
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2023 Faculty & Staff Research 

1-1-2023 

The promises of large language models for protein design and The promises of large language models for protein design and 

modeling. modeling. 

Giorgio Valentini 

Dario Malchiodi 

Jessica Gliozzo 

Marco Mesiti 

Mauricio Soto-Gomez 

See next page for additional authors 

Follow this and additional works at: https://mouseion.jax.org/stfb2023 

Original Citation Original Citation 
Valentini G, Malchiodi D, Gliozzo J, Mesiti M, Soto-Gomez M, Cabri A, Reese J, Casiraghi E, Robinson P. 
The promises of large language models for protein design and modeling. Front Bioinform. 
2023;3:1304099. 

This Article is brought to you for free and open access by the Faculty & Staff Research at The Mouseion at the 
JAXlibrary. It has been accepted for inclusion in Faculty Research 2023 by an authorized administrator of The 
Mouseion at the JAXlibrary. For more information, please contact library@jax.org. 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2023
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2023?utm_source=mouseion.jax.org%2Fstfb2023%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@jax.org


Authors Authors 
Giorgio Valentini, Dario Malchiodi, Jessica Gliozzo, Marco Mesiti, Mauricio Soto-Gomez, Alberto Cabri, 
Justin Reese, Elena Casiraghi, and Peter N Robinson 

This article is available at The Mouseion at the JAXlibrary: https://mouseion.jax.org/stfb2023/313 

https://mouseion.jax.org/stfb2023/313


The promises of large language
models for protein design and
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Marco Mesiti 1, Mauricio Soto-Gomez1, Alberto Cabri1,
Justin Reese4, Elena Casiraghi1,2,4 and Peter N. Robinson5

1AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy, 2ELLIS, European
Laboratory for Learning and Intelligent Systems, Milan, Italy, 3European Commission, Joint Research
Centre (JRC), Ispra, Italy, 4Environmental Genomics and Systems Biology Division, Lawrence Berkeley
National Laboratory, Berkeley, CA, United States, 5Jackson Lab for Genomic Medicine, Farmington, CT,
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The recent breakthroughs of Large Language Models (LLMs) in the context of
natural language processing have opened the way to significant advances in
protein research. Indeed, the relationships between human natural language
and the “language of proteins” invite the application and adaptation of LLMs to
protein modelling and design. Considering the impressive results of GPT-4 and
other recently developed LLMs in processing, generating and translating human
languages, we anticipate analogous results with the language of proteins. Indeed,
protein language models have been already trained to accurately predict protein
properties, generate novel functionally characterized proteins, achieving state-of-
the-art results. In this paper we discuss the promises and the open challenges
raised by this novel and exciting research area, and we propose our perspective on
how LLMs will affect protein modeling and design.

KEYWORDS

large language models, protein modeling, protein design, protein engineering,
transformers, deep learning

1 Introduction

Machine Learning (ML) methods have a long-standing history in natural language
processing (NLP), and considering the similarities between natural and protein languages
(Ofer et al., 2021), NLP methods have been transferred and adapted in the context of protein
design and modeling. Indeed, as far back as the 1990s, “shallow”MLmethods such as hidden
Markov models and support vector machines were applied both in NLP and computational
biology (Krogh et al., 1994; Zhou and Su, 2002). Then the application of shallow neural
networks for word representation learning (Mikolov et al., 2013) and, more importantly, the
advent of deep learning methods introduced significant advances in NLP and in protein
modeling (Collobert and Weston, 2008; Manning, 2015; Hou et al., 2017). In particular
recurrent neural networks (RNN) displayed excellent performance because of their ability to
learn long-range relationships between words as well as between amino acids, and
demonstrated to be essential for both global text comprehension and to detect long-
range distal contacts in proteins (Socher et al., 2011; Krause et al., 2017).

Recently two main breakthroughs in NLP research led to the so called “foundation
models” (Bommasani et al., 2021), a.k.a. Large Language AI Models (LLMs) trained on very
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large corpora of data through “self-supervised-learning”, i.e., using
no or only a small amount of task-specific labelled data.

The first breakthrough is represented by the “attentionmechanism”

proposed in the Bengio’s seminal paper (Bahdanau et al., 2015) by
which the neural machine learns in the translation process the main
semantic relationships between words and at a higher level between
sentences and paragraphs, by focusing for each word on its most
semantically correlated words to improve text comprehension. The
second breakthrough is represented by the introduction of the
transformer model by Google Brain (Vaswani et al., 2017), that
allows a parallel implementation of the Self-Attention mechanism,
thus fully exploiting GPU and TPU architectures. Additionally, it
can detect relationships between the different words and sentences
at any position, without the need of the sequential computation which is
inherent to the nature of RNNs. These models, by leveraging their
general knowledge acquired frombig data, are adaptable to a wide range
of downstream tasks, and profoundly differ from conventional learning
machines which are usually able to perform only specific tasks for which
they have been explicitly trained (Bommasani et al., 2021).

