent space following dimensionality reduction by t-SNE. We applied 3-nearest
neighbors classifying on the classifications from the tree rules to obtain the boundary, visible in
Figures 6.8, 6.9, 6.10.

On the training set, the tree achieved an accuracy of 93.9%, while on the testing set it achieved
an accuracy of 91.2%. In addition, the tree achieved a sensitivity of 0.923 and a specificity of 0.955
on the test set. Meanwhile, the auxiliary classifier for y on zm obtained a training accuracy of
95.9% and a testing accuracy of 92.2%. As a result, we can see that despite the minor drop in
accuracy, the explainabilty increases massively. Furthermore, the drop in accuracy is also fairly
minor compared to the concept whitening method [69], which achieved a testing accuracy of 92.4%.

The very first split the Decision Tree makes is based on the fraction of the amount of base
pairs in the stem. This is indeed a biologically relevant characteristic of pre-miRNA [2], as the
dicer enzyme is more effective on pre-miRNAs containing few bulges. Similarly, short RNA se-
quences with a stem having length of less than 70 and less than 50% base pairs in the stem, are
unlikely to be pre-miRNA. This can again be explained by the dicer enzyme being more effective
on RNAs containing mainly base pairs in the stem, since (in absolute values) the stem will have few
base pairs in this case. We then see that RNAs which contain asymmetric bulges, are more likely
to be non pre-miRNA. This is in line with pre-miRNA typically not having asymmetric bulges [36].

Simulating and Generating pre-miRNA using Variational Auto-Encoders 49

6.3. INTERPRETABLE LATENT SPACE CHAPTER 6. RESULTS

In terms of accuracy of the rules, the SVM used for making the first split had an accuracy
of 92.7% on the test set. The second rule had an accuracy of 98.9%, and the final rule had an
accuracy of 90.4%. Since the rules achieved a high accuracy, we can safely conclude that the rules
learned by the Decision Tree are relevant and correct.

As we have seen, our Decision Tree method has successfully made an interpretable method
for classifying pre-miRNA using the latent space of our model. The method achieves an accuracy
slightly lower than non-interpretable methods (auxiliary classifier) and methods with limited in-
terpretability (concept whitening [69]). The method learned decision rules which are in line with
domain knowledge and has a high confidence in these rules. In turn, the method could be used in
other domains for interpretable classifications using the latent space.

However, the biological features used for training the model should be evaluated with a domain
expert, as the features we are using might not be optimal. Furthermore, the dataset should also
be evaluated, as parts of the dataset do not consist of naturally occurring RNA, but pre-miRNA
of which the nucleotide order is shuffled. This can affect the latent space learned by our model,
which in turn can affect the performance of our algorithm.

Base Pairs in Stem > 0.5
17360/17361

pre-miRNA
634/14976 (95.9%)

Stem Length > 70
16726/2385

non pre-miRNA
16257/1250 (92.9%)

Contains Asymmetric Bulges
469/1135

pre-miRNA
147/1052 (87.7%)

non pre-miRNA
322/83 (79.5%)

Figure 6.7: Decision Tree trained on the zm. First number at each node represents the amount
of pre-miRNA at each node, the second number the amount of non pre-miRNA. The number in
percentages represents the accuracy at each leaf, while a red leaf indicates the non pre-miRNA is
predicted, while a green leaf indicates that pre-miRNA is predicted.

50 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.3. INTERPRETABLE LATENT SPACE

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80

Decision boundaries for first split (base pairs in stem > 0.5)
base pairs in stem =< 0.5
base pairs in stem > 0.5 (pre-miRNA)

Figure 6.8: Approximate decision boundary of the first split visualized on the test set.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 51

6.3. INTERPRETABLE LATENT SPACE CHAPTER 6. RESULTS

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80

Decision boundaries for second split (stem length > 70)
stem length =< 70 (non pre-miRNA)
stem length> 70

Figure 6.9: Approximate decision boundary of the second split visualized on the test set.

52 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 6. RESULTS 6.3. INTERPRETABLE LATENT SPACE

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80

Decision boundaries for final split (asymmetric bulges)
no asymmetric bulges (pre-miRNA)
asymmetric bulges (non pre-miRNA)

Figure 6.10: Approximate decision boundary of the third split visualized on the test set.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 53

Chapter 7

Conclusions

As we have shown in Table 6.2 and Figure 6.1, the DC-IAF-DIVA model has managed to obtain
near perfect reconstruction performance with an MAE of less than 0.01, by achieving an MAE of
0.0068. In addition, we have also shown that the latent space of the model is well organized, by
investigating how the classes and different concepts are distributed over the latent space. From
this, we can conclude that our model has achieved a good perfomance in modelling pre-miRNA.

