183 research outputs found

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    A distributionally robust index tracking model with the CVaR penalty: tractable reformulation

    Full text link
    We propose a distributionally robust index tracking model with the conditional value-at-risk (CVaR) penalty. The model combines the idea of distributionally robust optimization for data uncertainty and the CVaR penalty to avoid large tracking errors. The probability ambiguity is described through a confidence region based on the first-order and second-order moments of the random vector involved. We reformulate the model in the form of a min-max-min optimization into an equivalent nonsmooth minimization problem. We further give an approximate discretization scheme of the possible continuous random vector of the nonsmooth minimization problem, whose objective function involves the maximum of numerous but finite nonsmooth functions. The convergence of the discretization scheme to the equivalent nonsmooth reformulation is shown under mild conditions. A smoothing projected gradient (SPG) method is employed to solve the discretization scheme. Any accumulation point is shown to be a global minimizer of the discretization scheme. Numerical results on the NASDAQ index dataset from January 2008 to July 2023 demonstrate the effectiveness of our proposed model and the efficiency of the SPG method, compared with several state-of-the-art models and corresponding methods for solving them

    A two-stage stochastic mixed-integer program modelling and hybrid solution approach to portfolio selection problems

    Get PDF
    In this paper, we investigate a multi-period portfolio selection problem with a comprehensive set of real-world trading constraints as well as market random uncertainty in terms of asset prices. We formulate the problem into a two-stage stochastic mixed-integer program (SMIP) with recourse. The set of constraints is modelled as mixed-integer program, while a set of decision variables to rebalance the portfolio in multiple periods is explicitly introduced as the recourse variables in the second stage of stochastic program. Although the combination of stochastic program and mixed-integer program leads to computational challenges in finding solutions to the problem, the proposed SMIP model provides an insightful and flexible description of the problem. The model also enables the investors to make decisions subject to real-world trading constraints and market uncertainty. To deal with the computational difficulty of the proposed model, a simplification and hybrid solution method is applied in the paper. The simplification method aims to eliminate the difficult constraints in the model, resulting into easier sub-problems compared to the original one. The hybrid method is developed to integrate local search with Branch-and-Bound (B&B) to solve the problem heuristically. We present computational results of the hybrid approach to analyse the performance of the proposed method. The results illustrate that the hybrid method can generate good solutions in a reasonable amount of computational time. We also compare the obtained portfolio values against an index value to illustrate the performance and strengths of the proposed SMIP model. Implications of the model and future work are also discussed

    Index tracking model, downside risk and non-parametric kernel estimation

    Get PDF
    In this paper, we propose an index tracking model with the conditional value-at-risk (CVaR) constraint based on a non-parametric kernel (NPK) estimation framework. In theory, we demonstrate that the index tracking model with the CVaR constraint is a convex optimization problem. We then derive NPK estimators for tracking errors and CVaR, and thereby construct the NPK index tracking model. Monte Carlo simulations show that the NPK method outperforms the linear programming (LP) method in terms of estimation accuracy. In addition, the NPK method can enhance computational efficiency when the sample size is large. Empirical tests show that the NPK method can effectively control downside risk and obtain higher excess returns, in both bearish and bullish market environments

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Get PDF
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    A Bi-Objective Portfolio Optimization with Conditional Value-at-Risk

    Get PDF
    This paper presents a bi-objective portfolio model with the expected return as a performance measure and the expected worst-case return as a risk measure. The problems are formulated as a bi-objective linear program. Numerical examples based on 1000, 3500 and 4020 historical daily input data from the Warsaw Stock Exchange are presented and selected computational results are provided. The computational experiments prove that the proposed linear programming approach provides the decision maker with a simple tool for evaluating the relationship between the expected and the worst-case portfolio return

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Direct Data-Driven Portfolio Optimization with Guaranteed Shortfall Probability

    Get PDF
    This paper proposes a novel methodology for optimal allocation of a portfolio of risky financial assets. Most existing methods that aim at compromising between portfolio performance (e.g., expected return) and its risk (e.g., volatility or shortfall probability) need some statistical model of the asset returns. This means that: ({\em i}) one needs to make rather strong assumptions on the market for eliciting a return distribution, and ({\em ii}) the parameters of this distribution need be somehow estimated, which is quite a critical aspect, since optimal portfolios will then depend on the way parameters are estimated. Here we propose instead a direct, data-driven, route to portfolio optimization that avoids both of the mentioned issues: the optimal portfolios are computed directly from historical data, by solving a sequence of convex optimization problems (typically, linear programs). Much more importantly, the resulting portfolios are theoretically backed by a guarantee that their expected shortfall is no larger than an a-priori assigned level. This result is here obtained assuming efficiency of the market, under no hypotheses on the shape of the joint distribution of the asset returns, which can remain unknown and need not be estimate
    corecore