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Abstract 

An important issue for present and future wireless cellular systems is the capability of deliver-

ing differentiated quality of service through the nonstationary and dispersive wireless channel. 

Therefore, in conjunction with countermeasures against multipath distortion, powerful inter-

leaving and forward error correction coding schemes are usually employed to obtain adequate 

error performance. In wireless receivers employing the concatenation of an equalizer and a 

channel decoder, the overall performance can be improved by soft-output equalization, which 

provides the decoder with data reliability information to be used in soft-decision decoding. The 

theory of soft value processing has been well established for the case of the Gaussian dispersive 

channel. However, co-channel and adjacent-channel interference are often one of the dominant 

impairments in wireless networks, and one of the major factors that limit the capacity of cellular 

systems. This thesis studies the problem of soft-output equalization of the mobile radio channel 

in interference-limited environments, where it is often difficult to obtain an accurate statistical 

model of the (non-Gaussian) disturbance. 

The first part of the thesis proposes a new technique for single-channel MAP trellis equaliza-

tion in the presence of multipath and non-Gaussian interference. The approach is based on the 

non-parametric estimation of the density function of the overall disturbance by means of kernel 

smoothing. The work considers the problem of density estimation with limited volume of data, 

and addresses the use of a whitening filter in the presence of coloured interference. As an appli-

cation, simulation results are provided for the GSM system, showing a significant performance 

improvement with respect to the trellis equalizer based on the Gaussian assumption. 

The second part of the thesis considers the case of an antenna array receiver, and studies a 

simple method to derive the reliability information at the output of a deterministic decision-

feedback least-squares space-time equalizer. Computer simulations for the Enhanced Data 

Rates for GSM Evolution (EDGE)/Enhanced General Packet Radio Service (EGPRS) system 

show that the receiver performance can be significantly improved by a soft-output calcula-

tion based on short-term statistics of the equalizer output error. The thesis also addresses the 

additional use of soft-decision feedback, which provides further robustness to the proposed 

soft-output equalizer. 



The study shows the relevance of probabilistic processing for robust equalization of the wire-

less channel in the presence of non-Gaussian interference, and emphasizes the advantages of 

strategies that do not rely on a statistical model of the disturbance. 
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Chapter 1 
Introduction 

Channel equalization dates back to the early work of Lucky [1], Proakis and Miller [2], and oth-

ers (see, e.g., [3]-[6] and references therein), who established the theory of adaptive transversal 

(or tapped-delay-line) equalizers, adjusted by the zero-forcing or the minimum mean-square er-

ror (MMSE) criterion. This early work aimed almost entirely at the telephone channel, which 

can be essentially characterized as a linear time-invariant, intersymbol interference (IS!) chan-

nel. Later work was related to the line-of-sight microwave channel, which may be considered 

as a very slowly time-varying channel [3], and to the time-varying ionospheric and tropospheric 

channels [5]. From the point of view of the equalizer structure, it was soon recognized that over 

highly dispersive channels the performance of linear receivers can be considerably improved 

by nonlinear schemes. Nonlinear receivers employ decision-feedback equalizers [3], [7], [8] 

or trellis equalizers based on .symbol-by-symbol maximum a posteriori probability (MAP) esti -

mation [91-[13 ] or maximum likelihood sequence estimation (MLSE) [17]- [21]. In particular, 

among trellis based receivers, Fomey's MLSE receiver for finite-length IS! channels [17], [19] 

has gained large popularity due to the efficient implementation of the trellis processor by means 

of the Viterbi algorithm [18], [22]. 

Equalization of the mobile digital radio channel has recently presented some new challenges, 

mainly due to the effect of the relative motion between the transmitter and receiver [5], [23], 

[24], [27], [28]. In the case of time division multiple access (TDMA) wireless systems, user 

mobility coupled with multipath propagation results in frequency selective time-varying fading, 

which causes severe ISI [5]. Due to these channel characteristics, practical 1DMA mobile radio 

receivers often employ trellis equalization techniques [29]-[33]. The operation of these MLSE 

or MAP equalizers relies on the estimation of the channel impulse response, which is usually 

accomplished using a sequence of known training symbols transmitted within each TDMA data 

burst [32], [33]. 

Another important aspect of wireless transmission is that the receiver is generally affected by 

interference from other communications operating in the same frequency band [27]. In modern 

cellular systems, the reuse of the same carrier frequencies in different cells (frequency reuse) 



Introduction 

causes co-channel interference (CCI). Frequency reuse also introduces adjacent channel inter-

ference (AC!), when neighbouring cells use frequencies that are spectrally adjacent to each 

other. In current TDMA systems like the Global System for Mobile Communications (GSM) 

[28], improved spectral efficiencies are obtained by either reducing the cell size or lowering the 

frequency reuse factor. This also applies to next generation TDMA standards like the General 

Packet Radio Service (GPRS) and Enhanced Data Rates for GSM Evolution (EDGE) systems 

[34], [35]. However, reduced cell sizes cause frequent handoffs, while lower frequency reuse 

factors result in higher CCI [27]. Therefore, the receiver performance in the presence of inter-

ference is of primary importance for achieving a higher system capacity. Channel equalization 

in the presence of CCI and/or ACI has been studied, e.g., in [36], [39]-[43]. In interference-

limited scenarios, the performance of trellis equalizers critically depends on the validity of the 

statistical model of the disturbance resulting from the sum of interference and thermal noise, 

and on the quality of the channel estimate that represents the ISI. Under these conditions, in the 

case of multiple antenna receivers, interference cancellation by means of deterministic space-

time processing [44]-[47] can often provide an effective alternative solution, with advantages in 

terms of robustness and implementation complexity [48]. Multiple antennas can give additional 

degrees of freedom for suppressing ISI, CCI, and AC! [49]. In general, the spatial dimension 

allows signal separation and unwanted signal suppression in multiple-access communication 

systems. The use of multiple antennas also provides signal diversity and thus reduces the effect 

of signal fading [51], [52]. 

An important issue for present and future cellular systems is the capability of delivering qual-

ity of service (QoS) in terms of delay, throughput and error performance guarantees over the 

nonstationary and dispersive wireless channel. Therefore, in conjunction with countermea-

sures against multipath and interference, powerful interleaving and forward error correction 

coding schemes are usually employed in order to obtain acceptable transmission quality [53]. 

In receivers employing the concatenation of an equalizer and a channel decoder, the overall 

performance can be improved by soft-decision decoding [56]-[58], [13], [14]. This requires a 

reliability information associated with the equalizer output data. In this respect, the optimum 

equalizer is the symbol-by-symbol MAP estimator, which has been employed as a building 

block for iterative (turbo) channel estimation, equalization and decoding (see, e.g., [59] and 

references therein). These techniques have been recently the object of extensive research. How-

ever, earlier work has been mainly devoted to improving the error performance of receivers in 

noise-limited scenarios [53]. This thesis studies the application of soft-value processing to a 
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probabilistic receiver in the presence of (non-Gaussian) interference. 

In the presence of IS!, CCI, and/or AC!, the optimum trellis equalizer is based on joint detection 

of the desired and interfering signals [62]-[64]. Given the knowledge of the channel response of 

desired signal and interferers, joint MLSE and joint MAP equalization are optimal. However, 

their implementation cost can be prohibitive, since the computational complexity increases 

exponentially with the sum of the channel length of all the co-channel signals. 

The rest of the thesis is organized as follows. Chapter 2 introduces the system model used in 

the thesis and discusses the basic issues of equalization of the mobile channel in interference-

limited environment. The material presented in this chapter includes a review of the wireless 

propagation channel model, and of the effect of noise and interference on the design of a cellular 

system. A basic problem of channel equalization is that of deriving a set of sufficient statistics 

for data estimation, which requires an appropriate design of the receiver front-end. The chapter 

provides a discussion on the design of the front-end filter in the presence of additive non-

Gaussian disturbance. The second part of the chapter reviews the principles of soft- in/soft-out 

processing and its application to iterative techniques for equalization and decoding, and 

discusses the use of trellis equalization and linear or decision feedback space-time equalization 

in the presence of non-Gaussian disturbance. 

Chapter 3 studies a novel trellis processor for single-channel MAP equalization in the pres-

ence of IS! and non-Gaussian interference [65], [66]. Conventional trellis equalizers assume 

additive white Gaussian noise (AWGN), where in the presence of CCI and/or AC! the input 

disturbance is generally non Gaussian. In order to correctly set the problem of trellis data 

estimation, a proper statistical characterization of the disturbance is required. The proposed 

approach is based on the non-parametric estimation of the density function of CCI plus noise 

by kernel smoothing [67]-[70]. Here, the term non-parametric is used to signify that no prior 

assumption is made on the statistical model of the noise-plus-interference. The work consid-

ers the problem of density estimation with a limited volume of training data, and identifies 

symmetry conditions that allow to effectively double the size of the training set. The chapter 

also addresses the use of a whitening filter in the presence of temporally coloured disturbance. 

Contributions include the study of the optimum smoothing parameter for the case of complex 

densities, and the analysis of the density estimator performance in terms of mean integrated 

square error (MuSE). The analysis is used to derive a simple proof that matched filtering does 

not provide sufficient statistics for data estimation in the presence of additive non-Gaussian 
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disturbance, in the case of a Gaussian mixture density model of the noise-plus-CC!. The imple-

mentation complexity of the proposed equalizer is analysed using explicit complexity formulas 

as a function of the algorithm parameters. As an application, simulation results are provided for 

the GSM system, showing a significant performance improvement with respect to the equalizer 

based on the Gaussian assumption and improved quality of the output reliability information 

for soft-decision decoding. 

Chapter 4 considers the case of an antenna array receiver, and studies the performance of a sim-

ple method to derive the reliability information at the output of a deterministic least-squares 

(LS) space-time equalizer [72], [73]. Linear or decision-feedback LS equalization has the ad-

vantage of estimating directly the space-time filter coefficients, without requiring the estimate 

of the channel. The a posteriori probability (APP) calculation is based on the computation 

of the short-term statistics of the output disturbance, under the assumption that the decision-

feedback space-time processor whitens the sum of CC! and noise both spatially and temporally. 

Contributions include here the analysis of the performance of different error variance estima-

tors, and the study of a novel variance estimator for PSK signals. Computer simulations for the 

EDGE/EGPRS system show that the attainable receiver block-error rate performance largely 

depends on the quality of the reliability information delivered to the channel decoder. The 

same chapter also studies the use of soft-decision feedback [74], [59]. This technique, based on 

the theory of nonlinear mean-square (MS) estimation [75], is employed in conjunction with the 

above soft-output calculator to increase the robustness of decision feedback soft-out space-time 

equalizers. 

Finally, Chapter 5 summarizes the results of the thesis and addresses areas for future research. 
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Chapter 2 
Equalization of the mobile radio 

channel 

Wireless communication systems generally require channel equalization to combat intersym-

bol interference (ISI) due to multipath propagation and interference from other users and other 

cells. In mobile cellular systems, given the need to operate at low values of signal-to-noise 

and signal-to-interference power ratios, interleaving and forward error correction coding are 

usually employed in conjunction with equalization, in order to provide adequate error perfor-

mance. The performance of these receivers can be improved by means of iterative processing 

based on a probabilistic use of soft decisions in channel estimation, equalization, and decoding 

As discussed in Chapter 1, soft-value processing has been the subject of extensive research over 

the last decade. Most of earlier work has considered soft-output equalization in the presence of 

additive Gaussian disturbance. This chapter discusses the basic issues related to the problem 

of soft-output equalization of the time division multiple access (TDMA) mobile radio channel 

in interference-limited scenarios. The chapter is organized as follows. Section 2.1 reviews the 

main features of the wireless propagation channel, including the characterization of the signal 

variations due to multipath fading, path loss, and shadowing, and the effect of the signal and 

interference parameters on the design of a cellular system. Section 2.2 introduces the signal 

model used in this thesis and discusses the design of the receiver front-end in the presence of 

non-Gaussian noise. Section 2.3 addresses the use of soft decisions in a probabilistic receiver 

with interleaving and channel decoding, and provides some background on iterative process-

ing based on the calculation of the a posteriori probability. Finally, Section 2.4 discusses 

advantages and disadvantages of trellis processing and linear or decision-feedback space-time 

processing for soft-out equalization in the presence of interference. 