Furthermore, our model is able to interpolate between different pairs of RNAs (Figure 6.5),
with decent looking interpolations. While some of these interpolations are not realistic or possible,
more attention should be paid to whether the decoder or incomplete coverage of the data manifold
is the cause of some errors in interpolations. Overall, the model seems to have a decent sampling
performance. It should be noted that, to be used for sampling in a practical context, the model
should likely be trained with a higher constraint on the latent spaces.

In addition, we have shown that we can conditionally sample new RNA strands by manipu-
lating the MFE (Figure 6.6) and that the new samples are indeed conditioned by the MFE we
provided. In turn, this led to a latent space that was organized well and could thus be used for
developing our framework for making interpretable predictions.

Finally, it has been demonstrated that our framework for interpretable predictions on the lat-
ent space works well. The Decision Tree we trained managed to achieve a performance (91.2%
accuracy, 0.923 sensitivity, 0.955 specificity) comparable to the state-of-the-art for interpretable
pre-miRNA classification (92.4% accuracy [69]), while having a higher degree of (potential) in-
terpretability. Furthermore, the description of pre-miRNA developded by the framework is based
on biological features which are known to be be properties of (non) pre-miRNA. However, the
method should still be evaluated with a domain expert, to gain more insight into which biological
characteristics should be used for training the Decision Tree. Due to the high performance of
our method, we are certain that it has potential to be used for interpretable predictions for other
domains.

In this thesis, we have shown that deep generative methods can be used to model pre-miRNA
to uncover generative factors and potentially obtain new conditioned samples. We have also
presented a novel method which makes interpretable classifications on the latent space using a
Decision Tree. It achieved a high performance on the pre-miRNA classification task, and could be
extended to different domains.

54 Simulating and Generating pre-miRNA using Variational Auto-Encoders

CHAPTER 7. CONCLUSIONS 7.1. LIMITATIONS & FUTURE WORK

7.1 Limitations & Future Work

The main limitation of this work was (computational) time. For this reason, an extensive hyper
parameter search for the best performing model was not possible. For example, the architecture
of the encoders and decoders could have been further optimized. Furthermore, different kernel
sizes could be used with an inception-like network containing wide and tall rectangular kernels.
In addition, the parameters surrounding the latent space could also be further optimized. Here,
the constraints on the latent space could be further investigated, by performing more experiments
with different and higher βs for each latent space. Another part which could have been further
investigated are the sizes of each partition of the latent space, and whether all partitions are re-
quired. However, given the performance displayed by the model, we are likely not far off from the
best possible architecture.

Another potential limitation of our proposed model is the use of the RNA image encoding. A
main drawback is that the encoding itself contains a lot of white space, which should be ignored by
the model as it does not carry any information. Almost 80% of the pixels of an image is on average
white, and thus irrelevant information. On the other hand, in the case of some RNAs the image
is either too short or not tall enough, leading to the image representation of the RNA being cut off.

A possible solution is to represent the RNA as a graph instead of an image. In this case, each
nucleotide could be represented by a node in the graph, having connections to its two adjacent
nodes. To represent the bonds, (different) connections could be made between these nucleotides.
Furthermore, the position of each node can be represented in its feature vector, by using the
(actual) height of bars provided by the image encoding. By representing the RNA as graphs, we
could make use of Graph Convolutional Networks (GCN) [41]. Using GCN, we could then build
(variations) of a Variational Graph Auto-Encoder (VGAE) [42] to model the pre-miRNA.

Another potential approach of modelling pre-miRNA is modelling the mRNA targets simultan-
eously with the (pre-)miRNA. A potential approach could be a (Variational) Auto-Encoder which
takes as input the target mRNA and needs to produce multiple potential miRNAs which could
target the mRNA, or vice-versa. By modeling the target mRNAs simultaneously as the miRNA,
we could not only identify potential novel miRNA, but also directly identify the mRNA which it
can affect.

