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Abstract

State-of-the-art machine learning methods such as convolutional neural networks (CNNs)
are frequently employed in computer vision. Despite their high performance on unseen data,
CNNs are often criticized for lacking transparency — that is, providing very limited if any
information about the internal decision-making process. In some applications, especially in
healthcare, such transparency of algorithms is crucial for end users, as trust in diagnosis and
prognosis is important not only for the satisfaction and potential adherence of patients, but
also for their health. Explainable artificial intelligence (XAI) aims to open up this “black box,”
often perceived as a cryptic and inconceivable algorithm, to increase understanding of the
machines’ reasoning.

XAI is an emerging field, and techniques for making machine learning explainable are
becoming increasingly available. XAI for computer vision mainly focuses on image classification,
whereas interpretability in other tasks remains challenging. Here, I examine explainability
in computer vision beyond image classification, namely in semantic segmentation and 3D
multitarget image regression.

This thesis consists of five chapters.
In Chapter 1 (Introduction), the background of artificial intelligence (AI), XAI, computer

vision, and optics is presented, and the definitions of the terminology for XAI are proposed.
Chapter 2 is focused on explaining the predictions of U-Net, a CNN commonly used for

semantic image segmentation, and variations of this architecture. To this end, I propose the
gradient-weighted class activation mapping for segmentation (Seg-Grad-CAM) method based
on the well-known Grad-CAM method for explainable image classification.

In Chapter 3, I present the application of deep learning to estimation of optical aberrations
in microscopy biodata by identifying the present Zernike aberration modes and their amplitudes.
A CNN-based approach PhaseNet can accurately estimate monochromatic aberrations in images
of point light sources. I extend this method to objects of complex shapes.

In Chapter 4, an approach for explainable 3D multitarget image regression is reported. First,
I visualize how the model differentiates the aberration modes using the local interpretable
model-agnostic explanations (LIME) method adapted for 3D image classification. Then I
“explain,” using LIME modified for multitarget 3D image regression (Image-Reg-LIME), the
outputs of the regression model for estimation of the amplitudes.

In Chapter 5, the results are discussed in a broader context.



The contribution of this thesis is the development of explainability methods for semantic
segmentation and 3D multitarget image regression of optical aberrations. The research opens
the door for further enhancement of AI’s transparency.
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1
Introduction

Humans have been fascinated by the idea of creating a machine intelligent like a person
since the invention of mechanical devices. One of the earliest attempts to build a machine
capable of accomplishing a task that only an intelligent nobleman could perform was taken by
Swiss watchmakers Pierre Jaquet-Droz, his son Henri-Louis Jaquet-Droz, and Jean-Frédéric
Leschot. Between 1768 and 1774, they designed the Writer, the Draughtsman, and the Musician
automatons [1].

The mechanical writer with the “spine” of “programmable disks” was a technological
sensation for the 18th century. However, the humanoid was programmable for only a single
task and was not truly intelligent in the sense of making decisions, or thinking on its own.

What does it mean for a machine to be intelligent? Can machines think?

This question occupied the brightest minds since the late 1940s, when artificial intelligence
was born as a research discipline [2]. In 1950, computer science pioneer Alan M. Turing
proposed the imitation game [3], which later became known as the “Turing test,” as a way to
determine whether a machine can be intelligent.

“I propose to consider the question, ‘Can machines think?’ This should begin with
definitions of the meaning of the terms ‘machine’ and ‘think.’”
– Alan Turing, 1950.

Seven decades later, in the 2020s, researchers are asking themselves, “What does it mean
for artificial intelligence to be able to explain its decisions? Can we explain its decisions and
the underlying algorithms in detail?”

I propose to consider the question, “Can artificial intelligence be explainable?” and to
begin with defining the meaning of the terms “artificial intelligence” and “explainable.”

1



1. Introduction

1.1 Essential Definitions

1.1.1 Artificial intelligence

Artificial intelligence (AI) is a field of computer science that expands the ability of machines
(computer systems) to solve problems that require human intelligence. A system that is able
to solve such problems is called an AI system (machine, algorithm, etc.) or simply AI.

Alan Turing defined an “intelligent machine” as a machine that is able to mimic human
behavior and trick a user by pretending to be a real person [3]. According to this definition,
a smart machine with superhuman abilities solving any task with the speed of light is not
needed to achieve “intelligence”; working as good as a human is sufficient to be considered
“intelligent”.

At present, such a definition of AI would be seen rather as that of artificial general
intelligence, which is also referred to as Strong AI or Full AI.

Artificial general intelligence is such AI that is capable of solving any problem that a
human can solve.

Opposite to that, common AI, called weak AI or artificial narrow intelligence, is a machine
specifically designed to perform a single task [4].

In other words, general artificial intelligence is a machine that has the ability to think,
learn, and solve problems in a way that is similar to a human being. This type of AI should
be able to perform a wide range of tasks, from playing various games [5] to chatting like a
friend [6], and to adapt to new tasks and learn further. It is believed that strong AI has not
been achieved yet.

Even stronger AI that outperforms humans in any imaginable task may come into life one
day. This hypothetical superhuman AI is called superintelligence or artificial super intelligence.
In the book “Superintelligence: Paths, Dangers, Strategies”, Nick Bostrom describes a potential
superintelligence as [7]

“. . . any intellect that greatly exceeds the cognitive performance of humans in
virtually all domains of interest.”

It remains an open ethical question whether humanity would benefit or suffer from it.

In this thesis, the term AI is used for weak AI and all mentioned methods belong to
the category of weak AI.

Machine learning (ML) is a subdiscipline of AI research concerning the algorithms that
learn meaningful relations in data and produce the desired answers without being explicitly
programmed to follow predefined rules.

The concept of machine learning was first described by Arthur L. Samuel in 1959 [8] and
gained popularity afterward.
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To construct a machine learning algorithm, the following is needed [9]:

• dataset,

• cost function,

• optimization procedure,

• model.

A machine, commonly called a model, learns the patterns in a collection of examples (dataset)
and the desired outcome. Training a model means making a model learn from the data how
to produce the desired answers so that the cost function is minimized. To minimize the cost
function during training, an optimization procedure is needed.

There are different ways to train models, known as the types of learning:

• Supervised learning

The answers for the input data are given (data is labeled). The model learns from the
error — the difference between the model’s predictions and the correct answers.

Example: classification of images from ImageNet [10].

• Unsupervised learning

The answers are not given (data is unlabeled). The model learns the patterns and
relations within the input data.

Example: clustering of explosives based on spectroscopy measurements [11].

• Semisupervised learning

A portion of the data is labeled but the rest is not. Supervised training is conducted on
the labeled data; additionally, the unlabeled data is used for unsupervised training to
improve model’s accuracy by showing it more training examples.

Example: classification of protein–protein interactions with limited labeled data available
[12].

• Reinforcement learning

A dynamic environment is given. The model learns by taking actions, observing changes
in the environment, and receiving feedback in the form of rewards and punishments.

Example: virtual agents learning to play games [5].

Nearly all modern reinforcement learning algorithms rely on deep neural networks, hence
they are deep reinforcement learning models.

Deep learning (DL) is a subcategory of ML and the respective research subfield in which
the trained models are artificial neural networks (ANNs) with deep (hidden) layers, also
referred to as deep neural networks (DNNs).

Artificial neural network (ANN) is a system of computational units, artificial neurons with
activation functions, organized into connected layers.
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1. Introduction

1.1.2 Explainable

Explainable or interpretable? Which term is applicable to AI?

The community has not reached consensus in definitions of explainability versus inter-
pretability. Many works report the lack of clarity in terminology [13, 14, 15, 16]. The overall
tendency is to use the terms “explainability” and “interpretability” interchangeably [16, 17],
depending on the context and research field [18], based on popularity [19], or to introduce
other terms [14, 20, 21]. In the German-speaking community, the terms “explainable AI”, or
“erklärbare künstliche Intelligenz,” seem to be standard [22, 23, 24]. Nevertheless, some authors
insist on disambiguation [15, 25].

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller [25] defined interpretation
as

“the mapping of an abstract concept (e.g., a predicted class) into a domain that
the human can make sense of.”

They called such domains interpretable and gave examples: images and texts. The same authors
defined explanation as

“the collection of features of the interpretable domain that have contributed for a
given example to produce a decision (e.g., classification or regression).”

In the case of image classification, the interpretable domain is images, the features are
parts of the input images. The features in the collection can be assigned scores of relevance
that reflect the contribution of the feature to the class’ prediction. A heat map (often spelled
as heatmap) formed by the collection of the image parts with their relevance is a classical
example of an explanation.

According to these definitions, interpretation can be seen as a process of retrieving an
explanation, and interpretable means that “a human can make sense of” it. In literature [25,
26], the terms interpretable and explainable and the verbs to interpret and to explain have
approximately the same meaning. This leads to the conclusion that it is negligible whether
we name a method designed to provide an explanation interpretable or explainable, both are
correct.

Acknowledging other existing definitions and differences in the popularity of the terms
among the scientific community and Internet users [15, 19], I prefer to use the word “explainable”
because it is easier to understand intuitively for nonspecialists, thereby broadening the audience
of potential users and contributors. This intuition is supported by my research on the terms’
popularity, which shows that “explainable AI” is the most searched for among the general
audience (Figure 1.1).

Explainable artificial intelligence (XAI) and interpretable machine learning (IML) can be
well differentiated on the basis of the algorithms covered by the terms “AI” and “ML.”

To the community of XAI, XML (explainable ML), and IML, I would suggest
striving unitedly for developing methods to achieve better explainability, interpretability,
understandability, transparency, intelligibility, and comprehensibility instead of introducing
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1.1 Essential Definitions

Figure 1.1: Comparison of the popularity of the terms “interpretable AI,” “interpretable ML,” “ex-
plainable AI,” and “explainable ML.” Data source: Google Trends (https://www.google.com/trends).

new terms and arguing on the old ones.

Explainable artificial intelligence (XAI) is the field of AI research that aims to develop
techniques for explaining the decision-making processes of AI algorithms to humans.

In this thesis, “explanation” suits to define the output of the explainability methods
according to ref [25]. The terms “explain,” “explainable,” and “explainability” are preferred,
although occasionally “interpret” and related ones may be used depending on the terminology
mentioned in the corresponding cited literature and to minimize tautology.

1.1.3 Proposed definitions

Several terms used in this dissertation have the following meanings:

Explanation
– an output (result) of an XAI method.

Interpretation
– a process of retrieval of an explanation.
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1. Introduction

Explain
– to provide an explanation.
Interpret
– to perform intepretation.

Explainable / Interpretable
– can be explained/interpreted.

Explainability / Interpretability
– ability to be explainable/interpretable.

A slight difference can be made between the terms “explainable” and “interpretable.”
“Explainable” is applicable to AI algorithms (e.g., ML models) and their output (predictions).
AI algorithms and output of XAI methods (explanations) can be called “interpretable.” More
precisely, explanations can be called human-interpretable to emphasize that these explanations
are meaningful to a human.

1.2 Explainable Artificial Intelligence

The definition of artificial intelligence and description of what it means for AI to be explainable
are given in the previous section. Here, use cases for XAI and available methods are outlined.

1.2.1 Aims and applications

Making AI algorithms explainable is important in the cases when their decisions may have a
strong impact on humans’ health and safety or other critical applications.

Potential cases include:

• Healthcare: XAI could be used to explain the decisions made by diagnostic AI tools [27]
or by systems that suggest medical treatment. This is especially helpful when making
the wrong choice may have serious consequences, for example when an AI system decides
whether a patient with COVID needs hospitalization [27]. Checking with XAI whether
a model uses the right criteria to make its decisions can help to avoid applying wrong
models to high-stakes scenarios in real life.

• Medical research: Insights from XAI may facilitate drug discovery by recommending
molecular modifications that reduce toxicity [28]. Explaining the decisions of a model
that classifies structural elements by their toxicity would help to streamline research and
obtain new medicines faster.

• Safety: XAI should be used to explain the actions of autonomous vehicles to ensure their
safe and reliable operation [29]. Understanding the reasons of past crashes can help to
improve self-driving systems and avoid accidents in the future.

• Legal: AI-produced risk scorings of future crime may be inaccurate because of unethical
practices, for example making decisions on the basis of the skin color of the defendant [30].
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1.2 Explainable Artificial Intelligence

Such biased predictions originate from unethical decisions made by humans in the past
and must be detected and eliminated for fair justice in the present.

In most of the examples above, the main goal of XAI is to deal with AI’s unwanted
behavior: understand its sources and minimize it by utilizing the knowledge gained from the
explanations.

Other purposes of applying XAI techniques include:

• Explaining a particular decision: Why AI predicted y for the data point x. In the USA, for
example, the reasons for credit denial must be explained to the customer under §1002.9
of the Equal Credit Opportunity Act of the Code of Federal Regulations (CFR) [31].

• Building users’ trust in the decisions of AI systems. Convince stakeholders to use AI.

• Sanity check and causality: Ensuring that algorithms perform as expected, make correct
decisions based on right criteria, and consider only causal relationships between the input
and output.

• Fairness and ethics: Ensuring nondiscriminative predictions.

• Insights: Learning about the properties of the data from the explanations to speed
up research (e.g., in medicines development [28]). Also, XAI provides insights into the
internal workings of neural networks [32].

1.2.2 Methods

Transparency of AI models

To begin with, not all models require additional XAI techniques to retrieve explanations
from them. Deep neural networks are black boxes providing little or no insights about their
decision-making process. Some other models are explainable by design because of their natural
simplicity; they are often called white boxes or glass boxes. Examples of such models are linear
and logistic regression and decision trees. A decision tree can be decomposed to explain a
single prediction by tracing the decision flow through the tree, and the importance of the input
features can be retrieved [33].

The models lying between these extremes on the transparency scale (Figure 1.2) and whose
decisions can be partially explained with the tools built into the model are sometimes called
gray (or grey) boxes [34]. Some researchers distinguish only white and black boxes [24]. A
random forest and a gradient boosting from any machine learning library have a method called
“feature importance” that ranks the impact of the individual input features and works in the
same way as a similar method for decision trees. Such algorithms can be called gray boxes,
considering that their decision flows cannot be fully traced.

Complex models can be transformed into gray boxes that are explainable by design to a
certain degree. Incorporating task-specific information into a model increases its transparency
and makes it a gray box [35]. Alternatively, a combination of two models, a black box and a
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Figure 1.2: Transparency scale of the AI model types: from black boxes that provide little or no
explanation about their decision-making to white boxes that are interpretable by design.

white box, is called a gray box [36].

Taxonomy of XAI methods

XAI methods can be categorized using different criteria [16, 24, 33, 34]. The first criterion
is closely related to model’s transparency, which was discussed above.

Intrinsic (ante hoc) or post hoc

Intrinsic (ante hoc, explainable by design)
Ante hoc is Latin for “before this,” which means that interpretation is done before

an algorithm produces a prediction. This is achieved when explainability is a part of the
algorithm’s design. Typically, simple models or models with restricted complexity (e.g., linear
regression and decision trees) are considered intrinsically interpretable [33], as intrinsic is
a synonym for essential and belonging to a subject naturally. More complex models, such
as random forests, may also be regarded as intrinsically interpretable [24]. “Explainable by
design” means either that a model is explainable by its simple nature or that a complex model
was designed to be more transparent. The layers of deep neural networks can be constructed
in such a way that the model becomes explainable [37].

Post hoc
In the context of XAI methods, post hoc (Latin for “after this”) means that they

are applied to already trained models. As opposed to ante hoc methods, which are always
model-specific, post hoc methods are divided into model-specific and model-agnostic categories.
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1.2 Explainable Artificial Intelligence

Model-specific or model-agnostic

Model-specific
As the name suggests, model-specific methods are designed only for a certain model or

class of models. For example, Gradient-Weighted Class Activation Mapping for Segmentation
(Seg-Grad-CAM) [38] is restricted to encoder-decoder architectures.

Model-agnostic
Contrary to model-specific methods, model-agnostic ones are applicable to any AI

algorithm, as only an input and output are needed for interpretation, whereas a model is
treated as a black box. The Local Interpretable Model-Agnostic Explanations (LIME) [39]
method explains the impact of input features on the basis of the changes in the output.

Local or global

Local
Explaining locally means explaining one particular output by, for example, highlighting

the parts of the input that were important for producing the output. Seg-Grad-CAM and
LIME methods are local.

Global
Explaining globally means explaining the network’s decision-making process as a whole.

Global methods aim to explain contributions of individual neurons and individual connections
between them. Each neuron reacts to certain features, and these features can be visualized
either by finding examples in the training dataset that activate the neuron the most or by
generating a prototype that maximizes activation. In a recent work of OpenAI Microscope
[32], focused on generating prototypes and studying connections between layers, researchers
showed how features from a lower layer assemble the next layer of detectors.

Techniques
To name a few:

Removal-based. One of the first attempts to explain image classification was made by Zeiler
and Fergus in 2014 in the occlusion experiment [40]. The idea was to remove input features or
occlude a portion of the input and then compare the outputs to measure the impact of the
occluded part on the decision.

Perturbation-based. The selected input features (e.g., pixels of an area of the input image)
are perturbed [41], otherwise these approaches are similar to the removal-based ones.

Architecture modification of neural networks to add explainability to the model. In Class
Activation Mapping (CAM), an additional layer was introduced into the model [42].
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Surrogate model, relatively simple and intrinsically explainable, is trained to approximate
the behavior of the original algorithm (e.g., LIME [39]).

Gradient-based. Methods such as Gradient-Weighted Class Activation Mapping (Grad-
CAM) [43] exploit the gradient flow in a neural network.

Propagation-based. In these methods, the relevance of the features is propagated from the
output to the input using the selected propagation rule to determine which image parts were
relevant for the decision and how high their relevance was. Layer-Wise Relevance Propagation
(LRP) technique [44] belongs to this category.

XAI methods can also be classified by the type of input they accept (images, text,
tabular data, etc.) and the type of explanation they produce (visualization of prototypes,
selection of important parts of the input, feature importance scores, and others). The types of
explanations that can be given depend on the type of input and the task for which the model
was trained.

As shown in this section, the question “Can AI be explainable?” has a positive answer.
Moreover, AI and its decisions can be explainable in various ways.

In this thesis, I study applications of XAI for computer vision tasks. An introduction to
computer vision is presented in the next section.

1.3 Computer Vision

Computer vision (CV) is the branch of artificial intelligence and computer science that studies
how to enable computers to comprehend visual input from the environment such as photographs
and videos. Its subject is creation of individual algorithms and systems of algorithms capable
of autonomously analyzing and comprehending digital videos and images and extracting usable
information from them.

1.3.1 Applications

CV algorithms are used for a broad range of tasks, including image and video processing,
pattern recognition, object detection, classification, tracking and reidentification, and more.
To perform these duties, visual data are acquired using sensors, with digital cameras often
being the tool of choice. CV plays an essential role in various applications, such as:

• Biomedical imaging: by analyzing medical images (such as X-rays, computer tomography
and magnetic resonance imaging scans, etc.) and identifying patterns typical for certain
diseases to help in automatic diagnosis [16]. Also, CV is used to speed up the analysis of
research bioimage data such as accurate detection of cells in large images [45].

• Image enhancement, for example, denoising of microscopic images [46] and colorization
of old black-and-white photos, as well as in mobile applications adding makeup and other
effects to images.
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• Autonomous vehicles and robotics: allowing self-driving cars and other types of
autonomous vehicles (e.g., delivery bots and carriage platforms at semi-automated
factories) to perceive their surroundings, which can be done by detecting and tracking
other traffic participants and reading road or local signs [47].

• Security: by detecting anomalous activity on video surveillance [48]. Secure screen lock
on mobile devices is powered by biometry (e.g., by face, fingerprint, and iris recognition
[49]), which helps to reidentify the user by analyzing the input from the camera or sensor
and comparing it with the encoded biometric features of the device owner.

Most of modern state-of-the-art CV solutions are based on deep learning models known as
convolutional neural networks (CNNs) because these models can solve more complex problems
than traditional programmable algorithms. However, a traditional algorithm can be designed
to recognize a shape with distinctive patterns. For example, it is possible to recognize circles
using the Hough transform. In the case of 2D grayscale images with uninterrupted circles,
this solution may be preferred because of its simplicity and relatively small computation time.
More complex cases generally demand other solutions, where CNNs are a key component.

Below, I present more details about the three CV tasks studied in this thesis.

1.3.2 Image classification

A fundamental computer vision task called image classification requires an algorithm able
to categorize objects or situations (scenes) in pictures into predefined classes. The trained
algorithm should output a class (label) for the input image. For example, an image classification
system may be taught to classify photos of dogs into breeds (multiclass classification) or to
divide scenes into “indoor” and “outdoor” (binary classification). If multiple classes are allowed
to be assigned to a single image, the task is called a multilabel classification. An example
could be an animal classifier that would output “cat” and “dog” labels if both pets were
photographed next to each other.

The desired output for image classification is a class, usually represented by a single integer
(technically, often implemented with one-hot encoding).

In binary classification, the target has two possible values (e.g., 0 and 1). In multiclass
classification, there is one target that can consist of N potential values, where N is the number
of training classes. The target of multilabel classification is a set in which each element has N
possible values.

Among many computer vision approaches that have been developed for image classification,
the current state-of-the-art ones generally rely on training deep CNNs on large datasets.

ImageNet [10], an extra large collection of about 14 million labeled images in 1000 categories,
is one of the most well-known large datasets. Publicly open datasets that can be used to
compare models with a predefined metric are called benchmarks.

According to the independent leaderboard of ImageNet classification benchmark [50], the
top state-of-the-art model is Contrastive Captioner (CoCa) [51], which is a combination of
multiple architectures, including transformers. The authors report 91% accuracy after dataset-
specific fine-tuning, which means there is still room for improvement for future networks.
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Pretraining (fine-tuning excluded) of CoCa lasts approximately five days on Tensor Processing
Units. Lighter architectures such as ResNet-50 [52] with 76% top-1 accuracy, Inception-v3
[53] with 78.8% accuracy, or EfficientNet-B7 [54] with 85% accuracy have 30–100 times fewer
parameters than CoCa, meaning less time- and energy-consuming training. Depending on how
hard the classification task is, these three lighter architectures or even smaller CNNs may be
better for identifying fewer classes on smaller datasets.

1.3.3 Image regression

Regression is a task of predicting a finite rational number (usually a fraction on a continuous
scale) from input data. An example of regression is a housing price forecast where each
prediction is a single non-negative finite decimal number in a local currency. A task of
predicting an integer can also be treated as regression rather than classification if:

(1) The classes are ordered: the difference between the labels a and a + 1 is smaller than
that of a and a + 2, therefore when a + 2 is predicted for the target label a, the error is larger
than in the case of a + 1 prediction;

(2) The range of possible target values of the test set might exceed the range of the training
set, and generalizability of the model is needed. For example, a model predicting housing
prices should be able to extrapolate into the future if the input values suggest prices higher
than ever seen in the training set.

If only the first condition applies but the range of targets is known, the problem can be
treated as classification and a model can be trained with a loss function (e.g., weighted kappa
loss [55]) that takes into account the class order described in condition (1).

In multitarget (multi-output) regression, the desired prediction consists of multiple values:
it is either a labeled set (data type “dictionary”) or a vector.

Image regression is a regression task learned from the image data. For example, estimation
of the human age from photographs [56] can be done by solving a regression problem by
considering the age as a continuous value and evaluating the result with the mean absolute error
(MAE). Counting of tumor cells [57] is a regression problem in which the maximal target value
cannot be foreseen during training; this makes the usage of classification approaches irrational.
Estimation of the human head pose [58] is an example of multitarget image regression.

One of the current state-of-the-art approaches is moving window regression [59] which
assigns a rank within the dataset to an input image and refines the rank iteratively within
the window between the reference data points. SynergyNet method [60] effectively solves
the problem of estimating the head posture, regressing the angles of the face rotation. The
approach got its name from the synergy of combined 3D facial landmarks with the special
parameters — 3D morphable models — that improve the network’s ability to understand 3D
facial geometry.

1.3.4 Image segmentation

Image segmentation is the task of splitting an image into meaningful sets of pixels. These sets
are meaningful in the sense that they can be used to identify and classify the parts of the image
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or the objects in it. Such objects can be traffic participants (pedestrians, cyclists, and cars) and
background features (roads, buildings, trees, etc.) in a dataset called Cityscapes [61]. The goal
of segmentation is to make a mask with labels for each pixel that say what class or category
the pixel belongs to. The mask can be of the size of the original image, where the values of
each pixel of the mask correspond to the predicted class. It can also be one-hot-encoded: one
dimension is added to the output to represent the binary masks for each class.

Semantic segmentation is a type of image segmentation in which each pixel in an image is
labeled with a class without distinguishing between different instances of the same class. E.g.,
when all cars are labeled with one class, all road signs — with another one.

With regards to distinguishing between different instances, instance segmentation has the
opposite goal: each individual object of interest gets its own class label. Each car is given its
own label in instanced segmentation.

Panoptic segmentation is a hybrid of instance and semantic segmentations: objects of interest
(e.g., cars and pedestrians) are subjected to instance segmentation whereas background objects
(e.g., roads and buildings) are only semantically differentiated.

Segmentation masks can be dense or sparse. In dense masks, each pixel in the image is
labeled with a class label, and there are no blank areas. Sparse masks label only a subset of
pixels, which is commonly desired as an output of instance segmentation.

Partitioning of images into only foreground (objects of interest) and background is known
as binary segmentation. However simple it may sound, this technique can help to solve
important problems such as dermoscopic skin lesion segmentation [62]. It is done by generating
an output mask where the pixels with a lesion are labeled with “ones” whereas the background
is labeled with “zeros.”

Although some segmentation tasks can be done using classical computer vision techniques,
solutions utilizing fully convolutional neural networks are preferable. U-Net, a fully convolutional
ANN having an encoder-decoder architecture [63], has been a gold standard for years in
biomedical semantic image segmentation. The current trend for semantic segmentation is
to combine visual transformers with advanced pooling techniques into an encoder-decoder
architecture, such as the Lawin Transformer [64].

1.4 Optics

Computer vision has been applied in various domains, including optics and microscopy image
analysis. To preface a study of optical aberrations presented in Chapters 3 and 4, a brief
introduction to the field is provided below.

Optics is the branch of physics that examines the behavior and properties of light, its
interactions with matter, and construction of instruments that detect or utilize light. Its two
major subfields are geometrical optics and physical optics. Geometrical optics deals with the
propagation of light and the formation of images with optical systems, which may include,
for example, lenses and mirrors. In other words, it studies light rays. The area of interest of
physical, or wave, optics is light waves: it studies the wavelike properties of light and its nature.
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This thesis considers the phenomenon of geometrical optics called optical aberrations.

1.4.1 Aberrations

An aberration can be defined as a deviation of a light beam from the trajectory proposed by
geometrical optics. Optical aberrations lead to decreased quality of the optical system’s output.
For example, they cause distorted or blurred images in microscopes and telescopes.

In an ideal optical system, the light rays coming from one point on the object plane focus
on one point on the image plane. In practice, however, the rays do not always focus on the
image plane as expected. For example, due to imperfections in real-world optical systems,
images coming from a microscope always have some aberrations. In microscopy, aberrations
can be caused by various factors, such as the curvature of the imaged surface, the compounds,
and the materials used in the lenses and the medium between the lens and the sample, or the
way the system is designed and assembled [65]. Nevertheless, aberrations are not always the
result of manufacturing flaws. Instead, they are always present because real lenses are not
infinitely thin like those considered in the theory of geometrical optics [66].

There are different types of optical aberrations, which can be divided into two categories:
chromatic (color aberrations) and monochromatic.

Chromatic aberrations

Chromatic aberration is a color distortion of an observed image caused by light rays of
different wavelengths (and thus different colors) failing to focus at one point because the
refractive index of the lens’ material varies with the wavelength. This aberration is often
observed in single lenses [66]. Depending on the axis along which the rays pass through the
lens, chromatic aberrations are divided into longitudinal (axial) and lateral (transverse, oblique).

Longitudinal (axial) chromatic aberrations

Axial chromatic aberrations occur when the focal length of the lens changes across the
wavelengths. This causes the light of different colors to focus at different distances from the
lens along the optical axis, creating the color blur around the image’s boundary. It happens
because beams of light of different wavelengths interact with the lens material and bend
differently. The blur caused by axial chromatic aberrations has a lower impact on the image
quality than the distortions caused by transverse chromatic aberrations [67].

Lateral (transverse) chromatic aberrations

Transverse chromatic aberrations are expressed when light rays of different colors fall at
a lens at an oblique angle and focus at different points on the image plane. The distance
from the image center to the focusing point depends on the wavelength, creating color fringes
around the image’s boundary.
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Both types of chromatic aberrations can be corrected using special lens designs [67] such
as achromatic doublets [68] consisting of multiple lenses made of different types of glass with
various refractive indexes.

Monochromatic aberrations

Chromatic aberrations occur only when several wavelengths are present in the light (i.e., the
light is polychromatic, which includes white light). Monochromatic aberrations are observed
with monochromatic light (i.e., having one wavelength [69]) or even with quasi-monochromatic
light [68]. Monochromatic aberrations result in image deterioration, with the shape of the
distortion depending on the type and order of the aberration.

