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ABSTRACT

Volumetric parameterization is an emerging field in computer graphics, where vol-

umetric representations that have a semi-regular tensor-product structure are desired

in applications such as three-dimensional (3D) texture mapping and physically-based

simulation. At the same time, volumetric parameterization is also needed in the Isoge-

ometric Analysis (IA) paradigm, which uses the same parametric space for representing

geometry, simulation attributes and solutions. One of the main advantages of the

IA framework is that the user gets feedback directly as attributes of the NURBS

model representation, which can represent geometry exactly, avoiding both the need

to generate a finite element mesh and the need to reverse engineer the simulation

results from the finite element mesh back into the model. Research in this area has

largely been concerned with issues of the quality of the analysis and simulation results

assuming the existence of a high quality volumetric NURBS model that is appropriate

for simulation. However, there are currently no generally applicable approaches to

generating such a model or visualizing the higher order smooth isosurfaces of the

simulation attributes, either as a part of current Computer Aided Design or Reverse

Engineering systems and methodologies. Furthermore, even though the mesh generation

pipeline is circumvented in the concept of IA, the quality of the model still significantly

influences the analysis result. This work presents a pipeline to create, analyze and

visualize NURBS geometries. Based on the concept of analysis-aware modeling, this

work focusses in particular on methodologies to decompose a volumetric domain into

simpler pieces based on appropriate midstructures by respecting other relevant inte-

rior material attributes. The domain is decomposed such that a tensor-product style

parameterization can be established on the subvolumes, where the parameterization

matches along subvolume boundaries. The volumetric parameterization is optimized

using gradient-based nonlinear optimization algorithms and datafitting methods are



introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed

order of accuracy. Then, a visualization method is proposed allowing to directly inspect

isosurfaces of attributes, such as the results of analysis, embedded in the NURBS

geometry. Finally, the various methodologies proposed in this work are demonstrated

on complex representations arising in practice and research.
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CHAPTER 1

INTRODUCTION

The finite element method (FEM) [86] is a numerical technique to find approximate

solutions to partial differential equations (PDE) on an object of interest. It is the de

facto standard of many analysis packages which are part of Computer Aided Engineering

(CAE) software. Given a Computer Aided Design (CAD) representation of the object

of interest, in order to run analysis, the CAD model must be converted using a meshing

technique into a CAE representation based, for instance, on hexahedral or tetrahedral

elements. This conversion is often time consuming because generally, these CAD models

are not watertight, nonmanifold or only represent the boundary of the object of interest

and also often require manual work to repair the CAD representation due to these

problems. See for instance Butlin et al. [26] for more discussion. A large amount of

effort is expended in mesh generation [150] and optimization in also terms of mesh

quality [108], a process which frequently takes much longer than the actual analysis.

Once analysis has been performed, and the result of the analysis has been evaluated,

the original CAD model typically must be modified and the procedure to generate a

representation for FEM has to be iterated several times until a satisfactory solution is

attained.

Proposing to use the same Non-Uniform Rational B-Splines (NURBS) [37] bases

that are used to define the parametric geometry as the underlying representation for

approximating the solutions to the PDE, Isogeometric Analysis (IA) introduced by

Hughes et al. [87] claims to break this time-consuming cycle. In IA which is based on the

Galerkin [86] method, simulation parameters, such as forces or material parameters are

represented as attributes of the NURBS representation [87]. One of the main advantages

of the IA framework is that the user gets feedback directly as attributes of the NURBS
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model representation, representing geometry exactly, thereby avoiding both the need to

generate a finite element mesh and the need to reverse engineer the simulation results

from the finite element mesh back into the model. Since IA works directly on the

exact CAD representations, geometric refinement is unnecessary and an analyist can

focuse only on refinement of the solution. However, as discussed below, one of the main

challenges in IA is to create a volumetric shape representation suitable for analysis.

By following [87] and [36], the IA pipepline consists of three stages:

1: Modification of the Shape Representation (SR) depending on analysis needs.

2: Analysis on the SR.

3: Investigation of the solution on SR through error analysis and visualization. Go

back to stage 1 or 2 as necessary.

Research in IA bridges aspects of approximation theory, modeling algorithms, sim-

ulation, and visualization. Much research in IA has largely been concerned with

issues of the quality of the analysis and simulation results assuming the existence of a

shape representation (e.g., trivariate NURBS or T-spline model) that is appropriate for

simulation. While Lipton et al. [116] demonstrate that analysis still can be performed

successfully on inferior NURBS representations, it will be shown in this work that

by carefully creating representations, numerical stability and convergence rates can

be significantly improved. There are currently no generally applicable approaches to

generating such a representation or visualization methodologies suitable to visualize the

solution on the higher-order NURBS representations.

One of the main foci of this work lies in proposing methodologies to create CAD

representations that are suitable for analysis, so they, in turn, serve as CAE representa-

tions as well. We shall call such a representation a CAD/E representation. As discussed

below, there are two paths to create a shape representation.

In the active modeling path, the CAD/E representation is created ab initio by a

modeler using volumetric shape operations. This path is demonstrated, for instance,

on a turbine blade in [4]. Already in the design process, tools and methodologies are

necessary to produce models which do not require extensive manual repair, since CAD
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systems in general do not create representations suitable to transform into volumetric

representations. An important problem is to assist the user in generating a full volume

shape representation and related attribute representation early in the design process

that is appropriate for IA, and to maintain it as the design evolves.

In the post facto modeling path, the representation is created from a point cloud,

CT scan, triangle mesh boundaries, etc., depending on the application. The input

as well can consist of multiple boundaries separating materials within the volume.

Figure 1.1 illustrates the input for a femur and pelvis data set with inner and outer

boundary represented by triangle meshes. Filling up the interior of the model, i.e.,

model completion, is a hard problem for surfaces, where the input is a set of boundary

curves, and is even more difficult for volumes. As a first step, a volumetric parameter-

ization is created from the input data. Then, given this parameterization, a NURBS

representation is generated from it. Depending on the input, a global parameterization

may not be possible, because of higher geometric complexity and topology. Therefore,

decomposition strategies are needed to consistenly decompose the input object into

a set of regions that are parameterized so that region parameterizations match along

common boundaries. In the second step, given a parameterization of the object, data

Figure 1.1. Input data. On the left: Triangle mesh boundaries of a femur bone; on the
right: Triangle mesh boundaries of a pelvis bone. In both examples, the inner boundary
separates cortical from trabecular bone material.
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fitting techniques are required to create the final shape representation. For that, the

parameterization must be sampled so that the resulting shape representions satisfy a

specified error tolerance. Creating such a representation for IA is not an automatic

approach and is therefore user-assisted. This is important because the user is aware

of the parts of the object of interest that are important in simulation and require

higher fidelity and so should be free of extraordinary points or degeneracies in the

representation compared to other parts of the object. Therefore, various parameters

can be specified by the user affecting the simulation result. For instance, given two

models representing the model of interest, one may lead to a better rate of solution

convergence relative to the other. Since there can be many representations for a single

geometry, an appropriate representation should take into account the particular analysis

being performed, as a study in [39] has demonstrated. Since in IA, the mesh generation

pipeline is eliminated, issues affecting model quality must be considered. That is, model

quality is a characterization of those representation properties of the model geometry

that impact the model representing the object of interest. However, the longterm goal

is to make more of the modeling steps automatic to reduce overall modeling time.

Once simulation has been applied to a trivariate representation of a physical domain,

in general, mesh extraction techniques or direct visualization techniques are needed to

inspect the result of the simulation. This is the third stage of the IA framework.

Techniques either directly visualize the solution using, e.g., a ray-based method, or the

isosurfaces are extracted and represented as triangle meshes that are rendered. The

majority of finite element visualization software, however, displays only linear shape

elements. For instance the Marching Cubes technique [119] is based on a uniform grid

and only approximates isosurfaces linearly. Although some extensions have generalized

it to higher order surfaces, a represention used in IA does not necessarily share the

uniform grid structure. A straightforward method is to sample the higher-order geom-

etry and solution representation and create a unstructured tetrahedral mesh and use

Marching Tetrahedra [33] to extract isosurfaces. However, finding the correct sampling

to extract a topological correct isosurface is a complex issue. Furthermore, it violates

the IA concept inasmuch as the geometric representation is changed.
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As mentioned above, other approaches consider a per-ray basis such as [155, 142]

and are generally based on classic root finding techniques that use Jacobians or interval

arithmetic [134]. NURBS involve an additional nonlinear map where classic methods

are difficult to adopt and often fail for complex geometry. Research on direct NURBS

visualization has focused on parametric surfaces and trivariate attribute NURBS defined

over uniform spatial grids, but there is little work to visualize NURBS isosurfaces for

attributes of general NURBS geometry.

1.1 Outline

Figure 1.2 gives an overview of the pipeline proposed in this work. Model completion,

shape representation and analysis are the fundamental building blocks of this work. The

Appendix gives an overview of the publications on which this dissertation is based.

1.1.1 Model Completion

As discussed above, there are two long term goals in geometric modeling: The ab

initio modeling path where the user creates a CAD/E representation using volumetric

shape operations and the post facto modeling path where input boundaries are given and

a volumetric representation is created based on these boundaries. Both are formidable

problems.

This work mostly focuses on the second goal, where in practice a closed triangle mesh

in three space is given. This triangle mesh represents the boundary of the physical

domain. Commonly, interior triangle meshes are given as well, separating different

materials within the physical domain as seen in Figure 1.1. For IA, the goal is to create

volume elements in the region enclosed by the multiple boundary triangle meshes. This

process is referred to as model completion. The chapters outlined in Figure 1.2, where

each one introduces a modeling methodology, are the core of this dissertation.

The choice of appropriate modeling methodology strongly depends on the complexity

of the input boundaries and the answers to the following questions: What is the genus

of the boundaries, what is the size of the features, are the interior boundaries contained

within each other, and so forth.
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In the case where the object of interest exhibits genus-0 and cylindrical-like shape,

Chapter 4 proposes a methodolgy to create a single and global volumetric parameteriza-

tion of the object that could embody shape overhangs (see femur data set in Figure 1.1).

This approach is often desired because decomposing of the object into subvolumes and

subsequently recombining them is a complex process. Achieving continuity can be

elusive, and decomposing in this manner often introduces extraordinary points.

The next level of complexity involves creating a volumetric parameterization for

an object with higher genus and structural bifurcations, shapes for which a single

parameterization is very difficult, if not impossible, to achieve. For instance, if the

object is of genus-1, a single parameterization can be established by sweeping a surface

along a closed curve. However, due to the complex shape, the resulting parameterization

may contain severe distortion as evidenced in the pelvis data set in Figure 1.1 and

detailed in Figure 1.3. Chapter 5 proposes a methodology for modeling more complex

objects that can exhibit higher genus and contain multiple bifurcations by consistently

decomposing the objects into subvolumes.

For the more general case, the input object could be any 2-manifold object, where

the methods above are not applicable. In the general case it is very difficult to establish a

volumetric parameterization consisting solely of NURBS elements. Therefore, Chapter 6

Figure 1.3. Sweeping can cause significant of parametric distortion, if the object is
irregular.
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introduces a mixed-element methodology that constructs a mixed-element volumetric

representation of an arbitrary 2-manifold with high quality semistructured NURBS

elements in selected regions and unstructured tetrahedral elements in the other regions.

The methodologies discussed in these chapters are each based on a midstructure

representation. Since these midstructures are very specific to the respective modeling

methods, they are introduced in the respective section with the corresponding modeling

method. Chapter 7 introduces a more general framework to compute a midstructure

of a given object. We demonstrate that it is suitable for hexahedral meshing and other

applications like medial-based shape deformation.

1.1.2 Shape Representation

Once the model is completed, a higher order representation such as a trivariate

B-spline is fit to an optimized version of the completed model. Chapters 8 and 9

discuss these two pipeline stages.

1.1.3 Analysis

Chapter 3 introduces the concept of analysis aware modeling by discussing the

classic FEM pipeline and the IA pipeline. It will be demonstrated that different

representations result in different convergence behavior. This is central to this work, as

the user significanly influences the analysis, i.e., each choice made by the user during

the modeling process results in a different analysis result.

1.1.4 Visualization of Analysis Result

Finally, once simulation has been applied to the representation, the solution is

examined via isosurface visualization. Chapter 10 presents an approach which allows

the user to directly inspect a solution without generating an intermediate representation

of the volumetric object.

The following section introduces core concepts such as parameterization and har-

monic functions used throughout the rest of this document. Chapter 2 reviews related

work in the fields of parameterization, visualization, mesh generation and mesh quality.
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1.2 Background

This chapter briefly presents core concepts required for this work.

1.2.1 Discrete Harmonic Functions

In this work harmonic functions are used to establish a volumetric parameterization

over a domain Ω respecting inner material attributes. In general, a harmonic function

is a function u ∈ C2(Ω), u : Ω→ R, with boundary ∂Ω satisfying Laplace’s equation,

∇2u = 0, (1.1)

where Ω ∈ Rd and ∇2 =
∑d

i
∂2

∂x2
i
is the Laplace operator. In our case d = 2, 3, i.e., when

d = 2 then∇2 = ∂2

∂x2+
∂2

∂y2
, where ∂Ω is a polyline. When d = 3, then∇2 = ∂2

∂x2+
∂2

∂y2
+ ∂2

∂z2

where ∂Ω is a triangle mesh. u satisfies the maximum principle, i.e., it does not exhibit

any local minima and maxima and is used in a variety of applications.

For instance in [91], harmonic functions are used for path-planning of complex

robots in complex geometric models. The configuration space represents all degrees

of freedom of the robot in the scene, where the location of the robot is fully described

by a point. Harmonic functions are computed in this space, where paths along the

gradient field of the harmonic function are computed, guiding the robot through the

scene without colliding with obstacles. Figure 1.4 shows a cut-through of the harmonic

function computed on a tesselated configuration space example. The figure also shows

the corresponding paths.

The maximum principle makes harmonic functions suitable for tensor-products like

parameterization as shown in [50, 196, 126]. In this work harmonic functions are utilized

in order to fit a trivariate tensor product B-spline to a tetrahedral mesh generated

from a set of triangulated isosurfaces. While in [143] harmonic functions are used

for a robust Morse analysis [132] on triangle meshes, here they are used for geometric

volume modeling. Chapter 4 uses harmonic vector fields, where the harmonic properties

allow a consistent extraction of paths to construct a hexahedral representation (i.e., no

self-intersection between adjacent paths) even when the boundary triangle mesh has

overhangs (local concavities).
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(a) (b)

robot start
positions

robot end
positions

Figure 1.4. In (a), a harmonic function is computed through the volume of a
configuration space. In (b), based on the gradient field of the harmonic function in
(a), robot paths from start to corresponding end location are computed.

Herein, the finite element method (FEM) [86] is used to discretize Equation 1.1.

The domain Ω is exactly represented with a tetrahedral mesh (H, T ,V, C), where H is

the set of tetrahedra. T , the set of faces of the tetrahedra in H. V ⊂ R3, the set of

vertices; and C specifies the connectivity of the mesh.

V can be decomposed into the sets VB and VI , where VB is the set of boundary

vertices that lie on the Dirichlet boundaries that may correspond to the exterior triangle

boundary or any interior triangular boundary. VI is the set of vertices for which the

solution is sought. The solution, then, is of the form,

u(x, y, z) =
∑
vk∈VI

ûkφk(x, y, z) +
∑

vk∈VB

ûkφk(x, y, z), (1.2)

where φi(x, y, z) is the linear hat function associated with vertex vi evaluating to 1 at vi

and to 0 at the other vertices defining the respective tetrahedron. The weak Galerkin’s
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formulation is used to form the linear system S�u = �f , where S is the stiffness matrix and

�f is a right-hand-side function. Being positive definite [86], S lends the linear system

to being solved efficiently using the preconditioned conjugate gradient method [12].

The value of u at a point p = (x, y, z) inside a tetrahedron is the linear combination

u(p) =
∑4

j=1 ûjφj(p), where ûj is associated with vertex vj of the respective tetrahedron.

Note, that j is a local index. The gradient field ∇u over Ω is piecewise constant, i.e.,

∇u defined over a tetrahedron is the linear combination ∇u(p) =∑4
i=1 ûj∇φj(p), where

∇φj(p) is constant.

1.2.2 Parameterization

Given domain Ω ∈ R3, a parameterization is a function

F : Θ→ Ω, (1.3)

where F is a bijection and Θ ∈ R3 is the reference domain. In the discrete case, for

instance, two tetrahedral meshes HΘ and H are isomorphic if there is a correspondence

between their vertices, edges, triangles and tetrahedra such that corresponding edges

join corresponding vertices, corresponding triangles join corresponding vertices and

edges and corresponding tetrahedra join corresponding vertices, edges and triangles.

As an example, the reference domain Θ of a trivariate B-spline is a single rectangular

parallelepiped. On the other side, the domain of a polycube map [193] consists of

many rectangular parallelepipeds, which is more similar to its corresponding physical

domain Ω. Given such a parameterization, if Ω is to be represented by a higher-order

trivariate B-spline, e.g., for purposes of applying physical analysis to Ω, its domain

must be decomposed into a set of rectangular parallelopipeds where each one maps to

some piece of Ω. Their images intersect only on parallelopiped boundaries. Since the

collection of cubes is irregular, there can be extraordinary points on the surface so the

T-spline generalization T-NURCCs [178] is more natural in this context, as it allows

more complex reference domains.
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In general, parameterization strategies search for ways to decompose Ω into sub-

domains, where each can be parameterized independently. This makes the strategy

more flexible in order to represent more complex geometries with reduced parametric

distortion. However, establishing matching parameterizations and continuity across the

boundary surfaces of the subdomains is often more difficult to achieve. For instance,

in the surface case, Ray et al. [165] propose a global parameterization method from

input vector fields where the cuts of Ω (i.e., the topology of the base complex) emerge

simultaneously from the global numerical optimization process. In this work, functions

satisfying Laplace’s Equation, i.e., harmonic functions as discussed above are used, to

decompose Ω (if necessary) into subvolumes and establish a parameterization of each

subvolume so that adjacent subvolumes have a matching parameterization where they

connect while respecting interior material attributes in the parameterization.

1.2.3 Orthogonality

Two vector fields ∇u and ∇v are orthogonal, if the angle between two corresponding

gradient vectors is π/2, i.e. 〈∇u,∇v〉 = 0 everywhere on Ω. Orthogonality is important

in the case of quadrilateral remeshing [196]. Two orthgonal vector fields result in rect-

angular quadrilaterals that behave better in numerical simulation than quadrilaterals

that are more distored or close to being degenerate.

For instance, orthogonal vector fields can be established on a domain with right

angle corners such as a cube. A 2D analog is shown in Figure 1.5. Let us call the sides

of a discretized rectangle a, b, c and d. Side a and c are opposite and side b and c

are opposite. In the following, u = 0 is assigned to a, u = 1 is assigned to c, v = 0

is assigned to b and v = 1 is assigned to d. Laplace’s Equation is solved for u and v

independently. The resulting vector fields ∇u and ∇v are orthogonal. Figure 1.6 shows

orthogonality on more general domains in 2D. The left domain consists of right corners

and therefore orthogonal vector fields can be established. Since the right domain in

Figure 1.6 consists of a curved boundary, orthogonality cannot be established.
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d

a

b

c

Figure 1.5. Orthogonal vector fields on a square domain.

Figure 1.6. Parameterization on domains in 2D. On the left: Since the domain consists
of right angle corners and straight lines, two orthogonal vector fields, resulting in a
parameterization without any parametric distortion can be established. On the right:
No orthogonal vector fields can be established, because the boundary of the domain is
curved.



CHAPTER 2

RELATED WORK

This Section presents work that has been done in the fields of model parameterization

(Section 2.1), isosurface visualization (Section 2.3), mesh generation and mesh quality

(Section 2.2), relevant for this document.

2.1 Model Completion, Parameterization
and Meshing

Parameterization is a hard problem for surfaces and even more so for volumes. In

addition to use in modeling and remeshing, surface parameterization techniques have

a wide variety of applications including texture mapping, detail transfer, fitting and

morphing. For a more detailed description, please refer to the surveys [181, 61, 83].

Surface parameterizing techniques such as [117, 70, 196] deal with surface related issues

and are not designed to be extended to model volumes. For instance, the authors in [6]

motivate anisotropic remeshing and align mesh elements using the principal direction

of curvature of the respective triangle mesh. Their approach yields a high quality

quadrilateral mesh that has no relationship to the interior. If one were to offset the mesh

in the normal direction, one would quickly get self intersections among the elements.

Even if this can be avoided, eventually the hexahedral elements have degeneracies and

eventually touch each other without proper alignment. Requiring parameterization of

the interior makes this problem even more difficult since it is prone to self intersecting

offsets and has to deal with skewed and twisted parameterizations.

The research on mesh generation is vast, and here, only the most relevant papers

will be referenced. For fundamental algorithms and meshing methods, consult the

survey [150]. In Chapter 6, a mixed element meshing methodology is proposed that

is a combination of structured and unstructured mesh generation, based on a sampled
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midstructure of the object. The method is related to volumetric parameterization,

unstructured meshing, midstructure methods, surface offsetting, and mixed element

representations, all of which are reviewed briefly in the following.

Decomposing a domain of interest into a set of simpler subpatches involves “patch

gluing” where a certain level of smoothness along the patch boundaries is desired. In

[117], quadratic B-splines are generalized to fit arbitrary meshes creating triangular

and rectangular surface patches. The lack of structure in the irregularities makes it

clear that volumetric extensions do not immediately follow. Similarly, manifold splines

[70] extend B-splines to surfaces of arbitrary topology, by modeling the domain of the

surfaces with a manifold whose topology matches that of the polyhedral mesh. Then it

embeds this domain into 2-space using a basis-function/control-point formulation. The

domain of this technique is more complicated than the domain of a standard tensor

product surface. As in [117], this approach also generates spline patches and glues them

together by overlapping them, to get a “match” in the parameterization. The “glue”

consists of mathematical operations such as control point constraints. In the case of a

volume, patch boundaries are surfaces. Establishing smoothness and continuity between

them is very difficult. In [144] the CubeCover algorithm is described which decomposes

the volume enclosed by a triangle mesh into hexahedral elements. While the elements

are of good quality, the structure depends on a user-defined metamesh. Therefore, in

general, the output is an unstructured hexahedral mesh.

While being able to reconstruct some types of real world objects, the generalized

cylinder(GC) [20] approaches and the approach by [90] are limited, because they require

planar cross-sections. Note, representations that rely on planar cross-sections fail for

objects with overhangs such as the femur in Figure 1.1. GC is a subclass of our method

(Chapter 4) since we are able to model objects with overhangs as the femur in Figure 1.1.

Furthermore, interpolation introduces oscillations on the B-spline, which is amplified

when dealing with volumes, as in our case. And, for instance, in the method presented in

Chapter 4, once a certain stage of the process is reached, the rest proceeds automatically

without further user input.

Harmonic volumetric mappings between two solid objects with the same topology
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have been used in a variety of instances. Using related techniques, [202] and [115]

are performing a 3D time-variant harmonic deformation from one volume to another

volume with the same topology. In a diffeomorphic way, [202] applies this method to

brain data.

Midstructures such as the medial axis and curve skeletons play an important role in

mesh generation. For instance, Sheffer et al. [180] uses the embedded Voronoi graph of

the object to decompose the object into simpler sweep-able subvolumes to automatically

create a hexahedral mesh. Similarly, Armstrong et al. [10] shows that the medial

axis of an object can be used to automatically identify features in mesh generation,

dimensional reduction and detail removal. A computed simplified medial axis is then

quadrangulated and extruded to construct a hex dominant mesh. Since the medial axis

is part of the resulting mesh, it must have consistent topology and connectivity often

requiring tedious manual efforts. The approach presented in Chapter 5 is also based

on a midstructure. However, the midstructure can be represented by a set of points

lying on it, significantly reducing the time to generate it. Furthermore, contrary to the

approaches above, the method proposed here maintains the input surface representation

in the resulting volumetric representation. In [170] a medial axis-based mesh generator

is described. After the construction of a simplified medial axis, quad dominant meshes

on the medial axis are generated and extruded to the boundary by advancing front

schemes. In this case, advancing front schemes can cause inconsistency cases and for a

more complex model, at least in part because it is difficult to control the front, e.g., the

front may intersect itself resulting in degenerate elements. Furthermore, in addition to

hexahedra, the resulting meshes contain prisms, pyramids and tetrahedrons.

In a similar approach Sheffer et al. [180] propose a method for automatic hexahedral

meshing based on the embedded Voronoi graph, containing the full symbolic information

of the Voronoi diagram and the medial axis of the object. It is used to decompose

the object into sweepable subvolumes. Their approach is tested on CAD models with

relatively simple medial axes. A more general model with a much more complex medial

axis containing many small features (e.g., Figure 1.1) might result in many subvolumes

thereby reducing the structured volume behaviour of the resulting mesh.
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Polycube-Maps were originally proposed by Tarini et al. in [193] to remove seams in

texture mapping by making the texture topology of the mesh compatible with the

texture domain. Polycubes have been successfully used to construct manifold and

polycube splines [73, 200] where the main challenge is to construct the polycube surface

mesh for a given object. Wang et al. [201] propose a user-controllable framework

where the user directly selects the corner points of the polycubes on the original 3D

surface and based on that choice create the polycube maps applying discrete ricci flow.

Polycubes have been suggested for volumetric parameterization [79, 69] but have not

been presented for a variety of volume models including those that can contain interior

material boundaries to which data fitting has to be applied to construct a representation

for simulation.

Harmonic functions are holomorphic 1-forms as defined in Arbarello et al. [9] and

were first introduced by Gu et al. [74] for use in surface parameterization. In this

dissertation, harmonic functions are used in combination with appropriate midstruc-

tures to attain a parameterization that is consistent with respect to inner material

boundaries in the parameterization. Harmonic functions have been shown useful in

various applications, especially in the modeling and meshing community. Dong et

al. [50] uses them to remesh triangle meshes into quadrilateral meshes with arbitrary

topology where the harmonic functions are generated from user specified critical points

on the triangle mesh. In [49], critical points are automatically determined by using

Laplacian eigenfunctions defined on the surface. Tong et al. [196] automates the surface

parameterization problem with discrete differential forms.

The aim of a volumetric parameterization method is to create as much interior

structure as possible for a given input triangle mesh. The structure allows fitting

smooth volumetric patches, e.g., trivariate B-splines to the geometry and simulation can

be applied to the resulting volumetric representation. Volumetric parameterization is

time consuming, especially because it can require significant manual user input. On the

other hand, surface parameterization methods (e.g., see survey by [61] and the methods

discussed above) are almost automatic and can produce well-shaped quadrilateral sur-

face patches [49] and allow automatic B-spline fitting. A B-spline surface representation
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created this way can be used as input to the mixed element parameterization method

introduced in Chapter 6, creating semistructured trivariate B-spline patches at the

boundary of the object and unstructured tetrahedra in the inside. It requires minimal

user input and so reduces modeling time significantly. The user can specify the depth

of the trivariate boundary patches and has therefore the control of how much of the

volume can be filled up with these higher-order elements. It will be demonstrated in

the Chapter 6 that simulation scenarios exist where such representations yield stable

and high-quality simulation results.

Mixed element methods, combining prisms and hexahedra with tetrahedra, have

been used in various engineering scenarios such as aerospace applications [99], geo-

physics applications, computation fluid dynamics applications [89, 207], just to mention

a few. Given a mixed element meshing approach, if the input surface is a quadrilateral

mesh, pyramids are used to transition from boundary hexahedra to tetrahedra. If the

input is a triangle mesh [96, 203], boundary prisms can be directly connected to interior

tetrahedra. Another relevant mixed element approach is the H-morph [151]. Based on

an advancing front scheme, an input tetrahedral mesh is iteratively converted into a

hexahedral mesh. Tetrahedral elements which cannot be converted into hexahedral

elements are connected to its adjacent hexahedral elements using pyramids.

In these cases, C(0) continuity between two element types is maintained. The

approach presented in Chapter 6 does not enforce such continuity and in that respect is

similar to, and motivated by approaches discussed in the introduction of Chapter 6.2.1,

where the nodes defining the linear tetrahedra are linked to these higher-order elements.

We show that the resulting representation yields convergence under mesh refinement. It

will also be demonstrated that our mixed element approach has a similar convergence

rate to a representation which uses only tetrahedral elements. However, as will be

demonstrated in Chapter 6, the mixed element representation behaves more numerically

stable in certain simulation scenarios.

In a similar vein to the approach presented in Chapter 6 is that by Wang et al. [96],

presenting an approach to generate a mixed element mesh consisting of prismatic

and tetrahedral elements. The mixed element representation is constructed from a
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triangulated surface representing the domain of interest. This triangulated surface is

offset along a marching direction. A marching vector of a node is determined through

local geometric constraints and a marching step size is chosen to reduce curvature of

the previous marching surface. Similarly, [203] uses solutions to the Eikonal equation.

Finally, tetrahedra are used to fill up the rest of the object. More recently, [76] first

computes a distance field from an input triangle mesh. Based on a user specified

thickness parameter, an isosurface of the distance field is extracted and a hexahedral

shell mesh based on a polycube domain [193] and harmonic functions is constructed,

i.e., the remaining volume in the object is void. Peng et al. [157] proposes a method to

add volume textures to an input surface. The method offsets the input surface based

on an ODE. The ODE is designed such that the limit offset surface is the medial axis

of the input surface. Note, when the input surface contains sharp edges the medial axis

touches the input surface. In this case volumetric element tend to have low quality and

does not result in a thick shell as desired in our motivation.

In the approach presented in Chapter 6, we offset inward a higher-order surface

representation of the object, to construct thick higher-order trivariate NURBS elements

at the boundary and fill up the interior of the object with linear tetrahedra. We make

use of harmonic functions in combination with a midstructure representation to define

an offset function for the exterior surface. The use of harmonic functions has several

advantages. Firstly, they are flexible as they allow the user to specify any appropriate

midstructure, e.g., a point-sampled simplified medial axis or a 1D curve skeleton of the

object or an isosurface as used in [76]. Secondly, marching directions and step sizes

are implicitly determined and guarantee not to introduce degenerate elements due to

the maximum principle of harmonic functions making them easier to control. Thirdly,

the use of harmonic functions allow offsetting the input surface deeper into the interior

of the object of interest it represents. These advantages make the offsetting approach

more robust while also simplifying implementation. Note that offset in this context

means to offset based on a harmonic gradient field directions.
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2.2 Model and Mesh Quality

Mesh quality characterizes the geometric shape of the elements in a mesh represent-

ing some physical domain. Mesh generation methods (e.g., [186]) producing mesh rep-

resentations for traditional finite elements focus on quality measures for finite element

meshes. These measures were originally derived from mathematics that characterizes

the approximating properties and power of UF to a solution. Those properties depend

on C, the geometric mapping F , the particular partial differential equation that must

be solved, and the boundary conditions. Those same conditions are embedded in model

quality issues of a CAD model suitable for analysis, being the key for analysis aware

modeling for IA, however, they are manifested differently. Basic mathematical principles

used to define mesh quality for finite element analysis are reviewed in the following.

The typical map F for finite element analysis is a collection of mappings from

the ideal element (triangle, tetrahedron or square, cube) to each element of the mesh

(Figure 2.1), and S is typically the space of linear functions or bi- (tri-) linear functions

over the ideal element. If Fi is the mapping from the ideal element to the i−th element,

the space U =
⊕

i UFi
forms the approximating space, usually further constrained so

that the approximating function space has only C0 elements. Since each Fi is usually

affine, U is a collection of local affine linear or bilinear maps.

Discretization error and stiffness matrix conditioning are two variables in mesh

quality discussions and are therefore important issues for a successful analysis in the

finite element method. The discretization error is the difference between the approx-

imation computed by the finite element method and the true solution, in this case

u(x, y)−û(x, y), measured in an appropriate norm. Stiffness matrix conditioning affects

the time and accuracy of analysis and depends on the shape of the elements. A mesh

which results in a small condition number better performs using an iterative solver.

However, as discussed in [182], this does not imply that the discretization error is small.

For instance, for triangles it is known that small angles can cause poor conditioning.

However, depending on the PDE, these triangles cause a smaller initial discretization

error.

In traditional finite elements, it is well acknowledged that the initial mesh upon
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element

aspect ratio

maximum angle

shear

minimum angle

reference

skew

Figure 2.1. Examples for mesh quality metrics in traditional finite elements.

one runs one’s simulation and refinement algorithms greatly impact the quality of the

results. In the best case, the quality of the mesh impacts the constants that exist in the

asymptotic error estimates and determine the level of refinement at which the asymp-

totic behavior begins. In the worst case, the mesh quality under adaptive refinement is

a successively worsening ill-conditioned system which renders the computations useless

for engineering practice. Thus, mesh quality is an important issue for finite element

methods, when generated meshes will be used in engineering practice for analysis.

Because of this reliance of analysis in practice on mesh quality, there is a large body of

literature addressing the subject. In particular, the reader is referred to [154]. Given a

mesh, the question has to be raised whether its quality is appropriate so that successful

analysis can be applied to it. As in the case of B-Splines, h-refinement or knot insertion

[37], respectively, do not improve the initial mesh quality. In order to improve the

quality of the initial mesh, tremendous effort has been devoted to generate high quality

meshes used in finite elements. Generally, schemes are used which relocate the vertex

(or node) positions without altering the connectivity of the mesh.

Shewchuk in [182] gives bounds on the extreme eigenvalues for Poisson’s equation.

For instance, λtmax, which is the maximum eigenvalue of a local stiffness matrix for
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triangle t, can be bounded by

l21 + l22 + l23
8A

≤ λtmax ≤
l21 + l22 + l23

4A
, (2.1)

where A is the area of t, and li is the length of edge i of t. Note that the maximum

eigenvalue of the stiffness matrix can be bounded in terms of the maximum λtmax and the

maximum number of elements meeting at a single vertex [64]. This allows one to look

at the elements t to make a conclusion about the global stiffness matrix conditioning.

Therefore, local smoothing techniques also called node-movement strategies are

usually used to improve a mesh which relocates each vertex according some objective

function to improve the mesh quality in the neighborhood of that vertex. The most

commonly used smoothing technique is Laplacian smoothing [59] which moves the

current vertex to the geometric center of its incident vertices. However, Laplacian

smoothing does guarantee improvement in element quality. This approach is improved

by using an objective function which moves the vertex based on a quality metric such

as sign of the volume, aspect ratio, angle between adjacent edges (best 90 degrees and

worst 180 degrees in case of quadrilateral meshes), stretching orientation, Oddy metric

[147] and quality measures for tetrahedral meshes [156]. See Figure 2.1 which shows

some of these quality metrics for quadrilaterals. These measures are used to describe the

quality of an element. The reader is referred to [107] where these metrics are discussed

and applied to different input meshes.

Quality metrics like orientation, volume, shape, length ratio and skew are embedded

in the element’s Jacobian matrix J , which is part of an affine map which maps a point

from the reference element to its corresponding physical element (also see Figure 2.1),

and can be accessed by applying the QR factorization of J . In the case of triangles, the

reference element is the triangle defined by the vertices (0, 0), (1, 0) and (0, 1)). Then,

linear maps like the Frobenius norm are used to convert J into a scalar which is then

used to design a objective function optimizing certain quality metrics. The reader is

referred to the work of Knupp [108] who develops a mathematical theory of geometric

quality metrics applied to unstructured meshes. If a choice is made on the objective

function, an optimization process is applied to minimize the objective function and
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therefore mesh is improved. Newton search [107] for instance is an efficient way to

minimize the objective function.

Note that these method are proposed for a trilinear simulation and geometry basis.

In the case of B-splines, it will be demonstrated that these quality measure are not

sufficient and new and more appropriate metrics should be developed to describe the

quality of the mapping F . Also, due to the tensor-product nature, modeling with

NURBS has limitations. Sweeping [37] however, is a powerful technique to model a

wide class of objects. To generate a swept volume, a NURBS surface is swept along a

NURBS curve. Often, given a “sweepable” physical domain Ω, there are usually more

ways for the sweep. Different choices result in degeneracies or more skewed elements

at regions where this might be not desirable. As we will see on an 2D example in the

results section, different choices affect the discretization error. They also affect the

stability of linear systems and therefore eigenvalue problems.

2.3 Isosurface Visualization

Visualization techniques are used in numerous engineering fields–including medical

imaging, geosciences, and mechanical engineering–to generate a two-dimensional view of

a three-dimensional scalar or vector data set. Additionally, they can visualize simulation

results (e.g., generated with the finite element method). Consequently, the development

of such visualization algorithms has received much attention in the research community.

Techniques usually fall into three groups: (1) direct volume rendering, (2) isosurface

mesh extraction followed by isosurface mesh rendering, and (3) direct rendering of

isosurfaces.

Techniques in category (1) typically involve significant computation, especially when

dealing with arbitrary geometric topologies represented by high-order basis functions

such as NURBS. In ray-based direct volume rendering methods (see [111, 127]), it is

necessary to integrate each ray through the volume using sufficiently many integration

steps. Each integration step requires an expensive root-solving due to the nonlinear

mapping. Hua et al. [84] presented an algorithm to directly render attribute fields of

tetrahedral-based trivariate simplex splines by integrating densities along the path of
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each ray corresponding to a pixel. In the case of uniform grid data sets, accumulating

slices aligned along the viewing direction (see [205]) is efficient and commonly used in

practice, even though ray-based techniques offer a range of optimizations (e.g., empty

space skipping).

Methods in category (2) assume a regular grid of data and extract isosurfaces

using Marching Cubes (MC) [119], resulting in a piecewise planar approximation of

the isosurface. After isosurface mesh extraction, the faces of the isosurface mesh are

rendered. Marching Tetrahedra (MT) [33] is applied to both structured and unstruc-

tured tetrahedra-based grids. In both MC and MT, the corners of a hexahedral or

tetrahedral element, respectively, are used to determine if the isosurface passes through

the respective element. Then, the intersections between the element’s edges and the

isosurface are determined to create piecewise linear facets approximating the isosurface.

Although these approaches are efficient and therefore widely used in practice, they

approximate the isosurface by piecewise linear facets within an element with some

ambiguity, and therefore do not guarantee topological correctness. As an example,

Figure 2.2 shows a discretized domain with 300 000 linear tetrahedra. As will be shown

in Chapter 10, this domain can be represented with a single triquintic NURBS element.

As seen in Figure 2.2a, the respective isosurface extracted with MT has ambiguities in

the topology, resulting from data that are known only at the corners of the elements and

hence can miss isosurface features. Furthermore, the time to construct the respective

(a) (b) (c)

Figure 2.2. Discretization of domain from Figure 10.1c with 300k tetrahedra and
application of marching tetrahedra (using ParaView). (a) isosurface; (b) scalar field on
tetrahedra; (c) our approach on single triquintic NURBS patch
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mesh representation can be computationally laborious. Schreiner et al. [173] propose an

advancing-front method for constructing manifold isosurfaces with well-shaped triangles

(Figure 2.3), although it has some difficulties when the front meets itself (the stitching

problem). Meyer et al. [130] propose a particle system on high-order finite element mesh

(arbitrary geometric topology), which applies surface reconstruction on the particles to

construct the isosurface mesh; however, the visualization produced is not a water-tight

surface. When the data are known only at the corners of a hexahedral mesh, our method

constructs an approximation by filtering the data with a high-order approximating or

interpolating trivariate B-spline filter (see [121]). The filter can be trilinear (only C(0)),

tricubic (C(2)), or higher degree, as required by the user. Then, an isosurface of the

high-order approximation is directly rendered with pixel accuracy.

In category (3), the isosurface is rendered directly, i.e., for every pixel on the

image plane, its corresponding point on the isosurface is determined (Figure 2.3, left).

Once the point on the isosurface for a given pixel is known, the pixel can be shaded

using the gradient as the normal for the given point. Another motivation to visualize

specific isosurfaces is to color-code information, such as material density, to get a better

Figure 2.3. Isosurface from silicium data set (volvis.org), isovalue of 130 using
Marching Cubes (using ParaView), Afront (ρ = 0.3) and Direct visualization with
our proposed method.



26

understanding through which materials the isosurface passes. Knoll et al. [106] use

a trilinear reconstruction filter on a structured grid and a ray-based octree approach

to render isosurfaces and achieve interactive frame rates. Nelson et al. [142] propose

a ray-based isosurface-rendering algorithm for high-order finite elements using classic

root-finding methods, but do not consider element curvature (i.e., the multiple entry and

exit problem). Kloetzli et al. [104] construct a set of structured Bézier tetrahedra from

a uniform grid to approximate any reconstruction filter with arbitrary footprint. Given

this reconstruction, generated from gridded input data (e.g., medical or simulation

data), they directly visualize isosurfaces using the ray/isosurface intersection method

presented by Loop [118].

The method proposed in Chapter 10 is most closely related to class (3) approaches,

i.e., our proposed method directly visualizes an isosurface from a trivariate NURBS of

arbitrary geometric complexity. However, instead of following only a ray-based scheme,

our approach computes the intersection between a ray frustum and the isosurface. Fur-

thermore, it is often desired to visualize the geometry represented by the NURBS. While

approaches similar to the work in [2] can be used to render the object-surface geometry,

our approach can be used to simultaneously visualize both the geometry represented

by the NURBS and the visualization of isosurfaces of the attribute representation in

a robust way. Intersecting a ray frustum with an object in the scene is related to the

approaches that propose cone-tracing given in the work [7] and beam-tracing (see [80])

for more efficient anti-aliasing, soft shadows, and reflections. However, both of those

techniques deal only with polygonal objects. For isosurfaces of algebraic functions,

the dissertation [47] presents interval approaches to create intersection tests in the

ray-tracing of implicit surfaces. In particular, it shows a ray sampling-based method to

exploit the coherence of rays to accelerate the process of ray-tracing implicit surfaces,

which can also be used for anti-aliasing isosurface silhouettes.



CHAPTER 3

ANALYSIS-AWARE MODELING

IA [87] has been proposed as a methodology for bridging the gap between Computer

Aided Design (CAD) and Finite Element Analysis (FEA). Although both the traditional

and isogeometric pipelines rely upon the same conceptualization to solid model steps,

they drastically differ in how they bring the solid model both to and through the

analysis process. The IA process circumvents many of the meshing pitfalls experienced

by the traditional pipeline by working directly within the approximation spaces used

by the model representation. This chapter demonstrates that in a similar way to how

mesh quality is used in traditional FEA to help characterize the impact of the mesh on

analysis, an analogous concept of model quality exists within IA. The consequence of

these observations is the need for a new area within modeling – analysis-aware modeling

– in which model properties and parameters are selected to facilitate IA.

The concept of IA was first introduced by Hughes et al. in [87] as a means of

bridging the gap between Computer Aided Engineering (CAE), including Finite Ele-

ment Analysis (FEA), and Computer Aided Design (CAD). Those familiar with the

application of FEA to CAD-based models are well-aware of the complications and

frustrations which arise when one attempts to take a “solid model” (a term which

we will define in the context of the modeling community in Section 3.3) as produced

by a typical commercially available CAD system, generate a surface tessellation and

corresponding volumetric representation in terms of meshing elements (e.g., triangles

and quadrilaterals on the surfaces and tetahedra and hexahedra in the volume), and

run an analysis. On this “preprocessing” side prior to the actually analysis step, a large

amount of effort is expended in mesh generation and optimization (in terms of mesh

quality), sometimes to the point of consuming more time than what is taken by the
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actual analysis step. Once an analysis is run, solution refinement often requires mesh

adaptation or in worst case regeneration, both of which require consultation with the

original CAD-model. IA claims to break this common but insidious cycle by choosing

an alternative route from the solid geometric model to analysis. In IA, one works with

the functions used to generate the model directly by using the function space used for

model generation as the approximating space in which field solutions are built (hence

the name iso-geometric).