2.1 Wireless propagation channel 

In the mobile radio environment, the transmitted signal is modified by the time-varying propa- 

gation channel. In this respect, three physical mechanisms can be identified [5], [23], [27], [28]: 
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a) long-term signal fading or path loss; b) medium-term signal variations, due to shadowing; c) 

short-term signal fading, due to multipath propagation. Each of these phenomena is caused by 

a different underlying physical principle and must be taken into account, at different levels, in 

the design of a radio receiver. 

Path loss or inverse distance power loss accounts for slow variations of average signal strength 

caused by varying distances between transmitter and receiver. Signal variations due to shadow-

ing are often modelled as log-normal fading. Path loss and shadowing information is essential 

in determining the size of the coverage area for radio communications and in selecting optimum 

locations for base antennas [27]. 

Multipath fading results in rapid variations in the envelope of the received signal. Typically, 

the received envelope can vary by as much as 30-40 dB over a fraction of a wavelength [23]. 

In wireless transmission systems, multipath propagation often causes frequency selective dis-

tortion, which results in ISI. Over the typical duration of one burst in a wireless system, both 

inverse power loss and shadowing correspond to a simple attenuation of the received signal. 

Therefore, the receiver design and the choice of the proper digital signal processing algorithms 

depend essentially on the characterization of the multipath process. 

In a multipath propagation channel, due to reflections and diffractions by scatterers, the trans-

mitted signal usually reaches the receiver's antenna via several paths. The superposition of the 

arriving paths at a given value of delay induces destructive and constructive interference, which 

varies as a function of the position. As the antenna moves through this interference pattern, its 

spatial variation appears as a time-variation in the received signal. In addition, due to the mo-

tion of the antenna, the signal on each path undergoes a Doppler frequency shift that depends 

on the path arrival angle a. The maximum (one-sided) Doppler shift ID  equals the relative 

speed v of the transmitter, channel scatterers and receiver, divided by the carrier wavelength 

AC = c/fe (where  f is the carrier frequency and c is the velocity of light). Consequently, the 

received signal is the sum of many Doppler shifted, scaled and delayed versions of the trans-

mitted signal. The fading multipath channel is thus generally a doubly spread channel in time 

and frequency [5], [23]-[27]. At a given time t, the channel impulse response can be modelled 

as a densely tapped delay line with delay index r [5] 

N-1 

c(t,'r)= E c(t)ö(r—r). 	 (2.1) 
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In terms of the various paths, c(t, r) is the sum of the complex gains of all the paths with delay 

T, measured at the current location of the receiver's antenna. Under the assumption of wide 

sense stationary uncorrelated scatterers (WSSUS) [23], [26], from the central limit theorem 

one can assume Gaussian statistics. Therefore, the channel is characterized by the mean and 

correlation of the time-varying response c(t, T). When, for a given delay -i-a , the complex gains 

due to different scatterers have similar amplitudes (diffuse scattering), the real and imaginary 

parts of c(t, 'i- ) are zero-mean stationary independent coloured Gaussian processes, and their 

envelope follows a Rayleigh distribution [5], [23], [27], [28]. In this case, the tap-gain processes 

c(t) are expressed as 

K,-1 

c(t) = 	Uk 
ej(2 Dkt+,0k) , 	 (2.2) 

k=O 

which represents a cluster of incoherent rays arriving with (approximately) equal delay. In 

(2.2), the gain factors Uk  the Doppler shifts fDk = ID cos ak,  and the phase shifts V 1, may be 

assumed fixed during very short time intervals. Differently, in the presence of a dominant path 

(line-of-sight or specular reflection), the corresponding cluster can be modelled essentially as 

a single coherent path 

c(t) = Lo. 	 (2.3) 

In this case c(t, r) has a non-zero mean and the envelope has a Rician distribution [23], [28]. 

As a first-order statistical description, c(t, T) can be decomposed into a specular and a diffuse 

component. The specular component, relative to the dominant path, is defined by c3 (t, T) = 

E{c(t, T)} and is known as the channel mean. The diffuse component is given by Cd(t, 'r) = 

c(t, r) - E{c(t, T) } and is Rayleigh distributed. A sufficient second order statistical description 

of the process c(t, r) is given by the tap-gain cross-correlation function 

R(t1,r1,t2,r2) = E{ c(ti,ri) c*(t2,r2)} 

N-1 N-1 
= 	E{c, 1 (ti )c 2 (t2)}5(ri - 	- r 2 ). 	 (2.4) 

ni=O n2=O 
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Under the WSSUS assumption and in the case of Rayleigh distribution (E{c(t)} = 0) one has 

I?(tl,T1,t2,T2) = R(ti,t2,ri)6(ri - 7-2) 

where 

N- 1 

R(t i ,t2,r) = 	E{c(t 1 )c(t2)}5(T—r) 

= R. (tl - t2, T) = R(t1 - t2)4(r) . 	 (2.5) 

In equation (2.5), the quantity R(t) is the normalized autocorrelation function, R(0) = 1, 

and 

N-1 

IDC E{Ic,2(t)12}5(r - r) 	 (2.6) 

is the delay power density profile [5]. The function (Pc  (r) = Rcc  T) is proportional to the 

average power received from scatterers at delay r, and the range of values of T over which 

(r) is essentially non-zero is the multipath delay spread of the channel. 

The Fourier transform of R,, (t, r) with respect to the correlation lag t is the scatteringfunction 

00 

S. (f, T) 
= f R(t, r) e_i2 tdt. 	 (2.7) 

-00 

For a WSSUS channel, S(f, r) is proportional to the power scattered by the medium at delays 

(T, T + dT) in the Doppler shift interval (f, f + df). The Fourier transform S, (f) of the nor-

malized autocorrelation function R (t) is the Doppler spectrum of the fading channel process 

[23]-[25], and the range of values over which S(f) is non-zero is the Doppler spread of the 

channel, BD = 211). 

Each resolvable multipath component may be then characterized by its own appropriate Doppler 

spectrum and corresponding Doppler spread. Under the assumption of isotropic scattering, 

R(t) is commonly modelled as [23], [24] 

R(t) = Jo (27rfDt), 	 (2.8) 
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where Jo(x) is the zero-order Bessel function. The resulting fading power spectrum is the 

classical Doppler spectrum [23], [25] 

S.,  W 
= { 1/[7rfD\/1 - (f/fD)2} 	Ill ID 	 (2.9) 

0 	 IfI>fD 

The value of the Doppler spread BD provides a measure of how rapidly the channel impulse 

response varies in time. Since S(f)  is related to R(t) by the Fourier transform, the recip-

rocal of BD is a measure of the channel coherence time T [5]. Hence, a fast fading channel 

corresponds to a small coherence time or, equivalently, a large Doppler spread. 

In a similar way, the reciprocal of the multipath spread is defined as the channel coherence 

bandwidth B, which provides a measure of the frequency interval where the fading is corre-

lated [5]. When the signal bandwidth B is greater than B, different frequency components 

are subjected to different attenuations and phase shifts, and the channel is said to be frequency 

selective. 

For mobile radio channels, the multipath delay spread ranges from a few microseconds up to 

tens of microseconds. Therefore, signal bandwidths in the order of 200 kHz result in a fre-

quency selective channel. Cellular systems like GSM and EDGE specify the multipath channel 

models for the different propagation environments, in order to provide appropriate test condi-

tions for different implementations of the receiver [76]. For each propagation condition, the 

GSM multipath channel is described by the time-varying impulse response (2.1), with complex 

tap gains cn (t) of a given mean power and delay r, [28], [76]. In the GSM channel profiles, the 

presence of a line-of-sight or specular component is specified only for the first tap of the model 

for rural area conditions (RA). In all other cases, including the model for typical urban area 

(TIJ), the stochastic processes are characterized by a Rayleigh distribution with the classical 

Doppler spectrum (2.9). In terms of multipath delay spread, the rural area response decays fast 

within one bit interval. The hilly terrain (HT) model has a long-delay part around 15-20 /-1 see 

due to distant reflections. The typical urban (TU) impulse response spreads over a delay inter-

val of 5 p sec, which corresponds to almost two 3.69 p  sec bit interval duration. This symbol 

duration results much smaller than the channel coherence time relative to mobile speeds v of up 

to 100 km/h. Therefore, the GSM channel can be characterized as a slowly time-varying fading 

channel. 
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The above channel model with the Doppler spectrum (2.9) is based on the assumption that 

the received signal angle of arrival is uniformly distributed in the interval (0, 27r) [23]. This 

assumption is reasonable in the case of a mobile station, where the scatterers surrounding the 

receiver are about the same height than the mobile. However, in the case of a base station, 

the receive antenna is usually higher than the surrounding scatterers (especially in a macrocell 

environment), and the distribution of the angle of arrival is often restricted to a small angular 

region. In the case of a multiple-antenna receiver, it is important to include in the channel 

model spatial information on angle of arrival and antenna array geometries, in order to take into 

account the effect on the correlation between signals received at distinct antenna elements [23], 

[77]. For a multiple-antenna receiver, the spatial information is usually added to each multipath 

component of (2.2), which can be rewritten for the generic m-th antenna array element as [78] 

Kn,m1 

Cn,m(t) = E Ok e i(201c m (On,k ). 	 (2.10) 

k=0 

In (2.10), am  (On,k) denotes the m-th component of the array response vector, which is a func-

tion of the array geometry and angle of arrival °n,k  [78], [45]. For a linear array one has 

am(On,k) = e 2 x, sinOn,k , 	 (2.11) 

where x represents the distance between antenna array elements and A is the carrier wave-

length. With this model, the multipath is characterized in terms of Doppler spread, delay spread, 

and angle spread. 

Besides multipath distortion, wireless cellular systems are affected by noise and interference. 

The thermal noise power received at the antenna depends on the temperature and bandwidth of 

the system. Denoting by To the noise temperature in degrees Kelvin, the input noise spectral 

density at the receive antenna is given by N = JCT0 Watt/Hz, where IC is the Boltzmann's 

constant. Additionally, circuit noise is generated within the RF and IF stages of the receiver. 

The equivalent input noise density NF that accounts for the noise generated within the receiver 

is conventionally represented by the receiver noise figure ..F (N + NF) /N. Hence, the total 

noise power in the receiver bandwidth BF results (N + NF) Bp = NFBF = NOBF, where 

No = NF indicates the total noise density at the receiver input. 

In mobile cellular systems, frequency reuse causes co-channel interference (CCI), due to the use 

of the same carrier frequencies in spatially separated cells, and adjacent-channel interference 
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(ACT), when spectrally adjacent carrier frequencies are used by neighbouring cells. Therefore, 

interference is one of the major factors that limit the capacity of cellular systems [27] and often 

one of the dominant impairments in wireless networks. The presence of interference results in 

a multiple-input channel model, where each interferer is usually characterized by independent 

multipath fading. In the presence of multiple receive antennas, this model produces a spatially 

and temporally coloured non-Gaussian disturbance. 

It is important to note that in general the time-slot structure of the interfering signals is not 

synchronized with that of the user of interest. With such an asynchronous interference model, 

different portions of a received burst of the signal of interest are randomly affected by inde-

pendent interfering signals. This thesis will also consider the case of synchronous interference, 

where the interfering slots are (approximately) time aligned with that of the desired user, which 

is a reasonably accurate model for a cellular system with synchronized base stations and small 

cell size. 

