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Abstract
The enhanced index tracking problem (EITP) calls for the determination of an optimal port-
folio of assets with the bi-objective of maximizing the excess return of the portfolio above
a benchmark and minimizing the tracking error. The EITP is capturing a growing attention
among academics, both for its practical relevance and for the scientific challenges that its
study, as a multi-objective problem, poses. Several optimization models have been proposed
in the literature, where the tracking error is measured in terms of standard deviation or in
linear form using, for instance, the mean absolute deviation. More recently, reward-risk opti-
mization measures, like the Omega ratio, have been adopted for the EITP. On the other
side, shortfall or quantile risk measures have nowadays gained an established popularity in
a variety of financial applications. In this paper, we propose a class of bi-criteria optimiza-
tion models for the EITP, where risk is measured using the weighted multiple conditional
value-at-risk (WCVaR). TheWCVaR is defined as a weighted combination of multiple CVaR
measures, and thus allows a more detailed risk aversion modeling compared to the use of a
single CVaR measure. The application of the WCVaR to the EITP is analyzed, both theo-
retically and empirically. Through extensive computational experiments, the performance of
the optimal portfolios selected by means of the proposed optimization models is compared,
both in-sample and, more importantly, out-of-sample, to the one of the portfolios obtained
using another recent optimization model taken from the literature.

Keywords Enhanced index tracking · Quantile risk measures · Conditional value-at-risk ·
Mean-risk models · Risk-reward ratios · Risk-averse optimization · Stochastic dominance ·
Linear programming

1 Introduction

In finance, the expression index funds identifiesmanagement strategies that have the objective
of tracking the performance of a specific market index (the so-called benchmark), attempting
to match, as much as possible, its returns. This investment strategy, usually called indexing
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or index tracking, is a passive form of fund management where the manager has a low degree
of flexibility, and the fund is expected to reproduce the performance of the benchmark by
properly choosing a representative selection of securities. The index tracking problem aims
at minimizing a function, called the tracking error, which measures how closely the port-
folio mimics the performance of the benchmark. Several authors studied the index tracking
problem, proposing different optimization models, mainly based on different formulations
of the tracking error, and solution methods.

The term enhanced index tracking refers to an investment strategy that, while still attempt-
ing to track the market index, is specifically designed to find a portfolio that outperforms the
benchmark. In other words, the manager of an enhanced index fund enjoys a little leeway,
trying to achieve a higher return than the benchmark but incurring into a minimal additional
risk, as measured by the tracking error. The enhanced index tracking problem (EITP) aims
at minimizing the tracking error, while simultaneously maximizing the excess return above
the benchmark. A number of studies highlight that the amount invested in enhanced index
funds steadily increased in the last three decades. The figures reported in Ahmed and Nanda
(2005) indicate that a sharp increase occurred in the middle of the ’90s in both the number of
enhanced index funds available and the total net assets under enhanced fund management.
The same trend is pointed out by Jorion (2002) who reports the outcomes of a survey con-
ducted among fund managers of US institutional tax-exempt assets which indicate that, from
1994 to 2000, enhanced index funds have grown from 33 to 365 USD billions, which is a
ten-fold factor! The same author also claims that, over the same period, passively managed
funds have grown slower than enhanced index funds. Koshizuka et al. (2009) mention that
in the Tokyo stock exchange a significant amount of funds is managed by enhanced index
tracking approaches. The growing popularity of the enhanced index funds is not only expe-
rienced in mature financial markets, but also in emerging markets. Weng and Wang (2017)
report a substantial increase in the importance of enhanced index funds in the Chinese market
from 2008 to 2015. It is not surprising that, given this increasing spread of enhanced index
funds, the topic is attracting a growing attention, although the number of papers addressing
the EITP, compared to the ones on the index tracking problem, is still limited and almost
all the contributions appeared in the literature only in the last decade. Indeed, despite the
first papers applying OR techniques to the index tracking problem date back to the late
’80s and the ’90s (some of the earliest papers on the topic include Meade and Salkin 1989,
1990; Kwiatkowski 1992; Roll 1992), this subject is still attracting a steady interest among
the academics. We refer to Beasley et al. (2003), Gaivoronski et al. (2005), Canakgoz and
Beasley (2009), and Guastaroba and Speranza (2012) for a midway exposition of the related
literature, and to Sant’Anna et al. (2017) for an overview of the recent contributions. On the
other side, the study of the EITP, which is the main topic addressed in the present paper,
is a relatively more recent and less mature research area. Most of the research proposing
optimization models or solution methods for the latter problem dates since 2005 or later.
As Canakgoz and Beasley (2009) provide an overview of the early literature on the EITP,
whereas Guastaroba et al. (2016) detail the recent research, in the following we briefly men-
tion only the foremost papers on the EITP and focus on the additional articles not included
in the above references. To the best of our knowledge, Beasley et al. (2003) are the first to
formalize the EITP. They propose a generalized formulation that allows the decision maker
to control the trade-off between minimizing the index tracking error and maximizing the
excess return over the benchmark through a parameter in the objective function. Drawing
on the latter formulation, Dose and Cincotti (2005) employ a two-step solution approach for
the EITP. The method starts constructing a tracking portfolio by selecting a subset of stocks
designed to statistically represent the index. Subsequently, the stock weights in the portfolio
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are determined as the result of an optimization process. Lejeune and Samatlı-Paç (2013)
propose a stochastic mixed-integer non-linear model for the EITP where asset returns and
the return covariance terms are treated as random variables. Based on approximated stochas-
tic dominance conditions, Bruni et al. (2012) formulate the EITP as a linear programming
(LP) model with an exponential number of constraints. The formulation is solved using a
separation procedure for the latter family of constraints. Along similar lines, Sharma et al.
(2017a) propose an LP model for the EITP that aims at maximizing the mean portfolio return
subject to constraints that limit the violation of the second order stochastic dominance cri-
terion. Roman et al. (2013) devise two models for the EITP that aim at selecting a portfolio
having a return distribution that dominates the distribution of the benchmark with respect to
the second-order stochastic dominance relation. Canakgoz and Beasley (2009) devise two
mixed-integer linear programming models that adopt a regression-based view of index track-
ing and enhanced indexation, respectively. Konno and Hatagi (2005) propose a scheme to
construct an index-plus-alpha (i.e., an enhanced) portfolio with minimal transaction costs.
Kwon and Wu (2017) propose a mixed-integer second order cone programming formulation
for the EITP, that maximizes the expected portfolio return subject to a limit on the portfolio
risk and a bound on the tracking error. The portfolio risk is measured using the standard devi-
ation of the portfolio returns, whereas the tracking error is defined as the standard deviation
of the excess return of the portfolio from the benchmark. Furthermore, the authors devise a
robust counterpart of the above model. Mezali and Beasley (2013) apply quantile regression
to index tracking and enhanced indexation. While studying the problem of determining an
absolute return portfolio, Valle et al. (2014) discuss how their approach can be extended to
address the EITP.

We mentioned above that, at its core, the EITP has a bi-objective nature, like any other
mean-risk portfolio optimization model. Despite this observation, very few authors address
explicitly the EITP as a bi-objective optimization problem. Among them, it is worth citing the
paper by Li et al. (2011) where the EITP is formulated as a bi-objective mixed-integer non-
linear optimization model that minimizes the tracking error, given by the downside standard
deviation of the portfolio return from the benchmark, and maximizes the portfolio excess
return. Their model is solved by means of an immunity-based multi-objective algorithm.
Bruni et al. (2015) model the EITP as a bi-objective linear program that maximizes the
average excess return of the portfolio over the benchmark, and minimizes the maximum
downside deviation of the portfolio return from the market index. Filippi et al. (2016) cast
the EITP as a bi-objective mixed-integer LP model which maximizes the excess return of the
portfolio over the benchmark, and minimizes the tracking error, here defined as the absolute
deviation between the portfolio and benchmark values. The authors devise a bi-objective
heuristic framework for its solution.

Like any other multi-objective approach, the methods devised in the former papers do
not provide a single optimal solution, but rather a set of (Pareto) optimal solutions, or a
set of near-optimal solutions if the method used is a heuristic. As a consequence, these
approaches provide the decision maker with a, possibly wide, range of alternative solutions.
However, this could be seen as a drawback instead of a point of strength, since they leave
the choice of the specific solution to implement to the subjectivity of the decision maker.
To overcome the above limit, some authors propose to cast the two objective functions
of the EITP as a single objective expressed as a reward-risk ratio. In general terms, these
ratios are performance measures that compare the expected returns of an investment (i.e.,
the reward) to the amount of risk undertaken to achieve these returns, and stem from the
observation that there exists an inherent trade-off between the risk and the return of an
investment. Nowadays, reward-risk ratios like the Sharpe ratio (see Sharpe 1966) and the
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Sortino ratio (see Sortino and Price 1994) are widely used to evaluate, compare and rank
different investment strategies. To the best of our knowledge, Meade and Beasley (2011) are
the first ones attempting to use a reward-risk ratio in the context of enhanced indexation. The
authors introduce a non-linear optimization model, based on the maximization of a modified
Sortino ratio, and solve it by means of a genetic algorithm. However, the non-linearity of
this model may represent an undesirable limitation to its use in financial practice, especially
when portfolios have to meet several side constraints (such as cardinality constraints or
buy-in thresholds) or when large-scale instances have to be solved since, in most cases, the
inclusion of these features requires the introduction of binary and integer variables (see the
survey byMansini et al. 2014). Based on this observation, Guastaroba et al. (2016) introduce
two mathematical formulations for the EITP based on the Omega ratio. The Omega ratio is a
performance measure introduced by Keating and Shadwick (2002) which, broadly speaking,
can be defined as the ratio between expected value of the profits, defined as the portfolio
returns over a predetermined target τ , and expected value of the losses, that are the portfolio
returns below τ . Thefirst formulation introduced inGuastaroba et al. (2016) applies a standard
definition of the Omega ratio, computing the ratio with respect to a given target, whereas the
second model, called the Extended Omega Ratio model, formulates the Omega ratio with
respect to a random target. The authors show that both formulations, despite being non-linear
in nature, can be transformed into LP models. The computational results point out that the
portfolios selected by the Extended Omega Ratio model consistently outperform, in term of
out-of-sample performance, those optimized with the former model.