By circumventing many of the pitfalls that one encounters during the mesh gener-

ation process by working directly with the solid model, IA effectively eliminates the

geometric error component of the analysis pipeline. Geometric refinement is no longer

necessary; the analyst can focus attention solely on solution refinement. It is our thesis

that although circumventing the mesh generation pipeline implies that one no longer

needs to consider mesh quality, there are still issues of model quality that must be

considered. In a similar way to how mesh quality is a geometric means of assessing the

impact of a mesh on the function space which it induces in the classic finite element

process, model quality is a characterization of those properties of the representation

of the model geometry that impact the representation space (or trial space) used to

approximate the fields of interest. The consequence of these observations is the need

for a new area within modeling – analysis-aware modeling – in which model properties

and parameters facilitate IA.

3.1 Nomenclature

In this section we set up the environment for considering IA in the context of

linear second-order partial differential equations (PDEs) with zero Dirichlet boundary

conditions. We note that there exists a straightforward extension to nonzero boundary

conditions and also to Neumann boundary conditions. The issues we raise are quite

general and will arise in using the isogeometric concept in solving many types of partial

differential equations: Some examples we will consider and upon which we will comment

in the examples section will have nonzero boundary conditions and/or more complex

partial differential operators (such as those found in the modeling of linear elasticity).
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We do, however, set up here the nomenclature to illustrate these specific problems in

an arbitrary number of space dimensions.

Although some of these terms may appear obvious to either those familiar with ge-

ometric modeling or those familiar with engineering analysis, we believe it is important

for both the geometric modeling and finite element analysis communities to be overtly

explicit during this time of confluence of ideas.

Let Ω ⊂ Rs with s ∈ N be a bounded domain with boundary ∂Ω. Ω is the physical

domain, often called the world space or physical space.

Using the notation Dj = D1
j to denote the partial derivative with respect to the j-th

variable, define

Dα := Dα1
1 · · ·Dαs

s , (3.1)

a mixed partial derivative of total order |α| = α1 + · · ·+ αs. Then the column vector

∇f = [D1f, . . . , Dsf ]
T

denotes the gradient of f . Further, let

H1 = H1(Ω) := {f : Ω→ R : Dαf ∈ L2(Ω), |α| ≤ 1} (3.2)

V = H1
0 = H1

0 (Ω) := {f ∈ H1(Ω) : f = 0 on ∂Ω}, (3.3)

denote the Sobolev spaces of functions with values and first order partial derivatives in

L2 = L2(Ω).

Let {φi}ni=1 ⊂ H1(Ω) be linearly independent functions in H1(Ω). Moreover we

define

J := {j ∈ {1, . . . , n} : φj ∈ V } and |J | = #{j : j ∈ J},
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that is, the set of indices of those φj that vanish on ∂Ω. If s = 1 then typically

J = {2, . . . , n− 1}. We define the space

V q
h := {

∑
j∈J

cjφj : cj ∈ Rq, j ∈ J, q ∈ N}, (3.4)

and note that Vh = V 1
h is a subspace of V . The index h is a flag indicating finite

dimensionality and is often a measure of element diameter. The space V q
h forms the

space in which the approximation to the solution of the differential equation is made.

Suppose {ψj}nj=1 is a set of real-valued linearly independent functions on a partition

of the unit cube Θ = [0, 1]s in Rs, and the functions φj are given as

φj(x) = ψj ◦ F−1(x), j = 1, . . . , n, (3.5)

where F = (F1, . . . , Fs) : Θ → Ω is a bijection. Figure 3.1 illustrates a modification

between the shape of a ψ and its corresponding φ induced by F −1.

Moreover, we assume that

F (Θo) ⊂ Ωo

σ := F |∂Θ : ∂Θ→ ∂Ω,
(3.6)

i.e., F maps interior to interior and boundary to boundary. If we use the same functions

ψj to define both the φj’s and F

F =
n∑

j=1

γjψj , for some γj ∈ Rs, j = 1, . . . , n, (3.7)

then the approach to solving the partial differential equation is called isogeometric.

Typically analysis will be carried out on models whose definition is piecewise over

multiple hypercubes Θ = {Θi = [0, 1]s : i = 1, . . . , K} for some finite K ∈ N, and F is

defined piecewise in terms of the mappings from each Θi such that, for all i, j, i �= j,
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y

x

t

s

Figure 3.1. F maps a point from the reference domain Θ to the physical domain Ω.
Correspondingly, F−1 maps a point from Ω back to Θ. With F−1, it is possible to define
basis functions on Ω as compositions of F−1 with basis function defined on Θ.

F (∂Θi)
⋂

F (∂Θj) ⊂ ∂F (Θi)
⋂
∂F (Θj).

Further F must be continuous on every nonempty intersection. Θ is called the para-

metric domain or the reference space.

CAD systems typically create representations of the model that define mappings σ

from ∂Θ to ∂Ω, and can be written as a collection of mappings σi : [0, 1]
s−1 → Rs, i =

1, 2 . . . , 2s that agree on their shared boundaries. When s = 3, this representation is

sometimes suitable for performing isogeometric shell analysis, but in order to perform a

full volumetric analysis, the model must be completed. That is, the representation must

be extended to completely define the interior so that V q
h is defined. We will discuss this

further in what follows as this is often a nontrivial process.

Typically, ψ’s are tensor product B-splines, Non-Uniform Rational B-Splines, rect-

angular subdivision surfaces or T-splines.
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3.2 Outline

This chapter is structured as follows. In Section 3.3 we present the modeling to

analysis pipeline. We briefly describe the process of going from model conceptualization

to the solid model, and then distinguish between the classic route of surface and

volumetric mesh generation as done for classic finite element analysis from the boundary

representation and volumetric model generation as done for IA. In Section 3.4 we provide

the mathematical and algorithmic descriptions of the isogeometric methodology em-

ployed in this work. In Section 3.5 we take a step back so as to appreciate the parametric

modeling of geometry from the perspective of, and in the language of, isogeometric

analysis. By doing so, we hope to demonstrate that in general there is not “a model” (a

single ideal model) on which one does IA, but rather that designers are presented with

a collection of modeling choices – some of which may inadvertently impact analysis. In

Section 3.6 we present one-, two- and three-dimensional examples comparing different

model completions and demonstrating the impact of model completion on quality of

the solutions one obtains from an IA. We conclude in Section 3.7 with a summary of

this work, some conclusions that we can draw and proposals of future work.

3.3 The Modeling to Analysis Pipeline

In this section, we review the classic model to mesh to analysis pipeline as appre-

ciated by most FEA researchers, and then provide the corresponding modification to

the pipeline as introduced by IA. Note that we pay particular attention to the use of

nomenclature in this section, as the confluence of concepts from two fields (modeling

and analysis) has led to misconceptions in both fields as to what is being discussed. We

will use Figure 3.2 as our visual guide through this process.

3.3.1 Conceptualization to Solid Model

The stages of the pipeline from conceptualization to solid model are denoted by the

left half of Figure 3.2. The designer has in mind a concept or ideal of what is to be

designed, and uses a CAD modeling system to construct a collection of surfaces that are

meant to represent the outer boundary of the object of interest. Note that the modeler

is not working with three-dimensional manifold representations, but rather is working
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with surface subregions that are intended to bound the object of interest. These surfaces

are often constructed one-by-one without regard for how they will connect, intersect or

overlap with other pieces. The modeler then uses the CAD system to accomplish what

is referred to as trimming, an attempt to connect (or stitch) the surfaces together to

form a watertight model, that is, one that clearly delineates R into three regions, inside

the model, outside the model, and on the boundary of the model. Within the shape

modeling community, the term solid model is used to characterize such a representation.

When the solid model is represented using pieces of bounding 2-manifolds, the represen-

tation is called a boundary representation or b-rep. Whereas the surface representation

(pretrimming) does not necessarily faithfully represent the geometric and topological

properties (such as being a water-tight surface) on the conceptual object, the newly

formed solid model should. At the conclusion of this process, a solid model is output

from the CAD system. Although called a solid, it is a collection of pieces of surfaces

and connectivity information that are intended to bound a three-dimensional object

and that is intended to be watertight.

Unfortunately the intersections between sculptured surface pieces that define the

curves along which the pieces should be trimmed and stitched together cannot be

exactly represented in the parameter spaces of the defining surfaces, but rather are

defined implicitly. Hence, while CAD systems have different approaches to explicitly

representing these curves, the trimmed surfaces and resulting b-rep models are all

approximated along the trimming edges. Frequently it may be necessary to repair

the model to make it suitable for later processes such as analysis or fabrication.

3.3.2 Traditional Meshing Pipeline Leading to Analysis

The traditional meshing pipeline leading to analysis is denoted by the upper branch

of the right half of Figure 3.2. In the figure, we have purposefully placed quotations

around solid to draw the reader’s attention to two things. First, as previously men-

tioned, the solid model is not solid (in the sense of the term as used by analysts), but

rather denotes the boundary of the object. Secondly, the solid model as produced by

CAD systems is not always truly water-tight, but possibly only visually water-tight.
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This issue has been the bane of many surface tessellation efforts which have devised

schemes under the assumption that the solid model formed a mathematically water-tight

(i.e., closed in the topological sense) representation. In going from the solid model to

a surface tessellation, it is often necessary to invoke a repairing procedure. We mark

the repair process as being the point of deviation between the traditional pipeline and

IA as many of the repair procedures used in traditional mesh generation assume that

the target representation is a piecewise linear tessellation. The result of the repair and

surface generation process is a tessellation of boundary of the object of interest. This

tessellation is an approximation to the true geometry (in this case, the CAD-model),

where approximation decisions have been made both in terms of how repairs are done

and in how finely the tessellation captures the features of the original model. If a three-

dimensional analysis is desired, the next step is to generate a volumetric tessellation,

normally by filling in the volume with elements of the appropriate type (hexahedra or

tetrahedra) for the analysis of interest.

In the classic finite element procedure, one generates a tessellation which approxi-

mates the true geometry, and then uses this tessellation to induce a function space in

which approximations will be made. For instance, in classic linear finite elements over

triangles, the triangular tessellation induces a piecewise linear (in total degree) space

which is C0 continuous along the edges of the triangles. As is well known by finite

element practitioners, given two tessellations, both of which faithfully represent the

geometry, one can get drastically different solutions due to the properties (or richness)

of the approximating space that is induced.

A natural feedback loop developed between analysts and mesh generation experts

concerning the impact of meshes on solution quality. These metrics have commonly

become known as mesh quality metrics. That is, they are geometric considerations

(normally involving things like ratios of angles of elements, aspect ratios of edges, etc.)

which help guide the development of meshes appropriate for analysis. Although these

metrics have deep foundations within approximation theory, they are often abstracted

away so that only geometric qualities of the mesh are discussed. We remind the reader,

however, that maximizing mesh quality is, in its essence, an attempt to positively shape
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the approximating function space induced by the mesh.

3.3.3 Isogeometric Pipeline Leading to Analysis

While IA is still a young field, the authors hypothesize that isogeometric pipeline

leading to analysis is denoted by the lower branch of the right half of Figure 3.2. As

in the case of the traditional pipeline, repair is needed to ensure that the model being

used for analysis meets the required topological constraints (such as closure) of the

problem. In the case of IA, however, this repair process must be done keeping in mind

the original and target representations. A starting point for isogeometric discussions

in line with the finite element approaches is the boundary model, which should be a

geometrically and topologically correct model of the bounding surfaces of the object. If

a three-dimensional analysis is desired, volumetric representations must be generated

prior to the analysis. The approximating space generated during an IA is dependent

upon the boundary model (in 2D) or volumetric model (in 3D) that is used. Just as

in the case of classic mesh generation, two different volumetric models generated from

the same boundary model will create two different approximating spaces. Analogous to

mesh quality impacting analysis, model quality impacts IA.

A different starting point for IA is that consideration during the shape (usually

boundary) modeling process should be given to create a representation that lends

itself to IA. There are frequently many modeling operations that lead to different

representations for either the exactly same or closely related boundary shapes. Some

of those representations are better suited to analysis than others, and within those

groups, some are better suited to certain types of analysis than others. Similar issues

have been recognized in created representations for models suitable for the multitude of

computer-aided manufacturing processes and techniques. However, progress has been

made in developing CAD systems that develop representations that, while suitable for

design and display, are fabrication-aware, thus enabling a smoother, faster transition

between design and fabrication.

Analysis-aware modeling in the context of IA may prove to be a key step towards

that progression for design, engineering analysis, and simulation. Towards that end,

this chapter raises several important issues through a combination of analysis and



37

demonstration in which the interaction between representation and analysis can either

enhance or make the product evolution process difficult. Until such time as these issues

have been quantified and embedded in analysis-aware modeling systems, the human

modeler must be mindful of them.

3.4 Mathematical Formulation

In this section, we first review the basic mathematical representational building

blocks on which IA as well as many CAD and geometric modeling systems represent

geometry. An overview of NURBS (Non-Uniform Rational B-Splines) can be found

in [37]. All computational algorithms are presented there, so in the following section

we discuss definitions of B-spline and NURBS functions and their combinations to

define parametric mappings of global geometry. Note that this discussion provides the

mathematical building blocks of modeling, but does not address how these building

blocks are assembled as part of the modeling process. We will delve into the mind of

the modeler in a subsequent section (Section 3.5).

3.4.1 The Framework

Let Ω ⊂ Rs with s ∈ N be a bounded domain with boundary ∂Ω. The symbols Dα,

H1, H1
0 , and ∇ are defined as in Equations (3.1), (3.2), and (3.3), respectively. These

Sobolev spaces have a norm given by

‖u‖21 =
∫
Ω

(
u(x)2 +∇u(x)T∇u(x)

)
dx.

Let a : H1
0 ×H1

0 → R denote the bilinear form

a(u, v) :=

∫
Ω

∇u(x)T∇v(x)dx, (3.8)

This bilinear form is positive definite on H1
0 , and H1

0 is a Hilbert space with inner

product a(u, v) and associated norm ‖u‖ =
√
a(u, u). We let
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(u, v) :=

∫
Ω

u(x)v(x)dx, u, v ∈ L2(Ω),

be the usual L2 inner product. For a general review of Sobolev spaces we refer the

reader to [175].

Discussions in this chapter will mostly be based on problems that arise in the

relationship between geometry and analysis models. Most studies are focused on two

prototypical mathematical model problems that arise in analysis, the Poisson problem

and a corresponding eigenvalue problem, respectively.

−∇2u = f on Ω, u = 0 on ∂Ω, (3.9)

−∇2u = λu on Ω, u = 0 on ∂Ω. (3.10)

Given f ∈ L2(Ω) the weak form of (3.9) is to find u ∈ V := H1
0 (Ω) such that

a(u, v) = (f, v), v ∈ V . (3.11)

It is well known that (3.11) has a unique solution u, see [32].

The weak form of (3.10) is to find λ ∈ R and a nonzero u ∈ V such that

a(u, v) = λ(u, v), v ∈ V . (3.12)

Since this involves finding the eigenvalues and eigenfunctions of a compact, symmetric

operator in the Hilbert space (V, a(·, ·)) there exists an increasing sequence of strictly

positive eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·
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with limλk =∞ and associated eigenfunctions uk, which can be orthogonalized so that

a(uj, uk) = λkδj,k, j, k ≥ 1.

Moreover, the eigenfunctions form a complete system, i.e.,the set of all linear combina-

tions is dense both in V and L2(Ω), again see [32].

For V q
h defined as in Equation 3.4, the Galerkin method for (3.11) consists in finding

uh ∈ V q
h such that

a(uh, vh) = (f, vh), vh ∈ Vh.

Writing uh =
∑

j∈J cjφj, we obtain a linear system for the unknown coefficients c.

Sc = f , S =
(
a(φi, φj)

)
i,j∈J , f =

(
(f, φi)

)
i∈J . (3.13)

Since the φ’s are linearly independent and vanish on ∂Ω the stiffness matrix S is a

symmetric positive definite matrix and (3.13) has a unique solution that is amendable

to iterative methods like conjugate gradient [12].

The Rayleigh-Ritz method for (3.12) consists of finding λ and a nonzero uh ∈ V q
h

such that

a(uh, vh) = λ(uh, vh), vh ∈ Vh.

Writing uh =
∑

j∈J cjφj as before we obtain a generalized eigenvalue problem

Sc = λMc, S =
(
a(φi, φj)

)
i,j∈J , M =

(
(φi, φj)

)
i,j∈J , (3.14)

where both S and the mass matrix M are positive definite.
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Thus the eigenvalues λkh of (3.14) that approximate the exact eigenvalues of (3.12)

are positive

0 < λ1h ≤ · · · ≤ λ|J |h

and the eigenfunctions uh can be chosen to be orthogonalized so that

a(ujh, ukh) = λkhδj,k.

Moreover limh→0 λkh = λk for 1 ≤ k ≤ |J |, provided limh→0 infvh∈Vh
‖uk − vh‖ = 0 for

1 ≤ k ≤ |J |.

3.4.2 Definition of Isogeometric Finite Element Analysis

Suppose the basis functions φj(x) are given as in Equation (3.5). Moreover, we

assume that (3.6) holds, i.e., F maps interior to interior and boundary to boundary,

and that F is defined as in Equation (3.7). Then the Galerkin and Rayleigh-Ritz

methods for (3.11) or (3.12) are called isogeometric.

The elements sij of the stiffness matrix S can be expressed in terms of the gradients

of the ψj basis functions. Let

J = JF :=

⎡⎢⎣D1F1 · · · DsF1
...

...
D1Fs · · · DsFs

⎤⎥⎦ =

⎡⎢⎣∇F
T
1

...
∇F T

s

⎤⎥⎦ (3.15)

be the Jacobian of F . Note that the elements of J are functions defined on Θ. We

assume that J(t) is nonsingular for all t ∈ Θ. Then

sij =

∫
Ω

∇φi(x)
T∇φj(x)dx =

∫
Θ

∇ψi(t)
TN(t)∇ψj(t)dt, i, j = 1, . . . , n, (3.16)

where
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N = |det(J)|J−TJ−1. (3.17)

Note that N (t) is positive definite for all t ∈ Θ. Explicitly, for s = 1,

N(t) =
1

|F ′(t)| ,

and for s = 2

N =
1

|det(J)|

[
‖∇F2‖22 −∇F T

1 F2

−∇F T
1 F2 ‖∇F1‖22

]
.

If

K := |det(J)|−1/2J = UΣV T , Σ = diag(σ1, . . . , σs), U
TU = V TV = I,

with σ1 ≥ σ2 ≥ · · · ≥ σs > 0 is the singular value decomposition of K then

N = UΣ−2UT

is the spectral decomposition of N . Since N is positive definite the eigenvalues of N

are the inverse square of the singular values of K and the orthonormal eigenvectors of

N are the right singular vectors of K.

3.4.3 B-splines

For integers n ≥ 1 and d ≥ 0 let τ = {τi} be a nondecreasing finite sequence of real

numbers. We refer to τ as a knot vector and its components as knots. On τ we can

recursively define degree d B-splines Bj,d = Bj,d,τ : R→ R by

Bj,d(t) =
t− τj

τj+d − τj
Bj,d−1(t) +

τj+d+1 − t

τj+d+1 − τj+1
Bj+1,d−1(t) , t ∈ R, (3.18)
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starting with

Bj,0(t) =

{
1, if τj ≤ t < τj+1,

0, otherwise.

Here we use the convention that terms with zero denominator are defined to be zero.

We let Bd,τ = {Bj,d,τ}j .
A B-spline Bj,d of degree d has the following properties:

1. It depends only on knots τj , . . . , τj+d+1 and is identically zero if τj+d+1 = τj .

2. For t ∈ (τj , τj+d+1), 0 < Bj,d(t) ≤ 1 and Bj,d(t) = 0 otherwise. The interval

[τj , τj+d+1] is called the support of Bj,d.

3. Its derivative is

DBj,d(t) = d

(
Bj,d−1(t)

τj+d − τj
− Bj+1,d−1(t)

τj+d+1 − τj+1

)
,

again with the convention that terms with 0 denominator are set to 0.

4. If m of the τj , . . . , τj+d1 are equal to one value z, then DrBj,d is continuous at z

for r = 0, . . . , d−m and Dd−m+1Bj,d is discontinuous at z.

5. Its integral is ∫ τj+d+1

τj

Bj,d(t)dt =
τj+d+1 − τj
d+ 1

.

6. It is affine invariant, i.e., for u, v, t ∈ RBj,d,uτ+v(ut+v) = Bj,d,τ (t), where uτ+v :=

(uτj + v)j .

Now suppose n, d are integers with 0 < d < n. We say that τ = {τi}n+d+1
i=1 is a

(d+ 1) extended knot vector on an interval [a, b] if
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a = τd+1 < τd+2, τn < τn+1 = b, τi+d+1 > τi, i = 1, . . . , n.

It is (d+1)-regular or (d+1)-open if in addition τ1 = a and τn+d+1 = b; it is (d+1)-regular

uniform or (d + 1)-open uniform if τi+1 − τi = h for i = d + 1, . . . , n and h > 0. The

knot vector is uniform if τi+1 − τi = h > 0 for i = 1, . . . , n+ d.

On the knot vector τ = {τi}n+d+1
i=1 we can define n B-splines of degree d. The linear

space of all linear combinations of B-splines is the spline space defined by

S
q
d,τ :=

{ n∑
j=1

cjBj,d | cj ∈ Rq for 1 ≤ j ≤ n
}
, d ≥ 0, q ≥ 1.

An element f =
∑n

j=1 cjBj,d of Sd,τ = S1
d,τ is called a spline function if q = 1 or just

a spline of degree d with knots τ , and (cj)
n
j=1 are called the B-spline coefficients of f .

For q > 1 the combination f =
∑n

j=1 cjBj,d is a spline curve.

Suppose τ = {τi}n+d+1
i=1 is a (d+1)-open knot vector on [a, b]. A spline f : [a, b]→ R

is by definition continuous from the right. We define f(b) by taking limits from the left.

Let f =
∑n

j=1 cjBj,d. Then the following properties hold:

1. B-splines (Bj,d)
n
j=1 are linearly independent on [a, b] and therefore a basis for Sq

d,τ .

2. Partition of unity :
∑n

j=1Bj,d ≡ 1, t ∈ [a, b].

3. Convex hull property : f(t) lies in the convex hull of [c1, . . . , cn].

4. Smoothness : If z occurs m times in τ then f has continuous derivatives of order

0, . . . , d−m at z.

5. Locality : If t is in the interval [τk, τk+1) for some k in the range d + 1 ≤ k ≤ n

then

f(t) =

k∑
j=k−d

cjBj,d(t), (3.19)
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6. Affine invariance: If uτ + v := (uτj + v)n+d+1
j=1 then

n∑
j=1

cjBj,d,uτ+v(ut+ v) =
n∑

j=1

cjBj,d,τ (t), t ∈ [a, b], u, v ∈ R. (3.20)

7. Nodal representation:

t =
n∑

j=1

τ ∗j,dBj,d(t), τ ∗j,d =
τj+1 + · · ·+ τj+d

d
, t ∈ [a, b].

8. Derivative of a spline:

Df(t) = d

n∑
j=2

cj − cj−1

τj+d − τj
Bj,d−1(t), t ∈ [a, b],

where terms with 0 valued denominator are set to 0.

9. Integral of a spline:

∫ τn+d+1

τ1

f(t)dt =
n∑

j=1

τj+d+1 − τj
d+ 1

cj . (3.21)

10. If z = τj+1 = · · · = τj+d < τj+d+1 for 1 ≤ j ≤ n then f(z) = cj .

11. Marsden’s identity:

(s− t)d =
n∑

j=1

j+d∏
i=j+1

(s− τi)Bj,d(t), t ∈ [a, b], s ∈ R. (3.22)
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3.4.4 Knot Insertion and Degree Raising
(h- and p-refinement)

Suppose τ is a knot vector. The distinct elements in τ are called break points. We

define the multiplicity of z in τ as

μτ (z) = #{τj ∈ τ : τj = z}, z ∈ R.

Notice that μτ (z) = 0 if z is not equal to one of the knots in τ . For k ≥ 0 we define

the knot vector τ (k) to have the same break points as τ , and

μτ (k)(ξ) = μτ (ξ) + k for all ξ ∈ τ .

Thus we increase the multiplicity of each break point in τ by k.

If t is another knot vector then we say that τ ⊂ t if each break point ξ in τ is also

a break point in t and μτ (ξ) ≤ μt(ξ).

Let d, e be integers, 0 ≤ d ≤ e, let τ = (τj)
n+d+1
j=1 be (d+1) extended on [a, b] and let

t = (ti)
m+e+1
i=1 be an (e+1) extended knot vector on the same interval [a, b]. If τ (e−d) ⊂ t

then Sd,τ ⊂ Se,t, and there is a matrix A ∈ Rm,n transforming the B-splines in Sd,τ into

the B-splines in Se,t. Thus

Bj,d,τ =

m∑
i=1

aijBi,e,t, j = 1, . . . , n, or BT
d,τ = BT

e,tA,

where BT
d,τ = [B1,d,τ , . . . , Bn,d,τ ] and BT

e,t = [B1,e,t, . . . , Bm,e,t] are row vectors.

If f =
∑n

j=1 cjBj,d,τ then f =
∑m

i=1 biBi,e,t, where

b = Ac, c = [c1, . . . , cn]
T , b = [b1 . . . , bm]

T . (3.23)

The case where e = d is called knot insertion and corresponds to h-refinement in

the finite element literature. The situation where e > d and t = τ (e−d) is called degree



46

raising or degree elevation and corresponds to what is commonly known as p-refinement

or p-enrichment [175, 45, 98]. In the general case where τ (e−d) is a proper subset of t both

knot insertion and degree raising occur. When this transformation is carried out with

degree raising followed by knot insertion, Hughes [87] introduced the term k-refinement

to the isogeometric literature. Although it is possible to do the transformation in

opposite order, i.e., a knot insertion followed by a degree raising, as observed in [87] in

their discussion of k-refinement, this ordering leads to more coefficients and less smooth

functions.

There are two algorithms for knot insertion. In Boehm’s algorithm one knot at a

time is inserted. In particular, if z is inserted in τ say between τk and τk+1 so that

τk ≤ z < τk+1 , then we obtain (3.23) with

bi =

⎧⎪⎨⎪⎩
ci i = 1, . . . , k − d,
z−τi

τi+d−τi
ci +

τi+d−z
τi+d−τi

ci−1, i = k − d+ 1, . . . , k,

ci−1 i = k + 1, . . . , n+ 1.

(3.24)

Alternatively, using the Oslo Algorithms [34] we can insert all knots simultaneously and

compute the elements of A row by row. Suppose ti is located between τk and τk+1, i. e.,

τk ≤ ti < τk+1, then for row i,

αj,r(i) =
ti+r − τj
τj+r − τj

αj,r−1(i)+
τj+r+1 − ti+r

τj+r+1 − τj+1

αj+1,r−1(i), j = k−r+1, . . . , k, r = 1, . . . , d,

(3.25)

starting with αj,k = δj,k. Then we obtain Equation (3.23) with ai,j = αj,d(i) for j =

k − d, . . . , k and ai,j = 0 for other values of j.

The recurrence relation in (3.25) bears a strong resemblance to the one for B-splines

given in (3.18). Since the numbers αj,d(i) also have rather similar properties to Bj,d(t),

they are called discrete B-splines. For example

αj,d(i) ≥ 0, j = 1, . . . , n,
n∑

j=1

αj,d(i) = 1, i = 1, . . . , m.
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For degree raising we also compute the transformation matrix A row by row [35].

Suppose as for knot insertion that τk ≤ ti < τk+1 and set Λj,0,r(i) = δj,k for 0 ≤ r ≤ e,

Λj,�,r(i) = 0 for all j if 0 ≤ r < �, and Λj,�,r(i) = 0 for all �, r if j < k − � or j > k. If

we compute

Λj,�,r(i) =
�

r

(
ti+r − τj
τj+r − τj

Λj,�−1,r−1(i) +
τj+r+1 − ti+r

τj+r+1 − τj+1

Λj+1,�−1,r−1(i)

)
+
r − �

r
Λj,�,r−1(i),

(3.26)

for � = 1, . . . , d, r = �, . . . , e and j = k− �, . . . , k then ai,j = Λj,d,e(i) for j = k−d, . . . , k
and 0 for other values of j. Again terms with 0 denominator are set to 0. For e = d we

only need to compute Λj,�,�(i) in (3.26) and we see that Λj,�,�(i) = αj,�(i) for all j, r. It

is shown in [135] that A is a nonnegative stochastic matrix:

Λj,d,e(i) ≥ 0, j = 1, . . . , n,

n∑
j=1

Λj,d,e(i) = 1, i = 1, . . . , m, 0 ≤ d ≤ e.

An algorithm that is a literal implementation of (3.26) has complexity O(de2m);

however, it is possible to derive faster algorithms for this kind of conversion. The main

advantages are that it is quite stable and simple to implement.

Alternatively, degree raising can be carried out by converting each segment to

Bernstein form, performing degree raising on the Bernstein form, and then converting

back to spline form.

3.4.5 NURBS

Suppose τ = {τi}n+d+1
i=1 is a (d + 1)-regular knot vector on [a, b]. Given positive

numbers w = {wi}ni=1, we define the associated NURBS-basis of degree d by

Rj,d(t) :=
wjBj,d(t)∑n
i=1wiBi,d(t)

, t ∈ [a, b], j = 1, . . . , n, (3.27)

where Bi,d is the B-spline of degree d with knots τi, . . . , τi+d+1. Given cj ∈ Rq the sum
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f =

n∑
j=1

cjRj,d (3.28)

is called a NURBS function if q = 1 and a NURBS curve if q > 1. We have Ri,d = Bi,d

when wi = 1 for all i. NURBS curves retains many of the desirable properties of splines

curves. Moreover,

1. NURBS can represent conic sections exactly.

2. Ri,d has the same local support and smoothness properties as Bi,d.

3. NURBS basis functions are nonnegative and form a partition of unity, hence the

convex hull property holds.

4. {R1,d, . . . , Rn,d} is linearly independent on [a, b].

5. A NURBS curve is affine invariant.

The exact properties of these functions depend on w as well as the knot vector τ and

degree.

3.4.6 Tensor Product Splines

Using multi-index notation, an s-variate tensor product B-spline has the form

Bj,d,T (t) =

s∏
i=1

Bji,di,τi(ti), where Bji,di,τi ∈ Bdi,τi ,

where d = (d1, . . . , ds), T = (τ1, . . . , τs), and j = (j1, . . . , js). Define Bd,T to be the set

of all possible such s-variate combinations. The s−variate tensor product spline space

is defined by

S
q
d,T :=

{ ∑
1≤j≤n

cjBj,d,T | cj ∈ Rq over all Bj,d,T ∈ Bd,T

}
, d ≥ 0, q ≥ 1.
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The definition for the s-variate rational is extended analogously.

Let F ∈ Ss
d,T , and fix the i-th coordinate to be an element of the knot vector in

that dimension. The (s− 1) free variables in Θ form an (s− 1)-dimensional unit cube,

�i,j(t) = (t1, . . . , ti−1, τ
i
j , ti+1, . . . , ts) for t = (t1, . . . , ti−1, ti+1, . . . , ts) ∈ [0, 1]s−1, and

F (�i,j(t)) is called a generalized knot-line.

3.4.7 NURBS Elements

Define θi to be an s-dimensional rectangular parallelepiped (Cartesian product):

θi = [Ti,Ti+1] := [τ 1i1 , τ
1
i1+1]× · · · × [τ sis , τ

s
is+1].

Each nonzero function in Sd,T is a single multivariate polynomial over the interior of θi,

and
⋃

i θi = Θ. Then Ωi = F (θi) is an element or a patch in the physical space. The

generalized knot-lines form the boundaries between the patches.

Sometimes a measure of behavior of the system as a whole is gauged by the behaviors

of the collection of localized stiffness matrices, one for each element. Denote by Si the

matrix formed by integrating over a just the i-th element. That is

ai(u, v) :=

∫
Ωi

∇u(x)T∇v(x)dx

is used in computing the elements of Si. If s = 3 and d = (3, 3, 3), then there are 64

φj that are nonzero over Ωi, and Si is (only) a 64× 64 matrix.

Define the d-extended rectangular parallelepiped

θi,d := [Ti−d+1,Ti+d].

The significance of this set is that the value of a polynomial spline on θi only depends

on the knots in θi,d.
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3.5 Parametric Representation of Geometry

In this section we now focus on portraying a modeler’s view of defining parametric

representations of geometry, what is often called modeling in the CAD world. In general,

the creator of the shape model is not the person who performs the analysis. Although

many systems have analysis modules, the subsystem to create the shape is focused solely

on shape. Furthermore, it would miss the point to create a system devoted exclusively

to design for analysis, because the created design must be for shape, for analysis, for

manufacturing and fabrication, for assembly analysis, versioning, and more. Hence

analysis-aware modeling that exploits the currently available modeling flexibility of

existing systems should be aimed at supporting the designer to make intelligent decisions

about modeling that result in models F that are better able to support analysis while

preserving the capability of supporting the other important facets of the production

process. For the most part, we present the discussion in the context of dimensional

models to illustrate the points in the studies of Section 3.6.

While the analyst begins the process with a shape, the designer works towards a

shape representation that meets the design specifications as the end goal. Hence the

process for attaining the modeling goal varies with the design discipline, the individ-

ual designer, and the CAD system environment. For certain types of design, e.g.,

feature-lines establish key characteristics of shape. The subsequent surface must be

generated around those features. Surfaces are assembled into models along surface

edge curves, matching them carefully. In another style of modeling four boundary

curve elements define the essence of a surface whose interior representation must be

conformally generated. Networks of such regions form the model. Still other styles of

design create reference curves that define surfaces through operations such as surface

of revolution, extrusion, sweep, and the like. Another style employs named standard

feature objects like hole, boss, fillet, etc., to describe shape, from which the designer

or CAD system can generate the surfaces. Prevalent practice in design engineering

delineates planar regions by bounding curves. The CAD process requires that a tensor

product surface description is then created for computational purposes, typically a

difficult process unless a nontensor product representation is added to the general
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representation. Typically, the model will be bounded by many surfaces, so a volume

model will not be able to be represented as the mapping of a single cube.

It is important to point out that current CAD modeling typically focuses on con-

structing of the boundaries to define an object. Although it is clearly the case that

the boundary representations alone are sufficient for some types of analysis like shell

analysis, they are not sufficient for all types of analysis. In particular, it is important

to appreciate that modeling systems have nurtured a modeling mindset focused on

generating surface representations, not on full volumetric representations. However, it

is necessary to create a fully specified volumetric representation F so that the space

Vh can be defined and used in the analysis. Creating F from its boundaries is called

model completion. To be suitable for a full volume analysis, but unnecessary for most

design and fabrication requirements, the interior of the bounded region should have a

representation as well, i.e., it should be a volumetric model.

However, issues of modeling volumes or completing a boundary model to a full

volume model have not been the subject of broad research focus other than a few

scattered efforts [28, 152, 128, 88]. We first examine some of the challenges of model

completion.

3.5.1 Completion

There has been significant modeling research on the issue of completing a surface

given boundaries, for both boundary curves in 2-D (our case) and 3-D. The generic prob-

lem is formidable, especially for a nonconvex bounded region. Indeed, for complicated

planar regions, and even more so for 3-D curved boundaries, generating representations

for smooth completions is still an area of research. Using a tensor product form requires

the existence of four bounding curves, as described below. Complicated regions do not

naturally lend themselves to this form (see Figure 3.3), in much the same way that

complicated volumes cannot be straightforwardly represented as a single mapping of

the unit cube. So it is necessary to decompose the model into multiple regions, each

one of which is the mapping of a cube. The process for attaining the decomposition

is not well defined. Thus, it will be better understood if the modeling process can

incorporate, without undue effort on the part of the designer, intrinsically volumetric
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(b)(a)

Figure 3.3. Boundary curves. (a) in 2D; (b) in 3D.

design operators. We believe simpler cases will illustrate the issues that arise in creating

representations F that defines Ω and the reference space when starting with a boundary

representation.

Putting aside the details of how to effect this, assume that Ω has a theoretical

decomposition, and the current concern is creating a single mapping from Θ with

whatever partition is necessary. That is, there are 2s boundary faces, and opposite

boundary faces share the same degree and knot vectors. The studies that we present

are characterized by Θ,Ω ⊂ Rs, s = 1, 2, 3. As remarked earlier, ∂Θ has 2s bounding

faces, each an s−1 manifold. The mappings from each face in ∂Θ to ∂Ω are designated

by the coordinate held constant over the face. Hence, the face labeled i = 2(j−1)+(�),

j = 1, . . . , s and � = 1, 2 corresponds to the face that holds the j−th coordinate constant

to value �− 1, and σi = F |(∂Θ)i . Considered separately, σi : [0, 1]
s−1 → Ω.

CAD models are generally represented only in terms of the boundary, that is, as

a collection of mappings A = {αp}p, αp : [0, 1]2 → R3, that have not be created with

any considerations for analysis. Simply designing and representing the model can be a

major challenge. Resulting representations have the characteristic that:

• ⋃
p αp([0, 1]

2) form a closed region of space ∂Ω;

• Two surface pieces can meet only along a boundary curve, which is either identical

or entirely disjoint;
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• Arbitrarily many surfaces pieces can define a boundary; and

• Arbitrarily many surface pieces can meet at a point.

3.5.2 Representing a Line Segment

A line segment may be considered the parametric completion of its boundary,

namely, the two endpoints. Consider points P1 and P2. Viewed as a B-spline curve, the

linear parameterization of the line segment joining them is γ(t) = P1B1,1(t)+P2B2,1(t),

where the corresponding knot vector is τ = [0, 0, 1, 1]. Using the degree raising al-

gorithms (p-refinement) this can be represented as a higher order curve γd. Since

γd(t) = γ(t) for all t, the curve exhibits constant velocity. Using knot insertion to

refine the higher degree curve, perhaps nonuniformly, we obtain a curve γ̃d(t), that is

still the same curve, but written in a different representation.

It is possible to write the same line with different, seemingly rather arbitrary,

nonlinear parameterizations. Now, we create several representations for later use in

Section 3.6.

Let P1 = (0, 0) and P2 = (1, 0). We can just consider the mapping from [0, 1] →
[0, 1], since the second coordinate is 0. Let d = 3, and consider two different knot vectors

to complete the interior of the interval. Let τ1, be the open uniform knot vector,

τ1 = [0, 0, 0, 0, h, 2h, . . . , (n− 4)h, 1, 1, 1, 1], h = 1/(n− 3) ,

and let for 0 < a < b < 1/2, n > 8, and δ = (1− 2b)/(n− 8),

τ2 = [0, 0, 0, 0, a, b, δ, 2δ, ..., (n− 9)δ, 1− b, 1− a, 1, 1, 1, 1], (3.29)

where the value of δ is chosen so that b, δ, 2δ, . . . , (n− 9)δ, 1 − b is a uniform partition

of [b, 1− b]. By the Nodal Representation Property (Section 3.4.3),
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x = Ik(x) :=
n∑

j=1

τ ∗k,jBj,3,τk(x), (3.30)

where τ ∗k,j = (τk,j+1 + τk,j+2 + τk,j+3)/3, j = 1, . . . , n, so that,

τ ∗
1 = (τ ∗1,j)

n
j=1 = [0,

1

3
h, h, 2h, . . . , 1− h, 1− 1

3
h, 1], h = 1/(n− 3).

Define a nonlinear parameterization of the unit interval with uniformly spaced coeffi-

cients given by

Uk(x) =
n∑

i=1

i− 1

n− 1
Bi,3,τk(x), k = 1, 2. (3.31)

Notice that Ik is the identity and Uk stretches the two knot intervals near both end-

points, k = 1, 2. This process can be extended to higher degree, in which case the d− 1

knot intervals near both endpoints are stretched.

Applying the derivative formula reveals that on the first two knot-intervals and

the last two knot-intervals the derivative changes quadratically, but on the rest of the

interior knot-intervals, it is constant. Hence Uk is linear on all but the two boundary

knot intervals near the ends. An additional application of the derivative formula reveals

that the second derivative is negative on the first two intervals and positive on the last

two intervals, so the curve is concave on the first two intervals, and convex on the last

two intervals. This mapping effects a stretch of the two knot intervals at each end and

preserves it as constant in the middle (see Figure 3.4).

We explore the effects of control polygon degeneracy on the knot intervals by creating

c1, corresponding to mapM1, to have a cluster of two identical sequential control points

(c1,n/2 = c1,n/2+1), and c2, corresponding to M2, to have one cluster of three identical

sequential control points (at the corresponding center of the control point range), both

are defined over a uniform open knot vector that yields n basis functions, where n is

even for M1 and odd (1 more) for M2, and for which the remaining control points are

uniformly spaced. So for n = 10,
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Figure 3.4. Coefficients of the geometry maps. The top image portrays the evenly
spaced coefficients of Uk(x), k = 1, 2. The second and third rows are coefficients of
Ik(x), the identity, for k = 1, 2. They depend on the knot vectors. The fourth row
shows the coefficients of M1 are mostly the same as the coefficients of U1, except for
the double control point.

Ordered Control points for c1 = [0, 1/8, 1/4, 3/8, 1/2, 1/2, 5/8, 3/4, 7/8, 1] (3.32)

Ordered Control points for c2 = [0, 1/8, 1/4, 3/8, 1/2, 1/2, 1/2, 5/8, 3/4, 7/8, 1]. (3.33)

In Section 3.6.1 we investigate the interactions between the knot vectors and the

mappings I and U that act as the map from reference space to physical space in the case

of longitudinal vibrations along a string. Cottrell et al. [39] studied this problem for I1
and U1. We investigate more general cases and consider how interactions of mappings

and knot vectors change the Vh and affect the eigenstructures.

3.5.3 Completing Surface Regions Bounded by Curves

Given a curvilinear rectangular mesh of curves, there has been significant work on

techniques to complete the representations to an implied smooth surface, including early

work by Coons [38] and Gordon [67] in representing shape objects. However, when a

single boundary has no straightforward decomposition into four boundary curves, most

of these methods cannot be applied directly. Rather, the user must decompose the

boundary into pieces amenable to patch fitting, and then work to guarantee that the



56

patches join smoothly. Guaranteeing that the interior boundaries are identical can be

a challenge when bounding curves are nonlinear.

Research in [128] for the planar case and [88] for the nonplanar case seem to generate

reasonable surfaces and parameterizations for modeling, but they have not been tested

for suitability in analysis. Figure 3.5 shows completions of the bounding curves in

Figure 3.3 formed using these methods, respectively.

First we investigate some specific representations of simple geometries for curves

and their surface completions that are used in our studies in Section 3.6.

3.5.4 Representing a Circular Arc

Used to represent part of a boundary, circular arcs appear ubiquitously in mechanical

design. Suppose it is necessary to represent an arc of β radians taken from a circle of

radius r. We follow the usual approach in [37] to create a quadratic NURBS template

in the x− y plane that can be affinely mapped to any position. The arc is represented

initially as a quadratic rational B-spline with knot vector τ = [0, 0, 0, 1, 1, 1]. The

representation will have one knot span. As shown in [37], the arc can be easily

represented by the same Euclidean control points with many different functions w as

long as w1w3/w
2
2 = sec2(β/2). Commonly, w1 = w3 = 1 and w2 = cos(β/2), so the arc

(b)(a)

Figure 3.5. Filled boundary curves. (a) in 2D; (b) in 3D
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is represented as

A(t) =
3∑

i=1

PiRj,2(t) w(t) = B1,2(t) + cos(β/2)B2,2(t) +B3,2(t),

where P1 = r(1, 0),P2 = r(1, tan(β/2)),P3 = r(cosβ, sinβ) and the Rj,2 are defined as

in Section 3.4.5. When β = π/2, and r = 1, P1 = (1, 0), P2 = (1, 1), P3 = (0, 1) and

w2 =
√
2/2. If β = π, w2 = 0 which can lead to computational consistency problems.

If β > π, then w2 < 0, leading to yet other computational problems, such as potential

zeros in the denominator. Thus a commonly used constraint is that β < π.