Aberrations of lower orders influence image quality more than those of higher orders. The
term order comes from the description of paraxial rays [68], which are the rays close to the
optical axis and having a small angle of incidence φ with a refracting surface [69].

Using the following expansion, sin φ can be estimated as

sin φ = φ − φ3/3! + φ5/5! − φ7/7! + . . . (1.1)

The first-order theory [68] considers φ to be very small, so that sin φ ≈ φ (paraxial
assumption). This approximation becomes unrealistic if we consider the rays passing through
the lens’ periphery (nonparaxial rays), which have larger angles of incidence.

The third-order theory, which considers sin φ ≈ φ−φ3/3! in eq 1.1, improves the estimation
of the image formation. The deviations from the first-order theory in the image formation
were described by Ludwig von Seidel in the 1850s [68] and are called Seidel aberrations or
classic aberrations [69].

Seidel described five types of monochromatic aberrations: astigmatism, coma aberrations,
spherical aberrations, distortion, and field curvature. The first three of these — astigmatism,
coma aberrations, and spherical aberrations — are considered in this thesis.

Seidel (classic) aberrations

Spherical aberrations

Spherical aberrations occur when light passing through the periphery of a lens focuses
at a different point than light passing through the center of the lens, causing blur on the
periphery. In the case of positive (undercorrected) spherical aberrations, typical for spherical
lenses, nonparaxial rays focus closer to the lens than paraxial rays from the center. Negative
(overcorrected) spherical aberrations result in nonparaxial rays focusing farther from the lens
than paraxial.

Correction of spherical aberrations is often done by changing the geometry of a lens by, for
example, making it more curved in the center than on the periphery. Plano-convex lenses have
minimal spherical aberrations when their convex side faces the light beam.
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Spherical aberrations are sometimes called longitudinal spherical aberrations [69]. Indeed,
their formation is similar to that of longitudinal (axial) chromatic aberrations. The difference
is that in spherical aberrations the rays having one wavelength do not meet in the focus,
whereas in chromatic aberrations, the rays of different colors are defocused.

Coma

Coma is another type of monochromatic aberration that has a formation principle similar
to that of its chromatic counterpart — lateral (transverse) chromatic aberration. Again, the
monochromatic rays are defocused along the focus plane instead of the chromatic ones. The
name “coma” comes from the comet-shaped blur in an image of a point source. Coma occurs
when the incoming light is oblique to the optical axis, which happens when the light source is
off-axis or if the components of the optical system are tilted with respect to one another. The
direction of coma is positive when the tip of the “comet” faces the optical axis, otherwise, the
direction is negative. Coma can be corrected by changing the shape and curvature of a lens at
necessary locations.

Astigmatism

Astigmatism is observed when the light propagating in perpendicular planes from a point
does not focus at a single point after passing through a lens. The result of astigmatism is
elongation of the edges of objects, with the direction of the distortion depending on the angle
of astigmatism. Correction of astigmatism can be done by using special combinations of lenses
called anastigmatic lenses, or anastigmats [68]. Combined lenses can also be designed to
correct other aberrations besides astigmatism.

Field curvature (Petzval field curvature) aberration appears when the distance between a
lens and the image plane is not the same at each point (i.e., when the image plane becomes a
nonplanar surface.)

Distortion is caused by variations in the magnification at different parts of a lens, which
results in straight lines of an object looking bent in the image. Barrel distortion “bends” the
image to the outside and makes objects appear more round; pincushion distortion “bends” the
image to the inside.

These classic aberrations are particularly important for the design of ophthalmic lenses
that are prescribed to vision-impaired patients, as well as in other branches of optics such as
photography [69]. However, a model based on the classic aberrations would be insufficient to
describe other, less commonly encountered aberrations.

Point spread function
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1.4 Optics

The types of aberrations can be analyzed using the point spread function (PSF). The PSF is
defined as the response of an imaging system to a point light source [66]. A computer scientist
can think of the PSF as a kernel in the convolutional operation. For example, a microscopic
image of an object appears partially blurred or deformed because the convolutional kernel, the
PSF, is applied to the object inside the imaging system (Figure 1.3).

Figure 1.3: Point spread function (PSF). Modified from [70] (public domain image).

1.4.2 Zernike polynomials

In 1934, Fritz Zernike published a more comprehensive classification of optical aberrations [72].
Currently, the Zernike polynomials (Zernike terms) are more commonly used in qualitative
and quantitative analysis than Seidel (classic) aberrations [69]. Figure 1.4 shows 15 Zernike
polynomials rendered in 3D.

The Zernike polynomials describe the wavefront of an optical system in general. A wavefront
is a surface that represents a set of points that are in one phase of the wave. The wavefront of
a light beam passing through a lens is used to compute the lens’s aberrations. The Zernike
polynomials are particularly useful for estimation of aberrations because each polynomial
corresponds to a specific type of aberration and is orthogonal to the others.

The Zernike polynomials are denoted as

Zm
n or Z±m

n (1.2)
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Figure 1.4: 3D visualization of the Zernike polynomials (public domain image) [71]. The first 14
polynomials (piston excluded) are ordered according to ANSI nomenclature and Table 1.1, from
Y-tilt to vertical quadrafoil. The image at the bottom right corresponds to sixth-order oblique
astigmatism.

where n is the power (radial order) of the radial distance polynomial ρ (0 ≤ ρ ≤ 1) and m is
the angular coefficient (azimuthal degree) of the azimuthal angle θ (0 ≤ θ ≤ 2π). The Zernike
polynomials can be denoted as a function of ρ and θ in polar coordinates:

Z±m
n (ρ, θ) (1.3)
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The Zernike polynomials are divided into even, with m ≥ 0, and odd, with m < 0. The
even and odd Zernike polynomials are defined as [73]

Zm
n (ρ, θ) = Rm

n (ρ) cos(mθ) for even (1.4)

Z−m
n (ρ, θ) = Rm

n (ρ) sin(mθ) for odd (1.5)

where (n − m) ≥ 0, θ is the azimuthal angle, ρ is the radial distance, and Rm
n (ρ) are the radial

polynomials:

Rm
n (ρ) =

n−m
2∑︂

k=0

(−1)k (n − k)!
k!

(︁
n+m

2 − k
)︁
!
(︁

n−m
2 − k

)︁
!

ρn−2k (1.6)

For (n − m) ≤ 0 or (n − m) being odd, Rm
n (ρ) = 0 and a polynomial does not exist.

Then, the wavefront ϕ over a circle of radius R is a sum of the Zernike polynomials with
the corresponding amplitudes aj with a single index j [74]:

ϕ(ρ, θ) =
∑︂

j

ajZj(ρ, θ) (1.7)

In the Noll nomenclature (indexing system), the indices m and n are converted into j according
to Table I in ref [74].

In the OSA / ANSI nomenclature [75], another commonly used indexing system, the
conversion is done as

j = n(n + 2) + m

2 (1.8)

The relations between the indices n, m, both ANSI and Noll nomenclatures, formulas for
Z±m

n (ρ, θ) [75], and the names of the first 15 aberrations [76] are presented in Table 1.1. The
indices n and m are both either even or odd because otherwise Zj = 0.

The aberrations of the second, third, and fourth order (below oblique astigmatism in
Table 1.1) are used in this thesis.

1.5 Thesis Overview

1.5.1 Motivation

Explainability is an important topic of AI research, as modern complex AI systems are difficult
for humans to understand. This can be a problem when advanced AI systems are employed
to make important decisions, such as in healthcare. XAI methods aim at making AI systems
more transparent and understandable, more reliable, safe, and fair. Enhancing XAI techniques
can make a positive impact on human society.

Transparent and safe AI solutions can be brought into new domains, such as medicine or
justice, where high risks are involved. XAI helps to better understand how AI makes decisions
and to check if they are made as expected from the human point of view. This is especially
important when it comes to incorrect decisions and can be used to eliminate harmful biased
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behavior and to improve AI systems in general.

Computer vision solutions are often employed in biomedicine, handling tasks of classification
and segmentation of X-ray scans, computed tomography (CT) scans, magnetic resonance
images (MRI), ultrasound images, and laboratory microscopic images. Considering the
importance for human well-being, development of explainability techniques for computer vision
models in this domain should be one of the top priorities of AI research in the coming years.

In biological research, CV is used in analysis and restoration of microscopic images, which
are affected by optical aberrations that decrease image quality, especially when imaging is
done deep inside a sample or when the sample’s surface is curvy. In the latter case, the sample
itself introduces additional aberrations besides those that are due to the microscope’s design.
To improve the bioimaging quality and observe the real sample more clearly, aberrations
should be removed or at least minimized, for which they need to be qualitatively and
quantitatively estimated. Estimation of aberrations is a multitarget image regression problem
that convolutional neural networks can help to solve.

Challenges

At the time when the research for this thesis was started in 2018, XAI methods for computer
vision models were limited to the task of image classification and applicable only to certain
problems and domains. The problem of explaining decisions of image segmentation models to
humans was not solved and applicability of XAI to image regression was unclear.

Accurate estimation of optical aberrations using computational methods was limited to
trivial objects, and the underlying deep learning model for multitarget image regression was
not explainable.

Table 1.1: Indices and names of the first 15 Zernike polynomials Zj(ρ, θ)

Zm
n j, ANSI j, Noll n m Zj(ρ, θ) = Zm

n (ρ, θ) Name
Z0

0 0 1 0 0 1 Piston
Z−1

1 1 3 1 −1 2ρ sin θ Tilt (Y-Tilt)
Z1

1 2 2 1 1 2ρ cos θ Tip (X-Tilt)
Z−2

2 3 5 2 −2
√

6ρ2 sin 2θ Oblique astigmatism
Z0

2 4 4 2 0
√

3(2ρ2 − 1) Defocus
Z2

2 5 6 2 2
√

6ρ2 cos 2θ Vertical astigmatism
Z−3

3 6 9 3 −3
√

8ρ3 sin 3θ Vertical trefoil
Z−1

3 7 7 3 −1
√

8(3ρ3 − 2ρ) sin θ Vertical coma
Z1

3 8 8 3 1
√

8(3ρ3 − 2ρ) cos θ Horizontal coma
Z3

3 9 10 3 3
√

8ρ3 cos 3θ Oblique trefoil
Z−4

4 10 15 4 −4
√

10ρ4 sin 4θ Oblique quadrafoil
Z−2

4 11 13 4 −2
√

10(4ρ4 − 3ρ2) sin 2θ Oblique secondary astigmatism
Z0

4 12 11 4 0
√

5(6ρ4 − 6ρ2 + 1) Primary spherical
Z2

4 13 12 4 2
√

10(4ρ4 − 3ρ2) cos 2θ Vertical secondary astigmatism
Z4

4 14 14 4 4
√

10ρ4 cos 4θ Vertical quadrafoil
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1.5 Thesis Overview

1.5.2 Dissertation outline

This thesis consists of five chapters.

• Chapter 1 (Introduction) contains definitions of AI and XAI, aims and methods of XAI;
presents computer vision techniques for image classification, regression, and segmentation;
and describes optical aberrations and their estimation with the Zernike polynomials.

• Chapter 2 presents a method for explainable semantic image segmentation that finds
strategies to explain the reasoning of encoder-decoder CNNs that perform image
segmentation.

• In Chapter 3, application of computer vision to estimation of monochromatic aberrations
in microscopy with the Zernike polynomials in 3D images of research samples is described
and image restoration with predicted aberrations is shown.

• Chapter 4 presents a method for explainable multitarget 3D image regression in the
context of the taskfrom Chapter 3 and proves the method’s reasonability by explaining
the related multiclass 3D image classification of aberrations in addition to the regression
task.

• Chapter 5 presents conclusions and an outlook into the future of XAI.

Figure 1.5 illustrates the connection between the chapters.

Figure 1.5: Thesis outline: the connection between the topics of Chapter 1 (Introduction) and
Chapters 2, 3, and 4 presenting the results.
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2
Explainable Image Segmentation

2.1 Abstract

Convolutional neural networks (CNNs) find increasing use in many areas, and it is becoming
essential to make them explainable. This is especially true for CNNs employed in critical
domains such as healthcare and safety of autonomous vehicles, which often involve the task
of image segmentation. For example, to decide whether hospitalization is required for a
COVID patient, it may be necessary to evaluate the damage to the lungs. In road safety, the
surroundings and traffic participants are identified and located for safe operation of self-driving
vehicles. The road identified in the pictures from the front camera must be segmented to
ensure that the self-driving car drives only on the allowed parts of the road and does not enter
the pedestrian path. In such scenarios, explaining the predictions of the segmentation CNNs is
crucial, especially in cases when the performance of the model is unsatisfactory and thereby
unsafe.

When this project started in March 2019, no method for explainable image segmentation
existed. With multiple approaches for explaining image classification already available, there
were four potential strategies to consider to overcome the lack of explainability for segmentation:
(1) transforming the segmentation task into a pixel-wise classification problem, (2) constraining
the choice of AI models in critical applications to solutions interpretable by design, (3)
developing an explainable artificial intelligence (XAI) method from scratch explicitly for
segmentation, or (4) adapting to segmentation an existing XAI method for classification. The
first option may have very limited applicability due to high computational costs and low
performance on complex tasks. In the second strategy, interpretable by design models are
either too simple to perform complex segmentation tasks or are developed for a single network
architecture prior to its training and are not transferable to already trained state-of-the-art
CNNs. In the third strategy, the desired outcome of visualization was less predictable compared
to the last one (adapting an existing method), which was therefore preferred as the starting
point for exploring the undiscovered research field.
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2. Explainable Image Segmentation

Following an approach of adapting to segmentation an existing XAI method for classification,
I proposed with my colleagues a novel technique for explainable semantic image segmentation,
presented at the 34th AAAI Conference on Artificial Intelligence in February 2020 [38].
This technique is based on an XAI method for classification called gradient-weighted class
activation mapping (Grad-CAM) and is named gradient-weighted class activation mapping for
segmentation (Seg-Grad-CAM).

2.2 Related Work

Explainability of the tasks beyond classification is a developing research area. The literature
review below represents the state of research as of November 2022. For semantic image
segmentation, XAI methods were proposed very recently (since 2019). They are mostly focused
on explaining decisions of U-Net neural network [63] and its variations because this architecture
and its variants have become standards for semantic image segmentation, especially in the
medical domain [77].

The earliest attempt to shed light on concepts learned by a segmentation network is
dated June 2019, when Janik et al. proposed an interactive visualization tool for latent space
representations by finding corresponding samples in the dataset [78]. They demonstrated their
tool on U-Net trained for detecting buildings in satellite images.

The first method toward more transparent semantic segmentation, grid saliency [79], is
aimed at detecting biases in the data that may affect the decisions of segmentation CNNs. It
is based on perturbation analysis and assumes that co-occurrences of classes and the context
are important for segmentation. For the perturbation analysis, a region of interest of one class
is selected and the context is perturbed by changing the pixels outside the region of interest.
Then, the class prediction change is evaluated and the minimal context, which is necessary to
assign the region to the correct class, is identified. This context is shown as a saliency map
plotted on top of the input image. If no context is important for the segmentation of the object,
the saliency map is blank. This means that the method is explicitly designed to find what was
important for the decision only in the context, without taking into account the pixels inside
the object of interest. The purpose of this method is to identify data biases (co-occurrences
of the classes influencing the decisions). Finding biases in the data is in general essential to
ensure that the model makes decisions for the right reasons.

The authors proposed a toy dataset with an intentional bias in one half of the image,
which is described in Subsection 2.4.2, and a metric for assessing the quality of explanations
quantitatively. According to this metric, the best explanation is the one that assigns relevance
only to the pixels in the context. However, the method’s ability to highlight important pixels
only outside the object may not best serve the purpose of evaluating the explanations. Besides,
it is unlikely that the bias located in the background in one half of the image is sufficient for
successful segmentation of the object present in the whole image. Moreover, biases may occur
in a part of the objects and "assist" the network in learning. The grid saliency method was
specifically designed to perturb only the context and find the pixels influencing the prediction
inside the context, thus excluding the object from the saliency map. This makes “unfair” a
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comparison of this method with those not having such a restriction and designed for the
general explanation purposes.

The semantic bottlenecks method [80] is based on the idea of inserting special layers in
an already trained network and retraining it to learn special concepts. The authors showed
two approaches: supervised semantic bottlenecks and unsupervised semantic bottlenecks. The
former requires additional work of selecting concepts manually from another dataset, inserting
this bottleneck to retrain the network as a classifier, then removing this bottleneck and
measuring the quality of segmentation by intersection over union (IoU). According to IoU,
the best position for the insertion is selected and activation maps are retrieved from this
bottleneck. In the unsupervised version, where only the number of concepts is selected rather
than the concepts themselves, the next steps are fairly similar but the training is unsupervised.
The rules for choosing the number of concepts and the position where the bottleneck should
be placed are refined empirically for each architecture. Unfortunately, this requires a lot of
work for each new network or dataset.

U-Noise method [81], as the name suggests, is based on U-Net. It is similar to the occlusion
experiment [40], but in U-Noise the image is occluded with the learned noise. First, U-Net is
trained on an unaltered input to do the segmentation. Further modifications are analogous
to training of a generative adversarial network consisting of a discriminator and a generator.
U-Net is duplicated: one copy is used as a so-called utility model acting like a discriminator in
a generative adversarial network, the other copy is called an interpretability model and acts
as a noise generator. The weights of the utility model are frozen to prevent retraining. The
interpretability model learns to occlude the image with a tolerable amount of noise that still
allows the utility model to correctly predict the segmentation mask. The output of U-noise is
a map that shows the tolerance of the pixels to noise. Despite requiring additional training,
this method is practical because it is not constrained to a single CNN architecture and any
segmentation network can be retrained in such a manner.

Generative adversarial networks themselves can be used for semantic segmentation, and it
has been shown that layer-wise relevance propagation [44] can be applied to the discriminator
to retrieve heat maps showing the most relevant pixels for segmentation with the generative
adversarial network [82].

Modifications to Seg-Grad-CAM have been proposed in several works. The technique has
been adapted for 3D segmentation [83] and 2.5D segmentation [84]. In the master’s thesis of
J. Lei [85], a comparison has been made between Seg-Grad-CAM and other gradient-based
XAI methods (VanillaGrad [86], SmoothGrad [87], and Grad-CAM++ [88]) adapted for
segmentation using the concept of Seg-Grad-CAM, named Seg-VanillaGrad, Seg-SmoothGrad,
and Seg-GradCAM++, respectively. For the lack of conventional metric for comparing
explanations of segmentation predictions, the methods have been compared visually. Seg-
GradCAM++ has been reported to provide the sharpest boundaries of the regions on the
explanation heat maps, whereas Seg-Grad-CAM has been suggested as the most time-efficient
and analytically reliable.

Besides explaining the results of segmentation, Grad-CAM [43] has been adapted to a
convolutional long short-term memory network inspired by the idea of changing the layers
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selected for gradient propagation [89]. In a recent work by Humer et al. [90], the researchers
have combined the idea of Seg-Grad-CAM with the global average pooling (GAP) layer from a
method for object localization — the class activation mapping (CAM) [42], and stated that any
gradient-weighted explanation technique can be placed under the hood instead of Grad-CAM.
The work of Melching et al. [91] reported a U-Net-based CNN with a parallel path with GAP
and retrieval of gradient-weighted explanations for crack tip detection.

CAM, Grad-CAM, and Seg-Grad-CAM mentioned above are described in detail in Methods
section.

2.3 Methods

2.3.1 CAM

The class activation mapping (CAM) method has been initially proposed for object localization
using a classification network without access to localization labels [42]. The authors achieved
37.1% top-5 error in the ILSVRC 2014 challenge [92] without using bounding box annotations.

Later, this technique was used for visualizing the locations in an input image that were
most relevant for a classification decision of a CNN: for example, if the class “brushing
teeth” was predicted, CAM highlights the open mouth of a person and the toothbrush in the
image [42]. A schematic of the method’s operation is shown in Figure 2.1.

Figure 2.1: Schematic of the class activation mapping (CAM) applied to an image classifier. The
global average pooling (GAP) technique was applied to the feature maps from the last convolutional
layer to weigh their impact on finding the object of the predicted class.
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Concept

CAM generates a class activation map (heat map) that highlights those important regions
in the image that have the largest weights for the predicted class label. The CNN must
include a global average pooling (GAP) layer between the last convolutional layer and the
final dense layer, meaning that only one dense layer can exist. The authors modified three
state-of-the-art architectures of that time by removing all extra dense layers, except for the
last one, and placing GAP in between instead. These CNNs were then trained for supervised
image classification, and the learned weights between the GAP and dense layers together with
the feature maps from the last convolutional layer were used for interpretation.

Formal calculation

Let us assume that the network in Figure 2.1 is trained to divide images into three classes:
“circle” or “triangle” if it finds a respective shape in the input, and “neither circle nor triangle”
if other shape or no geometric shape is found. The CNN consists of a block of convolutional
layers, a GAP layer, and a dense layer for classification with softmax as an activation function,
which outputs a vector of probability for each class. At the prediction step, an image of a
circle is passed into the CNN and receives the prediction, “it is a circle.” To understand what
the network has learned from the data, the user of the classifier may wonder, “why is it a
circle?” To answer this quesion, a class activation map can be generated by extracting the
feature maps from the last convolutional layer and the weights between the GAP layer and
the dense layer. Each feature map Ak is multiplied by its corresponding weight wc

k between
the result of GAP for this feature map and the neuron responsible for the prediction of class c,
“circle” (k is the index of a single feature map in the layer of interest with K feature maps).
By this, the feature maps are weighted by their impact on the prediction. The weighted sum
of the activation maps is the class activation map, or in other words, the localization map
Lc

CAM for class c:
Lc

CAM =
∑︂

k

wc
kAk (2.1)

In general, CAM can be used to better understand the decision-making process of deep learning
models and can be a useful tool for visualizing the features learned by a model and for finding
the spatial location of the objects. The obvious drawback of this method is that it is ante hoc:
it enforces the placement of GAP and requires training of the model after that.

2.3.2 Grad-CAM

The gradient-weighted class activation mapping (Grad-CAM) [43], having the same objectives
as CAM, lifts the GAP insertion requirement, thereby achieving post hoc interpretability.
Designed for CNNs consisting of convolutional layers and fully connected layers at the end,
Grad-CAM can be applied to any CNN trained for classification. Besides localization of the
objects responsible for image classification, the authors have shown applicability of their
approach to networks designed for image captioning and visual question answering. The
operation of Grad-CAM for explaining an image classifier (localization of the object) is shown
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in Figure 2.2.

Figure 2.2: Schematic of the gradient-weighted class activation mapping (Grad-CAM) applied to
an image classifier.

Concept

Grad-CAM is a class activation mapping technique that produces a heat map for an input
picture, indicating the image areas that contribute the most to the model’s output. Its central
idea is to construct a class activation map using the gradients of the output class with respect
to the feature maps of the last convolutional layer. These gradients are used to compute the
importance weights of each feature map, which are then multiplied by the corresponding
feature maps, producing the activation maps for the class. To obtain the final heat map, the
class activation maps are averaged across all the feature maps and then thresholded to cut
off any negative relevance speaking against the prediction. The resulting heat map is overlaid
onto the input picture to localize the important regions.

The usage of feature maps of the convolutional layer prior to fully-connected layers replaces
GAP in CAM: Grad-CAM uses backpropagation of gradients instead of an extra pooling layer.
This was done to generalize the approach to a broad variety of network architectures common
for image classification.
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Formal calculation

Coming back to the toy task of classification of geometric shapes, let us assume that we use
an already trained state-of-the-art CNN with a block of convolutional layers, one intermediate
dense layer, and one dense layer with the softmax activation function for classification. To get
a single class label as the output, we would find the argument with the highest probability
in the prediction vector. To explain why the input picture was classified as a circle, we first
select the logit yc, which is the probability of class c, “circle,” in the output prediction vector
y. Then, the feature maps A should be extracted from the last convolutional layer. Next, the
gradients ∂yc

∂Ak are propagated from the logit yc to the feature maps A (the gradients of yc are
taken with respect to A). The importance weights αc

k, analogous to the GAP weights wc
k in

eq 2.1, are the spatial average of these gradients across N pixels (indexed by u, v) in each
feature map Ak:

αc
k = 1

N

∑︂
u,v

∂yc

∂Ak
uv

(2.2)

Analogous to CAM, the weighted sum is defined as

∑︂
k

αc
kAk (2.3)

To produce only the positive importance, the weighted sum is rectified (the negative values
are set to zero) using the rectified linear unit function (ReLU) defined as

ReLU(x) = max(0, x) (2.4)

By combining eqs 2.2 and 2.3 and applying ReLU, the localization map Lc
Grad-CAM for the

class c can be expressed as

Lc
Grad-CAM = ReLU

(︃∑︂
k

αc
kAk

)︃
= ReLU

(︃∑︂
k

Ak 1
N

∑︂
u,v

∂yc

∂Ak
uv

)︃
(2.5)

Thereby, Grad-CAM is a generalization of CAM, with the advantage that it does not
require any manipulations with the architecture and only needs an access to the layers of the
CNN and to the algorithm for backpropagation of the gradients.

2.3.3 U-Net

The deep fully convolutional neural network U-Net won image segmentation challenges in
2015 [63] and became a revolution in bioimage segmentation after beating the previous state-
of-the-art architecture, the sliding window approach [93]. Originally designed for biomedical
tasks, U-Net has since been used for a wide variety of image segmentation applications.

A deep fully convolutional network is a type of CNN where all trainable layers are of a
convolutional type. The input and output can be of any size, provided that the shapes of
the intermediate inputs to the convolutional layers do not shrink to zero size after a series
of pooling layers, which are usually present in the architecture. The input size is normally
equivalent to that of the output. This makes fully convolutional networks a good choice for
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tasks such as image segmentation, where the input can be images of arbitrary sizes whereas
the output should be as large as the input.

U-Net is such a deep fully convolutional network with pooling layers, consisting of an
encoder (contracting path) and a symmetric decoder (expanding path). The encoder path of
U-Net is constructed of several layers of 2D convolutional and max pooling operations that
downsample the input image and extract feature representations. It is similar to a convolutional
block (before dense layers) of a CNN for classification, which gets narrower in the last layers.
The layers at the beginning of the encoder learn low-level features, such as edges and simple
geometry. The learned concepts become more and more sophisticated as the end of the encoder
approaches. The decoder path uses transposed convolutional layers to upsample the feature
maps to their original resolution. The bottleneck is the series of convolutional layers (usually
two or three layers) between the encoder and decoder.

Convolutional layers in general learn spatially invariant features that can be used to make
predictions at any location in the input image, an ability valuable for image classification.
However, this is not intended for image segmentation. For this specific reason, shortcut (skip)
connections between the encoder and decoder paths are added to localize the features and
capture both low-level and high-level features at multiple scales. These shortcut connections
were key to success in segmentation.

Since 2015, multiple variations of U-Net were introduced [77]. In this dissertation, two
variants of U-Net were used to study the applicability of Seg-Grad-CAM: “vanilla” U-Net with
a depth of four (i.e., having four blocks with shortcut connections and the bottleneck path as
the fifth connection between the encoder and decoder) and U-Net with VGG16 encoder (also
referred to as backbone) and the mirroring decoder with transposed convolutions.

The architecture of “vanilla” U-Net from the Python library "CSBDeep"[94] is summarized
in Tables 2.1 and 2.2, that of U-Net with VGG16 backbone from the Python package
“Segmentation Models” [95] — in Table 2.3. A schematic overview of the structure of U-Net is
shown in Figure 2.3.