Since their introduction, quantile risk measures have had a crucial impact on the develop-
ments of new risk measures in finance. Conditional value-at-risk (CVaR), which is known
also as mean excess loss, expected shortfall, worst conditional expectation, or tail VaR, is
one of such measures. The name CVaR was introduced in Rockafellar and Uryasev (2000)
where the risk measure is developed for continuous distributions, and later extended to gen-
eral distributions (i.e., with a possibly discontinuous distribution function) in Rockafellar
and Uryasev (2002). The interest for this measure is continuously growing, as proved by a
large number of recently published contributions, also including risk portfolio optimization
problems in continuous-time (see Gao et al. 2017), applications within a data envelopment
analysis framework (see Branda 2015; Branda and Kopa 2014), and many other applications
different from optimization in finance (see the survey by Filippi et al. 2020). A relevant
advantage of the CVaR is that for discrete random variables, i.e., when probabilities can be
represented by using scenarios rather than densities, it can be optimized by means of LP
methods. The success of the CVaR as a measure of risk is related to the theoretical properties
it satisfies and to some practical considerations that make it attractive also among practition-
ers. From a theoretical point of view, the CVaR is a coherent risk measure as shown in Pflug
(2000) (see Artzner et al. 1999 for the definition of coherent risk measures) and is consis-
tent with the second-degree stochastic dominance as detailed in Ogryczak and Ruszczyński
(2002b). From a practical viewpoint, it is a downside risk measure in the sense that it does
not penalize upside deviations, which are deviations of the portfolio returns above a given
target and that any rational investor perceives as profits. Mansini et al. (2007) suggest that
the concept of CVaR can be extended to improve the risk averse modeling capabilities of
the measure. Indeed, the authors show that a more detailed risk aversion modeling can be
achieved by considering simultaneously multiple CVaR measures, each one specified by a
given tolerance level, and then combining them together, as a weighted sum, into a single
risk measure. The resulting measure is called the weighted multiple CVaR (WCVaR) and is,
obviously, LP computable.
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Besides, it is worth mentioning the paper by Sharma et al. (2017b) where the concepts
of Omega ratio optimization and CVaR are combined together in the general context of
portfolio optimization, and, hence, not directly related to the EITP addressed in the current
paper. Particularly, Sharma et al. (2017b) reformulate the original Omega ratio by computing
the target τ (which is predetermined in its classical form) as the CVaR of a benchmark
market portfolio. Goel et al. (2018) propose a formulation to the EITP that maximizes the
ratio obtained by using the WCVaR in a STARR-like ratio (see “Appendix A” for further
details on the STARR). Finally, another critical aspect concerns the relevance of the proposed
approaches as efficient and fast tools for a financialmanager’s desk. In the last decades, several
contributions have focused their attention to the development of optimization tools able to
provide reliable solutions for the index tracking problem and other portfolio problems in a
real-time environment (see Adcock andMeade 1994; Zenios 2008). Nowadays, optimization
models can be considered as decision-aiding tools that can be successfully applied also by
users who are not familiar with optimization theory. This is especially true for the class of
LP models to which the models we propose in this work belong to.

Contributions This paper provides the following contributions. Firstly, we introduce a
theoretical framework for risk-reward ratio models, and employ it in the context of the
EITP. Formulating the EITP as a single objective risk-reward ratio model overcomes the
main disadvantage, as mentioned above, that afflicts the classical multi-objective approaches.
Indeed, the latter produce an (often overwhelming) amount of solutions for the decisionmaker
that has, then, to identify the most appropriate solution given her/his preferences. Conversely,
the proposed approach provides the decision maker with a single optimal solution, the one
minimizing the risk-reward ratio.We propose a novel class of bi-criteria optimization models
expressed in terms of risk-reward ratios, where the riskmeasurement is based on theWCVaR.
The latter measure is, as mentioned before, an extension of the classical CVaR that enables
a more detailed risk modeling by considering concurrently multiple CVaR measures, and
encompasses the classical CVaR as a special case. In more details, within a risk-reward ratio
setting, we consider a deviation measure which is a counterpart of the WCVaR as a risk
measure (see Rockafellar and Uryasev 2013). Following the findings reported in Guastaroba
et al. (2016), the class of optimization models introduced here is also designed with respect
to a random target. We show that the resulting formulation, non-linear in nature, can be
reformulated as an LP model. In terms of decision-aiding tools the proposed models have the
advantage to include in a unique framework the whole gamut of risk attitudesmaking them an
intuitive custom-built application. More precisely, by simply deciding the weights associated
with the multiple CVaR structure and by selecting appropriate values for the parameter
controlling the excess return over the benchmark, much room is left to the user in deciding
her/his risk tolerance. From a computational viewpoint, the proposed are LP optimization
models, which can be directly solved with an off-the-shelf solver in negligible computing
times. This property makes their use suitable in financial practice, where decisions have to
be, more and more frequently, taken in a real-time environment. To validate the performance
of the optimal portfolios selected by the proposed formulation, we conducted extensive
computational experiments on benchmark instances taken from the literature, and compare
their out-of-sample behavior with that of the portfolios constructed solving a reformulation of
theExtendedOmegaRatiomodel introduced inGuastaroba et al. (2016). Indeed, in the current
paper, we express the Extended Omega Ratio model in terms of a risk-reward minimization,
rather than a reward-risk maximization as it was originally proposed in Guastaroba et al.
(2016). Since, at least theoretically, the deviation measure at the denominator of the reward-
risk ratio can take null value, Guastaroba et al. (2016) introduced additional constraints to
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guarantee its positivity and keep the problem always solvable. Our reformulation avoids such
modeling issues.

Despite the extensive experiments carried out, the outcomes do not seem to clearly favor
one model over the others. On the other side, the results indicate a quite satisfactory ex-
post performance of the optimal portfolios: all the optimal portfolios track very closely the
behavior of the benchmark over the out-of-sample period, often achieving better returns.

Structure of the paper The remainder of the paper is organized as follows. In Sect. 2, we
introduce the basic notation and some preliminary concepts that will be used throughout the
rest of the paper. Section 3 is devoted to the introduction of the mathematical formulation for
the EITP based on the WCVaR. Computational experiments are reported in Sect. 4, where
an extensive evaluation and comparison of the out-of-sample performance of the optimal
portfolios is provided. Finally, some concluding remarks are drawn in Sect. 5.

2 Basic notation and preliminary concepts

2.1 Basic notation

We consider an investor whose aim is to optimally select a portfolio of securities and hold
it until the end of a specific investment horizon, i.e., the investor follows a so-called buy-
and-hold strategy. Let J = {1, 2, . . . , n} be the set of securities available for the investment.
For each security j ∈ J , its rate of return is represented by a random variable (r.v.) R j

with a given mean μ j = E{R j }. Let x = (x j ) j=1,...,n be the vector of decision variables x j
representing the shares (weights) that define a portfolio of securities. In any feasible portfolio
the weights must sum to one, i.e.,

∑n
j=1 x j = 1, and short sales are not allowed, i.e., x j ≥ 0

for j = 1, . . . , n. Such basic constraints form a feasible set P . Each portfolio x defines a
corresponding r.v. Rx = ∑n

j=1 R j x j that represents the portfolio rate of return. The mean
rate of return for portfolio x is given as μ(Rx) = E{Rx} = ∑n

j=1 μ j x j . We consider T
scenarios, each one with probability pt , where t = 1, . . . , T . We assume that for each r.v. R j

its realization r jt under scenario t is known and that, for each security j , with j ∈ J , its mean
rate of return is computed as μ j = ∑T

t=1 r jt pt . The realization of the portfolio rate of return
Rx under scenario t is given by yt = ∑n

j=1 r jt x j . Although the optimization models that we
are going to describe remain valid for any arbitrary set of scenarios or discrete probability
distribution function, we assume that the T scenarios are treated as equally probable, i.e., we
set pt = 1/T for t = 1, . . . , T , and that these scenarios are represented by historical data
observed on a stock exchange market.

Regarding the benchmark, we denote the r.v. representing its rate of return as RI , whereas
its realization under scenario t is denoted as r It , with t = 1, . . . , T , and its mean rate of
return as μI = ∑T

t=1 r
I
t pt . In enhanced indexation, the investor is interested in determining

an optimal portfolio that outperforms the rate of return of the benchmark. This situation
can be modeled using as a target some reference r.v. Rα = RI + α rather than simply the
benchmark rate of return RI . In these terms, Rα represents the rate of return beating the
benchmark by a given excess return equal to α. Its realization under scenario t is denoted as
rα
t = r It + α, with t = 1, . . . , T , and mean rate of return μα = ∑T

t=1 r
α
t pt . Note that the

value of α should be chosen according to the market behavior. Finally, in the following the
notation (.)+ will denote the non-negative part of a quantity, that is, (Q)+ = max{Q, 0}.
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2.2 Risk, deviation and ratio measures

In his cornerstone research,Markowitz (1952) suggests tomodel portfolio optimization prob-
lems as mean-risk bi-criteria problems, where the mean portfolio return μ(Rx) is maximized
and its standard deviation σ(Rx) is minimized. Since then, a number of other (generalized)
deviation measures have been considered (see Konno and Yamazaki 1991; Mansini et al.
2003a; Rockafellar et al. 2006a for further details). A deviation measure is defined as a func-
tional that satisfies the following axioms (Rockafellar et al. 2006b; Rockafellar and Uryasev
2013):

– shift invariance: �(Rx + C) = �(Rx), for all Rx and constants C ;
– positive homogeneity: �(0) = 0 and �(λRx) = λ�(Rx), for all Rx and all λ > 0;
– subadditivity: �(Rx′ + Rx′′) ≤ �(Rx′) + �(Rx′′), for all Rx′ and Rx′′ ;
– risk relevance: �(Rx) > 0 for all nonconstant Rx, and �(Rx) = 0 for constant Rx.

A relevant drawback of deviation measures is that their minimization is not consistent
with the stochastic dominance order paradigms (e.g., see Whitmore and Findlay 1978). In
stochastic dominance, uncertain returns (modeled as random variables) are confronted by
pointwise comparison of some performance functions constructed from their distribution
functions. The first performance function is defined as the right-continuous cumulative dis-
tribution function: F (1)

Rx
(η) = FRx (η) = P{Rx ≤ η} and defines the first-degree stochastic

dominance. The second function is derived from the first as F (2)
Rx

(η) = ∫ η

−∞ FRx (ξ) dξ , and

defines the Second-degree stochastic dominance (SSD).We say that portfolio x′ dominates x′′
under the SSD criterion (denoted as x′ �SSD x′′), if F (2)

Rx′ (η) ≤ F (2)
Rx′′ (η) for all η, with at least

one strict inequality. The latter relation can be expressed in a weaker form, which claims that
portfolio x′ dominates x′′ under the weak SSD criterion (x′ �SSD x′′), if F (2)

Rx′ (η) ≤ F (2)
Rx′′ (η)

for all η. Furthermore, a feasible portfolio x′ ∈ P is said to be SSD efficient if there is no other
feasible portfolio x ∈ P such that x �SSD x′. The concept of stochastic dominance relates
the notion of risk to a possible failure of achieving some targets. As shown by Ogryczak
and Ruszczyński (1999), values of function F (2)

Rx
, used to define the SSD relation can also be

presented as the first-order lower partial moments (LPM1), that is F
(2)
Rx

(η) = E{(η − Rx)+}.
The latter is the simplest downside risk criterion (cf. Fishburn 1977) that, when computed
for a specific value τ , will be denoted as δτ :

δτ (Rx) = E{(τ − Rx)+} = F (2)
Rx

(τ ). (1)

For discrete rates of return represented by their realizations, δτ (Rx) is LP computable.
A deviation measure �(Rx) is said to be mean-complementary SSD consistent if x′ �SSD

x′′ implies that μ(Rx′) − �(Rx′) ≥ μ(Rx′′) − �(Rx′′). If a deviation measure is mean-
complementary SSD consistent then, except for portfolios with identical values ofμ(Rx) and
�(Rx), every efficient solution of the bi-criteria problem max{(μ(Rx), μ(Rx) − �(Rx)) :
x ∈ P} is an SSD efficient portfolio (see Ogryczak and Ruszczyński 1999 for further details).

Note that for any deviation measure �(Rx), μ(Rx) − �(Rx) is the negative of the corre-
sponding risk measureR(Rx) = E{−Rx}+ �(Rx) = −(μ(Rx) − �(Rx)) (Rockafellar et al.
2006b; Rockafellar and Uryasev 2013). In particular, assuming the standard deviation as the
deviationmeasure, the corresponding riskmeasure is defined asRσ (Rx) = E{−Rx}+σ(Rx).
A risk measureR is a functional that satisfies the following axioms (Rockafellar et al. 2006b;
Rockafellar and Uryasev 2013):
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– translation invariance: R(Rx + C) = R(Rx) − C , for all Rx and constants C ;
– positive homogeneity: R(0) = 0 and R(λRx) = λR(Rx), for all Rx and all λ > 0;
– subadditivity: R(Rx′ + Rx′′) ≤ R(Rx′) + R(Rx′′), for all Rx′ and Rx′′ ;
– risk relevance: R(Rx) > E{−Rx} for all nonconstant Rx, and R(Rx) = E{−Rx} for

constant Rx.