A full circle can be represented as three rotated instances of a 2π/3 arc, giving rise

to the NURBS representation

C3(t) =
7∑

i=1

P3,iRi,2,τ3(t) defined with w3(t) =
7∑

i=1

w3,iBi,2,τ3(t), t ∈ [0, 1],

where

τ3 = [0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1],

P3 = r[(−
√
3,−1), (0,−1), (

√
3,−1), (

√
3/2, 1/2), (0, 2), (−

√
3/2, 1/2), (−

√
3,−1)],

and

w3 = [1, 1/2, 1, 1/2, 1, 1/2, 1, 1].

The control points are successive vertices and midpoints, respectively, of the sides of an

equilateral triangle that inscribes a circle of radius r having the origin as center.

Alternatively we can represent the circle as four rotated images of a quarter circle.

This gives the NURBS curve

C4(t) =
9∑

i=1

P4,iRi,2,τ4(t), defined with w4(t) =
9∑

i=1

w4,iBi,2,τ4(t), t ∈ [0, 1],
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where

τ4 = [0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1],

P4 =
r

2
[(−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1)],

w4 = [1, 1/
√
2, 1, 1/

√
2, 1, 1/

√
2, 1, 1/

√
2, 1].

For this configuration defining the circle in terms of an arc in each of the quadrants,

the control points are the successively alternating vertices and midpoints of the sides

of a square with that inscribed circle of radius r centered at the origin. The reader is

referred to both [159] and [21], which discuss various ways to represent circles in fuller

detail. These representations only guarantee C0 across the boundaries of each of the

arcs.

Both 3-arc and 4-arc representations are rational quadratic. A third rational repre-

sentation of a circle is given by two semicircular arcs with cubic representations joined

with C1 smoothness. This representation, called C2 uses only six control points [159],

is shown in Figure 3.6(b), and has configuration

knot vector: τ = [0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1], (3.34)

weights: w = [9, 1, 1/3, 1/3, 1, 9] (3.35)

control coefficients: P2 = {(1, 0), (1, 2), (−1, 2), (−1,−2), (1,−2), (1, 0)}. (3.36)

In the figure, although the radii are drawn with uniformly spaced parameter values,

notice the nonuniformity of the disc parameterization. That means that uniform h-

refinement can well lead to nonuniformly sized analysis elements. That may be desirable

for some tangent analysis problems. If it is not desirable then parameterizing the radii

nonuniformly and creating curvilinear radii (to generate elements of more equal size)

may be an appropriate completion when given C2 as a boundary representation.

Above we have used subscripts to reflect the number of distinct rational arc pieces

used to represent a complete circle.
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1 0 7

P6P2

P P P3 4 5

(a) (b)

P

(c)

PP 8P

Figure 3.6. Three ways to represent a disc of radius one. Column (a) is mapped
with D1, column (b) with D2, and column (c) with D3. Circles around black control
points mean that more than one control point sits on the black control point location.
Degeneracies are marked with red points. These representations are used to solve the
drumhead problem.

3.5.5 Solid Discs from Circular Boundaries

The disc can be represented in many ways using NURBS. In this section we discuss

three different representations that are all exact but differ in construction, degeneracies

and smoothness. There are two widely used representations for completing the disc.

The first, used in [209, 17], is a polar type of parameterization of the disc induced by

using C4 as one boundary. Select a point in the interior of the circle O. Usually the

center of the circle is selected for symmetry reasons, but another point could serve. Now

select a representation for the unit interval. It could be the identity on any knot vector

or any degree, it could be linear, quadratic, or it could be a cubic, like Uk. A tensor
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product representation is generated by selecting as the Euclidean part of the control

points the scaled and rotated version of one of the representations of the line and one of

the above representations of a circle. Translate, rotate and scale multiple instances of

the line representation so there is one starting at P4,j and ending at O for each j. Name

the rotated scaled instance of the i-th coefficient of the line from P4,j to the origin be

D1,i,j with w1,i,j = w4,j . Call this representation D1.

This representation creates an orthogonal parameterization of the unit circle whose

isoparametric lines are either circles or radii. See Figure 3.6(a). The mesh is shown

in the upper figure; isoparametric lines are drawn in the lower one. In this figure, the

radial parameterization is linear. The lines drawn are showing parameterization, but

not indicated analysis elements. An analogous solid representation can be generated

from C3.

The resulting tensor product representation degenerates one whole boundary curve

to a single point, so JD1(O) = 0. The rate at which it goes to zero can be affected

by modifying nearby control points so that the radii are not parameterized linearly, as

in Uk. Thus the effect on F = D1 and its power to represent the solution space is

adjustable without affecting the boundary geometry. It will affect the element shapes.

The discussion in Section 3.6.4 concerns the impact on the induced function space and

the ensuring impact on analysis results. Call D1 the mapping that embodies C4 as one

boundary in representing disc, places the origin as its opposite, and represents the radii

linearly.

C2 is also a polar type. The initial NURBS representation for the disc has two

rational cubic semicircles. Since there is one interior double knot, it is C1 at the join.

(Figure 3.6 (b)). The rest of the surface is generated using the same polar approach ad

for D1. However, the result is not as uniform an angular representation as for the first

case. Call this mapping D2.

Note that for both mappings, an annulus could easily be modeled by choosing the

circle representation for the smaller radius as the inner boundary and using a line

representation that terminates at the control points of the smaller circle instead of the

origin. The w’s that define the rational space remain the same.
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The third modeling choice is fundamentally different from the first two inasmuch as

it uses opposite arcs as the matched boundaries of the tensor product representation.

σ1(v) = A(v)

σ2(v) = Rπ(A(−v));

σ3(u) = Rπ/2(A(u));

σ4(u) = R3π/2(A(−u)),

where A is the π/2 radian circular arc, Rθ(P ) means to rotate P through an angle θ.

Nine control points determine the tensor product rational quadratic surface, eight of

which are specified by the boundary control points. The remaining is chosen to be O
and the associated w set to 1/2. Call this mapping D3, as shown in Figure 3.6(c). With

respect to the number of basis functions, this is the most concise representation of a disc.

In this case nine control points are needed as compared to 18 and 12 required for the

first two representations, respectively. Furthermore, note that this mapping exhibits

no interior degeneracy, but there are four locations on the boundaries at which the

boundary curves meet at which the Jacobian vanishes. The rate at which the Jacobian

goes to zero can be adjusted by modifying the initial NURBS representations of the

boundary curves, and adjusting the rate at which the Jacobians go to 0 by modifying

the locations of the control points on the interior, particularly those that result from

h- or k-refinement. The boundary geometry is unperturbed by these modifications, but

Vh changes, because F is different, even though they are all in a single S2. The various

completions are not affine transformations of each other. Note that neither C2 nor

C3 are suitable for use with this disc representation, but are quite reasonable for most

other computational uses encountered in CAD. Again, see the discussion in Section 3.6.4

concerning the impact on the induced function space and the corresponding impact on

analysis.
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3.5.6 Volumetric Models such as Solid Cylinders
and Solid Tori

CAD systems generate multiple boundary models from the three circle represen-

tations above, cylinders (without the top and bottom surface), tori, and other types

of extruded and swept surfaces. However, although CAD systems do not generate

volumetric models, volumetric models of those shapes can be generated from the disc

surface completions above. A variant of the disc of revolution has been used to generate

geometry of vascular structures and to create the trial space for IA of blood through

those structures[209]. It was used to generate geometry for optical lenses and carry the

varying index of refraction volume attribute for computing the optical behavior of those

lenses [127]. A sweep surface is defined as

σ(u, v) = A(u) +Mu(S(v))

where S is the cross section curve, A is a spline curve along which S is swept, and Mu

is a transformation incorporating rotation and nonuniform scaling of S(v) as a function

of u. Unfortunately this representation has self-intersections wherever the radius of

curvature of A is less than the first intersection of the curve normal of A with σ(u, v).

Generalized cylinders and tori also fall into this category. If the boundary has no self

intersections, this can be made into a volumetric sweep by using the surface completion

S(v, w) of S(v). If there are any self intersections, then this method is unsuitable.

Generalizations of this representation include allowing S to also be a function of u,

and allowing S to be nonplanar. Both of those generalizations were combined in [125] to

create a modeling technique for generalized cylinder-like objects with overhang regions.

Such shapes cannot be modeled as a single NURBS patch if the cross section surfaces in

the sweep are required to be planar. Because of the complexities of the boundary and

some constraints on the isoparametric contours, there are no straightforward techniques

for modeling some of them as images of multiple 3-cubes. For example, Figure 3.7(left)

cannot be modeled as a single sweep with planar cross sections. 3.6.11. A partition of the

data into multiple Θ domains will create mappings F that also split material properties
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Input: Material Boundaries Output: B−spline Volume

Modeling

Figure 3.7. Input (left) and output (right) of the modeling methodology proposed in
Chapter 4.

(bone type), and Young’s modulus (for linear elasticity) in unnatural ways, not along

isoparametric surfaces of the resulting mappings. Thus, it was deemed appropriate to

allow some distortion in the parameterization, while still maintaining a quality model

for analysis. An example of this approach is studied in Section 3.6.11.

3.6 Studies

In this section we examine studies that demonstrate how different modeling choices,

in fact, can easily lead to different simulation results. The first mathematical model

problem (Section 3.6.1) is the study of the eigenstructure of a system under different

completion representations. We use a structural vibration analysis problem in both

1-D and 2-D. Then in Section 3.6.5, the Poisson equation is solved on different phys-

ical domains in 2D, where each domain is exactly represented with different choices

of geometric model. In both sections h-refinement is applied and convergence rates

are compared. Finally, in Section 3.6.11 we present a 3D study of the linear elastic

deformation of a complex geometric model of a human femur.
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3.6.1 Vibrations

The natural frequencies of a vibrating string are typically modeled by Equation

3.10. Finding the natural frequencies can correspondingly be transformed to solving

the system in Equation 3.14. While the nonaffine mapping F affects the eigenstructure,

so does the choice of underlying B-spline space S.

3.6.2 Longitudinal Vibrations of a 1-D Elastic Rod

Consider the eigenvalue problem (3.10) for s = 1 and Ω = [0, 1]

−u′′(t) = λu(t), t ∈ (0, 1), u(0) = u(1) = 0. (3.37)

The exact eigenvalues and eigenfunctions for this problem are

λk = k2π2, uk(t) = sin (kπt), k = 1, 2, 3, . . . . (3.38)

The eigenfunctions uk are orthogonal both with respect to the usual L2 inner product

and the energy inner product a(u, v) =
∫ 1

0
u′(t)v′(t)dt.

Cottrell et al. [39] solved this problem numerically using an isogeometric Rayleigh-

Ritz method. It was demonstrated that with uniform knots one can get rid of outliers

using a nonlinear mapping F . We demonstrate here that, with a nonuniform knot

vector, a linear F also has no outliers. Also, we show that control mesh degeneracies in

the interior of Ω have a negative effect on the eigenstructure.

We solve (3.37) numerically by the isogeometric Rayleigh-Ritz method (3.14) using

four different spaces Vh generated by different bases (φi = ψi ◦ F−1)ni=1.

We use τ1 and τ2, as defined in Section 3.5.2 as knot vectors, providing uniform open

and nonuniform open knots with larger reference space elements near the ends. The

mappings to physical space are the identity, Ik, and the uniformly spaced coefficients,

Uk, over each knot vector, k = 1, 2. Then V�,Sk is the physical space of approximating

functions space for the k-th knot vector, where � ∈ {I, U}. While VI,Sk = Sk is the
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spline space for the k-th knot vector, VU,Sk = span{φ = ψ(U−1
k ) : ψ ∈ Sk} is not a spline

space.

As we have shown in Section 3.5.2, both U1 and U2 are increasing, concave on the

first d− 1 intervals, convex on the last d− 1, and linear in between. Thus, U stretches

the intervals near the boundaries and shrinks the interior ones with a constant scaling.

The same behavior will be observed for other degrees, as long as n is sufficiently large,

which occurs when we consider the discrete normalized spectrum. The choices of a and

b are the stretch factor at the ends. If they are chosen too large, then the slope of

the interior line segment becomes small. The consequence is that the slope of U−1
k is

large in that region. Since the values of JF and JF−1 affect both the stiffness and mass

matrices, they can adversely affect the eigenstructure. However, an optimal location

will depend on the number of interior knots as well. This study was run with several

different nonuniform knot vectors, although only one is shown below. Note that I ′
k ≡ 1,

but Uk is more interesting in its behavior.

The normalized discrete spectrum is η = [η0, η1, . . . , ηN−1] where ηk is the ratio

between the eigenvalue
√
λk,h and its corresponding exact solution, (3.38), i.e.,

ηk =

√
λk,h
λk

. (3.39)

Designed to have knots at prescribed distances from the endpoints of both sides, τ2

has its remaining knots evenly-spaced across the rest of the interior interval. We

demonstrate that the identity map with this basis creates Vh = Sd,τ2 with no optical

branches in the normalized discrete spectrum. It becomes clear that the mapping F , the

space Sd,τ2 and the particular PDE being solved all interact to affect the appropriation

properties of the resulting Vh and the rates at which computed solutions converge

towards the true solution.

Examine the φ-basis functions defined on Ω in Figure 3.8 of the four mappings Uk

and Ik where Figure 3.4 shows their coefficients. By stretching the end elements, Uk

stretches the basis functions at the boundaries so they extend farther into the interval
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Figure 3.8. Given the knot vectors τ1 and τ2, the first column shows ψi,d,τk(U
−1
k (x)),

and the second shows ψi,d,τk(I−1
k (x)) (k = 1, 2). Note that ψi,d,τk(I−1

k (x)) are not
stretched, but setting a and b appropriately causes the end functions to exhibit wider
support and more resemble ψi,d,τk(Uk), k = 1, 2

and have a more rounded shape, compared to Ik that maintain the uniform knot spacing

on Ω from Θ.

By referring to Figure 3.9 and Figure 3.10, given the uniform open knot vector τ1, as

observed in [39], for the identity on the uniform open knot vector I1, there are outliers

of η towards the end of the spectrum that become worse with increasing degree. The

U1 spectrum does not produce outliers, and with growing degree η gets flatter. This is
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Figure 3.9. Approximated eigenfunctions (exact solution in gray) for the modes
k = 3, 7 using the nonuniform mapping U1 (first row), and the identity mappings I1
(second row), I2 (third row).
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k = 13 k = 18
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Figure 3.10. Approximated eigenfunctions (exact solution in gray) for the modes
k = 13, 18 using the nonuniform mapping U1 (first row), and the identity mappings I1
(second row), I2 (third row).
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shown in Figure 3.11 (a). However, with the choice of τ2, the linear map I2 performs

better than U1 in Figure 3.11 (a)) where outliers are completely removed and η is flatter

than using U1. Note, that the η for U2 is not as flat as with I2; the corresponding η

are not as flat as with U1. It is useful to also look at the eigenvectors. The eigenvectors

allow us to generate the approximations to the eigenfunctions. For k = 18, using either

U1 or I2 approximates the true eigenfunction better than I1 does.
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Figure 3.11. Two cubic identity mappings constructed from different knot vectors.
The particular choice of nonuniform knot vector yields a flatter normalized discrete
spectra for the vibrating rod.
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This example illustrates that the Jacobian of a mapping is not the sole factor

governing numerical quality. Having the identity matrix as its Jacobian, the identity

mapping on τ1 produces equally-sized elements. A standard isoparametric mesh quality

metric [182], would judge its quality as optimal. This study, however, demonstrates that

nonuniform knot vectors perform better, producing, when knots are chosen as above,

wider elements at the domain’s boundary, and still maintain a constant Jacobian. In

the same way that the FEA community has had to rethink (or expand their thinking)

concerning mesh quality in the face of anisotropic mesh refinement usage [158, 18, 198],

modeling for IA will need to carefully consider the both the geometric and induced

function space impact of uniformity and nonuniformity within the representation. In

particular, element quality is not the only factor in deciding whether an analysis will

succeed, it is necessary to understand the mapping F : θ → Ω as well.

Although it is not widely recognized in practice, we have demonstrated that knot

vector choice is important. Although initial knot vectors may be decided during design

and not up to the analyst, the methodology of mesh refinement is under the purview of

the analyst. Uniform h-refinement may not be an optimal strategy. In higher dimensions

the choice of knot vectors is more complicated. Given the tensor product nature of a

NURBS, inserting a knot at a certain location might simultaneously produce more

favorable results in one region and a less favorable one in others. The use of T-Splines

[178] could be the solution to that problem.

3.6.3 Influence of Control Mesh Degeneracies on
Normalized Discrete Spectra

In this section we examine how degeneracies in the control mesh affect normalized

discrete spectra. During modeling, it can happen that the resulting control mesh of a

model contains control points that coincide. In the following, we examine mappingsM1

andM2 that are cubic mappings with uniformly spaced control points except for a single

instance of identical repeated control points occurring about midway along the control

point list, a configuration that creates a mesh degeneracy. M1 has a double control point

and M2 has a triple control point. To illustrate this degeneracy, the reader is referred

to Figure 3.12 which shows the basis functions ψi,τ1(M
−1
1 (x)) and ψi,τ1(M

−1
2 (x)).
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Figure 3.12. The cubic basis functions defined on Ω = [0, 1] for VM1,S1 and VU1,S1,
respectively. The control points for the M1 are uniformly spaced, except the control
point in the middle is duplicated. ψi,d,τ1(U

−1
1 (x)) are shown for comparison (bottom).

We apply h- and k-refinements to the spaces VM1,S1 and VU1,S1. This results in

spaces Vh/(2m),M1,S1 and Vh/(2m),U1,S1, respectively, for m steps of h-refinement, and

Vh/(2p−3),M1,S1,p−3 and Vh/(2p−3),U1,S1,p−3 when the k -refinement raises the degree to p,

respectively. Note that the h-refining takes place after each step of the degree elevation,

and halves all knot interval spacing. The corresponding normalized discrete spectra

are computed. Figure 3.13 shows the results for h-refinement and Figure 3.14 shows

the k-refined versions of the two models. The outlier problem is not ameliorated by

refinement of either type. Although the normalized discrete spectrum becomes slightly

worse under h-refinement, it becomes flatter under k -refinement–except for the outliers.
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Figure 3.13. h-refinement: For both mappings (degenerate and nondegenerate), the
normalized discrete spectra are slightly worse under uniform refinement. The uniformly
refined space generated by M1 always has outliers.



73

0.0 0.2 0.4 0.6 0.8 1.0

1.01

1.02

1.03

1.04

1.05

1.06

initial (p=3)
step 1 (p=4)
step 2 (p=5)
step 3 (p=6)

0.0 0.2 0.4 0.6 0.8 1.0

1.05

1.10

1.15

1.20

initial (p=3)
step 1 (p=4)
step 2 (p=5)
step 3 (p=6)

Figure 3.14. k-refinement: For both mappings (degenerate and nondegenerate), the
normalized discrete spectra become flatter with elevated degree. However, the outlier
exists throughout uniformly refining for the spaces based on M1.
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Investigations of M1 and its inverse M−1
1 (Figure 3.15) indicate possible reasons.

The uniform spacing of the coefficients causes the mappings to stretch the boundary

elements, creating a mapping that is concave for smaller values of t and convex for values

of t close to 1. A multiple control point causes the parameterization to be nonlinear

near the nodes corresponding to the multiple control point, pulling the density of the

mapping towards that node. Hence the slope of M1 becomes small near 1/2, and so the

slope ofM−1
1 gets large. So, in this small region the behavior of the Jacobian affects the

conditioning of the stiffness matrix to cause larger maximum eigenvalues of the stiffness

matrix and the outliers. An embedded 0 tangent direction and inflection point in M2

(see Figure 3.16), cause M−1
2 to have a singularity at the corresponding value. The

stiffness matrix conditioning is accordingly worse.

Since the maps Mi are unchanged in both h- and k -refinement, those modes isolate

the effects to fewer, smaller elements, but alleviate this problem only to a limited
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0.2

0.4

0.6

0.8

1.0

Figure 3.15. Degenerate mapping (red) with control point 1/2 duplicated and
corresponding inverse mapping (darker red). The inverse has a high slope and therefore
large first derivative at t = 1/2 causing a negative impact on the stiffness matrix
conditioning (results in larger eigenvalues).
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extent, as we have seen in the above experiments. Generalized eigenvalue problems seem

unsuitable candidates for use with models having control mesh degeneracies. Other

analyses that are not sensitive in the same way may be suitable for use with models

whose representations have multiple control points.

3.6.4 Drumhead Problem

In this section we solve the 2D version of the generalized eigenvalue problem given

in Equation (3.10) on the disk centered at the origin with radius one and generate the

normalized discrete spectrum. We use the three different disk representations developed

as distinct surface completions to the circular boundary in Section 3.5.3.

The natural frequencies for the drumhead problem on the disk are the zeros of a

Bessel function [25]. Using both quadratic and cubic degrees to investigate the effects

of the single degree change, this study generates the spectra for D1 and D3. Thus, let

Di,j indicate the i-th representation in Figure 3.6, and j indicate the degree.

Figure 3.17 shows normalized spectra for the mappings Di,j, all of which have

undergone h-refinement using a uniform knot vector. It can be seen thatD3,j produces a

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

Figure 3.17. Normalized discrete spectra for different representations of a disc.



77

much flatter curve than the mappings D1,j and D2,j. It also can be seen that an elevated

degree has a negative impact on the result. The mapping D2,3 performs the poorest.

We speculate that this is related to nonuniform parameterization, because the elements

that result under uniform h-refinement do not have uniform size and cannot represent

the uniform spectral behavior as well. By referring to Figure 3.18 the spectrum for the

mapping D3,2 is computed using a nonuniform h-refinement. The refinement process

creates the elements for refined knot vector τ2 from Section 3.5.2 in both parametric

directions. The effect is to have larger elements near the circular boundary. The result is

a flatter spectrum which has a maximum ratio of about 1.5, compared to approximately

2.2 obtained through uniform refinement.

3.6.5 Poisson Equation on 2D Domains

In this section we solve the Poisson equation (3.9) over four domains Ωi ∈ R2, i =

1, 2, 3, 4 Ω1, the unit square; Ω2, the square with 4× magnification; Ω3, the unit disc

0.0 0.2 0.4 0.6 0.8 1.0
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1.8

2.0

2.2

2.4

uniform knot
vector

nonuniform knot
vector

Figure 3.18. The disc model D3,2 with a nonuniform knot vector, where refining knots
are chosen as to create τ2 ( Section 3.5.2). It yields a flatter discrete spectrum than the
normalized spectrum showed in Figure 3.17.
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and Ω4, the quarter annulus having inner radius one and outer radius of two. Although

every domain is represented with an exact NURBS model, the completions from the

boundary representations to the interiors differ. We consider relative aspects of mesh

quality. We find a sequence of approximations uh of the unknown solution u, such that

limh→0 ||u− uh|| = 0. Thus, h controls the approximation quality and is related to the

knot spacing, element size, and Vh.

We represent Ω1 with two bicubic models S1 and S2, each with degree d = (3, 3)

and knot vectors T = (τ1, τ1), where τ1 the uniform open knot vector defined in Section

3.5.2. The coefficients for S1 are taken from the mapping U1 and are uniformly spaced

in each parametric direction. S2 uses coefficients from the identity map I, and uses

nodal representation to form the identity map on the unit square. Specifically, we define

S1(t) =
n∑

i=1

(
i1 − 1

n1 − 1
,
i2 − 1

n2 − 1

)
Bi,d,T (t) S2(t) =

n∑
i=1

(
τ ∗1,i1 , τ

∗
1,i2

)
Bi,d,T (t). (3.40)

As in the 1-D examples, S1 and S2 differ in the choice of control points which results

in the identity map or linear map S2, i.e., S1(t) = (t) and in the nonlinear map S2.

Figure 3.19 shows the elements for S1 and S2 for n = m = 10.

y

x

y

x

(a) (b)

Figure 3.19. Both NURBS models represent Ω exactly. S2 on the left is the identity
map; the control points in S1 on the right are uniformly spaced.
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Here the region Ω2 is represented by the models S3 and S4, which are scaled and

translated versions of S1 and S2, respectively.

Then, Ω3 is represented with the three different disc models D1, D2 and D3, as in

Section 3.5.3.

Finally, Ω4 is represented using three different completions, A1, A2 and A3, shown

in Figure 3.20. All mappings are cubic in both parametric directions and use the same

open knot vectors with interior knot multiplicity of two, i.e., all mappings are C1. We

use A2 and A3 to consider the differences between model quality criteria for meshes

and how they apply to isogeometric models. They are generated from A1. The interior

control points for A2 are slightly perturbed from those used in A1, creating analysis

elements with wiggly boundaries. This situation could potentially arise from data fitting

algorithms or noisy data. Interior control points for A3 are chosen so that the knot line

curves are orthogonal where they cross. We still create perturbations so that element

boundaries have some wiggles. Since one quality measure for isogeometric FEA meshes

is that the element boundaries are orthogonal where they meet, this example sets up a

similar scenario, but in the context of boundaries with wiggly sides.

In these studies we investigate Poisson’s equations whose solutions are smooth

analytical functions ui : Ωj → R, where i, j = 1, 2, 3, 4 and defined as,

x

y

x

y

x

y
(a) (b) (c)

Figure 3.20. Three exact representations of the boundary of a quarter annulus with
an inner radius of one and an outer radius of two with different completions. In (b),
control points in the interior are slightly perturbed. In (c), element boundaries are
orthogonal where they cross.
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u1(x, y) = sin(2 π x) sin(2 π y), (3.41)

u2(x, y) =
25 (− 1

e100
+ e−12.5 (x2+y2))

2 π
, (3.42)

u3(x, y) = J(4, Jzero(4, 2) r(x, y)) sin(4 θ(x, y)), (3.43)

u4(x, y) = sin(2 π r(x, y)) sin(2 π b(x, y)), (3.44)

where

r(x, y) =
√
x2 + y2 − 1 b(x, y) =

2 arccos(x/
√
x2 + y2)

π
(3.45)

and, θ(x, y) defines the angle between the vector (x, y) and the Cartesian coordinate

axes. In other words r(x, y) and θ(x, y) convert the Cartesian coordinate (x, y) into

the polar coordinate (r(x, y), θ(x, y)). Furthermore, J(n, z) is the nth Bessel function

of the first kind at z ∈ R, and Jzero(n,m) is the mth zero of the nth Bessel function

of the first kind. u3, selected to be the (4, 2)-th mode of vibration of a drumhead [25],

evaluates to zero on the boundary of Ω3.

In experimenting we formulated five test cases involving solving the Poisson equation

(3.11). They are shown in Table 3.1.

Cases 1, 2, 4, and 5 use ui|∂Ω ≡ 0. Nonzero Dirichlet boundary conditions for Case

3 are chosen by a nodal interpolation of u1.

We use uniform h-refinement, placing a new knot in the middle of every parametric

knot span. The elements for building the approximate solution then are split in turn.

The shape of the new elements is not an exact half split of the old because the mappings

Table 3.1. Test cases for Poisson equation.
case physical space ideal solution mapping

1 Ω1 u1 S1, S2

2 Ω2 u2 S3, S4

3 Ω3 u1 D1, D2, D3

4 Ω3 u3 D1, D2, D3

5 Ω4 u4 A1, A2, A3
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are not affine. Suppose there are m� control points after � levels of h-refinement. The

isogeometric solution after � h-refinements to ui is denoted û�j,i for test case j result.

The error is computed as

ε∞,j,i,� = supx∈Ω|û�j,i(x)− ui(x)| . (3.46)

A piecewise linear convergence curve is defined by the points (
√
m�, ε∞,j,i,�). In the

following discussion, good or poor convergence means that the negative slope of the

convergence curve is higher or lower, respectively, compared to the convergence of

a different mapping. While the analysis solutions converge, as predicted, under h

refinement, these studies are aimed at determining how many levels of refinement are

necessary before the asymptotic behaviors dominate. If the same quality result can be

obtained on a simpler mesh, that situation is always desirable. We discuss each test in

more detail. We refer the reader to Figures 3.21 through 3.23 which show log-log plots

of the convergence curves for the five performed tests discussed in the following. For

purposes of illustration, next to each log-log plot the exact solution ui on the respective

domain Ωn is shown.

3.6.6 Test 1

Initially, both mappings have almost the same error. During the initial levels of

refinement the linear map S2 has a better convergence rate than the nonlinear map S1.

Then, both mappings converge with the same rate, i.e., the convergence curves become

parallel. The error curve of S2 is below the curve of S1 by the respective offset, which

means that the error of S2 is about an order of 10 smaller than the corresponding error

of S1. So the convergence behavior of the Poisson problem is better under the identity

map, differing from the better convergence behavior for S1 for the eigenvalue problem.
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Figure 3.21. Poisson test 1 and 2. The plots on the left show the error curves for
different mappings, on which the exact solution on the respective domain is shown on
the right.
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Figure 3.22. Poisson test 3 and 4. The plots on the left show the error curves for
different mappings, on which the exact solution on the respective domain is shown on
the right.
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Figure 3.23. Poisson test 5. The plots on the left show the error curves for different
mappings, on which the exact solution on the respective domain is shown on the right.

3.6.7 Test 2

A similar observation can be made for this test. Initially, in the second refinement

step, both mappings have the same error. Then, in the subsequent refinement step, the

error for the linear map S4 decreases more slowly. However, in further refinement

steps, both error curves have the same slope. For this problem, contrary to Test

1, the nonlinear map S3 performs better. This is understandable inasmuch as the

approximating space has greater basis function density near the center of the regions.

3.6.8 Test 3

During the first refinement steps, all three NURBS models converge rather slowly,

although D1 exhibits the least error. After about the fourth refinement step, the error

for D3 drops the most, and drops the least for D2. Thereafter, all mappings converge

at the same rate, where the error of D1 is about an order of ten larger than D3 and D2

is about four orders of ten larger than D3. This case has nonzero boundary conditions.

Given the same number of functions to approximate u across all three mappings, D3

will have a higher percentage that are nonzero on the boundary and so can be used
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to better approximate the true solution on the boundary. Each time both parameters

are uniformly refined, D1 only doubles the number of nonzero basis function on the

boundary. But D3 quadruples that number. So, for D1 it would be better to h-refine

more in the polar direction than in the radial direction to better approximate the

boundary.

3.6.9 Test 4

The error curves look similar to those in Test 3. Initially, all mappings converge

slowly; however, the curves of D1 and D3 start to overlap, while D2 lags a bit to reach

the same rate of convergence.

3.6.10 Test 5

In the final test, the initial errors for all mappings are different, with A1 having the

smallest error. Except for an initial slower convergence with A2, all three mappings

soon converge at the same rate, where the offsets between A1 and A2, and between A1

and A3 are considerable. In this case, the wiggles contributed to the problems for A2

and A3, the better behavior near the element boundary corners for A3 alleviates some of

the problems. So, although not necessary for convergence, the smoother sided elements

of A1 appear to help convergence.

Note that models S1 and S3 have the same stretching properties. The same holds for

S2 and S4, where no stretching occurs due to the linear mapping properties. However,

in Test 1, the linear map S2 performs better than the nonlinear mapping. In Test 2

the nonlinear map S1 performs better than S2. The reason for that lies in the different

properties of the known solutions u1 and u2 as shown in Figures 3.21 and 3.22. u2 is

everywhere zero but has a peak around the origin. S3 performs better because more

elements are pulled into the center of the domain (see Figure 3.19 (left)). Similar to the

1D case in Section 3.6.2, having the determinant of the Jacobian have value near 1 does

not necessarily mean that a mapping performs better than a mapping which involves

distortion, at least for issues not related to conditioning of the stiffness matrix. In the

case of Test 1, however, the stretching leads to the neglect of other important regions,

and therefore S2 performs better, because it more uniformly distributes the elements
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over the domain, a characteristic that treats the known function u1 more favorably.

In the first three tests all mappings have roughly the same initial error, i.e., the

convergence curves emerge from roughly the same starting position. This is not the

case for Tests 4 and 5. In Test 4, D1 has the smallest initial error, in Test 5, A1 has

the smallest error. Even though at a certain refinement stage, all mappings have the

same asymptotic error estimation, the initial error shows that if a model is created

with care, refinement steps can be saved, attaining better analysis with fewer elements.

In case of Test 5, with the given true solution, wiggles or other perturbations have a

negative impact on the initial error. Note that wiggles and other perturbations which

were artificially introduced in our test models are common modeling artifacts and often

unintentionally occur in practice during data-fitting.

3.6.11 Linear Elastic Deformation of a Volumetric Model

As a final example we examine the isotropic linear elastic deformation of a human

femur. The femur is modeled with the methodology proposed in [125] and introduced

in Section 3.5.6. The modeling input is an exterior and interior boundary triangle

mesh, where the volume between the exterior and interior represents the cortical bone

and the volume of the interior boundary represents the trabecular bone. From that,

a single B-spline volume with proven approximation power is created. The model

is C2 but has a degeneracy along the cylindrical axis. The placement of the axis

is user-guided, chosen depending on the model and simulation parameters. Such a

model is difficult to decompose in multiple patches for the following reasons. Patch

boundaries may not be planar, and gluing them with certain continuity is difficult.

Furthermore, since the object consists of different materials it is not clear how to

represent it with multiple patches. Creating a single B-spline volume introduces more

deformation in the geometry, but it avoids both problems, i.e., it does not involve any

patch gluing, and respecting material attributes in the parameterization can be achieved

without tremendous effort. Another innoative aspect of this model is that the angular

parameterization is periodic. Unlike all previous modeling studies done for IA, the

resulting representation takes advantage of the characteristics of periodic B-splines to
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ensure that the model is C2 everywhere. Even more important, it means that Vh has

only C2 functions except at the natural bone boundary and the skeletal axis.

Both parts, i.e., the cortical part and trabecular part, use a Poisson ratio of 0.9.

A Young’s modulus of 17 × 109 (N/m2) is applied to the more solid cortical part;

100 × 106 (N/m2) is applied to the trabecular part. The boundary between the

cortical and trabecular materials is an isoparametric surface of the trivariate B-spline

representation.The bottom of the femur is held rigid in the x, y and z directions. Load

is distributed over the apex of the femur in the direction of the base of the femur. Figure

3.24 portrays the femur where magnitudes of the displacement are visualized.

Figure 3.24 also shows h-refined versions ri of the femur. r0 is the initial repre-

sentation which is a data-reduced version from the original representation. r1 and

r0 are created by uniform h-refinement in u, where r1 is created from r0 and r2 is

created from r1. r3 and r4 (not shown) are created by uniform h-refinement in v

and w, respectively. Linear elasticity is applied to each of the representations with

the same material parameters and boundary conditions resulting in the five solution

representations si. si is compared to si+1 by applying the respective refinement to si.

The error ei is the maximum L2-norm of the difference of the coefficients between si

and si+1: e = {1× 10−4, 2× 10−5, 3.8× 10−6, 2× 10−7}.

3.6.12 Result Summary

In Section 3.6.2 we discussed different knot vector and mesh choices for the longitu-

dinal vibrations of a 1-D rod. It was shown that nonuniform knot vectors can improve

the results and avoid outliers. Then, we examined the 2-D version of this problem, the

drumhead problem, completing the disk with different representations of the boundary.

While none of the completions would have any effect on the design of the shape, the

completion had strong effects on the normalized discrete spectrum.

Then, in Section 3.6.5 the Poisson equation was solved on different domains for

different smooth known functions, where the domains were exactly represented with

alternative choices of more or less common NURBS models. As shown in [16], sufficient

h-refinement eventually converges to these cases where there is a starting NURBS

volumetric model that meets certain criteria on the knot spacing and the Jacobian
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Figure 3.24. Linear elastic deformation of a femur.

of the mapping. That is, no matter what regular mapping was initially chosen to

represent a domain Ω, eventually the error decreases at the same rate. However, the

refinement level at which a mapping reaches the asymptotic behavior and the resulting

offset compared to other models, initially chosen by the modeler, allows us to make

judgements about the quality of the model which could be observed in the above test

cases. By a more careful model design, a design appropriate for analysis, computation

time and efforts to refine a model can be saved.

We conclude that boundary modeling and boundary completion techniques can

enhance the speed of convergence and quality of the results.
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3.7 Summary and Conclusions

IA has demonstrated itself as a paradigm that may actually successfully bridge

CAD modeling and FEA analysis. With analysis tools able to act natively upon the

same mathematical building blocks employed in the modeling community, there exists

a realistic chance that a seamless pipeline based on a shared representation might

be in the future. It is important though to appreciate that the constraints under

which these two communities currently work, and will continue to work, are sometimes

complementary, often different, and occasionally competing. In this chapter, we have

attempted to provide insight into the modeler’s perspective on the process of model

design and construction, and to demonstrate and highlight explicitly that choices that

arise within the modeling process may have consequences downstream the line when

analysis is performed on an isogeometric model. We detail several of the outstanding

issues and considerations within modeling and at the interface of modeling and analysis.

These fundamental problems must be explored and addressed as the area of IA moves

forward. We advocate a new area of research – analysis-aware modeling – by which

modelers become cognizant of how their modeling choices impact the quality of analysis,

and hence can incorporate this knowledge into the balancing act of design considerations

and constraints that the modeler is already juggling. Several modeling methodologies

are proposed in the subsequent chapters. IA is a superb vehicle to promote the

marriage of CAD and FEA as it represents modeling-aware analysis. We hope to

have demonstrated that there is a correspondingly important and symmetric need for

the modeling community to reciprocate in developing analysis-aware modeling. We

conclude by emphasizing that both can only be done through the continual interaction

and dialog between the two communities.



CHAPTER 4

CYLINDRICAL-LIKE OBJECTS WITH

SHAPE OVERHANGS

This chapter presents a methodology based on discrete volumetric harmonic func-

tions to parameterize a volumetric model in a way that it can be used to fit a single

trivariate B-spline to data so that simulation attributes can also be modeled. The

resulting model representation is suitable for IA [87]. Input data consist of both a

closed triangle mesh representing the exterior geometric shape of the object and interior

triangle meshes that can represent material attributes or other interior features. The

trivariate B-spline geometric and attribute representations are generated from the re-

sulting parameterization, creating trivariate B-spline material property representations

over the same parameterization in a way that is related to [127] but is suitable for

application to a much larger family of shapes and attributes. The technique constructs

a B-spline representation with guaranteed quality of approximation to the original data.

Then we focus attention on a model of simulation interest, a femur, consisting of hard

outer cortical bone and inner trabecular bone. The femur is a reasonably complex

object to model with a single trivariate B-spline since the shape overhangs make it

impossible to model by sweeping planar slices (Figure 4.1). The representation is used

in an elastostatic IA, demonstrating its ability to suitably represent objects for IA.

A frequently occurring problem is to convert 3D data, for instance image data

acquired through a CT-scan, to a representation on which physical simulation can be

applied as well as for shape representation. Grids or meshes, based on primitives like

triangles, tetrahedra, quadrilaterals and hexahedra are frequently used representations

for both geometry and analysis purposes.

Mesh generation software like [186] generates an unstructured tetrahedral mesh from
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Figure 4.1. Bimba input. (a) triangle mesh of Bimba statue; (b) corresponding
trivariate B-spline, where interior represents material information used in simulation.

given input triangle meshes. Unstructured grids modeling techniques [84] improve the

modeling and rendering of multidimensional, physical attributes of volumetric objects.

However, unstructured grid techniques have drawbacks and certain types of simulation

solvers [40] have a preference for structured grids. Creating a structured quadrilateral

surface representation and an integrated structured hexahedral internal volume repre-

sentation from unstructured data is a problem that has undergone significant research.

Though topologically limited, structured grids have advantages– especially with growing

mesh sizes. For instance, simulation like linear elasticity, multiresolution algorithms

like wavelet decomposition or multiresolution editing can be efficiently applied to them.

Such structured hexahedral meshes are highly prized in many types of finite element

simulations, and generally still require significant manual interaction.

Generating a structured hexahedral grid, parameterizing the volume, and gener-

ating a suitable trivariate B-spline model from unstructured geometry and attributes

representing a generalized cylinder is the main focus of this chapter.

The contributions in this chapter include

• a framework to model a single trivariate B-spline representation from an exterior
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boundary, and possibly interior boundaries that have the same genus as the

exterior boundary. The boundaries are triangle surfaces, representing geometry

or material information, possibly generated from image data.

• a technique to create a trivariate B-spline that has a consistent parameterization

across given isosurfaces.

• demonstration of the framework on real unstructured data, a femur obtained

through a CT-scan and apply stress simulation to it (see Figure 4.2). A femur

consists of a cortical bone, with high densities, and an interior part consisting of

a porous, trabecular bone. The transition between cortical and trabecular part is

smooth, making trivariate B-splines a candidate to model such a scenario.

4.1 Preliminaries and Notation

In this work we define volumetric harmonic functions over an input triangular

boundary or tetrahedral mesh and generate a volumetric parameterization of the model.

Then, a trivariate B-spline is fit to the data with parameters that measure error. The

following sections briefly recall B-spline definitions and properties of harmonic functions

and ways to solve them over triangle and tetrahedral meshes.

4.1.1 Tensor-Product B-splines

A B-spline volume, or a trivariate tensor-product B-spline volume is a mapping

V : [0, 1]3 → P3 that can be formulated as

V (u, v, w) =

n0,n1,n2∑
i0,i1,i2=0

Pi0,i1,i2Bi0,p0(u)Bi1,p1(v)Bi2,p2(w).

where the Pi0,i1,i2 ∈ R3 are the control points of the (n0+1)× (n1+1)× (n2+1) control

mesh, having basis functions Bij ,pj (defined in [37]) of degree pj with knot vectors

T j = {tji}
nj+pj
i=0 for j = 0, 1, 2.
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4.1.2 Discrete Harmonic Functions

Given a domain Ω ∈ Rn, where in our case n = 2 and n = 3, as discussed in Chapter 1

a harmonic function is a function u ∈ C2(Ω), u : Ω→ R, satisfying Laplace’s equation,

as defined in Equation 1.1.

Harmonic functions satisfy the maximum principle, namely they have no local

minima/maxima and can therefore be used as Morse functions [132, 143]. Also, this

property makes them suitable to create a tensor-product style parameterization, as

done in [196] for surfaces. In this chapter harmonic functions are utilized in order to

fit a trivariate tensor product B-spline to a tetrahedral mesh generated from a set of

triangulated isosurfaces.

In this chapter, we describe a tetrahedral mesh by the tuple (H, T ,V, C) over the

domain Ω. H is the set of tetrahedra and T is the set of faces of the tetrahedra in

H. V is the set of vertices, ν = (xν , yν, zν) ∈ V ⊂ R3 of the tetrahedra in H, and C
specifies the connectivity of the mesh (the adjacency of vertices, edges, triangular faces

and tetrahedra). Furthermore, TB is the subset of T whose elements are faces of exactly

one tetrahedron. The elements of TB form the original exterior triangle mesh for the

object. VB ⊂ V is the set of vertices defining the triangles in TB.
Solving equations for any but the simplest geometries requires a numerical approx-

imation. We use mean-value coordinates [60] to solve Equation 1.1 on TB. Refer to

[143] which discusses in more detail how to set up the appropriate linear system. The

Finite Element Method (FEM) [86] is used to solve Equation 1.1 on H. The set V
is decomposed into two disjoint sets, VC and VI , representing vertices that lie on the

Dirichlet boundary (and hence denote positions at which the potential u is known) and

vertices for which the solution is sought, respectively.

Then, in the case of finite elements, solutions are of the form:

u(x, y, z) =
∑
νk∈VI

ûkφk(x, y, z) +
∑

νk∈VC

ûkφk(x, y, z),

where the sums denote the weighted degrees of freedom of the unknown vertices, and

the Dirichlet boundary condition of the solution, respectively. φi(x, y, z) are the linear
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hat functions, which are 1 at νi and 0 at νi’s adjacent vertices. Using the weak Galerkin

formulation [86] yields a linear system of the form S�u = �f , consisting of stiffness matrix

S and a right-hand-side function �f . Because the stiffness matrix is positive definite

[86], the solution of the linear system is amenable to iterative methods such as the

preconditioned conjugate gradient method [12].