2.3.4 Seg-Grad-CAM

The gradient-weighted class activation mapping for segmentation (Seg-Grad-CAM), one of the
first published approaches for explainable semantic image segmentation, has been proposed by
us (Vinogradova et al. [38]). It is a modification of Grad-CAM designed for explaining the
decisions of fully convolutional CNNs for semantic image segmentation. The method has the
potential to be transferable to other tasks performed by fully convolutional networks as it
does not impose any additional requirements on the network structure. However, to identify
biases in the data, an encoder–decoder architecture is highly recommended. Seg-Grad-CAM
can explain the following individual decisions of a CNN: prediction of a class label for a single
pixel in the segmentation mask, prediction for a user-defined region of interest, and prediction
for a selected class in the output mask. The output of Seg-Grad-CAM is a heat map similar
to those of CAM and Grad-CAM. The method’s workflow of explaining a selected region of
interest is shown schematically in Figure 2.3.
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Table 2.1: Model summary for vanilla U-Net

Model: Vanilla U-Net
Layer (type) Feature maps Parameters Connected to
input 1 (InputLayer) 1 0
down level 0 no 0 (Conv2D) 32 320 input 1
batch normalization 1 32 128 down level 0 no 0
activation 1 32 0 batch normalization 1
down level 0 no 1 (Conv2D) 32 9248 activation 1
batch normalization 2 32 128 down level 0 no 1
activation 2 32 0 batch normalization 2
max 0 (MaxPooling2D) 32 0 activation 2
down level 1 no 0 (Conv2D) 64 18,496 max 0
batch normalization 3 64 256 down level 1 no 0
activation 3 64 0 batch normalization 3
down level 1 no 1 (Conv2D) 64 36,928 activation 3
batch normalization 4 64 256 down level 1 no 1
activation 4 64 0 batch normalization 4
max 1 (MaxPooling2D) 64 0 activation 4
down level 2 no 0 (Conv2D) 128 73,856 max 1
batch normalization 5 128 512 down level 2 no 0
activation 5 128 0 batch normalization 5
down level 2 no 1 (Conv2D) 128 147,584 activation 5
batch normalization 6 128 512 down level 2 no 1
activation 6 128 0 batch normalization 6
max 2 (MaxPooling2D) 128 0 activation 6
down level 3 no 0 (Conv2D) 256 295,168 max 2
batch normalization 7 256 1024 down level 3 no 0
activation 7 256 0 batch normalization 7
down level 3 no 1 (Conv2D) 256 590,080 activation 7
batch normalization 8 256 1024 down level 3 no 1
activation 8 256 0 batch normalization 8
max 3 (MaxPooling2D) 256 0 activation 8
middle 1 (Conv2D) 512 1,180,160 max 3
batch normalization 9 512 2048 middle 1
activation 9 512 0 batch normalization 9
middle 2 (Conv2D) 256 1,179,904 activation 9
batch normalization 10 256 1024 middle 2
activation 10 256 0 batch normalization 10
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Table 2.2: Model summary for vanilla U-Net (continued), decoder (upsampling) path

Model: Vanilla U-Net, decoder path
Layer (type) Feature maps Parameters Connected to
up sampling2d 1 (UpSampling2D) 256 0 activation 10
concatenate 1 (Concatenate) 512 0 up sampling2d 1

activation 8
up level 3 no 0 (Conv2D) 256 1,179,904 concatenate 1
batch normalization 11 256 1024 up level 3 no 0
activation 11 256 0 batch normalization 11
up level 3 no 2 (Conv2D) 128 295,040 activation 11
batch normalization 12 128 512 up level 3 no 2
activation 12 128 0 batch normalization 12
up sampling2d 2 (UpSampling2D) 128 0 activation 12
concatenate 2 (Concatenate) 256 0 up sampling2d 2

activation 6
up level 2 no 0 (Conv2D) 128 295,040 concatenate 2
batch normalization 13 128 512 up level 2 no 0
activation 13 128 0 batch normalization 13
up level 2 no 2 (Conv2D) 64 73,792 activation 13
batch normalization 14 64 256 up level 2 no 2
activation 14 64 0 batch normalization 14
up sampling2d 3 (UpSampling2D) 64 0 activation 14
concatenate 3 (Concatenate) 128 0 up sampling2d 3

activation 4
up level 1 no 0 (Conv2D) 64 73,792 concatenate 3
batch normalization 15 64 256 up level 1 no 0
activation 15 64 0 batch normalization 15
up level 1 no 2 (Conv2D) 32 18,464 activation 15
batch normalization 16 32 128 up level 1 no 2
activation 16 32 0 batch normalization 16
up sampling2d 4 (UpSampling2D) 32 0 activation 16
concatenate 4 (Concatenate) 64 0 up sampling2d 4

activation 2
up level 0 no 0 (Conv2D) 32 18,464 concatenate 4
batch normalization 17 32 128 up level 0 no 0
activation 17 32 0 batch normalization 17
up level 0 no 2 (Conv2D) 32 9248 activation 17
batch normalization 18 32 128 up level 0 no 2
activation 18 32 0 batch normalization 18
conv2d 1 (Conv2D) Classes (11) 363 activation 18
softmax (Activation) Classes (11) 0 conv2d 1
Total parameters: 5,505,707
Trainable parameters: 5,500,779
Nontrainable parameters: 4,928
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Table 2.3: Model summary for U-Net with VGG16 backbone. Repeating blocks in the encoder
and decoder paths are omitted for space.

Model: U-Net-VGG16
Layer (type) Feature maps Parameters Connected to
input 1 (InputLayer) 3 0
block1 conv1 (Conv2D) 64 1792 input 1
block1 conv2 (Conv2D) 64 36,928 block1 conv1
block1 pool (MaxPooling2D) 64 0 block1 conv2
block2 conv1 (Conv2D) 128 73,856 block1 pool
... (Encoder blocks)
block5 pool (MaxPooling2D) 512 0 block5 conv3
center block1 conv (Conv2D) 512 2,359,296 block5 pool
center block1 bn (BatchNorm.) 512 2048 center block1 conv
center block1 relu (Activation) 512 0 center block1 bn
center block2 conv (Conv2D) 512 2,359,296 center block1 relu
center block2 bn (BatchNorm.) 512 2048 center block2 conv
center block2 relu (Activation) 512 0 center block2 bn
decoder stage0 upsampling 512 0 center block2 relu
decoder stage0 concat (Concatenate) 1024 0 decoder stage0 upsam.

block5 conv3
decoder stage0a conv (Conv2D) 256 2,359,296 decoder stage0 concat
decoder stage0a bn (BatchNorm.) 256 1024 decoder stage0a conv
decoder stage0a relu (Activation) 256 0 decoder stage0a bn
decoder stage0b conv (Conv2D) 256 589,824 decoder stage0a relu
decoder stage0b bn (BatchNorm.) 256 1024 decoder stage0b conv
decoder stage0b relu (Activation) 256 0 decoder stage0b bn
decoder stage1 upsampling 256 0 decoder stage0b relu
... (Decoder blocks)
decoder stage4b relu (Activation) 16 0 decoder stage4b bn
final conv (Conv2D) Classes (8) 1160 decoder stage4b relu
softmax (Activation) Classes (8) 0 final conv
Total parameters: 23,753,288
Trainable parameters: 23,749,256
Nontrainable parameters: 4,032
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Figure 2.3: Schematic of Seg-Grad-CAM.

Concept

Seg-Grad-CAM is a class activation mapping technique like CAM and Grad-CAM, initially
designed to understand the decisions of U-Net. It produces a heat map for an input picture,
indicating the image areas that contribute the most to the part of the model’s output selected
by the user. Its central idea is to construct a class activation map using the gradients of
the output pixels within the user-defined region of interest belonging to a single class (e.g.,
the region M drawn around the green circle in Figure 2.3) with respect to the feature maps
from any intermediate convolutional layer (e.g., the feature maps A from the bottleneck in
Figure 2.3).

In the technical implementation, the activation function is often placed as a separate layer
after the convolutional layer to allow more control over the retrieval of outputs from the
intermediate layers. This is also the case in the implementation of the CNNs described in this
chapter. For brevity, the last convolutional layer of the decoder passed through the activation
function (i.e., the penultimate activation layer in the technical summary of the CNN’s layers:
“activation 18” in Table 2.2 and “decoder stage4b relu” in Table 2.3) is referred to as “the last
decoder layer” in the text.

Also, “retrieval of feature maps Al from a convolutional layer number l” is a short equivalent
of “retrieval of feature maps Al from an activation layer named ‘activation l’ placed after the
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convolutional layer number l.” For a better understanding of the particular implementation,
the name of the activation layer (e.g., “activation 18”) is provided in the description.

The choice of the layer depends on the goal of the interpretation:

• To detect biased structures or frequent co-occurrence of classes, the gradients should be
propagated to one of the bottleneck layers, where U-Net collects the high-level feature
representations.

• To visualize the importance of input features within the region of interest, the feature
maps from the last decoder layer should be used.

• To learn about the functioning of U-Net, iterative visualizations can be made for
Seg-Grad-CAM for each convolutional layer and shown later in Results section.

As in Grad-CAM, the gradients of the selected prediction with respect to the feature maps
are used to compute the importance weights of each feature map, which are then multiplied
by the corresponding feature maps. In the last step, the weighted maps are averaged and
thresholded using ReLU. The latter can also be turned off to preserve the negatively relevant
features. The importance heat map is then overlaid and interpolated on the input picture.
Depending on the study objectives, Seg-Grad-CAM can produce a variety of importance heat
maps. It inherits the advantages of Grad-CAM.

Formal calculation

In the classification task from two previous examples (Subsections 2.3.1 and 2.3.2), the
network predicted a vector of probabilities for three classes and the single class prediction was
explained. Here, the task is to segment circles, triangles, and the background (Figure 2.3).

For an input image x with a dark circle and a bright triangle, U-Net (schematically shown
as a structure of blue rectangles) produces the semantic segmentation mask y with logits yc

ij

for every pixel xij and class c.
We proposed Seg-Grad-CAM by replacing yc in eq 2.2 with Y c:

Y c
M =

∑︂
(i,j)∈M

yc
ij (2.6)

where M is the mask of the region of interest (a set of pixel indices of interest in the output
mask).

Then, the weights αc
k of the feature maps A of any intermediate layer l (except the input

and output layers) are calculated as

αc
k = 1

N

∑︂
u,v

∂Y c
M

∂Ak
uv

= 1
N

∑︂
u,v

∂
∑︁

(i,j)∈M yc
ij

∂Ak
uv

(2.7)

where u, v are the pixel indices in each feature map Ak, and N is the total number of pixels in
Ak.
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After rectification of the weighted sum, the importance heat map produced by
Seg-Grad-CAM with the feature map Al retrieved from the layer l is defined as

Lc,l
Seg-Grad-CAM = ReLU

(︃∑︂
k

αc
kAk

l

)︃
(2.8)

By combining eqs 2.6–2.8, the importance heat map formula can be expressed as

Lc,l
Seg-Grad-CAM = ReLU

(︃∑︂
k

Ak
l

1
N

∑︂
u,v

∂
∑︁

(i,j)∈M yc
ij

∂Ak
uv

)︃
(2.9)

This allows adapting Grad-CAM to a semantic segmentation network in a flexible way
because

1. A can be a feature map of any intermediate convolutional layer of interest (not only the
last one as used in the standard Grad-CAM),

2. M can denote just a single pixel, or pixels of a region of interest (e.g., a single instance),
or all pixels of the predicted mask belonging to one class.

2.4 Data

The methods used for obtaining the data and constructing the datasets are described in this
section. In this project, several educational datasets were designed. Presented here are two
educational datasets and one annotated public dataset with real road scenes that was used to
obtain the final results.

2.4.1 Circles

The first educational dataset was designed to test the explanations of CAM and Grad-CAM
for segmentation via the sliding window pixel-wise classification inspired by ref [93], as well
as the explanations of Seg-Grad-CAM for assignment of a class label to a single pixel in the
segmentation mask produced by U-Net[63].

The dataset consisted of 1000 generated in Python grayscale images with a size of 128×128
pixels, in which a circle having a radius of 30 pixels and a constant random gray pixel value
was randomly placed upon the background having another random gray pixel value. The
annotation masks were generated automatically, with the pixels inside the circle assigned to
the foreground and the remaining ones — to the background (Figure 2.4).

2.4.2 TextureMNIST

This dataset has been introduced in the publication about the grid saliency method [79], which
was specifically designed to find biases in the training data for segmentation tasks. The authors
advertised this dataset as a benchmark for testing the ability of saliency methods to detect
biases. The code for generating the data together with a set of graphical textures is available
in ref [96].

Two possible scenarios for introducing the bias have been demonstrated in the study [79]:
a strongly biased dataset, in which the selected bias always appears only in the data for the
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Figure 2.4: Example of the circles data

biased class, and a weakly biased dataset, where the bias always appears in the data for the
biased class and may also appear together with other classes. To the best of my knowledge, as
of late November 2022, there was no mention in the literature of using neither the suggested
benchmark nor the grid saliency method by other researchers to compare explainability
methods or saliency methods. In this thesis, this data generation technique is used as a sanity
check.

In Figure 2.5, two examples from the generated set of 64×64-pixel grayscale images are
shown. The handwritten digits originate from the Modified National Institute of Standards and
Technology (MNIST) database [97]. The white background was replaced with two randomly
selected textures from ref [96] — one positioned in the upper half of the image, the other
in the lower half. The black color of the digits was replaced with another randomly chosen
texture. A strongly biased dataset was used: a single texture (bottom, outlined with magenta
in Figure 2.5B) always appeared either on top or in the bottom over the background in the
images with digit 2, but did not appear in other images in the background, as seen in the
example for digit 1 (Figure 2.5D). The dataset was constructed for the segmentation task with
11 classes: each digit from zero to nine was assigned a class from zero to nine, respectively, and
the background was marked as class 10 regardless of the textures present there (Figure 2.5C,E).

2.4.3 Cityscapes

Cityscapes is a high-resolution dataset of urban road scenes photographed with a car-mounted
camera. It is freely available for research purposes upon registration. The dataset was created to
help advance the development of algorithms for urban scene understanding and has become one
of the most widely used benchmarks in computer vision for comparing segmentation models,
and for research on self-driving cars and related applications. The scenes were photographed
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Figure 2.5: Examples of the TextureMNIST data. (A–C) The class with an intentional bias (the
bottom texture separated by a magenta line in panel B), which always occurs with the class 2 in
one or the other half of the background. (D, E) An example of another class, where no bias is
present.

in 48 cities in Germany, in Strasbourg, and in Zurich. There are currently four versions
of annotations designed for different purposes: pixel-level semantic segmentation, instance
segmentation, panoptic segmentation, and 3D object detection of vehicles.

The dataset of 5000 RGB photos (2048×1024×3 pixels each) with fine-grained pixel-level
annotations for 30 classes was selected for this thesis. Because the purpose of the research —
the development of an explainability method of segmentation networks such as U-Net — does
not include the improvement of segmentation techniques, the complexity of the training task
was reduced by lowering the resolution of the images to 512×256×3 pixels using the spline
interpolation of the first order (with the function "scipy.ndimage.zoom" [98]) and selecting
eight categories as training labels instead of 30 classes. The categorization of the classes is
summarized in Table 2.4, a downscaled photo annotated with the category labels is shown in
Figure 2.6.
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Table 2.4: List of classes in Cityscapes dataset grouped by category

Category Classes
flat road, sidewalk, parking, rail track
human person, rider
vehicle car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer
construction building, wall, fence, guard rail, bridge, tunnel
object pole, pole group, traffic sign, traffic light
nature vegetation, terrain
sky sky
void ground, dynamic, static

Figure 2.6: Example of the Cityscapes data annotated according to the categories (see Table 2.4).

2.5 Results

The work on this project began with studying the operation of CAM, Grad-CAM, and Seg-
Grad-CAM on toy tasks of classification and segmentation of circles. These results are only
briefly described in this thesis to demonstrate where the idea of taking intermediate feature
maps in U-Net originated from.

2.5.1 Circles

Transforming segmentation into classification

The methods CAM (Subsection 2.3.1) and Grad-CAM (Subsection 2.3.2) were designed
for image classification. However, semantic image segmentation can be seen as classification:
assignment of a class label to each individual pixel of the input image. After U-Net was
developed in 2015 [63], the traditional approach to semantic image segmentation became
training of a fully convolutional neural network to produce a segmentation mask with each
output pixel representing a class label and the output shape being equal to the input shape
(alternatively, the output shape may contain one extra dimension if the class labels are one-hot
encoded).
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Another approach, less efficient but directly solvable as classification, is supervised training
of a convolutional network with dense layers at the end to classify each pixel separately, which
can be done using the “sliding window” approach [93]. In this research, this technique was
implemented as follows: a small “window” area around each pixel is cropped and passed into
the CNN, which learns to output a probability of belonging to the foreground for the central
pixel of the received crop. To classify the pixels at the boundary of the input image, it has to
be padded. The “window” slides over the input and predicts the class for the central pixel in
each position of the “window.” The predicted class labels at each position of the input form
the output segmentation mask.

A simple CNN with three convolutional layers, global average pooling (GAP), and a
dense layer was trained to “segment” circles versus the background on generated grayscale
images using the “sliding window” technique for binary classification of each pixel. Because
this CNN performs classification, it was possible to construct it with GAP to retrieve class
activation maps. Grad-CAM was also applied to this CNN after training, which was possible
because the CNN was trained for classification and contained at least one dense layer at the
end. As expected, this experiment showed that the edge of the circle was important for the
classification of the central pixel if the edge was present in the crop.

Retrieval of feature maps

The same task of segmenting circles versus the background was performed using the
traditional approach to semantic segmentation — U-Net (Subsection 2.3.3, Table 2.1). The
training of U-Net on the circles dataset described in Subsection 2.4.1 was performed using
the Adam optimizer with the learning rate of 0.00001, categorical cross-entropy loss function,
and pixel-wise accuracy metric. The training with two classes, categorical cross-entropy loss
function, and softmax as the last activation function showed better results than the analogous
procedure with one class (the probability of the pixel to belong to the foreground), binary cross-
entropy loss, and the sigmoid activation function. Moreover, the gradient-weighted methods
are in fact designed for cases with multiple classes. Pixel-wise accuracy is a suitable evaluation
metric for simple image segmentation tasks, although it is less robust than the intersection
over union (IoU). It measures the proportion of pixels in the predicted segmentation mask
that are correctly classified (according to the chosen threshold, typically 0.5) compared to the
ground truth mask. This metric calculates the overall accuracy of predicting the class labels
for each pixel in the input. The model achieved 99.9% pixel-wise accuracy.

U-Net does not contain dense layers, therefore it was not possible to directly insert GAP
to apply CAM or take the gradients in the way described in the Grad-CAM publication [43].
Considering this, Seg-Grad-CAM (Subsection 2.3.4) was applied to U-Net, with the region
of interest M equal to a single pixel and the feature maps A retrieved from each of the
convolutional layers iteratively. This experiment was designed to prove or refute that the
proposed calculation leads to human-understandable explanations in the form of class activation
maps.

Figure 2.7 shows examples of class activation maps that were obtained using Seg-
Grad-CAM with the feature maps A4, A9, and A11 retrieved from the activations of a
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Figure 2.7: Seg-Grad-CAM explanations on the circles data show the results of taking the
gradients with respect to three different sets of feature maps retrieved from three layers at different
locations of the U-Net, respectively. The pixel being explained is shown in purple.

layer in the encoder path, the first (left) bottleneck layer, and a layer in the decoder
path of the U-Net. These heat maps suggest that the edge of the circle “activated” the
prediction of the class “circle” for this pixel. The heat maps from the last layers indicated
that the whole circle was important. These three heat maps pointed to the edge(s) with
very diverse visualization. From which layer the feature maps A should be taken remained
a question. To determine this, the next series of experiments with another dataset is introduced.

2.5.2 TextureMNIST

The experiments described here were conducted after the Seg-Grad-CAM method was
developed. The publication by Hoyer et al. [79] introducing this toy dataset and the source
code for data generation (not for their method) along with the textures (released in late
September 2019 [96]) appeared after the first results with Seg-Grad-CAM were obtained on
other datasets. These experiments explain the intuition behind the rules for choosing the right
layer for gradient propagation.

The U-Net summarized in Table 2.1 was trained to segment handwritten digits from
TextureMNIST dataset with a strong bias (Subsection 2.4.2). The model was trained with the

41



2. Explainable Image Segmentation

categorical cross-entropy loss function using the Adam optimizer with the learning rate of
0.0003, softmax as the final activation function, and pixel-wise accuracy and intersection over
union (IoU) as the quality evaluation metrics. The quality was additionally measured using
IoU, a more robust metric commonly used for multiclass segmentation, because it provides
a measure of how well the predicted segmentation mask aligns with the ground truth mask
by calculating their intersection and dividing it by their union. The model achieved 97.28%
pixel-wise accuracy and 94.76% IoU on the generated test dataset with 200 images.

The experiment of explaining the segmentation of the digit of class 2 is shown in Figure 2.8.
The heat maps produced using Seg-Grad-CAM are organized in the shape of the U-Net with
the depth of four trained in this experiment. They are positioned at the place from where the
feature maps were retrieved: the output of Seg-Grad-CAM with the gradients of yc

ij taken with
respect to the feature map Al, where l is the number of the layer. For example, the feature
map A2 was taken from the activation layer after the second convolutional layer with applied
batch normalization — “activation 2” layer in Table 2.1) is placed as the second left heat map.
Each heat map was computed independently in an iterative manner by taking the feature
maps from each activation layer except the final "softmax" activation, which was used as the
starting layer of the gradient propagation. The color scale denotes the importance of the pixels
normalized to the range of [0, 1]. Each heat map was normalized independently to visualize
the relative importance within one map. The predicted segmentation mask is shown in the top
right corner.

The experiment shows that the explanations with the feature maps retrieved from the
layers in the first two blocks of the encoder path highlight simple low-level features such as the
intensities of individual pixels and a small portion of edges between the digit and the top half
of the background. The heat maps that are focused on the contextual explanations (with the
largest areas having high importance concentrated in the biased half of the background) are
located in the bottleneck, whereas the explanations within the object (the most semantically
relevant pixels within the segmentation mask) are concentrated in the last layers of the decoder
path of the U-Net.

According to the experiment setup, the biased texture in the context should assist in
the segmentation task and be important to a certain extent. The two bottom heat maps in
Figure 2.8 demonstrate the largest areas with high importance located in the context which
suggest retrieving the feature maps from the bottleneck layers to identify contextual biases.

The biased texture should be involved in the decision process but, being present in only one
half of the background, it is insufficient to successfully segment the digit completely, including
its part located on the second half of the background. Therefore, it is expectable that the
gradients taken with respect to the feature maps of the layers in the decoder demonstrate
the relevance’s location inside the texture of the digit. This may suggest the usage of the
last block of the decoder to find the most important features that refined the segmentation mask.

Another example from this experiment is shown in Figure 2.9: the input image with a
biased texture separated by a magenta line (Figure 2.9A), the ground truth segmentation mask
(Figure 2.9B), and the accurately predicted output mask (Figure 2.9C). The predicted classes
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Figure 2.8: Seg-Grad-CAM explanations obtained from every layer of U-Net for the prediction of
the segmentation mask of the biased class 2. The input image is at top left, the output mask is at
top right with the color scale representing the segmentation classes. The heat maps produced by
Seg-Grad-CAM are organized in the shape of the U-Net at the place from where the feature maps
were retrieved. The heat map color scale shows the importance of the pixels, from low (blue) to
high (red).

are shown according to the color scale at right. In the bottom row are shown the heat maps
produced by Seg-Grad-CAM with the feature maps retrieved from the layers “activation 1”
(Figure 2.9D), “activation 10” (Figure 2.9E), and “activation 18,” the last layer of the decoding
path before the final layer with softmax activation (Figure 2.9F), as listed in Tables 2.1 and 2.2.
In eq 2.8 this corresponds to l = 1 (first layer), l = 10 (bottleneck layer), and l = 18 (last
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Figure 2.9: Seg-Grad-CAM explanations for the mask of the biased class. The input image (A)
contains an intentional bias: the bottom texture separated by a magenta line.

layer in the decoder). To better show the localization of the pixels’ importance, the predicted
mask is outlined in pink, the biased texture — in magenta. The heat map color scale shows
the importance of the pixels, from low (blue) to high (red). Each heat map was normalized
by dividing its values by the sum of the values in that heat map because the localization of
importance was desired as the output of the explainability method. The absolute values in
these heat maps are not directly interpretable per se.

The biased texture in the input image (Figure 2.9A) always co-occurs with digits of class 2
either in the top or bottom half of the background. Both texture tiles of the background should
be predicted as class 10 (background), as shown in the ground truth mask (Figure 2.9B). The
network should not learn to separate the background parts from each other, it must segment
only the digit. The output segmentation mask demonstrates that the network accomplished
the task with a top quality of predictions.

The outputs of Seg-Grad-CAM were produced by starting the gradient propagation from
the predictions (probabilities output by the final activation function softmax in Table 2.2) for
the selected mask M (the region of interest) — the set of pixel indices in the mask predicted
for class 2 (Figure 2.9C), setting c in eq 2.6 to class 2. The gradients propagated to all the
activations iteratively. In terms of eq 2.8, the results of propagation to the layers “activation
1,” “activation 10,” and “activation 18” that are shown in Figure 2.9D–F were obtained by
taking the gradients with respect to the feature maps A1, A10, and A18.
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With A = A1 in eq 2.8, the importance is located inside the biased texture, which may,
however, be caused by the high contrast of the pixels in this texture. Remarkably, the heat
map obtained by taking the gradients with respect to A10 contains only a small area of
high importance, unlike the heat maps at the bottom of Figure 2.8. This indicates that the
explanations may differ significantly from one example to another.

Figure 2.10: Seg-Grad-CAM explanations for the mask of the digit 1 (unbiased class).

To prove that the localization of the importance (retrieved from the bottleneck layers)
inside the biased texture in Figures 2.8 and 2.9 was not coincidental, the experiment was
repeated on images of other digits, where no intentional bias was introduced.

The result for the segmentation of the digit 1 is shown in Figure 2.10: the input image that
did not contain any intentional bias (Figure 2.10A), the ground truth mask (Figure 2.10B),
and the output segmentation mask (Figure 2.10C) are shown in the top row. The colors in
the masks correspond to the predicted classes according to the color scale on the right. The
outputs of Seg-Grad-CAM for l = 1 (first layer), 10 (bottleneck layer), and 18 (last layer in
the decoder) in eq 2.8 are shown in the bottom row (Figure 2.10D–F), with the predicted
mask outlined in pink.

With A = A1 in eq 2.8, the importance in Figure 2.10D is located inside the top half of the
background. This is likely to be caused by high-contrast edges in the texture, which are in fact
highlighted in the heat map. This result supports the intuition that retrieval of the feature
maps from early layers of the U-Net’s encoder does not lead to meaningful explanations, but
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rather to visualization of low-level image features such as edges and areas of pixels with high
contrast.

According to the explanations retrieved from the bottleneck, the images did not contain any
particularly important area with common semantics. The results of the repeated experiments
with other unbiased data samples led to the conclusion that heat maps with fairly random
localizations should indicate the absence of bias in the data.

In Figures 2.8 (top right heat map), 2.9F, and 2.10F, the relevance is located only inside
the predicted mask. The importance values in the heat maps were obtained by taking the
gradients of the mask prediction with respect to the activation layer after the last decoder
layer. The question of whether these importance values are (a) proportional to the prediction
confidence and (b) completely independent of the context is investigated on a dataset with a
more complex semantics in Subsection 2.5.3. The localization of the relevance inside the object
aligns with the intuition that the decoder path of encoder–decoder architectures is responsible
for fine-graining of the predicted mask.

The explanations for the class assignment to a single pixel are shown in Figure 2.11. In
terms of eq 2.6, an explanation for a single pixel is

Y c
M =

∑︂
(i,j)∈M

yc
ij = yc

ij (2.10)

where i, j are the indices of the pixel of class c in the two-dimensional segmentation mask y

and M is the set of pixel indices of interest in the output mask, consisting of only one pixel.
The input image, with the biased texture outlined in magenta and the prediction mask

in pink, is shown in Figure 2.11A. The pixel of the class of interest located approximately in
the middle of the picture is indicated by a red dot. Figure 2.11B,C shows the explanations of
Seg-Grad-CAM for the prediction of class 2 for this pixel (white dot) that were obtained with
respect to the activation layers A9 and A10 of each of the two bottleneck layers (“activation 9”
and “activation 10” in Table 2.1). Different colors for the dot were chosen to avoid ambiguity
in the images onto which the dot was overlaid. The explanations for the pixel of class 1 were
retrieved in the same manner. The input image (Figure 2.11D) does not contain any bias.

The heat maps showing the importance for the prediction for the pixel of the unbiased class
(Figure 2.11E,F) do not concentrate on features that could be directly understood by a human,
whereas both explanations of the prediction for the pixel of the biased class (Figure 2.11B,C)
demonstrate that the highest importance was assigned to the areas inside the biased texture.

The results of these experiments show that retrieval of explanations from the bottleneck
layers can help to locate biased structures in the input image that co-occur in the context
with the class of interest. To identify the most important features for fine-graining of the
segmentation mask, the feature maps from the last block of the decoder may be used. However,
a suspicion may arise that such explanations visualize only the probability map of class
assignments for each pixel. This question is discussed in more detail in the next subsection, in
which the results obtained on the real-world dataset with semantically complex concepts are
presented.

46



2.5 Results

Figure 2.11: Seg-Grad-CAM bottleneck explanations of the U-Net predictions for a single pixel.

2.5.3 Cityscapes

The experiments whose results are reported in this subsection were conducted on Cityscapes,
a dataset of real photographs of street scenes with pixel-wise annotations for semantic
segmentation (Subsection 2.4.3).

The results of Seg-Grad-CAM explanations are demonstrated on two trained networks:
“vanilla” U-Net (Tables 2.1 and 2.2) and U-Net with VGG16 backbone (Table 2.3).