LLMs are expected to revolutionize molecular biology and
medicine (Moor et al., 2023). In particular, the relationships
between the “language of proteins” and the human natural
language motivate the adaptation and application of LLMs,
initially conceived for NLP, to relevant protein modeling tasks,
such as secondary and tertiary structure prediction, remote
homology detection (Rives et al., 2021; Brandes et al., 2022), de
novo generation of functionally characterized proteins (Madani
et al., 2023), design of antibodies that bind to specific ligands
(Hie et al., 2023), prediction of protein mutational effects (Ferruz
and Hocker, 2022), improvement of the state of the art of proteomics
(Elnaggar et al., 2022; Unsal et al., 2022; Olenyi et al., 2023), with
relevant applications in medicine, pharmacology, and
environmental health (Ferruz and Höcker, 2022).

The next section summarizes the main similarities and
differences between human natural languages and protein
languages. We then introduce the main structural characteristics
of LLMs designed for NLP, and discuss their extension to protein
processing and generation. Finally we discuss the exciting
perspectives and open problems raised by this promising AI
research area in the field of protein modeling and design.

2 Natural language and the language of
proteins

Analogous to natural language, we can interpret the primary
sequence of proteins as a language with its own syntactical rules and
semantics (Ofer et al., 2021), wherein the 20 common amino acids
plus other unconventional and rare amino acids constitute the
letters of the alphabet. Moreover, like natural languages, proteins
can be composed of reusable modular elements presenting slight
variations that can be rearranged and assembled in a hierarchical
structure. Motifs and domains can be related to words and syntactic
structures of natural language, while an entire amino acid sequence
is analogous to a sentence of a natural language encoding its
structure and function. Moreover, multiple polypeptide chains
that assemble in a quaternary structure are analogous to
sentences that form a longer text. As outlined in Ferruz and

Höcker (2022), natural language and proteins have parallel
origins and evolution. New words are continuously introduced in
languages for expressing new concepts under the pressure of socio-
cultural evolution, and natural evolution shapes novel proteins that
better fit the environment. Moreover, both natural language words
and amino acids are affected by context: their meaning depends on
their surrounding elements. Sentences in natural language also
present long-distance dependencies (e.g., subjects across
sentences in long text). These dependencies are also present in
proteins where amino acids distant in the primary structure can be
connected in their tertiary and quaternary structure. Adding,
removing, or changing a single letter in a natural language
sentence can change its meaning or render it meaningless,
similar to how a single mutation can cause a loss or gain of
function in a protein leading to disruptive pathogenic effects. For
example, sickle cell anemia is due to a single sequence change in
which a single amino acid (the glutamic acid that is usually in the
sixth position of the protein chain) is replaced by a valine in the β-
globin subunit of the hemoglobin protein. Lastly, crafting a
grammatically correct but meaningless sentence bears some
resemblance to protein structures that lack any discernible
function or may even cause disease, as in the case of amyloid fibrils.

Proteins and natural languages also present differences that need
to be taken into account in their processing. In human languages, the
alphabet contains many symbols (like uniform punctuation and stop
words) (Ofer et al., 2021). In contrast, the alphabet of protein language
adopts a simpler alphabet of 20 characters. Nevertheless the letters of
proteins can be modified to alter their function, e.g., through
methylation of lysine residues, phosphorylation, ubiquitination and
other post-translational modifications, thus adding complexity to the
protein language. The language of proteins can be described by the use
of stochastic context-free grammars (Dyrka and Nebel, 2009) for
covering any higher-order dependencies such as nested and crossing
relationships that are common in proteins. Human languages define
words clearly in written texts, but protein “word boundaries” are less
evident because we do not always know a priori if a certain sequence is
related to a function (e.g., it is part of a domain/motif). One possibility
is to use the secondary structure for splitting the sentences into words
or to exploit sub-word segmentation that does not require any
predefined knowledge of words in the protein language. However,
the tokenization process would require exploiting the tertiary
structure with more intensive calculations. The overall
understanding of the protein language is limited, requiring
extensive experimental tests to identify its functionalities. Indeed,
even if different corpora exist to train protein language models, the
correct interpretation of the produced sequences remains a challenge.
Protein evolution differs from language evolution, containing
irregularities due to randomness and environmental pressure, and
with a grammar that unavoidably will contain many irregularities.
Finally, we have to remark on the size of the language of proteins that
needs to cover millions of species on Earth, which necessitates
studying the general properties of proteins rather than studying
the proteins of a particular species.