While the multipath fading model characterizes the short-term or local variation of the co-

channel signals, the long-term or global statistics are described by path loss models, which 

account for the reduction of received signal power with the distance from the transmitter. The 

classical free space model predicts that the received power P decays with the square of the 

radio path length d, 

(2.12) 
4ird 

where ) is the carrier wavelength and PT is the transmitted power [23], [5]. Free space propa-

gation does not apply in a mobile radio environment and the propagation path loss depends not 

only on the distance and wavelength, but also on the antenna heights of the mobile terminal and 

base station and on the local radio environment [23]. The simplest path loss model assumes 

that the received power is given by 

PdB(d) = PdB(do) - 100 10910( 	+ EdB dBm 	 (2.13) 
do 

where the term PdB  (d0 ) gives the received signal power (in dBm) at a known reference distance 

from the transmitting antenna [23], [27]. The parameter /3 is the path loss exponent, which 

depends on the cell size and the characteristics of the local environment. 3 ranges from 3 to 4 

for a typical urban macrocellular environment, and from 2 to 8 for a microcellular environment 
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[23], [27]. The parameter CdB  in (2.13) is a zero-mean random variable that represents the error 

between the actual and estimated path loss. This statistical variation of PdB(d) is caused by 

shadowing, and is generally modelled by a log-normal distribution with mean 

71(d) = E{PdB(d)} = 	- 10/31og 10 ( 	 dBm 	(2.14) 
do 

and variance o,2,. For macrocells, 4 usually ranges from 5 to 12 dB, with 4 = 8 dB being a 

typical value. a, has been observed to be nearly independent on the radio path length d [27]. 

Path loss models are usually employed in the design of a cellular system to derive the required 

transmitter power and frequency reuse factor, which is defined as the ratio of the co-channel 

reuse distance between cells using the same set of carrier frequencies and the radius of the cells. 

The minimum transmitter power is determined on the basis of the required outage probability 

due to thermal noise, defined as the probability that the signal-to-noise power ratio (SNR) is 

below a predefined threshold. The above outage probability can be computed from the propaga-

tion path loss model and transmitted power, given the spatial distribution of the mobile receivers 

within the cell. Similarly, the required cellular frequency reuse distance is determined from the 

system outage probability due to interference, defined as the probability that the average signal-

to-interference power ratio (SIR) is lower than a predefined threshold. For a given frequency 

reuse pattern and channel utilization, the outage probability due to interference can be obtained 

by computing the SIR distribution as a function of the transmitted power and path loss model 

parameters [79], [80], [27]. The outage probability thresholds depend in general on the trans-

mission quality requirements, the modulation and coding scheme, and the signal processing 

algorithms implemented at the receiver. Current cellular systems are usually deployed to pro-

vide 90-95 percent coverage for voice service. As a result, SNRs and SIRs that are much higher 

than the target are achieved over a significant portion of the cell area. For packet data service, 

this margin can be used to provide higher data rates by means of rate adaptation techniques 

such as adaptive modulation and coding [35], [81]. 

2.2 Receiver design and signal model 

This section introduces the signal model assumed in the thesis and discusses the design of the 

receiver front-end in the presence of additive non-Gaussian disturbance. For simplicity, we 

limit the analysis to the case of a single-channel receiver. The model can be directly extended 
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to the case of multiple-antenna receiver considered in Chapter 4 

2.2.1 Single-channel receiver 

The system block diagram for single-channel reception is given in Figure 2.1. We consider a 

linearly modulated signal, expressed in complex baseband notation as 

s(t) = >bjg(t —iT), 	 (2.15) 
2 

where b2  denotes the i-th transmitted symbol, 11T is the symbol rate, and g(t) is the transmit 

impulse response or pulse shape. The symbols are assumed independent, identically distributed 

(i.i.d.), with values {+1, —11 (the analysis can be easily generalized to the case of symbols d 

taken from an M-ary constellation). The signal (2.15) is transmitted over a multipath fading 

channel with impulse response c(t, T), which produces the channel output 

00 

y(t) =f s(t - x)c(t,x)dx = 	bh(t,t - iT), 	 (2.16) 

00 

with 

cc 

h(t, T) g(r) ® c(t, r) =J g(T - x)c(t, x)dx, 	 (2.17) 

00 

where the symbol "®" denotes the convolution operator. In addition to channel distortion, 

the receiver is affected by co-channel interference and thermal noise. Figure 2.1 assumes for 

simplicity the presence of one dominant co-channel interferer, which is modelled as 

y(t) = 	bh(t, t - iT). 	 (2.18) 

The thermal noise is represented by an additive white complex Gaussian process w(t), with 

zero mean and double-sided power spectral density No = 2o 2 . 

The resulting signal is passed through a front-end receive filter with impulse response 1(t). 

Letting y(t) 4  y(t) ® 1(t), y(t) 4 y(t) ® f(t) and w(t) 4 w., (t) ® f(t), the filter output is 
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WC(t) 

TRANSMIT 	 MULTIPATH 

r(t) FILTER 	 CHANNEL 	
y(t) 

 

bk 	 g(t) riii_ 	c(t,r) 

h(t, r) 

y'(t) 

bk' 	 h'(t,r) 

RECEIVE 
FILTER 

____ 	r(t) ________ 	r(t) 

EQUALIZER 	 ______  
kT 

Figure 2.1: System model for the single-channel receiver. 

14 



Equalization of the mobile radio channel 

expressed as 

r(t) = y(t)+y'(t) +w(t) 

= >bjh(t, t - iT) + 	b'h'(t,t - iT) + w(t), 	 (2.19) 

where h(t, -r) and h! (t, T) denote the equivalent channel impulse responses of the desired and 

CC] signals 

00 

h(t,r) A 	 f(x)h(t - 	- x)dx, 	 (2.20) 

00 

CC 

h'(t,T) £ff(x)h'(t_x,T_x)dx. 	 (2.21) 

00 

Using (2.1) and (2.17), (2.20) can be rewritten in terms of the multipath channel taps c, (t) as 

00 00 

=11 f(x)g(y - x)c(t - x, T - 

00-00 

NC -1 00   

= 	f f (X)C.(t — X)g(T — T,, — x)dx. 	 (2.22) 
n=O 

00 

The receiver model assumes that sufficient statistics for data estimation are obtained by symbol- 

rate sampling at the output of the analog front-end filter. In particular, if the signal y(t) is 

bandlimited with bandwidth B = 1/2T, and f(t) is the ideal low-pass filter with Fourier 

transform 

VIT  
F(f)={ If I1/2T 

If I>1/2T 
(2.23) 

it is y(t) = y(t), y(t) = y(t), and the noise w(t) has variance E{Iw(t)I2} = 20.2. 
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Under the above assumption, the taps of the equivalent discrete-time channel and co-channel 

impulse responses at the input of the equalizer are defined as hr = h(t = kT, T = (1') and 

= h'(t = kT, i-  = £T), respectively. The received signal samples at the equalizer input 

Tk = r(kT) are then written as 

rj = Yk + Y  + Wk 

L-1 	 L'-i 

+ 	b'A_hY + Wk, 	 (2.24) 

where Yk = y(kT), y = y'(kT), and Wk = w(kT). Using the filter (2.23) (or, more in general, 

if F(f) is the square root of a Nyquist filter [5]), E{wkw_t} = 2o, 26f, and the process Wk is 

white. 

As an application, we consider the case of the GSM system. In this case, the transmitted GMSK 

signal is given by 

N-i 

s(t) = exp[j
It 
	q(t - iT)], 	 (2.25) 

i=O 

where 	1+1, —11, and q(t) is the phase response of the continuous-phase modulation, 

which results from the integration of the Gaussian pulse response [82] 

t 

q(t) 
= f u('r)dr, 	 (2.26) 

-00 

It 	7r2B 2 (t - 2T) 2  
U(t) = B 1 	exp[— 	 (2.27) 

V 21og2 	2 log 2 

For GSM, BT = 0.3 is chosen [28], which corresponds to 

{ 0 t< 0 
q(t) 	- 	. 	 (2.28) 

1 t>4T 
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It is possible to show that (2.25) can be approximated by the linear model [83] 

s(t) >jtbjg(t - iT), 	 (2.29) 

with b2  binary symbols determined by the recursion b2  = e2 b_1. Hence, the corresponding 

received samples result 

L-1 	 L'—1 

	

rk = 	
jk_tbkth(k) + : ii: jk_b h'(k) + Wk. 	 (2.30) 

However, a binary modulation can be recovered from the samples (2.30) by applying the dero-

tation [84] 

L-1 	 L'—1 
—t (k) 

	

j_krk = 
	

bk _e [J  £h] + 	b,_4j h1 ] + j_kvjk 
t=o 

L-1 	 L'—1 

	

/ 	'i(k) 
= 	bk_th + 	 +Wk. 	 (2.31) 

Therefore, the received signal samples at the input of the equalizer can still be expressed by 

(2.24), by defining the taps of the discrete-time equivalent channels as 

lit 	.h(tkT,i - eT), 	 (2.32) 

y4k) = j_t . h'(t = kT, T = £T). 	 (2.33) 

Observing that 

j° = cos( 
7rn
---) —jsin(irn--) = e_32 ( 11'4T)T ,  

one has that the derotation produces the equivalent channel 

ui(t, r) = h(t, r) . e32r, 	Id = 	 (2.34) 

with the corresponding discrete-time representation j4k) = Ji(t = kT, r = £T) 
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2.2.2 Receiver front-end and sufficient statistics 

The discrete-time signal model introduced in the previous section assumes that a set of sufficient 

statistics for estimating the transmitted symbol sequence is derived by Baud-spaced sampling at 

the output of the front-end filter. As will be further discussed in Chapter 3, in the case of additive 

white Gaussian disturbance, the optimum front-end processor is given by the whitened matched 

filter, which consists of the continuous-time filter matched to the received pulse, followed by 

a noise whitening filter [17], [21]. If the input noise is white and Gaussian, the output of 

the above processor is a set of sufficient statistics modelled by an equivalent discrete-time, 

symbol-spaced ISI signal in white Gaussian noise. A first difficulty with the analog matched 

filter approach arises when the channel is a priori unknown, as discussed, e.g., in [85], [861. 

Clearly, if the received signal impulse response h, (t, T) is not known and possibly time-varying, 

the matched filter can not be identified. Even if one happens to know h precisely, it may 

be difficult to design and accurately implement an adaptive analog matched filter. Besides 

practical implementation issues, the use of an analog matched filter with a priori unknown 

channel implies an imprecise notion of the front-end processing for the discrete-time model 

(2.24) [86]. Moreover, the matched filter is generally no longer optimum in the presence of 

non-Gaussian noise. In this respect, Chajter 3 will give a simple proof that matched filtering 

does not provide a sufficient statistic for data estimation under the non-Gaussian noise model 

of (2.19), (2.24). Generalized forms of the conventional matched filter for detection in non-

Gaussian noise have been proposed (see, e.g., [871), obtained from the ordinary matched filter 

by replacing multipliers with non-linearities. If the useful signal is strictly bandlimited with 

bandwidth B, a set of sufficient statistics can be obtained by sampling the output of a fixed 

analog filter F(f) with bandwidth BF > B, provided that 

and the output is sampled at rate 1IT8  ~: B + Bp [88]. In fact, since F(f) 0 for I f I < B, 

it is possible to show that the above processing is reversible [88]. The above conditions require 

that the sampling theorem applies to the useful signal, but tolerate an undersampling of the 

noise process as long as there is no aliasing of the disturbance into the passband I fl <B. One 

advantage of the latter solution is its simplicity. Notice that, compared to the matched filter of 

the Gaussian noise case, it does not reduce the dimensionality of the observation space [21]. 
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In TDMA wireless systems, the transmitted signal is often substantially bandlimited with band-

width B 1/2T. In these conditions, from the above discussion follows that sufficient statis-

tics can be obtained by symbol-rate sampling at the output of a low-pass filter f(t) with band-

width BF = 1/2T. This motivates the assumption behind the discrete-time model (2.24). The 

approach can be extended to include the case of non-zero excess bandwidth by introducing 

oversanipling and fractionally spaced equalization [61]. 