Vanilla U-Net was trained in a similar manner as described in Subsection 2.5.2 and achieved
IoU = 62.23% on the validation set, while performing poorly on the test set, however, it was
in fact desirable to train a model to utilize biases in the seen data in order to observe these
biases in explanations. U-Net with VGG16 backbone (U-Net-VGG16) was trained to overfit on
the seen data as well and scored with IoU = 78.75% on validation. U-Net-VGG16 was trained
using the Adam optimizer with a learning rate of 0.00045 and the compound loss function equal
to the sum of the dice loss and categorical focal loss, as shown in the code examples in ref [95].
The weights of VGG16 were pretrained on the classification task on ImageNet dataset [10].
Although better models exist for this segmentation task, the art of training models for perfect
segmentation is beyond the scope of this research. The explanations are shown on the first
image of the validation set "frankfurt_000000_000294", on which both networks performed
well (73.75% IoU by vanilla U-Net and 89.94% IoU by U-Net-VGG16) to investigate potential
biases present in this image that contributed to such high performance.
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Figure 2.12A,B allows visual judgment of the segmentation masks predicted by vanilla
U-Net and U-Net-VGG16. The predicted categories are shown in the color scale at right
(training classes are referred to as categories to avoid confusion with the original classes in
the dataset listed in Table 2.4). The original input image and ground truth mask for these
categories are shown in Figure 2.6. The visual judgment suggests that vanilla U-Net segmented
large objects reasonably well but did not master fine-grained segmentation of small and thin
structures such as those of the category “object,” shown in yellow. The boundaries between the
objects having different labels are not always sharp, although, by and large, the predicted mask
captures the scene. The predictions of U-Net-VGG16 are substantially better in defining the
boundaries (e.g., of the wheels of the nearest car) and thin structures of the pillars (“object”
category).

Figure 2.12: Comparison of the prediction probability maps and Seg-Grad-CAM explanations
for vanilla U-Net and U-Net-VGG16 trained on Cityscapes. The explanations are retrieved by
choosing the feature maps from the last layer of the decoding path of the respective network.
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Figures 2.12C,D visualize the probability maps of assignment of the category “vehicle”
(shown in violet in Figure 2.12A,B) for each pixel, with the probability scale at right. U-Net-
VGG16 predicted the vehicles with a probability close to 1. Vanilla U-Net, on the other hand,
assigned a probability of about 0.9 to the pixels of the near car, was “uncertain” about the far
car, and predicted a probability lower than 0.5 for the edge between the ground floor of the
building and the road.

Figures 2.12E,F show the explanations of Seg-Grad-CAM obtained with respect to the last
decoder layers: “activation 18” in vanilla U-Net (Figure 2.12E) and “decoder stage4b relu” in
U-Net-VGG16 (Figure 2.12F). The explanations are overlaid onto the input image to increase
understanding of the relevance of particular input features. The final prediction masks for the
category “vehicle” are outlined by a thin pink contour. The color scale at right denotes the
importance of the pixels normalized to the range of [0, 1]. The color scheme is identical to that
of the prediction probabilities to allow a straightforward comparison of the explanations with
the probability maps for the category being explained.

The prediction probabilities and explanation for vanilla U-Net (Figure 2.12C,E) have both
visual similarities and significant differences. The hood of the car where the camera was placed
is highlighted in the explanation despite not being predicted, as well as parts of the ground
floor of the buildings. The highlighted area of the buildings on the left is located slightly higher
in the explanation map than in the probability map and focuses more on the buildings rather
than the road. Figure 2.12E suggests that the individual features highlighted on the near car,
such as the wheel, windows, and letters “AD” may have been learned by the last decoder
layer of vanilla U-Net. “ADAC” lettering on the near car points to Allgemeiner Deutscher
Automobil-Club which has a large fleet of vehicles assisting in road safety and helping the
members of the club in case of vehicle malfunctions. It is likely that such ADAC vehicles
appeared in the training set because the dataset was collected in Germany and two nearby
cities. The letters “AD” also received the highest probability in the prediction, which is seen
in Figure 2.12C, where the heat map is not overlaid on top of the input image so that only the
probability map is observed.

Figure 2.12F shows that the explanation heat map lies within the area of the predicted mask
and that the explanation is not identical to the probability map (Figure 2.12D). According to
the explanation in Figure 2.12F, the wheels of the cars, the corner of the window of the near
car, and the rear light are the features that the last decoder layer of U-Net-VGG16 utilizes to
output the final segmentation mask.

A comparison of Figure 2.12E with Figure 2.12F suggests that Seg-Grad-CAM explanations
of the prediction of the network that made more accurate predictions, U-Net-VGG16, exhibit
finer typical class features when the feature maps are retrieved from the last decoder layer. This
is likely to indicate that U-Net-VGG16 has learned the features that describe the objects of the
class (category) more accurately than vanilla U-Net, and that these learned features helped to
achieve a higher quality of predictions according to the measured metric (IoU=89,94% versus
IoU=73,75%). These features could have been also encoded in the pretrained on ImageNet
VGG16 backbone.

Overall, Figure 2.12 demonstrates that:
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1. Explanation heat maps obtained by taking the gradients with respect to the feature
maps of the last decoder layer may be used to explain the decisions of a U-Net-like
segmentation CNN on a real-world dataset;

2. The highlighted parts of the image may represent the distinctive features of the predicted
class;

3. Seg-Grad-CAM explanations provide more insights into the CNN’s decision-making
process than a simple extraction of the prediction probabilities;

4. The explanation heat maps differ from the prediction probability maps;

5. Seg-Grad-CAM can be used to compare the reasoning of trained networks;

6. The explanations of the decisions of the network that performed the segmentation more
accurately highlight more fine-grained features than those of the network with lower
performance.

Figure 2.13: Explanations of the predictions of U-Net-VGG16 trained on Cityscapes. The feature
maps were retrieved from the bottleneck activation.

Figure 2.13 shows the outputs of Seg-Grad-CAM obtained by selecting the feature maps
from the bottleneck activation layer “center block1 relu” of U-Net-VGG16 (Table 2.3). To
obtain the heat map shown in Figure 2.13A, the region of interest M in eq 2.6 was defined
as the set of pixels belonging to the prediction mask for the car located closer to the camera.
This set of pixels was defined by finding the largest connected component in the prediction
mask using the function “skimage.measure.label” from Scikit-image library [99]. The region of
interest M is outlined by a pink contour in the figure.

Similarly, to obtain the heat map shown in Figure 2.13B, the region of interest M in eq 2.6
was defined as the set of pixels belonging to the car located far from the camera (in the center
of the picture) in the prediction mask. The region of the prediction that is being explained is
outlined by a pink contour.
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Figure 2.13A suggests that no strong contextual bias affected the prediction. Contrary
to that, Figure 2.13B shows high importance assigned to the hood of the car that carried
the camera. This can point to the bias in the dataset because this hood is observable in all
pictures. In addition, because the data collection took place during driving on the streets,
other vehicles often appeared in front of the camera in the middle of the image. The network
may have exploited the bias (the position of the hood on the bottom of the image) to segment
the vehicles in such cases.

This result suggests that Seg-Grad-CAM may be used to uncover biases in the data.

2.6 Applications

It has been demonstrated by scientists from around the globe that Seg-Grad-CAM is applicable
to various scientific and practical problems that require explainability in critical domains.
Some of the applications are touched upon here.

Suryani et al. integrated Seg-Grad-CAM into Semantic-ResNet101-FPN, a semantic
segmentation CNN [100]. They trained the CNN to localize lung tumors in chest X-ray
images and used Seg-Grad-CAM visualize the model predictions in a human-interpretable
way. Their system of lung tumor detection is reported to operate at Dalin Tzu Chi Hospital
in Taiwan, efficiently assisting medical doctors in diagnostic and helping to make treatment
decisions.

Wu et al. developed a boundary-aware grid contextual attention net for osteosarcoma
segmentation in magnetic resonance images and explained the necessity of each of the three
proposed blocks in the architecture using Seg-Grad-CAM visualizations [101]. Seg-Grad-CAM
combined with 3D-Grad-CAM and a newly proposed rule for taking the gradients was applied
to segmentation with U-Net of multiparametric magnetic resonance images of a prostate
tumor [83]. In the glottis bioimage segmentation task, Seg-Grad-CAM assisted in the study
of the latent space and in optimization of the encoder–decoder architectures [102]. Jang et
al. rigorously investigated how the choice of types of fluorescence microscopy datasets affects
what features a U-Net-like network learns to utilize for segmentation of cells [103]. Using
Seg-Grad-CAM, the researchers demonstrated what each convolutional block of the encoder
learned, additionally proving that training on the multiple-microscopy-type dataset was the
most efficient.

As mentioned in Subsection 2.4.3, Cityscapes dataset contains annotations for other types
of segmentation tasks. Recently, Seg-Grad-CAM was applied to the task of panoptic video
segmentation [104] to explain what the proposed panoptic slots have learned by showing the
most contributing region to a specific panoptic object.

For the task of fingerprint segmentation from the background noise and alignment of finger-
print features on images from two different sensors, a recurrent adversarial network consisting
of a segmentation network and a discriminator has been proposed [105]. Seg-Grad-CAM was
used to provide insights into the learned segmentation and compare the proposed method
with three previous state-of-the-art segmentation techniques in terms of which features were
important for the predictions of the models. Seg-Grad-CAM was also used to demonstrate the
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insights on modeling data uncertainty with a deep Bayesian network applied to the fingerprint
segmentation task [106].

Similarly, Zhang et al. proposed a generative adversarial network (GAN) with a segmentor
instead of a classifier for the role of the discriminator [107]. This network was designed to
generate an image without brain pathology based on the pathological image of the patient.
The features learned by the segmentor were explained using Seg-Grad-CAM and compared
to the features learned by the classifier in the standard GAN visualized using Grad-CAM.
These visual explanations in the form of heat maps supported the motivation to replace the
classifier with the segmentor to create a GAN that better understands the difference between
the images with and without lesions.

Besides the classical scenario of using Seg-Grad-CAM to explain segmentation predictions,
the method can assist in choosing the way of preparation of the training dataset [103] and
the neural network architecture [105], [107]. The results in refs [101], [102], [103], and [104]
demonstrate that propagation of the gradients to different layers provides insights into what
an individual layer learns.

These numerous applications prove the practicality and reliability of the method proposed
in this chapter.

2.7 Conclusions

This research proves that Seg-Grad-CAM is a valid approach to explaining predictions of
U-Net-based neural networks trained for semantic image segmentation. The method can be
used for explaining the predictions for individual pixels or for large objects of interest, and is
able to identify the influence of surrounding pixels inside and outside the region of interest.
The approach can be applied to any CNN with an encoder–decoder architecture, including
U-Net with a pretrained backbone, with only one requirement: the layers of the network must
be accessible from the code. The idea of Seg-Grad-CAM was welcomed by the community and
used in numerous applications, mostly in healthcare.

Extendability of Grad-CAM to segmentation CNNs was achieved by changing the rules
of taking gradients regarding (1) which part of the prediction to take instead of the single
class logit of the last dense layer and (2) from which layer to extract the feature maps (i.e., to
which layer the gradients should be propagated). The first modification concerns the selection
of the region of interest for which the user wishes to explain the CNN’s predictions. The class
probabilities in the final convolutional layer were used as the starting point of the gradient
propagation instead of the class logit in the vector of class probabilities, as it was done in
Grad-CAM for classification. The second modification was necessary to adapt Grad-CAM
to segmentation because the architecture of U-Net-like networks is different from that of the
CNNs for classification.

It was shown that extraction of feature maps from the early layers (the encoder part of
U-Net) leads to explanations of low-level image features such as edges, which aligns with the
general understanding that the earliest convolutional filters of CNNs act as edge detectors.
These explanations were found to be the least informative. Choosing the feature maps from
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the bottleneck layers helps to identify contextual biases in the training data (e.g., if another
class co-occurs with the class of interest and “assists” in the segmentation procedure, as in
the case of a car in the middle of the image being explained, where the highlighted pixels of
the hood of the photographer’s car indicate that the CNN may have learned the bias of this
dataset: this hood appears in every photo). Last but not least, the final layers of the decoder
part can be used to locate the areas inside the region of interest that were the most important
for the segmentation of the region. Such areas may be interpreted as typical features of the
study subject in this particular dataset.

The results suggest that it is worth investigating the heat maps with the feature maps
obtained from different layers to get a more complete picture of what the CNN learns; it is
especially insightful to select the bottleneck to check whether any crucial contextual bias is
present in the data. Finding the precise rules for choosing the layers and combining explanations
obtained from different layers is a part of future work.

The visual quality of explanations may depend on the quality of predictions. However,
the quality of explanations itself is hard to quantify: there is no metric widely adopted in the
community for comparison of XAI methods for semantic segmentation. As with the methods,
the quality metrics proposed for XAI techniques for classification may be transferred to the
new domain later.

Overall, this research helped to reach a new level of explainability in semantic image
segmentation. Currently, as the field of explainable image segmentation is in its early
development stage and the available methods are not free of shortcomings, Seg-Grad-CAM
has key practical advantages: it is post hoc and allows retrieval of explanations for various
purposes.
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3
Estimation of Aberrations

3.1 Abstract

In this chapter, I present a study of estimation of optical aberrations by defining present
Zernike polynomials and their amplitudes with a deep convolutional neural network trained for
multitarget 3D image regression in a supervised manner. This project continues the research by
Saha et al. published in 2020 [108] and proposes modifications to their method called PhaseNet
to apply it to nontrivial objects. PhaseNet was trained to output a vector of amplitudes based
on a 3D input image of a neglectably tiny spherical fluorescent object (bead), often called a
point light source. PhaseNet is proven to work fast and efficiently on fluorescent beads but has
not been tested on other objects before.

One way to extend PhaseNet to biological samples is to integrate point light sources into
a sample to measure aberrations on them, which involves tedious manual work and may be
unsuitable for certain study subjects. Another approach is to retrain PhaseNet on the images
of fluorescent biosamples to allow it to learn how aberrations affect visualization of fluorescent
structures. My work follows the latter computational approach.

Transferring a method based on deep learning from one application domain to another is
not always a trivial task. A training setup may give incredibly accurate results in one narrow
domain out of the infinity of prospective applications. Adapting applicability to other domains
may involve tedious work on fine-tuning, searching for the optimal set of parameters, and
preprocessing the data in both machine learning and domain knowledge perspectives.

To address this, I introduce additional methods to be combined with PhaseNet, define the
conditions for applying PhaseNet to microscopic biological samples, and demonstrate the usage
of PhaseNet’s predictions for image restoration. A part of this work was published at the 7th
International Conference on Frontiers of Signal Processing (ICFSP) in September 2022[109].
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3.2 Related Work

Adaptive optics
Adaptive optics (AO) is a technology that helps to correct optical aberrations, minimizing

blur and distortion of images.
As a technique, AO was first established in astronomy. In 1953, in a work devoted to

improving the quality of observations of stars on large telescopes, Babcock [110] described the
“seeing compensator” with the Eidophor, a special setup with a thin layer of oil on top of a
reflecting mirror, invented by Fischer and Thiemann in 1942 [111]. According to Babcock,
deterioration of the quality occurs because light rays pass through the turbulent atmosphere
of the Earth. It is known that optical systems themselves, including human eye, also introduce
aberrations [69].

One of the AO research directions is measurement or estimation of optical aberrations
to ensure their precise correction later on. The devices that measure aberrations are called
aberrometers or wavefront sensors. One of them is the Hartmann–Shack (or Shack–Hartmann)
aberrometer, also known as the Shack–Hartmann wavefront sensor, first developed by Hartmann
in 1904 [112]. Aberrometers of this kind are used, for example, in ophthalmology to measure
monochromatic aberrations of the human eye [69, 113]. The Shack–Hartmann aberrometer
directs a point of light onto the retina, thus creating on it a point source for the eye’s
optical system. The light rays from the point source pass back through the eye, revealing
its monochromatic aberrations. A device called deformable mirror enables correction of the
wavefront by adjusting the topography of the mirror’s surface. The work of the Shack–Hartmann
aberrometer with a deformable mirror is illustrated in Figure 15-12 in ref [69].

In microscopy, the Shack–Hartmann wavefront sensor is also used to quantify the specimen
optical path difference of the optical components of a microscope and of microscopic biological
samples [114]. In 2022, Imperato et al. proposed an advanced device — an extended-source
Shack–Hartmann wavefront sensor for quantification of aberrations in deep fluorescence imaging
of fixed mammalian brain slices [115]. This novel approach reduces the loss in signal quality
and resolution caused by optical aberrations and light scattering deep in the brain tissue.

Another technique, smart programmable array microscope (S-PAM) [116], can do
dynamic aberration correction in any thick fluorescent sample during the acquisition by
implementing adaptive optics in a nonconventional confocal microscope. The system has
multiple programmable confocal apertures in that light rays, which are not in focus, can be
separately detected and used for the optimization of the correction performance. S-PAM, based
on programmable array microscope (PAM) [117], introduced two modifications: a high-speed
camera to detect out-of-focus fluorescence and a deformable mirror in the pupil plane. PAM
is based on another commonly used AO component — the spatial light modulator (SLM),
a device placed in the image plane to modulate the spatial distribution of the light waves.
An interferometer setup can also be used to measure the wavefront and, combined with a
deformable mirror, to correct it [118].
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The approaches described above measure aberrations using hardware (sensors) and are
called direct wavefront sensing techniques. Other methods, called indirect or sensorless
wavefront measuring techniques, do not use physical sensors, relying on software.

Sensorless AO

The main advantage of sensorless methods over the direct wavefront sensing is that the
former do not need special hardware or a sophisticated imaging system. This makes sensorless
methods more accessible to potential end users (e.g., biologists imaging organisms) and to AO
researchers by reducing the cost of experiments and of potential human mistakes. It is faster
to run a computational experiment over and over again, and in case of a software mistake
researchers can readily return to the previous working version, whereas a fault in optical
hardware may lead to a costly replacement, and the physical world does not offer an “undo”
command.

Software-based solutions do not completely eliminate the need for hardware; computations
still require physical devices such as central processing units (CPUs) and, for some applications,
graphical processing units (GPUs) as well. This should not hamper research because, luckily,
several large software companies offer cloud platforms that provide an option to rent CPUs and
GPUs and scale up the rented hardware as the research grows and more computational power
is needed. However, AO methods of “sensing” the wavefront indirectly from images, which
involve image processing using deep learning (DL), need a lot of training data to make sure
that DL algorithms work well. The necessary amount of data can be obtained via repeated
imaging on a microscope equipped with AO sensors (which may not be available to researchers
at all), by augmentation of the limited number of existing experimentally aberrated images
(again, if they are available), or by simulation of optical aberrations. The latter is possible
without the AO devices.

Recent examples of software for wavefront measurement incorporate optimization [119, 120]
or DL approaches [108, 121, 122, 123, 124, 125]. For a DL model, quantitative measurement
of optical aberrations means prediction of amplitudes for each Zernike aberration mode that
it was trained for. Most of those solutions were limited to fluorescent beads having a trivial
shape [108, 119, 121, 122, 123]. Fluorescent beads are tiny spherical objects that radiate light
waves in the shape of the point spread function (PSF) when lit with a laser in the fluorescent
spectrum of the beads.

Hu et al. [124, 125] trained a convolutional neural network (CNN) to measure aberrations
on beads and microtubules. In 2022, the researchers announced a novel method for training a
CNN on a series of in-focus images and images with experimentally introduced aberrations on
an AO microscope with an SLM [124]. They demostrated correction of five Zernike modes on
the bead images and correction of nine modes on the images of microtubules. In a preprint in
January 2023, these authors in cooperation with a group of fellow scientists from the University
of Oxford revealed the details of the method and demonstrated diversity of the collected
data [125]. The data consisted of images of microtubules with varying shapes, positions,
sizes, background, and noise. The so-called pseudo-PSFs were calculated as an inverse Fourier
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transform of the fraction: the Fourier transform of image I1 with the PSF f1 divided by the
Fourier transform of image I2 with the PSF f2:

pseudo-PSF = F−1
[︃F(I1)

F(I2)

]︃
(3.1)

The network was trained using synthetic data generation to enlarge the dataset and
therefore reduce the number of required acquisitions. The precalculated pseudo-PSFs were
passed to the neural network with convolutional, max-pooling, and fully connected layers.
Variations of this network were trained to predict the Zernike coefficients in a supervised
manner by using the amplitudes of synthetic aberrations as the ground truth.

Another DL-based approach compared six neural networks, including five CNNs with
varying depths of the architecture [123]. The networks were trained on 2D images of fluorescent
beads with simulated aberrations. The results showed that the most accurate model was a
relatively short CNN having only seven convolutional layers with five max poolings and three
final dense layers. Another work also used only 2D images [122], which may limit application
of these methods because the PSF is three-dimentional. All the DL methods mentioned above
are based on supervised training of CNNs. An interesting solution using deep reinforcement
learning has been recently proposed by Durech et al. [126].

This work is based on a method called PhaseNet developed by Debayan Saha, a fellow
student in our lab, and his collaborators [108]. This approach is described below.

3.3 Methods

This section is based on my article [109] prepared with Eugene W. (Gene) Myers, my PhD
supervisor at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG),
as the coauthor, and published in 2022 at the 7th International Conference on Frontiers of
Signal Processing (ICFSP), IEEE. The schematics are reproduced in a different color scheme,
another synthetic image as an inset (output of the generator with phantoms), and with rotated
data examples in insets.

3.3.1 PhaseNet

The deep learning method used in this chapter, PhaseNet [108], is a variant of LeNet [127]. This
CNN takes a stack of 3D images as an input (for example, one of the models had an input size
of 32×32×32 pixels) and outputs the vector Y of amplitudes for 11 Zernike aberration types
(or for another subset of aberration modes). The summary of PhaseNet model is presented in
Table 3.1. Another architecture in use, called PhaseResNet in this thesis, is based on ResNet
[52]. PhaseResNet is summarized in Tables 3.2 and 3.3 (continued). Figure 3.1 outlines the
training procedure on synthetically generated data and usage of PhaseNet or PhaseResNet for
prediction of the Zernike polynomials and their amplitudes.

PhaseNet was trained in a simulation: 3D spheres with a defined radius were synthetically
aberrated. The synthetic generator produced random aberrations with the amplitudes aj
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Table 3.1: Model summary for PhaseNet

Model: PhaseNet
Layer (type) Output shape Parameters
X (InputLayer) (None, 32, 32, 32, 1) 0
conv1 (Conv3D, size 3×3×3) (None, 32, 32, 32, 8) 224
conv2 (Conv3D, size 3×3×3) (None, 32, 32, 32, 8) 1736
maxpool1 (MaxPooling3D, size 1×2×2) (None, 32, 16, 16, 8) 0
conv3 (Conv3D, size 3×3×3) (None, 32, 16, 16, 16) 3472
conv4 (Conv3D, size 3×3×3) (None, 32, 16, 16, 16) 6928
maxpool2 (MaxPooling3D, size 1×2×2) (None, 32, 8, 8, 16) 0
conv5 (Conv3D, size 3×3×3) (None, 32, 8, 8, 32) 13,856
conv6 (Conv3D, size 3×3×3) (None, 32, 8, 8, 32) 27,680
maxpool3 (MaxPooling3D, size 1×2×2) (None, 32, 4, 4, 32) 0
conv7 (Conv3D, size 3×3×3) (None, 32, 4, 4, 64) 55,360
conv8 (Conv3D, size 3×3×3) (None, 32, 4, 4, 64) 110,656
maxpool4 (MaxPooling3D, size 1×2×2) (None, 32, 2, 2, 64) 0
conv9 (Conv3D, size 3×3×3) (None, 32, 2, 2, 128) 221,312
conv10 (Conv3D, size 3×3×3) (None, 32, 2, 2, 128) 442,496
maxpool5 (MaxPooling3D, size 2×2×2) (None, 16, 1, 1, 128) 0
flat (Flatten) (None, 2048) 0
dense1 (Dense, size 64) (None, 64) 131,136
dense2 (Dense, size 64) (None, 64) 4160
Y (Dense, size number of modes) (None, 11) 715
Total parameters: 1,019,731
Trainable parameters: 1,019,731
Nontrainable parameters: 0

within the range from −0.075 to 0.075 µm. Eleven nontrivial aberration modes — oblique
astigmatism, vertical astigmatism, oblique trefoil, vertical trefoil, vertical coma, horizontal
coma, oblique quadrafoil, vertical quadrafoil, oblique secondary astigmatism, vertical secondary
astigmatism, and primary spherical — were selected for the synthetic training.

Using the same generator, the training and validation datasets were created. PhaseNet was
evaluated using (1) randomized synthetic data produced by that generator and (2) 3D images
of fluorescent beads experimentally collected on widefield and point-scanning AO microscopes.

Following eq 1.7, the model predicted the amplitudes aj for the Zernike aberration modes
Zj , and the PSF visualization and wave front reconstruction were displayed. The authors made
the data and the code in Python — for the model and for synthesizing the data — publicly
available on Github. For more information about the data collection and CNN training, please
see the original publication [108].

3.3.2 PhaseNet data generator

PhaseNet’s synthetic generator produces random PSFs. The user specifies the nomenclature
(Noll and ANSI are supported), the size of the PSF to be generated, the list of aberration
types, the amplitude range, and the target output size (the size to be cropped out of the PSF).
If the PSF is to be cropped, the cropping location can be set using the jitter and max jitter
parameters. If jitter is set to false (the default), the crop is taken from the image center; if
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Table 3.2: Model summary for PhaseResNet

Model: PhaseResNet
Layer (type) Output shape Param. Connected to
X (InputLayer) (None, 50, 50, 50, 1) 0
conv3d1 (None, 50, 50, 50, 16) 432 X[0][0]
batchnormalization1 (None, 50, 50, 50, 16) 64 conv3d1[0][0]
activation1 (None, 50, 50, 50, 16) 0 batchnormalization1[0][0]
conv3d2 (None, 50, 50, 50, 16) 6912 activation1[0][0]
batchnormalization2 (None, 50, 50, 50, 16) 64 conv3d2[0][0]
add1 (None, 50, 50, 50, 16) 0 X[0][0]

batchnormalization2[0][0]
activation2 (None, 50, 50, 50, 16) 0 add1[0][0]
conv3d3 (None, 50, 50, 50, 16) 6912 activation2[0][0]
batchnormalization3 (None, 50, 50, 50, 16) 64 conv3d3[0][0]
activation3 (None, 50, 50, 50, 16) 0 batchnormalization3[0][0]
conv3d4 (None, 50, 50, 50, 16) 6912 activation3[0][0]
batchnormalization4 (None, 50, 50, 50, 16) 64 conv3d4[0][0]
add2 (None, 50, 50, 50, 16) 0 activation2[0][0]

batchnormalization4[0][0]
activation4 (None, 50, 50, 50, 16) 0 add2[0][0]
conv3d5 (None, 25, 25, 25, 32) 13,824 activation4[0][0]
batchnormalization5 (None, 25, 25, 25, 32) 128 conv3d5[0][0]
activation5 (None, 25, 25, 25, 32) 0 batchnormalization5[0][0]
conv3d7 (None, 25, 25, 25, 32) 512 activation4[0][0]
conv3d6 (None, 25, 25, 25, 32) 27,648 activation5[0][0]
batchnormalization7 (None, 25, 25, 25, 32) 128 conv3d7[0][0]
batchnormalization6 (None, 25, 25, 25, 32) 128 conv3d6[0][0]
add3 (None, 25, 25, 25, 32) 0 batchnormalization7[0][0]

batchnormalization6[0][0]
activation6 (None, 25, 25, 25, 32) 0 add3[0][0]
conv3d8 (None, 25, 25, 25, 32) 27,648 activation6[0][0]
batchnormalization8 (None, 25, 25, 25, 32) 128 conv3d8[0][0]
activation7 (None, 25, 25, 25, 32) 0 batchnormalization8[0][0]
conv3d9 (None, 25, 25, 25, 32) 27,648 activation7[0][0]
batchnormalization9 (None, 25, 25, 25, 32) 128 conv3d9[0][0]
add4 (None, 25, 25, 25, 32) 0 activation6[0][0]

batchnormalization9[0][0]
activation8 (None, 25, 25, 25, 32) 0 add4[0][0]
conv3d10 (None, 13, 13, 13, 64) 55,296 activation8[0][0]
batchnormalization10 (None, 13, 13, 13, 64) 256 conv3d10[0][0]
activation9 (None, 13, 13, 13, 64) 0 batchnormalization10[0][0]
conv3d12 (None, 13, 13, 13, 64) 2048 activation8[0][0]
conv3d11 (None, 13, 13, 13, 64) 110,592 activation9[0][0]
batchnormalization12 (None, 13, 13, 13, 64) 256 conv3d12[0][0]
batchnormalization11 (None, 13, 13, 13, 64) 256 conv3d11[0][0]
add5 (None, 13, 13, 13, 64) 0 batchnormalization12[0][0]

batchnormalization11[0][0]
activation10 (None, 13, 13, 13, 64) 0 add5[0][0]
conv3d13 (None, 13, 13, 13, 64) 110,592 activation10[0][0]
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Table 3.3: Model summary for PhaseResNet (continued)

Model: PhaseResNet
Layer (type) Output Shape Param. Connected to
batchnormalization13 (None, 13, 13, 13, 64) 256 conv3d13[0][0]
activation11 (None, 13, 13, 13, 64) 0 batchnormalization13[0][0]
conv3d14 (None, 13, 13, 13, 64) 110,592 activation11[0][0]
batchnormalization14 (None, 13, 13, 13, 64) 256 conv3d14[0][0]
add6 (None, 13, 13, 13, 64) 0 activation10[0][0]

batchnormalization14[0][0]
activation12 (None, 13, 13, 13, 64) 0 add6[0][0]
globalaveragepooling3d1 (None, 64) 0 activation12[0][0]
Y (Dense) (None, 6) 390 globalaveragepooling3d1[0][0]
Total parameters: 510,134
Trainable parameters: 509,046
Nontrainable parameters: 1,088

Figure 3.1: Schematic of the PhaseNet operation [108]. CNN is either PhaseNet, based on LeNet
[127], or PhaseResNet, based on ResNet [52]. In training, the generator uses the input parameters
of the microscope and parameters for data generation to synthesize the ground truth (aberration
types with the amplitudes) and a sphere convolved with the 3D PSF. The CNN is trained on the
output of the generator (spheres and the ground truth). During prediction, the CNN estimates the
vector of aberration types and associated amplitudes (one floating-point number per type) for a
3D picture of a bead. At the last step, the wavefront is rendered.

jitter is set to true, the crop is taken randomly from the image. Max jitter specifies the distance
at which the crop can be taken from the center. The user can select the z slices (planes) of the
volumetric image as an input to the network for training (for example, only some slices in the
middle). The authors of PhaseNet have proved that the best results are obtained when all z

planes are utilized.
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For accurate calculation of synthetic PSFs, the optical system characteristics (voxel size,
light wavelength λ, refractive index, and numerical aperture of the detection objective lens
(NA)) must be provided. The generator convolves a sphere of a definite radius (simulating a
point source) with a synthetic PSF. After the convolution, Gaussian noise can be applied if its
parameters (mean, standard deviation, and signal-to-noise ratio (SNR)) are specified. Each of
these parameters should be either a single floating-point number or a range of float numbers.
Gaussian blur can also be introduced.

