3,329 research outputs found

    The SAMPLE Experiment and Weak Nucleon Structure

    Full text link
    One of the key elements to understanding the structure of the nucleon is the role of its quark-antiquark sea in its ground state properties such as charge, mass, magnetism and spin. In the last decade, parity-violating electron scattering has emerged as an important tool in this area, because of its ability to isolate the contribution of strange quark-antiquark pairs to the nucleon's charge and magnetism. The SAMPLE experiment at the MIT-Bates Laboratory, which has been focused on s-sbar contributions to the proton's magnetic moment, was the first of such experiments and its program has recently been completed. In this paper we give an overview of some of the experimental aspects of parity-violating electron scattering, briefly review the theoretical predictions for strange quark form factors, summarize the SAMPLE measurements, and place them in context with the program of experiments being carried out at other electron scattering facilities such as Jefferson Laboratory and the Mainz Microtron.Comment: 61 pages, review articl

    Robust Computation of Error Vector Magnitude for Wireless Standards

    Get PDF

    Distributed Finite Element Analysis Using a Transputer Network

    Get PDF
    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the 80,000transputernetworkdemonstratedacostperformanceratioabout60timesbetterthanthe80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the 15,000,000 Cray X-MP24 system

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    Analysis of an air-spaced patch antenna near 1800 MHz

    Get PDF
    Microstrip antennas are a type of printed antenna which consists of a patch on top of a grounded substrate. A major limitation for the performance of the patch antenna is the dielectric substrate. The idea of using air as dielectric was therefore considered to overcome that limitation because air has the lowest permittivity and no loss. The goal of this work is to build an air-spaced patch antenna, with the minimum resonant frequency at 1800 MHz and with a return loss of at least 10 dB. This work is novel because the air-spaced patch antenna has not been extensively studied. Existing literature on patch antennas with dielectric were used for the design of the antenna (dimensions of the patch, ground plane and height) and to understand the principles of operation of microstrip patch antennas in general. Simulations using the NEC code and experiments in the RF laboratory were used for this air-spaced patch antenna study. The Numerical Electromagnetic Code (NEC) was used as the simulation tool in this work. The air-spaced patch antenna was simulated to find a trend for the variation of the return loss and impedance with the resonant frequency. Simulation also helped determine cases that will not be meaningful to explore in the experiment. The experiment was done in the RF laboratory of Marquette University College of Engineering. Two procedures were used to calculate the patch dimensions using two different sources ([2], [3]). They lead to two patch antennas that were tested. For each antenna, the height of the dielectric substrate and the recess feed distance were varied. Antenna 2 (procedure 2 – [3]) provided the best results with a resonant frequency of 1800 MHz and a return loss of 21 dB. It was found that the error between experimental and simulation resonant frequency is generally 5% or less. This error increases as the dielectric height increases, and as the recess distance increases. Simulation results roughly follow the experimental results trend

    Design and Simulation of Resilient RF Receivers for 5G Interference Mitigation Using MATLAB

    Get PDF
    Introduction: Advanced terminal capabilities increase mobile broadband traffic, straining spectrum resources. Traditional methods like base stations are expensive. Heterogeneous networks (HetNets) using pico cells attempt to improve efficiency, however interference persists. A suggested mitigation technique uses the modified greatest weighting delay first (MLWDF) algorithm for resource allocation and reception processing, which performs well in simulations. Space, time, frequency, time-frequency, and coding domain interference reduction methods are investigated, each having hardware requirements and restrictions. Aim and objectives: The study uses MATLAB to construct and simulate robust RF receivers. Enhancing 5G communication network interference reduction is the goal. Method: Simulink is used to study transmitter and receiver RF losses, including I/Q imbalances, phase noise, and power amplifier non-linearity. Spectrum masks, error vector magnitudes, and peaks-to-average power ratios measure performance. Simulink models examine constellation distortion, neighboring channel rejection, and packet error rates in 802.11ax and 5G waveform reception due to RF impairments. The paper stresses the necessity of reliable data measurement for RF interference analysis and discusses interference mitigation. Results: Comparing Error Vector Magnitudes (EVMs) in Case 1 and Case 2 shows how NR interference affects HE receptions. EVMs approach -20 dB in Case 1 without NR interference. In Case 2, NR interference distorts constellations and lowers EVMs to -17 dB, suggesting poor reception. ACRs demonstrate NR-free channel separation by measuring power differences. The future investigation involves analyzing ACRs with HE waveforms as interferers and examining system behavior under different interference situations. Conclusion: To reduce non-idealities in mobile communication transceivers, this thesis presents digital projection interpolation and Wiener-SAF for leakage route and receiver nonlinearity estimation
    corecore