Finally, our method for making interpretable predictions on the latent space should be in-
vestigated further, and its performance should be verified on a different dataset. Further work
could also be done on the method itself. For example, a different approach could be taken instead
of defining thresholds for variables with many values, by using a regression method instead of a
classifier for these variables. In addition, further investigation could be done in using different
secondary classifiers instead of SVMs with linear kernels.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 55

Bibliography

[1] Julia Alles, Tobias Fehlmann, Ulrike Fischer, Christina Backes, Valentina Galata, Marie
Minet, Martin Hart, Masood Abu-Halima, Friedrich A Grässer, Hans-Peter Lenhof, et al. An
estimate of the total number of true human mirnas. Nucleic acids research, 47(7):3353–3364,
2019. 1

[2] Jens Allmer. Computational and bioinformatics methods for microrna gene prediction. In
MiRNomics: MicroRNA biology and computational analysis, pages 157–175. Springer, 2014.
7, 8, 49

[3] Çiğir Biray Avci and Yusuf Baran. Use of micrornas in personalized medicine. In miRNomics:
MicroRNA Biology and Computational Analysis, pages 311–325. Springer, 2014. 1

[4] Youhuang Bai, Xiaozhuan Dai, Andrew Harrison, Caroline Johnston, and Ming Chen. Toward
a next-generation atlas of rna secondary structure. Briefings in bioinformatics, 17(1):63–77,
2016. 22

[5] Rukshan Batuwita and Vasile Palade. micropred: effective classification of pre-mirnas for
human mirna gene prediction. Bioinformatics, 25(8):989–995, 2009. 22

[6] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 12, 20

[7] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification
and regression trees. Routledge, 2017. 12

[8] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018. 17, 22

[9] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources
of disentanglement in variational autoencoders. Advances in neural information processing
systems, 31, 2018. 22

[10] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. In-
fogan: Interpretable representation learning by information maximizing generative adversarial
nets. Advances in neural information processing systems, 29, 2016. 21

[11] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recogni-
tion. Nature Machine Intelligence, 2(12):772–782, 2020. 21

[12] Jorge Cordero, Vlado Menkovski, and Jens Allmer. Detection of pre-microrna with convolu-
tional neural networks. bioRxiv, 2019. 24

[13] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995. 11

[14] Jorge Alberto Cordero Cruz. Detection of pre-micrornas with convolutional neural networks.
Master’s thesis, Eindhoven University of Technology, 2019. 2, 4, 23, 24, 26

56 Simulating and Generating pre-miRNA using Variational Auto-Encoders

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Bala Gür Dedeoğlu. High-throughput approaches for microrna expression analysis. In
miRNomics: microRNA biology and computational analysis, pages 91–103. Springer, 2014. 1,
9

[16] Jiandong Ding, Shuigeng Zhou, and Jihong Guan. Mirensvm: towards better prediction of
microrna precursors using an ensemble svm classifier with multi-loop features. BMC bioin-
formatics, 11(11):1–10, 2010. 22

[17] Binh Thanh Do, Vladimir Golkov, Göktuğ Erce Gürel, and Daniel Cremers. Precursor mi-
crorna identification using deep convolutional neural networks. BioRxiv, page 414656, 2018.
2, 23

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011. 13

[19] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Mar-
tin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016. 46

[20] Ayse Elif Erson-Bensan. Introduction to micrornas in biological systems. MiRNomics: Mi-
croRNA biology and computational analysis, pages 1–14, 2014. 6, 7, 8

[21] Bastian Fromm, Diana Domanska, Eirik Høye, Vladimir Ovchinnikov, Wenjing Kang, Ernesto
Aparicio-Puerta, Morten Johansen, Kjersti Flatmark, Anthony Mathelier, Eivind Hovig, Mi-
chael Hackenberg, Marc R Friedländer, and Kevin J Peterson. MirGeneDB 2.0: the metazoan
microRNA complement. Nucleic Acids Research, 48(D1):D132–D141, 10 2019. 24

[22] Victoria Furer, Jeffrey D Greenberg, Mukundan Attur, Steven B Abramson, and Michael H
Pillinger. The role of microrna in rheumatoid arthritis and other autoimmune diseases. Clin-
ical immunology, 136(1):1–15, 2010. 8

[23] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoen-
coder for distribution estimation. In International conference on machine learning, pages
881–889. PMLR, 2015. 18

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communica-
tions of the ACM, 63(11):139–144, 2020. 15

[25] Sam Griffiths-Jones. The microrna registry. Nucleic acids research, 32(suppl 1):D109–D111,
2004. 24

[26] Adam Gudyś, Micha l Wojciech Szcześniak, Marek Sikora, and Izabela Maka lowska. Huntmi:
an efficient and taxon-specific approach in pre-mirna identification. BMC bioinformatics,
14(1):1–10, 2013. 24