3.3.3 Retrieval of noise parameters

PhaseNet needs data-specific parameters, such as the noise parameters, which should be
retrieved from the acquired images. Other parameters like refractive index, light wavelength,
numerical aperture (NA) of the detection objective lens, and voxel size are microscope-specific
and their values are determined by parts of the assembly.

To determine the noise parameters, the “measure” function in Fiji software [128] was used
on selected areas of the image. The high-intensity pixels in the image belonging to the study
sample were assigned to the foreground, the dark parts of the image — background with noise
included. The generator can accept a single value (to define the parameters for one Gaussian
distribution) or a range of values (to sample from different Gaussian distributions) for each
noise parameter. It may be necessary to measure these parameters several times in different
parts of the image to define an approximate range, depending on the dataset. The mean
intensity must be measured inside the foreground object, the mean and standard deviation of
the noise — on the background free from the study sample.

The following definition of the SNR was used: the ratio of the mean intensity of the
foreground to that of the noise:

SNR = Iforeground
Inoise

(3.2)

3.3.4 Data generator with phantoms

This modification is a part of my study with Eugene W. Myers [109]. We passed a crop from
the raw unaberrated image into the generator where the crop was convolved using synthetic
PSFs to include the information about the object structure. An unaberrated image in our
synthetic data experiments was the raw image that was downloaded. An unaberrated image in
an experimental setup with real data acquired with an AO microscope would be one that was
free of aberrations caused by the deformable mirror or a spatial light modulator. In contrast
to the created aberrations that emerge in images only when the AO microscope is told to add
them, an unaberrated image is supplied to guarantee that the only PSF present is the residual
PSF of the microscope, which is observed in all data coming from this microscope.

In addition to Gaussian noise generated by the generator, our method for producing images
from actual images seeks to incorporate prior information regarding the shape of the object,
the residual PSF of the microscope, and other noise originating from the microscope.

The 3D images of the study samples were generated with synthetic aberrations through
the following steps: cropping the input image within the generator, convolving the crop with
random synthetic PSFs, and adding random Gaussian noise. The input image entered into the
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generator is denoted as a phantom. Training in which two or more images were passed as
phantoms was referred to as training with multiple phantoms.

3.3.5 Restoration via deconvolution

In our study [109], we showed image restoration with the PhaseNet predictions via
deconvolution.

The aim of predicting aberrations is to achieve high-quality restoration of affected images,
which can be done via deconvolution. The purpose of this operation that is inverse to convolution,
is to restore a convolved image to its state before it was convolved with the respective filter
(kernel). The PSFs (the synthetically generated PSFs and the residual ones) take the role
of the convolutional filters. To restore aberrated images, they can be deconvolved with the
predicted PSFs.

In our work [109], a Python-based library Flowdec [129], for 3D deconvolution via the
Richardson–Lucy algorithm [130, 131] was used for restoration. Compared to commonly used
DeconvolutionLab2 [132], Flowdec performs faster, accepts the synthetically generated PSFs,
and can be called directly from Python scripts or Jupyter notebooks. The comparison of
Flowdec with DeconvolutionLab2 [132] by Eric Czech et al. [129], revealed that Flowdec was 55
times faster than DeconvolutionLab2: a sample task was accomplished in 729 and 40,263 ms,
respectively. The tests were completed by the authors under the following conditions: Jupyter
Notebook, 64 GB RAM, Intel Xeon CPU (x2), and Nvidia GTX 1080 GPU (x2).

The described approach of training with phantoms along with the restoration task is
schematically shown in Figure 3.2.

3.3.6 Convolution with the “zero” synthetic PSF

This novel method for preprocessing experimental data, first proposed in this dissertation, has
not been previously reported.

Synthetic data for training the CNN and experimental data used for testing it may belong
to different domains and have significant visual differences. This issue can be addressed by:

1. Making synthetic data so realistic that synthetic images cannot be distinguished from
real ones;

2. Making real data look like synthetic data.

The first solution is hard to implement in practice, whereas the second one is relatively
straightforward.

For each image, the data generator computes a random PSF within the range defined by
the user. In addition, the theoretical residual PSF is calculated according to the microscope’s
characteristics, which is the same for all generated images.

In the “zero” convolution method, real test images are passed to the generator along
with the microscope’s parameters and the vector of introduced amplitudes set to zero. The
generator calculates only the residual PSF, because all other Zernike polynomials are set to
zero, and then convolves it with the real input images. As a result, the output images look like
synthetic ones.
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Figure 3.2: Schematic of CNN training with phantoms and the data generator followed by image
restoration. Training procedure: the generator receives as inputs the phantoms (unaberrated 3D
images of the specimens), data generating parameters, and microscope’s parameters. It convolves
the PSF with a randomly selected phantom’s 3D crop at each iteration, producing an aberrated
image along with the ground truth that is then fed to the CNN for supervised training. Restoration:
given an aberrated image of the sample, the trained CNN predicts the vector of the amplitudes for
each aberration mode. The PSF, which can be utilized as a deconvolution kernel in restoration, is
created from the CNN predictions. The Python library Flowdec was the tool for completing the
restoration task. Our modifications of PhaseNet are shown in green.

3.4 Data

The simplest way to prove or refute the extendability of PhaseNet to objects of a more
complex shape than beads could be to computationally introduce optical aberrations to an
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image of a complex object and build a corresponding dataset. The alternatives are to find a
dataset with images experimentally aberrated on an AO microscope or to acquire such images
in own study. As such a dataset was not publicly available during the time of this research
(January 2021 – July 2022), I used computational simulation of aberrations (astrocytes data) on
publicly available data [133], images from an unpublished in-house AO microscope (Drosophila
data) acquired by Debayan Saha, and unpublished data from external collaborators Na Ji
and Qinrong Zhang at the University of California, Berkeley (neurons data). In addition,
another set of images of beads was acquired by Debayan Saha on the in-house AO microscope
(fluorescent beads data) to test some hypotheses. The microscope was built by my colleagues
Debayan Saha, Nicola Maghelli, and Sergei Klykov. Debayan Saha instructed me on the sample
preparation and data acquisition protocols, according to which I attempted to collect datasets
myself. However, the images acquired by D. Saha are used in this work because of their superior
quality.

3.4.1 Astrocytes (synthetic data)

To introduce aberrations by generating them synthetically, 3D images with known charac-
teristics of the microscope (voxel size, refractive index, numerical aperture (NA), and light
wavelength λ) are required. Suitable data were found in Cell Image Library, a public collection
of bioimages. The project by Bushong et al. [133] includes a large number of images of
protoplasmic astrocytes in the hippocampus of Rattus norvegicus, ranging the age of specimens
and the image resolution, acquired using two fluorescent dyes. For the experiments described in
this chapter, two images [134, 135] were selected (Figure 3.3). To ensure that a model trained
on one image can be run on the other one, the selected images have an identical voxel size and
show specimens taken from the rats of the same age and injected with one dye.

Figure 3.3: Central slices of the original images: astrocyte 1 [134] and astrocyte 2 [135].

The two selected images of astrocytes, having a voxel size of (0.068519, 0.068519, 0.2) µm in
the (x, y, z) coordinates, are of a 4-week-old young adult rat’s hippocampal area CA1 injected
with Lucifer yellow [136] (λ = 488 nm) intracellularly. A single photon confocal microscope

65



3. Estimation of Aberrations

Biorad Radiance2000 with NA = 1.4 and oil immersion medium (refractive index = 1.5) was
used for the data acquisition. The details of the sample preparation and data acquisition are
available in refs [133, 134, 135].

The astrocytes occupied only about 20–25% of the image area. To ensure the presence of
the object during training, the images were cropped (Figure 3.4).

Figure 3.4: Central slices of the cropped images: crop of astrocyte 1 [134] and of astrocyte 2 [135].

The data were simulated with the data generator using these two cropped images as
phantoms. Aberrations of 11 Zernike modes up to the fourth-order polynomials were introduced
to the images in the simulation. The trivial modes (piston, x-tilt, y-tilt, and defocus) and
aberrations of higher orders were excluded, similar to the PhaseNet research. The images for
training and validation had combinations of all modes. The test image set consisted of 11
series of images for each aberration mode. In each of these series, only the selected mode was
present, with the other modes set to zero to compare the prediction plots with those from the
PhaseNet study.

3.4.2 Fluorescent beads

3D images of beads exhibiting fluorescence when exposed in the light with a wavelength of about
515 nm (the green spectrum) were acquired using a custom-designed light-sheet AO microscope
with deformable mirrors constructed by Debayan Saha, Nicola Maghelli, and Sergei Klykov at
the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG, unpublished work).
Deformable mirrors were incorporated to allow introduction of monochromatic aberrations
with controlled types and amplitudes. The dataset was intentionally limited to the Zernike
polynomials up to the fourth order, as has been done in the PhaseNet study, because of a low
impact of the higher-order polynomials on the image quality. The first-order aberrations and
defocus were excluded because of their triviality: piston is a constant aberration, and x-tilt,
y-tilt, and defocus are dispositions of an object along the x, y, and z axes, respectively.

The beads dataset consists of 177 images, each of which has dimensions of 128×128×60
pixels in the (x, y, z) coordinates. One image was acquired without the introduced aberrations.
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The other 176 images contained single-mode aberrations: 16 amplitude values ranging from
–0.15 to 0.15 µm with a step of 0.02 µm for each of the 11 Zernike modes: oblique astigmatism,
vertical astigmatism, vertical trefoil, vertical coma, horizontal coma, oblique trefoil, oblique
quadrafoil, oblique secondary astigmatism, primary spherical, vertical secondary astigmatism,
and vertical quadrafoil.

Figure 3.5 shows an example of a slightly out-of-focus z plane near the middle of an
aberrated image visualized in Fiji software [128]. The middle plane, which is in focus, is not
shown because astigmatism is not observable exactly in the focus.

Figure 3.5: Example of a close-to-the-middle section in the z axis of an aberrated image: oblique
astigmatism with an amplitude of 0.09 µm (Zernike mode 3 in the ANSI nomenclature).

3.4.3 Drosophila embryo (live sample)

In developmental biology, the fruit fly (Drosophila melanogaster) is a broadly used model
organism that gained popularity because of its rapid reproduction and uncomplicated genetics
with only four pairs of chromosomes [137]. Rapid development of fruit flies makes it particularly
interesting to image them alive under a microscope.

A Drosophila melanogaster embryo, genetically modified to contain a fluorescent cell
membrane marker membrane-mCherry [138], was imaged on the same microscope as the
Fluorescent beads presented in Subsection 3.4.2. The embryo was at an early development
stage (within 3 hours after the egg was laid) and kept at room temperature (24–25 ºC). The
sample was mounted perpendicular to the light beam and to the camera, thus allowing imaging
of the surface of the longest and flattest part of the body. The embryo was alive and continued
to develop in the microscope’s chamber filled with water.

The Drosophila dataset was collected for six Zernike polynomials of the second and third
order, excluding the first-order aberrations and defocus because of their triviality, as described
in Subsection 3.4.2. In the first step of this research, the dataset was limited to six aberration
modes that affect the image quality the most (oblique astigmatism, vertical astigmatism,
vertical trefoil, vertical coma, horizontal coma, and oblique trefoil) because acquisition of a
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full dataset is time-consuming. A single embryo cannot survive the whole acquisition process
because of exposure to the laser radiation, which is harmful for living organisms and leads to
photobleaching of the fluorescent dye.

For each mode, 16 3D images were acquired, with amplitudes ranging from −0.15 to
0.15 µm with a step of 0.02 µm. The size of each image was 512×512×100 pixels in the (x, y, z)
coordinates. In total, 97 images were obtained, including an image without the introduced
aberrations.

Figure 3.6 shows the middle section of the full-size 3D image of a Drosophila embryo
without introduced aberrations. The 192×192×100-pixel central crop of the image with a very
small vertical trefoil aberration having an amplitude of 0.01 µm is shown in Figure 3.7. It is
the 42nd image by the acquisition time, obtained after the first unaberrated image, 32 images
with oblique astigmatism and vertical astigmatism, and 8 images of the stack for vertical
trefoil with negative amplitudes. The quality of the images (the noisiness and sharpness of
the membranes) decreased with time and the number of laser exposures. Both images were
visualized in Fiji software [128] with an autocorrection of contrast.

Figure 3.6: Unaberrated full-size Drosophila image, the middle section in the z axis.

3.4.4 Neurons (fixed sample)

Imaging of neuronal structures, especially in vivo, is essential to study the functions of the neural
system and communication between the cells. Widefield fluorescence microscopy can be used
for in vitro imaging of thin slices of the brain, but for in vivo studies, advanced modifications of
this technique such as optical sectioning structured illumination microscopy are more suitable
[139]. Neuronal structures are also interesting for studies of optical aberrations.

The sample preparation and data acquisition were done by Qinrong Zhang and Na Ji at the
University of California in Berkeley. The widefield AO microscope is described in Figure S1b
in ref [108], the sample preparation technique — in ref [139]. The samples were thin slices
of the fixed mouse brain, where fixed means that the samples do not lose the ability to emit
fluorescence after death. The slices were taken from the cortical tissue of a transgenic mouse: a
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Figure 3.7: Example of the Drosophila data: a 192×192×100-pixel crop of the middle section in
the z axis with a vertical trefoil aberration having an amplitude of 0.01 µm (Zernike mode 6 in the
ANSI nomenclature).

Thy1–GFP (green fluorescent protein) line M mouse [140], as described in detail in the section
“Fixed mouse brain slices preparation” in ref [139].

The images having a size of 1024×1024×201 pixels with four aberration modes (oblique
astigmatism, horizontal coma, oblique trefoil, and primary spherical) were acquired. In the
acquisition stack for oblique trefoil, the neuronal structure appeared to be very thin and
observable only in a couple of consequent slices. Training of PhaseNet on this stack showed
that the network was unable to recognize the aberrations in this data, therefore this stack
was not used in the work presented in this thesis. Three other acquisition series (oblique
astigmatism, horizontal coma, and primary spherical) were used further. The neurons were not
clearly observed everywhere across the full-size images. As was done with the other datasets,
the images were cropped so that the study subjects were visible in the crop.

The 96×96×96-pixel crops of an unaberrated image and of an image with oblique
astigmatism having an amplitude of 0.1 µm (Zernike mode 3 in the ANSI nomenclature)
are shown in Figures 3.8 and 3.9, respectively.

This dataset of the images of cortical neuronal structures is referred to as neurons in this
dissertation.

3.5 Results

3.5.1 Astrocytes

The results presented in this section were published in my article “Estimation of Optical
Aberrations in 3D Microscopic Bioimages” [109] coauthored with Eugene W. Myers, my PhD
supervisor, in 2022 at the 7th International Conference on Frontiers of Signal Processing
(ICFSP), IEEE. In the article, the plots with the results were shown for the horizontal
coma aberration. In this thesis, the example plots are shown for aberration mode 5, vertical
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Figure 3.8: In-focus z section no. 60 of a cropped image (96×96×96 pixels) of a neuron from one
series of acquisitions for oblique astigmatism. The image does not contain aberrations.

astigmatism. The result of restoration is shown in a different representation as a figure
consisting of three images, including the generated PSF. The schematics are reproduced in a
different color scheme.

Applying PhaseNet

PhaseNet was retrained using updated microscope parameters also needed for correct
synthetic data generation. Due to the network’s requirement for a specific pixel size (in
microns), the pretrained weights from the initial PhaseNet publication were not applicable to
the new data containing objects of an alternative scale. Furthermore, in accordance with the
microscope configuration, we modified the noise parameters in the data generator (Section
3.3.3). The model underwent training using synthetic pointlike objects (representing PSFs)
besides adjusting the pixel size, microscope parameters, and noise. No additional changes were
made to the model or its architecture. The training methodology is illustrated in Figure 3.1.

Following this, aberrations were added to the astrocyte images through the process of
cropping the original image and convolving the result with synthetic PSFs chosen at random
for each crop (Section 3.3.4). The creation of such image series replicated the acquisition
of the dataset analogous to the one from the PhaseNet publication, which included 11 test
image series for every aberration mode. On this new dataset, we evaluated the predictions
of retrained PhaseNet using the mean squared error (MSE) calculated as an average of all
predictions. The model demonstrated an inability to forecast aberrations, as evidenced by the
MSE of 0.001656 for the central crop in the initial image, 0.001718 for the crops randomly
extracted from this image, and 0.002125 for the crops extracted from the second source image.
One potential explanation is overfitting to the geometry of the training objects: the network
acquired knowledge of the appearance of aberrated point sources but was unable to extrapolate
this knowledge to nonspherical objects present in the test set. An alternative explanation could
be that PhaseNet may be incapable of comprehending aberrations on complex geometries; this

70



3.5 Results

Figure 3.9: Z section no. 60 of a cropped image (96×96×96 pixels) of a neuron. The image has
oblique astigmatism with an amplitude of 0.1 µm.

is examined in the subsection "Training with a phantom image."

Reading the prediction plots

For a better understanding of the results, they are visualized in a consistent manner across
this chapter. The results of applying the retrained PhaseNet mentioned above to the test
series with the aberration mode 5 in ANSI nomenclature, vertical astigmatism, are shown
in Figure 3.10. The plot displays the intended ground truth (GT) predictions for the
present aberration mode as blue stars along the diagonal line. The predicted values are
represented by yellow dots. The statistical measures of predictions for all modes, namely
the median, minimum, maximum, first and third quartiles, and outstanding data points, are
presented in the inset located at the bottom right. Textbfpredictions for modes other than
the experimentally introduced one are wished to have minimal variation and be centered
around 0 µm.

Training with a phantom image

In order to examine whether PhaseNet is capable of learning aberrations on a nontrivial-
shaped object, the model was trained using a phantom: an unaberrated image [134]. The
generator was directed to crop out the center of the phantom; consequently, the simulated
aberrations varied while the undelying object in the images remained constant. The findings
demonstrated that the model is capable of learning how aberrations look like when applied
to complex objects, such as an astrocyte part, provided that the training data contains pertinent
information regarding the object (Figure 3.11).

To ascertain whether the model overfitted to the knowledge about the representation of the
aberrations applied to one particular object (from the phantom), random cropping technique
(jitter = "true", refer to Section 3.3.2) was applied to the first [134] and the second images
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Figure 3.10: Results of PhaseNet trained on points and tested on astrocytes. The GT for the
present aberration mode (mode 5, vertical astigmatism) is plotted with the blue stars on the
diagonal line, the predicted amplitudes - by yellow dots. The statistics for all modes are presented
in the inset. MSE is the mean squared error, MAE is the mean absolute error.

[135], which the model did not encounter during training. Performance dropped substantially
from MSE = 0.000027 on the central crop to 0.000299 on random crops and 0.002186 on
unseen data, demonstrating that if the geometry of the object does not change during training,
the model can severely overfit to it.

Training with a phantom and random cropping

Here, the ability of the model to acquire an understanding of aberrations in the presence
of object shape variation was investigated. The training dataset was enlarged by random
cropping (jitter = “true”, see Section 3.3.2). The results of this experiment demonstrated (see
Figure 3.12) that the model can effectively handle aberrations on objects of different shapes
when it was exposed to them during training (see the "Random crop" entry in Table 3.4).
Nevertheless, the accuracy of the predictions was marginally reduced compared to the results
obtained from training on a stationary object shape (specifically, the central crop from the
prior experiment).

Training with multiple phantoms

Two phantoms were provided to the generator: one of which was utilized in prior experiments,
and the other of which was cropped from the second image. During each training iteration,
the generator picked a phantom at random from the provided list of images, which was also
randomly cropped. The mean square error (MSE) obtained from testing on random crops
of the first and second images with random aberrations was nearly identical: 0.000129 on
the first set and 0.000131 on the second. Upon observing the objects in the second dataset
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Figure 3.11: Results of training on the phantom with central cropping and testing on the central
crop convolved with random PSFs. The GT for the present aberration mode (mode 5, vertical
astigmatism) is plotted with the blue stars on the diagonal line, the predicted amplitudes - by
yellow dots. The statistics for all modes are presented in the inset. MSE is the mean squared error,
MAE is the mean absolute error.

Figure 3.12: Results of training on random crops of the phantom and testing on random crops.
The GT for the present aberration mode (mode 5, vertical astigmatism) is plotted with the blue
stars on the diagonal line, the predicted amplitudes - by yellow dots. The statistics for all modes
are presented in the inset. MSE is the mean squared error, MAE is the mean absolute error.

during training, it was not surprising that this model outperformed the preceding CNNs on
this dataset.

In order to provide additional evidence that the model overfits to the morphologies of the
objects in the training set, the model was evaluated on a distinct region of the second image
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that was not intersecting with the training and validation crops. A substantial increase in the
MSE to 0.001554 was observed. In spite of this, training on a greater variety of data resulted
in a reduced MSE in comparison to prior experiments.

Furthermore, training was attempted on the central region of the first image, validation
was performed on the central region of the second image, and testing was conducted on another
region of the second image. The observation of overfitting was noticed after 400 epochs, which
provides the support of the assumption that the network overfits on the seen object geometries.

Table 3.4 summarizes the results of all experiments. Training of the models lasted 50,000
epochs, with five steps per epoch and the batch size of two images. Training of each model was
carried out on a computer with an Intel Core i7-8850H CPU, single NVIDIA Quadro P3200
GPU with 8 GB memory, and 64 GB RAM taking 30 hours.

Table 3.4: Results of PhaseNet on astrocytes

Mean MSE of testing on:
Training on Central crop Random crops Random crops from

from image 1 from image 1 unseen area of image 2
Points (III-A) 0.001656∗∗ 0.001718∗∗ 0.002125

Central crop (III-B) 0.000027 0.000299 0.002186
Random crop (III-C) 0.000040 0.000045 0.001793

Two phantoms∗ (III-D) 0.000090 0.000129 0.001554
∗Training with multiple phantoms experiment, two were supplied.
∗∗All crops were unseen, the model was trained on points.

Restoration

The workflow includes restoration of aberrated 3D images (Figure 3.2). A three-dimensional
crop of an aberrated image is provided to the model, which uses the cropped image to predict
the amplitudes of the aberration modes. The PSF is constructed utilizing predictions. Then,
the input 3D image of the original size is deconvolved with the PSF.

Enhancing the quality of the source image can be achieved through deconvolution using
the predicted PSF, when the model is trained using the identical image as a phantom. To
accomplish this, the unprocessed image must be cropped to the dimensions supported by the
network. The network then outputs the vector of amplitudes for the residual PSF for the
cropped image. The PSF is computed according to the predicted amplitudes and employed as
a deconvolutional kernel.

The raw image [134], the restored version of it, and the predicted PSF are shown in
Figure 3.13.

3.5.2 Conclusions on the results for astrocytes

An unaberrated image (called phantom) is important to allow PhaseNet to perform well on
nontrivial objects such as astrocytes. PhaseNet trained on simulated aberrations on a point
light source cannot be directly applicable to bioimages of a specimen with a nonspherical
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Figure 3.13: Restoration of a raw 3D image via deconvolution with the predicted 3D PSF. The
central 2D planes are shown.

shape. The generator should be supplied with an unaberrated image of the specimen to include
information about the shape of the object into the synthesized images, which allows usage of
PhaseNet to estimate aberrations on images of nontrivial and nonspherical biological samples.

The results suggest that PhaseNet trained on synthetically aberrated images with one crop
of an astrocyte as a phantom overfits on the seen object. For datasets with a large variety
of object morphologies, it is recommended to include maximum of the available information
about the shape variety, which can be done by providing the generator with multiple phantom
images that represent different shapes. The problem of generalization should be addressed in
future works.

This study indicates that PhaseNet predictions can be used for image restoration. The
suggested modifications for the training and testing procedures also allow restoration of source
images without additional synthetic aberrations. The model has to be retrained on new data
with a phantom and the microscope’s parameters (voxel size, refractive index, numerical
aperture, and light wavelength) for each new dataset.

3.5.3 Fluorescent beads

The benefits of training with an unaberrated image as a phantom also for trivial objects and
of convolving the experimental test data with the residual synthetic PSF are presented in this
subsection. The problem of extendability of PhaseNet to amplitudes larger than 0.1 µm is also
addressed here.

The network expects the pixel size and the parameters of the microscope as an input,
therefore the pretrained networks from the original PhaseNet experiments cannot be reused for
beads of a different size imaged on another microscope. In the training configuration, the noise
parameters in the data generator were also changed according to the microscope system: they
were derived using Fiji software directly from the image that contained only the residual PSF
but no experimentally introduced PSF. Different preprocessing techniques and parameters for
the data generator were explored. Comparisons of the models trained for 1000 epochs with
the same CNN architecture, train batch size, steps per epoch, learning rate, train validation
split, and optimizer are shown in Figures 3.14, 3.15, 3.16, and 3.17. Increasing the number of
training epochs incrementally reduces the error. The models for the parameter search were
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trained for only 1000 epochs because the training is time- and resource-consuming.

Training with a phantom, deconvolution, “zero” convolution

Phantom. To make the synthetically generated training data more realistic, the convolution
with synthetic PSFs was performed on a bead image (phantom) instead of a point. The
approach is described in Section 3.3.4. Generating images using an actual image of the bead
should add prior information about the object structure, the microscope noise that cannot be
approximated by Gaussian noise (which can be added by the data generator when the training
and validation images are formed), and about the residual PSF. It will be investigated in this
subsection whether adding prior information about the object structure leads to performance
improvement on bead images.

If a phantom is used, the data generator outputs a product of the convolution of the
phantom with a synthetic PSF. As a result, the generated image was “convolved” twice: with
the microscope’s PSF from the phantom (during the acquisition of the phantom) and with the
synthetic PSF. Afterward, additional synthetic Gaussian noise was added. The test dataset
of the experimental images was “convolved” once during the acquisition, after which the real
noise was “added” by the camera. Hypothetically, performing convolution twice adds too much
blur.

To bridge this gap between the training and test data, two approaches were introduced:

• (a) Gaussian deconvolution: removing the blur of one convolution from the phantom
image via deconvolution.

• (b) “Zero” convolution: adding the synthetic PSF to the test data as described in
Section 3.3.6.

In approach (a), the deconvolution was performed using the Richardson–Lucy iterative
algorithm [130, 131] in DeconvolutionLab2 plugin [132] within the Fiji software [128], assuming
that the images contain standard blur, which can be approximated by the Gaussian function
[141, 142]. The results shown below were obtained with the following parameters of the
Gaussian PSF: PSF shape of 64×64×64 pixels, sigma of 5×5×5 pixels, and mean intensity of
102. After varying the parameters, this set was chosen according to visual observations of the
deconvolution result.

Multiple models were trained for 1000 epochs using the combinations of the preprocessing
approaches (a) and (b) and training without a phantom (the approach from the original
PhaseNet study). In Figures 3.14 and 3.15, a comparison of six approaches is shown:

(1) Training with the phantom deconvolved using the Gaussian approach and testing on
the raw test data (red stars in the left column);

(2) Training with the phantom deconvolved using the Gaussian approach and testing on
the test data convolved with the synthetic “zero” PSF (blue dots in the left column);

(3) Training with the raw phantom and testing on the raw test data (red stars in the
middle column);
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Figure 3.14: Comparison of the training–testing pipelines of the models trained for 1000 epochs
on six Zernike modes (oblique astigmatism, vertical astigmatism, vertical trefoil, vertical coma,
horizontal coma, and oblique trefoil). Blue dots indicate the predictions after convolving the test
images with the synthetic “zero” PSF, red stars — the predictions on the raw test data.