Every point inside the tetrahedral mesh volume either lies on the boundary or inside

a tetrahedron and the point’s “û-value” is a linear combination of the vertices of the

tetrahedron in which it lies. Given a tetrahedron defined by four vertices νji, i =

1, 2, 3, 4 and the corresponding basis functions φji, the û-value of a point ν inside a the

tetrahedron, is the linear combination û(ν) =
∑4

i=1 ûjiφji(ν), where the ûi’s are the

respective harmonic coefficients of the tetrahedron’s defining vertices.

The gradient ∇û over a tetrahedron is the linear combination

∇û(x, y, z) =

4∑
i=1

ûji∇φji(x, y, z),

where ∇φji(x, y, z) =
(

∂φji
(x,y,z)

∂νx
,
∂φji

(x,y,z)

∂νy
,
∂φji

(x,y,z)

∂νz

)
.

Note, that ∇û is constant over a tetrahedron and its boundary so it changes

piecewise constantly over the tetrahedral mesh. In the following, uΩ means that the

harmonic function u is defined over domain Ω, where Ω is H or TB.

4.2 Framework Overview

This section gives a high level overview of our proposed modeling framework. Our

framework takes as input a tetrahedral mesh H containing, if given, interior triangle

meshes such as the trabecular bone triangle mesh illustrated in Figure 4.2. Given that,

the following framework steps describe the generation of the trivariate B-spline.

1: The user makes an initial choice of two critical points. These are used to estab-

lish a surface parameterization in two variables defined by orthogonal harmonic

functions uTB and vTB (Section 4.3).

2: A structured quadrilateral mesh is generated using the surface parameterization

calculated in the previous step (Section 4.3.1).
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3: In this phase we move to working with the complete tetrahedral mesh. Two

harmonic functions are calculated over H (Section 4.4):

– uH is determined by solving Equation 1.1 with uTB as the Dirichlet boundary

condition.

– w is a harmonic function orthogonal to uH, having a harmonic value of 0 on

TB and 1 on an interior skeleton generated using ∇uH. Interior boundaries

have a value between 0 and +1.

4: Isoparametric paths with constant u-parameter value are extracted using ∇w.

They start at vertices defining the quadrilateral mesh from step 2 and end at the

skeleton. These paths are used to generate a structured hexahedral mesh which

is a remesh of H (Sections 4.5, 4.5.1 and 4.5.2).

The intermediate structured meshes are constructed so that they faithfully ap-

proximate the input data. A trivariate B-spline is generated from the hexahedral

mesh generated in step 4, by using an iterative fitting approach which avoids surface

undulations in the resulting B-spline. This approach is presented in Chapter 9. The

resulting B-spline can therefore have a high resolution. Additional postprocessing

steps include data reduction techniques to reduce complexity and to generate B-spline

volumes of different resolutions.

4.3 Modeling the Exterior

In this section a parameterization X2 in two variables u and v defined over TB
is established. The choice of X2 requires the user to choose two appropriate vertices

νmin and νmax from the set of vertices in VB. Then, ∇2uTB = 0 is solved with VC =

{νmin, νmax} as the Dirichlet boundary, where we set uTB(νmin) = 0 and uTB(νmax) = 1.

The choice of these two critical vertices depends on the model and on the simulation.

As pointed out by [50], critical vertices affect the quality of the parameterization which

in our case also affects the trivariate B-spline we are fitting. Since the user might be

aware of which regions require higher fidelity and lower distortion in later simulations,

the user can select a pair of critical vertices to yield an appropriate parameterization.
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Since uTB is defined only on TB it can be computed rapidly which allows the user to

modify it if unsatisfied with the result.

Once the user is satisfied with uTB , the harmonic function vTB is computed so that

∇uTB and ∇vTB are nearly orthogonal. In order to calculate vTB , two seed points s0

and s1 on TB are chosen. The first seed s0 can be chosen arbitrarily. Given s0, ∇uTB is

used to extract an isoparametric path as in [50]. The path is circular, i.e., it starts and

ends at s0, and it has length l. s1 is chosen on that path, so the path length between

s0 and s1 is l/2. Note, that uTB and vTB are holomorphic 1-forms as defined in [9] and

used in [74] to compute global conformal parameterizations.

Starting from s0 two paths are created p+0 and p−0 by following ∇uTB and −∇uTB ,

respectively. They end at the edges of triangles that has νmax/νmin, respectively, as

one of its vertices (as shown in Figure 4.3). Merging p+0 and p−0 yields p0. Vertices are

inserted into the mesh where p0 intersects edges. Call Vmin the set of these vertices. The

same procedure is applied to determine p1 passing through s1. Vertices are inserted into

the mesh where p1 intersects edges. These vertices define Vmax. Note that Vmin∩Vmax =

∅, and since, as a property of harmonic functions, if there exists only one minimum

max path

min pathcritical point

Figure 4.3. Critical paths end at the edge of a triangle, where one of its vertices is
νmin or νmax.



98

(νmin) and one maximum (νmax), no saddle points can exist [143]. Then the mesh is

retriangulated with the new vertex set.

Next, ∇2vTB = 0 is solved with VC = Vmin ∪ Vmax as the Dirichlet boundary, where

we set vTB(ν)∀ν∈Vmin
= 0 and vTB(ν)∀ν∈Vmax = 1. Since the critical paths p0 and p1

do not reach the extremal points νmin and νmax (see Figure 4.3), uTB and vTB are not

appropriately defined inside the ring of triangles around νmin and νmax. Let ustart be

the largest u-value of the vertices defining the ring of νmax, and let uend be the smallest

u-value of the vertices defining the ring of νmin. Now, given u−1
TB and v−1

TB , the inverse

harmonic function X2 is constructed which maps a parametric value in the domain

[ustart,uend]× [0, 1] onto TB, i.e., X2 : [ustart,uend]× [0, 1]→ TB.
X2 is not bijective yet as Figure 4.4 illustrates. It shows a closed isoparametric line

in uTB , i.e., a closed piecewise polyline where each of its vertices has the same u-value.

The paths p0 and p1 divide the exterior surface into two regions I and II. Let α(ν) be

the part of the harmonic v-mapping which maps a vertex ν in region I onto [0, 1]. The

corresponding function for region II is called β(ν). In order to make X2 bijective we

define a single harmonic v-mapping

γ(ν) =

{
α(ν)/2 , ν ∈ I
1− β(ν)/2 , ν ∈ II

Figure 4.5 illustrates these transformations. At this stage, every ν ∈ VB has a u-

and v-parameter value. Note that v is periodic so 0 ≡ 1.

0

1 0.5

10

I II I II

Figure 4.4. X2 (left) is not bijective.
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A region whose corners consist of right-angles can be parameterized so that the

resulting gradient fields are orthogonal [196]. However, in our case, uTB degenerates to

points (νmin and νmax), implying that ∇uTB and ∇vTB are not orthogonal near νmin and

νmax. This means that a quadrangulation in this area is of poorer quality. Note that

νmin and νmax were chosen in areas which are not important in the proposed simulation.

Furthermore, in case of the femur, 98% of the angles between the gradient vectors in

∇uTB and ∇vTB lie in the range [π/2− 0.17, π/2 + 0.13].

4.3.1 u- and v-section Extraction

Similar to [82], our goal is to extract a set of u- and v-parameter values so that

the corresponding isoparametric curves on the model define a structured quadrilateral

mesh which represents the exterior of the tetrahedral mesh faithfully.

Let T̂B be the exterior triangle mesh inversely mapped into the parameter space as

illustrated in Figure 4.6 (left). We seek to find a set U = {u0,u1, . . . ,un0} of u-values

and a set V = {v0,v1, . . . ,vn1} of v-values so that the collection of images of the grid

form an error bounded grid to the model. The isocurve at a fixed ui ∈ U corresponds to

the line li(v) = (ui,v) in parameter space, where v ∈ [0, 1], and, the isocurve at a fixed

u

v

Figure 4.6. X maps a vertical line at u0 in parameter space onto a closed isoparametric
line on TB. Accordingly, X maps a horizontal line at v0 onto an isoparametric which
starts at νmin and ends at νmax.



101

vj ∈ V corresponds to the line l̂j(u) = (u,vj) in parameter space, where u ∈ [0, 1].

li(v) and l̂j(u) are orthogonal. Note, that X2 maps li(v) and l̂j(u) to isocurves on TB.
The intersections of the lines li(v) and l̂j(u), i.e., the parameter pairs (ui,vj) define

a structured grid with rectangular grid cells over the parametric domain and hence a

quadrilateral mesh over TB. This quadrilateral mesh is a remesh of TB.
Let E be the set of edges defining the triangles in T̂B. U and V are chosen so that

every edge in E is intersected by at least one li(v) and one l̂j(u), as shown in Figure

4.6 for one triangle. U and V are calculated independently from each other. An edge

e ∈ E is defined by two points in parametric space (ue,ve) and (u′
e,v

′
e). Based on E ,

we define Su to be the set of intervals defined as the collection of intervals (ue,u
′
e) such

that (ue,ve) and (u′
e,v

′
e) are the endpoints defining an edge e ∈ E . We employ the

interval structure for stabbing queries [52], that takes a set of intervals (in our case Su)
and constructs an interval tree Iu in O(n logn), where n is the number of intervals in

Su. Every node in Iu includes an interval location u ∈ [0, 1]. Iu covers every interval

→ edge → triangle in TB. The u-values of the nodes in the tree define the set U and

the vertical stabbing lines li(v).

V is defined analogously, with the difference that Sv consists of intervals defined by

the segments (ve,v
′
e) for which (ue,ve) and (u′

e,v
′
e) are the endpoints of an edge e ∈ E .

Then, V consists of the v-values defining the nodes in Iv and the horizontal stabbing

lines l̂j(u).

The algorithm to determine U and V guarantees that in a rectangle defined by

the points p0 = (ui,vj), p1 = (ui+1,vj), p2 = (ui+1,vj+1) and p3 = (ui,vj+1), where

ui,ui+1 ∈ U and vj ,vj+1 ∈ V , there is either the preimage of at most one vertex of a

triangle (Case 1) or none (Case 2). These two cases are illustrated in Figure 4.7.

We show this is true by contradiction. That is, assume that there are two vertices

in the same rectangle. Since we require that the input mesh is a 2-manifold, there has

to be a path defined by triangle edges from one vertex to the other. However, due to

the interval tree property that every interval is cut by at least one stabbing line, at

least one isoline with fixed u-value and one isoline with fixed v-value intersects an edge.

Therefore, the two vertices must be separated.
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Figure 4.7. Either there is one vertex in the rectangle defined by the points p0, p1, p2
and p3, or none. Crosses mark edge intersections.

Now we want to ensure that the quadrilateral grid that we are deriving is within

error tolerance. Let us consider the rectangle R̂i,j defined by the points (ui,vj) and

(ui+1,vj+1) (as in Figure 4.7). The vertices of its corresponding bilinear surface Ri,j on

TB are X2(ui,vj), X2(ui+1,vj), X2(ui+1,vj+1) and X2(ui,vj+1). We measure how far

Ri,j is away from the triangle mesh. We look at this measurement for the two above

cases separately.

For case 1, let (u∗,v∗) be the parameter value of the vertex lying in R̂i,j. Consider

one of the triangles associated with that point, each edge of R̂i,j maybe intersected

by either zero, one, or two of the triangle’s edges. If intersections exist, we transform

them with X2 onto TB and measure how far they are away from Ri,j . Furthermore,

the distance between X2(u
∗,v∗) and Ri,j is determined. Given a user-defined ε, if the

maximum of all these distances is smaller than ε/2, we have sufficient accuracy, if not,

then we insert a new u-slice between ui and ui+1 and a new v-slice between vj and

vj+1 and reexamine the newly created rectangles. Case 2 is handled similarly to Case

1 without the projection of the interior point.

Depending on the resolution of TB, the sets U and V may have more parameter

values than necessary. For instance, if TB is a densely triangulated cylinder, most of

the parameter values in U are not necessary. To some extent, more isolines are needed

around features. On the other hand, isolines might also be needed in areas on which
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force due to boundary conditions is applied. These regions could have no shape features

at all. After the B-spline volume is modeled using our framework, refinement and data

reduction techniques [120]are applied to yield trivariate approximations with different

resolutions. However, it still can be helpful to remesh the input triangle meshes first

with a feature aware triangulator such as Afront [174] which generates meshes having

more triangles in regions with higher curvature and fewer triangles in regions with very

low curvature. In this case, more knots are placed in regions with higher curvature

regions and fewer knots are places in more flat regions. This can reduce the resolution

of the initial mesh.

Given an input triangle mesh, an upper bound on the error can be determined. Since

there is a guarantee that every edge is intersected by at least one isoline with fixed u-

and one isoline with fixed v-value, the maximum error can be computed in the following

way: Given TB, we consider the ring of a vertex ν ∈ VB, where the ring is the set of all

adjacent vertices of ν being elements in VB. We construct a bounding box where one

of its axes are coincident with the normal of ν. The height of the bounding box side

coincident with the normal of ν is the error for that ring. We compute such a bounding

box for every vertex on the exterior. The maximum height will be the maximum error.

4.4 Modeling the Interior

Once the exterior parameterization is determined, the tetrahedral mesh (H) is

parameterized. Using FEM, ∇2uH = 0 is solved, where VB with its respective u-values

is used as the Dirichlet boundary condition. Now, all elements in V have a u-parameter

value. In the surface case, fixing a u-value gives a line in parameter space and a closed

isocurve on the surface. In the volume case, fixing a u-value gives a plane in parameter

space and a surface called an isosheet in the volume. The boundary of an isosheet for

a fixed u0 is the isocurve on the surface at u0.

Now, for each boundary slice at ui0 , it is necessary to extract its corresponding

isosheet. First however, a skeleton is created to serve as isosheet center for all isosheets.

Then, a third function w is created whose gradient field ∇w points to the skeleton.

∇w is used to trace a path starting at pi0,j = X2(ui0 ,vj) and ending at the skeleton on
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the sheet, for j = 0, . . . , n1 (see right). ∇w is constructed to be tangent to the isosheet

at a given point, so ∇uH and ∇w are orthogonal. This guarantees that every point on

the extracted w-path has the same u-value.

In [199] a method is proposed, to construct skeleton curves from an unorganized

collection of scattered points lying on a surface which can have a “tree-like” structure.

They calculate a geodesic graph over the point set. Using that graph, they extract level

sets, closed and piecewise linear. The centroids of all the level sets form the skeleton.

When level sets are not convex the centroid may lie outside the objects. Furthermore,

the skeleton may have loops if the centroid of a given level set a lies above the centroid

of the level set b lying above a. Similarly, [110] explicitly establishes a scalar function,

similar to a harmonic function, over a triangle mesh. By choosing a source vertex, for

every vertex on the triangle mesh, shortest distances are calculated which establish a

parameterization in one parameter. The skeleton is calculated as in [199] and therefore

cannot guarantee whether it lies within the triangle mesh.

The skeleton is created by tracing two paths which start at a user-specified seed

using +∇uH and −∇uH and end at νmin and νmax, respectively. Merging these two

paths yields the skeleton. By the definition of∇uH, the skeleton can have no loops. The

skeleton has the properties of a Reeb Graph [184], in that its end vertices correspond

to νmin and νmax. While the Reeb graphs in [184] are defined over a surface, our Reeb

graph, i.e., the skeleton, is defined over the volume. Because of the way ∇w is built,

a sheet is orthogonal to the skeleton, which is also a property of GC. The orthogonal

property of the skeleton and ∇w is also a desirable property to attain a good B-spline

fit. The skeleton can be computed in interactive time, and the user has flexibility in

choosing the seed. In general, the seed should be placed such that the resulting skeleton

lies in the “center” of the innermost isosurface, like the axis of a cylinder.

Just solving ∇2w = 0 with the respective boundary conditions does not guarantee

orthogonality of ∇uH and ∇w, and if ∇uH and ∇w are not orthogonal, there is no

reason that a path will have the same u-value throughout. This implies thew-parameter

will need further adjustment to guarantee a well behaved parameterization and so

adjacent isosheets do not overlap. In order to enforce orthogonality ∇w is constructed
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in the following two steps: (1) The points defining the skeleton are inserted into

the tetrahedral mesh and a new mesh is formed. Then, ∇2ŵ = 0 is solved over

the tetrahedral mesh, subject to Dirichlet boundary conditions defined by the set

VC = VB∪VT1∪. . .∪VTk
∪VS . VB consists of the boundary vertices where ŵ(ν)∀ν∈VB

= 0,

VS consists of the vertices defining the skeleton where ŵ(ν)∀ν∈VS
= 1, VTi

is the set of

vertices defining the ith of k isosurfaces where ŵ(ν)∀ν∈VTi
= i/(k + 1). In the case of

the femur and in Figure 4.8, there is one isosurface, namely the surface separating the

trabecular and cortical bone. In this case VC = VB ∪VT1 ∪VS , where ŵ(ν)∀ν∈VT1
= 1/2.

Then in step (2), for every tetrahedron, we project its ∇ŵ gradient vector onto the

plane whose normal is the corresponding ∇uH, to form ∇w.

4.5 Tracing w-paths

Flow line extraction over a closed surface triangle mesh is described in [50]. In our

case, we extract flow lines throughout a volume. A flow line, or a w-path will start

on TB, where w = 0 and traverses through H until it reaches the skeleton on which

w�path

vmax

u u

w=1 (skeleton)

(exterior surface)
interior surfacew=0 w=0.5

Figure 4.8. A cross section of an object with an exterior boundary and an interior
isosurface representing geometry or attribute data. The skeleton and boundaries were
used to establish ∇w. Isolines visualize the uw-scalar field used to trace w-paths from
the exterior to the skeleton.
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w = 1. The resulting w-path is a piecewise linear curve where every segment belongs

in a tetrahedron. The two ends of the segment lie on faces of the respective tetrahedron

and is coincident with ∇w. Since ∇uH and ∇w are orthogonal, every point on such a

segment has a constant u-value, and therefore, the w-path has a constant u-value.

During w-path traversal, in the regular case, the endpoint q of the w-path will lie

on a face of a tetrahedron. The next traversal point is determined by constructing a

ray �r with origin at q with ∇wH of the adjacent tetrahedron as direction. �r is then

intersected with the faces of the adjacent tetrahedron, except the triangle on which q

lies, to find the next q. Let p be the intersection between �r and triangle t. t is a face of

two tetrahedra, the current and the next tetrahedron. The line segment qp is added to

the current w-path, and p becomes q.

During the w-path traversal, several pathological cases can arise. One is when the

intersection point p lies on an edge e of the current tetrahedron. Since the edge is

part of two triangles, an ambiguity exists as to which face should be chosen. Instead we

consider all tetrahedra that have e as an edge. For each of these tetrahedra we construct

a ray having its origin at p with ∇w of the tetrahedron as its direction. If there is an

intersection between a tetrahedron’s ray and one of its faces, then we choose that face of

the respective tetrahedron as the next triangle. Analogously, at the other degeneracy,

when p lies at a vertex of the tetrahedron, we examine every tetrahedron that coincides

with this vertex. We choose the tetrahedron in which we can move furthest in ∇w

direction.

Another degenerate case arises when �r does not intersect with any triangle, edge

or vertex of the current tetrahedron. This implies that �r points outward from the

tetrahedron. When this occurs, we construct a plane through q orthogonal to ∇uH of

the current tetrahedron. Every point on that plane in the tetrahedron has the same

u-value. We intersect the plane with the edges of the triangle in which q is located. In

general position, there are two intersections. We choose that intersection which has a

bigger w-value as next point on the w-path, because it lies closer to the skeleton. Since

the intersection point is a point on an edge or a vertex, the first special case is applied.
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4.5.1 w-path Extraction

In Section 4.3.1, we discussed how the Cartesian product of the sets U and V spans

over the uv-domain. X2 maps the grid point (ui,vj) to the point pi,j in TB. The points
pi,j are used as starting points to trace w-paths, as described above in Section 4.5. Now,

X3 : [ustart,uend]× [0, 1]× [0, 1]→ H is a parameterization in three variables u, v and

w, where X3(u,v, 0) ≡ X2(u,v), X3(u,v, 1) defines the skeleton, and X3(u,v, i/(k+1))

defines the ith isosurface.

In this section, we want to find a set W = {w0,w1, . . . ,wn2} where w0 = 0 and

wn2 = 1, which contains n2 parameter values. The Cartesian product U×V ×W defines

a structured grid on [ustart,uend]× [0, 1]× [0, 1] and a structured hexahedral mesh with

points pi,j,k = X3(ui, vj , wk) in H with degeneracies only along the skeletal axis. Note,

that pi,j,k refers to the kth point on the jth w-path on isosheet i, i.e., by fixing ui0 ,

the points X3(ui0,vj ,wk) lie and approximate isosheet i0 and connect to a structured

quadrilateral mesh called Si0 .

Let hi0,j0 : [0, 1]→H be the j0th w-path on Si0, defined by the points pi0,j0,k, where

k = 0, . . . , n2. Depending on the choice of w-values in W , points on hi0,j0 may have

different u-values. This leads to a modification of u on the interior parameterization.

This is allowed as long the u-value of these points is smaller (bigger) than the u-value

of the upper (lower) adjacent isosheet. Otherwise, isosheets might intersect.

Originally, when a w-path is extracted as discussed above, all parameter values in

[0, 1] map to points whose u-values are the same. The reason for that is that the line

segments defining the initial w-path all lie in tetrahedra and coincide with ∇wH of

the respective tetrahedron. Furthermore, every extracted w-path is defined initially by

different sets of w-values. In order to determine W , we have to make sure that the

quadrilateral sheets Si do not intersect.

Let Wi,j = {w0,w1, . . . ,wn2i,j
}, where w0 = 0 < w1 < . . . < wn2i,j

= 1, be the

sorted set of w-parameter values for hi0,j0, consisting of n2i,j + 1 points. n2i,j depends

on the number of tetrahedra the path is travelling through. If the path is close to νmin

or νmax, the path is probably shorter than a path towards to the middle of the object.

A valid and common W could be found by calculating the union of all Wi,j, where
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then W would contain an unnecessarily large number of w-values. Therefore as a first

step we simplify every Wi,j by removing unnecessary w-values from it. Let ui be the

u-value of the current slice. We scan Wi,j and remove an element wk when the u-value

of the point (Pk−1 + Pk+1)/2 is in the range [(ui − ui−1)/2, (ui + ui+1)/2], where Pk is

the position in the tetrahedral mesh where wk lies. This implies that sheet i does not

intersect with one of its adjacent sheets. The Pk’s leading to the smallest differences are

removed first. This is applied iteratively until no further points can be removed from

the path.

Then, we merge the simplified sets Wi,j to get W . After merging, elements in W

may be very close to each other. We therefore remove elements in W , such that every

pair of parameter values in W has at least a distance (in parameter space) of ε between

each other. Furthermore, the parametric w-values for the isosurfaces are added to W ,

too, such as 0.5 ∈W , where X3(u,v, 0.5) represents the inner boundary in Figure 4.2.

4.5.2 w-path Smoothing

Since there is only an exterior v-parameterization, points lying on a w-path have a

constant u-value but not a constant v-value. This results in path wiggling as shown in

Figure 4.9. Path wiggling means that parts of a given path may lie closer to its adjacent

path on the left than to its adjacent path on the right.

Laplacian smoothing [63] is an efficient way to smooth a mesh and remove irregulari-

ties. As pointed out in [63], applying it to a hexahedral mesh can lead to inconsistencies,

like “tangling” of hexahedra. This especially happens in regions with overhangs, where

in our case, Laplacian smoothing would change the u- and w-value of a point, leading

to overlapping sheets. However, Laplacian smoothing is computationally efficient and

we adapt it for our case in the following way.

Let ∇vH be the cross product field between ∇uH and∇w, i.e., ∇vH = ∇uH×∇wH.

Since vj is not constant along the w-path, during mesh smoothing, we restrict the

location pi,j,k to change only along ∇vH. Let Project(p, d) be a function defined over

H which determines a point p′ along ∇vH with distance d from p. p and p′ both lie

on a piecewise linear v-path, and the v-path section defined by p and p′ has a length

of d. Since ∇uH, ∇vH and ∇w are orthogonal vector fields, p and p′ have the same



109

sheet

exterior

Dist(p,p')

p''=Project(p,d)

d

Figure 4.9. Due to the linear property of ∇u and ∇v and special cases during w-path
extraction as discussed in section 4.5, adjacent paths may collapse.

u- and w-value. Furthermore, let Dist(p, q) be a function that computes the length of

the v-path section defined by p and q, requiring that p and q have the same u- and

w-value. Now, the position of the mesh point pi,j,k is updated by

p′i,j,k = Project(pi,j,k,
1

2
(Dist(pi,j,k, pi,j−1,k) +Dist(pi,j,k, pi,j+1,k))).

After this procedure is applied to every pi,j,k where i > 0 and i < n0, the old positions

pi,j,k are overwritten with p′i,j,k. By repeating this procedure the mesh vertices move so

that for a given pi,j,k, the ratio Dist(pi,j,k, pi,j+1,k)/Dist(pi,j,k, pi,j−1,k) moves closer to

1, by maintaining a constant u- and w-value. Therefore, this approach avoids isosheet

intersection. The procedure terminates when max |Dist(pi,j,k, pi,j+1,k)| < ε, where ε is

user-defined.
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4.6 Possible Extensions

So far we have assumed that the user chooses two min/max points as the first

step in our modeling framework. As discussed above, those two critical points are the

end points of a skeleton line through the model. This works well when the lengths

of the w-paths of a given slice are similar. If isosheets are circular and the skeleton

goes through the center, the lengths of the w-paths are equal to the radius of the

isosheet. By fixing u0 and w0 the quadrilateral qi defined by the points X3(u0,v0,w0)

and X3(u0,vi + ε,w0 + ε) for a given small ε has the same area for any vi.

However, input models exist, where w-path lengths of a given isosheet are different.

Refer to Figure 4.10 for a simple example, where the user chose νmin and νmax. For a

constant u-value we extracted the corresponding isosheet. Isosheets in that model have

a rectangular shape. For such a shape a skeletonal line is not appropriate: Isoparametric

lines in v towards the exterior are rectangular, but change into circles when approaching

the skeleton. This results in distortion: For a given isosheet we can find the shortest

and the longest w-path. The quadrilaterals qi do not have the same area; they are

bigger around the longest path, compared to its areas around the shortest path.

Numerical applications such as finite elements desire more uniform element sizes. By

modifying the choice of the skeleton the resulting B-spline can be improved. Instead of

choosing a single vertex as a critical point, the user chooses a critical path as in Figure

4.11. The resulting skeleton is a surface. In that case, critical paths suit the rectangular

shape better than critical points. The w-paths of a sheet have about the same length,

u−sheet

"shortest" path

"longest" path

Figure 4.10. w-parameterizations using min/max points.
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u−sheet

"longest" path

"shortest" path

Figure 4.11. w-parameterizations using min/max paths.

resulting in less stretching and therefore more uniform quadrilaterals. This approach is

investigated in detail in the following chapter.

For a given input mesh, its medial axis and our choice of the skeleton are related.

Selecting the medial axis as the skeleton leads to difficulties since it may have small

branches which would require splitting the object up into parts which have to be glued

together. This would make modeling very difficult. The skeleton we pick is a simplified

version of the medial axis. It uses this representation’s ability to deal with overhangs

and localized features in that simplification. The skeleton we choose can be regarded as

approximation of the medial axis. For instance, in Figure 4.11, our choice of min/max

paths yields a skeleton which is a surface similar to the medial axis of the object.

4.7 Experiments

Except for initial user-required choice of the critical points νmin, νmax and the

initial seed to determine the skeleton, our modeling framework runs fully automatically.

uTB takes a few seconds to compute, allowing the user (being aware of simulation

parameters) to try out different initial parameterizations. After that first step uH and

w are computed, paths are extracted and the trivariate B-spline is generated from that.

We implemented the proposed framework on a 16 node cluster, reducing the modeling

time for the femur in Figure 4.2 to about 30 minutes.

We applied IA [87] in form of Linear elasticity [86] (see Figure 4.12) to a data reduced

version of the resulting B-spline volume.
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no deformation max deformation

Figure 4.12. Isogeometric analysis: Elastostatics applied to the data reduced trivariate
B-spline representation of the femur. Load is applied to the head of the femur.

Isocurves of a harmonic function defined on a smooth surface converge to circles

when approaching a critical vertex. In case that the harmonic values are linearly

interpolated across a triangle mesh, isocurves are nonplanar “n-gons,” where n depends

on the number of triangles the respective isocurve crosses. When approaching a critical

point, isocurves are defined only by a few vertices as can be seen in Figure 4.3. In

order to improve the parameterization in the regions near the critical points, additional

vertices are inserted in the respective regions and retriangulation is applied in these

areas. Similarly, inserting additional vertices in the region around the skeleton can

help to improve the volumetric parameterization and therefore the quality of the initial

structured hexahedral mesh.
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4.8 Conclusion

In this chapter, a framework to model a single trivariate B-spline from input genus-0

triangle meshes was proposed. The final B-spline was computed using a novel iterative

approximation approach which will be presented in Chapter 9, avoiding oscillations

observed in B-spline interpolation. We guarantee that the slices defining the B-spline

do not overlap and only have degeneracies only along the skeleton. Linear elasticity was

applied to the resulting B-spline to demonstrate its practical use. Harmonic functions

in three parameters are used to establish an initial parameterization suitable for tensor-

product B-splines. This allows to model objects with overhangs such as the femur

shown in Figure 4.2. However, modeling B-splines from triangle meshes with a higher

genus or bifurcations requires an extension of our framework. This is subject of the

next chapters of this work.



CHAPTER 5

OBJECTS WITH HIGHER GENUS AND

BIFURCATIONS

The methodology described in this chapter generalizes the method proposed in the

previous chapter, i.e., it presents a methodology to create higher order parametric

trivariate representations such as B-splines or T-splines, from closed triangle meshes

with higher genus or bifurcations. The input can consist of multiple interior boundaries

which represent inner object material attributes. Fundamental to our approach is

the use of a midsurface in combination with harmonic functions to decompose the

object into a small number of trivariate tensor-product patches that respect material

attributes. The methodology is applicable to thin solid models which we extend using

the flexibility of harmonic functions and demonstrate our technique, among other

objects, on a genus-1 pelvis data set containing an interior triangle mesh separating the

cortical part of the bone from the trabecular part. Finally, a B-spline representation is

generated from the parameterization.

Generating volumetric models suitable for simulation is an increasingly important

task in geometric modeling. In practice a closed triangle mesh in 3-D space is given

which represents the boundary of a physical domain. Commonly, interior triangle

meshes are given that separate different materials within the physical domain. For

simulation, the goal is to create volume elements in the region enclosed by the mul-

tiple boundary triangle meshes. This process is referred to as model completion. In

practice, two choices are usually given: Filling up the volume using a unstructured grid

representation based on tetrahedral or hexahedral elements or using a structured grid

representation.

Unstructured tetrahedra meshes are often used in practice because they are fast,
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almost fully automatic and work on any geometric topology. However, these representa-

tions have drawbacks. For instance, multiresolution algorithms such as refinement on an

unstructured representation are more difficult than on a structured grid. Furthermore,

if higher-order elements are used in simulation, cross element continuity greater than

C0 is difficult to achieve. Also, some simulation methods such as linear elasticity give

better results on hexahedral meshes than on tetrahedral meshes with the same degree

of complexity.

Structured grids do not share these problems, i.e., refinement can be easily applied.

Furthermore, the user can specify higher orders of continuity across elements more easily,

making it easier to achieve higher continuity on a structured representation compared

to an unstructured representation. Therefore, structured representations are desired

for many types of finite element simulations such as IA [87]. However, structured grids

also have limitations, in that they require more user interaction to create them and

also depend more strongly on topology. This chapter presents a methodology to create

structured representations for a class of objects as discussed below.

This chapter makes the following contributions:

• A method to establish a volumetric parameterization for objects represented with

triangle meshes with higher genus and bifurcations based on a midsurface, suitable

for both B-spline and T-spline fitting. The volumetric parameterization method

is a hybrid technique inheriting positive aspects of both polar- and polycube- style

parameterizations.

• An isoparametric methodology to parameterize the volume that respects interior

boundaries of material attributes.

We assume that interior material boundaries are of similar geometric complexity

as the exterior triangle mesh boundary and that the interior material boundaries are

nested within each other. A demonstration of the approach on diverse objects such

as a genus-1 pelvis and a genus-1 propeller is given. The pelvis data set consists of

an interior triangle mesh to separate the interior soft (cortical) material from the hard

(trabecular) boundary layer material. The parameterization is used to fit a trivariate
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B-spline to the bone for a smooth transition from the cortical to the trabecular part of

the bone.

Chapter 4 proposed a methodology to create trivariate representations of generalized

cylinders which also allows representation of interior materials attributes. However, the

approach works only on genus-0 objects and is suitable only for objects with smaller

shape overhangs such as local bifurcations. The main reason for these limitations is

that only one trivariate B-spline is used to create the trivariate representation to avoid

the necessity of gluing patches. Similarly, Aigner et al. [4] apply this concept to a class

of engineering objects, sweeping a parameterized planar surface along multiple guiding

curves. The sweep in these approaches correspond to a single skeletal line. Given a

topologically more complex object, a single skeletal line is unsuitable. First, it ignores

the genus of the object and it ignores branches that can result in parametric distortions.

In the following discussion the reader is referred to Figure 5.1. There are two well

understood ways to parameterize a disc. The first is a polar parameterization with

high-quality elements close to the boundary, but with a degeneracy at the center. This

type of parameterization is used in generalized cylinders [20] and was further generalized

in [126]. The second way to parameterize a disc is to choose four corners at the boundary

of the disc, and decompose the boundary into 4 iso-parametric segments. The interior

elements have high quality, i.e., they are close to having right angles at the vertices, but

the elements closer to the corners are more skewed. This may affect the quality of the

physical simulation in those corner regions. Polycubes [193, 200, 201] are generalizations

of this kind of parameterization.

In this chapter, we propose a blend of these two parameterization types, i.e., near to

the boundary the parameterization is polar-like but in the interior, it has the advantages

of polycube maps. In this way, there are no parametric or geometric degeneracies, i.e.,

each element is a geometric quadrilateral. Also, no corners are specified at the boundary

and hence the quadrilaterals closer to the boundary have nearly right angles.

Our method reduces the dimensionality of the parameterization problem by param-

eterizing a simplified manifold base surface lying in the interior of the object using 2D

parameterization techniques and using that to parameterize the volume. The size of
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Figure 5.1. Parameterization of a disc. Top left: Polar-like with one degenerate point
(magenta); Top right: Polycube-like with four corner points (blue); Bottom: Blend of
the two parameterizations.

the base surface, derived from a midsurface, determines which of the above discussed

parameterization methods are favored and can be controlled by the user according to

requirements in simulation.

Midsurfaces, decomposing an object into two pieces, are common occurrences in

modeling for simulation. Considerable efforts have been invested to find them on

CAD models (e.g., [133]) consisting mostly of flat faces. Finding a midsurface for a

more general object is an unsolved problem. In this chapter we make an effort to find

midsurfaces suitable for volumetric parameterization. Musuvathy et al. [139] present a

medial axis computation algorithm on 3D regions bounded by B-spline surfaces.

The choice of the midsurface and its subsequent parameterization affects the vol-

umetric parameterization of the input object. While this reduces the modeling time
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significantly, the class of objects that can be parameterized, such as a hand, a pelvis or

a genus-3 torus as shown in Figure 5.2, is extended. While these objects are not general

solid models, we also show that our method can be applied to more general models such

as a genus-1 propeller as shown in Figure 5.3.

An overview of our proposed framework is given in Section 5.2. Section 5.3 is

concerned with the construction and parameterization of the midsurface used in Sec-

tion 5.4 to decompose the object of interest. Section 5.5 discusses the construction of

the volumetric parameterization of the object of interest. This chapter is concluded

with results, discussion of limitations and extensions (Section 5.6 and 5.7).

5.1 Parameterization Strategies

The following paragraphs present an approach based on a midsurface, decomposing

the object of interest into two regions that is used to create a volumetric param-

eterization from an exterior boundary that respects interior material boundaries in

the parameterization. For better illustration of the proposed technique, we show two

Figure 5.2. Parameterization of a genus-3 torus.
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Figure 5.3. Parameterization of a CAD propeller of genus-1 with a single midsurface
(midsurface boundary in yellow).

parameterization strategies on a 2D domain that has neither holes nor bifurcations.

Figure 5.4 illustrates the approach. The input consists of one closed polyline (piece-

wise linear line segments), defining the physical domain. The inner boundary is specified

by the user as the interface between polar and square parameterization. The inner

boundary has similar geometric complexity related to the outer boundary. The domain

is discretized with triangles and the inner boundary is embedded in the triangulation.

The goal is to parameterize this domain where, similar to the motivation presented

in Chapter 4, interior boundaries are isoparametric. A midcurve that lies inside the

innermost area, i.e., the area enclosed by the inner boundary, is constructed based on

the outer polyline. Then, paths are traced from the corners of the midcurve to the outer

polyline. This configuration decomposes the space into different regions (see Figure 5.4).
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Figure 5.4. 2D input consisting of an exterior domain boundary. The inner boundary,
which is the interface between the polar and square parameterization, is specified by
the user. Boundaries are decomposed to divide the domain into subregions.

A region is enclosed in the general case by four boundaries. Harmonic functions are

used to parameterize each region so that the parameterization of a boundary between

two adjacent regions match.

In the following, αi, i = 1, 2, 3 refer to the three regions as labeled in Figure 5.5a,

and βi for i = 1, . . . , 5 refer to the five regions as labeled in Figure 5.5b. Note that

Ω = α1 ∪ α2 ∪ α3 = β1 ∪ . . . ∪ β5, where Ω refers to the whole domain. Furthermore,

si (Figure 5.4) are open polylines represented with vertices from an augmented triangle

mesh representing Ω. The notation

{si}ni ← u = x

means that the scalar x ∈ R is assigned to the parametric direction u of the vertices of

the collection of segments s1, s2, . . . , sn as part of a Dirichlet boundary condition.
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(a) (b)

Figure 5.5. Parameterization strategies on 2D input.

5.1.1 Strategy 1

Laplace’s Equation 1.1 is solved over Ω for the parametric v-direction with the

following Dirichlet boundary: {s1, s2, s3, s4} ← v = 1 where s1∪ s2∪ s3∪ s4 is the outer
boundary; {s5, s6, s7, s8} ← v = 0.5 where s5∪s6∪s7∪s8 is the inner boundary. Finally,
{s9} ← v = 0, where s9 is a midcurve of the outer boundary. For the parametric

u-direction, Equation 1.1 is solved for the regions α1, α2 and α3 independently (see

Figure 5.5). Boundary conditions for α1 are: {s10, s14} ← u = 0 and {s13, s17} ← u = 1.

Boundary conditions are set up for α2 analogously. Equation 1.1 is solved for α3 by

assigning u = 0 to s10 ∪ s14 ∪ s13 ∪ s17, and u = 1 to s11 ∪ s15 ∪ s16 ∪ s12.

5.1.2 Strategy 2

The parametric v-direction is constructed in two steps. Equation 1.1 is solved over

the region β1∪β2∪β3∪β4 (see Figure 5.5) with the boundary condition {s1, s2, s3, s4} ←
v = 1 and {s5, s6, s7, s8} ← v = 0.5. Then, Equation 1.1 is solved over region β5 with

boundary condition {s5} ← v = 0 and {s7} ← v = 1. The u-direction is constructed

analogously: For region β1, assign {s10} ← u = 0 and {s13} ← u = 1. For region β2,

{s10} ← u = 0 and {s11} ← u = 1. Boundary conditions are assigned accordingly to

region β3 and β4. For the inner region β5, {s8} ← u = 0 and {s6} ← u = 1.

Both strategies are based on the same decomposition of Ω, where both have advan-

tages and disadvantages. In the first strategy, since α1 and α3 are enclosed by only

three segments each, the resulting parameterization has a degeneracy at the corner c9
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and c10 of the midcurve. The second strategy avoids this degeneracy, since all regions

have four boundary segments. However, the resulting parameterization contains four

extraordinary points in the interior (Figure 5.5b). Establishing a smooth function is

therefore difficult to accomplish. In 3D, next to extraordinary points there are also

extraordinary edges having other than 4 subvolumes attached to it. A smooth repre-

sentation around these edges is difficult to achieve. T-NURCCs [177], a generalization

of T-splines have been proposed for surfaces for dealing with this problem.

5.2 Framework Overview

This section gives an overview of our methodology to parameterize domains in R3.

Section 5.1 discussed two parameterization strategies in 2D. Based on a 2D input domain

boundary, the enclosed volume is decomposed into regions by introducing additional

segments si using a midsurface. While in 2D, these segments are open polylines, in 3D

these segments correspond to triangulated surfaces called Si, the faces.

Our framework takes n closed input triangle meshes Ti for i = 1, . . . , n, where Ti+1

is nested within Ti. T1 represents the boundary of the physical domain Ω and interior

triangle meshes Ti for i = 2, . . . , n separate materials. The following framework steps

describe the generation of a set of trivariate tensor-products which represent Ω and

respect the Ti.

1: Construct a base surface M with respect to T1, so that M lies within Tn. Then,
create a tetrahedral mesh H from T1 which embeds all the interior Ti and M as

tetrahedral faces.

2: Create a harmonic scalar field w by solving Laplace’s equation (1.1) so that interior

material boundaries are respected, i.e., ∇w is orthogonal to Ti.

3: Given ∇w, sweep segments from the boundary of M to form surfaces that de-

compose the volume enclosed by T1 into subvolumes.

4: Establish u- and v-harmonic scalar fields on subvolumes to parameterizeH. The w

scalar field from Step 2 is used as the third parametric direction in the volumetric

parameterization strategy.
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5: Depending on the parameterization strategy, fit trivariate B-splines, T-splines or

T-NURCCs, respectively, to the parameterized subvolumes.

The trivariate representation is constructed so that the boundaries closely approx-

imate the input data. Due to the tensor-product nature of the representation, the

resolution of the trivariate grids can be high. Therefore, as a postprocessing step, data

reduction [120] is applied to the final trivariate representation.

5.3 Midsurface Construction

Chapter 2 discusses work that has been done to compute the medial axis of an object

in 3D. In general, for a given triangle mesh, these approaches construct an approximate

medial axis. For volumetric modeling however, often these medial axes are not suitable

as they contain features like local fins or other nonmanifold topology. The reader is

referred to Figure 5.6 which shows a medial axis generated from the Olivier hand data

set using the tight cocone software [46]. Often, a time-consuming postprocessing step

involving manual removal and change in medial axis topology is necessary to clean up

the medial axis for it to be suitable for volumetric parameterization.

Often in modeling, a simplified medial axis is sufficient when it at least captures

the topology of the object. For instance, the approach proposed in [126] is based on

Figure 5.6. Simplified medial axis’ of Olivier hand data set (left: tight cocone [46],
right: our approach).
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a skeleton line of the object. Harmonic functions were used as an aid to consistently

fill up the interior, especially useful if the object has local overhangs far away from the

medial axis.

In this section we construct a manifold midsurface M′ (i.e., a single sheet) that

has its boundary on T1 and decomposes each Ti into two volumes. M′ is constructed

to have no fins or other nonmanifold geometry. A base surface M is computed by

trimming M′. We call it a base surface, because its size and parameterization affects

the resulting volumetric parameterization. With this approach to use a base surface for

parameterization, the approach given in [126] is generalized.

Constructing M has four steps: (1) The midsurface sheet M′ is extracted, thus

decomposing each Ti into two regions (Section 5.3.1). (2) A trimmed M′, M′
trim, is

computed using a scalar field defined onM′ and parameterized (Section 5.3.2). (3) The

medial axis of the parametric domain ofM′
trim is formed (Section 5.3.3). (4) Points of

the 2D medial axis of the parameter domain ofM′
trim are inserted intoM′

trim in order

to construct the base surface M (Section 5.3.4).