Several portfolio performancemeasures have been introduced as such riskmeasuresR. As
prominent examples, we recall theworst realization (maximum loss) studied byYoung (1998)
and the CVaR measure introduced by Rockafellar and Uryasev (2000). The corresponding
deviation measure is then defined as �(Rx) = R(Rx − μ(Rx)).

The common approach used to tackle a Markowitz-type mean-risk model is to transform
the objective of maximizing the mean portfolio return into a constraint by imposing a mini-
mum acceptablemean returnμ0, whileminimizing the risk criterion. An alternative approach
is to seek for a risky portfolio that offers the maximum increase of the portfolio mean return
compared to a given target τ , per unit of risk incurred. Target τ is often represented by
the mean return of a risk-free asset. The latter approach leads to the following optimization
problem expressed as a ratio:

max

{
μ(Rx) − τ

�(Rx)
: x ∈ P

}

. (2)

The optimal solution of problem (2) is usually called the tangency portfolio or the market
portfolio. Mansini et al. (2003b) show that for LP computable risk measures, the reward-risk
ratio optimization problem (2) can be converted into an LP form. When the risk-free rate of
return r0 is used instead of the target τ , ratio optimization problem (2) corresponds to the
classical Tobin’s model (cf. Tobin 1958) of the modern portfolio theory, where the capital
market line is the line drawn from the intercept corresponding to r0 and that passes tangent
to the mean-risk efficient frontier. Any point on this line provides the maximum return for
each level of risk. The tangency portfolio TPr0 is the portfolio of risky assets corresponding
to the point where the capital market line is tangent to the efficient frontier.

Instead of the reward-risk ratio maximization (2), one may formulate the same problem
in terms of risk-reward ratio minimization as follows:

min

{
�(Rx)

μ(Rx) − τ
: x ∈ P

}

. (3)

Even though both ratio optimization models (2) and (3) are theoretically equivalent, the risk-
reward formulation (3) enables an easier control of the denominator positivity by simply
introducing the additional inequality μ(Rx) − τ ≥ ε1, with ε1 > 0.

Note that two feasible portfolios having zero risk are both optimal to the risk-reward ratio
model (3), even if they are characterized by different mean returns. This shortcoming can be
regularized leading to the following formulation:

min

{
�(Rx) + ε2

μ(Rx) − τ
: μ(Rx) − τ ≥ ε1, x ∈ P

}

. (4)

This regularization of the numerator is useful when for multiple portfolios the deviation
measure �(Rx) takes value equal to zero. In these cases, an optimal solution to problem (4)
is the portfolio with the largest mean return. Furthermore, the following theorem is valid.

Theorem 1 Let x0 be an optimal portfolio to the risk-reward ratio optimization problem
(4) that satisfies condition μ(Rx0) − �(Rx0) ≤ τ . For any deviation measure �(Rx) which
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is mean-complementary SSD consistent, portfolio x0 is nondominated in terms of the bi-
criteria optimization max{μ(Rx),−�(Rx)} and is SSD nondominated with the exception of
alternative (and equivalent) optimal portfolios having the same values of mean returnμ(Rx0)

and deviation measure �(Rx0).

Proof Suppose that there exists a feasible portfolio x, i.e., x ∈ P and μ(Rx) ≥ τ + ε1, such
that x �SSD x0 or μ(Rx) ≥ μ(Rx0) and simultaneously �(Rx) ≤ �(Rx0). Each of these
dominance relations implies that μ(Rx) − �(Rx) ≥ μ(Rx0) − �(Rx0) and μ(Rx) ≥ μ(Rx0).
Note that the objective function in problem (4) can be written as:

�(Rx) + ε2

μ(Rx) − τ
= τ − (μ(Rx) − �(Rx)) + ε2

μ(Rx) − τ
+ 1.

Due to the optimality of x0 and the additional condition μ(Rx0) − �(Rx0) ≤ τ , in the above
ratio both numerator and denominator are positive for solution x0, whereas the denominator
is positive for any feasible portfolio x. Hence, whenever μ(Rx)−�(Rx) > μ(Rx0)−�(Rx0)

or μ(Rx) > μ(Rx0), the following inequality holds:

�(Rx) + ε2

μ(Rx) − τ
= τ − (μ(Rx) − �(Rx)) + ε2

μ(Rx) − τ
+ 1 <

τ − (μ(Rx0) − �(Rx0)) + ε2

μ(Rx0) − τ
+ 1

= �(Rx0) + ε2

μ(Rx0) − τ

which contradicts the optimality of x0. Therefore, μ(Rx) = μ(Rx0) and �(Rx) = �(Rx0),
which means x is an equivalent optimal solution to (4). 	


Note that condition μ(Rx0)−�(Rx0) ≤ τ is equivalent to imposing that the value of ratio
(�(Rx0) + ε)/(μ(Rx0) − τ) is greater than 1. Consequently, any risk-reward ratio model (4)
is well-defined only if this condition is not violated.

To apply directly the risk-reward ratiomodel (4) in the domain of the enhanced indexation,
one should replace the target value τ with themean rate of returnμα , the latter as defined above
in Sect. 2.1. As alreadymentioned, Guastaroba et al. (2016) have shown that the performance
of the portfolios selected by a ratio optimization model (in their paper the Omega ratio is
expressed in terms of a reward-risk ratio model) can be significantly improved if the models
are modified in order to take into consideration if the portfolio tracks, falls below or beats the
benchmark under multiple scenarios. To this aim, one should formulate the risk-reward ratio
model for a random benchmark return Rα , rather than for the mean rate of returnμα . In other
words, the optimization model is applied to the distribution of the difference (Rx − Rα), thus
taking the following form:

min

{
�(Rx − Rα) + ε2

μ(Rx − Rα)
: μ(Rx − Rα) ≥ ε1, x ∈ P

}

. (5)

Note that applying model (5) to the deterministic target τ , i.e., replacing Rα = τ , one gets
exactly the standard risk-reward ratio model (4), as μ(Rx − τ) = μ(Rx) − τ and for the
deviation risk measure �(Rx − τ) = �(Rx).

It is worth highlighting that, in the literature, some authors proposed ratio performance
measures based onusing theCVaR. In “AppendixA”,wediscuss someof these ratiomeasures,
and point out their similarities to the ones considered in the present paper.
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2.3 Weighted CVaR risk measures

We consider the CVaR defined directly on the distribution of returns Rx. Hence, for any real
0 < β ≤ 1, the CVaR at level β is defined as (see Rockafellar et al. 2006a):

CVaRβ(Rx) = −[expectation of Rx in its lower β tail distribution].
Thus, formally, as the negative to the normalized value of the Absolute Lorenz Curve
CVaRβ(Rx) = −Mβ(Rx), given by the following formula (see Ogryczak and Ruszczyński
2002b):

Mβ(Rx) = 1

β

∫ β

0
F (−1)
Rx

(ξ)dξ, (6)

where F (−1)
Rx

is the quantile function for the portfolio return Rx. It is defined as F (−1)
Rx

(ξ) =
inf{η : FRx (η) ≥ ξ} for 0 < ξ ≤ 1, i.e., the left-continuous inverse of the right-continuous
cumulative distribution function FRx (η) = P{Rx ≤ η}. According to Rockafellar et al.
(2006b) and Rockafellar and Uryasev (2013), the CVaR measure (6) can be classified as a
riskmeasure and the corresponding deviationmeasure isΔβ(Rx) = CVaRβ(Rx−μ(Rx)) =
μ(Rx)− Mβ(Rx) (see Rockafellar et al. 2006b; Mansini et al. 2003b). For a discrete random
variable represented by its realizations yt , with t = 1, . . . , T , both the CVaR measure and its
corresponding deviationmeasureΔβ(Rx) are LP computable whenminimized. In particular:

Δβ(Rx) = min
d,η

{

μ(Rx) − η + 1

β

T∑

t=1

ptdt : dt ≥ η − yt , dt ≥ 0, t = 1, . . . , T

}

, (7)

where η is an unbounded variable taking, at the optimum, the value of the β-quantile.
Although the CVaR is risk relevant for 0 < β < 1, it represents only the mean within a

part (tail) of the distribution of returns. Therefore, such a single criterion might present some
limits when it is important to model various risk aversion preferences treating differently
events that are more or less extreme. Aiming at strengthening its modeling capabilities,
Mansini et al. (2007) show that a more detailed risk aversion modeling can be achieved by
considering simultaneously multiple CVaRmeasures, each one specified by a given tolerance
level, and then combining them together, as a weighted sum, into a single risk measure. They
proposed to consider several, say m, levels 0 < β1 < β2 < · · · < βm < 1 and combine
together the corresponding CVaR measures with the weighted sum leading to the Weighted
CVaR (WCVaR) measure. Note that larger losses as present in CVaR measures for more
tolerance levels are then taken into account with larger accumulated weights within the
WCVaR measure. The WCVaR can be expressed in terms of the deviation measure as a
weighted sum of several Δβk (Rx) measures combined by using positive (and normalized)
weights, thus leading to the following form:

Δ(m)
w (Rx) =

m∑

k=1

wkΔβk (Rx),

m∑

k=1

wk = 1, wk > 0, k = 1, . . . ,m. (8)

Δβk (Rx) is a convex deviation measure. Since, as mentioned above, the CVaR is coherent
and SSD consistent, the same applies to the WCVaR. In particular, x′ �SSD x′′ implies that

μ(Rx′) − Δ
(m)
w (Rx′) ≥ μ(Rx′′) − Δ

(m)
w (Rx′′) (see Ogryczak and Ruszczyński 2002a).

Mansini et al. (2007) identified two main classes of WCVaR measures, that primarily
differ for the set of weightswk used. More precisely, they considered theWideWCVaRmea-
sures providing an approximation to the Gini mean difference (GMD) measure Γ (Rx) =
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2
∫ 1
0 (μ(Rx)α−F (−2)

Rx
(α))dα (see Yitzhaki 1982) and the TailWCVaR providing an approxi-

mation to the Tail GMDmeasureΓβm (Rx) = 2
β2
m

∫ βm
0 (μ(Rx)α−F (−2)

Rx
(α))dα (see Ogryczak

and Ruszczyński 2002a), where F (−2)
Rx

(α) = ∫ α

0 F (−1)
Rx

(ν)dν. In both classes of models, once
the tolerance levels βk have been decided, the corresponding weights wk are automatically
defined. In both cases, it is not necessary to consider a dense grid with a large number of tol-
erance levels to provide a proper modeling of risk averse preferences, but m = 3 and m = 2
might be enough. Based on above definitions of the weights and the computational results
reported in (Mansini et al. 2007), where the Wide CVaR models came out to be dominated
by the Tail WCVaR models, we decided to concentrate on the latter models. In more details,
given a grid of m tolerance levels 0 < β1 < · · · < βk < · · · < βm = β, the weights are
defined as follows:

wk = βk (βk+1−βk−1)

β2 k = 1, . . . ,m − 1, and wm = βm (βm−βm−1)

β2 , (9)

where β0 = 0. To the sake of brevity, in the remainder of the paper we will refer to the Tail
WCVaR measure with weights defined as in (9) simply as WCVaR.

For returns represented by their realizations yt , with t = 1, . . . , T , the WCVaR deviation
measures can be represented by the following LP problem:

Δ
(m)
w (Rx) = min

d,η

{

μ(Rx) −
m∑

k=1

wkηk +
m∑

k=1

wk

βk

T∑

t=1

ptdtk

}

s.t. dtk ≥ ηk − yt , dtk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m,

(10)

where ηk , with k = 1, . . . ,m, are unbounded variables taking, at the optimum, the values of
the corresponding βk-quantiles.