While the dissimilarities between human and protein languages
present significant challenges for applying NLP to protein design,
the apparent connections between the two fields offer a new
perspective in protein research, opening the way to the
adaptation of NLP models to protein modeling and design.
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3 Large language models for natural
language processing

In this section we first discuss the main characteristics of the
transformer (Vaswani et al., 2017) and then present two other
popular models (BERT (Devlin et al., 2019) and GPT (OpenAI,
2023)) that can be considered an evolution of the original
transformer.

3.1 The transformer

The Transformer is a deep neural network composed of two
main components: an Encoder and a Decoder. Both the Encoder and
Decoder possess a modular architecture, including a stack of
repeated blocks, in which the output of each module is the input
of the subsequent one (Figure 1A).

Basically, the Transformer can be applied to translate a text a to
t. However, by changing only the last (top) layers of the network we
can construct text classifiers, named entity recognizers, automatic
summarizers, and more in general solve a large range of different
prediction tasks. Here we introduce the main characteristics of this
model. More details are available in the Supplementary Information.

The Transformer is based upon the following main concepts:

• Self-supervised learning: The Transformer learns in a
supervised way, but without using explicit labels (Vaswani
et al., 2017). This is accomplished by predicting the next
element in a sequence, given the previous elements in an
autoregressive way (Krishnan et al., 2022). This opens the way
to train the model with the large corpus of text data available
from the Web (Shwartz-Ziv and LeCun, 2023).

• Multi-task and transfer Learning: The Transformer can learn
multiple-tasks at a time (Radford et al., 2019) and can transfer

FIGURE 1
The modular architecture of Transformers. (A) The full Encoder-Decoder architecture of the Vaswani et al. (2017) Transformer. (B) The Encoder-
based BERT Transformer. (C) The Decoder-based GPT Transformer. NSP stands for Next-sequence prediction, MLM for Masked Language Model, FFNN
for dense Feed Forward Neural Network. Orange parallelograms represent inputs, cyan parallelograms outputs, violet rectangles pre-processing layers
and pink rectangles processing layers that implement the submodules of the Encoder and Decoder blocks.
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its knowledge, embedded in the model pre-trained with large
data sets, to other related learning tasks through fine-tuning or
also without using any new task-specific data (zero-shot
learning) (Rao et al., 2019; OpenAI, 2023).

• Attention mechanism: This component (Bahdanau et al.,
2015) enables the modeling of dependencies between
different positions in a text, independently of their distance
in the input or output sequence. As we will see more in detail
in the next section, through the attention mechanism the
embedded representations of each word (i.e., their vectorial
representation) in a text include the syntactic and semantic
relationships with all the other words in the text itself.

• Self-Attention: While the attention mechanism, originally
proposed in the Bengio’s neural translation machine,
leverages the relationships between the input words to learn
the correspondences between the output words of the
translation, the Transformer exploits a similar mechanism
to find the semantic relationships between the words of the
input sequence, in order to compute a representation of the
sequence itself. In this way we can efficiently compute long-
range dependencies between the elements of a sequence. See
Supplementary Information for more details.

• Multi-head attention: Self-Attention is computed multiple
times in parallel using “multiple heads,” in order to capture
the different syntactic and semantic relationships among the
elements of the sequence.

• Interpretability: A side-effect of Self-Attention is the
interpretability of the model. Indeed each attention head
can capture different types of syntactic and semantic
relationships between the elements of the sequence (Vig,
2019).

• Parallel computation: Instead of processing the elements of a
sequence one at a time as in a RNN, Transformers are able to
proceed in parallel, thus achieving a substantial speed-up in
computation, fully exploiting the parallel computational
capabilities of GPUs and TPUs.

Each Encoder block is composed of two stacked sub-modules: 1)
the Self-Attention layer and 2) a feed forward neural network
(FFNN) with one hidden layer (Figure 1A). Residual connections
are used in both sub-modules to counteract the vanishing/exploding
gradient phenomenon that plagues deep neural networks
(Jastrzebski et al., 2018), and layer normalization across features
is finally performed (Ba et al., 2016).

The Decoder basically predicts step by step the translated
sentence, receiving as input both the output of the last Encoder
layer and the previously predicted words of the Decoder (Figure 1A).
During training, all words preceding the one to be predicted are
given as input, thus resulting in autoregressive learning. Each
Decoder is structured in three layers: 1) a masked multi-head
Self-Attention layer; 2) a multi-head attention layer; 3) a FFNN
(Figure 1A). The overall structure resembles that of the Encoder,
with an additional layer and a masked version of Self-Attention in
the first layer. Finally, the Transformer predicts the output sequence
step-by-step, since it is able to learn the probability distribution of its
tokens, by using a linear and softmax layer on top of the last Decoder
block.