5.3.1 Construction of M′

Given T1 with genus g, the midsurface M′ is constructed by defining a set S =

{δ1, . . . , δg+1} each of whose elements is a closed path on T1. Together they decompose

Ti into two regions. Path δj on T1 is a piecewise linear function defined by a sequence

of vertices from T1 and corresponds to a boundary of T1’s midsurface M′. We present

the construction of M′ by referring to Figure 5.7 for illustration. −1 is assigned to

the first region (green) and +1 is assigned to the second region (red). This Dirichlet

boundary condition is used to solve Equation 1.1 over Ω. Let f be the corresponding

solution. Then, the isosurfaceM′ at isovalue f(x, y, z) = 0 is extracted using marching

tetrahedra [33]. Given the properties of Laplace’s Equation (1.1), M′ is guaranteed

to lie within T1. Several approaches can be used to construct the paths defining the

boundary of M′, including, for example, (1) Extraction of salient ridge lines from T1,
(2) Connection of critical points using Morse analysis. Both approaches require user

assistance and are discussed below.

The set of ridge lines for a given object defines the complexity of its medial axis.
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Figure 5.7. Olivier hand model (n = 1): midsurface M′ (yellow and blue area) and
base surface (blue area). Since n = 1, M′ =M′

trim.

However, only a few salient ridge lines characterize the global structure and topology

of the object and medial axis. Ridge extraction techniques such as [148] can be used to

extract ridges from T1. However, it is difficult to extract closed ridge lines on discrete

data, since ridges require higher-order information. A user process is often necessary to

close them in order to decompose T1 into two regions. The paths to decompose T1 can

refer to closed ridges or crests requiring T1 to be doubly curved. For instance, if T1 is

an ellipsoid, M′ is a solid ellipse with boundary along the major equator of T1. In this

case, the boundary of M′ is equal to one of the ridge lines of T1.
In our framework, we follow the method by Ni et al. [143] to extract the topological

structure of T1, that is, the user specifies critical points, i.e., minimum points and

maximum points on T1 to construct a harmonic scalar field on T1. Discrete Morse

analysis is used to find saddle points on T1. For every saddle, the gradient field of the

harmonic field is used to create paths connecting the critical points, i.e., connecting
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saddles with saddles, saddles with minima and saddles with maxima. Paths reaching

the same minima or maxima are removed. The bifurcation emanating at every saddle

has a path which ends at either a maximum or a minimum or at a different saddle.

Given such a path, a point on the opposite side (in case there is no path defined on that

side already) is chosen automatically to create a new path which ends at a minimum or

a maximum. The remaining paths can be joined at the critical points to create a single

closed path to decompose T1 into two regions.

However, this approach sometimes fails to determine a set of desirable closed loops

since determining the paths in S to decompose T1 into two pieces suitable for volumetric

parameterization is a difficult and unsolved problem in general. Suitable in this context

means that the final volumetric parameterization contains as little parametric distortion

as possible. An alternative is to have the user just draw boundary curves onto T1 using
a technique such as [15], as was for instance done to parameterize a propeller from a

triangulated CAD representation (Figure 5.3).

Given a set of valid paths S, the resulting scalar field f defined on H, as computed

above, can be used to formulate a quality measure on the choice of S in the following way.

For every vertex vk on T1, trace a path hk through H using +∇f or −∇f depending

on which side of T1 vk lies. Let H be the set containing these paths. A good choice of

S results in H with a small variance of its paths. A higher variance means that there

are both shorter and longer paths directly affecting the parametric distortion of the end

result.

Given a choice of paths S, f and the resulting H can be computed relatively efficiently

due to the linear basis used to compute f and the paths in H which change piecewise

constantly over H. This is a useful tool for the user to make a judgment on the choice of

S. It is clear that there are objects which cannot be modelled with a single midsurface,

i.e., the approach works only on some classes of models.

5.3.2 Parameterization of Trimmed M′

In this work we assume that Ti+1 is contained within Ti for i = 1, . . . , n − 1.

Furthermore, we require that M is contained within the innermost triangle mesh

boundary Tn. Therefore, we compute M′
trim =M′ ∩ Tn, i.e., the boundaries of M′

trim
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lie on Tn. Note if n = 1, M′
trim = M′. M′

trim is parameterized by adopting the

2D analogue version of polycubes given in [193] to a flattened version of M′ using

a flattening method such as presented in [179]. Similarly as in [201], the user picks

corners on the boundaries of M′ to decompose them into isoparametric sides acting

as Dirichlet boundary conditions to solve the 2D version of Equation 1.1 in u and v.

Then, the boundary of M′
trim is decomposed into a set of segments sj where the two

boundary vertices of sj are 2D polycube corners. Each segment is isoparametric in u or

v. As in the 3D case [201], the 2D polycube representation forM′
trim is parameterized

in u and v. An example of the parameterization of M′
trim is given in Figure 5.8.

5.3.3 Construction of 2D Medial Axis on M′
trim

Given the parameterized sheet M′
trim the medial axis of its 2D parameter domain

boundary is computed. Since the domain has axis aligned boundaries this is quite

straightforward. Those edges of the medial axis that extend to the boundary of the

(a) (b)

Figure 5.8. Polycube like parameterization of midsurface M′ on hand model. (a)
parameterization; (b) corresponding parameteric domain
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parametric domain are removed leaving only the medial sheet curves.

5.3.4 Construction of M
Then, the image of the medial axis computed in Section 5.3.3 in M′

trim is inserted

into the mesh and used to construct a harmonic scalar field β evaluating to 1 at medial

axis image points on M′
trim and 0 at the boundary of M′

trim. The user is given the

flexibility to specify an isovalue m0 where the parts on M′
trim with β(x, y, z) < m0 are

removed to create the final M. Figure 5.9 illustrates different choices of m0 affecting

the w-scalar field computed in Section 5.4 and hence the element shapes. Finally, ∇β
is used to move the corners defined on the boundary of M′

trim to the boundary of M.

Figure 5.10 illustrates these steps.

5.4 Decomposition of Volume

The following presents the method for decomposing the volume enclosed by T1 into

subvolumes, one subvolume on the positive side of M, one on the negative side of M,

and a set of crest volumes around the g boundaries of M in Ω with genus g. Ω is

decomposed using a surface S consisting of g disjoint surface pieces. S is the surface

Figure 5.9. A trim value m0 closer to 1 (right) can introduce parametric distortion,
but favors the periodic parameterization. A smaller trim values favors the polycube
parameterization.
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(a) (b) (c)

Figure 5.10. Parameterization of midsurface M′ of kitten model. (a) Partial view of
parameterized midsurface M′; (b) Corresponding parameter domain; (c) Scalar field f
is used to trim M′.

shared by these subvolumes. The construction of S and hence the decomposition of Ω

involves the construction of interior faces S+ and S−, where S = S+ ∪ S−. S+ and S−

are computed by following a harmonic gradient field for each of the g boundaries ofM
until T1 is reached, passing through the intermediate triangle meshes T2, . . . , Tn along

the way. Figure 5.4 shows the 2D equivalent of this decomposition.

Since the base surface M respects only the topological structure of Ω, unlike the

true medial axis, the generation of these faces is challenging because in some regions,

depending on the distortion, a face has to move more than in regions whereM is closer

to T1. In the following we assume that Ti and M have a feature aware and regular

triangulation. Then, S+ and S− are merged to form S and then decomposed into faces

that relate to the corners of M. The construction of S+ and S− and the resulting

decomposition of S is discussed in Section 5.4.1 and Section 5.4.2.

5.4.1 Construction of Faces S+ and S−

S+ and S− are robustly constructed by solving Laplace’s equation (1.1) over H by

constructing a harmonic scalar field w. H contains M and all the Ti as submeshes

with the Dirichlet boundary conditions that w = 0 is assigned to T1 and w = 1 is
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assigned to M. Furthermore, w = (i − 1)/n is assigned to the interior boundary Ti.
Given a point p onM and its normal �n, ∇w can be used to trace two paths emanating

from M and ending on T1. The start positions of these paths are p + ε �n and p − ε �n,

respectively, where ε is a small number and �n is the normal of p. The harmonic nature

of w guarantees that these paths do not contain loops or end at local minima within Ω.

Let P = {p1, p2, . . . , pn} be the vertices of a piecewise linear boundary of M where

pi are the boundary points. From P, two additional polylines P+ = {p+1 , p+2 , . . . , p+n }
and P− = {p−1 , p−2 , . . . , p−n } are constructed as discussed next. ∇w(pi) = �bi, where

pi ∈ P and �ni is the normal at pi. �ti is the boundary tangent on M at pi and �bi is the

corresponding binormal (see Figure 5.11).

Given pi, we find p+i and p−i (not shown in Figure 5.11) so that the angle between

∇w(p+i ) and �bi is ≈ θ and between ∇w(p−i ) and �bi is ≈ −θ. The user choice of θ affects

Figure 5.11. Construction of P+ = {p+1 , . . . , p+n } and corresponding
P− = {p+1 , . . . , p+n }. p+i and p−i , respectively, are evaluations of its corresponding γi(t)
and not shown in this figure.
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the crest region, i.e., how close the final S+ and S− are to each other. For the models

used in this chapter θ = π/4 is a good choice. Based on that, p+i and p−i are determined

as discussed next.

As shown in Figure 5.11, P̂ = {p̂1, p̂2, . . . , p̂n}, where p̂i = pi − ε�bi for all pi ∈ P. A

curve γi : [0, 1]→ R3 is defined by

γi(t) =

⎧⎪⎨⎪⎩
(1− 3 t) q̂+i + 3 t q+i , 0 ≤ t < 1

3

M c(t) + pi,
1
3
≤ t < 2

3

(3− 3 t) q−i + (3 t− 2) q̂−i ,
2
3
≤ t < 1,

(5.1)

where c(t) = h (sin ((3 t− 3) π), 0, cos ((3 t− 3) π)) and M is the 3 × 3 rotation matrix

defined by �ni, �bi and �ti. Furthermore, q̂+i = p̂i + ε �ni, q
+
i = pi + ε �ni and q̂

−
i = p̂i − ε �ni,

q−i = pi − ε �ni.

Point p+i = γi(t̄), where t̄ ∈ [0, 1/2], is determined such that the angle between γi(t̄)

and ∇w(γi(t̄)) is close to θ. p−i is determined analogously on the interval [1/2, 1].

By referring to Figure 5.12, surface S+ is constructed incrementally: A surface mesh

is generated where the polylines P+
0 := P and P+

1 := P+ define quadrilateral elements

having one edge at the boundary ofM. Row P+
k is determined by computing, for every

point p+ ∈ P+
k−1, a line segment using ∇w starting at p+ and ending at a face of the

Figure 5.12. Construction of S+ and S−.
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tetrahedron in which p+ lies (pathological cases are robustly handled as in Chapter 4).

The shortest line segment with length d determines the amount P+
k travels through H,

i.e., |p̂+ − p+| = d where p̂+ is the new point in P+
k corresponding to p+ and lying on

the line segment corresponding to p+.

Once a new row has been computed it is triangulated with the previous row.

Furthermore, if the distance between two adjacent points in P+
k gets twice as large as

the corresponding points in P+
0 , then a new column is inserted between them emanating

at row k. Accordingly, columns are removed when the distance of these points is less

than half the distance of the corresponding points in P+
0 . S− is analogously constructed

using P and P−.

5.4.2 Construction of Faces Sj
Once S+ (red surface in Figure 5.13) and S− (green surface in Figure 5.13) have been

computed they are merged into the single face S for each loop on the boundary of M.

After this process has been applied to all boundaries ofM, the surfaces connecting the

boundaries ofM with T1 decompose the volume enclosed by T1 into three subvolumes:

1) the volume H1 enclosed by all S+, M and T1, 2) the volume H2 enclosed by all

S−, M and T1, and 3) the crest volume H3 from the volume which remains, i.e.,

H3 = H \ (H1 ∪H2) (A is the closure of A). Note that H3 consists of g + 1 disjoint

pieces (g is the genus of Ti).
The crest volumes are further divided: For every corner vertex cj defined on the

boundary of M (see Section 5.3.2), a corner surface Cj (yellow surfaces in Figure 5.13)

is computed. Cj connects cj to T1 by passing through all the interior Ti. One boundary

curve of Cj lies on S+, the other on S−. Cj is computed analogously to S+ and S−, by

using scalar field w to propagate a polyline through the volume starting at cj till T1 is

reached. Given the corners surfaces Cj , S can be decomposed into faces Si, where the

face Si corresponds to the segment i of M as classified in Section 5.3.2. Furthermore,

Si and the two corner surfaces at its boundary enclose a surface on T1 (Figure 5.13).

These surfaces on T1 and the faces Si are used to establish a parameterization over Ω

as discussed in the following Section.

The automatic approach proposed above to construct S+ and S− is consistent, i.e.,
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Figure 5.13. Decomposition of Olivier hand data set.

∇w flows fromM to T1 without any local sinks as guaranteed by the choice of boundary

conditions used to compute w, and it also guarantees that S+ and S− reach the exterior

T1 orthogonally, passing orthogonally through the interior boundaries Ti (i = 2, . . . , n).

This means that the surfaces shared by two adjacent subvolumes are orthogonal to the

boundaries Ti, resulting in more orthogonal parameterizations in these regions. This

approach makes establishing continuity between two adjacent subvolumes easier, as

discussed below.

5.5 Volumetric Parameterization

In this section the method to volumetrically parameterize the domain Ω represented

with H is presented. The 2D parameterization strategies from Section 5.1 are extended

to 3D. While in 2D, the boundaries were defined by polylines referred to as segments, in

3D, boundaries are represented with faces Si as discussed above. Furthermore, as in 2D,
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the interior material boundaries Ti, i = 2, . . . , n are respected in the parameterization.

Both strategies make use of the w-scalar field used to extract the faces S.

5.5.1 Strategy 1

This strategy uses the parametric direction w computed in the previous Section

and requires only computing u- and v- scalar fields over H. As discussed above, every

boundary segment si of M (see Figure 5.13) corresponds to a face Si and is constant

value of either u or v. T1, Si and the two corner faces adjacent to Si together form the

boundary of either a crest subvolume Hucrest
i or Hvcrest

i . Let

Hucrest =
m⋃
i=1

Hucrest
i , (5.2)

where m is the number of faces Si. Hvcrest is defined analogously.

Next, the scalar fields for u and v are constructed. They are constructed analogously,

so we present only the construction for u. For all edge segments si ofM with constant

u-value ui, assign ui to its respective Si embedding si. Solve Equation 1.1 on Hu, where

Hu = H \Hucrest.

Now, the subvolume H \ (Hucrest ∪ Hvcrest), i.e., H without the crest subvolumes,

has a parameterization. Hucrest has a parametric v-scalar field, and Hvcrest has a

corresponding u-scalar field. Similar to the 2D case, the remaining scalar field is

constructed by assigning a constant parameter value to S+ and a constant parameter

value to S− followed by solving Laplace’s Equation as above. This step can be seen as

consistently sweeping S+ to S− through the crest region of H, and since the first row

of S+ and S− are the same, i.e., the first row lies on the boundary ofM, the resulting

parameterization has a degeneracy along M.

5.5.2 Strategy 2

This strategy results in a parameterization with no degeneracies, but with several

internal extraordinary points. A value w0 is picked on the w- scalar field that is less

than the w-value of Tn and the respective isosurface, called Tn+1, at w0 is extracted.
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The parameterization for the volume enclosed by T1 and Tn+1 follows strategy 1 while

the parameterization for the volume enclosed by Tn+1 is done differently. The choice

of w0 often depends on simulation requirements, i.e., its choice affects how much the

resulting volumetric parameterization is polar like versus polycube like. As in the

2D case (Figure 5.5b), in this strategy, S+ and S− emanate from Tn+1 rather than

from M, by trimming those parts of S+ and S− lying within the innermost triangle

mesh boundary Tn+1 in H away. This implies that M is not part of the resulting

representation.

As discussed above, every isoparametric segment sj of M corresponds to a face Sj
and two corner surfaces corresponding to its endpoints. Lets call this configuration Ŝj .
Let Tj,n+1 be the part of Tn+1 inside the crest region Ŝj . Figure 5.13 shows Tj,n+1 in

color for the case j = 1. The union of all Tj,n+1 refers to the crest region T crest
n+1 of Tn+1.

Furthermore, let {T +
n+1, T −

n+1} = Tn+1 \ T crest
n+1 where {T +

n+1 refers to the sub triangle

mesh of Tn+1 on the side where S+ passes through Tn+1. T −
n+1 is the sub triangle mesh

of Tn+1 on the side where the collection of S− pass through Tn+1. The w-scalar field

over Tn+1 is computed by assigning w0 to T −
n+1 and w1 to T +

n+1 where w0 < w1 followed

by solving Equation 1.1.

Then, depending whether segment sj of M is isoparametric in u or in v, the

respective isovalue is assigned to the vertices defining Tj,n+1. The u- and v- scalar

field can be computed for the volume enclosed by Tn+1 by solving Equation 1.1 with

these boundary conditions. Figure 5.14 shows a part of the volumetric parameterization

for the hand model using this parameterization strategy.

5.6 Modeling Examples

In the following paragraphs we demonstrate our proposed methodology by establish-

ing a volumetric parameterization on a genus-1 pelvis data set consisting of an exterior

triangle mesh boundary and an interior material boundary as illustrated in Figure 1.1 on

the right) using the first parameterization strategy as discussed above. Parameterized

subvolumes adjacent to each other are glued with C(0) continuity.

Given M, several parameterization choices are possible. Specific corner selections
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Figure 5.14. Second volumetric parameterization strategy for Olivier hand data set.
(Parametric cut in u, showing a part of the interior material boundary.)

may result in a volumetric parameterization of H, such that the geometry of H is

followed more naturally. The reader is referred to Figure 5.15 showing two different

u-scalar fields on a schematic genus-1 midsurface similar toM of the pelvis. A param-

eterization of M on the right in Figure 5.15 is chosen so that the handle region of M
is similar to a sweep kind of parameterization, where the bottom part of M is similar

to a polycube kind of parameterization. The resulting scalar field follows the geometry

of the midsurface more naturally compared to the scalar field on the left of Figure 5.15

which is polycube like.

Midsurfaces have been applied mainly to thin solids. We demonstrate our technique

on a triangulated CAD data set of a propeller (Figure 5.3) where the user defined

the boundary of M manually. A usual midsurface would be more complex, having

a sheet for the hub and fins for each of the blades. Instead, the chosen midsurface

slices the propeller across the hub resulting in a small midsurface. With a minimal user

interaction to choose the size ofM and corners on it, the object could be parameterized
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Figure 5.15. Different choices of corners (red), resulting in two different scalar fields
on a midsurface.

efficiently. This example shows that the proposed midsurface based parameterization

technique can model more than thin solids (Figure 5.16).

5.7 Conclusion

In this chapter we proposed a methodology to create volumetric parameterizations

of triangle meshes with interior material boundaries. The algorithm presents a gener-

alization of the method proposed in [126] and two parameterization strategies suitable

to fit trivariate tensor-product B-splines or T-splines to the respective volumetric pa-

rameterization. Note that a B-spline representation can be converted into a T-spline

representation. Once converted, local refinement on the T-spline can be used to increase

the accuracy of the fit.

The volumetric parameterization is based on a midsurface, constructed as part of

the algorithm and does not require the time consuming clean-up procedures that are

often required when simplifying a medial axis. The use of harmonic functions allows

the use of a relatively simple midsurface for more complex geometry such as the pelvis
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model or the propeller in Figure 5.3 to guarantee a consistent parameterization re-

sulting in a relative few number of volumetric subpatches. The harmonic nature of the

parameterization guarantees that adjacent subvolumes are orthogonal to the scalar field

respecting interior material boundaries. While the algorithm requires initial user input

to specify corners on the midsurface, the rest of the algorithm proceeds automatically.

This has advantages, for instance, in that the user has control over where corner

vertices should be placed, which is often important in simulation where the critical

regions on the domain of interest should be free of corners and degeneracies. Also,

a good corner selection can result in a more appropriate parameterization where its

gradient field follows the geometry more naturally, as was shown on the pelvis data set.

However, placing corners can be more challenging for the user on more complex input

models. While in the current approach the user gets aid for the corner selection, we are

investigating how this initial step could be further automated through a more in-depth

analysis of the geometry.

A further generalization should not require interior material boundaries be contained

within each other and also the case where the interior material boundaries are unrelated

and geometrically more complex than the exterior surface. Lastly, for a more general

approach, to avoid distortions in the parameterization, the definition of the midsurface

has to be further generalized to include multiple sheets and fins.



CHAPTER 6

MORE GENERAL OBJECTS

In this chapter we present a methodology to create a volumetric representation

from a 2-manifold without boundaries represented with untrimmed NURBS surfaces.

A trivariate NURBS representation is difficult to construct from such a representation,

especially when the input surface patches were created with only a boundary represen-

tation as the goal. These kinds of inputs arise in numerous existing geometric modeling

scenarios such as models from CAD systems, subdivision surfaces, quadrilateral meshing

and data-fitting. Our approach, nearly automatic and only requiring minimal user

input, creates a mixed element representation using trivariate NURBS elements at

the boundary and unstructured tetrahedral elements in the interior of the object.

The original boundary representation of the input model is maintained in the final

representation, allowing the volumetric representation to be used in both computer

graphics simulations and IA applications. We demonstrate that the mixed element

representation yields convergence under model refinement, and that it can be used

efficiently in elastic body simulation. For that, we adapt rotational elements previously

proposed for linear tetrahedra, to higher-order trivariate NURBS elements.

Objects represented with B-spline and NURBS surfaces are widely used in computer

graphics and engineering applications. For instance, a subdivision surface is frequently

converted into a set of NURBS surfaces for rendering purposes, or a mechanical part

is modeled or reverse-engineered using NURBS patches of higher-order polynomial

degrees. If one wants to apply simulation to the volume enclosed by the object, a

volumetric representation must first be generated. Generally, the input surfaces are

tesselated and a tetrahedral or hexahedral mesh is generated which is then used for

simulation. However, due to the tesselation procedure, the higher-order representation
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is not part of the simulation representation and the tesselation can only approximate

the input surface.

To model geometry and simulations simultaneously, IA has been proposed [87]. It

applies physical analysis directly to the model representation. This means that the

smooth basis functions used to model the smooth geometry are also used as basis for

simulation, where good simulation results can be achieved even when the representation

contains elements with inferior quality as shown in [40]. This is due to the use of the

smooth and higher-order basis. After simulation, the user gets feedback as attributes

of the model representation, avoiding the need to generate a finite element mesh and

the need to reverse-engineer from the finite element mesh.

However, creating volumetric representations with higher-order polynomial degree

and smoothness properties is a difficult problem and is the subject of significant research,

especially when it is necessary to maintain the original parameterization. Since the

majority of modeling tools are based on surfaces only, tools that create volumetric

models rarely exist. Creating such volumetric modeling tools require the definition of

new modeling mechanisms, resulting in significant development efforts. Furthermore,

users will need to invest time to learn these new volumetric modeling tools and modeling

paradigms.

Another way to create a volumetric representation is to create it from NURBS sur-

faces representing the boundary of the model using existing tools. However, depending

on the complexity of the input model, creating a trivariate NURBS representation from

it is an unsolved problem. A first approach might offset the boundary representation

of the model as a normal moving front into its interior, but then one must deal with

the correspondence problem and self-intersecting elements, when the front meets itself.

Creating a representation that can be used in simulation, i.e., one that is free of de-

generate elements, usually requires manual effort and therefore increases modeling and

meshing time significantly. Note that in this case it is desired that the NURBS surface

representation is maintained in the volumetric output, making hexahedral meshing

strategies such as plastering, whisker-weaving or grid-based methods (see [150]) or more

recent methods, e.g., the method discussed in [112] difficult to adopt.
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In this chapter we make the following contributions:

• Presentation of a new mixed element modeling approach to create a volumet-

ric representation from an input object represented with NURBS surfaces. By

referring to Figure 6.1, the approach, mostly automatic, creates semistructured

trivariate NURBS elements at the input surface boundary and fills the remaining

interior volume with unstructured linear tetrahedra. The different element types

are unified with a collocating approach.

• A convergence study is performed on a mixed element representation to demon-

strate its potential in a simulation environment based on the finite element method.

• Finally, an adaptation of the previously proposed warped linear tetrahedra stiff-

ness approach [137, 57] is proposed for trivariate NURBS elements to allow the

mixed element representation to be used in interactive simulation environments. A

demonstration of deformable body simulation is performed on the mixed element

representation.

Figure 6.1. Mixed element representation: Tricubic NURBS elements (red) at the
boundary. Linear tetrahedra (gray) in the interior of the object. The surface patches
are constructed from a Catmull-Clark subdivision object.
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The approach is based on harmonic functions [143] and a sampled midstructure such

as a point-sampled medial axis of the object. This allows offsetting the input model

into its interior without creating degenerate elements to produce a volumetric semi-

structured mesh near the boundary of the object. The proposed strategy significantly

reduces the time needed to create a volumetric model and avoids the correspondence

problem by matching the interior boundary NURBS elements with linear tetrahedra.

NURBS elements require more computational effort during simulation, e.g., nu-

merical integration and evaluation of simulation quantities due to higher-order poly-

nomial degree. These quantities (e.g., mass or material properties) can be efficiently

evaluated on linear tetrahedra due to its lower degree. However as discussed above,

simulation applied to structured NURBS elements can produce simulation results of

higher quality because of smoothness across elements (e.g., see studies in [87, 40]).

Figure 6.2 illustrates that the proposed representation can be useful in applications such

as animating elasticity, where high quality NURBS elements on the domain’s boundary

prevent element degeneracies. Linear elements, prone to flipping in nonlinear simulation

scenarios, are placed away from the critical regions, and the overall impression of the

animation visually appears smoother as well.

The mixed element representation is introduced in Section 6.1. Section 6.3 performs

a convergence study in 2D by verifying convergence of the mixed element representation

under refinement and also describes the warped stiffness approach adopted to higher-

order NURBS elements. The chapter discusses results in Section 6.4 and concludes in

Section 6.5.

6.1 Volumetric Representation

This section describes our proposed modeling pipeline. Let the domain of interest be

the input S, a 2-manifold without boundaries. S consists of a collection of coefficients

cl ∈ R3 and associated weights hl ∈ R and a set of parametric patches sk, defined as

sk(u, v) :=

∑p
i=0

∑q
j=1 hi,j ci,j Bi,p,τu(u)Bj,q,τv(v)∑p

i=0

∑q
j=1 hi,j Bi,p,τu(u)Bj,q,τv(v)

, (6.1)
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where Bi,p,τu(u) and Bj,q,τv(v) are B-spline basis functions as defined in [37]. p and q are

the degrees and τu and τv the local knot vectors of patch sk(u, v). The coefficients ci,j

with corresponding scalar weights hi,j define a control mesh of dimension (p+1)×(q+1).

Note that the indices (i, j) in Equation 6.1 are local to the patch sk(u, v), i.e., there

exists a mapping to a global index l.

By referring to Figure 6.3, S and an associated sampled midstructure (generated by

using one of several methods, e.g. [46]) are used to construct a volumetric representation

with the following steps:

1: Triangulate input and create unstructured tetrahedral mesh containing the point-

sampled midstructure.

2: Construct a harmonic function on the tetrahedral mesh (Figure 6.3b).

3: The harmonic function is used to offset the input surface into the interior, where

the user has control to specify the thickness of the resulting semistructured volu-

metric representation (Figure 6.3c).

4: The limit surface (see green bounding B-spline surfaces in Figure 6.3c) having the

same mesh layout as the input is triangulated (see Figure 6.3d) and its interior is

filled with unstructured tetrahedral elements (Figure 6.3d).

The general definition of S and its patches sk(u, v) allow a wide range of input

representations. For instance, if the input is an unstructured quadrilateral mesh, then

sk(u, v) defines a bi-linear patch with p = q = 1 and τu = τv = {0, 0, 1, 1} and hl = 1. A

more general input may use different weights and a mix of floating and open knot vectors

(see [37]), allowing higher continuity among adjacent patches and the representation of

rational geometries.

The following sections discuss these pipeline steps in more detail, i.e., Step 1 and 2

are discussed in Section 6.1.1, Step 3 is discussed in Section 6.1.2. Step 4 is discussed

in 6.2. The mixed element representation is finally defined in Section 6.2.1.
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6.1.1 Harmonic Mapping

Given an input surface S, the first step in our framework consists of triangulating the

set of coefficients cl, by triangulating the regular local control mesh ci,j for each patch

sk(u, v) as defined in Equation 6.1. From this triangle mesh and a sampled midstructure

of S, an unstructured tetrahedral mesh H is constructed (e.g., by using [186]).

Let V be the set of vertices in H. Let VE be the set of vertices on the boundary of

H and VI be the set of vertices defining the midstructure of S lying in the interior of

Note, VE and VI are subsets of V and also that VE may contains vertices in addition to

the coefficients cl, depending on quality control of the tetrahedral mesh generator.

Given H, VE and VI , a harmonic function on H is constructed. A harmonic function

is a scalar function w ∈ C2(Ω), w : H → R, satisfying Laplace’s Equation 1.1.

w satisfies the maximum principle, i.e., it does not exhibit any local minima and

maxima and has been shown useful in the domain of meshing and volumetric parame-

terization. See for instance [50, 126, 196, 76].

The finite element method [86] is used to discretize Equation 1.1. Ve and VI are

the sets of vertices on which the solution is known (Dirichlet boundary), where in this

context, the vertices in VE are set to 0 and the vertices in VI are set to 1. With this

setup w(x, y, z) evaluates to 0 at the boundary of H and to 1 at vertices defining the

midstructure (see Figure 6.3b).

A solution has the form

w(x, y, z) =
∑
vk∈V

ŵk φk(x, y, z), (6.2)

where φk(x, y, z) are linear hat functions [86] associated with the respective vertex in

H. Galerkin’s formulation [86] is used to set up a linear system which is solved to assign

a harmonic value with every vertex in V. The gradient field ∇w over H is piece-wise

constant, flowing towards the sampled midstructure.

6.1.2 Offset Input Surface

The harmonic function w(x, y, z) is used to offset the vertices cl defining S into the

interior of S. In a first step, the user is given the ability to choose a parameter value
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w0 ∈ [0, 1], allowing the user to control the volume enclosed by S and the isosurface

w(x, y, z) = w0 (see Figure 6.3c). Once this choice has been made, the remaining

pipeline stages proceed automatically. Note that since the midstructure representation

is sampled, the isosurface at w0 could be of higher genus than the input S, especially
when w0 is close to 1. The proposed method requires that the isosurface at w0 and the

input have the same genus, i.e., the user must choose a w0 that satisfies this condition.

For every cl defining the input surface S a path gl(ω), gl : R → R3 is constructed

emanating from cl by following ∇w and terminating at point c′l, where w(c
′
l) = w0, i.e.,

gl(0) = cl and gl(w0) = c′l. Note that gl(ω) is parameterized through the harmonic field

w(x, y, z). Let S ′ be the surface defined with the coefficients c′l (see green surface in

Figure 6.3c), with corresponding surface patches s′k(u, v).

Given the paths gl(ω), surface patches sk(u, v) can be swept into the interior of S.
Assume there exists a sorted set W = {ω0 = 0, . . . , ωn = w0}, consisting of n scalars,

where ωi ∈ [0, w0]. Given W , for each sk(u, v) a volumetric NURBS patch vk(u, v, w),

defined as

vl(u, v, w) :=

p,q,n∑
i,j,k=0

wi,j,k gi,j(ωk)Bi,j,k(u, v, w), (6.3)

can be constructed, where

Bi,j,k := Bi,p,τu(u)Bj,q,τv(v)Bk,r,τ(w), (6.4)

and where vl(u, v, w) defines a triple sum. r defines the degree in w and τ is the knot

vector in the domain [0, 1]. The weights wi,j,k in the interior of V are set to 1. W is

determined through an optimization procedure trying to determine the values ωi such

that the volumetric elements in vl(u, v, w) have equal volume.

Due to the maximum principle of w, paths gl(ω) are consistent and therefore self-

intersecting elements, as they often arise by offsetting a surface along its normal field,

generally do not occur. Furthermore, due to the properties of Laplace’s Equation 1.1,

gl(ω) and the resulting vl(u, v, w) are orthogonal to the input surface S.
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Let V be the collection of volumetric patches vl(u, v, w). Note that the outer

boundary of V and the input surface S are the same. The inner boundary of V, i.e., S ′,

(see red surface in Figure 6.4) is geometrically similar to the isosurface w(x, y, z) = w0.

6.2 Tetrahedralize the Interior

For the following discussion let I be a collection of tuples (c′l, tl, s
′
k(u, v)), where

tl = (u∗l , v
∗
l ) is the node location [37] corresponding to c′l, and s

′
k(u, v) is the surface patch

whose parametric domain contains tl. Given such a tuple, let xl = s′k(tl). xl is equivalent

to a first-order projection of c′l onto sk(u, v) [37] and can be computed efficiently.

Figure 6.5 illustrates this setup for a single NURBS surface and its corresponding

triangle mesh.

The final step in our proposed framework consists of filling up the interior of S ′ with

unstructured tetrahedra. Similarly as in the first step of our framework (Section 6.1.1),

S ′ is triangulated. However, instead of the coefficients c′l, the locations xl are used for

Figure 6.4. Paths following ∇w (gray) emanate at cl (green points) and terminate
on isosurface w(x, y, z) = w0 which is approximated with S ′ (red). The choice of the
midstructure allows creation of elements in thinner tubular regions.
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Figure 6.5. Illustration of C(2) NURBS surface and corresponding C(0) triangle mesh.
c′l (blue) for the NURBS surface and xl (green) for the triangle mesh boundary, represent
the same degree of freedom. Due to geometric concavities, the representations are
overlapping.

the triangulation (see Figure 6.5). The interior of the resulting triangle mesh is filled

up with unstructured tetrahedra to construct the tetrahedral mesh T (Figure 6.3d).

6.2.1 Mixed Element Representation

After completion of these framework steps, the proposed mixed element volumetric

representation is defined by the tuple

H = (V, T , I). (6.5)

Even though c′l and its corresponding xl in I are at different locations (Figure 6.6), in

our simulation framework discussed below, they represent the same degree of freedom.

I is the interface between V and T .
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Figure 6.6. Mixed element representation in 2D. Quadratic NURBS elements at the
boundary and linear triangles in the interior. Quadratic NURBS elements were chosen
at the boundary to demonstrate the worst-case scenario of the alignment with triangles
in the interior. As discussed in the text, convergence is achieved even in this more
general scenario. Using cubic NURBS elements, the triangles are more closely aligned
with the B-spline element boundaries (see Figure 6.2).

The connection of two different representations of interfaces, in our case V and T ,
has been examined in the context of mechanics modeling, in the areas of contact and

fluid structure interaction. For instance, the reader is referred to [162, 58, 75, 206,

27, 102]. Our approach is a collocation approach, in contrast to a mortar approach,

where V and T are forced to match at specified collocation points, i.e., the points in

I. Given this setup, it is clear that the two interfaces will not match because of the

difference in representations (see Figure 6.5 and 6.6). The interface will have gaps

or overlaps depending on whether the relationship is concave or convex. In our case,

we are interested in volumetric representations, so although overlapping volumetric

representations are not the desired goal, we can be confident that the two interfaces

(and hence the volumetric representations) converge to a common representation. This

is due to B-spline properties [37], where under successive refinement, the control mesh

of S ′ converges to S ′ and hence the gaps and overlaps between the boundary of T and
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S ′ get smaller.

This hybrid choice has been made for two reasons. While continuity could be

more easily achieved in the 2D case, the proposed method avoids patching higher-order

tetrahedral elements to quadrilateral surface patches in 3D. This choice also simplifies

model subdivision and generation of T . Secondly, in the subsequent sections it will be

demonstrated that this representation behaves stably in the simulation environment:

Convergence on a 2D problem is achieved (Section 6.3.1) and dynamic physically-based

animation is efficiently applied to the 3D case (Section 6.3.2).

Given a static or dynamic problem, discretized using the finite element method [86],

in the general case, there exists a solution function α : Ω → Rd. For instance in

linear elasticity d = 3 where α describes a displacement field defined over Ω, or in heat

conduction where α represents a temperature scalar field defined over Ω, i.e., d = 1. In

our framework Ω is represented with H.

Given the discontinuous nature of H, once α has been computed, α(s′k(tl)) �= α(xl)

each of a given tuple (c′l, tl, s
′
k(u, v)) ∈ I. α(xl) is the evaluation of α at tetrahedra that

have xl as one of its vertices. Therefore, before simulation proceeds, α̂l = α(s′k(tl)) is

computed, where α̂l is the coefficient of α corresponding to the tetrahedron where one

of its vertices is xl. This enforces that α(s
′
k(tl)) = α(xl). In the subsequent sections we

demonstrate that with the proposed collocation-based approximation, convergence can

be achieved and efficient physically based animation can be performed to Ω.

6.2.2 Robustness and Practical Considerations

S ′ tends to have self-intersections if the input surface contains highly stretched

elements, e.g., see Figure 6.1. Therefore, before the mixed element representation

generation framework is executed, the input surface is appropriately refined, such that

the elements have similar size and shape. While the element count of the input surface

is increasing, the resulting triangle mesh corresponding to S ′ has a better quality and

is more suitable to generate a unstructured tetrahedral mesh.

Furthermore, while paths computed from a harmonic field are guaranteed to be

free of intersections, paths traced on a discretized field can overlap. The resulting

higher-order elements comprising the thick shell can therefore have self-intersections
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which should be avoided. In a similar fashion to the method proposed in Chapter 9,

paths are traced simulataneously in small steps, where in each step the front defined by

the path endpoints are smoothed using a Laplacian Smoothing scheme such that the

endpoints remain on the corresponding isosurface.

6.3 Simulation Studies

In this section we examine the proposed mixed element representation as discussed

in Section 6.2.1 in two simulation scenarios. In the first study, we show that the solution

computed on such a representation converges under refinement using finite elements.

In the second study, we demonstrate that deformable body simulation based on finite

elements can be efficiently applied to it.

6.3.1 Convergence Study in 2D

Here, we examine a study in 2D to show that our proposed mixed element represen-

tation as discussed in Section 6.2.1 produces comparable simulation results with respect

to convergence rates under h-refinement [86] than the equivalent representation which

uses only triangles. Note that h-refinement increases the degrees of freedom at each

refinement step.

Assume we are given the following smooth analytical function g : Ω→ R,

g(x, y) := J(4, J0(4, 2) r(x, y)) sin(4 θ(x, y)), (6.6)

where r(x, y) :=
√
x2 + y2, and θ(x, y) defines the angle between vector (x, y) and the

Cartesian coordinate axes, i.e., r(x, y) and θ(x, y) convert (x, y) into polar coordinates.

Ω in this study represents a disk centered at the origin with a radius of 1 with boundary

∂Ω. Furthermore, J(n, z) is the nth Bessel function of the first kind at z ∈ R, and

J0(n,m) is the mth zero of the nth Bessel function of the first kind. Since g(x, y) = 0

at ∂Ω, the Dirichlet boundary condition at ∂Ω is set to zero. In the following experiment,

let f(x, y) := ∇2g.

In this study we investigate Poisson’s equation −∇2 g̃ = f , solved using Galerkin’s

method on two disk representations: (1) the disk is represented with NURBS elements
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at the boundary and triangles in the interior using the mixed element framework as

discussed in Section 6.2.1; (2) the disk is is represented with triangles only. Both

representations are refined three times where the error |g(x, y)− g̃(x, y)|2 is computed

for each refinement step. The corresponding log-log diagram is shown in Figure 6.7.

The figure also shows the disk representations at an intermediate refinement step and

the corresponding solution along the z-axis of the respective disk.

The convergence of a triangle representation to the true solution is hp+1, where p

is the order on element and h its radius. For instance, quadratic NURBS elements

therefore have a cubic convergence rate [16], while linear tetrahedral elements converge

quadratically. However, as the experiment in this section shows, under h-refinement,

the slope for both representations is approximately −2 indicating quadratic convergence

even due to the presence of higher-order NURBS elements. Our mixed element repre-

sentation has two inherent approximation errors: (1) Geometric approximation error

of the interior representation and (2) approximation error of the field. Both geometric

subdivision and linear triangle elements have a quadratic convergence rate. Therefore,

the overall convergence rate is limited to be quadratic. However, convergence rates

are not as crucial in applications such as computer graphics, where stability and high

quality simulation results are of greater importance. Such a scenario is examined in the

following.

6.3.2 Warped Stiffness

The previous section examined the numerical performance of the proposed mixed

element framework in the 2D case on a static problem. In this section we show that the

mixed element representation is also useful in the context of deformable body simulation

in 3D, where the equation of motion

M ẍ+ C ẋ+K (x− x0) = fext (6.7)
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is solved on the domain of interest. The coordinate vector x is a function of time, ẋ and

ẍ are the first and second derivatives of x in respect to time. x0 is the rest state (state

of equilibrium) at t = 0, M is the mass matrix, C the damping matrix, and fext is the

external force (see [86]). K is the stiffness matrix representing the second derivative of

Cauchy’s linear strain (see [141]), which is often chosen in practice, because K must be

computed only once at the beginning of the simulation, resulting in efficient time-step

computations and a larger time-step choice due to implicit integration. The choice of

a linear model leads to even more computational speedups with NURBS elements, i.e.,

the local stiffness matrix Ke for a NURBS element is much larger in comparison to that

for a tetrahedral element due to the higher number of degrees of freedom and its higher

polynomial degree, which also requires numerical integration to compute the entries in

Ke.

The linear strain model, however, is only valid close to the equilibrium configuration

and therefore is not suitable for large rotational deformations, due to the lack of the

nonlinear terms in the linear strain model. The warped stiffness approach proposed

by [57, 137] is an efficient and robust method to avoid these distortions. In this approach,

K and the resulting force vectors acting on the object (Equation 6.7) are updated

every time step in the rotated coordinate frame for each element. This is equivalent to

applying the rotation of an element at the current time-step to its stiffness matrix at

t = 0, i.e., by referring to [137], at the current time-step, the local stiffness matrix for a

given element is K ′
e = ReKeR

−1
e . Furthermore, f = K ′ x + f ′

0, where K
′ is the global

stiffness matrix constructed from the local stiffness matrices K ′
e. f

′
0 is constructed from

f ′
0e = Re f0e, where f0e is the element’s force vector acting at the element at t = 0.

Given a tetrahedron, the transformation from its rest state to its current state can

be described with an affine mapping, i.e., the rotational part of the transformation can

be determined uniquely. This is not the case for a nonlinear transformation of a NURBS

element, i.e., the rotation of a point in the rest state to its corresponding point in the

current state may vary across the element. For a given NURBS element, we approximate

its rotation Re by extracting the rotational part of the Jacobian J = Jp · J−1
m evaluated

at the center of the element. Jm is the Jacobian of the parametric mapping of the
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element in the rest state, Jp is the Jacobian of the parametric mapping of the element

at its state at the current time-step.

Our experiments indicate that this approximation is sufficient and produces plausible

deformations, i.e., false object scalings do not visibly occur.

6.4 Results

We applied the proposed approach to the following closed input objects, represented

with the bicubic patches: B-spline surfaces computed from Catmull-Clark subdivision

surfaces shown in Figure 6.1 and Figure 6.3; Bézier surfaces with G(1) continuity

computed from quadrilateral meshes computed using the approach by [165] shown in

Figure 6.8(a), (b), (c); NURBS surfaces approximating a mechanical part with C(2)

continuity in the interior and C(0) at adjacent surface patches (Figure 6.8(d)). In all

cases, a cubic knot vector is used for the w-direction. In the current framework, the

midstructure has been computed using the tight co-cone approach [46], where for some

models, the resulting medial axis has been manually simplified. For instance, for the

fandisk model (Figure 6.8(d)), sheets corresponding to sharp features were manually

removed. Although manual medial axis simplification is a time-consuming procedure,

our approach only requires a sampling of a midstructure and does not require proper

topological connectivity, so the simplification was performed rapidly and did not exceed

ten minutes for each of the input models. We applied laplacian smoothing and edge

collapses to produce triangles of similar size and area. The corresponding vertex set

was used as sampling for the intermediate tetrahedral mesh (Figure 6.3(b)).