It is worth mentioning that, from a practical point of view, when B > 1/2T the design of the 

receiver front-end implies a trade-off between sampling rate and analog prefilter complexity. 

In general, oversampling relaxes the requirements on the filter roll-off, thus leading to a simple 

analog filter implementation. Suboptimum receiver front-ends that employ Baud-rate sampling 

with excess bandwidth signals have been studied in [86], [85]. In this case, the optimum front-

end filter followed by symbol-rate sampling may be viewed as a technique that sacrifices signal-

to-noise ratio for reduced signal distortion [86]. The opposite effect is obtained by employing 

a low pass filter of bandwidth 1/2T followed by symbol-rate sampling [85]. 

2.3 Equalization and decoding in modern probabilistic receivers 

TDMA digital cellular systems require channel equalization as a countermeasure against the 

time-varying multipath propagation. As discussed in Section 2.1, the multipath delay spread 

of the GSM mobile channel ranges from two to five symbol intervals [28], [76]. With these 

channel characteristics linear equalizers often lead to poor performance, resulting in noise en-

hancement at the frequencies corresponding to a spectral null of the channel response [5], [29]. 

On the other hand decision feedback equalizers, although attractive from the implementation 

point of view, generally suffer from error propagation when operating at low signal-to-noise 

ratios [5], [8]. For this reason, TDMA cellular receivers conventionally resort to trellis equal-

ization [29]-[33]. 

Among trellis equalizers, maximum-likelihood (ML) sequence estimation implemented by the 

Viterbi algorithm is the optimum sequence detector. It is widely used in digital mobile receivers 

for processing both the 1ST trellis (equalization) and the channel code trellis (channel decoding). 

However, MLSE equalizers provide only hard decision on the received symbol sequence. In 

modern digital wireless receivers employing the concatenation of an equalizer and a channel 

decoder, the performance can be further improved by soft-decision decoding [56], [13], [14], 
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[57], which requires a reliability information (soft decision) about the equalizer output data. 

Furthermore, in some advanced schemes implementing iterative equalization and decoding 

(turbo equalization) [89]-[92], the channel decoder must be able to provide soft outputs for 

both the coded bits and the information bits [57], [55], [15], [16], [93], [59]. As pointed out 

in [57], there are several advantages in maintaining soft values as long as possible in a digital 

receiver. 

In terms of bit error probability, the optimum algorithm for soft-in/soft-out equalization and 

decoding is the symbol-by-symbol maximum aposteriori probability (MAP) algorithm. Orig-

inally proposed by Bahl et al. [9] for decoding of convolutional codes, the MAP algorithm ini-

tially received very little attention. In fact, it provides a minimal advantage in BER performance 

over ML decoders, at a higher implementation cost. However, being an APP calculator, it has 

the advantage of intrinsically providing optimal soft output values. Differences and similarities 

between ML sequence detection and symbol-by-symbol MAP detection have been discussed, 

e.g., in [11] and [12]. In particular, in [12] it has been shown that the logarithmic version of the 

MAP algorithm is equivalent to a combination of a forward and backward Viterbi processors, 

coupled by a dual maxima computation. 

As an APP calculator, the MAP algorithm is now often employed as the optimum soft- 

in/soft-out module for iterative processing [16], [93], [53]. The idea of iterative or turbo processing, 

first introduced by Berrou et al. in 1993 with the so called turbo codes [54], has been recently 

extensively applied to improve the performance of equalization and decoding for a variety of 

communication systems. Of particular relevance is the mentioned application of the turbo con-

cept to iterative equalization and decoding [89]-[92], where the dispersive transmission channel 

is regarded as an (unknown) rate I convolutional code concatenated with a forward error cor-

rection code, so that the receiver operation is treated as the decoding of a serially concatenated 

code. A block diagram illustrating the concept of iterative equalization and decoding is shown 

in Figure 2.2. Consider the case where the transmitted binary symbols bi  are obtained from the 

uncoded bits u3  by means of rate k/n channel encoding and interleaving. The soft-in/soft-out 

equalizer receives the channel output sequence r0,... , TN-1, and delivers soft values on the 

encoded bits bi  in the form of log-likelihood values 

Pr(b2 =+lIro,... ,rN_1) 	
(2.36) L(bIro,... ,TN_1) 

=log Pr(b = — 1IT0 ,... ,TN_i) 
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INTERLEAVER 
	

SOFT-VALUES ON 
CODED BITS 

DEINTERLEAVER 
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TO SOURCE 

DECODER 
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CODED BITS 	 INFORMATION BITS 

Figure 2.2: Iterative equalization and decoding scheme. 

This values are deinterleaved and passed to the channel decoder. The soft-in/soft-out decoder 

acts as a nonlinear filter, which uses the dependence between the bits to produce less noisy 

estimates of the data. The output of the decoder is given by the log-likelihood values on the 

coded bits, and can be decomposed into two parts: a) channel information and b) extrinsic 

information. The former is the input to the decoder, while the latter is the incremental infor-

mation about the bit bi that derives from all other bits excluding itself. Hence, it represents the 

new information obtained by the decoder using the dependence between the bits introduced by 

the code. The extrinsic information is calculated by simply subtracting the decoder input from 

the decoder output. In an iterative equalization and decoding scheme, these new L-values are 

interleaved and fed back to the equalizer as a priori information L(b2 ) about the coded bit b2 . 

The equalizer now performs a second-pass equalization of the channel output sequence, taking 

into account the a priori knowledge L(b2 ). The extrinsic information from the equalizer is then 

obtained by subtracting the input a priori knowledge from the equalizer output. This iterative 

process can be performed a number of times, and at the last iteration the decoder produces the 
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final (hard or soft) estimates of the information bits it3 . 

The operation of an APP trellis equalizer is based on the knowledge of the channel impulse 

response. Conventional TDMA receivers estimate the channel at the equalizer start-up using a 

known training sequence transmitted within each burst. In GSM receivers, this initial channel 

estimation is usually obtained by correlating the received signal rk with the training sequence 

bits (correlative channel sounding) [32], [33], [59]. Given the good autocorrelation properties 

of the GSM training sequences, this corresponds to least-squares channel estimation [59]. The 

performance of conventional channel estimators can be improved by iterating the equalization 

and channel estimation procedures on a burst-by-burst basis [59]. With this iterative channel 

estimation approach, the first pass performs conventional channel estimation by training. The 

resulting channel estimate is then used to estimate the data in the trellis equalizer. After that, one 

or more iterations can be performed, where hard or soft symbol decisions at the equalizer output 

are fed back, and used together with the original training symbols to obtain an extended training 

sequence for a new channel estimation. This longer sequence results in a smaller channel 

estimation error, which in turn improves the performance of the trellis processor. However, the 

gain is clearly reduced in the presence of decision errors at the equalizer output. As is intuitive, 

soft-decision feedback mitigates the effect of error propagation, and provides robustness at low 

signal-to-noise ratios [94], [59]. In a receiver implementing iterative equalization and decoding, 

iterative channel estimation can be performed using the feedback of the channel decoder output. 

The latter solution provides an additional performance gain, since the channel decoder reduces 

the number of decision errors in the feedback sequence [59]. 

The use of soft decisions in wireless communication systems is not limited to iterative process-

ing for equalization and channel decoding, but has also been successfully applied to joint source 

and channel decoding [95], [96], [53], and to soft packet combining to reduce the frequency of 

retransmission in hybrid automatic repeat request (ARQ) protocols [97], [53]. 

Most of earlier work on soft-value processing for equalization and decoding has been devoted 

to improving the error performance in noise-limited environments, where the above techniques 

have contributed to reach error rates close to the Shannon limit [53]. Relatively little research 

has addressed the use of reliability information for equalization and decoding in the presence of 

CCI and AC!. Under interference-limited conditions, conventional decoding algorithms based 

on the assumption of Gaussian disturbance are often no longer adequate. In a scenario where 

the dominant disturbance is constituted by structured and possibly nonstationary interference, 
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the application of a probabilistic trellis equalizer requires proper modelling of the disturbance, 

with the characteristic of robustness with respect to the structure of the interference. 

The next section, after briefly reviewing recent advances in MAP trellis equalization of the 

additive Gaussian noise channel, will introduce two different novel approaches for soft-output 

equalization in the presence of non-Gaussian interference. 

2.4 Trellis equalization and space-time equalization 

As mentioned in the previous section, historically the main disadvantage for the use of the MAP 

algorithm with respect to ML sequence estimation has been its increased implementation cost. 

However, over the last decade several suboptimum soft-output trellis equalizers have been pro-

posed, which provide nearly optimum performance at a significantly reduced implementation 

complexity. Among them, the soft-output Viterbi algorithm (SOVA) [56] is based on the idea 

of processing only one competing path per decoding stage (the survivor of the Viterbi algo-

rithm). Its soft output is therefore noisier than with the optimum MAP algorithm. Following a 

different approach, the implementation of MAP processors has been significantly simplified by 

operating in the logarithmic domain (log-MAP algorithm), which avoids the need of calculating 

summations of exponential terms [14], [15]. Further simplification has been obtained by the 

max-log-MAP algorithm studied in [13]-[15]. Finally, the complexity penalty associated with 

the presence of both the forward and backward recursion has been eliminated by a suboptimal 

algorithm where processing is limited to the forward recursion, with the introduction of a de-

cision delay depending on the code/channel memory [13], [14]. This forward max-log AMP 

algorithm has been shown to provide a negligible degradation with respect to the optimum 

strategy for MAP equalization of the GSM channel [13]. 

The above equalizers provide excellent performance in noise-limited environments [59]. How-

ever, in the presence of interference, a basic problem with all these probabilistic trellis pro-

cessors is that their performance largely depends on the validity of the statistical model of 

the disturbance, and on the quality of the channel estimate that represents the IS! code. As 

already observed, while conventional trellis equalizers assume additive white Gaussian noise 

(AWGN), in the presence of CCI and/or AC! the total input disturbance is generally non-

Gaussian. Moreover, the temporal colour of the CCI is a priori unknown. In this situa-

tion, the optimum trellis equalizer based on Gaussian statistics performs joint detection of all 
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the co-channel signals. Joint ML and MAP detection have been studied in [60]- [64]. De-

noting by Lm the channel length of the m-th co-channel signal, m = 1,... , M, and by 

Pk,m (bk_1 ,m ,. , bic_L+i,m) the corresponding ISI state at time k, joint detection is 

based on the definition of the Joint state (lLk,1, ILk,2, ... lLk,M) and the number of states re-

quired to implement a binary trellis results 2 =j(m1)• Therefore, although joint ML and 

joint MAP trellis processors are optimal, they can be prohibitively expensive even in the pres-

ence of moderate multipath delay spread. Reduced-state techniques have been addressed, e.g., 

in [60], [61], and [98]. An additional problem of trellis equalizers based on joint detection 

is that their operation relies on an estimate of the channel impulse response of all co-channel 

signals, which requires the knowledge of the training sequence of each interferer. 

In the presence of a priori unknown interference, probabilistic techniques can be employed 

to cope with the difficulty of accurately modelling the disturbance. The new trellis processor 

studied in Chapter 3 is based on the estimation of the (generally multimodal) probability density 

function of the interference plus noise. The fundamental issue of density estimation with the 

availability of a limited volume of training data is addressed here by applying kernel smoothing 

techniques [67]-[70]. As observed in [71], the design of any decision rule should be based on 

a consistent estimate of the decision densities, which, in turn, is based on smoothing. In the 

case of correlated disturbance, the trellis branch metrics are computed at the output of a linear 

prediction-error filter, which (approximately) whitens the sum of noise and interference. Major 

advantages of the proposed strategy are its intrinsic robustness and general applicability to those 

cases where accurate modelling of the interference is difficult or a model is not available. The 

implementation complexity of the proposed equalizer results lower than with joint detection 

in the presence of one dominant co-channel signal, and does not increase with an increasing 

number of interferers. A further cost reduction may be achieved by preclustering of the training 

data for density estimation [99], [100]. 