3.2 BERT and generative pre-trained
transformers

Other LLMs have been developed that leverage or extend the
Transformer architecture, but the two most successful have likely
been Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019), based on the Encoder component
of the Transformer, and the different versions of the Generative Pre-
trained Transformer (GPT) (Radford et al., 2018; Brown et al., 2020;
OpenAI, 2023) based, instead, on the Decoder component. BERT
basically provides a meaningful vector representation of the text,
while GPT is mainly a generative model that is able to synthesize
novel text. Both models are intensively pre-trained with large text
corpora, in order to acquire a general-purpose “linguistic
knowledge” that can be successively refined for different specific
predictive tasks. This represents a significant difference with respect
to previous deep learning models, which are usually focused on
specific tasks and are not able to transfer their knowledge in contexts
different from those on which they have been specifically trained.
For instance, BERT has been pre-trained on about 3.3B words from
English Wikipedia and BooksCorpus.

3.2.1 BERT
The architecture of BERT basically consists of stacked Encoder

blocks, each containing a Self-Attention and a FFNN layer
(Figure 1B). Two types of self-supervised learning tasks
characterize BERT pre-training: masked language model (MLM)
and next sequence prediction (NSP). In MLM, the input sentence is
“masked,” in the sense that 15% of the words are randomly hidden
(i.e., they are coded with a <MASK> tag) and predicted at the output
of the Encoder. In this way, the model is trained to predict the
masked word on the basis of its joint left and right context (in that
sense the model is Bidirectional), while the standard Transformer
and GPT learn only from the “left” context. This is because BERT
basically learns a representation of the text, while GPT, that is
essentially a generative model, will predict the next word on the basis
of the previous “left” words. At the same time BERT is trained to
learn the next sentence (NSP), given the previous one. Indeed, BERT
may have in input either one or two sentences (separated by the
<SEP> token in the latter case), and the final hidden embedding is
used to predict whether the second sentence follows the first one
(Figure 1B). For fine tuning several tasks can be learnt starting by
putting on top of the pre-trained Encoder a specific learning
machine (e.g., a softmax classifier) to train the model to classify
sentences or for other tasks, including question answering,
summarization, sentiment analysis and many others (Devlin
et al., 2019).

3.2.2 GPT
GPT models (Figure 1C) are basically Transformers composed

only of stacked Decoder modules, since they are generative models
that can learn and predict each element of a sequence on the basis of
its previous elements (that is, using only the “left” context—see
Supplementary Material for details). Indeed, considering that x is a
sequence (e.g., a sequence of words in NLP or amino acids in protein
modeling), we can factorize the probability p(x) of observing a
sequence of tokens x = {x1, . . ., xn} using the chain rule, thus
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decomposing the sequence prediction problem into next-word
prediction (Bengio et al., 2003):

p x( ) � ∏
n

i�1
p xi|x<i( ) , (1)

where x<i denotes the tokens preceding xi. The final softmax layer on
top of the last Decoder predicts the probability distribution of the
next token of the sequence (Figure 1C), by estimating the parameters
θ of the deep neural network by stochastic gradient descent to
minimize the negative log-likelihood of the factorized probabilities
across a training set X = {x1, x2, . . ., x|X|} of sequences (Radford et al.,
2019):

L X( ) � −∑
|X|

k�1
∑
|xk |

i�1
logpθ xk

i |xk
<i( ) . (2)

Training is performed in two steps: 1) Self-supervised pre-training
and 2) Supervised fine-tuning. During self-supervised training the
model leverages linguistic information from unlabeled data by
learning to predict the next token given the preceding tokens. In the
second step, the general-purpose knowledge acquired in the first step is
exploited and only a limited set of labeled examples is necessary to fine-
tune the model, by adding a task-specific layer to perform prediction in
a specialized context (Figure 1C). Using simple task-specific input
transformation, without the need to heavily modify the overall
architecture of the model, GPT is able to achieve state-of-the-art
results on specific tasks ranging from text classification to textual
entailment and question answering, and, of course, automatic text
generation (Radford et al., 2018).