The only remaining user input to the subsequent pipeline stages was the choice of

thickness of the outer B-spline volumetric region as discussed in Section 6.1.1. The

reason for this is that a user might want to specify a different thickness depending on

the application. For instance, a thicker NURBS volume would result in more high-

order trivariate patches with wider basis function support, resulting in slightly slower

simulation, but higher simulation quality as illustrated in Figure 6.2 in a 2D example.

However, for prototyping purposes, a user might choose thinner volumes to compute

simulation results more quickly.
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(b)

(c)

(a)

(d)

Figure 6.8. Methodology applied to four objects. Elements are culled to better
visualize the filled interior of the objects. Object boundaries and interior boundaries
are shown in red and green, respectively. The input for (a), (b) and (c) are bicubic
Bézier patches. The input for (d) are bicubic NURBS surfaces. The wire-frame shows
C(0) continuities.

The remaining computational step consisting of constructing Laplace’s matrix, trac-

ing paths and creating volumetric elements, can be neglected as these operations can

be parallelized and computed efficiently. Timings were less than five minutes for each

of the test models. As discussed in Section 6.1.2, after the user performed all required

input, the sampling procedure in [126] is adapted for our context that resamples the

paths to create roughly equal B-spline volumes by avoiding degenerate elements. Note

that this procedure only re-samples the paths gl(ω) computed from the input points
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and ∇w as discussed in Section 6.1.2 and does not require any other recomputation.

6.5 Conclusion

In this chapter we proposed a framework to create a volumetric representation from

an input surface represented with untrimmed NURBS surfaces. The approach is based

on harmonic functions which are used to offset the input surface until a user-specified

offset distance is reached. The remaining interior volume is filled with unstructured

tetrahedra, and a collocation approach is proposed to address the correspondence

problem. The boundary surface of the volumetric representation and the input surface

are the same, i.e., smoothness and geometry of the input surface are maintained in

the volumetric representation. The use of harmonic functions in this context allows a

flexible choice of an appropriate midstructure: A simplified medial axis was used for

the examples in this chapter, but other representations such as one-dimensional curve

skeletons and midsurfaces can be specified as well. Hence, this methodology generalizes

approaches such as the methodologies presented in Chapter 4 and Chapter 5. If desired,

the major part of the volume can be filled up with high-order volumetric elements.

We have shown that the method can be applied to NURBS surfaces from various

inputs, which means that creating the volumetric representation is independent from

creating the input surfaces. This is in contrast to volumetric parameterization methods.

Therefore, the proposed pipeline can be added to existing quadrilateral mesh, surface

modeling, and data-fitting pipelines. We plan to extend the current framework to allow

further input representations such as T-splines [178] which allow modeling more complex

objects.

A limitation of the approach is the geometric discontinuity between the high-order

boundary in the interior and the boundary of the interior tetrahedral mesh, where

the convergence rate of the tetrahedral mesh is the limiting factor. While we have

demonstrated that the resulting mixed element volumetric representation is stable,

can be used in simulation scenarios and is motivated by discontinuous mixed element

simulation representations from other areas, in future work we plan to extend our frame-

work to work to a wider range of element types, for instance higher-order tetrahedral



160

elements. Note that a fully continuous representation is more difficult to achieve, mainly

because of the smooth input surface representations which can have an arbitrary choice

of continuity and smoothness properties. Therefore, we also plan to investigate how the

current setup performs in comparison to a discontinuous Galerkin approach, such as a

mortar method [162], to further evaluate the performance of our proposed simulation

framework.

In conclusion, we see our approach as especially useful in applications which require

that the input surface parameterization has to be maintained in the volumetric repre-

sentation, such as in IA. But the approach is also useful in applications where the time

to generate volumetric inputs is very limited, requiring only little user input, which is

generally desired and even required in various computer graphics applications.



CHAPTER 7

GENERALIZED SWEPT MIDSTRUCTURE

In this chapter we introduce a novel midstructure called the generalized swept

midstructure (GSM) of a closed polygonal shape, and a framework to compute it.

The GSM contains both curve and surface elements and has consistent sheet-by-sheet

topology, versus triangle-by-triangle topology produced by other midstructure methods.

To obtain this structure, a harmonic function, defined on the volume that is enclosed

by the surface, is used to decompose the volume into a set of slices. A technique for

computing the 1D midstructures of these slices is introduced. The midstructures of

adjacent slices are then iteratively matched through a boundary similarity computation

and triangulated to form the GSM. This structure respects the topology of the input

surface model is a hybrid midstructure representation. The construction and topology

of the GSM allows for local and global simplification, used in further applications such

as parameterization, volumetric mesh generation and medical applications.

7.1 Introduction

Many applications in the field of computer graphics and visualization require interior

midstructures of three-dimensional objects that represent their form or shape with lower

dimensional entities. One-dimensional curve skeletons [11], and the 3D medial axis [187],

are such examples that have been used for mesh generation, animation, registration,

and segmentation applications. Curve skeletons faithfully represent an object in tubular

regions. For more general geometry, a medial axis is preferred since it consists of surface

sheets [187] and they better capture the shape than curve skeletons.

However, a medial axis is very sensitive to small changes in shape and it produces

nearly degenerate polygons in tubular regions. Our quest for a new type of midstructure

is motivated by three reasons. (1) In some situations, it is desirable for a user to design
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a skeleton. Since a user might be aware of which regions require higher fidelity elements

and a reduced number of extraordinary points in later simulations, the user can design

a midstructure to yield the appropriate mesh layout. This is similar to the motivation

of the approach presented in [126] and [124] and is difficult to achieve with medial axis

computation algorithms. (2) The topological structure and connectivity information of

midstructure components is often required for the aforementioned applications. How-

ever, existing techniques for medial axis computation of polygonal models (e.g., tight

co-cone [46], powercrust [8], discrete scale axis (DSA) [131]) do not classify surface sheets

of the medial axis as illustrated in the magnified view in Figure 7.1. Given a polygonal

GSM DSA

one fin sheet removed

keep selected sheets

initial GSM

Figure 7.1. Sheet based simplification using GSM (left) vs. global simplification using
DSA (right). Magnified regions compare triangulations in a region where surfaces meet.
Only the GSM shows 3 distinct sheets (red, blue, yellow) while the DSA shows similar
polygons. The yellow GSM sheet (top left) is removed (mid left GSM). To simplify
DSA in this region requires removal of additional structures in other regions (mid right
DSA). Bottom row illustrates removal of a large blue sheet on one side of the GSM,
whereas simplification of the DSA results in removal of polygons from both sides.
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medial axis representation, identifying surface sheets requires postprocessing that often

includes topological fixing and establishing connectivity information. This is a tedious

process as it requires extensive human input. (3) Neither curve skeletons nor 3D medial

axes have an embedded parameterization (see Figure 7.2). Such a parameterization can

be useful for 3D cross field design [144, 85].

This chapter introduces the Generalized Swept Midstructure (GSM) (Figure 7.3)

with the three properties, discussed in the following.

7.1.1 First Property

The GSM is a hybrid midstructure, consisting of both curve and surface elements,

that is suitable for an input shape consisting of both general and tubular regions.

Examples are presented in Section 7.7.

7.1.2 Second Property

Analogously to [79] for curve skeletons or [143] in computing fair morse functions to

extract the topological structure of a surface mesh, the user determines a sweeping

GSM

Tight Co-cone

sweeping
direction

Figure 7.2. The tight co-cone is intrinsic to the object, consisting of accurate but
complex medial topology. A GSM identifies sheets (blue, red and white) and because
of its swept generation, it has a natural parameterization.
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strategy by choosing a harmonic function that conforms naturally to an object’s shape.

Apart from this specification, the construction of the GSM is automatic. From this

harmonic function a 3D harmonic function is computed. In this work, midstructures

(i.e., simplified medial axes) of level sets of the 3D harmonic function are swept across

the input object (Figure 7.3 (a) and (b)) to generate a GSM. The level sets are typically

nonplanar regions. This generality reduces the number of connected components and

therefore enables the approach to be used for a wide variety of objects. A theoretical

framework for a swept medial axis was proposed in [42]. The goal of that work was to

present theoretical results on geometric properties of the object in terms of medial axes

of the planar slices. In our work, we present practical algorithms for an implementation

of a generalization of that framework and demonstrate several results.

7.1.3 Third Property

The swept nature of a GSM suggests a parameterization strategy. Namely, one

parameter is assigned as the harmonic function value and the second parameter is ob-

tained by assigning parameter values to the midstructure of each slice. Figure 7.2 shows

an example. Furthermore, the GSM construction approach automatically classifies the

various sheets of the midstructure, computed by tracking transitions of curve segments

of the midstructures of the level sets. Given the sheet-by-sheet topology of the GSM

(see colored sheets in Figure 7.3 c), the user can select sheets of the GSM that are to

be preserved or removed in a simplification procedure (see Figure 7.1). A simplified

midstructure can be used in subsequent applications, such as generation of 3D cross

fields or volumetric parameterization.

The contributions of this chapter include:

• Introduction of the GSM, a novel midstructure based on sweeps of midstructures

of nonplanar level sets, and a pipeline to compute it (Section 7.3).

• A novel planar medial axis computation algorithm, from which the midstructure

is computed (Section 7.5).
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• A matching algorithm for consecutive midstructures to create a GSM with con-

sistent topology (Section 7.6).

7.2 Background

There has been vast research on midstructures related to the proposed GSM. 1D

curve skeletons and 3D medial axes are special types of midstructures. Algorithms for

computing them are reviewed in the surveys [187, 19].

In a similar fashion to the GSM construction, level set diagrams [110] are constructed

by connecting barycenters of isocontours of a scalar function defined on a surface. Curve

skeletons are extracted by improving Reeb graphs of harmonic functions in [79]. Mesh

contraction using constrained Laplacian smoothing is used to construct curve skeletons

in [11].

Exact arithmetic is used to compute medial axes of polyhedra in [41]. Approx-

imations of the medial axis of polygonal meshes are computed using distance fields

in [62] and Voronoi diagrams in [190]. Algorithms for computing medial axes from

point-sampled surfaces based on Voronoi graphs are [8, 46, 30]. The discrete scale

axis [131] is a variant of the medial axis that computes connected polygons of medial

surfaces corresponding to dominant shape features at a user specified simplification

scale.

Voronoi based medial axis computation algorithms are computationally efficient.

However, since there is no sheet topology information, there is no explicit relationship

between medial axis regions and object shape features. Furthermore, in contrast to a

GSM, global methods do not suggest a strategy to parameterize the resulting medial

axis, at least in part because sheet structure is undetermined. With an explicit sweeping

direction, the GSM identifies sheets, and has a natural parameterization that can be

used for later applications as discussed in Section 7.8. Figure 7.2 shows a comparison

between the tight co-cone and GSM.

A hybrid structure is derived via topological analysis of the 3D medial axis of an

object in [68] and is used to annotate tubular and more general regions of the object.

However, the derived structure is susceptible to problems associated with medial axis

computation. Thinning algorithms such as those presented in [93] are used to derive
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skeletons of objects represented as subregions of volumetric grid data. The derived

skeletons consist of discrete voxels without topology. The topology must be inferred in

a post process, and is susceptible to errors stemming from sampling density and object

orientation within the grid. Our proposed approach automatically generates curve and

surface sheet skeletons in appropriate areas with consistent topology at the transition

regions and sheet topology in surface regions.

7.3 The GSM

The generalized swept midstructure (GSM) is a midstructure obtained by joining

midstructures of nonplanar slices of a polygonal representation of a closed 3D object.

The GSM, a connected structure lying in the interior of the object, is a generalization of

the swept medial axis as proposed in [42]. The GSM consists of triangulated surfaces and

curves represented as polylines. The GSM is invariant under rigid body transformations

and scaling.

7.3.1 Computational Pipeline Overview

This section provides an overview of our methodology to construct a midstructure

for a closed surface triangle mesh. Let (T ,VT , CT ) define the bounding triangle mesh,

where T is the set of triangles, VT is the set of vertices, and CT is the connectivity of

the mesh. Based on T , a volumetric representation Ω ⊂ R3 is constructed, represented

as an unstructured tetrahedral mesh, denoted by (H,VH , CH), where H ⊂ R3 is the set

of tetrahedra, VH the set of vertices defining the tetrahedra, and CH the connectivity of

the tetrahedral mesh. H is constructed using a tetrahedral meshing method, e.g., [186],

and has T as its boundary.

The following steps describe the construction of GSM from the input shape T , as
shown in Figure 7.3:

1: Compute a harmonic function u(x, y, z) on H (Section 7.4).

2: Decompose H into a sequence of nonplanar slices Li (Li are level sets of u(x, y, z))

(Section 7.4.1).

3: Extract a simplified 2D midstructure for each Li (Section 7.5).
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4: Starting from the first slice, iteratively construct the midstructure by matching

the midstructures of two adjacent slices until the last slice is reached (Section 7.6).

7.4 Harmonic Functions

The GSM framework can be used if the dataset already contains a slicing strategy

(e.g., segmented data from a volumetric scan). In this case we proceed to step 2 in the

GSM construction pipeline. Otherwise, we compute a harmonic function.

A harmonic function is a function u ∈ C2(H), u : H → R, satisfying Laplace’s

Equation 1.1.

Galerkin’s formulation [86] is used to discretize Equation 1.1. VH can be decomposed

into the set VB for which the solution is known (Dirichlet boundary) and the set VI , for

which a solution is sought. A solution has the form

u(x, y, z) =
∑
v∈V

ûk φk(x, y, z), (7.1)

where φk(x, y, z) are linear hat functions associated with vertex vk ∈ V. The gradient

field ∇u over H is therefore piecewise constant.

In our framework, many methods can be used to create the slicing strategy, such

as [49], but we chose approaches similar to [143, 50, 79], where the user determines the

points in the set VB. The user therefore has control over u(x, y, z) and the resulting

sweeping strategy. Figure 7.4 illustrates two harmonic functions on the genus-1 kitten

model. While u(x, y, z) in Figure 7.4a has two saddles, u(x, y, z) in Figure 7.4b follows

a torus-like sweep. Both are valid. Figure 7.4 also shows the corresponding GSMs for

these two distinct choices.

7.4.1 Decomposition of H
Given the harmonic function u(x, y, z), a slice Li (Figure 7.3b), at value ui ∈ R is

the level set satisfying u(x, y, z) = ui. Li is extracted using marching tetrahedra [33].
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Depending on the choice of VB and resulting saddle points [143], Li can consist of mul-

tiple disjoint nonplanar 2-manifolds represented with triangle meshes with boundaries.

Once the user specifies the harmonic function u(x, y, z), which determines the cutting

strategy, the object is decomposed into a set of slices Li such that every triangle in T
is intersected by at least one slice which captures the global features in T . For each

vertex pki of Li, a path can be constructed from pki to a new point pkj , the projection of

pki on level set Lj , by following ∇u(x, y, z). Let lki,j be the length of this path.

Then, given this set of slices, let εi = max∀k{lki,i+1} be the distance between slice i and

i+1. Due to distortions of u(x, y, z) and triangulation of T , εi is not constant across the
slices. To achieve a cutting of the object such that εi varies slowly, the input surface can

be remeshed into a triangle mesh whose triangles have approximately the same size and

shape. These parameters can be chosen by the user to maintain a specific feature size.

Such a triangulation can be computed using, for instance, Afront[173] which creates a

triangulation with smaller triangles in regions with higher curvature and larger triangles

in regions with lower curvature. Section 7.7 presents an example that shows GSMs of

different versions of an input object.

Each component of Li is flattened using the CGAL [1] implementation of the

LSCM [113]. The boundary of the flattened Li is approximated with a periodic B-spline

curve using the method proposed in [126]. A medial axis with topological structure is

computed for the planar region enclosed by this curve, using a novel technique presented

in Section 7.5. This medial axis is simplified, yielding the midstructure which is mapped

onto the respective component of Li and incrementally matched with that of an adjacent

slice to construct the GSM (Section 7.6).

7.5 Computing Midstructure of Slices

In order to construct reliable GSMs, we require midstructures to consist of smooth

curves and smoothly changing geometry and topology between adjacent slices. Several

techniques for computing the medial axis of a planar region from piecewise smooth [163,

3] or discrete boundary representations [187, 19] exist. However, such approaches

introduce artifacts, due to the nature of the representation, and human interaction
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is required to remove them to compute a suitable midstructure. In a dissertation

by Musuvathy [138] a method is presented to automatically and accurately compute

the medial axis with topology of the parametric B-spline curve that approximates the

boundary of the flattened level set Li. A suitable midstructure is then computed by

simplifying the medial axis based on its topology.

The medial axis of a planar region enclosed by a bounding curve γ is the locus of

centers of maximally inscribed circles that are tangent to two points on γ, with the limit

points of the locus [66]. The contact points of each maximal circle with the boundary

curve are called foot points for the corresponding medial axis point. A limit point is

either an end point or a junction point at which the maximally inscribed circle has

one or three foot points, respectively. Three medial curve segments meet at a junction

point. Figure 7.5 shows an example of the medial axis of a planar region computed

using the method presented in a dissertation by Musuvathy [138]. This method also

computes foot points and distance to the boundary for each medial axis point, thereby

giving the complete medial axis transform.

7.5.1 Medial Axis Simplification

The midstructure is constructed by simplifying the computed medial axis. Leaf

segments are deleted and internal segments are merged. Medial segments incident at

distance critical points are merged. These operations are performed when the respective

segment length is smaller than the slicing distance (εi). Note that this procedure

may result in more than three incident curves at a junction point, but does not add

complexity to the matching algorithm presented in the next section.

If all segments of the medial axis are smaller than εi, the medial axis is contracted to

the centroid of the region. This situation occurs when the boundary is nearly circular

and therefore the medial axis consists of small segments near the center of the region.

These contractions result in 1D curve segments in the GSM. We will denote a topological

graph of the midstructure of the level set Li as Mi = G(Ni, Ei), where Ni is the set of

the end points and junction points, and Ei is the set of edges that connect these points.

These edges correspond to the curved segments in the original midstructures that are

densely sampled for later GSM representation. pji is used to denote the jth node in Ni,
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J D

E

Figure 7.5. Medial axis of a region bounded by a B-spline curve. Along with their
maximal circles, end points (E) are shown in orange, junction points (J) in blue, and
distance critical points (D) in red. The arrows point to the foot points.

and (pji , p
k
i ) ∈ Ei represents the edge between those nodes.

7.6 Matching Successive 2D Midstructure

After computing midstructures for each level set (Section 7.5), given the two succes-

sive midstructures represented as two graphs (Section 7.5), we match the edges of the

graphs. A triangulation is used to connect these matching pairs based on the samples

along the original midstructure (see Figure 7.6). A number of existing graph matching

techniques can be applied to accomplish this step [65, 188, 103]. However, these

methods typically deal with more general graph matching problems without knowing the

relation between the two graphs that are matched. Thus, their algorithms are usually

complicated and computationally expensive. In contrast, in the present problem, one

graph is evolved from the other through a small change and hence the generic transitions

between the two graphs are well-defined [66]. Therefore, a simpler matching technique

can be devised by finding the correspondences along the section boundary curves from
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Figure 7.6. A triangulation is used to connect these matching pairs based on the
samples along the original midstructures.

which the midstructures are computed (Section 7.5).

7.6.1 Topological Changes

For smoothly changing geometry of the boundary, there are only two generic tran-

sitions of the midstructures [66]: Leaf creation/annihilation (Type 1) and Flip

configuration (Type 2). Type 1 corresponds to the creation (or destruction) of a

feature (e.g., a protrusion) on the boundary. To illustrate Type 2, consider the junction

points, pji and p
k
i in Mi and p

l
i+1 and p

r
i+1 in Mi+1, respectively. Each pair is connected

by an edge. In the continuous case, edge (pji , p
k
i ) will first collapse into a single node

before growing to edge (pli+1, p
r
i+1). However, the discrete cutting will likely not capture

the degenerate point as shown in Figure 7.7.

During matching, we assume at most one topoligical change on an edge (including

its two end points) of the graph when evolving from one level set to the next. If this

assumption is not satisfied, additional level sets between the original pair must be added

until it is satisfied. In the event this cannot be attained, other cases will be investigated

in a future work.

7.6.2 Matching

Let {cpi} be the set of foot points of Mi. We match two graphs Mi and Mi+1

according to the distance of {cpi} and {cpi+1} on ∂Li+1. We first project {cpi} (on
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Type 1 Type 2

Figure 7.7. The discrete cutting will likely not capture the degenerate point.

∂Li) to ∂Li+1 as discussed in Section 7.4.1. On the boundary of the level set Li+1, the

distance between any two foot points cp and cp′ is defined as the shortest arc-length

between them along ∂Li+1, ̂(cp, cp′). Assume that all foot points are sorted along ∂Li+1

(either clockwise or counter clockwise). Given a foot point cpji of Mi, there are exactly

two points cpli+1 and cpri+1 from Mi+1 that enclose cpji along the 1D boundary ∂Li+1.

Therefore, finding the closest point to a given foot point can be done in constant time.

Two end points pji , p
r
i+1 (Figure 7.8, bottom left) from the two graphs are called close

if their foot points are the closest pair on ∂Li+1. We then pair them in the matching,

denoted as pji ↔ pri+1. Two junction points pgi , p
b
i+1 (Figure 7.8, middle left) from the

two graphs are called close if the foot points of pgi are directly next to the ones of pbi+1

pairwisely on ∂Li+1 or their leaf nodes are all close to each other.

Given the above distance and similarity metric, our matching algorithm can be

described as follows (Figure 7.8). 1. Match two closest end points. 2. Match two

closest junction points. 3. Match two edges if their end points are matched pairwise. 4.

Handle topological changes and match remaining edges. Handling topological changes

proceeds as follows. 1) for Type 1, a junction point pl+1
i+1 is introduced (or removed)

if a new branch edge (pl+1
i+1, p

s
i+1) is growing out from (or collapsing onto) an existing

edge (pki , p
k+1
i ) that is split to two edges (pli+1, p

l+1
i+1) and (pl+1

i+1, p
l+2
i+1). We then match
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4. handle topology
1. match end points

2. match junction points 3. match edges

change

Figure 7.8. Illustration of matching algorithm. The top row shows two consecutive
slices, Li and Li+1 and their midstructures, Mi and Mi+1. The foot points of the end
points (orange dots) and junction points (blue dots) are highlighted on the boundaries.
Each point in the midstructure and its foot points are linked through straight lines.
The bottom figures illustrates the matching steps 1–4. Note that all the foot points
in level Li have been projected to level Li+1. For illustration purpose, we overlap the
midstructure Mi (skeleton with light colors) with Mi+1 (skeleton with dark colors).

(pki , p
k+1
i ) ↔

(
(pli+1, p

l+1
i+1), (p

l+1
i+1, p

l+2
i+1)

)
. Note that if the new branch edge is growing

from an existing junction point, we do nothing. 2) for Type 2, there are two unmatched

junction points for each graph, e.g., pji and pj+1
i at Mi, p

r
i+1 and pr+1

i+1 at Mi+1. They

are connected by an edge in their corresponding graph. In the meantime, all their

connecting end points are matched pairwisely (see the four end points in the illustrative

example of Type 2 above). It is this configuration that allows us to identify Type 2

topological change. To handle that, we insert four matching pairs: pji ↔ pri+1, p
j
i ↔ pr+1

i+1 ,
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pj+1
i ↔ pri+1, and p

j+1
i ↔ pr+1

i+1 . Note that if a skeleton graph contains only a single node,

everything in the successive graph will be mapped to this node. This guarantees the

continuous transition between 1D curve and 2D surface structures of a GSM.

7.6.3 Handling Bifurcations

The aforementioned matching framework works well for level sets with one connected

component. It is not sufficient for the case where the number of connected components

of the level sets changes at the saddle points of the harmonic function (e.g., the splitting

and merging of level sets), for instance, at the basis of the ears of the bunny. We extend

the framework to handle the matching at bifurcations as follows.

Let Ci and Ci+1 be the number of connected components in Li and Li+1, respectively.

Assume Ci < Ci+1 (i.e., splitting). We project cpji onto ∂Li+1 (If Ci > Ci+1 (i.e.,

merging), we project cqli+1 onto ∂Li). Each projected foot point cpj
′
i+1 is assigned a

component index after projection. All the foot points of one node pji are in the same

component after projection because of the properties of the harmonic function. We

extract subgraphs from Mi based on the assigned component indices. These subgraphs

are matched with the corresponding components of Mi+1 using the same algorithm

described in Section 7.6.2.

By referring to Figure 7.9, let ei represent the edge (pji , p
j+1
i ) ∈ Ei of Mi. It splits

Figure 7.9. Handling of GSM bifurcations.
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into two edges in Mi+1. Assume that pji is matched to pli+1. We examine the edges

adjacent to pli+1 in Mi+1, and find out the one whose other end node pri+1 has not been

matched and has the smallest Euclidean distance to ei. We then project pri+1 onto ei at

pr
′

i and construct a partial matching between (pji , p
r′
i ) and (pli+1, p

r
i+1). We process pj+1

i

similarly.

7.7 Results and Discussion

Figure 7.10 shows results of our framework for a number of graphics, medical, and

CAD models. The iterative construction of the GSM allows us to track topological

changes of the midstructures of level sets along the user desired cutting orientation.

Different color sheets in Figure 7.10 represent the evolution of their individual feature

components of the midstructure (the edges of the simplified medial graph). Figure 7.11

presents a comparison with 1D curve skeletons [11] and discrete scale axes [131] for a

model with tubular and more general regions (see the middle and right columns). Both

the curve skeletons and discrete scale axes are computed using the programs provided

by the authors of those papers. This comparison shows that the hybrid structure of the

GSM captures the tubular and more general regions of each object as curve and surface

elements, while the other two approaches contain only either of the two. The topology

of the GSM enables smoothing of sheet boundaries.

The user interaction to compute the harmonic function for the models presented

in this chapter did not exceed 5 minutes. The remaining pipeline steps to compute

the resulting GSM proceeded automatically. To extract one slice and compute its

corresponding midstructure takes about 1 minute in our current implementation. Since

this computation can be performed independently per slice, our framework can leverage

multicore computer architectures. We implemented the GSM pipeline on an interlinked

Intel Xeon X730 Processor comprised of 32 cores, where GSM computation for the

examples shown in this chapter did not exceed 20 minutes. In comparison, the rep-

resentations constructed by global algorithms such as the discrete scale axis [131], the

tight co-cone [46] or the skeleton computed through mesh contraction [11] took less

than two minutes for the triangle meshes used in this chapter. However, the GSM
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400, ε = [0.006, 0.135]

350, ε = [0.004, 0.099]

250, ε = [0.032, 0.151]

Figure 7.10. GSMs for rockerarm, fertility and pelvis models. Different GSM sheets
are shown in different colors. The sweeping strategy is shown for each model on its
boundary. For each GSM, the number of slices and the minimum ε and maximum ε are
provided below the respective model.
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74, ε = [0.148, 0.986]

Figure 7.11. Comparison of midstructures. Top: GSM; middle: 1D curve skeleton;
right: Discrete Scale Axis. Different GSM sheets are shown in different colors.
Furthermore, the sweeping strategy is shown on its boundary. The number of slices
and the minimum ε and maximum ε for the GSM are provided below the respective
model. For the curve skeleton, Laplacian constraint scale and positional constraint
weight are 2 and 1, respectively. For discrete scale axis, δ = 0.01 and s = 1.1.
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automatically derives the toplogical structure and classifies sheets, whereas given a

medial axis computed from existing techniques, significant additional time is required

for sheet classification and other postprocessing.

Figure 7.12 shows an example of an object represented with two different triangu-

lations. The input object in Figure 7.12 (bottom) has a coarser and more irregular

triangulation than Figure 7.12 (top). It can be seen that sharper features lead to

distortions of the harmonic function, resulting in larger slicing densities in these regions,

e.g., tips of the dolphin fins in Figure 7.12. The GSM of the coarser mesh still captures

the global shape features represented in the GSM of the object with finer mesh. Since

400 GSM slices

106 GSM slices

7866
surface triangles

2448
surface triangles

Figure 7.12. GSMs computed on a uniform vs. coarse feature-aware triangle mesh.
Both use one minimum and one maximum. Curved slices created from the harmonic
functions are swept from tail to nose and capture overhang regions consistently.
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the number of slices for the coarser mesh is a quarter of the finer one, the computation

time for its GSM is roughly four times faster.

7.7.1 Limitations

The GSM pipeline requires the user to specify critical points to compute a harmonic

function. An appropriate choice of these points could be challenging for models with

more complex geometry and topology. The extremal points of a 1D curve skeleton are

given as hints to the user to recommend critical points. Note that the resulting GSM has

then a visually similar structure to a medial axis. Another limitation is that slices have

to be of genus-0 (i.e., no inner boundaries), which is due to the proposed medial axis

computation algorithm for the slices requiring a closed input curve. In addition, sharp

features in the input object may not be preserved if the cutting misses the features.

Furthermore, the current graph matching cannot handle complex configurations of

topological changes. Finally, the current computation is relatively slow due to the

slow B-spline root solving. We plan to address these issues in future work.

7.8 Applications

In this section we highlight two potential applications for which a GSM can be useful.

In the first application, a GSM could be used to generate a semistructured hexahedral

mesh (Figure 7.13 (a)) by decomposing the input object into simpler subvolumes, where

subvolumes correspond to sheets in the GSM. Then, each subvolume is parameterized.

Furthermore, the natural parameterization of the GSM could potentially be used for

3D cross field design which is used to generate a hexahedral mesh using a method such

as [144]. The proposed GSM pipeline could help in the following way. A desired cutting

strategy could be chosen by the user, where the resulting GSM could be used to align

hexahedral elements along the chosen sweeping direction.

The second application lets the user deform the object based on the GSM. The

consistent topology of the GSM has the potential to produce higher quality deformations

compared to other medial and skeleton based shape deformations. Figure 7.13 (b)

shows an example of the model in Figure 7.11. The fingers could be deformed using

skeleton-based deformation, while the palm could be deformed by editing the surface



182

(a)

(b)

Figure 7.13. Applications of the GSM. (a) Cut through a hexahedral mesh, where
the mesh layout was determined by the GSM for the respective model; (b) Deformation
based on GSM.

sheet of the GSM through Laplacian mesh editing.

7.9 Conclusions

This chapter presents a new hybrid midstructure called the Generalized Swept Mid-

structure (GSM), containing curve and surface elements with consistent topology. A

pipeline to incrementally construct the GSM of polygonal objects is presented that uses

a novel planar midstructure computation algorithm in conjunction with an algorithm to

match two similar 2D midstructures. The result is a connected structure that is close to

the 3D medial axis and respects the topology of the input surface. The sweeping strategy

is determined by a user who selects a small set of critical points to define a harmonic

function that naturally conforms to an object’s shape. The GSM is then incrementally

constructed by sweeping midstructures of level sets of the harmonic function.
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The structure of a GSM is user controlled via the choice of a sweeping strategy

and is therefore flexible to adapt appropriately for specific applications. This is not

the case for existing skeleton and 3D medial axis algorithms that determine an intrinsic

midstructure. Curve skeletons are more suitable for tube-shaped objects and 3D medial

axes are more suitable for objects with more general regions. The hybrid structure of

the GSM enables it to be applied for objects consisting of both region types. Existing

hybrid skeletonization approaches first compute approximations of 3D medial axes that

are then analyzed to differentiate tubular from nontubular regions. However, those

approaches are susceptible to topological issues with the 3D medial axis approximation.

We have demonstrated potential GSM applications, such as hexahedral meshing and

GSM-based shape deformation.



CHAPTER 8

NONLINEAR OPTIMIZATION

In this chapter we present a method for accelerating the convergence of gradient-

based nonlinear optimization algorithms. We start with the theory of the Sobolev

gradient, which we analyze from a signal processing viewpoint. By varying the order of

the Laplacian used in defining the Sobolev gradient, we can effectively filter the gradient

and retain only components at certain scales. We use this idea to adaptively change

the scale of features being optimized in order to arrive at a solution that is optimal

across multiple scales. This is in contrast to traditional descent-based methods, for

which the rate of convergence often stalls early once the high frequency components

have been optimized. Our method is conceptually similar to multigrid in that it can be

used to smooth errors at multiple scales in a problem, but we do not require a hierarchy

of representations during the optimization process. We demonstrate how to integrate

our method into multiple nonlinear optimization algorithms, and we show a variety

of optimization results in variational shape modeling, parameterization, and physical

simulation. Being able to optimize shape is a problem of fundamental importance to

computer graphics. Several graphics tasks can be posed as shape optimization problems,

where an input shape is optimized by iteratively modifying its parameters so that an

energy associated with the shape is minimized. The choice of the energy depends on

the application at hand. Frequently occurring examples include the Willmore energy

for variational shape design [204], an angle- and area-preserving energy for surface

parameterization [171], and a strain-based energy for statics problems [195]. In all

these cases, the shape optimization problem boils down to a numerical optimization of

the appropriate energy, subject to proper boundary conditions.

In many cases of practical importance, including the above examples, finding an
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optimal solution amounts to solving a set of nonlinear equations. Linear approximations

(e.g., [23]) do not always produce the expected result [140], and the minimization of

nonlinear energies is often necessary. The numerical optimization of such nonlinear

energies can be a lengthy process, usually performed iteratively and off-line for starting

shapes that are not already close to optimal. Typically, after the first few iterations, the

rate of energy decrease is significantly reduced, and the progress towards the minimum

is slow.

The reduction in the rate of energy decrease during the optimization process is not

necessarily a sign that the shape is close to optimal. More often, this is an indication

that the energy being minimized is ill-conditioned. While minimizing an ill-conditioned

energy, the rapid initial decrease is due to the optimization of shape features of high

spatial frequency, which requires just a few iterations and results in a large reduction of

the energy. In other words, the shape becomes locally close to optimal. The subsequent

progress towards the desired minimum is slow because features of low spatial frequency

must be optimized, which require more global changes to the shape. This phenomenon

is commonly observed in denoising applications, where the high frequency noise can be

rapidly removed in just a few iterations, while the low frequency features take a long

time to smooth out [194]. The bottom row of Figure 8.1 shows that after the high

frequency details of the dragon model quickly become smooth, the progress towards the

global minimum becomes negligible.

8.1 Contributions

Ill-conditioned optimization processes can be sped up by preconditioning, one form

of which is to modify the search direction at each step of the optimization process in

order to find a direction that allows larger steps towards the minimum. In this chapter,

we study the Sobolev preconditioner [97]. In particular, we present

• an analysis that shows the connection between the Sobolev gradient and filter

design, leading to an intuitive explanation of the behavior of the Sobolev precon-

ditioner in the context of optimization;
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• a novel, multiscale optimization algorithm that uses the Sobolev preconditioner

in a general nonlinear optimization pipeline suitable for graphics tasks;

• a novel algorithm for filtering the forces in a physical simulation, which allows

larger and more stable timesteps; and

• a comparison that shows the performance benefits of incorporating the Sobolev

preconditioner in standard optimization algorithms, such as gradient descent, the

nonlinear conjugate gradient method, and the limited memory BFGS (L-BFGS)

algorithm [146].

8.2 Overview

Consider the gradient descent optimization algorithm, in which the gradient of the

energy is used as the search direction along which to move towards the minimum. At

a high level, the Sobolev preconditioner smooths the standard gradient by removing

high frequency components, which allows the optimizer to take steps that change

the lower frequency, or more global, components of the shape. We extend this to a

multiscale setting, tuning the frequency response of the preconditioner at each step

of the optimization in order to accelerate the overall convergence of the algorithm.

This preconditioner can be easily incorporated into an existing implementation of an

optimization algorithm by simply applying the Sobolev preconditioner to the search

direction at each iteration and leaving the rest of the optimizer unchanged.

We use the Sobolev preconditioner in the contexts of variational shape modeling, pa-

rameterization, and elasticity simulation. The results indicate that even for cases where

traditional methods tend to stall and do not produce optimal results, we demonstrate

that we are able to achieve far more optimal shapes in reasonable runtimes.

8.3 Sobolev Preconditioning Background

Sobolev preconditioning for elliptic partial differential equations as defined in [97] is

a well-known approach with a substantial amount of study [97]. In this section we will

focus on previous works that use the Sobolev gradient for scientific computing tasks

commonly found in computer graphics.
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Renka and Neuberger proposed the use of the Sobolev gradient for curve and surface

smoothing [168, 167]. Charpiat et al. [29] and Sundaramoorthi et al. [191] used the

Sobolev gradient for speeding up curve flows used for active contours in a more general

framework that also considered other inner products. Eckstein et al. [51] solved the

surface flow equivalent of the previous two papers. These authors all describe how they

get significant performance benefits in their flows by using the H1 Sobolev gradient

instead of the standard L2 gradient. Inspired by these works, we extend this idea to

show how higher-order Sobolev gradients can be used as components in preconditioning

filters.

The multigrid method [24] is a conceptually closely related, and commonly used,

technique for solving ill-conditioned optimization problems. It has successfully been

used in a wide variety of contexts, such as finite element methods [169], parameteri-

zation [5], and mesh deformation [183]. The multigrid method requires a hierarchical

representation for the shape. At each level of the hierarchy, an iterative smoother is used

to remove the highest frequency errors. Since the scale of features removed depends on

what frequencies can be represented by the discretization, one can use a hierarchy that

spans from coarse to fine discretizations to reduce errors across multiple scales. While

multiresolution preconditioners are effective, representing the input shape hierarchically

for general representations can be challenging [72].

In Section 8.6, we demonstrate several applications of our method. We include a

discussion of work related to the applications in that section.

8.4 Mathematical Framework

In this section, we formally introduce the relationship between the gradient of an

energy and the inner product on the space of shape deformations. We start with the L2

gradient, and we show how other gradients can be constructed. For one particular form

of this construction, we provide an interpretation of this operation as a filter applied to

the L2 gradient (see Figure 8.2). In Section 8.5, we exploit this filtering viewpoint to

create a shape optimization algorithm in the spirit of a multigrid approach.
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8.4.1 Shape and Tangent Space

Let Ω be the space of possible shapes for the problem of interest, and let x ∈ Ω be

a point in this space. The tangent space, TxΩ, contains all tangent vectors to Ω at the

point x. Given a sufficiently smooth path, γ : R→ Ω, such that γ(t) = x, the tangent

space represents the space of all possible velocities γ ′(t) that the path could have at x.

We discretize Ω using a piecewise polynomial basis. In the discrete setting, a point

in shape space is given by x =
∑n

i=1 xiφi, where {φi}ni=0 is the set of basis functions

and {xi}ni=0 is the set of coefficients that defines the shape. For example, one possible

discretization of a surface embedded in R3 is a triangle mesh, for which {xi}ni=0 is the set

of vertex positions. We can write any path in the discrete setting as γ(t) =
∑n

i=1 xi(t)φi

with corresponding tangent vector given by γ ′(t) =
∑n

i=1 x
′
i(t)φi. As in the continuous

setting, the tangent space at a point is the space that contains all possible velocities

that a path could have at that point.

8.4.2 Inner Product on Tangent Space

We can equip the tangent space with an inner product, 〈u,v〉 for u,v ∈ TxΩ. The

canonical L2 inner product is given by 〈u,v〉L2 =
∫
u · v.

In the discrete setting, the L2 inner product for two tangent vectors u and v can be

written in matrix form as

〈u,v〉L2 = 〈
n∑

i=1

uiφi,

n∑
j=1

viφi〉
L2

=

n∑
i=1

n∑
j=1

uivj〈φi, φj〉L2

= uTMv ,

where in the second line, u and v are the vectors of coefficients {vi}ni=1 and {ui}ni=1, and

M is commonly called the “mass matrix” whose entries are defined by Mij = 〈φi, φj〉L2 .

As noted by Eckstein et al. [51], we can define alternate inner products using

〈u,v〉A = 〈Au,v〉L2 = 〈u,Av〉L2 , (8.1)
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where A : TxΩ→ TxΩ is a self-adjoint, positive definite linear operator.

The choice of inner product is key and, as we will show, has a large impact on the

performance of descent-based algorithms. Our goal in Section 8.5 will be to tailor A to

the task of optimizing the performance of these algorithms.

8.4.3 Gradient Vector Field

Given a smooth energy, E : Ω → R, that assigns a real value to a given shape, the

gradient of E at x is defined as the vector field, g(x) ∈ TxΩ, that satisfies

〈g(x),v〉 = lim
ε→0

E(x+ εv)− E(x)

ε

for all v ∈ TxΩ (see, e.g., [48]). In other words, the gradient is the vector field whose

inner product with v yields the rate of change of the energy along v. Since the gradient

is defined with respect to an inner product, each inner product leads to a different vector

field corresponding to the gradient. We can relate the A gradient to the L2 gradient by

combining 〈gA(x),v〉A = 〈AA−1gL2(x),v〉L2 with (8.1) to obtain

gA(x) = A−1gL2(x) . (8.2)

Therefore, if we have an expression for the L2 gradient of the energy, we can solve for

the A gradient using this equation.

In the discrete setting, the energy E depends on the coefficients {xi}ni=1, which we

write using an abuse of notation as E(x). We can evaluate the rate of change of E at

x in the direction of v as

n∑
i=1

∂E(x)

∂xi
vi =

∂E(x)

∂x
· v = 〈gL2(x),v〉L2 = (gL2(x))T Mv,

which, using the symmetry of M and the fact that this equation must hold for arbitrary

v, leads to
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gL2(x) = M−1∂E(x)

∂x
.

From (8.2), we obtain that for a linear operator A,

gA(x) = A−1M−1∂E(x)

∂x
(8.3)

8.4.4 Frequency Response of Gradient Filter

Motivated by the work of Kim and Rossignac [100] on constructing filters for mesh

processing, we choose A = B−1A, where B and A are both linear combinations of

powers of the Laplace-Beltrami operator, Δ, given by A =
∑p

i=0(−1)iaiΔi and B =∑q
i=0(−1)ibiΔi. Here, {ai}pi=0 and {bi}qi=0 are the sets of scalar coefficients that define

each linear combination, and Δ0 = I is the identity operator. Note that using this

definition for A, the resulting inner product is no longer symmetric. However, for the

purposes of optimization, this is a valid choice because the resulting gradient can still

be used as a descent direction.

In order to construct the A gradient in the discrete setting, we require a discrete

version of the Laplace-Beltrami operator, denoted by −L. For example, we use the

well-known cotan operator [160] for optimization problems involving triangle meshes.

In general, we define the discrete Laplace-Beltrami operator as −L = −M−1K, where

M is the mass matrix defined as before by Mij = 〈φi, φj〉 and Kij = 〈∇φi,∇φj〉L2 is

the stiffness matrix.

Given a discrete Laplace-Beltrami operator, we can write

A =

p∑
i=0

aiL
i and B =

q∑
i=0

biL
i (8.4)

and use (8.3) to obtain

AgA = BM−1∂E(x)

∂x
. (8.5)
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Kim and Rossignac [100] show that, under some reasonable assumptions, the eigende-

compositon of L can be written as

L = QΛQ−1 ,

where Λ is a diagonal matrix whose diagonal elements, λi = Λii, are the eigenvalues of

L, andQ is a matrix whose columns are the eigenvectors of L. Using this decomposition,

we can write (8.5) as

(
p∑

i=0

aiΛ
i

)
Q−1gA =

(
q∑

i=0

biΛ
i

)
Q−1gL2 .