It is worth emphasizing the close relationship of the above non-parametric trellis equalizer with 

radial basis function (RBF) neural networks [101]-[1031. It has been shown that the optimum 

symbol-by-symbol detector can be implemented by a recurrent version of the RBF network 

[104]. In fact, the RBF network, originally conceived as a general method for approximating 

nonlinear mapping, can itself be considered as a non-parametric technique for estimation of 

a posteriori probabilities [105] and can be seen as a method to realize the Bayesian decision 

function [102], [107], [108], [39], [40] . In this view, the present study implicitly proposes 
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a strategy for the application of neural network techniques to Bayesian channel equalization 

based on the ISI trellis. 

In the case of multichannel reception, an effective alternative to trellis equalization is given by 

interference cancellation by linear or decision-feedback spatio-temporal processing [44]-[47], 

[110], [111]. Spatio-temporal filters operate simultaneously on all the receive antennas, pro-

cessing signals in both space and time. Exploiting the spatial dimension provides CCI suppres-

sion, noise reduction, and spatial diversity against fading. Space-time minimum mean-square 

error (MMSE) receivers have been shown to provide good performance against CCI and IS! 

[45], [46], [111]. Space-time equalizers based on the deterministic least-square (LS) criterion 

have the further advantage of not relying on an estimate of the channel response, or on particu-

lar assumptions on the statistical model of the interference [110], [48]. In fact, in a scheme that 

relies on the estimation of the channel impulse response for the signal of interest, the available 

gain may be in practice reduced by the poor performance of conventional channel estimators. 

However, to enable the use of deterministic space-time equalizers in receivers based on soft-

in/soft-out processing, one needs to provide means to use input a priori probability on the 

coded bits, and to generate reliability information for soft-decision decoding by estimating the 

aposteriori probability on the coded bits at the equalizer output. 

The use of a priori information in a deterministic equalizer has been recently addressed in [92] 

for an MMSE block decision-feedback equalizer. A similar approach can be applied to a LS 

processor. To solve the problem of estimating the aposteriori probability at the equalizer output 

would in general require a MAP trellis processor. A hybrid receiver structure constituted by a 

space-time equalizer followed by a trellis equalizer has been recently proposed in [111], [112] 

and [113] (although not based on the motivation of providing soft-output values for channel 

decoding, see also [44]). However, it has been shown in [46] that the asymptotic performance 

of a space-time receiver incorporating a full-state trellis processor is only marginally supe-

rior to that of a decision-feedback space-time equalizer. Chapter 4 considers a regularized LS 

decision-feedback space-time receiver. In this case, assuming that the feedforward filters ap-

proximately whiten both spatially and temporally the sum of noise and CCI [46], we propose 

a simple method to derive the reliability information for soft-decision decoding. The technique 

relies only on the estimation of the output error variance, which can be periodically updated 

within each burst to cope with the nonstationarity of the error statistics due to asynchronous 

interference and/or feedback of possible decision errors. The robustness of the above decision- 
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feedback receiver is further improved by using the soft-output calculator in conjunction with 

soft-decision feedback based on nonlinear MS estimation. 
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Chapter 3 
Non-parametric trellis equalization in 

the presence of non-Gaussian 
interference 

In time division multiple access (TDMA) radio communications, the received signal is affected 

by co-channel interference (CCI) and intersymbol interference (ISI) resulting from multipath 

propagation. Channel equalizers often employed in practical receivers perform maximum like-

lihood (ML) [17]-[21] or maximum aposteriori probability (MAP) data estimation [9]-[13] on 

the 1ST trellis. ML sequence estimation (MLSE) using the Viterbi algorithm [18] is well known 

as the optimum detection technique for signals corrupted by finite-length (deterministic) ISI 

and additive white Gaussian noise (AWGN), in the sense that it minimizes the probability of 

a sequence error. The symbol-by-symbol MAP algorithm, proposed over two decades ago by 

Bahl et al. [9] for decoding of convolutional codes, has recently received renewed interest 

as a soft-in/soft out decoder for iterative decoding of parallel or serially concatenated codes 

[54], [55], [14]-[16]. As a trellis equalizer, the MAP algorithm is optimum in the sense that 

it minimizes the probability of symbol error. In receivers employing the concatenation of an 

equalizer and a channel decoder, the performance is improved by soft-decision decoding and it-

erative equalization and decoding (turbo equalization) [89]-[91], [59]. In this respect, being an 

aposteriori probability (APP) calculator, the MAP algorithm has the advantage of intrinsically 

providing optimal aposteriori probability as a soft-output value. 

In addition to ISI and thermal noise, radio receivers are affected by interference from other 

communications operating in the same frequency band. This chapter considers the problem 

of equalization of the IS! channel with single channel reception, in the presence of thermal 

noise and co-channel interference (CCI) or adjacent-channel interference (ACT). The optimum 

trellis equalizer in the presence of IS!, CCI, and AWGN, is based on joint detection of the 

co-channel signals [60]-[64]. As already mentioned in Chapter 2, although joint Mt and joint 

MAP detection are optimal, their implementation complexity increases exponentially with the 

sum of the channel lengths of the desired and CCI signals, and can become prohibitive in 
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the presence of more than one interferer. In addition, the estimation of the channel impulse 

response of all co-channel signals requires the knowledge of the training sequence of each 

interferer. Even assuming the knowledge of the training sequences, the estimation of the co-

channel responses will usually be inaccurate for relatively low received power levels of the 

CCI. On the other hand, conventional receivers employ a trellis equalizer which treats the sum 

of noise and CCI or AC! as additive, white, Gaussian noise. In reality, in many situations of 

interest, the sum of noise and interference is a non-Gaussian random process, and the above 

suboptimum approach corresponds to a degradation of the error performance. 

The chapter studies a novel non-parametric trellis equalizer based on the estimation of the 

probability density function of the noise-plus-interference. Given the limited volume of training 

data, the work is based on the application of density estimation by kernel smoothing [67]-[69]. 

The temporal colour of the CCI is taken into account by a whitening filter. 

Section 3.1 gives the system model and formalizes the operation of MAP and ML trellis equal-

izers for finite-length IS! in the presence of additive disturbance. Section 3.2 presents the new 

trellis equalizer based on non-parametric density estimation, and studies the design of the opti-

mum kernel width or smoothing parameter. The section also provides the analysis of the density 

estimator performance in terms of mean integrated square error (MISE). The application of the 

proposed technique to a wireless receiver is discussed in Section 3.3., The same section ad-

dresses the design of the whitening filter for the disturbance, and discusses the implementation 

complexity of the non-parametric trellis processor. Simulation results are presented in Section 

3.4 for the GSM transmission system. Finally, conclusions are drawn in Section 3.5. 

3.1 MAP and ML trellis equalization 

3.1.1 System model 

Consider the received signal 

r 	Yk+flk 	bk_t14+flk, 	 (3.1) 

where bk E 1+1, —11 are the transmitted symbols, the L complex tap-gains h represent the 

samples of the equivalent channel impulse response at time k, and nk = y + wk indicates the 
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Wk 

bk 

Uk 

bk 

Figure 3.1: Discrete-time signal model. 

sum of co-channel interference and thermal noise. As discussed in Chapter 2, the discrete-time 

model (3.1) assumes that sufficient statistics for data estimation are obtained by symbol-rate 

sampling at the output of a front-end receive filter. In the AWGN case, the optimum receive 

filter consists of Forney's whitened matched filter followed by symbol-rate sampling [17], [21] 

(or, equivalently, the matched filter followed by symbol-rate sampling and a noise whitening 

filter). The MLSE receiver proposed by Ungerboeck [19] does not require the whitening filter, 

and a sufficient statistic for data detection employing a modified metric is given by the matched 

filter output sampled at the symbol rate (see Section 3.1.2). Optimality considerations on the 

receiver structure developed for the case of MLSE in AWGN can also be applied to symbol-by-

symbol MAP receivers. However, if the noise is not Gaussian the matched filter is no longer 

optimum. As already pointed out, in the case where the useful signal is strictly bandlimited 

with bandwidth B, a sufficient statistic for data estimation can be obtained by a fixed analog 

filter F(f) with bandwidth BF > B, whose output is sampled at a rate 1/T3  ~! B + BF [88]. 

In fact, provided that F(f) 0 for Ill < B, the above processing is reversible, and from 
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the factorization theorem [114], [115] follows that any invertible transformation of a sufficient 

statistic produces a sufficient statistic (see also Section 3.2). According to Chapter 2, here we 

assume that the transmitted signal is bandlimited with bandwidth B 1/2T, and that (3.1) is 

obtained by symbol-rate sampling at the output of an ideal low-pass filter. 

This section considers the CCI samples as independent complex non-Gaussian random vari-

ables. In the presence of dispersive (temporally coloured) interference, a suitable temporal 

prewhitening is assumed to produce approximately independent non-Gaussian disturbance. The 

validity of this assumption will be discussed in Section 3.2. 

3.1.2 Symbol-by-symbol MAP algorithm for finite-length ISI and additive inde-

pendent disturbance 

Suppose that the symbols bk are transmitted in finite blocks of length N. Assuming the knowl-

edge of the channel impulse response, a soft-output symbol-by-symbol MAP equalizer com-

putes the aposteriori log-likelihood ratio 

Pr(bk=+lIro... rN_1) 
L(bklro,... 	

, 	, 	

' 	
0kN-1. 	(3.2) 

rNl)  

Let Pk (bk_i,... , b_ 4 ) denote the generic ISI state at time k, and S(bk = bk) be the set 

of states corresponding to the transmitted symbol bk = bk. Indicating by ek  the transition from 

the state /1k  to ILk+1,  the MAP algorithm results in aforward and backward recursions with the 

transition metric A(k),  coupled by a dual-maxima operation [9], [18], [12] (see Appendix A) 

L(bkro,... , rr_) = 	max' 	A(zk+l) - 	max' 	A(pk+l) 	(3.3) 
ILk+l6(bk+1 ) 	 lik+1E$(bk__ 1 ) 

A(ik+l) = A1(Itk) - A(k) + A b ([Lk+l), 	 (3.4) 

where A(JLk)  is the overall accumulated metric for the state ILk,  A 1  and, Ab  are the accumulated 

metrics in the forward and backward recursions 

= Max' IA(ILk_l) - )t(ek_1)} 	 (3.5) 
i-'k-1 

r 
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A b ( k+l) = max' JA b Ulk+2) - ) k+1)} 	 (3.6) 
Ik+2 

and max'{x,y} 4  max{x,y} + log(1 + e_Ix_l) [13], [15], [12]. Using max'{x,y} 

max{x, y} corresponds to the max-log-MAP algorithm [13]-[15] (see also [59]). Taking into 

account that p(rklbk,... , 	= pn(rk - 	 the metric increment A(k)  in 

(3.4)-(3.6) results 

= —logpn(rk _>bk_eh) — log Pr(bk) 

= - log pn(rk - >jj bk_th) - bkL(bk). 	 (3.7) 

When the equalizer receives some a priori information the term —(1/2)bkL(bk) in (3.7) has 

a fundamental role in deriving a soft-in/soft-out MAP equalizer [16], [90], to be used in an 

iterative equalization and decoding (or turbo equalization) scheme. Observe that the above 

derivation relies on the assumption of known channel. In practice the channel is usually esti-

mated using a known training sequence at the equalizer start-up. 