Figure 3.15: Comparison of the training–testing pipelines of the models trained for 1000 epochs
on 11 Zernike modes (from oblique astigmatism to vertical quadrafoil). Blue dots indicate the
predictions after convolving the test images with the synthetic “zero” PSF, red stars — the
predictions on the raw test data.
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(4) Training with the raw phantom and testing on the test data convolved with the synthetic
“zero” PSF (blue dots in the middle column);

(5) Training without a phantom (original PhaseNet) and testing on the raw test data (red
stars in the right column);

(6) Training without a phantom (original PhaseNet) and testing on the test data convolved
with the synthetic “zero” PSF (blue dots in the right column).

Blue dots in Figures 3.14 and 3.15 correspond to the “zero” convolution preprocessing of
the test images (approach (b)), red stars — to testing on the raw images. The left column
corresponds to the Gaussian deconvolution (approach (a)).

The results demonstrate that:

1. Introducing the information (phantom) about the object and microscope to the generator
significantly reduces the MSE (by a factor of 10 in the case of training on six modes,
Figure 3.14);

2. Passing an unaltered raw unaberrated image as the phantom to the synthetic data
generator during training and subsequently convolving the test images using the synthetic
PSF during testing gives the best results. The performance gain with the suggested
approach (b) is the best if training on 11 modes (Figure 3.15).

Random cropping, training range of amplitudes

Next, it was investigated whether random cropping of an image (jitter = “true” in 3.3.2)
is better than central cropping. The PhaseNet generator takes a large image as an input,
convolves it using a synthetic PSF, and crops to a smaller image that the CNN takes as an
input. When the jitter parameter of the generator is set to true, cropping is shifted from the
center of the image. When the jitter is set to false, the crop is taken from the center. For these
experiments, the networks were trained with the raw image as a phantom, and the test images
of the full range (±0.15 µm) were convolved with the “zero” PSF, as suggested by the previous
results.

The results show that off-center cropping leads to a performance gain for the beads dataset
(Figures 3.16 and 3.17).

The original PhaseNet has been proven to work on images of beads when trained on the
synthetically aberrated images with the amplitude range from −0.075 to 0.075 µm [108]. In the
dataset considered here, the amplitude range of the acquired test images is twice as large, and
it was necessary to determine the range within which PhaseNet is applicable. The models were
trained on different amplitude ranges and the resulting MSEs were compared. The calculations
showed that training on ranges smaller than the full range present in the test data (−0.15 to
0.15 µm) yields a significant improvement.

Among the models trained on six Zernike modes, one trained on the range from −0.1
to 0.1 µm significantly outperformed the others trained on ±0.075 µm and on ±0.15 µm
(Figure 3.16). For the models trained on 11 Zernike modes, using the smallest studied range
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Figure 3.16: Comparison of the amplitude range and jitter training parameters of the models
trained for 1000 epochs on six Zernike modes and tested on the images of the full range of ±0.15 µm
with the “zero” convolution applied. Green dots indicate the predictions of the models trained with
jitter = true (off-center cropping), magenta dots — those of the models trained with jitter = false
(center cropping).

Figure 3.17: Comparison of the amplitude range and jitter training parameters of the models
trained for 1000 epochs on 11 Zernike modes and tested on the images of the full range of ±0.15 µm
with the “zero” convolution applied. Green dots indicate the predictions of the models trained with
jitter = true (off-center cropping), magenta dots — those of the models trained with jitter = false
(center cropping).

(−0.075 to 0.075 µm) leads to only a slight improvement compared to training on the range
from −0.1 to 0.1 µm (Figure 3.17). Training on the range from –0.1 to 0.1 µm should also be
suitable. This suggests a hypothesis that the generated synthetic data with the aberrations of
large amplitudes are not sufficiently realistic. The reason for this could be a decrease in the
intensity of the object (bead) on the experimental images when the amplitudes of aberrations
are large.
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The best model among those trained on 11 Zernike modes for 1000 epochs achieved
the MSE = 0.000202 on the test data (full range from −0.15 to 0.15 µm) after the “zero”
convolution. The MSEs of testing on other ranges with and without the “zero” convolution
are presented in Table 3.5.

Table 3.5: Results of the best model trained on Fluorescent beads on 11 Zernike modes for 1000
epochs

MSE on test data range MSE on synthetic data
Postprocessing ±0.075 µm ±0.1 µm ±0.15 µm ±0.075 µm
Raw test data 0.000488 0.000527 0.000716 0.000113

“Zero” convolution 0.000082 0.000106 0.000202

The best parameters of the generator and the model trained on 11 Zernike modes for 1000
epochs are:

- phantom: raw unaberrated image (not deconvolved);
- jitter: true;
- amplitude range: −0.075 to 0.075;
- noise mean: [70.0, 130.0]; noise sigma: [5.0, 10.0]; SNR: [20.0, 40.0]; Gaussian blur sigma

[0.5, 1.0];
- numerical aperture: 0.9; wavelength: 0.515 µm; immersion refractive index: 1.33; PSF

pixel size: [0.2, 0.113, 0.113];
- kernel size: [3, 3, 3]; pooling size: [1, 2, 2]; batch size: 8; crop shape: [50, 50, 50]; steps per

epoch: 5;
- loss: MSE; optimizer: Adam (standard Keras parameters); learning rate: 0.0003.

In the next subsection, the dataset was used with only six Zernike modes, on which
additional models were trained. Among the models trained for 1000 epochs on these six modes,
the best performing model had the same parameters as the best model trained on 11 modes,
with two exceptions:

- amplitude range: −0.1 to 0.1;
- noise mean: 102; noise sigma: 5; SNR: 31; no Gaussian blur.
This model achieved the MSE = 0.000105 after 1000 epochs on the test data in the full

range of amplitudes with “zero” convolution applied (Table 3.6).

Number of epochs

The same model (referenced in Subsection 3.5.5) was retrained for 10,000 epochs with:
- phantom: raw unaberrated image (not deconvolved);
- jitter: true;
- amplitude range: −0.1 to 0.1;
- noise mean: 102; noise sigma: 5; SNR: 31; no Gaussian blur;
- numerical aperture: 0.9; wavelength: 0.515 µm; immersion refractive index: 1.33; PSF

pixel size: [0.2, 0.113, 0.113];
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- kernel size: [3, 3, 3]; pooling size: [1, 2, 2]; batch size: 8; crop shape: [50, 50, 50]; steps per
epoch: 5; epochs: 10,000;

- loss: MSE; optimizer: Adam (standard Keras parameters); learning rate: 0.0003.

The training resulted in the MSE = 0.000082 (Table 3.7), which is only 0.000023 smaller
than that of the training for 1000 epochs, thus being of approximately the same order of
magnitude. The predictions of the network trained for 10,000 epochs are shown in the plot of
the predicted amplitude versus the amplitude of the input PSF (Figures 3.18 and 3.19). The
predictions for mode 3 are about 10 times more accurate than those for mode 6. This behavior
is discussed in the next chapter.

Table 3.6: Results of the best model trained on beads on six Zernike modes for 1000 epochs

MSE on test data range MSE on synthetic data
Postprocessing ±0.075 µm ±0.1 µm ±0.15 µm ±0.1 µm
Raw test data 0.000310 0.000311 0.000352 0.000038

“Zero” convolution 0.000038 0.000049 0.000105

Table 3.7: Results of the best model trained on beads on six Zernike modes for 10,000 epochs

MSE on test data range MSE on synthetic data
Postprocessing ±0.075 µm ±0.1 µm ±0.15 µm ±0.1 µm
Raw test data 0.000049 0.000069 0.00015 0.000009

“Zero” convolution 0.000032 0.000041 0.000082

The models performed best on the test data within the smallest range of amplitudes. This
suggests that PhaseNet produces the most reliable results on the images with only small
aberrations. If the goal is to use PhaseNet on the images with the six aberration modes with
the amplitudes of ±0.15 µm, the network should be trained on the amplitude range of ±0.1 µm
(Figure 3.16) where the lowest MSE was achieved. In the case of using PhaseNet on the 11
modes with the amplitudes of ±0.15 µm, the training range should be set to ±0.075 µm
(Figure 3.17). Overall, the results on the 11 aberration modes with the amplitudes of ±0.15 µm
are worse than those on smaller test ranges and on fewer aberration modes.

3.5.4 Conclusions on the results for fluorescent beads

In the next two subsections, the following conclusions will be used:

1. Supplying the generator with a phantom improves the results compared to the original
PhaseNet setup where the synthetic data were generated on spheres.

2. An unprocessed unaberrated image is a better choice for the phantom compared to an
image preprocessed using deconvolution with the Gaussian PSF.

3. Applying the “zero” convolution to test images improves the results.
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Figure 3.18: Results of the best model trained on beads on six Zernike modes for 10,000 epochs
display an excellent performance on mode 3. The ground truth (GT), where the prediction is equal
to the input PSF, is shown in blue.

Figure 3.19: Results of the best model trained on beads on six Zernike modes for 10,000 epochs
display a lower performance on mode 6. The ground truth (GT), where the prediction is equal to
the input PSF, is shown in blue.

4. Random cropping of the phantom inside the data generator also helps the model learn
better.

5. Training for 1000 epochs should yield sufficiently accurate results, increasing the number
of epochs may lead to incremental improvements.
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6. For the test set with 11 modes and the full amplitude range of ±0.15 µm, training on
the smaller range of ±0.075 µm led to the lowest MSE, whereas using the training range
of ±0.1 µm yielded very close results of the same order of magnitude.

7. For the test set with six modes and the full amplitude range of ±0.15 µm, the lowest
MSE was achieved by training on the amplitude range of ±0.1 µm.

3.5.5 Drosophila embryo

Applying PhaseNet trained on beads to the Drosophila dataset

To start exploring applicability of PhaseNet to a new type of experimental data, it was
first checked whether the network trained on beads can perform on a new object. The required
parameters of the microscope system for this dataset are the same as those for the Fluorescent
beads dataset.

The best model trained on beads on six Zernike modes for 10,000 epochs (see Subsection
3.5.3) was used in this experiment. The model was unable to predict accurately: the MSE
achieved on the test Drosophila images with and without the “zero” convolution was 0.002913
and 0.002312, respectively. The predictions looked similar to Figure 3.10 and did not show
any diagonal trend seen in Figures 3.18 and 3.19. These results lead to a conclusion that
the network did not learn the generic representation of the aberration modes from the bead
images. Instead, it likely learned how the aberrations look like on point light sources.

Training on the Drosophila dataset

At the next step, the same model was trained with the same parameters on a phantom
that was the unaberrated Drosophila image.

First, it was checked if the CNN can predict the aberrations correctly on the synthetic
data, which means that it could learn from the designed task. The calculations showed that
the network can perform well on the synthetic data: the predictions are close to the GT line
(Figure 3.20).

The network was then tested on each subset with the images in which only one aberration
mode was present. On the test set with the “zero” convolution, a very large error (MSE =
0.004784) was observed. On mode 3, the network showed an approximate, although rather
poor, diagonal trend (Figure 3.21), failing on all other modes (Figure 3.22) despite performing
well on the synthetic data (Figure 3.20) with MSE = 0.000026.

New noise parameters for the data generator were retrieved from the Drosophila images,
considering the membranes as the foreground and the cells as the background. The parameters
were set to the following values: noise mean = 800.0, noise sigma = 36.0, and SNR = 1.27. The
resulting MSE was 0.008580, MSE after the “zero” convolution was 0.005027, and MSE on the
synthetic data was 0.000185. The errors were higher than in the previous experiment with the
noise mean = 102, sigma = 5, and SNR = 31, but the MSEs after the “zero” convolution were
of the same order of magnitude.
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Figure 3.20: Predictions of the model trained on six Zernike modes and applied to synthetic
single-mode (mode 6) Drosophila images. The diagonal trend indicates the model’s ability to learn
the representations of aberrations on this nontrivial object.

Figure 3.21: Predictions of the model trained on six Zernike modes and applied to mode 3 of the
Drosophila dataset show a weak approximate trend.

Training on the full set of aberration modes did not work out of the box. To study the
underlying mechanism, the problem was simplified.

Single-mode training
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Figure 3.22: Predictions of the model trained on six Zernike modes and applied to mode 6 of the
Drosophila dataset show no diagonal trend.

To reduce the complexity of the problem, multiple models were trained on a single
aberration mode separately. This resulted in an improvement in the performance on mode 3
with an approximately diagonal trend (Figure 3.23). On other modes, the networks did not
perform significantly better than in the previous experiment (Figure 3.24) despite the low
MSE on the synthetic test data (e.g., MSE = 0.000084 for mode 6).

Figure 3.23: Predictions on the Drosophila dataset of the model trained only on mode 3. A
diagonal trend can be observed, although the predictions are relatively far from the GT.
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Figure 3.24: Predictions on the Drosophila dataset of the model trained only on mode 6 show no
diagonal trend. The CNN training on the single mode was unsuccessful.

Training according to the acquisition time

The reasonable performance on mode 3 can be potentially explained by the time of
acquisition. The unaberrated image was acquired first. Then, the stack for mode 3 was imaged
in the following amplitude order: –0.15, –0.13, . . . , –0.01, 0.01, . . . , 0.15 µm. Afterwards, the
stack for mode 5 was acquired in the same order. By this time, the sample may have changed
because of the loss of the image quality (e.g., because of photobleaching due to phototoxicity),
development of the embryo (the cellular shape can change pretty quickly, which is best observed
during the gastrulation), or movement of the embryo that led to rotation of the membranes
that were in the field of view or to displacement out of focus. Observations show that the
most probable reasons are the loss of the image quality or the live embryo’s movements. The
quality of the image is lower, the image is noisier, and the contrast of the membranes with the
background (cells) is lower in Figure 3.7 compared with the image in Figure 3.6. Thus, the net
was trained on one embryo but tested on “another”: displaced, photobleached, or maybe even
more developed one.

To validate these assumptions, the image with mode 5 having an amplitude of 0.01 µm
(almost negligible and invisible to the human eye) was passed as a phantom to the generator
and the model was trained to predict the amplitudes on this mode (single-mode training).
The same procedure was repeated for mode 6 (Figure 3.7). The results prove that PhaseNet
can predict the amplitudes if the structures in the object on the phantom image do not differ
significantly from those of the test objects (Figure 3.25). Convolving the test data with the
“zero” synthetic PSF improved the predictions (Figure 3.26), the same behavior was observed
for the predictions after the single-mode training on mode 5.

The parameters of the best model trained on mode 6:

• amplitude range: ±0.1 µm;
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• phantom: image from the target acquisition stack with a6 = 0.01 µm;

• activation functions (except for the last layer with the linear activation): tanh;

• input shape (crop shape): [50, 50, 50];

• training loss function: MSE;

• epochs: 1000;

• steps per epoch: 5;

• learning rate: 0.0003;

• batch size: 8.

Figure 3.25: Results of training on a phantom (a Drosophila image with mode 6 having an
amplitude of 0.01 µm) show a good performance in the middle of the acquisition stack.

The quality of predictions drops drastically on the amplitudes with large absolute values.
Can this also be explained by the time of acquisition and subsequent changes in the sample or
by inability of PhaseNet to perform well on aberrations with large amplitudes? This question
is addressed in Subsection 3.5.7 with the usage of fixed biosamples.

3.5.6 Conclusions on the results for Drosophila embryo

Providing the generator with an unaberrated image that represents the information about the
object and the optical system allows extendability to nontrivial samples. The results show that
training on the range of synthetic amplitudes from −0.1 to 0.1 µm that is smaller than the
full range present in the test set (from −0.15 to 0.15 µm) increases the quality of predictions
for these data. The underlying reasons require further investigation.

The method might not be directly transferable to moving and developing organisms. In
the next subsection, PhaseNet is applied to fixed (stained and dead) samples to eliminate the
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Figure 3.26: Applying the “zero” convolution to the test data after training on a phantom (a
Drosophila image with mode 6 having an amplitude of 0.01 µm) shows an improved performance.

problems of their developmental changes and movements. In addition, different samples are
used to prevent severe photobleaching caused by the phototoxicity of the laser light. If a single
sample is used for the complete acquisition, the fluorescent label loses its brightness. After
a certain cumulative time of laser exposure, fluorescent markers reach their limit of allowed
exposures, the so-called photon budget, and degrade.

3.5.7 Neurons

This section presents the final results achieved building on the study of astrocytes, fluorescent
beads, and a Drosophila embryo described in previous subsections. The work on this data
started in January 2021 and included bleaching correction with histogram matching and
exponential fit methods, deblurring via deconvolution with a Gaussian kernel, percentile
normalization, and testing various values for PhaseNet parameters. The results of early, rather
unsuccessful, attempts are not included in this thesis; only the final solution and the path to
it are presented.

To achieve these results, the following information from the previously described
experiments was used:

1. The generator must be supplied with phantom(s) representing the shape(s) of the study
samples.

2. Supplying the generator with multiple phantoms improves generalizability during training
and allows PhaseNet to work on all test acquisition sets.

3. Random cropping (“jittering” around the center) of the phantoms inside the generator
improves the generalizability of PhaseNet and prevents early overfitting.
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4. The phantoms must be larger than the network’s input shape to allow random cropping
inside the generator and to “cut off” the boundary effects of convolution with the PSF.

5. Training PhaseNet on synthetically aberrated images with the amplitude range up to
[−0.1, 0.1] µm gives reliable results on the test data within this range and may give
acceptable results in the intervals from −0.15 to −0.1 µm and from 0.1 to 0.15 µm.
Training on the amplitude range from −0.15 to 0.15 µm leads to a significant drop in
performance.

6. 1000 training epochs are sufficient for achieving reasonable performance on the test data.

7. Increasing the training batch size to eight images led to improvements.

8. Convolution of the test images with the “zero” synthetic PSF, which makes the test data
look similar to the training data, significantly improves the results.

Using these recommendations, two networks with the same parameters were trained:

1. PhaseNet was trained on two modes — mode 3 (oblique astigmatism) and mode 8
(horizontal coma) — with two phantoms: one unaberrated image from the acquisition
series for mode 3 and the other — from the series for mode 8.

2. PhaseNet was trained on six modes — mode 3 (oblique astigmatism), mode 5 (vertical
astigmatism), mode 6 (vertical trefoil), mode 7 (vertical coma), mode 8 (horizontal
coma), and mode 12 (primary spherical) — with three unaberrated images passed as
phantoms from the corresponding series for modes 3, 8, and 12.

The following network parameters, which led to the best results on the Drosophila
dataset, were used to train these networks:

• training amplitude range: ±0.1 µm;

• phantom: unaberrated images from the target acquisition series with ai = 0 µm;

• activation functions (except for the last layer with the linear activation): tanh;

• input shape (crop shape): [50, 50, 50];

• training loss function: MSE;

• epochs: 1000;

• steps per epoch: 5;

• learning rate: 0.0003;

• batch size: 8.
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Training on two modes with two phantoms

The predictions were made for the images with experimentally introduced oblique
astigmatism (mode 3) and horizontal coma (mode 8) aberrations, acquired on the AO
microscope (Figure 3.27). The raw images did not contain any other aberrations except
for the inevitable residual PSF of the microscope, which is present in all images acquired on
this microscope. The raw images were convolved with the “zero” synthetic PSF as described
in Subsection 3.3.6.

Figure 3.27: Predictions for the images of neurons with experimentally introduced oblique
astigmatism (mode 3) and horizontal coma (mode 8) aberrations, acquired on the AO microscope.
The model was trained on modes 3 and 8 with two phantoms (neurons) and tested on the real
data with the “zero” convolution.

The results demonstrate that:

1. PhaseNet was able to pick up a relatively unsophisticated task of predicting the amplitudes
for two Zernike modes on the images of a nontrivial object.

2. It worked on the fixed sample with observable difference in intensity between the objects
and the background.

3. The “zero” convolution method helped to reach a reasonably low error.

4. The predictions for amplitudes with large absolute values (0.125 and 0.15 µm) may not
be as reliable as for smaller amplitudes.

5. PhaseNet correctly predicted the amplitude values around 0 µm for the absent aberration
mode on the images with introduced modes 3 and 8.

The network was tested on a series of images with varying amplitudes of mode 12. For
these images, the network was expected to predict a3,8 = 0; the real predicted value was
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±0.027 µm, resulting in the MSE = 0.000932. The predicted amplitudes were not consistent
across the series: for nontarget modes, they could not belong to the residual PSF of the
microscope or to the calibration offset. This suggests that the model did not generalize well.

Training on six modes with three phantoms

The second network was given a more sophisticated task of quantifying six types of
aberrations. It was trained with the same parameters as the first one but with three phantoms.

The loss function (Figure 3.28) entered plateau between 855 and 1000 epochs, showing
that the CNN reached its maximal performance on the validation set at 854 epochs. Therefore,
training this architecture for more epochs is not necessary.

The prediction on the raw images with primary spherical aberrations (mode 12)
experimentally introduced on the AO microscope is shown in Figure 3.29. A significant
improvement in the quality of predictions was observed after application of the “zero”
convolution method (Figure 3.30).

The results demonstrate that:

• PhaseNet was able to predict the amplitudes for six Zernike modes on the images of a
fixed biosample.

• Making the test data look more similar to the synthetic training data by applying the
“zero” convolution significantly improves the quality of predictions.

• PhaseNet reached its performance limit within 1000 epochs, therefore longer training is
not necessary.

• The performance decreases with increasing complexity.

• The results are reliable only on small amplitudes within the amplitude range up to
±0.1 µm.

• The CNN architecture may not be sufficiently advanced to learn all the necessary
patterns in the data to complete this task.

Training on six modes with two phantoms

It is important to acknowledge that in the experiment, where the model was trained
on six modes with two phantoms (modes 3 and 8) but was tested on the acquisition series
for mode 12, the performance dropped, although demonstrating a rough diagonal trend
after applying the "zero" convolution (Figure 3.31. As in the previous example, the "zero"
convolution helped. Nevertheless, this result indicated a lack of generalizability. This can
be overcome by providing the model with as many phantoms as available for the dataset.
Potentially, additional augmentation techniques could help.
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Figure 3.28: Loss function of training on the images of neurons with six modes (3, 5, 6, 7, 8, and
12, in ANSI nomenclature) with three phantoms (mode 3, oblique astigmatism; mode 8, horizontal
coma; and mode 12, spherical). The lowest value of the validation loss at epoch 854 during the
training for 1000 epochs is shown by a green dot.

Figure 3.29: Predictions of PhaseNet on the raw images with primary spherical aberrations
(mode 12) after training the model on six modes with three phantoms.

Training ResNet architecture

The previous results suggested trying a more advanced CNN architecture. A modified
ResNet model referred to as PhaseResNet here, with the structure summarized in Tables 3.2
and 3.3, was trained. The best performance was achieved after training it for 2291 epochs with
the learning rate of 0.00035 (Table 3.8). Other learning rate values led to similar performance
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Figure 3.30: Predictions of PhaseNet on the images with primary spherical aberrations (mode
12) convolved with the “zero” synthetic PSF. The model was trained on six modes with three
phantoms. The “zero” convolution was key to achieving a good result in the ±0.1 µm range.

Figure 3.31: Predictions of PhaseNet on the images with primary spherical aberrations (mode 12)
convolved with the “zero” synthetic PSF. The model was trained on six modes with two phantoms
(modes 3 and 8). The shape of the object in this acquisition series was not seen before.

according to the MSE on the test sets with the “zero” convolution applied. A ten times
higher learning rate of 0.0045 was tried, but the validation loss reached only 0.001800 at 600
epochs and was not progressing. The optimal learning rate should lie between 0.0003 and
0.0005. The rate of 0.00035 is considered to be suboptimal because other values were not tried
rigorously. Rigorous fine-tuning could improve the results incrementally only. Overall, changing
the learning rate within the range from 0.0003 to 0.0005 did not lead to significant differences.
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Training of one PhaseResNet model for 2500 epochs (until the model has likely reached its
performance limitation, as suggested by early stopping according to validation MSE) took
on average 13 hours 15 minutes, whereas training of PhaseNet for 1000 epochs (until the
validation loss reached a plateau) lasted 5 hours 18 minutes on a single GPU with 8 GB
memory. Although training of PhaseResNet took 2.5 times longer, the huge advantage of it
was that usage of PhaseResNet instead of LeNet-based PhaseNet resulted in approximately 2.3
times lower MSE. Compared to the PhaseNet predictions (Figure 3.30), PhaseResNet showed
a better result on the test set with the “zero” convolution applied (Figure 3.32). Nevertheless,
the predictions for the images with the largest amplitudes of aberrations are less accurate
than for those within the range of ±0.1 µm. Attempted training on synthetic images with
aberrations in the range of ±0.15 µm showed a higher MSE = 0.000639 on testing (Table 3.8).

Figure 3.32: Predictions of PhaseResNet on the images with primary spherical aberrations (mode
12) convolved with the “zero” synthetic PSF. The model was trained on six modes with three
phantoms.

Restoration

The predicted amplitudes were used for image restoration as described in Subsection 3.3.5
(Figure 3.34). The “zero” convolution trick was needed only for prediction of the PSF; the
restoration was performed on the raw image. The images in the figure are normalized with min =
1%, max = 98% with the percentile normalization function from the CSBDeep library [94]. The
predicted PSF for the image of a neuron with the amplitude of −0.1 µm, mode 12 (spherical)
had the following parameters (Zernike mode in the ANSI nomenclature : amplitude in µm):
{3 : 0.016003516; 5 : −0.008984767; 6 : −0.010572113; 7 : 0.017577238; 8 : −0.0029398804, 12 :
−0.1000473}.

Taking into account the results obtained on the synthetic data (astrocytes), the CNN
was used to determine the PSF on the in-focus image (the residual PSF of the microscope)
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Table 3.8: Comparison of PhaseResNet and PhaseNet models trained on the images of neurons
with six Zernike modes

PhaseResNet (ResNet-based) with aj,train = ±0.1 µm
Learning rate Lowest validation MSE Epoch Test MSE

0.00025 0.000109 2492 0.000483
0.0003 0.000099 2374 0.000446
0.00035 0.000100 2291 0.000430
0.0005 0.000106 2362 0.000437

PhaseResNet with aj,train = ±0.15 µm
0.00035 0.000354 2326 0.000639

PhaseNet (LeNet-based) with aj,train = ±0.1 µm
0.0003 0.000233 854 0.000676

and to restore the raw image with this PSF (Figure 3.33). The predicted residual PSF was
{3 : 0.006032576; 5 : −0.009988198; 6 : −0.010923643; 7 : −0.0013584846; 8 : 0.005916034; 12 :
−0.0022144802}.

The predictions include only those six modes that the model was trained to recognize.
Future studies should include optimization of the network’s architecture and parameters for at
least 11 modes up to the fourth-order Zernike polynomials.

Figure 3.33: Restoration of an experimental raw image of a neuron with mode 12 (spherical)
having the amplitude of −0.1 µm (middle z planes are shown). The zoomed-in predicted PSF
(middle panel), in addition to the spherical aberration, also contains small amplitudes for other
modes.

For the final training and restoration, PhaseResNet model with the following
parameters was used:

• training amplitude range aj,train = ±0.1 µm;

• three phantoms: unaberrated images of 96×96×96 pixels from the target acquisition
series with ai = 0 µm for i = 3, 8, 12;

• activation functions (except for the last layer with the linear activation): tanh;

• network input shape (crop shape): [50, 50, 50];

• random cropping: true;
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Figure 3.34: Restoration of an experimental in-focus raw image of a neuron (the middle z planes
are shown). The zoomed-in predicted residual PSF (middle panel) contains small amplitudes of up
to ±0.01 µm.

• epochs: 2291 (best weights);

• steps per epoch: 5;

• learning rate: 0.00035;

• batch size: 8.

The “zero” convolution was applied to the test images to obtain more accurate predictions.
The raw images were restored via deconvolution with the predicted PSFs.

3.6 Conclusions

This study proves potential applicability of PhaseResNet (ResNet-based version of PhaseNet)
to estimation of optical aberrations on images of fixed biosamples having clearly observable
difference between the sample and the background and with well-defined structure of the
sample. The predicted estimations can be used in the deconvolution algorithm to improve the
quality of images affected by aberrations.

It was demonstrated that the deep learning-based approach can accurately estimate
synthetic aberrations on objects of complex shapes and is able to achieve a decent quality on
experimental data only under certain conditions that constrain its practical reliability. The
issue of bridging the gap between the synthetically generated training data and the acquired
experimental data was partially solved by making the real data more similar to the synthetic
data.

In the current state of research, the method may be applicable only to images of relatively
thin fixed tissues, where the sample’s shape does not vary significantly. The problem of
generalizability to varying object shapes (e.g., in cases of moving or developing biosamples, or
if the imaged structures are highly diverse) should be worked on before applying PhaseResNet
in practice. Generalizability is a common problem in deep learning that can be later addressed
by improving the preparation of the training data by, for example, introducing augmentations
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to the synthetic training data. Some possible data augmentation techniques for this type of
data are mentioned in the next chapter in the context of another research question.

A suboptimal generalizability solution can be achieved by providing the network with
the shapes of the objects under study by sampling the phantoms — unaberrated images for
generation of synthetic training data — so that they represent the variety of shapes. As shown
on the Drosophila data, the point spread function on substantially aberrated experimental
images cannot be accurately determined without the proper phantom. The requirement to
provide such unaberrated (or minimally aberrated) images reduces the number of applications
where PhaseNet may be used.