[27] Josie Hayes, Pier Paolo Peruzzi, and Sean Lawler. Micrornas in cancer: biomarkers, functions
and therapy. Trends in molecular medicine, 20(8):460–469, 2014. 1, 9

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 15

[29] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual con-
cepts with a constrained variational framework. In International Conference on Learning
Representations, 2017. 17, 22

Simulating and Generating pre-miRNA using Variational Auto-Encoders 57

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detect-
ors. arXiv preprint arXiv:1207.0580, 2012. 14

[31] Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred Tacker,
and Peter Schuster. Fast folding and comparison of rna secondary structures. Monatshefte
für Chemie/Chemical Monthly, 125(2):167–188, 1994. 22

[32] Weili Huang. Micrornas: biomarkers, diagnostics, and therapeutics. Bioinformatics in Mi-
croRNA research, pages 57–67, 2017. 1, 9

[33] Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain
invariant variational autoencoders. In Medical Imaging with Deep Learning, pages 322–348.
PMLR, 2020. 17

[34] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015. 14

[35] Peng Jiang, Haonan Wu, Wenkai Wang, Wei Ma, Xiao Sun, and Zuhong Lu. Mipred: clas-
sification of real and pseudo microrna precursors using random forest prediction model with
combined features. Nucleic acids research, 35(suppl 2):W339–W344, 2007. 22

[36] Wenjing Kang and Marc R Friedländer. Computational prediction of mirna genes from small
rna sequencing data. Frontiers in bioengineering and biotechnology, 3:7, 2015. 49

[37] V Narry Kim. Microrna precursors in motion: exportin-5 mediates their nuclear export.
Trends in cell biology, 14(4):156–159, 2004. 2, 22

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 13

[39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 16

[40] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural informa-
tion processing systems, 29, 2016. 18, 26

[41] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 55

[42] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016. 55

[43] Ana Kozomara, Maria Birgaoanu, and Sam Griffiths-Jones. mirbase: from microrna sequences
to function. Nucleic acids research, 47(D1):D155–D162, 2019. 1

[44] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/m-
nist/, 1998. 21

[45] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018. 38

[46] David H Mathews, Matthew D Disney, Jessica L Childs, Susan J Schroeder, Michael Zuker,
and Douglas H Turner. Incorporating chemical modification constraints into a dynamic pro-
gramming algorithm for prediction of rna secondary structure. Proceedings of the National
Academy of Sciences, 101(19):7287–7292, 2004. 24, 26

58 Simulating and Generating pre-miRNA using Variational Auto-Encoders

BIBLIOGRAPHY BIBLIOGRAPHY

[47] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann,
and Yann LeCun. Disentangling factors of variation in deep representation using adversarial
training. Advances in neural information processing systems, 29, 2016. 46

[48] Kwang Loong Stanley Ng and Santosh K Mishra. De novo svm classification of precursor
micrornas from genomic pseudo hairpins using global and intrinsic folding measures. Bioin-
formatics, 23(11):1321–1330, 2007. 1, 9, 22, 24

[49] Jacob O’Brien, Heyam Hayder, Yara Zayed, and Chun Peng. Overview of microrna biogenesis,
mechanisms of actions, and circulation. Frontiers in endocrinology, 9:402, 2018. 1, 8

[50] Seunghyun Park, Seonwoo Min, Hyun-Soo Choi, and Sungroh Yoon. Deep recurrent neural
network-based identification of precursor micrornas. Advances in Neural Information Pro-
cessing Systems, 30, 2017. 2, 23

[51] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A
3d face model for pose and illumination invariant face recognition. In 2009 sixth IEEE
international conference on advanced video and signal based surveillance, pages 296–301. Ieee,
2009. 22

[52] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014. 12

[53] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015. 16

[54] J Graham Ruby, Calvin H Jan, and David P Bartel. Intronic microrna precursors that bypass
drosha processing. Nature, 448(7149):83–86, 2007. 7

[55] Müşerref Duygu Saçar and Jens Allmer. Machine learning methods for microrna gene pre-
diction. In miRNomics: MicroRNA Biology and Computational Analysis, pages 177–187.
Springer, 2014. 1, 9

[56] Müşerref Duygu Saçar Demirci, Jan Baumbach, and Jens Allmer. On the performance of
pre-microrna detection algorithms. Nature communications, 8(1):1–9, 2017. 2, 22, 24