OpenAI released successive enhancements of GPT, namely,
GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020) and
recently GPT-4 (OpenAI, 2023), that scaled from 1.5 billion
parameters to the huge GPT-4 with likely more than 100 trillion
parameters. OpenAI showed that by scaling the original
architecture, the Transformer is able to learn and make
predictions for new tasks for which have not been specifically
trained without a second-level fine-tuning (zero-shot learning) or
for which only one or few examples have been provided (one- and
few-shot learning). In other words, language modeling with self-
supervised learning and Self-Attention using a huge amount of
unsupervised text data for training, enables GPT to answer
questions, translate texts, and even pass professional and
academic exams and perform a large range of learning tasks
without an explicit, task-specific training. Moreover GPT-4 can
integrate both text and images, thus opening the way to multi-
modal self-supervised-learning with LLMs. However, at the current
stage (September 2023), despite the revolutionary scenarios opened
by these models, there are several limitations and drawbacks as
outlined by OpenAI itself and by the scientific community
(Bommasani et al., 2021; Mitchell and Krakauer, 2023; OpenAI,
2023).

4 Large language models for protein
modeling

The success of LLMs for NLP and the similarity between natural
language and “protein language” motivated the design of Protein

Language Models (PLM), in which, rather than modeling the
distribution of words/texts, amino acid and proteins are modeled
instead (Rives et al., 2021; Brandes et al., 2022; Ferruz et al., 2022;
Ferruz andHocker, 2022; Madani et al., 2023). Indeed, Transformers
can learn interactions between amino acid residues through the Self-
Attention mechanism, and by stacking multiple layers they can also
learn long-range contexts within sequences in a hierarchical way,
thus learning multiple-residue interactions between motifs and
domains. Moreover, self-supervised learning is allowed by the
availability of large public domain protein repositories, e.g.,
UniParc and UniProt (Madsen et al., 2022). Table 1 summarizes
state-of-the-art main applications of LLMs to protein processing,
analysis, modeling and design.

4.1 Encoder-based protein language models

The first proposed PLMs adopted an Encoder-only Transformer
architecture, since their aim was to obtain embedded
representations of proteins in a vector space for downstream
tasks. For instance, TAPE (Task Assessing Protein Embedding)
has been pre-trained to obtain embeddings, which have
subsequently been processed via different supervised models in
order to solve several downstream tasks (secondary structure and
contact prediction, remote homology detection, fluorescent
landscape and stability landscape prediction) (Rao et al., 2019).
Rives et al. (2021) proposed ESM, a BERT-based model trained on
250M protein sequences with 33 layers, able to encode the properties
of the proteins at different hierarchical levels, from their
evolutionary relationships to the biochemical and biophysical
properties of amino acids. Using deep learning models on top of
the embedded protein representations, the authors achieved state-
of-the-art predictions on long-range contacts andmutational effects.
The same model has been applied to efficiently evolve human
antibodies by suggesting evolutionarily plausible mutations,
resulting in antibodies with improved binding affinity and
activity against Ebola and SARS-CoV2 viruses (Hie et al., 2023).

Other models modified the original BERT Encoder-
Transformer to better represent the protein world. For instance,
ProteinBERT obtains “functionally aware” protein representations
by simultaneously learning the protein sequences in the “local”
Encoder stacked modules and their GO annotations in the “global”
Encoder stacked modules. The local and global modules are trained
in parallel and the former representations affect the latter ones
through a global Attention module, while global representations
influence the local ones through fully connected dense layers. The
pre-trainedmodels are then fine-tuned on several downstream tasks,
ranging from secondary structure prediction, to remote homology,
fold classes and signal peptide predictions, as well as post-translation
and biophysical properties prediction, using only a fully connected
dense layer on top of the Encoders (Brandes et al., 2022).

Another model that significantly modifies the original BERT
Transformer is represented by Regularized Latent Space
Optimization (ReLSO) (Castro et al., 2022). Its Encoder blocks
are coupled with innovative dimensionality reduction techniques
based on the Attention mechanism, deep convolutional and dense
FFNN, to effectively model the sequence-function protein landscape
and generate high-fitness sequences (Castro et al., 2022).
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4.2 Decoder-based generative protein
language models

Decoders are generative models which learn to predict the next
amino acid, given the previous ones in the sequence by using masked
Self-Attention layers (Section 3.1; Supplementary Material). In this
sense, they are generative since in the prediction stage they are able
to output a new amino acid at a time.

One of the most representative methods of these generative
approaches is ProGPT2 (Ferruz and Hocker, 2022). The authors
showed that this model, based on the GPT-2 architecture with 738M
of parameters and trained on about 50M of proteins drawn from
Uniref50 clustered sets of UniProtKB sequences, can not only de
novo generate protein sequences similar to natural ones, but can also
explore protein regions unexplored by natural evolution. The new
sequences, despite their relative sequence diversity compared to
naturally occurring proteins, show structural similarity, predicted
stability and several common properties with proteins sampled by
natural selection (Ferruz and Hocker, 2022).