3 Optimizationmodels for the enhanced index tracking problem

The present section is devoted to the introduction of the optimization models tested in the
computational experiments. In Sect. 3.1, we introduce in detail the new optimization model
based on the WCVaR. The model described in the following Sect. 3.2 is the risk-reward
version of the formulation devised in Guastaroba et al. (2016) and based on the Omega ratio.
To the sake of brevity, we simply derive the LP formulation of our model and highlight the
differences compared to the model in Guastaroba et al. (2016).

3.1 ExtendedWCVaR ratio model

As risk-reward ratio models are well-defined for deviation measures, in a CVaR-based risk-
reward ratio model one must use the deviation measureΔ

(m)
w (Rx). Therefore, the risk-reward

ratio model for the EITP based on the WCVaR is the following:

min

{
Δ

(m)
w (Rx − Rα) + ε2

μ(Rx − Rα)
: μ(Rx − Rα) ≥ ε1, x ∈ P

}

, (11)

where we replaced �(Rx − Rα) in (5) with Δ
(m)
w (Rx − Rα) as defined in (8). Since the

deviation measure Δ
(m)
w is mean-complementary SSD consistent, applying Theorem 1 to the

distribution of the difference (Rx − Rα) with τ = 0, one gets the following corollary.
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Corollary 1 Let x0 be an optimal solution to the optimization problem (11) that satisfies
condition μ(Rx0 − Rα) − Δ

(m)
w (Rx0 − Rα) ≤ 0. Then, portfolio x0 is SSD nondominated

with the exception of alternative (and equivalent) optimal portfolios having the same values
of mean μ(Rx − Rα) and deviation measure Δ

(m)
w (Rx − Rα).

Under the assumption of security returns described by discrete random variables having, for
each security j ∈ J , realization r jt under scenario t , with t = 1, . . . , T , one obtains the
following non-linear optimization model:

min
(x,y,d,η,z,z1)

z − μα − z1 + ε2

z − μα
(12)

s.t. z − μα ≥ ε1 (13)
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n (14)

n∑

j=1

r jt x j = yt for t = 1, . . . , T (15)

n∑

j=1

μ j x j = z (16)

m∑

k=1

wkηk −
m∑

k=1

wk

βk

T∑

t=1

ptdtk = z1 (17)

dtk ≥ ηk − yt + rα
t , dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . ,m. (18)

Constraint (13) imposes the positivity of the ratio denominator. Constraints (14) ensure
that in any feasible portfolio the sum of the non-negative weights must be equal to one,
whereas for each scenario t , with t = 1, . . . , T , constraint (15) defines the corresponding
realization of the portfolio rate of return yt . Subsequently, constraint (16) defines z as the
mean portfolio rate of return. Finally, constraint (17), along with (18), defines variable z1
that allows us to express Δ

(m)
w (Rx − Rα) as z − μα − z1. Hence, objective function (12)

minimizes the risk-reward ratio in (11).
The non-linear optimization model (12)–(18) with the quasi-linear objective function

(12) can be linearized using the Charnes and Cooper (1962) transformation. Specifically, we
apply the following substitutions v0 = 1/(z − μα), v1 = z1/(z − μα), v = z/(z − μα),
x̃ j = x j/(z − μα), d̃tk = dtk/(z − μα), η̃k = ηk/(z − μα), and ỹt = yt/(z − μα), dividing
all the constraints by (z − μα), and add the constraint required by the transformation. The
resulting convex programming formulation is the following LP model:

min
(x̃,ỹ,d̃,̃,v,v0,v1)

v − v1 + (ε2 − μα)v0

s.t. v − μαv0 = 1

v0 ≤ 1/ε1
n∑

j=1

x̃ j = v0, x̃ j ≥ 0 for j = 1, . . . , n

n∑

j=1

r jt x̃ j = ỹt for t = 1, . . . , T
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n∑

j=1

μ j x̃ j = v,

m∑

k=1

wk η̃k −
m∑

k=1

wk

βk

T∑

t=1

pt d̃tk = v1

d̃tk ≥ η̃k − ỹt + rα
t v0, d̃tk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m,

where the first constraint is a transformed form of the substitution v0 = 1/(z − μα). After
eliminating variables ỹt , v, v0, and v1, which are defined by equations, one obtains the
following more compact LP formulation (EWCVaR model):

min
(x̃,d̃,̃)

n∑

j=1

(μ j − μα + ε2)x̃ j −
m∑

k=1

wk η̃k +
m∑

k=1

wk

βk

T∑

t=1

pt d̃tk

s.t.
n∑

j=1

(μ j − μα)x̃ j = 1,
n∑

j=1

x̃ j ≤ 1

ε1
, x̃ j ≥ 0 j = 1, . . . , n

d̃tk ≥ η̃k −
n∑

j=1

(r jt − rα
t )x̃ j , d̃tk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m.

(19)

After solving the transformed EWCVaR model (19), the original values of variables x j can

be determined dividing x̃ j by
n∑

j=1
x̃ j .

3.2 Extended Omega ratio model

In its standard form, the Omega ratio is defined as the ratio between the expected value of the
profits and the expected value of the losses where, for a predetermined threshold τ , portfolio
returns over the target τ are considered as profits, whereas returns below the threshold are
considered as losses. Ogryczak and Ruszczyński (1999) prove that for any target value τ the
following chain of equalities holds:

E{(Rx − τ)+} = μ(Rx) − (τ − E{(τ − Rx)+}) = μ(Rx) − τ + δτ (Rx), (20)

where the last equality is related to the definition of the first-order lower partial moment
(LPM1) expressed in (1). Thus, we can formulate the (standard) Omega ratio as follows:

Ω(τ, Rx) = E{(Rx − τ)+}
E{(τ − Rx)+} = μ(Rx) − τ + δτ (Rx)

δτ (Rx)
= 1 + μ(Rx) − τ

δτ (Rx)
.

Hence, the maximization of the above Omega ratio, with the additional restriction requir-

ing μ(Rx) − τ ≥ ε1, is equivalent to the minimization of the LPM1 based ratio δτ (Rx)
μ(Rx)−τ

.

Restriction μ(Rx)− τ ≥ ε1 along with (20) imply that E{(Rx − τ)+} > E{(τ − Rx)+}, thus
limiting the Omega ratio to take only values greater than 1.

In the domain of enhanced indexation, the ratio optimization is formulated with respect
to the random target Rα , instead of a deterministic value τ . Replacing in the numerator of
model (5) �(Rx − Rα) with the measure δ0(Rx − Rα), one obtains the following problem:

min

{
δ0(Rx − Rα) + ε2

μ(Rx − Rα)
: μ(Rx − Rα) ≥ ε1, x ∈ P

}

. (21)

As the LPM1 minimization is consistent with the SSD, and thereby the Omega ratio
optimization is SSD consistent (Balder and Schweizer 2017), the following corollary is
valid.
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Corollary 2 Let x0 be an optimal solution to the risk-reward optimization problem (21). Then,
portfolio x0 is nondominated in terms of bi-criteria optimizationmax{μ(Rx−Rα),−δ0(Rx−
Rα)}, and is SSD nondominated with the exception of alternative (and equivalent) opti-
mal portfolios having the same values of mean return μ(Rx0 − Rα) and LPM1 value
δ0(Rx − Rα).

For security returns described by discrete random variables having, for each security
j ∈ J , realization r jt under scenario t , with t = 1, . . . , T , one obtains the following non-
linear optimization model:

min
(x,y,d,z,z1)

z1 + ε2

z − μα
(22)

s.t. (13)−(15)
T∑

t=1

ptdt = z1 (23)

dt ≥ rα
t − yt , dt ≥ 0 for t = 1, . . . , T . (24)

Objective function (22) minimizes the risk-reward ratio in (21). In each scenario t , with
t = 1, . . . , T , constraint (24), along with (23) and objective function (22), forces the non-
negative variable dt to take value equal to max{rα

t − yt , 0}. As a consequence, constraint (23)
defines variable z1 as the first lower partial moment δ0(Rx − Rα).

Compared to the optimization model proposed in Guastaroba et al. (2016), the main
difference is that the objective function in model (22)–(24) is expressed in terms of a risk-
reward minimization, rather than a reward-risk maximization. Although this modification is
conceptually of minor importance, it avoids the introduction of additional constraints and
auxiliary binary variables to deal with those critical situations where the LPM1 may take null
value at the denominator (see Guastaroba et al. 2016).

Also the non linear optimizationmodel (22)–(24) can be linearized applying the following
substitutions: v0 = 1/(z − μα), v1 = z1/(z − μα), v = z/(z − μα), x̃ j = x j/(z − μα),
d̃t = dt/(z − μα) and ỹt = yt/(z − μα), dividing all the constraints by (z − μα), and
adding the constraint required by the Charnes-Cooper transformation, leading to the convex
formulation as the following LP:

min
(x̃,ỹ,d̃,v,v0,v1)

v1 + ε2v0

s.t. v − μαv0 = 1, v0 ≤ 1/ε1
n∑

j=1

x̃ j = v0, x̃ j ≥ 0 for j = 1, . . . , n

n∑

j=1

μ j x̃ j = v,

T∑

t=1

pt d̃t = v1

n∑

j=1

r jt x̃ j = ỹt for t = 1, . . . , T

d̃t ≥ rα
t v0 − ỹt , d̃t ≥ 0 for t = 1, . . . , T ,

(25)

where the first constraint is a transformed form of the substitution v0 = 1/(z − μα) whose
introduction is required by the Charnes-Cooper transformation. Amore compact formulation
can be obtained eliminating variables ỹt , v, v0, and v1, which are defined by equations, leading
to the following LP formulation (EOR model):
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min
(x̃,d̃)

T∑

t=1

pt d̃t + ε2

n∑

j=1

x̃ j

s.t.
n∑

j=1

(μ j − μα)x̃ j = 1,
n∑

j=1

x̃ j ≤ 1

ε1
, x̃ j ≥ 0 j = 1, . . . , n

d̃t ≥
n∑

j=1

(rα
t − r jt )x̃ j , d̃t ≥ 0 t = 1, . . . , T .

(26)

As for the EWCVaR model, after solving the transformed EOR model (26), the original

values of x j can be determined dividing x̃ j by
n∑

j=1
x̃ j .

The above optimization models can be applied in any financial setting where the values of
the return rates of the securities under different scenarios are available or can be generated.
In Sect. 4.1.1 of the following experimental analysis, some guidelines are provided on how
to choose the values of the model parameters.

Finally, in practical investment situations, an investor might desire that the portfolio com-
position complies with some trading requirements. One of the most fundamental is that, in
order to control transaction and management costs, investors often prefer to hold a portfolio
comprising a limited number of assets. Furthermore, investors desire well-diversified port-
folios, and want to avoid portfolios where very small weights are invested in some assets or
very large weights are invested in one or few assets. These requirements can be incorporated
into both the EWCVaR and the EOR models by introducing a cardinality constraint limit-
ing the maximum number of assets in the optimal portfolios, along with lower and upper
bounds on asset weights (see Guastaroba et al. 2016 for a description of how to introduce
such features in the EOR model). Nevertheless, their incorporation requires the introduction
into the mathematical formulations of binary variables, thus transforming the LPmodels into
mixed-integer LP problems, which solution can be computationally challenging when the
investing universe is very large.

4 Experimental analysis

This section is dedicated to the presentation and discussion of the computational experiments.
They were conducted on a PC Intel XEON with 3.33 GHz 64-bit processor, 12 GB of RAM,
andWindows 7 64-bit as Operating System. Optimization models were implemented in Java,
compiled within NetBeans 8.0.2, and solved by means of CPLEX 12.6. After preliminary
experiments, we decided to use the default values for all CPLEX parameters.