In addition, the improvement of the image quality after performing image restoration
by deconvolution with the predicted point spread function requires further quantification.
The proposed method may also not work reliably for amplitudes of aberrations larger than
±0.1 µm. It is difficult to foresee the maximum possible amplitudes in an experimental imaging
setup, which further limits practical applicability of the method.

Overall, it was shown in this chapter that PhaseResNet can be used to estimate optical
aberrations under the described conditions. However, future work should focus on extending
the conditions of applicability and on improving the practicality of this method for sensorless
aberration correction.
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4
Explainable Multitarget Image

Regression

4.1 Abstract

In the previous chapter, I described an approach to quantitative evaluation of monochromatic
aberrations in 3D microscopic images — multitarget image regression. Predicting continuous
values for 11 classes is a complex task, and to the best of my knowledge, at the start of the
work on this chapter in May 2022, no interpretation method existed for multitarget image
regression.

Considering that approaches to explaining classification CNNs and their decisions are
well-established, it was decided to turn the task of multitarget image regression into that of a
multiclass classification. Explainability of a classification CNN was considered the starting point
for the development of a new method for interpretation of image regression because classification
and regression networks have essentially the same architecture. The main differences between
classification and regression consist in the preparation of the ground truth for training, in the
activation functions placed in the last layer, the loss functions to optimize, and the metrics to
evaluate the performance.

A method called Local Interpretable Model-agnostic Explanations (LIME) [39] was chosen
to explain the classification of aberrations because it has received high recognition by the
community, is model-agnostic, and outputs both positively and negatively contributing features.
The latter means that the method can answer a twofold question, “What parts of image x

support prediction y, and what vote against it?” The applicability of LIME to aberrated 3D
images was confirmed, as its output aligned with the human understanding of aberrations.
Finally, LIME was extended to multitarget 3D image regression. The method was named Image-
Reg-LIME and presented at the 1st World Conference on eXplainable Artificial Intelligence
(xAI-2023) in July 2023 [143].
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In this chapter, using the examples of PhaseNet (see Chapter 3), I demonstrate how to
use LIME and Image-Reg-LIME on 3D images and how to ask Image-Reg-LIME the right
questions to explain predictions of multitarget regression CNNs.

4.2 Related Work

The multitarget (multi-output) image regression, especially in 3D, is a rather rare task. One of
the common tasks is the human pose estimation, for example, by predicting the rotation angles
of the body parts in the 3D environment [58]. To the best of my knowledge, no explainable AI
methods have been applied to this problem. In a problem of adversarial attacks in 6D object
pose estimation, Seg-Grad-CAM (see Chapter 2) has been applied to the segmentation network
involved in the pose estimation [144]. The decisions of the convolutional long short-term
memory model trained on the daily temperature and precipitation maps of the catchment area
of the river to predict the streamflow were explained by visualizing important regions in these
maps using a gradient-based technique [89]. Detection of the crack tip and determining the
spatial position of the tip can be seen as image segmentation with subsequent calculation of the
tip position based on the segmentation mask. The task of segmentation can be interpretable
by applying an XAI method post hoc or by using a specially designed explainable model for
this task, such as a U-Net-based CNN with a parallel path with GAP and afterward retrieval
of gradient-weighted explanations [91].

The estimation of the brain age on MRI scans is a single-target regression problem in 3D.
The architecture of U-Noise [81], which was originally used for pancreas segmentation, has
been adapted to the brain age regression problem [145]. The authors extended it to 3D and
used an encoder–decoder pretraining to make training faster. To visualize the explanations,
they showed the brain regions used by the model to predict the age, then normalized and
averaged the relevance (intolerance to noise) maps across the dataset. Agreement of the output
explanations with the relevant medical studies has been reported.

Another model-specific method for brain age prediction, interpretable classification and
regression with feature attribution mapping (ICAM-reg), was published in November 2022
[146], extending the method called interpretable classification via disentangled representations
and feature attribution mapping (ICAM) [147] designed for classification to regression.
ICAM is a variational autoencoder with a generative adversarial network (VAE–GAN) with
feature attribution (FA) maps retrieved from the latent space. ICAM was tested on three
binary classification tasks: (1) determining whether the brain contains lesions, (2) detecting
Alzheimer’s disease, and (3) brain age classification into young (45–60 years) and old (70–80
years). ICAM-reg is a modification of ICAM with an additional regression module (fully
connected layer) placed in the encoder to enable training of VAE–GAN for regression tasks.
The FA maps from the layers in the middle of VAE–GAN are used to retrieve the network’s
attention as it was done in ICAM. ICAM-reg was also trained for the binary classification
task of lesion detection like ICAM. Saliency maps of several gradient-based XAI methods
were compared against FA maps of ICAM and ICAM-reg on how their produced maps match
with the positions of lesions (ground truth segmentation masks were available). According to
this comparison, ICAM showed the most accurate attribution maps, slightly outperforming
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the ICAM-reg architecture. The quality of the FA maps of ICAM-reg on the regression task
was not quantified because the chosen comparison metric was applicable only to the binary
classification task with the ground truth for lesion locations, whereas similar ground truth
masks for brain aging were unavailable.

Explaining estimations of aberrations

The studies of AI usage for recognition of optical aberrations are constrained by the lack
of publicly available data. The task of evaluating aberrations and the related problem of
sensorless correction of aberrations do not demand explainability because they neither target
applications regulated by law nor make decisions crucial for humans’ lives. Therefore, XAI
has not received much attention in this domain. Nevertheless, XAI is beneficial for any deep
learning application to confirm that the DL model makes correct decisions for right reasons.

The preprint by Hu et al. [125] that appeared in January 2023 indicates an interest in
interpretable neural networks designed to estimate optical aberrations. In their study, the
CNN was designed to determine the aberrations from precomputed pseudo-PSFs calculated as
an inverse Fourier transform of the fraction of the Fourier transform of one image with one
PSF divided by the Fourier transform of another image with another PSF (eq 3.1).

Central crops of 32×32 pixels from M pseudo-PSFs were stacked as an input to the CNN.
Each image was passed through four convolutional layers with trainable 3×3 kernels, each
followed by a local 2×2 max pooling. The input layer and the four convolutional layers had
additional connections to the concatenation fully connected layer (see Figure S1 in ref [125]),
analogous to shortcut connections in U-Net [63]. These five layers were connected to the
concatenation fully connected layer through the global max pooling. The concatenation fully
connected layer was followed by the intermediate fully connected layer and then by the
final fully connected layer for the output regression. The weights between the concatenation
fully connected layer and intermediate fully connected layer were used for interpretation: the
proportional weights of each block of features coming from a shortcut connection to each of
five convolutional layers (see Figure S1 in ref [125]) are summarized in Table 1 in ref [125].

The interpretation of the CNN globally was achieved by measuring the percentage of the
weight for each block, which can be perceived as a sort of “statistics” of which parts of the
network were more important during training than the others. The authors also showed the
distribution of weights for manually designed input images and manually chosen (not trained)
convolutional kernels. This approach aimed at constructing an explainable by design gray box
model with increased trustworthiness as opposed to classical black boxes used for estimation
of aberrations.

This method has the following drawbacks:

1. It is model-specific and ante hoc (works only for the selected architecture predesigned in
this special way);

2. It may not be applicable to explaining individual decisions;

3. Its explanations are not visual and may not be directly human-understandable.
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4.3 Methods

The method proposed in this dissertation is based on Local Interpretable Model-Agnostic
Explanations (LIME) and has the following properties:

1. It is model-agnostic and post hoc (works for any model and is applied after training);

2. It explains individual decisions;

3. Its explanations are visual and are mapped to a human-understandable domain: input
images.

However, it cannot be directly used to explain models globally, a disadvantage typical for
model-agnostic methods. Nevertheless, the user can understand how the model makes decisions
in general by investigating multiple examples of the input data and respective explanations of
the predictions for these examples.

4.3.1 LIME

Concept

LIME is an algorithm designed for explaining the predictions of any black-box classifier
and of black-box regressors trained on tabular data. LIME supports tabular, image, and text
input data for classifiers.

It works by approximating the behavior of the complex model locally by learning a white
box model (such as a linear or logistic regression) around the prediction made for a specific
instance. This is done by randomly perturbing the input instance and observing the changes
in the predictions made by the complex model. LIME then fits the simple white box model
to these perturbed instances as input data with the predictions of the black box model as
the ground truth for supervised training. This fitted simple model is a surrogate that locally
approximates the behavior of the complex model of interest. In this context, locally means
that it approximates the behavior of the complex model only for the data points in close
proximity (within the prediction space) to the input instance, therefore this approximation is
not transferable to other predictions and cannot explain all predictions and the model globally.

LIME retrieves explanations from the surrogate model, which is chosen to be interpretable
by design due to its simplicity (e.g., linear regression). The resulting explanation is a set of
feature importances that describe the weights of each feature in the simple model, and these
weights reflect the impact of these features on the prediction made by the complex model.

Optimization problem

In mathematical terms, a white box model (e.g., a decision tree or a linear regression)
g ∈ G, where G is the class of models interpretable by design. The choice of g is constrained by
the measure of complexity Ω(g), which can be, for example, the depth of the decision tree. The
prediction of the complex model of interest on the input data instance x is denoted as f(x).
LIME requires f(x) to be the probability function of the prediction of the class. To find only
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the local data samples z around x, the distance between z and x is defined as πx(z). The loss
function L(f, g, πx) measures how far the predictions of g are from the predictions of f on the
local area πx around x. Finding the explanation ξ(x) for the input x becomes the optimization
problem of minimizing the loss L, with the complexity of the model g being constrained by
Ω(g):

ξ(x) = arg ming∈G(L(f, g, πx) + Ω(g)) (4.1)

Because the user of LIME has to select the class of models G and set the complexity of the
model Ω(g) by defining the number of features K to be used by g, the optimization problem
in eq 4.1 is reduced to finding the loss L:

ξ(x) = arg ming∈GL(f, g, πx) + Ω(g) (4.2)

The loss function L is defined in LIME as the locally weighted square loss:

L(f, g, πx) =
∑︂

z,z′∈Z
πx(z)(f(z) − g(z′))2 (4.3)

The distance measure πx(z) was defined as an exponential kernel with the width σ on the
distance function D: πx(z) = exp(−D(x, z)2/σ2). For images, the authors stated D = L2,
which is the Euclidian distance in n-dimentional feature space. The user can select other
metrics for D, such as a more “advanced” version of L2 — cosine similarity, popular in natural
language processing applications.

Input perturbation

To make the perturbations meaningful, groups of pixels were used instead of individual
pixels. Changing individual pixels can lead to changes in predictions, but such adversarial
attacks are barely understandable by humans. The pixels were grouped according to semantic
meaning, which was achieved by segmentation of the input image, as a preprocessing step,
with an unsupervised segmentation algorithm. In the LIME study, such segments are called
superpixels [39].

The input perturbation begins with selecting superpixels, which are small regions of similar
color or texture within an image. The superpixels are then treated as features and “turned off”
by occlusion of the region with a color (defined by the parameter “hide color” set by default to
the mean value of the segment) or “turned on” by keeping the segment present. N perturbed
images with some segments “on” and others “off” form the new dataset Z. First, the complex
model f makes predictions on this new dataset. Second, the interpretable model g is trained
on the new data with the predictions f(Z). The quality of the approximation g(Z) ≈ f(Z)
depends on the size N of the dataset. In practice, a good value for N is 1000 data samples.
The image is segmented only once at the preprocessing step, and the positions and shapes of
the superpixels are fixed for each z ∈ Z. Because of this, g(Z) can learn the impact of each
segment.

Last, the prediction of g(x) for image x is explained: the weights of the segments (features
on which g was trained) are mapped back to the image, forming a heat map. The resulting
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explanation is essentially a set of feature importances indicating the impact of each superpixel
on the prediction of the image classifier. The impact can be both positive (features support
the prediction) and negative (features vote against the prediction of the class).

4.3.2 Superpixel algorithms

The selection of superpixels in LIME is effectively a form of image segmentation. Besides aiming
at semantically meaningful segmentation, the purpose of dividing an image into superpixels is
to reduce the number of features to be considered while still preserving enough information.
Superpixels should not be tiny (otherwise the features are too small and not meaningful
enough) or very large (to avoid too generic explanations). By breaking down the image into
smaller segments, LIME can generate a more precise explanation. The number of segments
sets a tradeoff: it is set by the user, and the rule of thumb is to try several values on a couple
of input images to determine which number gives sufficiently precise and, at the same time,
meaningful explanations.

The superpixel segmentation can be performed with any classical image segmentation
algorithm such as Quick Shift [148] from Scikit-image library [99] implemented in LIME by
default. Quick Shift accepts only RGB images or those converted into the L*a*b* color space
[149]. The original implementation of LIME for image data was designed for explaining the
classification of natural RGB and grayscale 2D images. As inputs, LIME requires a 2D image
(with an additional input dimension for RGB images) and the model’s prediction function that
can calculate predictions on the input image.

To extend LIME to 3D input, Quick Shift, which works only on 2D images, had to
be replaced with another algorithm. The aberrated images in this study and point spread
functions (PSFs) are three-dimensional, hence the model’s decisions have to be explained in
3D. Downscaling the task to 2D does not make sense: as has been shown by Debayan Saha et
al. [108], a single z plane is insufficient for high-quality predictions for all 11 Zernike modes.

In this work with 3D images, Quick Shift was replaced with Simple Linear Iterative
Clustering (SLIC) [150], a K-means-based clustering algorithm in Color-(x, y, z) space.
Specifically designed as a superpixel algorithm, SLIC executes K-means in the 5D space
of color information and image location and has many similarities with Quick Shift. The
clustering approach is highly efficient due to its simplicity. To produce appropriate results,
SLIC is recommended to be used in the L*a*b* color space instead of RGB for color images. As
with Quick Shift, the compactness parameter in SLIC trades off color similarity and closeness
of points within the segments, whereas the number of segments determines the number of
centers for K-means.

4.3.3 LIME for 3D image classification

Replacement of Quick Shift with SLIC allowed extendability of LIME to 3D images of fluorescent
beads. The last activation function was chosen so that it outputs a probability vector, which
is the form of predictions that LIME operates with. The network was trained to assign a
single class (Zernike mode) to 3D experimental images, into which only one single mode was
intentionally introduced with an adaptive optics (AO) microscope.
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The architecture of the network is summarized in Table 4.1. This CNN is similar to
PhaseNet (Table 3.1) in Chapter 3. More details on training and the layers that differ from
the PhaseNet architecture are provided in Subsection 4.4.3.

Table 4.1: Model summary for 3D classification CNN

Model: 3D classification CNN
Layer (type) Output shape Parameters
X (InputLayer) (None, 32, 32, 32, 1) 0
conv1 (Conv3D) (None, 32, 32, 32, 8) 224
conv2 (Conv3D) (None, 32, 32, 32, 8) 1736
maxpool1 (MaxPooling3D) (None, 32, 16, 16, 8) 0
conv3 (Conv3D) (None, 32, 16, 16, 16) 3472
conv4 (Conv3D) (None, 32, 16, 16, 16) 6928
maxpool2 (MaxPooling3D) (None, 32, 8, 8, 16) 0
conv5 (Conv3D) (None, 32, 8, 8, 32) 13,856
conv6 (Conv3D) (None, 32, 8, 8, 32) 27,680
maxpool3 (MaxPooling3D) (None, 32, 4, 4, 32) 0
conv7 (Conv3D) (None, 32, 4, 4, 64) 55,360
conv8 (Conv3D) (None, 32, 4, 4, 64) 110,656
maxpool4 (MaxPooling3D) (None, 32, 2, 2, 64) 0
conv9 (Conv3D) (None, 32, 2, 2, 128) 221,312
conv10 (Conv3D) (None, 32, 2, 2, 128) 442,496
batchnorm (BatchNormalization) (None, 32, 2, 2, 128) 512
maxpool5 (MaxPooling3D) (None, 16, 1, 1, 128) 0
flat (Flatten) (None, 2048) 0
dropout1 (Dropout) (None, 2048) 0
dense1 (Dense) (None, 128) 262,272
dropout2 (Dropout) (None, 128) 0
dense2 (Dense) (None, 64) 8256
Y (Dense), Softmax activation (None, 11) 715
Total parameters: 1,155,475
Trainable parameters: 1,155,219
Nontrainable parameters: 256

The operation of LIME for 3D image classification is shown in Figure 4.1 on the example
task of classification of the optical aberration modes (Zernike modes). An already trained
network with convolutional layers and three dense layers at the end (other layers are omitted
to simplify the schematic) is used to produce predictions. The last layer outputs the probability
vector. To make the final class prediction, the index of this vector with the highest probability
score is taken. LIME uses the “raw” probabilities and does not need the prediction itself.

LIME uses the prediction function of the network to construct a new dataset (as described
in Subsection 4.3.1). During the preparation of the new dataset, the superpixel algorithm
SLIC divides the input 3D image into the user-defined number of volumetric segments. These
segments are either occluded (replaced with black pixels instead of gray set up by default) or
kept to measure their impact on the prediction.

After the surrogate model is trained, the user can choose the class prediction to explain,
which could be any class, not only that with the highest probability. For example, if the model
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Figure 4.1: Schematic of LIME explanations for 3D image classification. The convolutional neural
network with dense layers is trained on 3D images (the training procedure is not shown). The
prediction function of the CNN that produces the probability vector (the output of the last dense
layer without thresholding) is passed to LIME. The input 3D image is segmented with SLIC. A
new dataset for training a surrogate model is generated: several segments are occluded to form the
images and the prediction function produces the ground truth. The user defines the class prediction
to be explained. LIME explains the prediction of the surrogate model by retrieving the weights
of each segment for this prediction, producing a 3D explanation heat map. The input image and
explanation have a size of 32×32×32 pixels, plane 28 from the z stack is shown for both in 2D
view.

predicted class A incorrectly and the user wants to understand why, this can be done by
selecting one class and asking LIME:

• Why was class A predicted?

Then, the user can observe what input features speak for predicting class A (shown in
red and orange on the heat map at bottom right).

• Why was class B predicted?

Posing this question about the ground truth class B that was actually not predicted
forces LIME to generate a heat map where the segments with a positive impact would
mean that they support the low value predicted for B, whereas the segments with a
negative impact would speak against B, meaning that because of them class B was not
predicted with the highest probability.
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The output explanation consists of weights (impact) of each segment for one particular
prediction for which an explanation was requested. This result is volumetric and can be
visualized as a series of 2D planes.

LIME has an option to visualize only top n positive or negative features, where n is defined
by the user. This works particularly well for natural images and can be beneficial for images
with optical aberrations when LIME is asked, “Why was this class not predicted?”

4.3.4 Image-Reg-LIME: LIME for 3D image regression

The original LIME was designed for 2D image classifiers with a probability activation function
for class predictions. An approach to handling the problem of higher dimensionality is described
in the previous subsection.

The original LIME produces explanations based on the predicted class probabilities (e.g.,
the probability of the class that the user wishes to explain). In the case of classifiers with
one-hot encoded outputs (0 and 1), the predictions are derived prior to the last activation
function (some classifiers possess a method “predict probabilities,” from others an intermediate
output should be retrieved manually). If the classifier outputs probabilities by design, its raw
output is used by LIME. For classifiers with thresholding, the output with probabilities has to
be used.

In the previous subsection, the probabilities of classification of aberrations were required for
LIME. The last activation function was softmax, producing probabilities with the respective
output range of (0, 1):

softmax(ti) = eti

Σjetj
(4.4)

where t is the vector of outputs of this layer of the network, ti is the output of the neuron i, e
is the exponential function, and Σj is the sum over all elements j ∈ N of this layer.

Sigmoid is another function commonly used in dense layers that outputs the probabilities:

sigmoid(ti) = 1
1 + e−ti

(4.5)

In PhaseNet [108], the second to last activation function for regression was the hyperbolic
tangent:

tanh(ti) = eti − e−ti

eti + e−ti
(4.6)

The function tanh behaves similarly to softmax by clipping the input–output function into an
“S” shape, but the output range of tanh is (−1, 1), and it is mostly used as an intermediate
activation function.

The last activation function of PhaseNet was linear:

linear(ti) = ti (4.7)

The output range for PhaseNet should include both negative and positive values because
aberrations can have positive and negative amplitudes. In addition, the output cannot be
treated as probabilities summing up to 1 because the presence of one aberration mode with a
large amplitude does not exclude a chance that other modes can also have large amplitudes.
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4. Explainable Multitarget Image Regression

Therefore, replacing the last linear activation in PhaseNet with a function that outputs a
probability vector was not an option.

The most important for LIME is to receive predictions on a continuous scale to determine
changes in the predictions precisely when the input image is manipulated. Because the CNN is
considered to be a “black box,” there are no additional requirements for the differentiability of
the activation functions.

In this research, the activation functions and model architecture remained the same (tanh
for the second to last layer and linear activation for the last layer).

Usage of Image-Reg-LIME for multitarget image regression in 3D is shown in Figure 4.2.
The working principle is similar to that of LIME for 3D image classification (Figure 4.1).
In addition to the standard question, “What speaks for and against the prediction?” the
proposed method offers an option to compare the predicted value with a reference value for
the same class and answer the question, “Why was the reference value for the target class
not predicted?” The ground truth value for the target mode is 0.093 µm, an amplitude of
0.088 µm was predicted, which is very close to the ground truth amplitude. Because of the
neglectable difference between the ground truth and the prediction, the explanation shows
barely interpretable features, thus, another reference value was selected for better visualization.
For the shown task of estimation of optical aberrations, this question may sound as, “Why the
predicted amplitude for oblique astigmatism is not 0.050 µm?”

The key contributions of this research are:

1. To explain the predicted values (“Why was the value ai for the target class i predicted?”),
the prediction function f of a regression CNN can be taken as is;

2. To answer the question, “Why the value a∗
i was not predicted instead of ai for the class

i for the input image x?” LIME requires a modified prediction function f∗ to select
the correct dataset Z for training of the surrogate model g(Z). The function f∗ for the
perturbed image z ∈ Z is defined as

for z ̸= x: f∗(f, z, i, ai, a∗
i ) = f(z) (4.8)

for z = x: f∗(f, z, i, ai, a∗
i ) =

f(x), where j ̸= i

a∗
i , where j = i

(4.9)

Index j is an index in the N -dimensional vector a of the output prediction, and z = x is
the input image x with all segments present, the predictions for which are used as the
reference point to determine the most relevant perturbed images Z.

The prediction for the input image is shifted to assign more similarity to perturbed
images with the prediction close to the target value a∗

i , so that the segments responsible for
the prediction of the desired value receive higher weights, according to the cosine similarity
distance metric (Figure 4.3).
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Figure 4.2: Schematic of Image-Reg-LIME explanations for 3D image regression. The convolutional
neural network with dense layers is trained on 3D images (the training procedure is not shown) to
predict a 1D array of continuous values. The wrapper (a modified function accepting the value
of interest) around the prediction function of the CNN is passed to Image-Reg-LIME. The input
3D image is segmented with SLIC. A new dataset for training a surrogate model is generated:
several segments are occluded to form the images, the prediction function produces the ground
truth. The user defines the target (an index in the prediction array) and the value to be explained.
Image-Reg-LIME explains the prediction of the surrogate model by retrieving the weights of
each segment for this prediction, producing a 3D explanation heat map. The input image and
explanation have a size of 32×32×32 pixels, plane 28 from the z stack is shown for both in 2D
view.

4.4 Results: Classification of Aberrations

Data

The experiments described in this and the next sections were performed on the dataset
with single-mode aberrations on images of fluorescent beads from the PhaseNet publication
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4. Explainable Multitarget Image Regression

Figure 4.3: Schematic of the modified prediction function f∗. 2D section of N -dimensional
prediction space is shown. Here, x is the original unperturbed image, z is the perturbed image,
f(x) is the prediction of the CNN for x, f∗(x) is the shifted prediction for x, f∗(z) = f(z) is the
prediction for z, i is the target class (aberration mode), j is another class (j ∈ N, j ̸= i), ai is the
predicted value in f(x) for class i, a∗

i is the target value for class i, aj is the predicted value for
class j, β is the angle between the vectors for f∗(x) and f∗(z) in the prediction space (the measure
of similarity between f∗(x) and f∗(z) is cos β). Vertical axis shows the predicted values for class
i, horizontal axis — the predicted values for class j. Locally similar predictions with the largest
weights in LIME’s surrogate model are shown in yellow. Function f∗ shifts the area of predictions
considered the most relevant (yellow ellipse) close to the value a∗

i being “explained.”

[108], different from the Fluorescent beads dataset used in Chapter 3. This dataset was chosen
since it was usable for a classification task besides the original regression one.

4.4.1 Transforming the regression task into classification

PhaseNet was chosen as the baseline architecture because it was proven to perform well on
the regression task (prediction of amplitudes for each aberration mode) on this dataset. The
results of the search for a more optimal architecture are described in Subsection 4.4.3.

PhaseNet’s synthetic data generator takes the microscope’s parameters, a list of aberration
modes, and the maximally allowed absolute value of amplitudes (the allowed range of
amplitudes). It outputs a synthetic image with mixed aberrations and a vector of amplitudes
(one float value per mode). Such a generator is not designed for preparing a classification
training dataset. To do this, either the generator has to be changed to output synthetic images
with a single aberration mode and a single integer value of the amplitude, or the real data
has to be used. For the latter approach, data augmentation is necessary to prevent overfitting
because the number of images in the dataset is relatively small for training a neural network.

Training on the real data with augmentations was preferred for two reasons: (1) there is a
discrepancy between the synthetic and real data (Figure 4.4), and (2) this approach, compared

110



4.4 Results: Classification of Aberrations

to using synthetic images, provides a better control over the data distribution from which the
images for training, testing, and validation are sampled.

Figure 4.4: Acquired image of a real bead[108] and a synthetically generated aberrated image.

4.4.2 Data augmentation

The dataset was split into the training, validation, and test sets containing 110, 44, and 44
images, respectively. The training set contained 10 images for each of 11 modes, the validation
and test sets contained four images for each mode. The images were randomly selected to
ensure a variety of amplitudes, but the aberration modes were present in equal proportions to
avoid the class imbalance. Identical sets were used to train multiple models and evaluate their
performance.

To enlarge the training set, each raw image from it was passed to the augmentation block
of the code a certain number of times, and this parameter was configurable. It was set to
100, meaning that the networks were trained on 11000 augmented images instead of 110 raw
images. Enlarging the dataset more than 100 times did not improve the quality of predictions,
therefore the enlargement factor was kept at 100.

The nature of the data limited the list of suitable data augmentation techniques. Standard
computer vision augmentations [151] such as horizontal or vertical flips, rotations, distortions,
blurring, and sharpening are unsuitable for this type of data. Flips and rotations in the
(x, y) plane change the direction of some aberrations (e.g., pairs: oblique astigmatism and
vertical astigmatism, horizontal and vertical coma, etc.) or have no effect on symmetrical
aberrations such as primary spherical. Distortions change the size and shape of an object
and the magnitude of aberrations, and may change the nature of aberrations. Blurring and
sharpening may make small-amplitude aberrations invisible in the images.

In this work, the following data augmentation methods were used:

1. Translation
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2. Brightness change

3. Contrast stretching

4. Adding noise (Gaussian, Poisson, salt-and-pepper)

The first augmentation technique, translation, is random shifting of the object up, down,
right, or left. The images, having a size of 32×32×32 pixels, were padded to the size of 60×60×60
pixels with a constant intensity value randomly sampled from the range of (10−11, 10−6) for
each image. This range was selected according to the intensity of background pixels. Each
padded image was randomly cropped, with the output size of 32×32×32 pixels, which made
most of the images contain only a part of the object and have it located in different parts of
the image.

To change the brightness, a random float number between −0.5 and 0.5 was added to the
images.

Contrast stretching was performed using skimage.exposure.rescale_intensity method from
Scikit-image library [99]. The stretching range was randomized by sampling the upper bound
from the range of (0.6, 1.4).

The functions for adding Gaussian, Poisson, and salt-and-pepper noise were taken from
the module skimage.util.random_noise.

In the final step, the augmented images were normalized using the percentile normalization
function csbdeep.utils.normalize [94]. The normalization method included the parameter “clip
to [0, 1]” for rescaling the images to the value range of [0, 1]. Its effectiveness was also tested.

4.4.3 Parameter search

To compare the augmentation techniques mentioned above, the model with the following
parameters was selected on the basis of a preliminary search:

• dropout layers between the dense layers with the amount of dropout equal to 0.3;
• last activation: softmax;
• learning rate: 0.0002;
• added batch normalization prior to the dense layers;
• the “flatten” layer of PhaseNet was replaced by the global average pooling layer;
• epochs: 100;
• batch size: 50.
The other training parameters and the CNN architeture remained the same as in PhaseNet.

During the second iterative parameter grid search, four models achieved an equal
classification accuracy of 0.8636. They differed in the noise-adding parameters: whether
Poisson noise or salt-and-pepper noise was added. One of the models had clip = true (percentile
normalization was clipped to the range of [0, 1]), in the other models, clip = false. The model
that showed the slowest overfitting (according to the loss function and validation accuracy) was
chosen as the baseline for the subsequent parameter search. It was trained on the data with
translation, brightness, contrast, and Poisson noise augmentations. The impact of Poisson and
salt-and-pepper noise was investigated further during the architecture search (final iteration of
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the parameter grid searche) because these parameters differed across the winning models. The
investigated and finally selected parameters are summarized below.