Differently from the previous approach, that relies on natural
sequences, Design in Areas of Restricted Knowledge (DARK) is a de
novo Decoder-based protein design method with 110M parameters,
trained on synthetic sequences (Moffat et al., 2022). The authors
showed that through this approach we can design novel stable and
ordered structures (as judged by AlphaFold2 (Jumper et al., 2021)).
Note that, despite the fact that both ProGPT2 and DARK are
basically generative models, they provide vector representations
of proteins in their last layer, and as such these representations

can be given as input to downstream models (for instance, deep
neural networks) to predict, e.g., function loss or mutational effects
(Ferruz and Höcker, 2022).

4.3 Conditional transformers for the design
of functionally characterized proteins

One of themain objective of protein engineering is the generation of
proteins having specific properties or desired functionalities for
applications in pharmacology, medicine and environmental health (Li
et al., 2020). From this standpoint, conditional Transformers open new
perspectives for tailored protein design. Leveraging basically the same
LLM originally designed for conditional text generation (Keskar et al.,
2019), the Progen model can generate functionally characterized
proteins by including functional tags during training (Madani et al.,
2023). The Progen generative model is a Decoder composed by
36 stacked layers, with 8 Self-Attention heads for each layer and a
total of 1.2G of trainable neural network parameters. It receives in input
not only a context sequence of amino acids, but also a functional tag f
representing, e.g., a GO biological process, a molecular function or a
protein family, or whatever property of the protein, thus decomposing
the sequence prediction problem into next-amino acid prediction
problem, instead of next-word prediction (as in Eq. 1), but this time
also conditioned on f:

p x|f( ) � ∏
n

i�1
p xi|x<i, f( ) . (3)

TABLE 1 Summary of LLM applications to protein analysis, modeling and design (see text for more details).

Application Technique References

Secondary structure and contact prediction, remote homology detection,
stability landscape prediction

Pre-trained Encoder-based model and task specific supervised models Rao et al. (2019)

Prediction of long range conctacts and mutational effects BERT-based model with deep learning supervised models on top Rives et al. (2021)

In silico synthesis of antibodies against Ebola and SARS-CoV2 viruses BERT-based model Hie et al. (2023)

Secondary structure prediction, remote homology, fold classes and signal
peptide predictions, post-translation and biophysical properties prediction

Fine tuned modified BERT model with “local” Encoder for sequence
learning and a global “Encoder” for GO annotation learning

Brandes et al. (2022)

Sequence-function protein landscape modeling and generation of high-
fitness sequences

Encoder-based tansformer coupled with dimensionality reduction
techniques, deep convolutional and dense FFNN

Castro et al. (2022)

Protein secondary structure and sub-cellular location prediction Auto-regressive and Encoder-based models Elnaggar et al. (2022)

De-novo generation of protein sequences similar to natural ones, and
generation of novel proteins unexplored by natural evolution

GPT-2 based model Ferruz and Schmidt
(2022)

Design of novel stable protein structures Decoder-based generative model Moffat et al. (2022)

Function loss and mutational effect prediction Decoder-based transformer and downstream supervised models Ferruz and Höcker
(2022)

In silico generation of functionally characterized proteins Conditional Transformer Madani et al. (2023)

Engineering of specific heavy- and light-chain antibodies Conditional Transformer Shuai et al. (2022)

Prediction and generation of the binding target of a protein Full Encoder-Decoder transformer Grechishnikova
(2021)

Generation of enzymes that catalyze the chemical reactions of specific
reactants

Full Encoder-Decoder transformer Schwaller et al. (2021)

Inverse folding prediction Encoder-Decoder transformer model combining sequence and structural
data

Heinzinger et al.
(2023)
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The objective function to be minimized is analogous to that of Eq. 2,
where now xk represents a protein:

L X( ) � −∑
|X|

k�1
∑
|xk |

i�1
logpθ xk

i |xk
<i, f

k( ) , (4)

where now conditioning is done on the functional tag f k associated
with the protein xk. The functional tag provides a point of control
over the generation process, and it constraints the protein
generation toward proteins having a specific property f k. Indeed,

in their work, Madani et al. (2023) showed that Progen can generate
novel proteins that show similar functional and structural
characteristics of natural proteins on the basis of the provided
functional tags.

On the same research line, an Immunoglobulin Language Model
(IgLM) has been developed by training on about half a billion of
antibody heavy- and light-chain variable sequences, and
conditioning on species of origin and chain type, thus opening
the way to PLM-based engineering of specific antibodies (Shuai
et al., 2022).