The results discussion is organized as follows. In Sect. 4.1, we consider a static investor
who applies a (single-period) buy-and-hold investment strategy. In contrast, in Sect. 4.2 we
consider an investor who desires to rebalance the portfolio composition. To this aim, we use a
rolling time window approach, that is, we shift the in-sample observations (and consequently
the out-of-sample ones) all over the entire time frame covered in each data set.

4.1 Single-period evaluation

In this section, we consider a static investor who is not interested in modifying the portfolio
composition when new information on the market trend is made available, but quietly waits
for the end of the chosen investment horizon. This investment strategy implies only one
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optimization, which correspond to solving one of the proposed optimization models by
using a set of in-sample data as scenarios, and then evaluating the optimal portfolio over
the following out-of-sample period. In Sect. 4.1.1, we briefly describe the instances and the
optimization models we solved in the computational experiments, whereas in Sect. 4.1.2 we
report on the in-sample characteristics of the optimal portfolios and provide an extensive
validation of their out-of-sample performance.

4.1.1 Data sets and tested optimization models

In the computational experiments, we used the two data sets tested in Guastaroba et al.
(2016) with some small differences, as described below. To make the paper self-contained,
we provide here a brief description of these instances and refer to the above paper for any
further detail.

The first data set was introduced in Guastaroba et al. (2009) and, from the name of the
authors, is referred to as data set GMS. No change has been made to this data set. The set
consists of 4 instances created from historical rates of return of the 100 securities composing
the FTSE 100 Index. These instances were intentionally selected to span four different market
trends. In particular, the first instance, hereafter called GMS-UU, considers an increasing
trend of the benchmark (i.e., the market index is moving Up) in both the in-sample and the
out-of-sample period. The second instance, from now on referred to as GMS-UD, has an
increasing trend of the benchmark in the in-sample period and a decreasing one (i.e., it is
moving Down) in the out-of-sample period. The third instance, henceforth called GMS-DU,
is characterized by a decreasing trend in the in-sample period and by an increasing one in
the out-of-sample period. Finally, the last instance, referred to as GMS-DD in the following,
is characterized by a decreasing trend in both the in-sample and the out-of-sample periods.
The temporal positioning of each instance in data set GMS is illustrated in Fig. 1.

Guastaroba et al. (2016) used a second data set, whichwas generated from the 8 benchmark
instances for the index tracking problem currently belonging to the OR-Library (available
at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html). These instances consider
the securities included in eight different stock market indices: the Hang Seng market index
(related to the Hong Kong stock exchange market), the DAX 100 (Germany), the FTSE 100
(United Kingdom), the S&P 100 (USA), the Nikkei 225 (Japan), the S&P 500 (USA), the
Russell 2000 (USA) and the Russell 3000 (USA). The number of securities included in these
instances ranges from 31, composing the Hang Seng index, to 2151, composing the Russell
3000 index. We found that in the two largest instances there were some securities achieving
extremely large weekly returns (even larger than 1000 %) in one or very few observations.
Since rates of return of thismagnitude have a strong impact on the average return of a security,
even if realized in very few observations, we decided to remove these securities from the
instance. In the following, thismodified data set is calledORL, and each instance is referred to
as ORL-ITκ , κ = 1, . . . , 8. Eventually, we removed two securities from both the ORL-IT7
and the ORL-IT8 instances. Regarding the time frames adopted, for instances ORL-IT1–
ORL-IT5, originally introduced in Beasley et al. (2003), the in-sample period spans from
March 1992 to February 1994, whereas the out-of-sample period spans from March 1994 to
February 1995. Instances ORL-IT6–ORL-IT8 were originally introduced in Canakgoz and
Beasley (2009), and the authors did not provide any detail regarding the time frame the data
refer to.

Each of the above instances comprises 2 years of in-sample weekly observations (i.e.,
104 scenarios) and 1 year of out-of-sample ones (i.e., 52 realizations). For each instance,
the optimal portfolio composition is first decided by solving one of the optimization models
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Fig. 1 The four different market periods in data set GMS

described in the following and using the in-sample 104 scenarios. Then, the performance of
the portfolios is evaluated by observing their behaviors over the 52 weeks following the date
of portfolio selection.

Despite in our experiments we have used historical data as scenarios, the proposed opti-
mizationmodels can also be employed using a set of scenarios generatedwithmore elaborated
techniques.We refer the interested reader toGuastaroba et al. (2009), where different scenario
generation techniques are compared when embedded into portfolio selection models similar
in structure to those proposed here. The reader should also be aware that using historical
data might affect the performance of any strategy. As a consequence, the results concerning
especially the out-of-sample validation of the proposed optimization models must be inter-
preted with care, since they might contain noise that is difficult to separate from the intrinsic
performance of the proposed methodologies.

The optimization models that we considered in our computational experiments are the
following. To provide some insights on the effectiveness of the EWCVaR model (19), we
solved it using four different sets of values for the tolerance levels {βk}k=1,...,m . More specif-
ically, the first model considers two tolerance levels (i.e., m = 2) equal to β1 = 0.05 and
β2 = 0.25, respectively. This model is henceforth referred to as EWCVaR(.05, .25). The
second model, from now on denoted as EWCVaR(.05, .25, .50), is based on the choice of
three tolerance levels (i.e., m = 3). We set these three values equal to β1 = 0.05, β2 = 0.25,
and β3 = 0.50, respectively. The remaining two models consider only one tolerance level
(i.e., m = 1). These models are hereafter called ECVaR(.05) and ECVaR(.50), since they
correspond to setting the tolerance level β1 equal to 0.05 and 0.50, respectively. For each
of the above models, weights wk were computed according to (9). Finally, as a basis for
comparison with the literature, we also solved the EOR model (26) on the aforementioned
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Table 1 The main characteristics of the tested data sets

Data set Instance Benchmark n T μI% α%

GMS GMS-UU FTSE 100 100 104 15.61 5.10

GMS-UD FTSE 100 100 104 17.39 7.21

GMS-DU FTSE 100 100 104 − 21.15 4.06

GMS-DD FTSE 100 100 104 − 11.81 10.45

ORL ORL-IT1 Hang Seng 31 104 48.60 0.00

ORL-IT2 DAX 100 85 104 7.16 3.03

ORL-IT3 FTSE 100 89 104 14.20 8.28

ORL-IT4 S&P 100 98 104 6.46 6.15

ORL-IT5 Nikkei 225 225 104 − 0.88 10.45

ORL-IT6 S&P 500 457 104 26.07 24.42

ORL-IT7 Russell 2000 1316 104 9.22 74.07

ORL-IT8 Russell 3000 2149 104 23.36 59.30

n, is the number of securities available for the investment
T , is the number of in-sample scenarios
μI%, is the average in-sample benchmark return (on yearly basis)
α%, is the excess return (on yearly basis)

instances. The value used for parameters ε1 and ε2 is .00001 for all the tested optimization
models.

As mentioned above, the EWCVaRmodel (19) is valid only if the value of the ratio (11) is
not smaller than 1. To guarantee that this condition is satisfied, we devised the following pre-
processing procedure to choose the value of α to use in the experiments. For each instance,
we solved separately each of the aforementioned EWCVaR models, starting with an initial
value of α equal to 0. Then, we solved iteratively that optimization model increasing the
value of α by 1% (on yearly basis), as long as ratio (11) took a value smaller than 1. Finally,
the maximum among the final values taken by α over all the models is chosen, to guarantee
that the above condition is satisfied for any of the tested EWCVaR models. Computing times
to solve the EWCVaR models, and hence to carry out the above pre-processing procedure,
are negligible, as described in the following section.

Table 1 summarizes the main characteristics of all the tested instances, including the
average in-sample return of the benchmark (column with header μI%) and the value of α

used in the experiments (column α%). For the sake of readability, we expressed the latter two
values in percentage and on yearly basis, even though they are expressed on weekly basis in
the instances.

All instances in the two data sets are publicly available on the website of the Operational
Research Group at the University of Brescia (http://or-brescia.unibs.it), in section “Bench-
mark Instances”.

4.1.2 Comparing the performance of the optimal portfolios

In Tables 2 and 3, we provide some in-sample and out-of-sample statistics summarizing the
computational results obtained by solving all the tested models with the GMS and ORL
data sets, respectively. Both tables have the same structure, and the meaning of each column
header is as follows. Regarding the in-sample, we report the following statistics:
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� DI: the diversification index computed as the complement of the Herfindhal index, i.e.,

DI = 1 −
n∑

j=1
x2j (see Woerheide and Persson 1993);

� Div.: the number of securities selected in the optimal portfolio;
� Min %: the minimum portfolio share (in percentage);
� Max %: the maximum portfolio share (in percentage).

On the other hand, as out-of-sample statistics we report the following ones:

� yt > r It %: the number of weeks, divided by 52 and in percentage, that the portfolio rate
of return has outperformed the benchmark in the out-of-sample period;

� rav %: the average portfolio return on yearly basis (in percentage);
� Excess Ret. %: the out-of-sample average excess return of the portfolio over the bench-

mark, on yearly basis and in percentage. It is computed as [rav] - [average benchmark
return];

� s-std: the downside semi-standard deviation of the portfolio return compared to the

benchmark return, computed as
√

1
52

∑52
t=1(yt − r It )2−;

� Sortino index: the average excess return divided by the semi-standard deviation s-std.

The above statistics provide a synthetic and clear assessment of both in-sample main
characteristics and out-of-sample performance of the optimal portfolios. In both tables, for
each instance we highlighted in bold the model(s) that achieved the best value of the Sortino
index (the larger, the better). As already mentioned, computing times required to optimally
solve the tested models are always negligible (in the order of fractions of a second), and thus
they have not been reported here. This is one of the strengths of the proposed optimization
models. The reader should be aware that solving other optimization models with very large
investment universes can lead to intractable problems. In these cases, one possible strategy
to employ is to preselect the set of securities available for the investment, for example based
on a risk-adjusted performance ratio. One can note that for both the EOR model (26) and the
EWCVaR model (19) the number of variables and constraints increase with the number of
scenarios. Hence, finding an optimal solution for these models may become computationally
challenging when the number of scenarios employed is very large. In “Appendix B”, we
show that, taking advantage of LP duality, one can obtain more computationally efficient
formulations to use with a large number of scenarios. Finally, to evaluate and easily compare
the out-of-sample performance of the optimal portfolios over time, we plot in Figs. 2, 3, 4, 5,
6 and 7 the ex-post cumulative returns yielded by all the selected portfolios and the respective
benchmark in each of the 12 tested instances.

Table 2 summarizes the results for the GMS data set. We recall that DI takes value zero
for a portfolio with absolutely no diversification (a one security portfolio), whereas 1.0
represents the ultimate in diversification. Looking at the in-sample results, it is evident that
all the portfolios have a similar diversification, as captured by index DI which ranges from
.94 to .95. By quoting fromWoerheide and Persson (1993) that “Portfolios with index values
greater than .91 probably are adequately diversified”, we can conclude that all the portfolios
achieve satisfactory results in terms of diversification. Similar conclusions can be drawn by
analyzing the portfolio cardinality (column Div.), as well as the minimum and maximum
portfolio shares (columns Min % and Max %, respectively). Regarding the latter statistic, it
takes very similar values in all the instances with the only exclusion of instance GMS-UU,
where a slightly larger deviation can be identified. Note that the maximum portfolio share
never exceeds the 14.5%, indicating that in all the optimal portfolios the budget available
has been, in a broad sense, well-diversified among the securities. We stress that, as pointed
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(a)

(b)

Fig. 2 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the GMS-UU and GMS-UD instances

out at the end of Sect. 3, if the investor desires to limit the portfolio cardinality, this can be
incorporated into the proposed optimization models by introducing binary variables along
with a cardinality constraint. As far as the out-of-sample performance is considered, after
analyzing the figures reported in Table 2 and the cumulative returns depicted in Figs. 2
and 3, one can conclude that all the optimal portfolios perform similarly and well: they
closely mimic the benchmark, often outperform it (even if not for the entire out-of-sample
period), and show a limited performance deviation between each others. Some differences are
evident for instance GMS-UD. In this case, all the optimized portfolios clearly outperform
the benchmark, although differently. Inmore details, Fig. 2b shows that the optimal portfolios
selected by models EOR and EWCVaR(.05, .25, .50) achieve the highest cumulative returns
in the first part of the ex-post period, whereas they are clearly outperformed by the portfolio
selected by model ECVaR(.05) in the last part of the ex-post period. Analyzing more in depth
the figures reported in Table 2, one can also notice that for the GMS-UU instance the portfolio
selected with the EOR model is the one that yielded the best ex-post cumulative return, and
the only one that achieved a (slightly) positive average excess return (see column Excess Ret.
%).