In total, the following parameters and values were tested (the values of the best-performing
model are shown in bold):

1. Add augmentation translation: [true, false];

2. Randomized brightness change: [true, false];

3. Randomized contrast stretching: [true, false];

4. Add Gaussian noise: [true, false];

5. Add Poisson noise: [true, false];

6. Add salt-and-pepper noise: [true, false];

7. Clip pixel intensities to [0, 1] after normalization: [true, false];

8. Dropout of weights before the dense layers (fraction): [none (no dropout), 0.2, 0.3, 0.4,
0.5];

9. Intermediate activation functions: [tanh, softmax, sigmoid, relu];

10. Last activation function: [softmax, sigmoid];

11. Number of convolutional blocks (two convolutional layers with one max pooling): [4, 5];

12. lr: [0.0001, 0.0002, 0.0003, 0.0004];

13. Batch normalization after the convolutional layers: [true, false];

14. Dimensionality reduction layer before the dense layers: [global average pooling, flatten-
ing];

15. dense1 : [2048, 1024, 256, 128, 64];

16. dense2 : [2048, 1024, 512, 256, 128, 64, 32, 16];

17. Kernel regularization in the first convolutional layer of each convolutional block (L2
regularization factor): [none, 0.01, 0.05];

18. Kernel regularization in the second convolutional layer of each convolutional block (L2
regularization factor): [none, 0.01, 0.05].

This model was trained to classify 11 Zernike aberration modes and achieved the following
results on the test set:

• accuracy: 95.45%,

• precision: 93.18%,

• recall: 95.35%.
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These metric values were considered sufficient. Further parameter search was not necessary
for exploring the applicability of LIME to this type of data. The architecture of this model is
summarized in Table 4.1. The model was used in the XAI research presented in Subsection 4.4.5.

4.4.4 Clustering of 3D images

LIME [39] is a powerful model-agnostic explainer, but its default superpixel algorithm Quick
Shift [148] used for unsupervised segmentation, or clustering, has to be replaced with SLIC [150]
to work on 3D input images.

In this study, the following parameters of SLIC were changed from their default values in
the Scikit-image [99] implementation:

1. The number of segments: 8 × 8 × 8 = 512. The input images had a size of 32×32×32
pixels, and the number of segments was chosen as a rescaling factor of the input size;

2. Compactness: 0.01. The low value allowed segments of irregular shapes besides cubic
segments (when the compactness is large, the proximity between pixels strongly influences
the clustering result);

3. Maximal number of iterations: 50. The maximum number of iterations for K-means
algorithm was increased to help refine the clusters with only an insignificant increase in
the calculation time;

4. Channel axis: None, the images were grayscale;

5. Random seed was fixed to ensure consistency in segmentation and reproducibility.

In Figure 4.5, two neighboring z planes from the 3D clustering result produced by SLIC are
shown. Two other non-neighboring z planes selected from the segmented volume are shown in
Figure 4.6. The input image of a fluorescent bead, taken from ref [108], has oblique astigmatism
with an amplitude of 0.093 µm. The first z plane of the input image is shown in Figure 4.4.

4.4.5 Explanations of classification

To validate LIME’s explanations for the estimation of optical aberrations on these 3D data,
the first step is to ensure adequate performance in the simplest scenario: explaining the
classification of aberration modes on the images of point source objects, where a human can
clearly identify the aberration types. The types shown in the examples are easy to understand
without a deep background in optics: oblique astigmatism (Figure 4.4), vertical astigmatism
(similar to oblique astigmatism but the direction of distortions is vertical or horizontal, as
shown in Figure 4.7), and primary spherical (looks like bright and dark concentric rings
around the point in the (x, y) plane). The sources of these aberrations were described in
Subsection 1.4.1.

Ridge regression model was used as the surrogate and fitted into 1000 perturbed data
samples. The procedure is shown in Figure 4.1.

An explanation for the question, “Why was the correct class label predicted?” (Figure 4.7)
shows:
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Figure 4.5: Clustering using SLIC in 3D. Two neighboring z planes are shown.

Figure 4.6: Clustering using SLIC in 3D. Two non-neighboring z planes (from the middle and
from the end of the stack) are shown.
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1. How vertical astigmatism looks like: the aberration with the positive amplitude a =
0.093 µm stretched the point in the vertical direction ((x, y) plane) at the beginning
of the 3D acquisition stack along the z plane (at the end of the stack, the direction is
horizontal).

2. How to read LIME explanations: the heat map corresponds to the impact of each segment
(clustered with SLIC) on the CNN’s decision. Positive values (yellow, orange, and red)
are assigned to the segments supporting the prediction, values around zero (green) are
assigned to the neutral segments not influencing the decision, and negative values (blue
spectrum) correspond to the clusters speaking against the prediction. The color scale
depicts the importance values on the heat map.

3. The CNN correctly learned the features of the class: the elongated shape of the point
spread function (PSF) in the vertical direction was picked as the most positively important
part of the image for the prediction of the class “vertical astigmatism”.

Figure 4.7: LIME explanation for the correct classification of an aberrated image with vertical
astigmatism (left). The heat map represents the influence of each part of the input image (segmented
by SLIC) on the CNN’s prediction. Positive values (yellow, orange, and red) are allocated to
the segments supporting the prediction, neutral values (green) are assigned to the segments not
affecting the classification, and negative values (blue spectrum) correspond to the clusters arguing
against the prediction. The color scale indicates the impact of each segment on the heat map. The
explanation with LIME answers the question, “Why was the class ‘vertical astigmatism’ predicted
by the CNN for the input image?” The image and explanation are three-dimensional, plane 2 is
shown for both in 2D view.

In Figure 4.8, LIME answers the question, “Why was oblique astigmatism predicted, not
vertical astigmatism?” for an image with experimentally introduced oblique astigmatism with
the positive amplitude a = 0.093 µm. In the middle image, the segments having a positive
influence on the correct prediction (oblique astigmatism) are highlighted in red. In the right
image, the segments with a negative impact on the other class, vertical astigmatism, which
earned a low probability score and was not output in the final prediction, are shown in blue.
This figure suggests that the network “paid attention” to the diagonal distortion typical
for oblique astigmatism (middle image), did not find the vertical stretch typical for vertical
astigmatism (right image), and decided that the image contains oblique astigmatism and no
vertical astigmatism.
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Figure 4.8: LIME explanation for classification: segments with a positive impact on the correct
prediction (oblique astigmatism) and segments with a negative impact on the class that received a
low probability prediction (vertical astigmatism). Plane 2 from the z stack of the experimental raw
image with oblique astigmatism is shown on the left. The image in the middle represents the parts
of the input (in red) that positively influenced the prediction of oblique astigmatism. The image
on the right shows the segments (in blue) that negatively impacted the predicted probability of
vertical astigmatism in this input, which means that because of these parts of the image, the class
“vertical astigmatism” was not predicted.

4.4.6 Conclusions on the results for classification

The regression task of estimation of aberrations with their amplitudes was reduced to the
classification of 11 types of aberrations. The CNN was trained on the augmented data, and
its training parameters and architecture were optimized. The decisions were explained with
LIME XAI-method using SLIC superpixel algorithm working in 3D for image preprocessing
(segmentation into reasonable clusters). The operating parameters of SLIC were adjusted to
improve reliability with only a minor decrease in speed. The explanations of LIME were proven
to be realistic.

The following conclusions can be made from this research:

1. Training on the enlarged dataset with randomized augmentations reached high accuracy
on the raw test data.

2. Augmenting the training data by translation, brightness change, and contrast stretching
was beneficial to the quality of predictions.

3. Among the tested noise types — Gaussian, Poisson, salt-and-pepper, and their
combinations, — adding purely salt-and-pepper noise improved the test accuracy.

4. Clipping the pixel intensities to the range of [0, 1] after the percentile normalization on
the training data was not beneficial to the quality of predictions.

5. Two dropout layers and batch normalization improved the model’s accuracy.

6. The final activation function softmax produced better results than sigmoid.

7. The optimized CNN architecture, proposed data augmentation, and replacement of
Gaussian noise with salt-and-pepper noise may improve the work of PhaseNet in
the future.
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8. SLIC with the described parameters segments the 3D grayscale images of beads
appropriately.

9. LIME is suitable for the selected task: it highlights the input features relevant for
classification according to human notion.

10. LIME explanations locate features with a positive as well as negative impact on the
prediction, which also aligns with the human perception of aberration types.

The initial check on the classification task is thereby passed. The extendability of LIME to
the initial multitarget 3D image regression is explored in the next chapter.

4.5 Results: Explainable Regression of Aberrations

The most straightforward way of explaining decisions of a multitarget regression network is to
select a single target in the prediction vector and explain the value assigned to this target.

In the context of estimation of optical aberrations with PhaseNet [108], the prediction
vector consists of 11 amplitudes for 11 Zernike aberration modes, the targets are the aberration
modes, and the amplitudes (positive and negative floating point numbers) are the values to be
explained. For the task of estimation of the aberrations, it is not meaningful to explain the
whole prediction vector: it would be similar to explaining the whole prediction for all classes in
a multilabel classification, where multiple classes are allowed to be assigned to a single image.
In real applications, aberrations of different types appear independently from each other, and
multiple aberration types can be present in a single image. Then it would be unclear which
image features contribute to the prediction of which label. Because of that, only the value of a
single aberration is explained in each experiment later in this chapter.

In this section, example explanations of the values of a single target are presented as heat
maps with fixed colors, all answering the question, “Why was exactly this value predicted for
the selected target?”

The explanation heat maps represent the influence of each part of the input
image, segmented by SLIC, on the CNN’s prediction. Positive values (yellow, orange,
and red) are allocated to the segments supporting the prediction of a particular amplitude
for the chosen target in the prediction vector, neutral values (green) are assigned to the
segments not affecting the decision, and negative values (blue spectrum) correspond to the
clusters arguing against the prediction of this value. The color scale indicates each segment’s
contribution on the heat map.

Informativeness across the z planes

In the examples shown in Figures 4.9, 4.10, and 4.11, PhaseNet significantly underestimated
the positive amplitude. These explanations suggest that the CNN focused on the typical features
of vertical astigmatism and its reasoning made sense. Such an underestimation of 0.025 µm
could be caused by a discrepancy between the synthetic training data and real test data, shown
in Figure 4.4.
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The 3D explanation contains 32 planes in the z stack, three of which are shown in the
examples: plane 2 (Figure 4.9), plane 16 in the middle (Figure 4.10), and plane 27 (Figure 4.11).
The explanation maps differ across the z stack, providing the least informative explanations in
the middle planes of the stack. This behavior has a natural cause: the point in the middle plane
is in the optical focus, therefore the aberrations there are barely observable. In this particular
example, plane 27 appeared to be more informative than plane 2. Plane 2 was chosen for
consistency with the previous subsection. As described in Introduction (Subsection 1.4.1),
optical aberrations occur when the light rays do not focus in one point. Considering the
above, it was decided to visualize the performance of Image-Reg-LIME later in this chapter
on the planes taken from either the beginning or the end of the z stack. Further results are
demonstrated on planes 2 and 27 for consistency and a more objective comparison. Please
note that not all color shades and boundaries between superpixels on the heatmaps may be
visible due to compression of the document.

Figure 4.9: Image-Reg-LIME explanation for the value of a single target: the predicted amplitude
of 0.068 µm for the vertical astigmatism aberration. The input image (left) is identical to the
input in Figure 4.7 and contains an introduced aberration with an amplitude of 0.093 µm. The
Image-Reg-LIME explanation answers the question, “Why was the amplitude of 0.068 µm predicted
for the vertical astigmatism mode?” The image and explanation are three-dimensional, plane 2 is
shown for both in 2D view.

Figure 4.10: Image-Reg-LIME explanation for the value of a single target: the predicted amplitude
of 0.068 µm for the vertical astigmatism aberration. The input image (left) contains an introduced
aberration with an amplitude of 0.093 µm. The Image-Reg-LIME explanation answers the question,
“Why was the amplitude of 0.068 µm predicted for the vertical astigmatism mode?” The image
and explanation are three-dimensional, plane 16 is shown for both in 2D view. This middle plane
shows the least informative explanation, compared to two other planes, as the image does not
contain target-specific features.

119



4. Explainable Multitarget Image Regression

Figure 4.11: Image-Reg-LIME explanation for the value of a single target: the predicted amplitude
of 0.068 µm for the vertical astigmatism aberration. The input image (left) contains an introduced
aberration with an amplitude of 0.093 µm. The Image-Reg-LIME explanation answers the question,
“Why was the amplitude of 0.068 µm predicted for the vertical astigmatism mode?” The image
and explanation are three-dimensional, plane 27 is shown for both in 2D view. This plane from the
end of the z stack contains a segment (in red) that has a strong impact on the prediction.

Residual aberrations

In Figure 4.11, the elliptic shape of the distortion is not exactly horizontal, and it can be
presumed that the image is slightly affected by oblique astigmatism, which can be due to the
residual PSF of the microscope containing this aberration. PhaseNet predicted the amplitude
of 0.012 µm for oblique astigmatism. The explanation (Figure 4.12) shows that the top left
part of the distortion was important to find slight oblique astigmatism.

Figure 4.12: Image-Reg-LIME explanation for the value of a single target: the predicted
amplitude of 0.012 µm for the oblique astigmatism aberration that was not experimentally
introduced. The input image is identical to the input in Figure 4.11 with introduced vertical
astigmatism. The Image-Reg-LIME explanation answers the question, “Why was the amplitude
of 0.012 µm predicted for the oblique astigmatism mode?” The image and explanation are three-
dimensional, plane 27 is shown for both in 2D view. This plane from the end of the z stack contains
a segment (in red) that captures a portion of the oblique shift of the distortion and has a strong
impact on the prediction.

To determine why PhaseNet significantly underestimated the amplitude for the image with
vertical astigmatism (introduced value — 0.093 µm, predicted — 0.068 µm, see Figures 4.9,
4.10, and 4.11), an experiment with a reference value was conducted. As pointed out earlier,
XAI methods are especially helpful to understand the reasoning behind wrong decisions.
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4.5.1 Explanations with a reference value

To find out why the amplitude value was incorrectly predicted by PhaseNet, LIME was modified
to answer questions with a reference value as described in Subsection 4.3.4 (Figure 4.2).

The result of asking Image-Reg-LIME, “Why did the model not predict the amplitude
of 0.093 µm?” is shown in Figures 4.13 and 4.14 (planes 2 and 27 from the z stack). The
positive impact (in the yellow-red spectrum) stands for the decision “not 0.093 µm” and the
segments with a negative impact (in blue) are against this decision, meaning that they are
actually supporting the opposite decision of predicting 0.093 µm. The segments supporting
the decision “not 0.093 µm” outweighed those against it, therefore the final decision, dictated
by the features with positive weights, was “not 0.093 µm”.

Figure 4.13: Image-Reg-LIME explanation for the ground truth value that was not predicted:
0.093 µm for vertical astigmatism. The input image (left) contains an introduced amplitude of
0.093 µm, but PhaseNet predicted 0.068 µm. The explanation answers the question, “Why did the
model not predict the amplitude of 0.093 µm for the vertical astigmatism mode?” The segments
with a positive impact (in the yellow-red spectrum) support the decision “not 0.093 µm” and the
segments with a negative impact (in blue) are against this decision. The latter effectively vote for
0.093 µm but are in the minority. Because of the highly impactful positive features, the decision
“not 0.093 µm” won. Hypothetically, the intensity of the input pixels in the red segments was
insufficient (the larger the amplitude, the bigger and brighter the distortions are), and therefore a
lower amplitude was predicted. Plane 2 from the z stack is shown.

Predictions on synthetic data

The reason for underestimation of the aberration amplitudes may be hidden in the training
procedure: PhaseNet was trained on the synthetically generated images, which may not reflect
the real conditions (Figure 4.4). To investigate this, the predictions made on synthetic images
were explained with Image-Reg-LIME. The PhaseNet’s predictions were accurate for small
amplitudes, but starting from ±0.070 µm, the absolute values were also underestimated.

To determine the characteristics that an image must possess to receive the prediction
of an amplitude of 0.093 µm, synthetic images with varying ground truth amplitudes were
generated. The image for which PhaseNet predicted an amplitude of 0.093 µm was selected for
the analysis. The ground truth of the generated amplitude was 0.107 µm.

The Image-Reg-LIME explanations shown in Figures 4.15 and 4.16 answer the question
without a reference value, “Why was the amplitude of 0.093 µm predicted for vertical
astigmatism?” and demonstrate two 2D planes of the 3D explanation heat map. In Figure 4.16,
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Figure 4.14: Image-Reg-LIME explanation for the ground truth value that was not predicted:
0.093 µm for vertical astigmatism. The input image (left) contains an introduced amplitude of
0.093 µm, but PhaseNet predicted 0.068 µm. The explanation answers the question, “Why did the
model not predict the amplitude of 0.093 µm for the vertical astigmatism mode?” The segments
with a positive impact (in the yellow-red spectrum) support the decision “not 0.093 µm” and the
segments with a negative impact (in blue) are against this decision. The features with a positive
impact heavily prevail. Hypothetically, the intensity of the input pixels in the dark red and orange
segments was too low, and therefore a lower amplitude was predicted. Plane 27 from the z stack is
shown.

the highest positive impact was assigned to the pixels with a high pixel value, which align
horizontally in the center of the image. The object looks like a rectangle with rounded corners.
The real images contained a sphere whose pixel value decreased from the center to the periphery
(Figure 4.14). This observation may indicate that PhaseNet has learned the aberration features
typical for the synthetic dataset but absent in the set of the real data.

Figure 4.15: Image-Reg-LIME explanation of the prediction on the synthetic data: an amplitude
of 0.093 µm was predicted for vertical astigmatism. The input image (left) contains a synthetic
amplitude of 0.107 µm. The explanation answers the question without a reference value, “Why was
the amplitude of 0.093 µm predicted for vertical astigmatism?” The high pixel value of the pixels
in the bottom center and center of the image and the vertical shape of the object were important
for this decision. 2D plane 2 is shown.

4.5.2 Validation of explanations

In the example of underestimation of the amplitude of vertical astigmatism (Figure 4.14), the
amplitude of 0.068 µm was predicted instead of 0.093 µm. Presuming that the aberration
features in the synthetic data can differ from those in the real data, it is interesting to search
for these differences, and a straightforward way for this is subtracting a synthetic image with
one amplitude from the real image.

122



4.5 Results: Explainable Regression of Aberrations

Figure 4.16: Image-Reg-LIME explanation of the prediction on the synthetic data: an amplitude
of 0.093 µm was predicted for vertical astigmatism. The input image (left) contains a synthetic
amplitude of 0.107 µm. The explanation answers the question without a reference value, “Why was
the amplitude of 0.093 µm predicted for vertical astigmatism?” The constantly high pixel value of
the pixels aligned horizontally in the center was very important for this decision. 2D plane 27 is
shown.

Two synthetic images with aberration amplitudes of 0.068 and 0.093 µm and the result of
subtraction of the second image from the first one are shown in Figure 4.17. The result is the
difference in the pixel values which points to the parts of the input that should be important
to differentiate these two amplitudes. These are the visual features that PhaseNet has learned
from the synthetic training data to distinguish these two amplitudes. The CNN also observed
in the training data that the images with an amplitude of 0.093 µm contain a rectangle-like
object, whereas the synthetic image with an amplitude of 0.068 µm contains an elliptic object
with a bright sphere in the middle.

The experimental image (Figure 4.14) with the ground truth amplitude of 0.093 µm for
which PhaseNet predicted 0.068 µm looks more similar to the synthetic image in Figure 4.17B,
with the predicted amplitude of 0.068 µm, than to the image in Figure 4.17A with that of
0.093 µm.

Figure 4.17: Difference between two synthetic images, plane 27. The synthetic images A and B
are normalized, their difference A – B = C is not normalized to visualize the contrast. The scale
shows the pixel value. In the right panel, zero difference in the center of the image indicates that
the pixel value there is the same in both images. Bright spheres on the left and right demonstrate
that the largest difference is at the ends of the object. Gray areas around the centers of the spheres
indicate a gradual increase in the pixel value.

The network expects that vertical astigmatism with an amplitude of 0.093 µm has a certain
appearance. On the other hand, the input image was not predicted to have an aberration
amplitude of 0.093 µm. The discrepancy in the pixel values between the synthetic image with
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Figure 4.18: Difference between the synthetic and real images compared with the Image-Reg-
LIME explanation, plane 27. Synthetic image A and real image B are normalized and the result of
their subtraction A – B = C is visualized in color, where the negative difference is shown in blue
(pixel value in A < pixel value in B), values around zero — in green, and positive difference —
in yellow-red, with lower values in yellow, and larger ones in red. This color scheme is used for
explanations throughout this chapter. Because the absolute values of the difference and explanation
weights are not essential for the conclusions, they are omitted for space and simplicity. In image D,
the explanation of why the amplitude of 0.093 µm was not predicted for the real image B is plotted
on top of the difference C converted to grayscale. This shows agreement of the Image-Reg-LIME
explanation with the actual discrepancy between the input features which lead to the desired
prediction (0.093 µm) and the input that did not receive the desired prediction. This experiment
confirms the rationality of the Image-Reg-LIME explanation.

the predicted amplitude of 0.093 µm and the real image with the ground truth amplitude of
0.093 µm was visualized to determine whether the Image-Reg-LIME explanations point to the
differences between the network’s expectation and the input image.

The synthetic image (Figure 4.18A) has the predicted aberration amplitude of 0.093 µm,
the real image (Figure 4.18B) — the ground truth amplitude of 0.093 µm. The result of their
subtraction (Figure 4.18C) points to the parts of the input that should be responsible for
predicting the wrong amplitude for the real image. The red-orange barbell-like area in the
middle with a yellow boundary shows the location where the pixel value in the synthetic image
(which the CNN expects to possess the features of 0.093 µm amplitude) is larger than that in
the real image.

To compare the localization of these differences with the explanation of why the amplitude
of 0.093 µm was not predicted for this real image (Figures 4.14 and 4.18B), the explanation
was mapped to the difference plot (Figure 4.18C) converted to grayscale. The mapping is
shown in Figure 4.18D. Because only spatial localization and relative differences in the pixel
values are necessary to validate the explanation of the network’s reasoning, the absolute values
of the differences and explanation weights are omitted for space and simplicity.

In Figure 4.18D, the areas with the largest positive weights in the explanation (orange
and dark red segments near the center) overlap with the locations of the largest difference in
Figure 4.18C (bright spots in Figure 4.18D). This means that, according to Image-Reg-LIME,
the CNN did not predict the desired value exactly because of this discrepancy (Figure 4.18C)
between the real input image (Figure 4.18B) and synthetic input image (Figure 4.18A), which
the CNN needs for making the desired prediction of 0.093 µm for the selected target (vertical
astigmatism) in the prediction vector.

This result proves that the explanations of Image-Reg-LIME highlight reasonable input
features and make sense from the domain-specific perspective.
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4.6 Conclusions

The research presented in this chapter proves that LIME is applicable to 3D image classification
of optical aberration modes and Image-Reg-LIME - to multitarget 3D image regression of
amplitudes of aberrations. For the latter task, Image-Reg-LIME with the modified prediction
function can explain incorrect predictions by showing what was missing in the input image to
make the prediction correct.

Both tasks were in 3D, and to enable LIME to work with 3D grayscale images, SLIC was
chosen as the superpixel segmentation algorithm. The parameters of SLIC that lead to image
partitioning suitable for LIME explanations are data-specific and must be carefully defined
before applying LIME and Image-Reg-LIME.

The regression task was reduced to classification to investigate whether LIME can reasonably
explain the differences in the aberration types. Data augmentation of the training set and the
network architecture proposed for classification may be used to improve the results of PhaseNet
and PhaseResNet investigated in Chapter 3. The explanations of LIME for classification agreed
with the distinctive visual features of the aberration modes. Thereby, LIME, with SLIC as a
segmentation algorithm, is suitable to explain the 3D image classification of aberrations.

Next, Image-Reg-LIME was used to explain the decisions of PhaseNet. The explanations of
Image-Reg-LIME for multitarget 3D image regression of amplitudes of aberrations answering
the question, “Why was the value a predicted for the regression target i?” agreed with the
distinctive visual features of the aberration modes and their magnitudes.

A novel modification to LIME (the key feature of Image-Reg-LIME) was proposed —
explanations with a reference value — that allows explaining why the value a∗ (amplitude)
was not predicted for the regression target i (aberration type) in the prediction vector of
amplitudes for each aberration mode. The rationality of this novel type of explanations was
proven by demonstrating that Image-Reg-LIME highlights the differences between the input
image, for which a∗ was not predicted, and another image, for which a∗ was predicted. This is
an important step in understanding the sources of inaccurate predictions.

Overall, LIME and Image-Reg-LIME are valid methods for explaining the classification
and the estimation of optical aberrations in 3D images, respectively. To allow applicability
to 3D images, SLIC should be used as the superpixel algorithm and its parameters should
be defined specifically for the new data. To explain incorrect predictions of individual target
values in the output of a regression network, Image-Reg-LIME can be supplied with a modified
prediction function with a reference value. This may provide new insights into data biases or
discrepancies between the training and test domains, and thereby help to improve construction
of the training dataset.

Image-Reg-LIME has the potential to be used for other multitarget 3D image regression
tasks in other application domains, which could be a scope of future work. The insights about
the synthetic training data gained from Image-Reg-LIME and proposed data augmentations
can be used to improve PhaseNet’s and PhaseResNet’s performance in the future.
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Answering the questions proposed in Introduction, I would like to share a view on the current
state of explainable artificial intelligence (XAI) and make final conclusions about the conducted
research in this broad context.

• Can artificial intelligence be explainable?

Yes, AI can be explainable. Moreover, any weak AI should become explainable one day,
regardless of the task it was designed for. As the current XAI research concerns only weak AI,
a prognosis for the explainability of artificial general intelligence cannot be made. However,
the conversational AI ChatGPT, which had become one of the most discussed breakthroughs
immediately after its release in November 2022, came as close as never before to what is
defined as artificial general intelligence. Nevertheless, ChatGPT is still believed by the research
community to belong to weak AI. To my question of whether it can explain its decisions, it
replied positively. When I asked for advice on a casual topic and requested an explanation of
why it gave me this advice, I expected a disclosure of information sources or some Internet
statistics. Instead, ChatGPT argued like a human would. This explanation was indeed in the
human-understandable domain, but did the AI explain its own decision, or did it learn how to
argue with humans by “reading” similar conversations?

• What does it mean for artificial intelligence to be able to explain its decisions?

It means that such an AI model is explainable by design (see Subsection 1.2.2), and thereby
its decisions are transparent to a certain degree. Normally, models of this kind are designed
so that explanations are easy to retrieve and no additional tools are needed. But this does
not necessarily mean that the model provides explanations along with predictions; instead, it
waits for a human to ask for explanations.

• Can we explain AI’s decisions and the underlying algorithms in detail?

We humans have the tools in our hands to explain the decisions and underlying algorithms
of certain types of weak AI. The underlying AI algorithms can be explained in detail on the
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theoretical level by providing an understanding of the architecture and optimization procedure
(e.g., how convolutional layers process input images and how loss functions are optimized).
On the practical level, what the network has learned can be explained using global XAI
methods that provide advanced techniques for retrieving information learned by individual
units during training. For explaining individual decisions made on specific data examples,
local XAI methods are useful. A range of methods is already available for practitioners, but,
in the context of computer vision, most of them are designed for image classifiers. As the
research field moves forward, more types of AI models become explainable, and the quality of
explanations increases. However, the notion of quality remains mostly subjective, or the defined
quality metric is specific to a single problem and a single type of data, which complicates
comparison of XAI methods.

In AI research in general, the lack of available training data is one of the major limitations.
The number of AI publications about training techniques has been skyrocketing during the
past decade, libraries for various programming languages offer tools for model design and even
pretrained models, and necessary hardware for calculations is accessible through cloud providers.
Nevertheless, the research of some AI applications is limited by data availability or quality.
For example, in sensorless adaptive optics, research is only possible with microscopes with
special sensors, constraining the scientists not having access to such devices to computational
work on limited publicly available image data. Making more experimental data accessible
would facilitate progress in solving the problems of computational estimation and correction
of optical aberrations.

For XAI research, the lack of specific data — expert-labeled ground truth for explanations
— is a limiting factor. Such ground truth would be invaluable for comparing XAI explanations
with human decision-making in tasks where expertise in the topic is required to validate the
plausibility of explanations.

An alternative to the expert-labeled ground truth for explanations is creation of a toy
task where the features responsible for the decisions are obvious. For evaluation of XAI for
image regression, such a toy task is fairly easy to design by training a model with a regression
objective to count objects or to estimate their size, and then check if the explanation heat
maps highlight the expected objects’ locations.

As was proven in this thesis, the existing tools for explainable image classification are
powerful enough to be extendable to other tasks, such as image segmentation and image
regression. However, to realize such extension, the methods for explainable image classification
require adaptation and understanding of the underlying explanation processes and of the data
that they are applied to.
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