FIGURE 2
The “promises” of large language models: their main achievements and their future perspective outcomes for protein modeling and design. (A)
Protein embedding with Encoder-based Transformer coupled with a second level MLmodel for downstream specific tasks. (B) Fine tuning of pre-trained
Transformer on specific protein tasks. (C)Unconditioned protein generationwith Decoder-based Transformers. (D)Conditional generative Transformers
for tailored protein design. (E) Encoder-Decoder Transformer for de novo drug design. (F) Encoder-Decoder Transformer for the design of enzymes
that catalyze specific biochemical reactions. (G) Multi-modal Transformers to integrate multiple sources of data for solving complex protein modeling
problems.
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4.4 Encoder-decoder transformers for de
novo drug generation

One of the natural and most successful applications of full
Encoder-Decoder Transformers in NLP is language translation
(Tan et al., 2020). Following the same principle of transforming a
text into another corresponding text, we can “translate” a protein
into its ligand, or, vice versa, given a ligand we could generate its
corresponding protein binder. This is the approach proposed by
Grechishnikova (2021), that applied the original Encoder-Decoder
Transformer architecture (Vaswani et al., 2017) to translate a
protein into its corresponding ligand in SMILE format
(Weininger, 1988): the Encoder computes a protein embedding,
while the Decoder generates the corresponding binding target. By
reversing the inputs and outputs of the Transformer we could in
principle obtain the retrosynthesis of a protein for a given ligand
given as input to the translation machine, following a general
approach proposed by IBM researchers to generate the reactants
needed to synthesize a molecule given as input to the
Transformer (Schwaller et al., 2020). This approach opens the
way to the in silico de novo engineering of protein drugs that bind
to specific molecular targets. Moreover, by extending and
adapting to the protein world recent IBM research on
Attention-based neural networks for mapping the chemical
space (Schwaller et al., 2021), we could design Encoder-
Decoder Transformers able to generate enzymes (output of the
Decoder) that catalyze the chemical reactions of specific reactants
(input of the Encoder), with possible applications in
pharmacology, or in environmental health.

5 Discussion

LLMs learn the probability distribution of the elements in a
sequence (e.g., amino acids inside proteins) and are able to do this
by using self-supervised learning, i.e., by exploiting the pure

unannotated protein sequences massively available in public
repositories. From this standpoint, they are “general-purpose
learners” in the sense that having learnt the protein distribution
(if sufficient data are available and the model is sufficiently large),
they can make predictions on tasks for which they have not been
specifically trained or can be secondarily trained on specific tasks
using only limited supervised fine tuning [as in the Lysozyme
protein family prediction with ProGen (Madani et al., 2023)].
Such foundation models (Bommasani et al., 2021), with
enhanced modeling capabilities, are thus expected to solve a large
range of complex problems in medicine and molecular biology
(Moor et al., 2023), by exploiting their “connectionist
knowledge,” embedded in the parameters of the deep neural model.

The main achievements and possible future outcomes of PLMs
are schematically summarized in Figure 2; Table 2. The embedded
protein representations generated by Encoder-based Transformers
represent the input for supervised or unsupervised ML models for
downstream tasks (e.g., protein classification, mutational effect
prediction, Figure 2A). Transformers pre-trained on a large
corpus of proteins can be specialized to model a specific set of
proteins (e.g., the family of translation initiation factors) by fine-
tuning on that specific set (Figure 2B). Decoder-based Transformers
can generate novel proteins in an unconditioned way (Figure 2C) or
functionally characterized proteins by using control tags
(Figure 2D). The full Encoder-Decoder Transformer architecture
can be used to predict ligands of possible protein binders (or vice
versa, Figure 2E), or it can be used to design enzymes for specific
biochemical reactions (Figure 2F). In perspective, we can envision
multi-modal PLMs that by integrating multiple sources of data (not
exclusively sequence data) can not only solve complex protein
modeling problems, but also explain the reasons underlying their
predictions (Figure 2G).

Indeed, an open problem posed by PLMs andmore in general by
LLMs is their explanation and interpretability. Given the increasing
and widespread usage of LLM to solve problems involving high
stakes decisions, we need to generate both global explanations, to

TABLE 2 Summary of prospective applications of LLMs.

Application Technique

General-purpose learning of sequence, structure, features and functional characteristics
of proteins

Foundation models trained on huge corpora of protein data

Breakthrough enhancements of classical prediction problems in proteomics (e.g.,
protein and isoform function classification, mutational effect prediction)

Encoder-based transformers coupled with downstream specialized supervised learners

Generation of novel proteins functionally characterized that enlarge the landscape of
their natural evolution

Pre-trained conditional transformers fine-tuned on specific functionally characterized
set of proteins

Prediction and automatic generation of a protein target and prediction of a protein given
a specific target

Full Encoder-Decoder transformer or Generative Decoder models

Design of enzymes for specific biochemical reactions Encoder-Decoder transformer

De-novo drug design Full Encoder-Decoder transformers constrained with structural data

Solving complex modeling problems in proteomics and drug design Integrative multi-modal transformers combining sequence, imaging, text and
structural data

Explainable and interpretable PLMs Post-hoc methods; attention-based visual explanation transformer models; GPT
“interpreting” PLMs

Reduction of the complexity of PLMs with limited performance decay Neural network compression techniques: e.g., pruning, quantization, distillation;
compression-oriented modified transformer models
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provide hints about the generalized rules inferred by the model and
its behavior as a whole, and local explanations, to interpret specific
predictions (Rudin, 2019).