We now turn our attention to the results regarding the ORL data set, which are summarized
in Table 3 and illustrated in Figs. 4, 5, 6 and 7. As far as the four smallest instances of
this data set are considered, Figs. 4a and 5a show that all the optimal portfolios replicate
quite closely the ex-post behavior of their benchmark. In more details, regarding instances
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(a)

(b)

Fig. 3 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the GMS-DU and GMS-DD instances

ORL-IT1 through ORL-IT3, the portfolios that perform best are those obtained solving
model ECVaR(.50), achieving an average excess return that ranges from 1.99% to 3.62%,
with values of statistic s-std slightly smaller than the ones of the other optimal portfolios.
Conversely, the portfolio selected by the ECVaR(.50) model is the one that performs worst
in instance ORL-IT4 (compare the values of the Sortino index). For this instance, the only
portfolios that achieved a positive excess return are those determined by solving the EOR and,
in particular, the EWCVaR(.05, .25, .50) models. Regarding instance ORL-IT5, the ex-post
cumulative returns yielded by the benchmark are always better than the ones achieved by the
optimized portfolios, although the differences are not very large (the average excess return of
the portfolios ranges from−2.74% to−4.04%). In this instance, the portfolio selected using
the EWCVaR(.05, .25) and the ECVaR(.05) models is the one that looses less compared to
the benchmark. In the three largest-scale instances of the ORL data set, all the optimized
portfolios outperform considerably the benchmark (see Figs. 6b, 7a and 7b). Regarding
instance ORL-IT6, the portfolio selected by model EOR provides the best out-of-sample
results, achieving an average excess return equal to 5.44%, beating the 57.69% of times (out
of the 52 ex-post observations) the return yielded by the benchmark, and with the smallest
downside risk (statistic s-std takes a value approximately equal to 0.0044). Nevertheless, the
performance of the portfolio obtained by the ECVaR(.05) and the EWCVaR(.05,.25) models
is only slightly worse, achieving an average excess return roughly equal to 4.65%, beating
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(b)

Fig. 4 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the ORL-IT1 and ORL-IT2 instances

the benchmark return 55.77% of the times, and with a downside risk around 0.0049. As
far as instance ORL-IT7 is considered, the portfolio constructed by solving the EOR model
achieves the best ex-post performance: it yields an average excess return of approximately
16.41% and a value of the Sortino index equal to 0.3993. It is worth noting that, with the
exception of the ECVaR(.50) model, all the CVaR-based models select the same optimal
portfolio. Finally, regarding instance ORL-IT8, both the ECVaR(.05) and the EWCVaR(.05,
.25) models find the same optimal portfolio. More importantly, the latter portfolio is the one
performing best ex-post, yielding an average excess return roughly equal to 28.98% (which
is considerably larger than that achieved by the other portfolios), and being only slightly
riskier (compare the figures reported in column s-std). Note that the portfolio with the worst
value of the Sortino index for instance ORL-IT8 is the one selected by the EOR model.
It is worth highlighting that in both the ORL-IT7 and ORL-IT8 instances, all the optimal
portfolios largely outperform the benchmark over the entire out-of-sample period, yielding
much larger cumulative returns than the ones achieved by the market index. A similar finding
also occurs in instance ORL-IT6 for most of the optimal portfolios, with the exception of
model ECVaR(.50). Actually, the latter clearly outperforms the benchmark over most of
the out-of-sample period, but achieving similar cumulative returns towards the end of the
period. Interesting enough, although we treat differently some more or less extreme events,
for several instances the ECVaR(.05) and ECVaR(.05, 0.25) models find the same optimal
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(a)
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Fig. 5 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the ORL-IT3 and ORL-IT4 instances

portfolios, perhaps indicating that in these cases a larger number of in-sample observations,
or further levels of diversification and weight setting might help.

Summarizing the previous discussion, the experimental results that we conducted indicate
that no optimization model shows a clear dominance over the others. Indeed, considering
all the instances we tested, it is not possible to determine neither a “winning model”, nor a
“losingmodel”. It is, however, possible to determine the following general guidelines. Firstly,
optimizationmodels can be a valuable tool to support investment decisions. Indeed, it is worth
noting that in 10 out of the 12 instances, at least one optimal portfolio outperforms ex-post
the respective benchmark in terms of average return yielded. More interestingly, in 8 out of
the 12 instances all the optimal portfolios outperform their benchmark. Secondly, analyzing
in more details the results reported in Table 2, one can notice that the instances where most of
(or even all) the optimal portfolios yielded a negative excess return are those when the market
trend is increasing out-of-sample (i.e., instances GMS-UU and GMS-DU). Considering that
in these two instances the optimal portfolios yielded an average return at least equal to
42.84% and 31.55%, respectively, we believe that these are situations where for an investor
it is, from a practical perspective, less relevant to outperform a benchmark. On the other side,
this becomes crucial when the market trend is decreasing ex-post, as for instances GMS-
UD and GMS-DD. Note that, in these two cases, all the optimal portfolios yielded a positive
excess return, at least equal to 6.15% and to 1.90%, respectively. Regarding the excess returns
yielded ex-post by the optimized portfolios, it is worth highlighting that the values reported
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Fig. 6 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the ORL-IT5 and ORL-IT6 instances

in Tables 2 and 3 are sometimes considerably different from the in-sample values shown in
Table 1 (see columnα%). Likely, this outcome is caused by a remarkable change in themarket
trend from the in-sample to the out-of-sample period. To provide some further insights into
the performance of the optimal portfolios, Table 4 summarizes the ranking of the five models
according to the Sortino index values. More precisely, this table reports the number of times
(out of the 12 instances) that the portfolio selected by each optimization model was ranked
from the first to the fifth position, based on the Sortino index. Column Top/Bot. shows the
ratio between the number of times the portfolio selected by each optimization model was
ranked in one of the first two positions (i.e., either first or second), and the number of times it
was ranked in one of the last two positions (i.e., either fourth or last). Finally, column Aver.
reports the average position achieved by the portfolios selected by each optimization model.
Although the ECVaR(.50) model, with a value of 4, achieved the highest number of times
the first position, it slips back to the worst performance when one considers the cumulative
sum of the first two positions (the total number remains equal to 4, which is the same result
attained by model EWCVaR(.05, .25, .50)). It is worth noting that the ECVaR(.50) model
is also the one with the highest number of times in the last position. If one considers the
sum of first and second positions, models EOR and EWCVaR(.05, .25) are the best ones
with a cumulative sum equal to 7. Analyzing the figures in more details, one can notice that
the EWCVaR(.05, .25) model has never been in the last position, whereas the EOR model
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Fig. 7 Out-of-sample cumulative returns: a comparison among the optimization models and the benchmark
on the ORL-IT7 and ORL-IT8 instances

attained twice the last position, hence making the former preferable to the latter. Although
the EWCVaR(.05, .25) and the ECVaR(.05) models often select the same optimal portfolios,
the rankings indicate that in the remaining instances model EWCVaR(.05, .25) performs
better than model ECVaR(.05). Thus, the EWCVaR(.05, .25) model tends to produce more
stably reasonably good results than models ECVaR(.50) and ECVaR(.05). Finally, model
EWCVaR(.05, .25, .50) is the more conservative, awarding the first position and the last
one only once each, hence ranking in the middle positions for most of the instances. The
considerations above are confirmed by the values of the Top/Bot. ratios and the average
positions. According to these two statistics the best performing model is EWCVaR(.05, .25),
which achieved the same Top/Bot. ratio as model EOR but a slightly better average position.
On the other side, the worst performance is yielded by model ECVaR(.50), which produced
a performance considerably worse than any of the other optimization models.

4.2 Rolling time window evaluation

In the previous section, we observed the performance of the optimal portfolios in the 52weeks
following the date of portfolio selection. Nevertheless, in real-life investment situations such
a holding period is unrealistically long, as investors tend to rebalance their portfolios much
more frequently in response to market changes. To gain some insights on this issue, we now
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Table 4 Optimization models: a summary of their out-of-sample rankings

Model # # # # # Top/Bot. Aver.
First Second Third Fourth Last

EOR 3 4 2 1 2 7/3 2.58

EWCVaR(.05, .25) 3 4 2 3 0 7/3 2.42

EWCVaR(.05, .25, .50) 1 3 3 4 1 4/5 3.08

ECVaR(.05) 3 2 3 2 2 5/4 2.83

ECVaR(.50) 4 0 1 2 5 4/7 3.33

Columns 2 through 6 show the number of times (out of the 12 instances) the portfolio selected by each
optimization model was ranked from the first to the fifth position, based on the out-of-sample Sortino index
values
Column Top/Bot. is the ratio between the number of times the portfolio selected by each optimization model
was ranked in one of the first two positions (# First+# Second), and the number of times it was ranked in one
of the last two positions (# Fourth+# Last)
Column Aver. is the average position

consider more dynamic investors who decide to rebalance, at regular intervals, the portfolio
composition during the 52 weeks following the date of the initial portfolio selection. In the
financial literature, this type of investment strategy is often called “calendar-based rebalanc-
ing” (e.g., see Eakins and Stansell 2007). We consider three different levels of dynamism,
corresponding to three investors who decide to rebalance the portfolio composition every 4
weeks (Monthly, and hereafter denoted as RS-M), every 12 weeks (Quarterly, from now on
indicated as RS-Q), and every 24 weeks (Semester, denoted as RS-S in the following). From
an optimization viewpoint, this simply requires to solve sequentially each of the proposed
optimization models by using a rolling time window of 104 in-sample observations as sce-
narios, and then evaluating each optimal portfolio over the out-of-sample period that elapses
from one optimization to the following.

Tables 5, 6 and 7 summarize the in-sample and out-of-sample results for the three strategies
RS-S, RS-Q, and RS-M, respectively. In these tables, the in-sample statistics introduced in
Sect. 4.1.2 are computed as averages over all the portfolios determined by applying each
investment strategy. In addition, to provide some information on how much the portfolio
composition changes by implementing each rebalancing strategy, we compute the average
turnover index as follows:

� TI = 1
L

L−1∑

l=0

n∑

j=1
|x j,l+1 − x j,l |,

where l = 0 corresponds to the initial portfolio selection, L denotes the number of times
the portfolio is rebalanced in each strategy (L is equal to 2, 4, and 12 for RS-S, RS-Q, and
RS-M, respectively), and x j,l is the weight of security j in the initial portfolio (if l = 0), or
after the l − th rebalancing (otherwise).