In the case where nk is modelled as AWGN, from (3.7) one obtains the conventional Euclidean 

distance metric 

1 	
L-1 

= 	I - 	bk_th j2 - bkL(bk) . 	 (3.8) 

The block diagram of the corresponding parametric equalizer is shown in Figure 3.2. The 

equivalent optimum receiver proposed by Ungerboeck [19] uses the metric 

= -- Re{ b- [ 2Zk bkRcJ —2 :i: bk_tRt] } - —b 	 (3.9) (3.9) 

where Zk denotes the matched filter output, and Rk  is the channel deterministic autocorrelation. 

(3.9) can be viewed as the result of partitioning Fomey's Euclidean distance metric into a fil-

tering operation and a modified metric, where the filtering exactly inverts the noise whitening 

operation [20]. 
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Figure 3.2: Block diagram of the conventional parametric trellis equalizer. 

3.1.3 ML sequence estimation for finite-length IS! and additive independent dis-

turbance 

As already pointed out, the logarithmic version of the MAP algorithm is equivalent to a com-

bination of forward and backward Viterbi processors, coupled by a dual-maxima computation 

[12]. Moreover, the metric (3.7) corresponds to the branch metric for MLSE implemented 

by the Viterbi algorithm [18]. In particular, the MLSE equalizer is obtained by retaining the 

forward recursion of the max-log MAP algorithm, and substituting the calculation of the log-

likelihoods (3.3) by a trace-back of the symbols on the survivor path, after reaching the termi-

nation of the trellis [18]. From an intuitive point of view, this simply corresponds to replacing 

the MAP backward recursion with a decision delay. 
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3.2 Trellis equalization by non-parametric density estimation 

Conventional digital receivers usually employ a trellis equalizer which treats co-channel and/or 

adjacent channel interference as additive, white, Gaussian noise. As discussed in the previous 

section, this results in the Euclidean metric (3.8) or in the modified metric (3.9), and leads to an 

efficient implementation of the trellis processor. In practice, however, CCI and ACI are often 

coloured non-Gaussian processes. Figure 3.3 shows an example of the density function of the 

noise-plus-CCI mk for the case of the GSM channel. The plot has been obtained by a histogram 

of the data in 2000 bursts, considering one dominant interferer under stationary propagation 

conditions. From Figure 3.3, it is apparent that the sum of additive noise and CCI can not be 

realistically modelled by a Gaussian distribution. In this respect, a possible approach is to try 

to estimate the probability density function of the noise plus interference, instead of relying on 

the Gaussian assumption. With this non-parametric equalizer, the density function is estimated 

from a given number of observation data. To this purpose, one can use the known training 

data usually sent for the estimation of channel parameters. However, the available volume 

of training data is usually very limited. In this situation histogram methods generally lead to 

poor results. A possible approach to circumvent this problem is to resort to kernel smoothing 

techniques [67]-[69]. 

3.2.1 Density estimation by kernel smoothing 

3.2.1.1 Parzen estimator 

An estimate of the probability density function p, of a complex random variable X can be 

built from a set of data X 2, i = 1,... , n, by means of a smoothing function or kernel function 

K(x, X 2 ) (see [68], [69] and references therein). With the classical method proposed by Parzen 

[67], an estimate of the unknown probability density function is given by 

n 

j3(x) = n V'K(x,X). 	 (3.10) 
i=1 

A possible choice for the function K(x, X 2 ) is the Gaussian kernel of fixed width a0 

1 	e_lz_XuI 2 ' 2 ? . 	 (3.11) K(x,X) 
21ra 
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GMSK signal, GSM TUprofile 
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Figure 3.3: Example of the density function of CCI (derotated GMSK signal) plus A WGNfor a 
GSM receiver 

The estimator (3.10) with kernel (3.11) is (asymptotically) unbiased (i.e., lim E{(x)} = 
n—too 

p(x)), provided that a0  = a0  (n) is chosen as a function of n such that urn ao(n) = 0. 
n—too 

Moreover, the estimator is consistent (i.e., lim E{ Ip(x) - 	12 } = 0), provided that 
n—,00 

lim nao (n) = 00 [67]. 
fl-400 

3.2.1.2 Transition metrics for non-parametric trellis equalization 

In the case of a Bayesian trellis equalizer, the random variable X represents one realization of 

the process of noise-plus-interference corresponding to a given received burst. Consider the 

received signal (3.1), and assume that the channel is approximately constant within the burst 

duration. Then, once the channel taps ht are estimated using the Nt  training symbols 62 , they 

can be used to derive the set of observations X, i = 1,... , n = N L of the random 
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disturbance X according to 

Xj= iii =rj_->bj_ht, 	
(3.12) 

where "" denotes the estimated value. At this point we recall that the transition metric (3.7) of 

the optimum symbol-by-symbol MAP algorithm results 

L-1 

= —109J3(rk - 	bk_th,) - bkL(bk) . 	 (3.13) 

t=o 

Therefore, using (3.10) and (3.11) one can directly estimate the quantity log i3(x) = log j5 (x) 

for 

x= ilk =rk_>bk_eht, 	 (3.14) 

and obtain 

= —log 3(x) - bkL(bk). 	. 	(3.15) 

The conceptual difference between the operation of the proposed equalizer and the conven-

tional parametric equalizer is illustrated in Figure 3.5. In the equalizer based on the Gaussian 

assumption, the observations (3.12) are used to produce an estimate of the variance which 

parametrizes the Gaussian density, while the proposed approach uses the same data to estimate 

the density function. The block diagram of the resulting equalizer is shown in Figure 3.4. From 

the implementation point of view, the value of the density log j3 (x) at the point (3.14) can be 

computed separately for each trellis branch at a given time k. Alternatively, the density can 

be precomputed for a finite number of values x (e.g., at the points of an appropriate grid), and 

stored in a look-up-table before starting the trellis processing. Clearly, the former approach is 

generally preferable both in terms of complexity and accuracy. Moreover, from a conceptual 

point of view, it seems advisable to concentrate the effort on the particular problem of estimat-

ing the density at the points of interest, rather than trying to solve the more general problem of 

estimating the entire density. With respect to the computational complexity associated with the 

estimator (3.10), observe that other kernels than the Gaussian density (3.11) may be considered 

as alternatives for a practical implementation. Specifically, the use of the Epanechnikov kernel 
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Figure 3.4: Block diagram of the non-parametric trellis equalizer 

[68] 

x-x i I 2 	Ix-xi1 2  < 
KE(xX)={ 	

(1— 	
tT 	

1 	
(3.16) 02 

0 	 elsewhere 

would avoid the need of computing n exponential functions at each evaluation of (3.10). On the 

other hand, note that using the Gaussian kernel the quantity log Pn  (x), involving the logarithm 

of a sum of exponentials, can be efficiently computed using the max-log approximation of 

Section 3.1.2. Alternatively, the exponential and logarithmic functions may be implemented 

by means of a look-up table. Further discussion on the implementation cost of the proposed 

algorithm will be provided in Section 3.3. 

It has to be emphasized the fact that the above technique deals with the statistical model of a 

random variable, obtained as the realization of the noise-plus-interference process at a given 

time instant. With a proper adaptive procedure, the approach can be extended to those cases 
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where the interference can not be considered approximately stationary within the burst. 

3.2.2 Gaussian mixture model of the noise-plus-interference 

Although the proposed non-parametric equalizer has general applicability, and is suitable for 

situations where a model of the additive disturbance is not available, in this section we discuss 

the special case where the CCI signals have the same structure of the signal of interest. This 

interference model will be used to get insight in the operation of the estimator, and to obtain a 

specific equalizer design for the application discussed in Section 3.4, under the assumption of an 

(unknown) deterministic finite-state machine model for the co-channel signals. For simplicity, 

the analysis considers one dominant CCI signal. The result is easily extended to the general 

case of more than one interferer. 

Consider the received signal (3.1). The sum of noise and CCI at time k can be expressed as 

L'—1 

	

nk = Yk + 10k = 	b_el4 + Wk, 	 (3.17) 

where b'k E {+1, — 1} are the co-channel symbols, h(k),  0 £ ~ 	- 1 denote the taps of 

the co-channel impulse response, and wk is white Gaussian noise with zero mean and variance 

2u2 , which is assumed independent of y.  The co-channel taps h(' at time k are regarded as 

an unknown, but deterministic mapping from 
(,-•• —V+1) to y.  Hence, at a given time 

k, the distribution of the random variable n k can be derived from those of b and wk. Given a 

generic binary quantity 3, we define 

L'— 1 

nj = 772,i +ii,2 	 1 < i <2 , 	 (3.18) 

where 13 = {/3 ,e } 1  denotes one of the 2L'  distinct sequences of elements /3i,t E 1+1, —11. 

Then, the expression of the density function of nk results 

2 

	

Pn (X) = ;7 	Pw(X - 
	 (3.19) 

where p,,, (x) is the complex Gaussian density with variance 2u 2 . In fact, from (3.17), n k is the 

sum of the two random variables y' and 'w, and its density p(x) is given by the convolution of 
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the marginal densities p., (x) and p,, (x) of yand wk, respectively [75]. p,,, (x) is the complex 

Gaussian density. Hence, to obtain p (x) one has to derive the density function py'  (x) of the 

co-channel interference. But Y'k  is itself modelled as the sum of the L' independent random 

variables 0k,t == + jh 2 ). Since the symbols b are assumed to be inde-

pendent, identically distributed with density Pb'  (x) = (1/2) [8(x + 1) + 6(x - 1)], the density 

Of °k,t results 

po(xl,x2) = [ö(x i  + h ,1 ) . 6(x2 + h ,2 ) + 6(x1  - h ,1 ) . 6(x2 - h ,2)], 	(3.20) 

where x1 and x2 denote the real and imaginary part of x, respectively. Then, straightforward 

calculation yields 

Py!(x) = Py'(Xl,X2) = j(xi —Th,i)  .(x2  —Th,2) 	 (3.21) 
i=1 

With 77i = 17ij + is,2 defined according to (3.18). Finally, the convolution between py i(X) In 

(3.21) and p,,, (x) gives (3.19). 

From (3.19), the density of noise-plus-interference is given by a number of symmetric Gaussian 

kernels, whose centres are the points of the hypothetical scatter diagram obtained in the absence 

of thermal noise. Comparison of (3.19) and (3.10) reveals the strong connection between the 

structure of the Parzen estimator and the true density of the disturbance (3.17). In particular, for 

01 
2 - 0, the observations X2  in (3.10) correspond to the points of the complex plane defined 

by (3.18), with the binary parameters i3 replaced by the co-channel symbols Therefore, 

the estimator defined by (3.10) and (3.11) will approach the true density (3.19) as soon as the 

dimension of the training data is large enough to represent the 2' -" equiprobable sequences 

'3i= From this point of view, in the presence of the Gaussian mixture noise model 

(3.19), the use of the Parzen estimator with Gaussian kernel could be interpreted as one way of 

using a priori knowledge on the noise distribution. 

We observe that in (3.18) for each index i = i' corresponding to the binary sequence fl i,= 

there is an index i = i" with f3,, = {_/3j,t}l1 = _)3i,. This means that for each 
1=0

i' there is an il' such that T/il = — q,,. Hence, exchanging each pair of indexes i' and i" in the 
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sum (3.19) and taking into account the symmetry of the Gaussian density p,,, (x) gives 

2' 	 2L' 

P.(— x) = i 	P. 	+ sj) = 	>pw(x - 	= p. (x) 	(3.22) 
i=1 	 i=1 

It is easy to see that an analogous result is obtained if the model (3.17) includes more than 

one interferer. The importance of this fact is that it effectively doubles the available volume of 

training data in the density estimator (3.10). Indeed, it implies that, if {X } are values assumed 

by the random variable nk,  then the set {—X} contains values assumed by nk with the same 

probability. Therefore, together with each outcome X 2  one can additionally consider —Xi  as if 

it was the result of a parallel experiment. This leads to the enlarged data set {X, —X 2 }. 