To this aim, post hocmethods (Madsen et al., 2022), which work
on the already trained model and are often model-agnostic, could be
in principle applied to explain PLMs. Among them, in the context of
text classification classic perturbation-based local-explanation
methods (the most famous being LIME (Ribeiro et al., 2016),
Anchors (Ribeiro et al., 2018), SHAP (Lundberg and Lee, 2017))
have been already combined (Szczepański et al., 2021), or modified
(Kokalj et al., 2021) to better deal with Transformers models, to
provide scores assessing the impact of each token on the predicted
class-probability.

A new trend of research, specifically focused on Transformer
explainability, is instead evaluating the crucial influence of
Attention in the produced output sequence and is therefore
focusing on providing interactive Attention-based visual-
explanations. Examples of these attempts are exBert (Hoover
et al., 2020) and BertViz (Vig, 2019). Though the faithfulness and
plausibility (Jacovi and Goldberg, 2020) of explanations provided
by computed attentions is an open issue (Bibal et al., 2022), we
believe exBert and BertViz are first, promising attempts to lay the
foundation for a new set of interactive visualization approaches
that might in future provide important hints about the
“reasoning” of complex LLMs.

A completely different, and somehow surprising, interpretation
approach uses a GPT model to interpret the functions of neurons
(based on their activations) in another GPTmodel (Bills et al., 2023).
Though the authors themselves outline the limitations of their work,
we believe their proposal is a new promising way to not only
interpret the output of complex LLMs, but to also answer the
open debate about “whether and how” LLMs are performing
some inductive/deductive reasoning based on their connectionist
and importance based learning structure (Bender et al., 2021). Other
promising approaches in the area of explainability of LLMs in
protein function prediction include (Wenzel et al., 2023; Zhou
et al., 2023). In particular in (Wenzel et al., 2023) the authors
extended the XAI method of Integrative Gradients to inspect the
latent amino acid representations in Transformer models in order to
discover the relevance of each amino acid for protein function
prediction. Moreover the authors showed that the relevant
sequence regions were correlated with known functional regional
annotations in sequence databases.

Another open issue is represented by the complexity of PLMs, that
often requires costly special purpose hardware resources to train, or
even query, a LLM/PLM. A possible solution could be the adoption of
neural network compression techniques, such as pruning, quantization
or distillation, to obtain thinner models once a LLM has been trained.
Some experiments show the viability of these approaches, that in some
case can attain a reduction of two orders of magnitude for the model
size, at the price of a 1% drop in accuracy (Ganesh et al., 2021).
However, these techniques have been applied only to specific
Transformer-based architetures [see, e.g., Sanh et al. (2019)], and in
any case they require as a starting point a LLM induced via standard
(i.e., costly) techniques. A very promising, though inexplored, solution
might reside in modifying the learning algorithm of Transformer-
based models, so that it outputs models that are directly akin to
compression (Carreira-Perpiñán and Idelbayev, 2021), or the

design of generative models constrained by the 3D structure of
the protein (Rao et al., 2021).

In perspective, PLMs could generate synthetic libraries of functionally
characterized proteins that can be used to discover, e.g., novel enzymes for
industrial applications, or novel candidate drugs conditioned on specific
functional characteristics. In particular, conditional Transformers, by
using multiple functional tags, can expand the space of protein
sequences beyond those sampled by the natural evolution. For
instance we can condition protein generation on a functional tag for a
specific enzymatic reaction and at the same time on another tag for a
specific binding domain, thus generating proteins able to drive a specific
biochemical reaction in a specific micro-environment. The capability of
processingmulti-modal data, i.e., not only sequence or functional tags, but
also three-dimensional structures, images and bio-medical text could lead
to multi-modal PLMs for precise de novo design of proteins, andmore in
general to solve complex problems in pharmacology, medicine, and
environmental health. At this stage (September 2023), these possible
outcomesmostly represent an attractive promise, but it is also true that in
many fields, including biomolecular biology and medicine, the
development and results of novel AI models exceeded any previous
forecasting (Jumper et al., 2021; Moor et al., 2023).
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