Each row of this equation corresponds to an eigenmode of L, which we can use to

examine what happens to the corresponding eigenmode of L that is present in gL2

when we compute gA. We rewrite row j as

(
Q−1gA

)
j
= h(λj)

(
Q−1gL2

)
j
,

where h(λ) is the transfer function given by

h(λ) =

∑q
i=0 biλ

i∑p
i=0 aiλ

i
. (8.6)

This transfer function encodes the amount to which the eigenmode with eigenvalue λ is

amplified or attenuated when computing gA from gL2. Thus, by varying the coefficients

ai and bi, we can control the frequency response ofA−1, which we exploit in the following

section when designing our optimization procedure.

8.5 Algorithm

The goal of shape optimization is to find a path from a given initial shape x0 = γ(0)

to xmin = limt→∞ γ(t) such that E(xmin) is a minimum. Perhaps the simplest such
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algorithm is gradient descent, which chooses the velocity of the path to be aligned

with the gradient of the energy, so that γ ′(t) = −g(x). A variant of this is the

nonlinear conjugate gradient method, which uses information from previous search

directions to guide the optimization towards a solution. The Newton-type methods,

such as L-BFGS [146], compute a second-order approximation to the energy at each

step to perform the optimization. Regardless of the particulars of each algorithm, most

descent-based methods can be described as iteratively computing a search direction and

performing a line search that approximately minimizes the energy along this direction.

We apply our filtering to this descent direction.

Given a tuple (A,B), where A and B are defined as in the previous section,

Algorithm 1 shows how we modify the nonlinear conjugate gradient method to minimize

E(x) . Traditionally, A = B = I so that g0 and g1 correspond to the L2 gradient. In this

case, the algorithm very quickly minimizes the high frequencies features in the shape.

However, lower frequency features are minimized only very slowly, and the algorithm

tends to stall as the convergence rate slows down.

Let F = {(Ak,Bk)}mk=1 be a set consisting of m tuples, with each element of F

corresponding to a different choice for the coefficients {ai}pi=0 and {bi}qi=0 in (8.4). Each

tuple in F also corresponds to a different transfer function hk(λ). We set A0 = B0 = I.

Our algorithm is designed such that each one of these transfer functions attenuates a

different frequency range. For the transfer function in (8.6), Kim and Rossignac [100]

Algorithm 1 : MinimizeCG((A,B), x)

g0 ← A−1BM−1 ∂E(x)
∂x

s0 ← −g0

for i = 1→ max iterations do
α← LineSearch(x, s0)
x← x + α s0
g1 ← A−1BM−1 ∂E(x)

∂x

β ← 〈g1, g1〉/〈g0, g0〉
s0 ← β s0 − g1

g0 ← g1

end for
return x
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provide a method for computing coefficients based on an intuitive set of parameters

available to the user. In our case, we have found that the algorithm works well with

only three filters (m = 3), shown in Figure 8.2, which can be viewed as a highpass,

bandpass, and lowpass filter. The coefficients are given by {a0 = 1, a1 = 1, b1 = 1},
{a0 = 1, a2 = 1, b1 = 2}, and {a0 = 1, a2 = 1, b0 = 1} for the highpass, bandpass,

and lowpass filters, with all other coefficients equal to zero. The form of the transfer

function in (8.6) is general enough so that more sophisticated filters could be designed

if more levels are required for the optimization.

Algorithm 2 summarizes the procedure we use to iteratively optimize the shape at

multiple scales. We start by optimizing the high frequency components with k = 0, and

then optimize lower and lower frequency components by increasing k until the maximum

is reached. While increasing k will optimize more global features, it may introduce

higher frequency features during the minimization process (see inset in Figure 8.3–left).

Thus, one cycle of Algorithm 2 involves first increasing k and then decreasing k as

we move up and down the hierarchy of frequencies during optimization to ensure that

the shape is optimized at all scales, similar to the multigrid V-cycle. The algorithm

terminates when the magnitude of changes to the shape is below a given threshold or

when the maximum number of cycles has been reached.

Figure 8.3–left shows the convergence plot for minimizing the Willmore energy of a

genus-1 object. Interestingly, the minimum of the energy is not unique, and the resulting

shape is not necessarily a symmetric torus. Note that as we increase k, even though

the energy drops only very slowly, the shape still undergoes large, global deformations.

Algorithm 2 : MinimizeMultiScale(x)

for j = 1→ number of cycles do
for k = 0→ m do
x←MinimizeCG

(
(Ak,Bk),x

)
end for
for k = m− 1→ 0 do
x←MinimizeCG

(
(Ak,Bk),x

)
end for

end for
return x
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The call to Algorithm 1 in Algorithm 2 can be replaced with other nonlinear

optimization algorithms such as gradient descent or L-BFGS. Figure 8.3–right shows a

comparison between our implementation of the nonlinear conjugate gradient method,

shown in Algorithm 1, and the L-BFGS algorithm, for which we use a library that can

be found online [149]. While L-BFGS requires fewer steps to reach the minimum, each

step requires more computation. The result for gradient descent looks very similar to

these plots and has been omitted for clarity.

Our implementation of the nonlinear conjugate gradient method uses Brent’s line-

search method [161], which requires an upper bound, ε, on the stepsize. If Brent’s

method uses a stepsize close to ε, we increase the stepsize to 2 ε. Conversely, if the

maximum number of iterations is reached, it is called again with an upper bound

of ε/2. A starting value of ε = 0.1 is used for all examples in this chapter. The

sparse matrix implementation of the Boost library is used to store {Ak,Bk}mk=1. We

use PARDISO [172] to solve the linear system in (8.4) that defines the preconditioned

gradient. Note that we could use an iterative solver, such as the conjugate gradient

method, instead of a direct solver, which would avoid having to compute and store

higher-order Laplacians.

8.6 Applications

The following sections show how the algorithm above speeds up nonlinear problems

found in typical computer graphics applications.

8.6.1 Variational Modeling

The variational modeling of surfaces is the process of constructing aesthetically

pleasing smooth shapes by optimizing some curvature-based energy. The inputs are

generally user-specified positional and tangential constraints.

A commonly used surface energy is the second-order bending energy that computes

the area integral of the square of the mean curvature of the surface, E =
∫
H2dA, also

known as the Willmore energy [204], where H is the mean curvature. Given appropriate

boundary conditions, variants of this formulation (e.g.,
∫
(κ1

2 + κ2
2)dA, where κi are

the principal curvatures, and
∫
H2dA +

∫
KdA where K is the Gaussian curvature)
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differ only by constants that depend on topological type and are equivalent in terms of

optimization. In this chapter, we use the dihedral-angle-based discrete operator [71] for

approximating the Willmore energy for triangle meshes (Figure 8.1).

Minimizing the Willmore energy has the effect that during the minimization process,

the surface gets more and more spherical (see Figures 8.1, 8.3, and 8.4). Often however,

this behavior is undesirable when the user does not want the shape to bulge out (see

Figure 8.5).

If the bulgy results using the Willmore energy are undesirable, a different energy has

to be defined to prevent this behavior. Mehlum and Tarrou [129] proposed to minimize

the squared variation in normal curvature integrated over all directions in the tangent

plane:

1

π

∫ (∫ π

0

κ′n(θ)
2dθ

)
dA (8.7)

This is a third-order energy since it requires taking the derivative of the normal curva-

ture, where the resulting expression contains third-order partial derivatives. Third-order

energies tend to be even more ill-conditioned than second-order energies such as the

Willmore energy, which can make their optimization prohibitively expensive using

traditional nonlinear minimization algorithms. Other examples where higher-order

energies are desired are discussed in [92].

���!� ��������+����*��� <���������>���?����@����&

��!����&�%��������

Figure 8.4. The user-specified tangent constraints (red triangles) are intended to force
the input shape (left) to inflate into a hemisphere. A linear method, such as solving the
bi-Laplacian in x, y and z, is not able to reconstruct the hemisphere (middle). With
our framework, the nonlinear Willmore energy is minimized in a few steps to create the
desired shape (right).
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Figure 8.5 shows a comparison between the Willmore energy and the Mehlum-Tarrou

energy as defined in (8.7) using our approach. The input to the optimization is a

C2-continuous nonuniform bicubic B-spline that is fit through two B-spline curves

with tangential constraints. The energy and gradient for this surface representation is

straightforward to compute using the equations in [129]. In order to achieve the optimal

configuration, the shape needs to move globally into a curved cylinder. The figure also

shows a comparison to the state of the surfaces minimized without preconditioning

the gradients, demonstrating that our method yields a more optimal shape than the

traditional approach in the same computational time.

8.6.2 Parameterization

Computing high quality surface parameterizations for use in applications such as tex-

ture mapping is a well studied topic (see, e.g., [61]). The classic aim is to find a suitable

embedding from R3 → R2 that minimizes some form of measured distortion. Numerous

proposals have been made for defining distortion metrics which produce pleasing results.

Perhaps the most popular has been conformal mapping, which attempts to preserve

angular distortion. Such conformal solutions are efficient to compute, requiring a

linear solve, but unfortunately do a poor job of preserving area (see Figure 8.6 for

a comparison).

When considering preserving both area and angle during flattening one must turn to

nonlinear metrics. A family of such metrics have been proposed based on the singular

values of the 3× 2 Jacobian matrix Ji that maps each triangle Ti from 3D into the 2D

parametric domain[171, 189, 208]. A perfect isometric mapping will have singular values

equal to 1. Large and small singular values imply stretching and shrinking respectively.

For our experiments we use the L2 texture stretch metric from[171]. Given a triangle

Ti from mesh M , its root-mean-square stretch error can be defined as follows: E(Ti) =√
(τ + γ)/2, where τ and γ are the singular values of the triangle’s Jacobian matrix Ji.

The entire parametrization can be computed by minimizing the following expression

over the mesh:
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√∑
Ti∈M

E(Ti)2A(Ti)/
∑
Ti∈M

A(Ti) (8.8)

where A(Ti) is the surface area of the triangle in 3D. When a triangle’s area in 2D

approaches zero (e.g., becomes degenerate), its stretch error E(Ti) goes to infinity.

Thus, relatively small perturbations of the parameterization can result in large changes

in expression (8.8). For this reason the nonlinear system is quite stiff, producing a set

of gradients during optimization that may greatly vary in magnitude. The effect of this

is a system that is challenging to solve efficiently.

We applied our gradient preconditioning method to solve this problem. Figure 8.6

shows the results of our method for minimizing texture stretch. We start with an initial

parametrization using a Least Squares Conformal Map [114], shown on the left. We

then run our optimization procedure on the nonlinear energy to obtain the results shown

in the middle, demonstrating that we obtain a solution with much less distortion. On

the right, we compare the energy behavior to no preconditioning, demonstrating that

we obtain the optimal shape with far less computation.

In Chapter 4, 5 and 6, modeling methodolgies are discussed which create a volumet-

ric parameterization from an input triangle mesh. In these methodologies the object of

interest is decomposed into simpler subvolumes, where each volume is parameterized by

solving Laplace’s Equation. Since for each parameteric direction, Laplace’s Equation is

solved independently, there is no guarantee that the vector fields of the resulting scalar

fields are orthogonal. The left column of Figure 8.7 shows a 2D and 3D illustration of

this observation. The optimization framework in this chapter is used to improve these

parameterizations in the following.

Hormann et al. [81] proposed the MIPS parameterization method which constructs

a global parameterization of a triangulated surface over a planar region with minimal

distortion. In particular, Hormann et al. define an energy functional, examining the

mapping between a triangle in parameter space to its corresponding triangle in world

space. Since this mapping can be described with a single linear map, Hormann et

al. [81] use the two singular values of the respective transformation matrix, and define
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u=0

u=2.5

v=0

v=2

u=0

u=2.5

v=0

v=2

Figure 8.7. Parameterizations in 2D (top row) and 3D (bottom row). The left
parameterization in each row shows regions (circles) where the vector fields of the
respective parameterization is not orthogonal. Resulting elements are skewed. The
right parameterization of each row shows the improved parameterization.

the energy of a triangle to be the ratio of the singular values. If the singular values are

equal it implies that the element is at most uniformly deformed (unifom scaling). While

Hormann et al. [81] only showed examples for the 2D case, a similar energy functional

can be described for the 3D case, where the mapping is a 3x3 matrix corresponding

to singular values σ1, σ2 and σ3. Namely, a suitable 3D energy functional is E =

σ1/σ2 + σ1/σ3 + σ2/σ3, where σ1 ≥ σ2 ≥ σ3. Figure 8.7 shows intial results to improve

parameterizations based on this energy. In contrast to the method by Hormann et

al. [81], the rectangular shape of the parametric domain cannot be changed during the

optimization, but vertices can be moved along the parameteric boundaries. The shape

of the parameteric domains has to be maintained, so that a B-spline surface or volume,

respectively, can be fit to the optimized parameterization, as discussed in Chapter 9.

Furthermore, the energy functional in the MIPS method does not create orthogonal
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elements close to the boundary. Therefore, in our implementation, a different energy

functional is used for triangles or tetrahedra at the boundary to improve orthogonality

for the regions close to the boundary.

8.6.3 Nonlinear Elasticity

To this point, we have considered typical shape optimization problems, where the

user inputs a shape that is then optimized with respect to a given energy using the

algorithm discussed in Section 8.5. In these applications, the user is generally only

interested in the end state and not in the path taken to get there. However, we

demonstrate that our proposed framework can also be applied to the simulation of

the dynamics of elastic objects, where the user is indeed interested in the path.

We begin with Hooke’s law for continuum mechanics (see, e.g., [122]), which states

that the stress, σ, for an isotropic elastic material is linearly related to the strain, ε, by

σ = 2με+ λTr (ε) I ,

where λ and μ are the Lamé first and second parameters that determine the elastic

response of the material, Tr (ε) =
∑

k εkk is the trace of the strain tensor, and I is

the identity. The finite strain tensor encodes the deformation of the material from

its undeformed configuration at x0 to its deformed configuration x and is defined as

ε = 1
2

(
FTF− I

)
, where F is the deformation gradient, which maps tangent vectors

from the undeformed to the deformed configuration. The elastic potential energy, a

function of x, is defined as

U (x) =
1

2

∫
Tr (σε)dA , (8.9)

where the integration is over the undeformed configuration. Figure 8.8 shows an example

where U(x) is minimized on an hexahedral mesh using a trilinear Bézier basis. Similar
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Figure 8.8. We minimize elastic potential energy based on nonlinear strain on
an unstructured hexahedral mesh with a trilinear Bézier basis. Multiscale Gradient
Filtering quickly propagates the boundary conditions through the shape, whereas a
minimizer based on the L2 gradient stalls.

to the previous cases, the preconditioned gradients help to propagate the deformations

to the rest of the mesh much faster.

The equations of motion for the elastic material with Rayleigh damping are

Mẍ+C ẋ− fint (x) = fext (x, ẋ) , (8.10)

where ẋ and ẍ are the first and second derivative of x with respect to time, M is the

physical mass matrix, C is the Rayleigh damping matrix, fext is a vector of external

forces such as gravity, and fint (x) = − ∂U(x)/∂x is a vector of internal forces that

depends on the elastic potential energy. The equations of motion define a coupled system

of ordinary differential equations that must be integrated in time to solve for the path

of the object. For stiff materials, implicit integrators are often used because they offer

superior stability over explicit methods [14], resulting in a costly system of nonlinear

equations that must be solved at each timestep. Furthermore, since the equations

are nonlinear, even implicit integrators are not unconditionally stable, resulting in a

restriction on the maximum allowable timestep size [78].
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Various strategies exist for reducing the amount of computation needed to integrate

the equations of motion. Since many solid materials, such as metal and wood, usually

undergo small deformations, the infinitesimal strain tensor, given by ε = 1
2

(
FT + F

)
−I,

can be used instead of the finite strain tensor in the definition of the elastic potential

energy. In the case of large deformation, the näıve use of the infinitesimal strain tensor

results in undesirable distortions and ghost forces, so corotational approaches [136, 137],

which factor out rotations from the motion on a per-element or per-vertex basis, are

often employed. Both for the small displacement case and the corotational approaches,

replacing the finite strain tensor with the infinitesimal strain tensor and using an implicit

integrator results in having to solve only a linear rather than a nonlinear system per

timestep, saving a significant amount of computation. In the case of small deformations,

the resulting system is also unconditionally stable, which is very attractive since it allows

large timesteps to be used.

We propose an alternative for allowing one to take larger timesteps while integrating

the equations of motion based on our framework. We modify Equation 8.10 to filter

the internal forces, so the modified equations are given by

Mẍ+C ẋ−A−1fint(x) = fext(x, ẋ) , (8.11)

where A−1 is designed to remove the high frequency components from the internal

forces. By filtering the forces, the physics of the system is changed; however, for

applications where the timestep size must remain fixed, we can choose A to filter those

frequencies that cannot be resolved, allowing a larger timestep. As shown in Figure 8.9,

this approach does not exhibit any of the distortions apparent when using the small

deformation assumption and, like the corotational approach, allows for large timesteps,

even if an explicit integrator is used. We believe that this approach can also be used in

conjunction with a corotational method, allowing larger timesteps within that context

and for implicit integrators in general. In addition, this approach is not limited to

the linear constitutive equation given by Hooke’s law but can be applied to filter out

undesirable frequencies from any forces.
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8.7 Conclusions and Discussion

In this chapter, we provide a general framework for nonlinear shape optimization.

We show applications of our method for optimizing ill-conditioned, nonlinear energies

in a variety of different contexts, in each case demonstrating an improvement in the

quality of the results and a reduction in the time required to compute a solution (see

Table 8.1). We also provide an extension of our method to the case of simulating the

dynamics of a physical system, which enables the use of larger timesteps during the

course of the simulation. We believe that for many cases in which practitioners resort

to approximations, sacrificing quality for speed, our framework can be used to obtain

superior results at comparable runtimes.

Our method is conceptually similar to a multigrid method in that it can be used

to smooth errors at multiple scales. However, there is an important limitation of our

method: a coarser level in a multigrid approach usually requires less computation,

whereas in our framework, smoothing errors at larger scales increases the requisite

Table 8.1. Performance of the various optimizations of Willmore (W.), Mehlum-Tarrou
(M.T.) and Elastic Potential (E.P.) energy, peformend on triangles (T.), B-spline
surfaces (B.S.) and B-spline volumes (B.V.). Timings were taken on a quadcore
machine. Datasets denoted with (∗) are shown in the supplementary video. In each
case, optimization is stopped when shape reaches an acceptable state.

Dataset E. Rep. # of El. Basis Time

Dragon W. T. 153K C(0) 4h
Disk W. T. 720 C(0) 1m
Cup 1 W. T. 6K C(0) 3m
Cup 2 W. T. 26K C(0) 6m
Caesar Stretch T. 16K C(0) 1m

Cylinder W. B.S. 320 C(2) 5m
Cylinder M. T. B.S. 320 C(2) 30m
Fertility E. P. B.V. 3.5K C(0) 1h

Bunny(∗) W. T. 10K C(0) 3m
Buddha(∗) W. T. 30K C(0) 6m
Teardrop(∗) W. T. 3.8K C(0) 5m
Pin(∗) W. T. 3.3K C(0) 5m
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computation because of the higher-order Laplacians involved. On the other hand, the

implementation of our method does not require a hierarchy of representations during the

optimization process and can therefore be easily integrated into existing optimization

systems. Therefore, we believe that this framework provides a valuable benchmark that

can be used to evaluate the practicality of nonlinear formulations for many problems.



CHAPTER 9

DATA FITTING

The modeling methodologies presented in Chapter 4, 5, and 6 propose strategies

to complete the model and produce a single or a collection of structured hexahedral

meshes. In the following let us focus on a single (n0+1)× (n1+1)× (n2+1) structured

hexahedral mesh with vertices pi,j,k, which is periodic along the first direction. It

will be demonstrated later that the method proposed in this chapter also works on a

nonperiodic representation. The hexahedral mesh, guaranteed to be consistent (e.g., it

is free of self-intersections), has the same tensor-product nature as a trivariate B-spline.

Given this representation, a trivariate B-spline has to be generated which approximates

or even interpolates the hexahedral mesh. One of the first decisions to make is to choose

between an interpolation or an approximation scheme. The criteria include generating

a consistent representation, avoiding volumetric oscillations resulting in degeneracies in

the trivariate B-spline representation.

The first aspect would imply an interpolation scheme: Since the points of the

hexahedral mesh lie on the resulting B-spline, the error on these points is zero. However,

interpolation can cause oscillations and there are no guarantees that the B-spline is

consistent. Figure 9.1 shows this effect on a real dataset, where fitted curves are

used to generate tubes by sweeping a disk along the curve using the Frenet frame.

The following proposed approximation method yields more regular curves, resulting in

more regular tubes. Since the initial hexahedral mesh can have a very high resolution,

solving a global interpolation problem requires additional extensive computation time.

Furthermore, the input triangle meshes were eventually acquired through segmentation

of volumetric image data, they approximate the original data already, especially after
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Figure 9.1. The approximation method proposed in this work constructs more regular
curves without introducing additional features. The Frenet frames of the resulting
tubes are more well-behaved (top). In comparison, the tubes computed based on a
classic interpolation scheme (bottom) makes the tubes look more noisy and irregular.
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a triangle remesh. Interpolation of such an approximation would not necessarily make

sense. Therefore, the second aspect implies an approximation scheme that also avoids

wrinkles in the final mesh. Then, it has to be decided, what approximation error

is appropriate. This depends on the hexahedral mesh. Sheets which are bent need

an adequate number of control points so that the intersection among adjacent sheets is

avoided. The choice of an appropriate number of control points is difficult to determine.

We therefore adopt an approach which is a hybrid of both, maximizing advantages

of both and minimizing their drawbacks. We allow the user to control how close the B-

spline is to the approximating points of the hexahedral mesh. A consistent B-spline with

as few oscillations as possible is desirable. Our solution is to develop an approximation

iteratively. Figure 9.2 illustrates the proposed iterative approximation behavior on a

curve example.

For the volumetric case, the hexahedral mesh is chosen as the initial control mesh.

This guarantees that the B-Spline volume lies inside the control volume and that no

further features are introduced to the B-spline volume. Furthermore, we set degrees in

the three directions p0 = 3, p1 = 3 and p2 = 1, and use a uniform open knot vector in

u and w, and a uniform periodic knot vector in v.

intermediate
steps

approximation

interpolation

input points

Figure 9.2. Iterative improvement of intput curve (yellow) to the final curve, approxi-
mating the input points (black). Intermediate curves are drawn in green. The red curve
interpolates the input points.
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9.1 Preliminaries

For a fixed k0, let P
c
i,j,k0

be the cth control mesh in an iterative relaxation procedure,

where Sc
k0
(u, v) is the B-spline surface at iteration c with control mesh P c

i,j,k0
. At c = 0,

set P 0
i,j,k0

:= pi,j,k0. In the cth iteration, where c > 0, we update

P c+1
i,j,k0

= P c
i,j,k0 + λΔ[c], (9.1)

where Δ[c] is a direction vector and is chosen such that Sc
k0
(u, v) grows towards pi,j,k0.

λ ∈ (0, 1) is a user-defined scalar, in our case λ = 0.5.

Δ[c] is defined in terms of pi,j,k0 and Sc
k0
(u∗, v∗) corresponding to the control point

P c
i,j,k0

. u∗ and v∗ can be determined by projecting the control point P c
i,j,k0

onto Sc
k0
.

A first-order approximation to this projection is to evaluate Sc
k0

at the appropriate

node [37], i.e., u∗i =
∑3

μ=1 t
0
i+μ/3 and v∗j =

∑3
μ=1 t

1
j+μ/3. Since T 1 is uniform periodic,

v∗j = tvj+p1−1, where v
∗ in that case is also exact and corresponds to the jth control

point. This is not true for the uniform open knot vectors T 0. Either tui+2 ≤ u∗i ≤ tui+3

(Case 1) or tui+1 ≤ u∗i ≤ tui+2 (Case 2), therefore Sc
k0
(u∗i , v

∗
i ) lies only near P c

i,j,k0
. If Case

1 applies, then let i0 = i − 1, otherwise for Case 2, let i0 = i − 2. Then, Sc
k0
(u∗i , v

∗
j ) =∑p

k=0 (Bi0+k,p0(u
∗
i )Ci0+k,j), where Ck,j = (P c

k,j−1,k0
+ P c

k,j+1,k0
)/6 + (2P c

k,j,k0
)/3. Note

that, Bj−1,q(v
∗
j ) = Bj+1,q(v

∗
j ) = 1/6 and Bj,q(v

∗
j ) = 2/3.

In order to define Δ[c], we ask how to change the current control point P c
i,j,k0

such

that Sc+1
k0

(u∗i , v
∗
j ) moves closer to pi,j,k0. To answer this, we set

Sc
k0
(u∗i , v

∗
j ) = Sc

k0
(u∗i , v

∗
j )−

2Bi,p(u
∗
i )

3
P c
i,j,k0

,

and rewrite

pi,j,k0 = Sc
k0
(u∗i , v

∗
j ) +

2Bi,p(u
∗
i )

3
(P c

i,j,k0
+Δ[c]) (9.2)

Δ[c] =
3

2Bi,p(u∗i )
(pi,j,k0 − Sc

k0
(u∗i , v

∗
j )). (9.3)
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The iteration stops when εmax < ε, where εmax = max ||pi,j,k − Sc
k0
(u∗i , v

∗
j )||2 for every

Sc
k0
. ||.||2 is the second vector norm and ε is user-defined. The resulting surfaces Sc

k0

define the final trivariate B-spline control mesh.

The user choice of λ affects quality and running time of our proposed approximation

method. Choosing a λ closer to one reduces the number of iterations but lowers the

quality of the final solution. A λ closer to zero requires more iterations but results in a

higher quality mesh. Please refer to Figure 9.3 which shows the results for λ = 0.1 and

λ = 0.8. For λ = 0.1, 12 iterations were required; for λ = 0.8 the algorithm terminated

after three iterations. In both cases, ε = 0.01. For λ = 0.8, it can be observed that the

resulting surface contains unpleasant wrinkles, as they typically appear in interpolation

schemes.

9.2 Convergence

The proposed method converges, when at every step the magnitude of Δ
[c]
i gets

smaller, and in the limit

lim
c→∞

||Δ[c]
i ||2 = 0.

(a) (b)

Figure 9.3. Different choices of λ achieve different qualities of approximations. For
(a) λ = 0.1 and for (b) λ = 0.8 was used. In both cases ε = 0.01.
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Let us consider the 2D case with a uniform periodic knot vector T . The points pi, where

i = 0, . . . , n− 1, define a closed polyline. As above, the initial vertices which define the

control polygon are P
[0]
i := pi. We want to iteratively move the B-spline curve defined

by {P [c]
i } and T closer to the initial data points {pi}, where

P
[c+1]
i = P

[c]
i + λΔ

[c]
i .

Due to the periodic and uniform knot vector T ,

pi =
1

6

(
P

[c]
i−1 + P

[c]
i+1

)
+

2

3

(
P

[c+1]
i

)
=

1

6

(
P

[c]
i−1 + P

[c]
i+1

)
+

2

3

(
P

[c]
i +Δ

[c]
i

)
.

Solving for Δ
[c]
i yields,

Δ
[c]
i =

3

2

(
pi −

(
1

6

(
P

[c]
i−1 + P

[c]
i+1

)
+

2

3
P

[c]
i

))
. (9.4)

In matrix notation, Equation 9.4 can be rewritten as

�Δ[c] =
3

2

(
p−C · �P [c]

)
, (9.5)

where “·” is the matrix-vector product. �Δ[c] and �P [c] are vectors with n components,

where the ith component is Δ
[c]
i and P

[c]
i , respectively, and C is a n×n circulant matrix

[43], where row i is a circular shift of i components of the n-component row vector

[2
3
, 1
6
, 0, . . . , 0, 1

6
], in short

C = circ

(
2

3
,
1

6
, 0, . . . , 0,

1

6

)
.
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Note, that if c = 0, then

�Δ[0] =
3

2

(
�p−C · �P [0]

)
=

3

2

(
�p−C · �p

)
,=

3

2
(I−C) · �p,

where I is the identity matrix.

If c = 1, then

�Δ[1] =
3

2

(
�p−C · �P [1]

)
=

(
I − 3

2
λC

)
· �Δ[0].

From that, induction is used to show that

�Δ[c+1] =

(
I− 3

2
λC

)
· �Δ[c] = Ac+1 · 3

2
(I−C)�p, (9.6)

where

A = I− 3

2
λC = circ

(
1− λ,−λ

4
, 0, . . . , 0,−λ

4

)
.

The magnitude of Δ[c] converges against 0, implying that our fitting procedure con-

verges, if

lim
c→∞

Ac = Z,

where Z is the zero matrix. This implies, according to [43], that the eigenvalues of A

are, |λr| < 1 , r = 0, 1, . . . , n − 1. Since A is a circulant matrix, it is diagonalizable

by A = F∗ · Λ · F, where Λ is a diagonal matrix, whose diagonal elements are the

eigenvalues of A, and F∗ is the Fourier matrix with entries given by

F∗
jk =

1√
n
· e 2πijk

n .
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F∗ is the conjugate transpose of F. Due to the fact, that A is a circulant matrix, its

eigenvalue vector �v can be computed by
√
n · F∗ · �vA = �v, where

�vA = [1− λ,−λ/4, 0, . . . , 0,−λ/4].

Applying that to our case, we get

λr = (1− λ)− λ

4

(
cos r

2π

n
+ cos r(n− 1)

2π

n

)
,

so 1 − 3
2
λ ≤ λr ≤ 1 − λ

2
. Hence, in every step the magnitude of Δ

[c]
i decreases which

results in the convergence of our proposed data fitting approach for uniform periodic

B-spline curves.

In the case when T is uniform open, equation 9.6 can be rewritten by �Δ[c+1] =

Ac+1 ·S · (I−C) ·�p, where A = (I−λS ·C). S is a diagonal matrix where the diagonal

elements are defined by

Sii =
1

Bi,p(u∗i )

andCij = Bj,p(u
∗
i ) which is not circulant. Therefore, the bound on the eigenvalues given

above does not apply, due to the end conditions. However, we conducted experiments

with different values for λ, and the maximum eigenvalue is always less than one and

stays the same, independent of the problem size n, indicating convergence. For λ = 1/2,

the eigenvalues of A range from 0.15 to 0.85.

In the surface case, the two curve methods are interleaved as is done for tensor

product nodal interpolation. It is guaranteed to converge given the curve method

properties.

9.3 Simplification

The resulting trivariate B-spline tends to have a high resolution. Therefore, as a

postprocessing step we apply a data reduction algorithm [120] to the B-spline represen-
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tation and iteratively decide how to reduce complexity on the surface or on the attribute

data in the interior, by minimizing error.



CHAPTER 10

DIRECT ISOSURFACE VISUALIZATION

In this chapter, we present a novel isosurface visualization technique that guarantees

the accuarate visualization of isosurfaces with complex attribute data defined on (un-)

structured (curvi-)linear hexahedral grids. Isosurfaces of high-order hexahedral-based

finite element solutions on both uniform grids (including MRI and CT scans) and

more complex geometry representing a domain of interest can be rendered using our

algorithm. Additionally, our technique can be used to directly visualize solutions

and attributes in IA, an area based on trivariate high-order NURBS (Non-Uniform

Rational B-splines) geometry and attribute representations for the analysis. Further-

more, our technique can be used to visualize isosurfaces of algebraic functions. Our

approach combines subdivision and numerical root-finding to form a robust and efficient

isosurface visualization algorithm that does not miss surface features, while finding

all intersections between a view frustum and desired isosurfaces. This allows the

use of view-independent transparency in the rendering process. We demonstrate our

technique through a straightforward CPU implementation on both complex-structured

and complex-unstructured geometry with high-order simulation solutions, isosurfaces

of medical data sets, and isosurfaces of algebraic functions.

The demand for isosurface visualization techniques arises in many fields within

science and engineering. For example, it may be necessary to visualize isosurfaces

of data from CT or MRI scans on structured grids or numerical simulation solutions

generated over approximated geometric representations, such as deformed curvilinear

high-order (un-)structured grids representing an object of interest. In this context,

high-order means that polynomials with degree > 1 are used as the basis to represent

either the geometry or the solution of a Partial Differential Equation (PDE). High-order
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data is the set of coefficients for these solutions.

Given one of these representations, a visualization technique such as the Marching

Cube technique [119], direct isosurface visualization [155], or surface reconstruction

applied to a sampling of the isosurface, is frequently used to extract the isosurface.

However, given high-order data representations, we seek visualization algorithms that

act natively on different representations of the data with quantifiable error.

In this chapter, we present a novel and robust ray frustum-based direct isosurface

visualization algorithm. The method is exact to pixel accuracy, a guarantee which is

formally shown, and it can be applied to complex attribute data embedded in complex

geometry. In particular, the method can be applied to the following representations:

1. Structured hexahedral (hex) geometry grids with discrete data (e.g., CT or MRI

scans). The proposed method filters the discrete data with a interpolating or

approximating high-order B-spline filter [121] to create a high-order representation

of the function that was sampled by the grid.

2. Structured hex-based representations with high-order attribute data, where the

geometry can be represented using trilinear or higher order basis.

3. Structured and unstructured hex meshes, each of which element’s shape may be

deformed by a mapping (curvilinear shape elements) and with simulation data

(higher polynomial order).

4. Algebraic functions. The representation is exact.

We demonstrate that our method is up to three times faster and requires fewer

subdivisions and therefore less memory than related techniques on related problems.

An added motivation to this work is the fact that trivariate NURBS [37] have been

proposed for use in Isogeometric Analysis (IA) [87] to represent both geometry and sim-

ulation solutions ([87, 40, 209]). Simulation parameters are specified through attribute

data, and the analysis result is represented in a trivariate NURBS representation linked

to the shape representation. This is the first algorithm that can produce accurate

visualizations of isogeometric analysis results.
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With degree > 1 in each parametric direction and varying Jacobians (i.e., nonlinear

mappings), trivariate NURBS that represent an object of interest (see Figure 10.1) have

no closed-form inverse. Existing visualization methods designed to work efficiently on

regular spatial grids have not been extended to work robustly and efficiently and pre-

serve smoothness on these complex and high-order geometries. Furthermore, standard

approaches for direct visualization are ray-based and assume single entry and exit points

of a ray with an element. That hypothesis is no longer true for curvilinear elements.

Hence, those approaches are difficult to extend to arbitrary complex geometry with

curvilinear elements. Note that finding the complete collection of entry and exit points

into curvilinear elements is a nontrivial task.

In practice, representations of more complex geometry on which numerical simula-

tion techniques are applied often contain geometric degeneracies resulting from either

mesh generation or the data-fitting process. For instance, poorly-shaped elements can

lead to a Jacobian with a determinant close to zero, which presents challenges during

simulations. In addition, and more importantly for this chapter, it presents a challenge

in visualizing isosurfaces of the high-order simulation solution. Thus, there is a need

for isosurface visualization techniques that deal robustly with both degenerate and

near-degenerate geometry.

After discussing mathematical framework in Section 10.1, we define our mathemat-

ical formulation by stating the visualization problem in Section 10.2, which is solved in

Section 10.3. Implementation details are given in Section 10.4, and sections 10.5) and

10.6) analyse the results of our technique, followed by a conclusion.

10.1 Background

The following sections introduce the mathematical framework for the mathematical

formulation in this chapter.

10.1.1 Trivariate NURBS

A trivariate tensor product NURBS mapping is a parametric map V : [a1, a2] ×
[b1, b2] × [c1, c2] → Ω ⊂ R3 of degree d = (d1, d2, d3) with knot vectors τ = (τ1, τ2, τ3),

defined as
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V(u) :=

∑n
i=1wi ci Bi,d,τ (u)∑n
i=1wi Bi,d,τ(u)

(10.1)

=

(
x(u)

w(u)
,
y(u)

w(u)
,
z(u)

w(u)

)
, (10.2)

where ci ∈ R3 are the control points with associated weights wi of the n1 × n2 × n3

control grid, i = (i1, i2, i3) is a multi-index, and u = (u1, u2, u3) is a trivariate parameter

value. Every coefficient ci has an associated trivariate B-spline basis function Bi,d,τ(u) =∏3
j=1Bij ,dj ,τj (uj).

Bij ,dj ,τj (uj) are linearly independent piecewise polynomials of degree dj with knot

vector τj = {tjk}
nj+dj
k=1 . They have local support and are C(di−1). Furthermore,

∑n
i=1 Bi,d,τ(u) =

1 (see [37]). Figure 10.2 illustrates these definitions for the 1D case.

ci ∈ R3, V(u) describes the physical geometry and is referred to as the geometric

mapping. Suppose an attribute A(u) is related to V(u) where the attribute function

A : [a1, a2]× [b1, b2]× [c1, c2]→ R(k) can be formulated as

t0.0
0.2
0.4
0.6
0.8
1.0

Bi�t�

Figure 10.2. Cubic NURBS curve with nonuniform knot vector and open end
conditions.
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A(u) :=

∑n
i=1wi ai Bi,d,τ(u)∑n
i=1wi Bi,d,τ (u)

(10.3)

=
a(u)

w(u)
. (10.4)

where Bi,d,τ(u) is defined as above.

Let Vi(u) and Ai(u) refer to the geometry and attribute mapping of the ith knot

span, i = (i1, i2, i3), called a “patch,” i.e., its parametric domain is [t1i1 , t
1
i1+1)×[t2i2 , t2i2+1)×

[t3i3 , t
3
i3+1), where

Vi(u) :=

(
xi(u)

wi(u)
,
yi(u)

wi(u)
,
zi(u)

wi(u)

)
, Ai(u) :=

ai(u)

wi(u)
. (10.5)

For the purpose of clarity, we consider only scalar attributes, although this approach

works equally well for vector attributes. Vi(u) and Ai(u) are each a single trivariate

tensor product polynomial (or rational), and G := {(Vi(u),Ai(u))}n−d
i is the set of

geometry and attribute patches, respectively. Note that each geometry patch Vi(u) has

a corresponding attribute patch Ai(u). Furthermore, in case Ω cannot be represented

using a single mapping V(u), then Ω is represented as a collection of the mappings V(u)
and A(u).

Figure 10.3 illustrates these definitions with a single NURBS surface representing

Ω ∈ R2.

10.1.2 Classical Problem Statement

Let Ω ∈ R3 be the domain of interest and g(x, y, z) where g : Ω→ R is an attribute

function. In isosurface visualization, the user specifies an isovalue â at which to inspect

the implicit isosurface of g(x, y, z) − â = 0. By referring to Figure 10.3 (showing the

2D scenario), in ray-based visualization techniques, the ray, passing through the center

of a pixel, is represented as r(t) = o + td, where o is the origin of the ray (location of

the eye) in R3, d the direction of the ray, and t ∈ R the ray parameter. One wants to

find the set of t-values that satisfy f(t) = 0, where f(t) = g(r(t))− â.
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pixel line

pixel center

Figure 10.3. 2D analogy: Ray passing through a bivariate NURBS surface with
color-coded attribute field A(u) intersecting isocontour at roots of f(t), where the red
points refer to entry and exit points with the surface.

When Ω represents a uniform scalar grid, efficient and interactive methods exist to

directly visualize isosurfaces, including a GPU approach to visualize trivariate splines

with respect to tetrahedral partitions that transform each patch to its Bernstein-Bézier

form [95]. Earlier, a direct rendering paradigm of trivariate B-spline functions for large

data sets with interactive rates was presented in the work by [164], where the rendering

is conducted from a fixed viewpoint in two phases suitable for sculpting operations.

Entezari et al. [56] derive piecewise linear and piecewise cubic box spline reconstruction

filters for data sampled on the body-centered cubic lattice. Given such a representa-

tion, they directly visualize isosurfaces. Similarly, Kim et al. [101] introduce a box

spline approach on the face-centered cubic (FCC) lattice and propose a reconstruction

algorithm that can interpolate or approximate the underlying function based on the

FCC and directly visualize isosurfaces.

In the case where g(x, y, z) describes an algebraic function in R3, Blinn [22] uses
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a hybrid combination of univariate Newton-Raphson iteration and regular falsi. More

recently, Reimers et al. [166] developed an algorithm to visualize algebraic surfaces of

high degree, using a polynomial form that yields interactive frame rates on the GPU.

Toledo et al. [44] present GPU approaches to visualize algebraic surfaces on the GPU.

Interval analysis ([134]) has been adopted by Hart [77] and recently by Knoll et al. [105]

to visualize isosurfaces of algebraic functions as well.

In the following discussion, let V(u) represent a general domain of interest Ω together

with an attribute field A(u). In this case, Ω is not a cube which has undergone no or

at most an affine transformation. Therefore, g(x, y, z) := A(V−1(x, y, z)). V−1(x, y, z)

is the inverse of a nonidentity and nonaffine mapping, i.e., it cannot be represented in

closed-form and in order to evaluate the corresponding f(t), the inverse of V−1(x, y, z)

has to be computed using a root-solving method. Because of this, it is not clear how

these methods can be extended to work with the nonlinear, nonpolynomial mapping

V−1(x, y, z). Computing all the roots along r(t) with those methods would involve

re-application of the respective visualization algorithm, making extensions of such

approaches computationally intractable.

Before any root-solving takes place, the set I ⊂ G is computed where the geometric

sub patches Vi(u) ∈ Imight get intersected by r(t) and contain the respective isosurface.

Finding the roots of f(t) is equivalent to finding the roots of fi(t) of the geometry patches

Vi(u) ∈ I, where

fi(t) := Ai(V−1
i (r(t)))− â = 0. (10.6)

Solving Equation 10.6 requires finding the range of values of t where fi(t) is defined,

i.e., the t-values which correspond to the entry and exit points of r(t) into V−1
i (r(t)).

Depending on the geometric complexity of Ω, this range can consist of multiple disjoint

intervals where each interval is defined by an entry and exit point of the ray with Vi(u).

One way to compute these intervals is to use the Bézier clipping method proposed in

the work [145] on the six sides of the elements in I, implying that the elements in I have

to be turned into Bézier patches using knot insertion (see [37]). While Bézier clipping
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is an elegant way to visualize Bézier surfaces, it has problems at silhouette pixels. A

discussion of its problems and proposed solutions can be found in [53]. Once these pairs

of entry and exit points are computed, a numerical root-solving technique, such as the

Newton-Raphson method or bisection method, is applied to fi(t) for each pair. The

limitations of these classic methods are well-known. That is, Newton’s method requires

an initial starting value close to the root and depends on f ′
i (t), so it fails at degeneracies

and where the derivative is close to zero. Krawczyk [109] presents a Newton-Raphson

algorithm that uses interval arithmetic for the initial guess. Toth [197] applies this

method to render parametric surfaces. However, since Newton’s method needs the

derivative of fi(t), it can fail at the edges of Vi(u) as discussed in Abert [2], leading to

the well-known black pixel artifacts at the patch boundaries, as shown in Figure 10.4.

The bisection method is more robust but converges only linearly. The main problem

with the bisection method is that the signs of fi(t) at the entry and exit points must

be different, a requirement which often cannot be fulfilled. In summary, an approach

which attempts to solve Equation 10.6 can fail when finding the entry and exit points,

or finding the inverse V−1
i (x, y, z), or finding the roots of fi(t) fails. Furthermore, there

Figure 10.4. Piecewise trivariate cubic Bézier patches results in black pixel artifacts,
due to degenerate derivative at the Bézier patch edges.
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is no guarantee of determining all intersections between the isosurface and the area

corresponding to the pixel, i.e., it may only determine the intersections at the ray itself.

Another standard approach to intersect a ray r(t) with an isosurface, as defined in

the work by [185], is to solve the system of four equations and four unknowns:

⎛⎜⎜⎝
rx(t)
ry(t)
rz(t)
A(u)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x(u)
y(u)
z(u)
â

⎞⎟⎟⎠ ,

where rx(t), ry(t) and rz(t) are the x-, y- and z- coordinates of r(t), respectively. Such a

nonlinear system can be solved using the general geometric constraint-solving approach

proposed by Elber et al. [55] that uses subdivision and higher dimensional Axis-Aligned

Bounding Box (AABB) tests to find a solution where r(t) and V(u) are piecewise

polynomial or piecewise rational. Elber et al. applied their approach to bisectors,

ray-traps, sweep envelopes, and regions accessible during 5-axis machining, but not to

rendering isosurfaces. However, as we propose here, pixel-exact isosurface visualization

requires further augmentation of the algorithm.