3.2.3 Choice of the smoothing parameter 

The kernel width or smoothing parameter o o  in equation (3.11) can be chosen in order to mini-

mize a given measure of inaccuracy of the density estimator. The most widely used measure of 

global accuracy is the mean integrated square error (MISE), defined as [68], [69] 

00 00 

MISE(fi) A E{ff [p(x) - (x)] 2 dxidx2 }, 	 (3.23) 

00-00 

where x 1  and x2  denote the real and imaginary part of x. Optimal smoothing in the mini-

mum MISE sense has been studied in [68], [69]. Following a similar approach, this section 

provides the analysis of the MISE performance of the kernel density estimator and derives the 

optimum smoothing parameter for complex densities. In the case of complex data, by standard 

elementary properties of mean and variance, (3.23) can be rewritten as 

00 00 

MISE(fiX) = f J [E{j3,(x) } - p(x)]2dxidx2 

00-00 

00 00 

+JJ E{[(x) - E{(x)}} 2 }dxidx2. 	 (3.24) 

—00-00 

Hence, the MISE of the estimator is given by the sum of the integrated square bias and the 

integrated variance. It is convenient here to parametrize the kernel, introducing the notation 
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(1/o)K 1 ((x - X,) /0,0) = K(x,X 2 ), where K, (x) is a symmetric function defined as the 

product of the univariate kernels K1 (Xl) and K1  (x2), and u0 denotes the width of the univariate 

kernel components. For simplicity, it is also assumed that the kernel K, (x) has mean 

Al

00 CO 	 00 

 j  I y1 K1 (y)dy idy2 I yiKi (y)dy i  =0, 	 (3.25) 

and variance5  

00 00 	 00 

A2 JJYIK,(Y)dYldY2  = _ yKi (y)dy i  0. 	 (3.26) 

—00-00 

At this point, a classical approach [68], [69] is to approximate the bias and variance using 

Taylor series expansion, which gives 

p(x) 	
10,02 	02p(x) 

	
92p(x) (3.27) t7op2 [ a2 + 

 

0000 

E{[j3(x) —E{i3(x)}]2}pzj1—p,(x) J f K(y)4 142. 	(3.28) 

-00-00 

To derive (3.27) one observes that the bias can be written as 

71 
1 

E{j5(x)} —p(x) = —E{K(x,X)} —p(x) 
i=1 

=LL 010  
_ 	

Kl(x 	)p()d1de2 —p,(x) 

00 00 

= 	
Ki(y)[p(x - £ TOY) - p(x)]dy i dy2, 	 (3.29)  I j 

-00 - 00  

tL and P2  are the mean and variance of a random variable z with density function K1  (x). 
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having taken into account that K1 integrates to unity. Then, using the multidimensional form 

of Taylor's theorem, we can approximate 

	

Op(x) + 
:T2o 	

O2p(x) 
 UO - UoY) p(x) - 	 Yi - 	8x  9x3 YiYj' 	(3.30) 

	

i 	 i,j 

and from (3.29) 

0000 

E{23(x)} - p(x) = —o Op(x) f f y1Ki(y)dyidy2 
ax, 

00-00 

Op(x) 	 1 2 
00 00 	 00 00 

	

P 1 	 ______ 
- 	

Ox2 I I y2Ki (y)dyidy2 + 	
Ox I I yK1(y)dyidy2 

	

-00-00 	 -00-00 

	

00 00 	 00 00 

1 2  O2p(x) 
 2p(x) 	 ______ +0-200 
OxiOx2 f f y 1y2Ki (y)dy i dy2 + 	

Ox f f yK1(y)dyidy2 

	

-00-00 	 -00-00 

	

1 2 	O2p(x) 92p(x)
01 	

Ox + Ox 

For the variance, assuming independent X i  one gets 

E{[j3(x) - E{j5(x)}}2} = E{j3(x)} - E2{i3(x)} 

00 00 	 0000 

1 2  
= 	f f K(y)p(x - uoy)dyidy2 - [ f i K1(y)p(x - aoy)dyidy2 2  (3.31) 

-00-00 	 -00-00 

and approximating p(x - aoy) by the first term of the Taylor expansion (3.30) 

00 CO 

	

E{[13(x) - E{(x)}] 2 } 	p(x) f f K? (y)dy i dy2 

-00-00 
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00 cc 

- [ Px(X)f I Ki(y)dyidy2 j2 

—00-00 

00 00 

= _P(x)f f K(y)dyidy2 - p(x) 

2

00 00 

_P(1) 	f K? (y)dy idy2  
noro 	

—00-00 

From (3.28) one has that the variance is approximately proportional to the height of the true 

density function. Both bias and variance are affected by the smoothing parameter a. As 

co  decreases, the bias diminishes while the variance increases, and the opposite occurs as o0 

increases [69]. 

Substituting now (3.27) and (3.28) in (3.24) the MISE is approximated as 

MISE(j3) 	 + IL 
no-0 

0000 

j 	j 
[ 	

[K12 (y )dyi dy2 , (3.32) 

-00 -00 

where 

0000 

F(p) f I 
a2p(x) O 2p(x) 

= 	[ 	+ 	] 2dxidx2. 	 (3.33) 

-00-00 

Therefore, minimizing the MISE (3.32) with respect to oj yields the approximate optimal width 

00 00 	 1/6 

25 5 K(y)dyidy2 	

. 	 (3.34)-00-00  
00(opt) = 	npF(p) 

If K1 (x) is the Gaussian kernel with 112 = 1, one computes 

00 00 	 00 

I f K? (y)dyidy2 = ( 	f edy )2 - 1 	 (3.35) 

	

21r 	 47r 
-00 -00 	 -00 
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Hence, substituting (3.35) in (3.34) we restate for the complex case the result that minimizing 

(3.23) with the Gaussian kernel (3.11) yields the optimum width 

	

1 	1/6 

	

010(opt)= (2flF(P)) 	
(3.36) 

with (p) defined in (3.33). 

If p(x)  is the complex Gaussian density p.,, with variance 2a2, (p)  results 

0000 

1x 	x 	 1 
I'(pw) = J f [ -(-- + - - 2)p,,(x) ] 2dxidx2 = 	 (3.37) 

2iru6  
-00-00 

and using (3.37) in (3.36) one obtains 

1 1/6  

	

Uo(opt) = (n)
0. 	 (3.38) 

Finally, consider the density Pn  (x) of the noise-plus-interference (3.17). Now, using (3.19) and 

applying Cauchy's inequality we derive 

00 00 	 2L  

F(p ) 	
2Pw(X 	+ a2p(x - 

iii) 12dxidx2 = f f{I:[ aX2 	 ax 
-00-00 

00 00 
92P.  (X 

- ri) 82p(x - 
i) ]2dxidx2 

+E .0x 
 I f 1 	09X

jr=1_00 -00 

2'" 

7 	F( 	
2iro

p) 	 (3.39) 
i=1 

Hence, from (3.36) and (3.39) follows 

1/6 

	

50(t) 2! 01. 	 (3.40) Wn 
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Note that choosing 

ui 1/6 
cro =ko .f—) a, 	1<k0<oo 	 (3.41) 

'\ n J  

satisfies the conditions of Section 3.2.1 for unbiasedness and consistency of the estimator. For 

a specific application, the optimum parameter Icj  = ko(,t) in (3.41) can be determined if the 

true density function p, is known or can be obtained numerically. Then, with a given volume n 

of training data, the kernel width can be selected from (3.41) according to the value of the noise 

variance o 2 . In a practical receiver, an estimate of a2  can be derived by the training symbols, 

taking into account the estimated channel response and the measure of the received signal level. 

Using (3.36) and (3.39) in (3.32) also gives the following approximate upper bound to the 

minimum MISE 

	

1 4 	 1 
M1SEm1n 	or 	Pfl) + 

4O(opt) 

- 3 (p, ) l/3 	3 
- 4 (27rn)2/3 	8irn2/3a2' 	

(3.42) 

i.e., 

MISEIIUfl  MISE0  = 	
3 	 (3.43) 

8irn2/3a2  

When an estimate of the optimum parameter ko(,, t ) is available, observing that from (3.36) 

F(p) = 1/( 27rnao6
()). 

the expression of the corresponding minimum MISE results 

1 	1 	 1 	 3 	
(344) MISEmin 	O(opt) 

2rno8() 
+ 

47rn:TO2(OPt) = 81flcTg() '  

or, in terms of the parameter k0 of (3.41), 

MISEm 	
1

m '' k2 	
• MISE0. 	 (3.45) 

O(opt) 

The above analysis refers the case of fixed-width kernel. Adaptive kernel density estimators 

which use kernels of different width for each training sample have also been proposed [68, 

[70]. For a study of the optimum smoothing parameter a(x) for adaptive kernel methods see, 
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e.g., [68]. 

3.2.4 Sufficient statistics 

The analysis of Section 3.2.2 can be used to derive a simple proof that matched filtering does 

not provide sufficient statistics for data detection under the non-Gaussian noise model (3.17). 

Consider the random variables (sequence of random variables) b, and the corresponding ob-

servation set r. If b is estimated using some function, or statistic, 'y(r) of the measurement 

set r, then the statistic 'y is said to be sufficient for b if p(blr, 'y) = p(bI'y), or equivalently if 

p(rjb, 'y) = p(rI'y). A way to analyse sufficiency is given by the factorization theorem [21], 

[114], [115]. 

Theorem 1 (Factorization Theorem) 'y = -y(r) is a sufficient statistic for b !f and only if 

p(rlb) = f(r,y) .g(b,y). 	 (3.46) 

From the factorization theorem directly follows that, if 'y is a sufficient statistic, then an invert-

ible transformation /, = ' , ('y) is also a sufficient statistic [21], [114]. 

Example 1 (Additive Gaussian Noise) Consider the signal model (3. 1), where bk are the data 

to be estimated, and nk is an additive white Gaussian disturbance with variance 2a 2. We have 

p(ro ,... ,rN_lIbo,... ,bN_1) = flpfl(rk -EN-the ) 

L-1 
1 	 1 	 12) = 	flexp(-- Irk - 

2iru2 k 

L-1 

= [22 exp(— 	
>IrkI2)]. [exp(—- 	bnb>heh;+n_m) 

k 	 n m 

• 	 Re{ 	b 	Tmh_ n  })] 	 (3.47) exp(-  
n 	m 
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In (3.47), the quantities zk = r h_k,  0 < k < N - 1 represent the matched filter output. 

Then, letting 'y = 'y(ro ,... , rr_i) = {zk}'ij',from (3.47) we can write 

p(ro,... ,rN_l lbo,... ,bN_1) = f(ro,... ,rN_1 ,7) g(bo,... 	 (3.48) 

and from the factorization theorem we obtain the well known result that the matched filter 

output is a sufficient statistic for b0,... , bp.r_ i. 