[57] Omer Sagi and Lior Rokach. Explainable decision forest: Transforming a decision forest into
an interpretable tree. Information Fusion, 61:124–138, 2020. 20

[58] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. Advances in neural information processing
systems, 29, 2016. 14

[59] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017. 21

[60] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013. 21

[61] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. 15

[62] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI
conference on artificial intelligence, 2017. 15

Simulating and Generating pre-miRNA using Variational Auto-Encoders 59

BIBLIOGRAPHY BIBLIOGRAPHY

[63] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015. 15

[64] Ryan J Taft, Ken C Pang, Timothy R Mercer, Marcel Dinger, and John S Mattick. Non-
coding rnas: regulators of disease. The Journal of Pathology: A Journal of the Pathological
Society of Great Britain and Ireland, 220(2):126–139, 2010. 6

[65] Abdulkadir Tasdelen and Baha Sen. A hybrid cnn-lstm model for pre-mirna classification.
Scientific reports, 11(1):1–9, 2021. 2, 23

[66] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012. 13

[67] Kemal Uğur Tüfekci, Ralph Leo Johan Meuwissen, and Şermin Genç. The role of micrornas
in biological processes. miRNomics: microRNA biology and computational analysis, pages
15–31, 2014. 1, 8

[68] Kemal Uğur Tüfekci, Meryem Gülfem Öner, Ralph Leo Johan Meuwissen, and Şermin Genç.
The role of micrornas in human diseases. In miRNomics: MicroRNA biology and computa-
tional analysis, pages 33–50. Springer, 2014. 1, 8, 9

[69] Irma Van den Brandt. Towards concept-based interpretability of pre-mirna detection using
convolutional neural networks. Master’s thesis, Eindhoven University of Technology, 2021. 2,
3, 33, 39, 49, 50, 54

[70] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008. 39

[71] Thibaut Vidal and Maximilian Schiffer. Born-again tree ensembles. In International confer-
ence on machine learning, pages 9743–9753. PMLR, 2020. 20

[72] Joost Visser, Alessandro Corbetta, Vlado Menkovski, and Federico Toschi. Stampnet: un-
supervised multi-class object discovery. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 2951–2955. IEEE, 2019. 29, 30

[73] Jin Wang, Jinyun Chen, and Subrata Sen. Microrna as biomarkers and diagnostics. Journal
of cellular physiology, 231(1):25–30, 2016. 1, 9

[74] Leyi Wei, Minghong Liao, Yue Gao, Rongrong Ji, Zengyou He, and Quan Zou. Improved and
promising identification of human micrornas by incorporating a high-quality negative set.
IEEE/ACM transactions on computational biology and bioinformatics, 11(1):192–201, 2013.
24

[75] Chenghai Xue, Fei Li, Tao He, Guo-Ping Liu, Yanda Li, and Xuegong Zhang. Classification
of real and pseudo microrna precursors using local structure-sequence features and support
vector machine. BMC bioinformatics, 6(1):1–7, 2005. 2, 22

[76] Jr-Shiuan Yang, Thomas Maurin, Nicolas Robine, Kasper D Rasmussen, Kate L Jeffrey, Rohit
Chandwani, Eirini P Papapetrou, Michel Sadelain, Dónal O’Carroll, and Eric C Lai. Con-
served vertebrate mir-451 provides a platform for dicer-independent, ago2-mediated microrna
biogenesis. Proceedings of the National Academy of Sciences, 107(34):15163–15168, 2010. 7

[77] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014. 21

60 Simulating and Generating pre-miRNA using Variational Auto-Encoders

BIBLIOGRAPHY BIBLIOGRAPHY

[78] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8827–8836, 2018. 21

[79] Xueming Zheng, Shungao Xu, Ying Zhang, and Xinxiang Huang. Nucleotide-level convo-
lutional neural networks for pre-mirna classification. Scientific reports, 9(1):1–6, 2019. 2,
23

[80] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learn-
ing deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016. 21

Simulating and Generating pre-miRNA using Variational Auto-Encoders 61

Appendix A

Loss Curves

In Figures A.1, A.2 and A.3 the total, reconstruction and KL loss curves can be found. We can see
that for most models, the KL loss curves for the training and testing data are mostly equal. On
the other hand, we see that models using a deconvolutional decoder are able to achieve a better
reconstruction performance than models with a fully connected decoder.