In the following approach, we develop a formulation for a guaranteed determination

of all intersections between a ray frustum and an isosurface. The proposed method

computes the set of roots simultaneously, avoiding any computation of intervals on

which fi(t) is defined.

10.2 Mathematical Formulation

In this section, we develop the mathematical formulation that is used to intersect a

ray frustum (Figure 10.5) with the implicit isosurface A(u) − ã = 0 embedded within

V̂(u), which can represent arbitrary geometry. ã is the scalar value for which the

isosurface will be visualized.

In the following, we assume the coefficients ci and the corresponding weights wi, as

defined in Section 10.1.1, are in eye space, i.e., the camera frustum sits at the origin,

pointing down the negative z-axis. Let P be the 4 × 4 projection matrix defining the

camera frustum, where



229

Figure 10.5. Ray Frustum/Isosurface Intersection for pixel (s, t) shaded in magenta
with adjacent pixels shaded in grey.

P =

⎛⎜⎜⎝
near 0 0 0
0 near 0 0

0 0 −far+near
far−near

−2 far∗near
far−near

0 0 −1 0

⎞⎟⎟⎠ . (10.7)

In this case, P defines a frustum with a near plane of near units away from the eye with

a size of [−1, 1]× [−1, 1], and a far plane of far away from the eye, where near < far.

Furthermore, P projects along the z-axis.

P transforms the frustum and all geometry from eye space into perspective space,

i.e., the frustum is transformed into the unit cube [−1, 1]3 and every ray frustum in eye

space is transformed into a ray box in perspective space. Coefficients ci and weights wi

are transformed into perspective space by

(ŵi x̂i, ŵi ŷi, ŵi ẑi, ŵi)
T = P ◦ (wi xi, wi yi, wi zi, wi)

T , (10.8)

where ĉi = (x̂i, ŷi, ẑi) and
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⎛⎜⎜⎝
x̂i
ŷi
ẑi
ŵi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
(near ∗ xi)/zi
−(near ∗ yi)/zi

(2∗far∗near+(far+near) zi)
(far−near)∗zi
−wi zi

⎞⎟⎟⎠ . (10.9)

From that,

V̂(u) :=

∑n
i=1 ŵi ĉi Bi,d,τ (u)∑n
i=1 ŵi Bi,d,τ(u)

(10.10)

=

(
x̂(u)

ŵ(u)
,
ŷ(u)

ŵ(u)
,
ẑ(u)

ŵ(u)

)
(10.11)

is V(u) in perspective space. Furthermore, let x̂ = (x̂, ŷ, ẑ) be a point in perspective

space. Although the transformed ray frustum, mapped from eye space to perspective

space is a rectangular parallelepiped, we still call it a ray frustum to evoke its shape in

eye space.

Given a ray frustum constructed from ray r(t) as shown in Figure 10.5, there

are three types of intersections between a ray frustum and the isosurface: 1) The

isosurface intersects the four planes of the ray frustum and the isosurface’s normals

point either towards or away from the eye over the whole frustum and r(t) passes

through the isosurface; 2) r(t) passes through the isosurface but the ray frustum contains

an isosurface silhouette; 3) Same as case 2) but the r(t) does not pass through the

isosurface. Figure 10.6 illustrates these three intersection types.

In types 1) and 2), r(t) intersects the isosurface and can be detected with ray-

isosurface intersection. Type 3 requires a different approach. Note that there are cases

for which sampling approaches such as pixel subdivision will fail.

First, we present how to detect type 1 and type 2 cases and then discuss how to

detect type 3. For an image with resolution h×h pixels where h is the number of pixels

per row and column, we follow the development of Kajiya [94] to detect type 1 and 2

as:

x− bs = 0 and y − bt = 0 with bk = 2(k/h)− 1 + k/(2h), (10.12)
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Type 1 Type 2 Type 3

Figure 10.6. Three ray frustum/isosurface intersection types: 1) Ray frustum and
corresponding pixel is fully covered; 2) isosurface silhouette intersects ray frustum with
ray intersecting isosurface; 3) Same as 2) but ray does not intersect isosurface.

which are two orthogonal planes in perspective space corresponding to pixel at (s, t)

whose intersection define a ray r(t) aligned with the unit cube.

Given pixel (s, t),

⎛⎝ α̂(u)

β̂(u)
γ̂(u)

⎞⎠ :=
1

ŵ(u)

⎛⎝ x̂(u)
ŷ(u)
a(u)

⎞⎠−
⎛⎝ bs

bt
ã

⎞⎠ (10.13)

rational B-splines. Note, a(u) is defined in Equation 10.4.

The following constraints must be satisfied for a ray/isosurface intersection:

⎛⎝ |α̂(u)|
|β̂(u)|
|γ̂(u)|

⎞⎠ <

⎛⎝ ε
ε
ε

⎞⎠ (10.14)

i.e., given a solution u, the corresponding V̂(u) must lie along the ray and on the

isosurface within tolerance of ε = 1/(2 h). This ensures that a solution lies within a

pixel. Multiplying Equation 10.14 by ŵ(u),

⎛⎝ |α(u)|
|β(u)|
|γ(u)|

⎞⎠ < ŵ(u)

⎛⎝ ε
ε
ε

⎞⎠ (10.15)
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where αi = x̂i − ŵi bs, βi = ŷi − ŵi bt and γi = ai − ŵi ã and (α(u), β(u), γ(u)) :=∑n
i=1 (αi, βi, γi)Bi,d,τ(u).

Equation 10.15 is not sufficient to detect every isosurface/ray frustum intersection.

If an isosurface silhouette lies within the ray frustum but does not get intersected by

r(t) (type 3), then there is no u that satisfies Equation 10.15, even though some part

of the isosurface (silhouette) lies within the ray frustum. Let

ν(u) := Jx̂(u) · ∇uA(u) = ∇x̂A(u) (10.16)

be the gradient in normal direction of the isosurface at u in perspective space, where

Jx̂(u) is the Jacobian at u in perspective space, then

δ̂(u) := ν(u)ẑ (10.17)

η̂(u) :=
(( x̂(u)

ŵ(u)
,
ŷ(u)

ŵ(u)
, 0
)
× (ν(u)x, ν(u)y, 0)

)
ẑ
, (10.18)

are rational B-splines, where ν(u)ẑ is the B-spline representing the ẑ-component of ν(u).

With ε defined as above, a point V̂(u) on the isosurface silhouette must satisfy

⎛⎝ |δ̂(u)|
|η̂(u)|
|γ̂(u)|

⎞⎠ <

⎛⎝ ε
ε
ε

⎞⎠ , (10.19)

i.e., it must lie on the isosurface (γ̂(u) < ε), the z-component of the gradient is 0

(δ̂(u) < ε), and the isosurface is orthogonal to the ray r(t) from the center of the pixel

(η̂(u) < ε), i.e., the z-component of the cross-product between the point and the normal

of the isosurface must be zero. Similarly by multiplying Equation 10.19 by ŵ(u),

⎛⎝ |δ(u)|
|η(u)|
|γ(u)|

⎞⎠ < w(u)

⎛⎝ ε
ε
ε

⎞⎠ , (10.20)
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where δ(u) and η(u) are defined in terms of the B-spline basis Bi,d,τ (u) and where

coefficients δi and ηi can be computed using Bézier [54] or B-spline [31] multiplication.

Define

SI := {u : (α(u), β(u), γ(u)) = (0, 0, 0)}. (10.21)

Then, SI is the set of u satisfying Equation 10.15. SI is the set of values where r(t)

intersects the isosurface and is computed such that the set of points V(SI) on the

isosurface lie inside the ray frustum corresponding to r(t) (type 1 and 2). Define SS to

be the set of u where V(SS) does not get intersected by r(t) but a part of an isosurface

lies within the ray frustum at r(t) and that corresponds to a silhouette satisfying the

second constraint in Equation 10.20 (type 3). In the following sections, we present a

method to compute the set S = SI ∪ SS.
With this formulation, it is also possible to visualize an isoparametric surface of

the geometry mapping V(u), e.g., V(û1, u2, u3), where û1 is fixed and u2, u3 varies over

the parametric domain. This can be achieved by using the NURBS representation to

represent fixed parameter values. As an example, in Figure 2.2c, û1 = 0.5 where u2 and

u3 vary cutting the respective Ω along u1 in half. Furthermore, in Figure 10.1b, û3 = 0

where u1 and u2 vary to show only the boundary of Ω representing the Bimba statue.

In the following, we present an efficient subdivision-based solver to compute S.

10.3 Ray Frustum/Isosurface Intersection

As discussed in Section 10.2, finding the roots of f(t) is equivalent to determining

the set SI as defined in Equation 10.21. To compute all intersections between a ray

frustum and the isosurface, the set SI must be computed. Here, this is achieved through

a subdivision approach combined with the Newton-Raphson method.

Before our proposed isosurface intersection is applied, we find the set I ∈ G of

candidate geometry subpatches (V̂i(u), Âi(u)) that potentially may be intersected by

the ray frustum constructed from r(t) and may contain the isosurface at the isovalue

ã. While the technique itself does not require this step, since the relevant parts can

be found through subdivision, we perform it to make the algorithm faster and more
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efficient. We address the different data-dependent ways that I can be computed in

Section 10.4. In this section, we assume that r(t) and I are given. Section 10.3.1 details

our intersection algorithm.

10.3.1 Algorithm

By following the framework discussed in Section 10.2, given patch (V̂i(u), Âi(u)) ∈ I

in perspective space, a specified isovalue ã and a pixel through whose center the ray

r(t) is passing, the coefficients for the tuple (Pi(u), δi(u)) are determined, where

Pi(u) :=

d+1∑
j=1

Qj+i−1 Bi,d,τ (u) = (αi(u), βi(u), γi(u)), (10.22)

with Qj+i−1 = (αj+i−1, βj+i−1, γj+i−1), and

δi(u) :=

d+1∑
j=1

δj+i−1 Bi,d,τ (u). (10.23)

Pi(u) has no direct geometric meaning. We refer the reader to Figure 10.7 which shows,

on the left side, the two planes defining r(t), the isosurface, and the boundaries of the

tricubic patch. On the right side, it shows the α-, β- and γ- coefficients of Pi(u) derived

from the two planes, the geometry and attribute data. The parametric boundaries

transformed by Pi(u) are depicted as well, and parts of them may lie in the interior of

the parametric domain of Pi(u) while forming part of the (α, β, γ)-space boundary.

Given (Pi(u), δi(u)), intersecting the ray frustum for ray r(t) with the isosurface at

ã is a two-step algorithm:

1. Determine the superset SS = SS
I ∪ SS

S of approximate parameter values u, where

V̂(u) lies within the ray frustum and on the isosurface at ã, using a subdivision

procedure with appropriate termination. (Sections 10.3.2), and

2. Apply a filtering process to remove extra parameter values in SS that represent

the same root (Section 10.3.6) in order to gain S.
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The following discussion details these steps.

10.3.2 Intersection Algorithm

This section presents the core of our ray frustum/isosurface intersection algorithm.

Given (Pi(u), δi(u)), degeneracies and self-intersections in Pi(u) at the origin are related

to the number of intersections between r(t) and the isosurface at ã: Assuming there

are n intersections, Pi(u) crosses n times within itself where Pi(u) evaluates to (0, 0, 0).

Each u corresponding to an intersection is an element in SS
I . These cases refer to type

1 and 2 intersections as illustrated in Figure 10.6.

Intersections of type 3 (see Figure 10.6) are detected by examining the signs of the

coefficients of δi(u). The u’s corresponding to these intersections are elements in SS
S .

The set SS = SS
I ∪ SS

S is computed as follows.

The fundamental idea of our subdivision procedure is to subdivide (Pi(u), δi(u))

in all three directions at the center of its domain, which results in eight subpatches

defined by the tuple (Pi,�,k(u), δi,�,k(u)) = ((αi,�,k(u), βi,�,k(u), γi,�,k(u)), δi,�,k(u)), where

k = 1 . . . 8 identifies the kth subpatch and � refers to the current subdivision level; and

1. add subpatches (Pi,�,k(u), δi,�,k(u)) whose enclosing bounding volume contains the

origin 0 = (0, 0, 0) to a list L and

2. examine subpatches Pi,�,k(u) whose corresponding isosurface does not get inter-

sected by r(t), but for which the corresponding isosurface potentially intersects

the ray frustum (Section 10.3.4).

Depending on the geometric representation, the algorithm uses either Bézier subdivision

or knot insertion [37].

The patches added to L in Case 1 potentially contain solutions which lie in SS
I .

Patches examined for Case 2 potentially also contain solutions which lie in SS
S , i.e., Case

3 solutions. Due to properties of B-splines, note that the patch is always contained in

the convex hull of its control points, and as the mesh of parametric intervals is split in

half, the subdivided control mesh converges quadratically to P(u).
This procedure is recursively applied to the elements in L by adding new subdivision

patches and removing the corresponding parent patch (Pi,�−1,k(u), δi,�−1,k(u)). The
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recursion terminates when all intersections identified with the remaining patches in

L can be determined using the Newton-Raphson method, by using the node location

(see [37]) corresponding to the coefficient in Pi,�,k(u) closest to 0 as initial starting value.

Note that initially (Pi,1,1(u), δi,1,1(u)) := (Pi(u), δi(u)) and L = {(Pi,1,1(u), δi,1,1(u))};
This strategy is related to the general constraint-solving technique proposed by Elber

et al. in [55].

Given a subpatch Pi,�,k(u), a crucial issue is whether it contains the origin 0 or

not. Since Pi,�,k(u) can contain self-intersections and geometric complexity in the

(α, β, γ)-space, this test is difficult to perform efficiently. The general constraint-solving

technique in Elber et al. [55] looks at the signs of the coefficients in αi,�,k(u), βi,�,k(u)

and γi,�,k(u) independently; that is, it investigates the properties of its Axis-Aligned

Bounding Box (AABB) in the (α, β, γ)-space. Instead, we examine the geometry of

Pi,�,k(u) in the (α, β, γ)-space more closely. An approximate answer to the 0-inclusion

test can be given by analysing the convex hull property of NURBS [37]: If 0 does not

lie within a convex set, computed from the coefficients (αk, βk, γk) defining Pi,�,k(u),

then 0 /∈ Pi,�,k(u). However, this implies that while 0 lies within the convex boundary

volume, it may not lie within its corresponding Pi,�,k(u). Thus, during the subdivision

process, the number of elements in L, |L|, which contain 0, is growing or shrinking.

Therefore, L represents a list of potential candidate patches which may contain 0. |L|
at a given subdivision level � is strongly dependent on how tightly the convex boundaries

enclose its corresponding patches Pi,�,k(u) ∈ L. The properties of subdivision guarantee

that all potential roots are kept in L.

Generally, it can be said that given Pi,�,k(u)’s coefficients (αk, βk, γk), a tighter

convex boundary volume (e.g., convex hull) is more expensive to compute than a loose

convex boundary volume (e.g., AABB), with the cost of our Oriented Bounding Box

(OBB) somewhere in the middle. Given a tighter boundary volume, it is generally more

expensive to test whether the origin is included in it or not. On the other hand, a tighter

convex boundary will have fewer elements in L, resulting in fewer subdivisions. Since a

single subdivision step has a running time of O((d+ 1)3) where d is the largest degree

of the three parametric directions, it is desirable to keep the number of elements in L as
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small as possible, especially as d increases. In such a scenario, a good trade-off respecting

these opposing aspects is desired. Given the coefficients (αk, βk, γk) of Pi,�,k(u), while

the computation of the convex hull is more expensive compared to the much cheaper

computation of an AABB, it encloses the coefficients (αk, βk, γk) much more tightly.

However, by looking locally at Pi(u) we can adopt a much tighter bounding volume

compared to the AABB, while still not as tight as the convex hull. An OBB, oriented

along a given coordinate system with axes (v1,v2,v3), is determined. Let uc be

the center of the parametric domain of Pi,�,k(u). The Jacobian matrix of Pi,�,k(uc)

determines the first-order trivariate Taylor series. We select two of its three directions

with the two largest magnitudes to form the main plane of the bounding box. Without

loss of generality, suppose they are ∂Pi,�,k(uc)/∂u1 and ∂Pi,�,k(uc)/∂u2, respectively.

We now form a local orthogonal coordinate system at Pi,�,k(uc) by setting v1 to the

the unit vector in the direction ∂Pi,�,k(uc)/∂u1, v3 is the unit vector in the direction of

∂Pi,�,k(uc)/∂u1 × ∂Pi,�,k(uc)/∂u2, and v2 = v3 × v1. As in other applications, the final

OBB is constructed by projecting the coefficients (αk, βk, γk) onto the planes which

are located at the position Pi,�,k(uc) and have normals v1, v2, v3 and −v1, −v2, −v3,

respectively.

Note that the evaluation of the derivative does not require additional computation,

since it is evaluated from the coefficients computed in the subdivision process. Since

Pi,�,k(u) is a single trivariate polynomial within a patch, expanding around uc is justified

because the first-order Taylor series becomes a good approximation as the parametric

interval decreases in size. This assumes that the determinants of the Jacobians of the

neighborhood around Pi,�,k(uc) are well-behaved, i.e., do not change signs. If Pi,�,k(u)

contains self-intersections and Pi,�,k(uc) lies on a place in Pi,�,k(u) where Pi,�,k(u) folds

into itself, then the respective determinant at Pi,�,k(uc) is equal to zero, even though

the magnitudes of the partials ∂Pi,�,k(uc)/∂uk, k = 1, 2, 3, are well-behaved due to the

smooth representation of Pi,�,k(u). However, with increasing subdivision level �, the

determinants of Jacobians of the neighborhood of Pi,�,k(uc) do not change signs.

Since Pi,�,k(uc) undulates through the origin multiple times depending on the number

of intersections between the ray and the isosurface, this approximation is not initially
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useful because the bounding box is computed from the linear approximation of the

Taylor series. But as the interval gets smaller, the quality of the approximation increases

and the OBB encloses the coefficients of Pi,�,k(uc) more tightly (see Figure 10.8).

To compare the quality of this OBB, we used PCA on the coefficients of Pi,�,k(u) to

compute the orientation of a different OBB-bounding box on the datasets discussed in

Section 10.5. Both PCA and the method discussed above result in the same order of

subdivisions per pixel with PCA having slightly fewer subdivisions. However, applying

PCA was on average about three times slower than our method. Table 10.1 shows the

concrete timings on the various datasets.

Also, with this strategy, the number of elements in L is much smaller compared to

the number of elements in L if AABB had been used. The reader is referred to Figure

10.9, which shows the glancing ray scenario with three intersections from Figure 10.7

for subdivision level � = 6. Using AABBs, on a nonsilhouette pixel of the teardrop data

set, L has 67 elements, while by using our OBBs L has only 7 elements, significantly

reducing subdivision effort and memory consumption. More results are given in Section

10.5.

Figure 10.8. OBB hierarchy of patches, referring to a ray/isosurface intersection.
With growing subdivision level �, the orientation of the OBBs get closer and closer to
its parent’s orientation.
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Figure 10.9. Subdivision patches stored in L at subdivision level � = 8. In this
case, the ray glances the isosurface three times, as shown in Figure 10.7 involving
more extensive subdivision and intersection tests. On the left, AABBs were used which
result in |L| = 67. On the right, our OBB computation resulting in |L| = 7, significantly
reducing subdivision work.

10.3.3 Termination of Subdivision Procedure
of OBB Scheme

The previous paragraphs discussed the subdivision procedure using our OBB scheme.

The termination criteria of this procedure are outlined below by answering the question:

At which � should the subdivision procedure terminate? A solution uj ∈ SS
I must satisfy

two requirements:

1. The patch Pi,�,k(u) which corresponds to uj must represent only one isosurface

piece and must not contain folds or self-intersections so that a final application of

Newton’s method on Pi,�,k(u) finds uj as a unique solution;

2. V̂i(u) has to lie within the frustum defined by the ray r(t) and the pixel through

which r(t) passes.

As the number � of subdivision levels increases, the geometric complexity of the patches,

in L in terms of tangling and self-intersections, is reduced. Here, we focus on a specific

OBB of one (Pi,�,k(u), δi,�,k(u)) ∈ L, given a subdivision level �, and examine the signs
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of the coefficients defining δi,�,k(u). A sign change means that the isosurface of the

patch in perspective space corresponding to Pi,�,k(u) potentially faces towards or facing

away from the ray r(t). This implies that r(t) intersects the patch at least twice and

therefore (Pi,�,k(u), δi,�,k(u)) should be further subdivided. If there is no sign change,

then the subdivision process for this patch can be terminated, and Newton’s method is

used to find the unique solution within the patch, such that

max
(
V̂(uj)− proj(V̂(uj))

)
< ε, (10.24)

where proj(V̂(uj)) is the projection of the point V̂(uj) onto r(t) and ε = 1/(2 h) with h

as the image resolution (see Section 10.2). More specifically, given a close enough initial

solution u0, Newton’s method tries to iteratively improve the solution and terminates

when it is close enough to the exact solution. Close enough in this context means

that Newton’s method can terminate when the inequality equations, as defined in

Equation 10.15 for a current iterative solution ui, are satisfied.

In the cases where the initial solution is not good enough for Newton’s method,

the patch (Pi,�,k(u), δi,�,k(u)) is further subdivided. This also guarantees that a solution

associated with a ray will be within the ray’s frustum and does not overlap with adjacent

ray frustums. In the rare case that the solution is exactly on the pixel boundary, we

use the half-open frustum to guarantee that it is included in only one of the possible

adjacent pixels.

10.3.4 Ray Frustum/Isosurface Silhouette Intersection

Before a subpatch (Pi,�,k(u), δi,�,k(u)) whose OBB does not contain 0 is discarded, it

must be examined to determine whether the subdomain it covers in V̂(u) contains any
isosurface silhouette intersecting the ray frustum r(t) in perspective space. If there is no

sign change in the coefficients defining either γi,�,k(u) or δi,�,k(u), then the patch can be

discarded, because a potential intersection will be caught using the origin-inclusion-test

(Section 10.3.1) since in this case the respective isosurface piece completely faces towards

or faces away from r(t).
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A sign change in both sets of the coefficients implies that a potential part of the

isosurface passes through the ray frustum, facing towards and away from r(t). If there

is such a piece of the isosurface silhouette, then a u is computed so that V̂(u) lies on

the isosurface silhouette and u is added to SS
S .

As discussed in Section 10.2, an isosurface that intersects the frustum (type 3)

must have an isosurface silhouette in the frustum, i.e., it must satisfy Equation 10.20.

Given (Pi,�,k(u), δi,�,k(u)) with sign changes both in the coefficients defining γi,�,k(u) and

defining δi,�,k(u), a patch Qi,�,k(u) is constructed, where

Qi,�,k(u) = (γi,�,k(u), δi,�,k(u), ηi,�,k(u)) (10.25)

and the number of self-intersections corresponds to the number of solutions u.

10.3.5 Termination of Subdivision Process of Patch Qi,�,k(u)

Subdivision is used to solve Qi,�,k(u) = 0, where the 3D version of the normal cone

(NC) test proposed in the work [176] is used to make a faithful decision to stop the

subdivision process of patch Qi,�,k(u). This test computes the NCs for the mappings

γi,�,k(u), δi,�,k(u) and ηi,�,k(u). Elber et al. show that when the NCs of these three

mappings do not intersect, then the patch can contain at most one zero. If the NC test

fails, i.e., Qi,�,k(u) contains self-intersections, then Qi,�,k(u) is further subdivided. If the

NC succeeds, this implies that a subdivided patch does not contain self-intersections.

Newton’s method is used as above to find a solution u which is added to SS
S when

Equation 10.20 is satisfied.

Note that this additional solution step to find points on an isosurface silhouette

within a ray frustum is executed only at isosurface silhouettes, when there are sign

changes in the coefficients defining γi,�,k(u) and δi,�,k(u). In most cases, as observed in

our experiments, the ray r(t) intersects the isosurface.

10.3.6 Filtering Intersection Result

The subdivision procedure discussed in the previous section, applied to the patch

(Vi(u),Ai(u)) ∈ I, outputs the superset SS of approximate parameter values uj , i.e.,
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where |A(ui) − â| < ε. By following the framework from Section 10.2, our method is

guaranteed to compute all roots. However, due to the approximate 0-inclusion test and

the fact that it is a numerical method, it can be the case that SS contains multiple

solutions that represent the same root. This is because of the use of OBB to determine

whether 0 is contained in its respective patch. As discussed above, a Pi,�,k(u) may not

contain 0 while its OBB contains it. A final postprocess on SS , yielding the set S, is
therefore required for the removal of duplicate solutions.

In the scenario of direct isosurface visualization, multiple cases can appear (shown in

Figure 10.10, computed solutions in green). In Case (I), it can happen that parts of the

isosurface lie very close together. Therefore, the corresponding solutions are numerically

very similar, even though they represent different solutions. In Case (II), the ray might

glance or touch the isosurface tangentially, which corresponds to two solutions. In Case

(III), the usual case, two solutions can represent the same true solution even though

they are numerically different. We remove duplicates by examining the derivative of

the function f(t) given by:

Figure 10.10. S can contain duplicate solutions which can arise due to the scenarios
I, II and III. The derivative of the scalar function f(t) is used to filter S to identify
unique solutions and solutions representing the same root.
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f ′(t) = 〈∂r(t)
∂t

, J−1 ◦ ∇A(V−1(r(t)))〉, (10.26)

where J−1 is the Jacobian of V−1(r(t)), and ◦ is the matrix/vector product. As the ray

r(t) travels through the volume, it enters and eventually exits the isosurface. Entering

means that r(t) intersects the isosurface at the positive side; this corresponds to a

positive derivative of Equation 10.26 at the corresponding entry location. The exit

point refers to a negative derivative of Equation 10.26. With this observation, Case (I)

can be identified. Case (II) appears at the silhouette of the isosurface. If f ′(t) ≈ 0, then

one of the corresponding solutions can be discarded. For Case (III), since the signs of

f ′(t) for the corresponding solutions are both positive or negative, respectively, one of

them can be discarded.

In our implementation, for every ui ∈ SS , we determine its corresponding ti by

solving the linear equation ti = r−1(V(ui)) and evaluate f ′(ti). The resulting list

of t-values is sorted in increasing order. Finally, the sorted list, which corresponds

to the order in which the ray travels through the volume, is traversed by removing

those elements which violate the rule of alternation of the signs of f ′(ti) within the

list. Note, that in some rare subpixel cases, incorrect ordering can occur and cause

incorrect transparency results. This is a subpixel problem and can be resolved by

further subdividing the pixel. However, we found that no visual artifacts result.

This algorithm detects intersections in the pathological case that a whole interval of

r(t) lies on the isosurface. However, as with all numerical methods, there are no ways

to determine this analytical condition, but instead, find many discrete values of t. We

set a heuristic threshold on the maximum number of ray-isosurface intersections per

ε-length of t. If the number of intersections exceeds it, we use only the smallest value

and the largest value.

10.4 Determining the Set of Intersection Patches

As discussed above, I ⊂ G is the set which contains the geometric subpatches

(Vi(u),Ai(u)) that intersect the ray frustum constructed from r(t) and through which

the isosurface A(u) − â = 0 passes. There are multiple ways to determine I, which
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depend on the number of coefficients defining V(u) and the geometry it describes in

physical space. In our implementation, we distinguish between three different types

of geometry: (1) general geometry describing a physical domain with a large number

of coefficients; (2) general geometry describing a physical domain of interest with few

coefficients; and (3) a uniform grid, where Vi(u) describes the identity mapping, i.e.,

Vi(u) = u.

For (1) and (2) we employ a kd-tree as an acceleration structure, where an AABB

is computed from the coefficients of Vi(u) where (Vi(u),Ai(u)) ∈ G. I is determined

by kd-tree traversal using the traversal algorithm proposed by Sung et al. [192], where

the ray r(t) is intersected with the bounding boxes. Note the resulting I can contain

patches that are not intersected by r(t). If |G| is small, then the AABBs do not tightly

bound Vi(u), and I contains a larger number of patches that do not intersect r(t). In

that case, we apply knot insertion to the elements in G to turn them into Bézier patches

whose corresponding AABBs are much tighter. When V(u) consists of a large number

of coefficients, the ratio between the AABB and its corresponding Vi(u) is close to

one. In that case, Bézier conversion is not a significant advantage, but a disadvantage

because of its higher memory consumption and preprocessing time. In (3), where V(u)
represents a uniform grid, i.e., when V(u) = u, conventional uniform grid traversal is

used without any data preprocessing. Also note that in this case (e.g., Figure 10.1d),

the smooth representation for A(u) is generated using a B-spline [121] filter to which

our method is applied.

10.5 Analysis and Results

This section is concerned with the correctness and efficiency of our approach. Verify-

ing the correctness of an isosurface visualization technique on acquired data is difficult,

especially in terms of correctness of the topology and existence of all features, since

given data usually only approximate the true solution (e.g., the results of Galerkin’s

method or data from a CT scan). In this section, we use the fact that every rational

polynomial can be represented with a NURBS representation, i.e., there are coefficients

ai ∈ R such that
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a(x, y, z) ≡ A(x, y, z) =
n∑

i=1

aiRi,d,τ(x, y, z), (10.27)

defined over a rectangular parallelepiped of Ω ∈ R3, where Ω is rectangular and where

a(x, y, z) is an algebraic function. Given a(x, y, z) and a NURBS basis (as defined in

Section 10.1.1) whose degree matches the highest degree of a(x, y, z), the coefficients

ai can be derived by solving the multivariate version of Marsden’s identity [123]. If

a(x, y, z) is a cubic algebraic function, the approach of Bajaj et al. [13] can be used to

compute coefficients ai for the NURBS basis. For our tests, we chose the isosurface at 0.0

of the teardrop function, defined as a(x, y, z) = x5/2+x4/2−y2−z2, a common function

to test correctness of a visualization technique. The thin features around the origin,

as seen in Figure 10.1c, are challenging to isosurface meshing techniques where areas

around the thin feature are missing (e.g., see work by [153]). Next to the coefficients

ai, our method requires a choice of coefficients Pi = (xi, yi, zi) to define V(u). If Pi are

node locations as defined in [37], then a(x, y, z) ≡ A(x, y, z) is achieved. However, since
our technique is independent of the geometric complexity, a choice can be made on

the mapping V(u). A more general version of Equation 10.27 is a(V−1(u)) ≡ A(u), in
which a(x, y, z) undergoes a nonlinear transformation defined by V(u) deforming Ω. By

referring to Figure 10.1c, Ω is stretched and perturbed, which results in a deformation

of a(x, y, z) = 0. The deformation does not affect the accuracy of our algorithm in

reproducing the thin feature discussed above, indicating robustness and topological

correctness of our technique at the per-pixel level.

In Figure 10.11, the number of subdivisions per pixel of the isosurface intersection

technique, using AABBs and OBBs constructed in the above section is visualized. The

images are generated from the same view as the shaded version in Figure 10.1. It can

be seen that major work is done only for pixels that actually correspond to a point on

the isosurface and pixels on the silhouette. When employing an AABB, a large number

of silhouette pixels require an average of 270 and up to 380 subdivisions per pixel.

With OBBs, only a few pixels require more than 68 subdivisions, and on average, 35

subdivisions are needed for the silhouette. This means that the number of subdivision
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Figure 10.11. Number of subdivisions per pixel frustum using AABB and OBB for
teardrop isosurface from Figure 10.1.

levels for OBB is much smaller than with AABB, resulting in a more memory efficient

algorithm.

10.5.1 Timings

Figure 10.12a shows the result of our algorithm, rendering geometry of a torso with

multiple isosurfaces of the potential trilinear (cubic) field. Both are represented using

unstructured hex meshes. In Figure 10.12b, we present the visualization of an isosurface
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Figure 10.12. Additional data sets. (a) Unstructured hexahedral mesh (≈ 2.3 million
elements) of a segmented torso. Isosurfaces representing voltages of the potential field
(using a trilinear basis) are used to specify locations of electrodes to determine efficacy
of defibrillation to find a good location to implant a defibrillator into a child. (b) Wake
of a rotating canister traveling through a fluid (isosurface of pressure from spectral/hp
element CFD simulation data as used in the work [142, 130]). The C(0) nature of the
boundaries of the spectral/hp elements can be seen on the isosurface and is not an
artifact of our proposed method.

of pressure (isovalue = 0) generated due to a rotating canister traveling through an

incompressible fluid. The data set was generated by the spectral/hp high-order finite

element CFD simulation code, Nektar, and was used as test data set for visualization

in the works [142, 130]. The geometry of this data is trilinear (C(0)), and the attribute

data is tricubic.

Table 10.1 provides concrete numbers of the proposed approach in comparison to

the AABB and PCA as discussed in Section 10.3. The table provides average render

times (μ time), additional information such as the average number of pixels per frame

(μ pixel), the average number of subdivisions per frame (μ subd.), the average list size

of L overall (μ list size) and the standard deviation of the list size L overall (σ list

size). Due to space constraints for PCA, only the render times are presented, since the

remaining values are within ±1% compared to our method.

The data in the table were generated by rotating the camera around the respective

isosurfaces in 360 frames, using Phong shading and normals computed from the NURBS

representation. The above information is generated using our method’s OBBs and

AABBs from the same space. Subdivision is the major work in both cases. However,



249

Table 10.1. Average image generation times using OBB and AABB, respectively. The
table also shows the timings (in seconds) for each data set when PCA is used instead of
our method to compute the OBBs. The degree column presents degrees for the geometry
and attribute mapping (tl=trilinear, tc=tricubic, tq=triquintic); μ is the mean; and σ
is the standard deviation. The image resolution is 512×512.

data set degree # patches μ pixel
(per frame)

Cylinder tc/tc 5× 2× 5 57 408
Bimba tc/tc 27× 45× 9 273 024
Teardrop tq/tq 1 56 078
VisHuman tl/tc 253× 253× 253 51 625
Silicium tl/tc 95× 31× 31 95 425
Torso tl/tl 2321045 123 084
CFD tl/tc 5736 631 342

OBB
data set μ time PCA μ time ours μ subd. μ / σ list size

(per frame) (per frame) (per frame) (overall)
Cylinder 0.29 0.15 299 790 1.89/1.03
Bimba 0.58 0.27 463 281 1.17/0.49
Teardrop 1.97 0.65 371 304 3.54/1.44
VisHuman 1.06 0.40 278 317 1.04/0.24
Silicium 0.96 0.43 356 862 1.05/0.24
Torso 1.15 0.83 3 502 902 1.09/0.40
CFD 1.61 0.77 2 016 399 1.88/1.16

AABB
data set μ time μ subd. μ / σ list size

(per frame) (per frame) (overall)
Cylinder 0.31 667 000 2.70/2.56
Bimba 0.81 2 090 467 1.58/5.42
Teardrop 1.87 1 007 734 6.14/3.46
VisHuman 0.72 587 194 1.12/4.03
Silicium 0.74 738 945 1.16/3.29
Torso 1.43 14 913 568 1.36/6.26
CFD 1.02 4 124 430 2.70/3.26
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both cases outperform the typical problem formulation with the four equations and

four unknowns discussed in Section 10.1, since subdivision has to be performed on

four parametric directions with each subdivision being O((d+ 1)4) versus 3 parametric

subdivisions with O((d+ 1)3) for each subdivision, where d is the degree.

The timings were taken on interlinked Intel Xeon X7350 Processors comprised of 32

cores using gcc version 4.3 and OpenMP. Evidently, OBB is up to three times faster

than AABB, depending on the isosurface complexity.

10.6 Conclusion

In this chapter, we proposed a novel direct isosurface visualization technique which

computes all the intersections between a ray and an isosurface embedded in various

representations, such as data-fitted geometry, rational geometry, and uniform grids. Our

framework supports rendering the isosurface with view-independent transparency. The

technique is robust, user friendly, and easy to implement: All the images in this chapter,

which show different isosurface visualization scenarios, did not require tweaking and had

no parameter readjustment. We have shown that even though the high-order geometry

mapping contains parametric distortions (e.g., Figure 10.1c), important features in

the isosurface are still maintained, something that is challenging for most isosurface

techniques. Currently, we are working on a GPU implementation where we expect

a significant speed-up of the technique. A direction for future work is to extend the

approach to tessellated isosurfaces.
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CONCLUSION

This dissertation is concluded by summarizing its contributions and discuss future

research directions.

11.1 Contributions

This work presents a framework to create, analyze and visualize volumetric NURBS

geometries. It focuses on the methodology of IA, bridging the gap between Computer

Aided Design and Finite Element Analysis. The work starts with a discussion in

Chapter 3, that the quality of the model can significantly influence the quality of IA.

With these model quality concepts in mind, from Chapter 4 to Chapter 7, this

work focused in particular on the post facto modeling path by introducing various

methodologies to create volumetric representations from multiple input boundaries,

representing the domain of interest with interior materials.

Creating these volumetric representations consists of several steps. The first step

is to determine an appropriate decomposition strategy, to decompose the object into

subvolumes, on which a tensor-product style parameterization can be established. The

goal in this work was to find a decomposition where the subvolumes are as large as

possible so that extraordinary points can be avoided and to ease establishing a higher

continuity among the subvolumes in later datafitting stages. Three decomposition

strategies based on midstructures have been proposed. The first strategy discussed

in Chapter 4 allows fitting a single trivariate B-spline to the parameterization and

has been shown especially useful for generalized cylinders. In the second method

proposed in Chapter 5, a single midsurface is used to decompose the object and was

applied to objects of higher genus. While for the first method, the user has to make

only initialized choices to create the volumetric parameterization, the user input for
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the second decomposition strategy is more involved. To reduce user input, a more

generalized midstructure called the generalized swept midstructure (GSM) has been

proposed in Chapter 7, generalizing the concept of the midsurface to a structure with

a sheet-by-sheet topology and 1D elements in more tubular regions. As in the first

method, the user only has to choose a small number of points on the input surface from

which a harmonic scalar field is computed. This scalar field is used to construct the

GSM.

Lastly, a more general method has been proposed in Chapter 6, where the user

specifies a midstructure representation such as a GSM. This midstructure is used to

create a mixed element representation with high-order trivariate NURBS patches at

the boundary and linear tetrahedra in the interior of the domain. A collocation method

has been proposed to link these element types together. This method is especially useful

for an extended class of objects for which the two methods above are too restricted.

Once the object has been decomposed, the corresponding subvolumes are param-

eterized so that the parameterization matches among the shared boundaries. This

parameterization process is based on harmonic functions, where a linear problem is

solved along the parameteric directions. Two methods have been proposed to improve

the orthogonality of the volumetric parameterizations. In the first method, discussed

in Chapter 4, two scalar fields are established on the volumetric domain such that its

corresponding vector fields are orthogonal. Based on the cross product of these two

vector fields, lines are integrated through the volume to complete the model. In the

second method proposed in Chapter 8, the MIPS method [81] is adapted to the 3D case

where the mapping from the parameteric domain to the physical space is optimized by

improving isotropy. Traditionally, these nonlinear optimizations are slow, and therefore,

an approach has been proposed to accelerate the optimization process of gradient-based

nonlinear optimization algorithms.

Once the subvolumes have been parameterized, a method has been proposed to fit

multiple high-order trivariate B-splines to sampled structured grids in Chapter 9. Spe-

cial care has been taken so that oscillations, typically arising in interpolation schemes,

are avoided. The method starts with an approximation and the fit is iteratively im-
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proved to enhance the accuracy of the approximation to the input data. It has been

demonstrated that this method is not only useful for trivariate B-spline fitting, but is

also useful for more general application such as streamline visualization of vector field

input.

Once simulation has been applied to the collection of higher order trivariate B-spline

or NURBS elements, one way to examine the analysis result is to visualize isosurfaces

of the solution which is an attribute of the high-order representation. Several methods

exist to extract the isosurface, where traditionally, often a lower order representation

such as a triangle mesh is extracted using a technique such as marching cubes or

marching tetrahedra. Extracting a piecewise linear representation from a high-order

representation introduces error. A method has been proposed in Chapter 10 to directly

visualize isosurfaces, by combining subdivision and numerical root-finding to guarantee

accuruate visualization of the respective isosurfaces. In addition to demonstrating the

method on simulation results, the generality of the method has been demonstrated by

visualizing isosurfaces of CT data and isosurfaces of more complex algebraic functions

transformed by a nonlinear transformation.

11.2 Outlook

There are various directions for future research. In particular, a more general

modeling method would allow the input of interior material boundaries that are enclosed

within each other. Furthermore, a more general methodolgy should take sharp features

in an input representation into account. This would allow parameterization of a wider

class of CAD models. It has been demonstrated that the GSM is useful to create

more complex hexahedral parameterizations. However, a concrete methodology and

associated decomposition strategy still must be defined. Furthermore, in the proposed

framework, adjacent patches are C(0) continuous. A future fitting method could take the

block structure of the volumetric decomposition into account to increase the continuity

among adjacent patches. Higher continuity among patches will potentially improve the

simulation applied to the volumetric shape representation. Initial results for the 2D

case already exist. Lastly, there are possibilities to extend the visualization framework



254

to a wider class of elements, such as tetrahedra. The main challenge would be to define

a subdivision scheme based on the given element type.



APPENDIX

PUBLICATIONS

The major part of this dissertation has been published in scientific journals and/or

peer-reviewed conference proceedings. The concept of analysis-aware modeling pro-

posed in Chapter 3 is published in

• Elaine Cohen, Tobias Martin, Robert M. Kirby, Tom Lyche, Richard F. Riesenfeld,

“Analysis-aware modeling: Understanding quality considerations in modeling for

isogeometric analysis,”

In Computational Methods in Applied Mechanics and Engineering, Pages 334-356,

Volume 199, Number 5-8, 2010

The modeling method generalizing the concept of generalized cylinders discussed in

Chapter 4 and datafitting approach discussed in Chapter 9 is published in

• Tobias Martin, Elaine Cohen, Robert M. Kirby,

“Volumetric parameterization and trivariate b-spline fitting using harmonic func-

tions,”

In Computer Aided Geometric Design, Pages 648-664, Volume 26, Number 6, 2009

and in Proceedings of ACM Solid and Physical Modeling Symposium, Stony Brook,

NY, June 2–4, 2008. Best Paper Award.

Modeling more complex geometries with higher genus and based on a single mid-

surface introduced in Chapter 5 is published in

• Tobias Martin, Elaine Cohen

“Volumetric Parameterization of Complex Objects by Respecting Multiple Mate-

rials,”

In Computers & Graphics, Pages 187-197, Volume 34, Number 3, 2010
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The mixed element approach based on a userspecified midstructure discussed in

Chapter 6 will be published in

• Tobias Martin, Elaine Cohen, Robert M. Kirby,

“Mixed-Element Volume Completion from NURBS surfaces,”

In SMI 2012, Computers & Graphics

The generalized swept midstructure proposed in Chapter 7 will be published in

• Tobias Martin, Guoning Chen, Suraj Musuvathy, Elaine Cohen, Charles Hansen,

“Generalized Swept Mid-structure for Polygonal Models,”

In Eurographics 2012, Computer Graphics Forum

The optimization framework to accelerate gradient-based nonlinear optimization

algorithms introduced in Chapter 8 is currently under review in

• Tobias Martin, Pushkar Joshi, Miklós Bergou, Nathan Carr,

“Efficient Nonlinear Optimization via Multiscale Gradient Filtering,”

submitted to Computer Graphics Forum

The visualization method to directly visualize isosurfaces of hexahedral based higher

order volume and attribute representations discussed in Chapter 10 is published in

• Tobias Martin, Elaine Cohen, Robert M. Kirby,

“Direct Isosurface Visualization of Hex-Based High-Order Geometry and At-

tribute Representations,”

In IEEE Transactions on Visualization and Computer Graphics, Pages 753-766,

Volume 18, Number 5, May 2012
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unstructured surface meshes. SIAM J. Sci. Comput. 26 (April 2005), 1146–1165.

[6] Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun,
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