Analyzing more in depth the results, one can notice that the general guidelines highlighted
in the previous section carry over to the portfolios selected by applying the considered rebal-
ancing strategies. Firstly, and more importantly, they confirm, once more, that optimization
models can be a valuable support for investment decisions. Indeed, in the majority of the
instances, most of the portfolios outperform the respective benchmark in terms of out-of-
sample average return yielded. Particularly, the value of statistic “Excess Ret. %” ranges
from a minimum value of −6.21% (see in Table 5 the excess return yielded in instance
ORL-IT5 by model ECVaR(.50)) to a maximum value larger than 70% (e.g., see in Table 6
the results related to all the models in instance ORL-IT8). Regarding the in-sample statistics,
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Table 8 Investment strategies: a summary of their out-of-sample rankings

Model Strategy # # # #
First Second Third Last

EOR SP 3 0 4 5

RS-S 5 5 1 1

RS-Q 3 4 4 1

RS-M 1 3 3 5

EWCVaR(.05, .25) SP 1 5 0 6

RS-S 3 4 5 0

RS-Q 6 1 3 2

RS-M 2 2 4 4

EWCVaR(.05, .25, .50) SP 3 1 2 6

RS-S 4 4 4 0

RS-Q 3 4 4 1

RS-M 2 3 2 5

ECVaR(.05) SP 1 3 3 5

RS-S 4 3 4 1

RS-Q 5 4 1 2

RS-M 2 2 4 4

ECVaR(.50) SP 4 0 3 5

RS-S 2 4 5 1

RS-Q 3 6 3 0

RS-M 3 2 1 6

For each optimization model, the columns show the number of times (out of the 12 instances) that the portfolio
selected by employing each investment strategy was ranked from the first to the fourth position, based on the
out-of-sample Sortino index values

they indicate that the optimal portfolios are sufficiently well-diversified, as for the portfolios
selected by using the single-period strategy, and that, in general, no remarkable differences
can be noted by modifying the rebalancing frequency. The only exception is represented by
the turnover index “TI” that, on average, takes smaller values by increasing the frequency of
rebalancing (cf. the values of this statistic for strategy RS-S with those for RS-M).

To better evaluate the impact of the different rebalancing strategies on the out-of-sample
performance of the optimal portfolios, in Table 8we summarize, for each optimizationmodel,
the ranking of each strategy according to the Sortino index value (strategy SP refers to the
single-period strategy detailed in Sect. 4.1). Particularly, this table reports the number of times
(out of the 12 instances) that the portfolio selected by each optimization model was ranked
from the first to the fourth position, based on the Sortino index. As a general conclusion,
the figures reported in Table 8 indicate that the investment strategy that was ranked first the
highest number of times is RS-Q (20 times out of all the optimization models), immediately
followed by strategy RS-S (18 times). These two strategies are those that achieved the highest
number of times the second position, and, hence, that also performed best if one considers the
cumulative sum of the first two positions. Conversely, strategy RS-M achieved the smallest
number of times the first position: 10 times in contrast to the 12 times performed by strategy
SP. The latter two strategies are also those that were ranked the highest number of times in
the last position. Summarizing these results, investors can yield substantially better out-of-

123



Annals of Operations Research

Table 9 Strategy RS-S: a summary of the out-of-sample rankings

Model # # # # # Top/Bot. Aver.
First Second Third Fourth Last

EOR 4 2 2 4 0 6/4 2.50

EWCVaR(.05, .25) 1 1 5 3 2 2/5 3.33

EWCVaR(.05, .25, .50) 2 5 4 0 1 7/1 2.42

ECVaR(.05) 3 1 1 4 3 4/7 3.25

ECVaR(.50) 3 2 1 1 5 5/6 3.25

Columns 2 through 6 show the number of times (out of the 12 instances) the portfolio selected by each
optimization model was ranked from the first to the fifth position, based on the out-of-sample Sortino index
values
Column Top/Bot. is the ratio between the number of times the portfolio selected by each optimization model
was ranked in one of the first two positions (# First+# Second), and the number of times it was ranked in one
of the last two positions (# Fourth+# Last)
Column Aver. is the average position

Table 10 Strategy RS-Q: a summary of the out-of-sample rankings

Model # # # # # Top/Bot. Aver.
First Second Third Fourth Last

EOR 2 0 4 6 0 2/6 3.17

EWCVaR(.05, .25) 2 3 3 3 1 5/4 2.83

EWCVaR(.05, .25, .50) 2 4 1 3 2 6/5 2.92

ECVaR(.05) 4 2 2 2 2 6/4 3.00

ECVaR(.50) 3 3 1 0 5 6/5 3.08

Columns 2 through 6 show the number of times (out of the 12 instances) the portfolio selected by each
optimization model was ranked from the first to the fifth position, based on the out-of-sample Sortino index
values
Column Top/Bot. is the ratio between the number of times the portfolio selected by each optimization model
was ranked in one of the first two positions (# First+# Second), and the number of times it was ranked in one
of the last two positions (# Fourth+# Last)
Column Aver. is the average position

sample performance by periodically rebalancing the portfolio composition. This observation
is consistentwith the practice observed among financial investors. As far as the best frequency
of rebalancing is concerned, the results indicate that a strategy based on a frequent portfolio
rebalancing (i.e., RS-M) is often outperformed by other investment strategy based on a less
frequent portfolio rebalancing (i.e., RS-S and RS-Q). Given these findings, strategy RS-M is
excluded from the following analysis.

Tables 9 and 10 summarize the ranking of the five optimization models according to the
Sortino index values for strategy RS-S and RS-Q, respectively. The meaning of the values
reported in each column of these tables is akin to that explained above for Table 4. Ana-
lyzing in detail the results achieved for strategy RS-S (cf. the figures in Table 9) the best
performing model is EWCVaR(.05, .25, .50): it has achieved the highest Top/Bot. ratio and
the smallest average ranking. The second-best is model EOR, which yielded a consider-
ably worse Top/Bot. ratio, along with a slightly worse average position, compared to model
EWCVaR(.05, .25, .50). Models ECVaR(.50) and ECVaR(.05) are those achieving a middle
performance, whereas model EWCVaR(.05, .25) yielded the worst performance.
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Turning our attention to the results produced by strategy RS-Q (cf. the figures in Table 10),
it is quite evident that the two WCVaR models are those yielding the best performance.
Particularly, model EWCVaR(.05, .25) achieved the best Top/Bot. ratio, as well as the best
average position, immediately followed by model EWCVaR(.05, .25, .50) which achieved
slightly worse values in both statistics. Also for strategy RS-Q, models ECVaR(.50) and
ECVaR(.05) yielded a middle performance, whereas EOR is the model who achieved the
worst performance.

As a final attempt to provide some insights, in Table 11 we show the rankings of each
of the five models employed within both rebalancing strategy. Note that, altogether, we are
comparing ten different approaches. More specifically, this table reports the number of times
(out of the 12 instances) that the portfolio selected by a given model and rebalancing strategy
was ranked from the first to the tenth position, according to the Sortino index values. Column
Top/Bot. here indicates the ratio between the number of times the portfolio selected by an
optimization model within a given rebalancing strategy was ranked in one of the first five
positions and the number of times it was ranked in one of the last five positions. Column
Aver. shows the average position achieved. Looking at the results reported in Table 11, model
EWCVaR(.05, .25, .50) employed within strategy RS-S yielded the best Top/Bot. ratio. The
second-best performance is achieved by model EOR followed by ECVaR(.05), both models
still applied within strategy RS-S. The latter model yielded the same value of the Top/Bot.
ratio than the former, but a worse average position. Finally, all the models using strategy
RS-Q, with the exception of model ECVaR(.05), and model ECVaR(.50) applying strategy
RS-S achieve equally the same worst performance in terms of the Top/Bot. ratio. One may
conclude that with respect to the 12 instances, the WCVaR models tend to produce more
stably reasonably good quality results than the corresponding CVaR models.

5 Conclusions

In recent years, shortfall or quantile riskmeasures have been playing a central role in financial
applications. The Conditional Value-at-Risk (CVaR) is one of such measures. In this paper,
we have contributed to the literature by:

– introducing a theoretical framework for risk-reward ratio models, and showing how it
can be applied to the Enhanced Index Tracking Problem (EITP);

– proposing, in the context of the EITP, a class of risk-reward ratio optimization models,
where the risk measure is based on the Weighted CVaR (WCVaR), which can be defined
as a weighted combination of few CVaRmeasures. It allows a more detailed risk aversion
modelingwhile preserving the simplicity of the CVaR, and encompass the classical CVaR
as a special case;

– showing that, using standard linearization techniques, the risk-reward ratio optimization
models can be reformulated as LP solvable models;

– showing that some modeling issues of the formulation introduced in Guastaroba et al.
(2016) can be overcome by reformulating it as a risk-reward model.

The performance of the portfolios optimized by means of the proposed approach has been
compared to the one of the portfolios constructed using the reformulation of the Extended
Omega Ratio (EOR) model presented in Guastaroba et al. (2016). All optimization models
were solved by using CPLEX.

We conducted extensive computational experiments on two different sets of benchmark
instances, exploring different market trends both in-sample and out-of-sample. In the experi-
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mental analysiswe both considered a static investorwho applies a single-period buy-and-hold
investment strategy and, by using a rolling time window approach, an investor who desires
to rebalance the portfolio composition. The results indicate that:

– all the optimal portfolios yield a quite satisfactory out-of-sample performance, tracking
very closely the benchmark over the out-of-sample period, often achieving considerably
better returns;

– all the optimized portfolios are adequately well-diversified;
– no optimization model clearly dominates all the others in terms of out-of-sample perfor-

mance;
– considering a ranking based on the values of the Sortino index yielded ex-post by the opti-

mal portfolios suggest that adding further CVaR measures within a WCVaR framework
tends to produce better performance;

– contemplating the rolling time window evaluation, investors can achieve a substantially
better out-of-sample performance by periodically rebalancing the portfolio composition,
and that rebalancing every semester produces a better performance than rebalancing every
quarter and, in turn, better than a monthly rebalancing;

– computing times required for solving the proposedmodels, even for very large investment
universes, are negligible, making their use suitable in financial practice, where decisions
have to be, more and more frequently, taken in a real-time environment.

The results suggest that optimization models can represent, to an investor, a valuable
quantitative tool to support investment decisions.
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Appendix A: Other CVaR-related ratio measures

In this appendix, we discuss some well-known ratio performance measures that are related to
the CVaR, and therefore relevant to our research. In particular, we highlight in the following
the similarities among these ratio measures and the ones used in the current paper. Consider
the following risk-return ratio that uses a single CVaR measure and has to be minimized:

DDRβ(τ, Rx) = Δβ(Rx)

μ(Rx) − τ
→ min.

Following Theorem 1, one gets a well-defined model for μ(Rx)− τ > 0 and SSD consistent
for Mβ(Rx) = μ(Rx) − Δβ(Rx) ≤ τ . Rachev et al. (2007) introduced a CVaR-related ratio
measure called the Stable-Tail Adjusted Return Ratio (in short, STARR) defined as:
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ST ARRβ(τ, Rx) = E[Rx − τ ]
CVaRβ(Rx − τ)

= E{Rx − τ }
τ − Mβ(Rx)

= μ(Rx) − τ

τ − Mβ(Rx)
→ max.

Note that the additional restriction τ −Mβ(Rx) > 0 must be imposed, in addition toμ(Rx)−
τ > 0, to guarantee the positivity of the above ratio. Obviously, this ratio can be reformulated
in terms of risk-reward ratio optimization as follows:

ST ARRβ(τ, Rx) = τ − Mβ(Rx)

μ(Rx) − τ
→ min.

Actually, note that the following equalities hold:

ST ARRβ(τ, Rx) = τ − Mβ(Rx)

μ(Rx) − τ
= τ − μ(Rx) + Δβ(Rx)

μ(Rx) − τ
= −1 + DDRβ(τ, Rx).

Hence, optimizing ST ARRβ(τ, Rx) is equivalent to optimizing DDRβ(τ, Rx), although the
former requires the additional restriction τ − Mβ(Rx) > 0.