62 Simulating and Generating pre-miRNA using Variational Auto-Encoders

APPENDIX A. LOSS CURVES

0 25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

Lo
ss

Loss during training

VAE
-VAE

-IAF-VAE
DC- -IAF-VAE

DC-IAF-DIVA

Figure A.1: Training and testing losses for different models at the end of each epoch. Dotted lines
represent the test losses.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 63

APPENDIX A. LOSS CURVES

0 25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

Re
co

ns
tru

ct
io

n
Lo

ss
 (M

SE
)

Reconstruction Loss during training

VAE
-VAE

-IAF-VAE
DC- -IAF-VAE

DC-IAF-DIVA

Figure A.2: Training and testing reconstruction losses for different models. Dotted lines represent
the test losses.

64 Simulating and Generating pre-miRNA using Variational Auto-Encoders

APPENDIX A. LOSS CURVES

0 25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

600

KL
 L

os
s

KL Loss during training

VAE
-VAE
-IAF-VAE

DC- -IAF-VAE
DC-IAF-DIVA zy

DC-IAF-DIVA zx
DC-IAF-DIVA zm

Figure A.3: Training and testing KL losses for different models. Dotted lines represent the test
losses. Since these were mostly equal during training, the difference is not visible in most cases.

Simulating and Generating pre-miRNA using Variational Auto-Encoders 65

Appendix B

Additional Reconstructions

In this Appendix chapter, additional reconstructions from the different models can be found. In
these reconstructions, it is again visible that DC-β-IAF-VAE and DC-IAF-DIVA obtain the best
reconstructive performance, with near perfect reconstructions.

66 Simulating and Generating pre-miRNA using Variational Auto-Encoders

A
P
P
E
N
D
IX

B
.
A
D
D
IT

IO
N
A
L
R
E
C
O
N
S
T
R
U
C
T
IO

N
S

Figure B.1: Reconstructions of 5 random sample from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA

S
im

u
latin

g
an

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers
67

A
P
P
E
N
D
IX

B
.
A
D
D
IT

IO
N
A
L
R
E
C
O
N
S
T
R
U
C
T
IO

N
S

Figure B.2: Reconstructions of 5 random sample from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA

68
S

im
u

latin
g

a
n

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers

A
P
P
E
N
D
IX

B
.
A
D
D
IT

IO
N
A
L
R
E
C
O
N
S
T
R
U
C
T
IO

N
S

Figure B.3: Reconstructions of 5 random sample from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA

S
im

u
latin

g
an

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers
69

A
P
P
E
N
D
IX

B
.
A
D
D
IT

IO
N
A
L
R
E
C
O
N
S
T
R
U
C
T
IO

N
S

Figure B.4: Reconstructions of 5 random sample from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA

70
S

im
u

latin
g

a
n

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers

A
P
P
E
N
D
IX

B
.
A
D
D
IT

IO
N
A
L
R
E
C
O
N
S
T
R
U
C
T
IO

N
S

Figure B.5: Reconstructions of 5 random sample from the test set using each model variant. From top to bottom: original, VAE, β-VAE, β-IAF-VAE,
DC-β-IAF-VAE, DC-IAF-DIVA

S
im

u
latin

g
an

d
G

en
eratin

g
p

re-m
iR

N
A

u
sin

g
V

ariation
al

A
u

to-E
n

co
d

ers
71

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Formulation
	Contribution
	Outline

	micro RNA
	RNA interference
	MiRNomics
	Biogenesis
	Structure of (pre-)miRNA
	Function
	Detection

	Machine Learning
	ML Algorithms
	Linear Regression
	Logistic Regression
	Support Vector Machine
	Naive Bayes
	Decision Tree
	Random Forest

	Deep Learning
	Training
	Convolutional Neural Networks
	CNN Architectures
	Deep Generative Models

	Variational Autoencoders
	Beta-VAE
	DIVA
	IAF

	Related Work
	Interpretability in Machine Learning
	Interpretable Models
	Black-Box Models
	Interpretability in CNNs
	Interpretability in Deep Generative Models

	Computational pre-miRNA Detection

	Methods
	Data
	Models
	Encoders
	Latent Space
	Decoders
	Full Model Architectures

	Interpretable Latent Space
	Experiments
	Model
	Experiment Structure

	Results
	Model Performance
	Latent Space Analysis
	Interpretable Latent Space

	Conclusions
	Limitations & Future Work

	Bibliography
	Appendix
	Loss Curves
	Additional Reconstructions