A more general CVaR-related ratio measure, called the Rachev ratio (R-ratio), was intro-
duced byRachev et al. (2007). It is defined as the ratio of the expected excess tail return above a
certain threshold level (percentile of the right tail distribution), divided by the expected excess
tail loss beyond another threshold level (percentile of the left tail distribution). In terms of
Mβ(Rx), the R-ratio can be expressed as follows:

RR(β1,β2)(τ, Rx) = −Mβ1(τ − Rx)

−Mβ2(Rx − τ)
→ max,

with parameters 0 < β1, β2 ≤ 1. Note that in the special case obtained by setting β1 = 1
and β2 = β, the corresponding R-ratio reduces to the ST ARRβ(τ, Rx):

RR(1,β)(τ, Rx) = −M1(τ − Rx)

−Mβ(Rx − τ)
= E{Rx − τ }

τ − Mβ(Rx)
= μ(Rx) − τ

τ − Mβ(Rx)
= ST ARRβ(τ, Rx).

Another interesting special case of the R-ratio is defined by setting β1 = 1 − β and
β2 = β. In this case, the corresponding R-ratio is defined as the ratio of the expected excess
tail return above a certain threshold level, divided by the expected excess tail loss beyond the
complementary threshold level. Thus, it is a quantile form of the Omega ratio introduced in
Keating and Shadwick (2002), and used in the current paper as a basis for the EOR model.
We show below that despite the RR(1−β,β)(τ, Rx) does not represent ST ARRβ(τ, Rx), their
maximization is equivalent.

In order to analyze the general R-ratio, let us recall the relations between upper (right)
tail mean and the lower (left) tail mean of a distribution. Recall that FRx (η) = P{Rx ≤ η}
denotes the right-continuous cumulative distribution function of Rx, whereas F (−1)

Rx
(ξ) is

the corresponding quantile function defined as the left-continuous inverse of the cumulative
distribution function FRx . Similarly, let FRx (η) = P{Rx ≥ η}, be the left-continuous right
tail cumulative distribution function which, for any real value η, provides the probability

of having returns larger than or equal to η. Then, let F
(−1)
Rx

denote the right tail quantile
function defined as the left-continuous inverse of the right tail cumulative distribution function

FRx , i.e., F
(−1)
Rx

(ξ) = sup{η : FRx (η) ≥ ξ}, for 0 < ξ ≤ 1. Note that F
(−1)
Rx

(ξ) =
F (−1)
Rx

(1 − ξ). Furthermore, the (convex) absolute Lorenz curve for any distribution may be

viewed as an integrated quantile function: F (−2)
Rx

(ξ) = ∫ ξ

0 F (−1)
Rx

(α)dα. Alternatively, the
upper (concave) absolute Lorenz curve may be used which integrates the right tail quantile

function: F
(−2)
Rx

(ξ) = ∫ ξ

0 F
(−1)
Rx

(α)dα. Actually, both the classical (lower) and the upper
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absolute Lorenz curves are symmetric with respect to the diagonal line μ(Rx)ξ , in the sense

that the differences F
(−2)
Rx

(ξ) − μ(Rx)ξ and μ(Rx)ξ − F (−2)
Rx

(ξ) are equal for symmetric
arguments ξ and (1 − ξ), i.e.:

F
(−2)
Rx

(ξ) + F (−2)
Rx

(1 − ξ) = μ(Rx), for any 0 ≤ ξ ≤ 1.

Therefore, one can write:

−Mβ1(τ − Rx) = 1

β1
F

(−2)
Rx−τ (β1) = 1

β1
(μ(Rx − τ) − F (−2)

Rx−τ (1 − β1))

= 1

β1
(μ(Rx) − τ) − 1 − β1

β1
M(1−β1)(Rx − τ).

Consequently, the following equalities hold:

RR(β1,β2)(τ, Rx) = −Mβ1(τ − Rx)

−Mβ2(Rx − τ)
= 1

β1

μ(Rx) − τ

τ − Mβ2(Rx)
+ 1 − β1

β1

M(1−β1)(Rx − τ)

Mβ2(Rx − τ)

= 1

β1
ST ARRβ2(τ, Rx) + 1 − β1

β1

M(1−β1)(Rx − τ)

Mβ2(Rx − τ)
.

In particular, in the special case ofβ1 = 1−β andβ2 = β, one canwrite: RR(1−β,β)(τ, Rx) =
1

1−β
ST ARRβ(τ, Rx) + β

1−β
, which confirms that the maximization of RR(1−β,β)(τ, Rx) is

equivalent to the maximization of ST ARRβ(τ, Rx), and thereby to the minimization of
DDRβ(τ, Rx). On the other hand, for the general case of β1 �= 1 − β2 the optimization of
RR(β1,β2)(τ, Rx) cannot be linearized and it is rather difficult to implement and solve.

Since in the literature both ratios ST ARRβ(τ, Rx) and RR(1−β,β)(τ, Rx) are usually
formulated with respect to a predetermined target τ , we preferred to provide the analysis
above in these terms. However, the analysis can be easily extended to a random target Rα ,
leading to the following ratios:

DDRβ(0, Rx − Rα) = Δβ(Rx − Rα)

μ(Rx − Rα)
→ min,

ST ARRβ(0, Rx − Rα) = −Mβ(Rx − Rα)

μ(Rx − Rα)
→ min,

and,

RR(β1,β2)(0, Rx − Rα) = −Mβ1(R
α − Rx)

−Mβ2(Rx − Rα)
→ max .

Appendix B: Dealing with a large number of scenarios

Note that the EOR model (26) has n + T decision variables, and T + 2 constraints. Our
computing experiments indicate that state-of-the-art solvers can find an optimal solution to
such a model in a short computing time when the number of scenarios is relatively small.
Nevertheless, finding an optimal solution can become computationally challenging when the
number of scenarios considered becomes (very) large. In these cases, similarly to Ogryczak
et al. (2017), one can take advantage of LP duality and reformulate the LP model (26) in the
following terms:
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max q − h

s.t.
T∑

t=1

(r jt − rα
t )ut + (μ j − μα)q − ε1h ≤ ε2 j = 1, . . . , n

h ≥ 0, 0 ≤ ut ≤ pt t = 1, . . . , T .

This model contains 2 + T variables, i.e., variables q , h, and ut , respectively. Note that the
T constraints corresponding to variables d̃t from model (26) take the form of simple upper
bounds on variables ut , thus not affecting the problem complexity. Hence, the number of
constraints in the above model is proportional to the number n of securities available for the
investment. This guarantees a remarkable computational efficiency of the dual model even
for a very large number of scenarios, i.e., T >> n.

In a similar way, the LP dual to the EWCVaR model (19) is the following:

max q − h

s.t.
T∑

t=1

utk = wk k = 1, . . . ,m

T∑

t=1

m∑

k=1

(r jt − rα
t )utk + (μ j − μα)q − ε1h ≤ (μ j − μα + ε2) j = 1, . . . , n

h ≥ 0, 0 ≤ utk ≤ ptwk

βk
t = 1, . . . , T ; k = 1, . . . ,m.

The latter model contains 2 + mT variables, i.e., variables q , h, and utk , respectively, and
the mT constraints corresponding to variables d̃tk from model (19) are simple upper bounds
on utk . Thus, similar to the dual above of the EOR model (26), the number of constraints in
this optimization model is only proportional to the number n of securities available for the
investment, and independent from the number of scenarios.
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Ogryczak, W., & Ruszczyński, A. (2002b). Dual stochastic dominance and related mean-risk models. SIAM
Journal on Optimization, 13(1), 60–78.

Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev
(Ed.), Probabilistic constrained optimization: Methodology and applications (pp. 272–281). Boston,
MA: Springer.

Rachev, S., Jasic, T., Stoyanov, S., & Fabozzi, F. J. (2007). Momentum strategies based on reward-risk stock
selection criteria. Journal of Banking & Finance, 31, 2325–2346.

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3),
21–42.

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of
Banking & Finance, 26(7), 1443–1471.

Rockafellar, R. T., & Uryasev, S. (2013). The fundamental risk quadrangle in risk management, optimization
and statistical estimation. Surveys in Operations Research and Management Science, 18(1), 33–53.

Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006a). Master funds in portfolio analysis with general
deviation measures. Journal of Banking & Finance, 30(2), 743–778.

Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006b). Optimality conditions in portfolio analysis with
general deviation measures. Mathematical Programming, 108(2), 515–540.

Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18(4),
13–22.

Roman, D., Mitra, G., & Zverovich, V. (2013). Enhanced indexation based on second-order stochastic domi-
nance. European Journal of Operational Research, 228, 273–281.

Sant’Anna, L. R., Filomena, T. P., Guedes, P. C., & Borenstein, D. (2017). Index tracking with controlled
number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming.
Annals of Operations Research, 258, 849–867.

Sharma, A., Agrawal, S., & Mehra, A. (2017a). Enhanced indexing for risk averse investors using relaxed
second order stochastic dominance. Optimization and Engineering, 18(2), 407–442.

Sharma, A., Utz, S., & Mehra, A. (2017b). Omega-CVaR portfolio optimization and its worst case analysis.
OR Spectrum, 39(2), 505–539.

Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138.
Sortino, F. A., & Price, L. N. (1994). Performance measurement in a downside risk framework. The Journal

of Investing, 3(3), 59–64.
Tobin, J. (1958). Liquidity preference as behavior towards risk. Review of Economic Studies, 25(2), 65–86.
Valle, C. A., Meade, N., & Beasley, J. E. (2014). Absolute return portfolios. Omega, 45, 20–41.
Weng, Y.-C., &Wang, R. (2017). Do enhanced index funds truly have enhanced performance? Evidence from

the chinese market. Emerging Markets Finance and Trade, 53(4), 819–834.
Whitmore, G. A., & Findlay, M. C. (Eds.). (1978). Stochastic dominance: An approach to decision-making

under risk. Lexington, MA: D.C. Heath.
Woerheide, W., & Persson, D. (1993). An index of portfolio diversification. Financial Services Review, 2(2),

73–85.
Yitzhaki, S. (1982). Stochastic dominance, mean variance, and Gini’s mean difference. The American Eco-

nomic Review, 72(1), 178–185.
Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management

Science, 44(5), 673–683.
Zenios, S. A. (2008). Practical financial optimization: Decision making for financial engineers. New York,

NY: Wiley-Blackwell.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123



Annals of Operations Research

Affiliations

Gianfranco Guastaroba1 · Renata Mansini2 ·Wlodzimierz Ogryczak3 ·
M. Grazia Speranza1

Gianfranco Guastaroba
gianfranco.guastaroba@unibs.it

Renata Mansini
renata.mansini@unibs.it

M. Grazia Speranza
grazia.speranza@unibs.it

1 Department of Economics and Management, University of Brescia, Brescia, Italy
2 Department of Information Engineering, University of Brescia, Brescia, Italy
3 Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw,

Poland

123

http://orcid.org/0000-0002-7810-4112
http://orcid.org/0000-0002-2194-0339
http://orcid.org/0000-0002-3923-4053
http://orcid.org/0000-0002-8893-5227

	Enhanced index tracking with CVaR-based ratio measures
	Abstract
	1 Introduction
	2 Basic notation and preliminary concepts
	2.1 Basic notation
	2.2 Risk, deviation and ratio measures
	2.3 Weighted CVaR risk measures

	3 Optimization models for the enhanced index tracking problem
	3.1 Extended WCVaR ratio model
	3.2 Extended Omega ratio model

	4 Experimental analysis
	4.1 Single-period evaluation
	4.1.1 Data sets and tested optimization models
	4.1.2 Comparing the performance of the optimal portfolios

	4.2 Rolling time window evaluation

	5 Conclusions
	Acknowledgements
	Appendix A: Other CVaR-related ratio measures
	Appendix B: Dealing with a large number of scenarios
	References