Let now consider the problem of estimating the data ...... , bN_j from the received signal 

(3.1), where nk is the non-Gaussian disturbance defined by (3.17). Assuming for simplicity 

L' = 1 in (3.17)-(3.19) (non-dispersive interference), one obtains 

L-1 

p(ro,... ,rN_lIbo ) ... 7 bN_1) = IJ pn(rk - 
k 	5=0 

L-1 
1 

4 y2 [J {exp(--- Irk - 	bk_Slit + h' 1 2 ) 

L-1 

+exp(— 1--Irk - 	bk_th5 - h' 1 2 )1 

1 	1 1 	
L-1 

= 2ircr2 exp(—--- 
	irk 

12)  .exp(— — >>bnb>1hth+n_m) 
k 	 n m 

exp(- Re{ 	b >rmh_n }) . exp(— 	N jhI2)
2o,2 

n 	m 

[Jcosh( -Re{(rk - 
k 

(3.49) 

Inspection of (3.49) shows that the statistics 'y = ' y(ro ,... , rn_i) = {Zk = E rmh_k} '  

no longer allow the factorization (3.48). Therefore, from the factorization theorem, we conclude 

that for the non-Gaussian problem in consideration the matched filter output is not a sufficient 
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statistic for b0,... , 

3.2.5 Temporal whitening 

The trellis equalizer with branch metric (3.15) is based on the assumption that the samples nk at 

the output of the receive filter are independent. Given a temporally coloured CCI, we consider 

the use of a whitening filter of the disturbance before the trellis processor. MAP and ML equal-

ization in the presence of ISI and correlated noise has been studied e.g. in [116], by modelling 

the disturbance as a finite-order Markov process. The trellis branch metrics derived in [116] in 

the case of (signal-dependent) additive Gauss-Markov noise correspond to first uncorrelating 

the noise with a finite impulse response filter, and then applying the Euclidean metric to the 

filter output. Here, let 4 E{nkn_t } = RC_ denote the autocorrelation of k•  If the 

z-transform of R(l) admits the spectral factorization S(z) = Sr G(z )G*(1/z *), with G(z) 

causal, monic, and minimum-phase (canonical filter response), one can define the whitening 

filter A(z) 4  Sçj  . 11G(z) [17] (see also [117]). Since G(z) is causal and minimum-phase, 

A(z) is causal and stable. Being A(z) an invertible transformation, there is no loss of informa-

tion, i.e. the output of the whitening filter is still a sufficient statistic; In practice, the whitening 

filter A(z) can be implemented by a linear prediction-error (LPE) filter. We point out that 

the LPE filter will ideally produce uncorrelated CCI-plus-noise samples [119], but this does 

not necessarily imply independence, since the process continues in general to be non-Gaussian. 

However, independent noise is often assumed for signal detection in uncorrelated non-Gaussian 

noise, and in certain cases this results a good approximation [87]. The use of a whitening fil-

ter is also supported by the observation that reducing the correlation between the samples will 

certainly reduce their dependence. Note that in some particular cases the whitened disturbance 

turns out to be actually independent. As an example, this happens when the variance of the ther-

mal noise tends to zero and the co-channel is minimum-phase (in fact, in this case the ideal LPE 

filter inverts the co-channel). From the implementation point of view, it should be taken into 

account that a whitening filter for the disturbance will inevitably increase the channel memory 

for the desired signal. Hence in order not to increase the number of states of the equalizer, the 

number of taps of the LPE filter has to be kept small. In other terms, the problem is that of a 

trade-off between reducing the colour of the input disturbance and limiting the complexity of 

the ISI trellis. 
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3.3 Application to a TDMA cellular radio receiver 

This section considers the application of non-parametric trellis equalization to a TDMA radio 

receiver. Numerical results will be provided in the next section for the GSM system. GSM is 

a TDMA system with 200 kHz carrier spacings, where a TDMA frame on a given channel is 

divided into eight time slots, each one reserved to one user [120]. In TDMA cellular systems, 

the encoded and modulated data are transmitted within each time slot according to a specified 

burst format, containing a training sequence midamble [1211. The transmitted signal is often 

substantially bandlimited with bandwidth B 1/2T. As an example, the GMSK signal of 

GSM has almost zero excess bandwidth [76]. Therefore, sufficient statistics can be obtained by 

Baud-rate sampling at the output of a low-pass filter with bandwidth BF = 1/2T. As discussed 

in Section 2.2, in the case of the GSM receiver, we consider the linearized model of the GMSK 

signal, and assume that (3.1) is obtained by derotation of the received samples. 

With the typical multipath fading of mobile communications, the discrete-time process y of 

(3.17) is generally coloured [76]. Therefore, the receiver should include a digital LPE filter 

to whiten the disturbance at the input of the equalizer. In a conventional TDMA receiver, the 

'channel is estimated by correlating the received signal rk with the known training sequence 

bits [33], [59]. Here, we implement a joint ML estimation of the LPE filter coefficients vector 

a 4 [ao  = 1 a1  = — a1  ap = —ap] and the equivalent channel taps vector C Ko ( 
where 4 Ei  ah_ (see, e.g., [113]). Denoting by rk the received signal samples 

at the input of the LPE filter, the approach assumes the model 

P 	L+P-1 

airk-i = 	bj_( +Ek, 	 (3.50) 
i=O 

where the term Epo  airk-i denotes the LPE filter response to the received signal, while 

bktC indicates the channel plus LPE filter response to the transmitted symbols bk, 

and ek is a zero-mean white Gaussian process with variance 2a 2 . Since from (3.1) rk = Yk +flk, 

the model (3.50) corresponds to assuming 

P 	 P L-1 	 L+P-1 

aiYki = E ai bk__tht = 	 (3.51) 

i=O 	i=O £=O 
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and 

	

aink—i = Ck 
	 (3.52) 

with 6k  white (see Figure 3.6). Therefore, the effect of the LPE filter is that of whitening the 

additive disturbance nk. The formulation (3.50) permits the description of the channel plus 

whitening filter as a vector inner product, which in turn allows the simultaneous estimation of 

the LPE coefficients and the equivalent channel taps at the output of the LPE filter [113]. In 

fact, letting a A [ai ap], (3.50) can be rewritten as 

r 
	

bk 

	

[1 —a1 	—ap] 
rk_ 1 
	

bk_i 	
+Ek, 

	

rk_p 
	

bk_L_p+1 

or equivalently 

I 	b, 	1 
Irk_i l 	 I 	I 

bk_i 

	

rk = [ a 	ap I 	+1 o i 	L+P-1 
	I + C 

[rk_pj 	 I 
[ 
bj__p j 

= [a C]Vk + 6k 	 (3.53) 

where Vk [rk_1 ... rh_p bk_i 	bk_L_p +l] T . Given the Gaussian assumption on 6k,  the 

likelihood function of r0 ,... , rN-1 given [a C } and v0,... , VN_1 results 

—logp(ro,... , -N_1 I [a C},vo,... ,VN_1) = —logp(eo,... ,EN_i) 

N-i 
= Irk_[a}vkI 2 	 (3.54) 
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nk  

Ck 

L+P-I 

e=o 
ck 

LPE FILTER 

Ek_______ 	ak _______ 

Figure 3.6: Equivalent representations of the operation of the whiteningfilter 
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rk bk 

Figure 3.7: Structure of the receiver with prewhitening filter for the interference plus thermal 
noise. 	 - 

(having neglected the constant term Niog 2iro 2 ). Therefore, assuming the knowledge of v 0 , 

VN._1, the ML estimate [a ] of the vector [a can be obtained by minimizing (3.54) 

with respect to [a ]. This corresponds to the least-squares estimation of the unknown pa-

rameters a and C. Defining 

Rvv 	 (3.55) 

N-i 

(3.56) 
i=O 

and introducing a regularization term with regularization coefficient A > 0 [122] (see also 
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Section 4.1.2), one obtains 

[a eIT_(R+ AI) —l p 	 (3.57) 

In the receiver under study, the conventional equalizer then uses the LPE filter output and the 

estimated channel derived from (3.57) to compute the metrics (3.8) or (3.9). The complete 

algorithm with the non-parametric equalizer of Section 3.2 is summarized in Table 3.1. In 

this case, the filter output and the channel estimate are employed to derive the observation set 

(3.12) for kernel density estimation. For a GSM receiver, given the Nt = 26 training bits, the 

procedure results in n = 22 training data for the density estimator. This data set can be doubled 

using the result of Section 3.2.2. 

It is worth pointing out that an enlarged training set increases the implementation complex-

ity of the non-parametric equalizer. In the following, we discuss the complexity associated 

with the calculation of the log-MAP branch metrics for equalization of a GSM burst, and 

compare the computational cost of the proposed algorithm with the conventional parametric 

equalizer and the optimum equalizer based on joint detection. The complexity of the metric 

calculations for the parametric equalizer is written as C = Co 2', where CO  is an imple-

mentation dependent quantity. In the presence of M co-channel GSM signals with channel 

length L, the corresponding cost for the joint-MAP equalizer results approximately propor-

tional to MG0 2ML = M2(M_l) C. For the non-parametric equalizer with Gaussian kernel, 

given the estimated channel, kernel width, and observation set (3.12) (which are derived from 

the burst midamble before starting the trellis processing), the computation of the quantities 

- X,12 /2oj in (3.11) requires 2L + 3 multiplications for each trellis branch. In the case 

where the exponential in the kernel function (3.11) and the logarithm in the metric (3.15) are im-

plemented by a look-up table, the metrics - log j3 (x) of (3.15) require therefore n (2L + 3) 2" 

multiplications per trellis stage. Taking into account also operations of table look-up and addi-

tions, the overall metrics complexity for one burst can be estimated in ic n Co 2L =r.. nC, 

with ic 0.5 - I. 

From the above estimates, the metrics complexity for the proposed equalizer is lower than 

for joint detection if n < M2(M-1)L. Furthermore, the joint detection approach requires an 

additional cost for the calculation of the accumulated metrics and the soft-output values, which 

increases exponentially with M. 
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TABLE 3.1 

SUMMARY OF THE NON-PARAMETRIC ALGORITHM 

WITH COLOURED DISTURBANCE 

NOISE PRE WHITENING AND 

CHANNEL ESTIMATION 

STEP 1: compute matrix (3.55) and vector (3.56) 

using received signal rj, and known training symbols 

STEP 2: jointly estimate LPE filter coefficients ak 

and equivalent channel taps k  using (3.57) 

STEP 3: compute LPE filter output EP ar_2  

MAP TRELLIS EQUALIZATION 

STEP 4: compute observation set (3.12) for kernel 

density estimation using signal from STEP 3, channel 

estimate from STEP 2 and known training symbols 

STEP 5: for each trellis branch, evaluate (3.14) using 

signal from STEP 3 and channel estimate from STEP 2 

STEP 6: compute metric increments (3.15) using 

(3.10), and store accumulated metrics 

STEP 7: compute a posteriori probabilities (3.2) 

using (3.3)-(3.6) 
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The complexity of the optimal joint-MAP equalizer may be significantly reduced by subopti-

mal approaches based on a reduced-state trellis. State reduction has been achieved by channel 

memory truncation [98], or by the multi-stage joint detection scheme of [61], based on succes-

sive interference cancellation. With the latter technique, the complexity grows linearly instead 

of exponentially with M. However, its performance is affected by error propagation in the case 

of comparable received power of the different co-channel signals [61]. As already observed, a 

reduced complexity non-parametric equalizer may be obtained by using a kernel function dif-

ferent from (3.11). A cost reduction may also be achieved by performing preclustering of the 

training data (which is equivalent to exploring the multimodality of the estimated density) [99], 

[100] (see also [123]). 

3.4 Simulation results 

The effectiveness of the strategy based on density estimation by kernel smoothing has been 

assessed by computer simulation for the case of a GSM receiver with single channel reception. 

The GMSK transmitted symbols are obtained from the source bits by rate 1/2 convolutional 

encoding and interleaving, according to the GSM specifications for the full-rate speech traffic 

channel [125]. The simulator includes the frequency selective, multipath fading channel with 

the classical Doppler spectrum [76], CCI, and white Gaussian noise. Ideal frequency hopping is 

implemented. One dominant co-channel interferer is assumed, characterized by an independent 

fading process. The noise and interference powers are identified by the signal-to-noise ratio 

(SNR) and the signal-to-interference ratio (SIR), respectively. At the receiver, the soft-output 

data produced by a 16-states log-MAP equalizer are deinterleaved and decoded by a Viterbi 

convolutional channel decoder. 

To establish the ultimate performance of the proposed equalizer, we first consider the ideal 

case of known channel and relative speed 0 km/h. The GSM typical urban area (TLJ) multipath 

profile [76] is assumed for both co-channel signals. The accuracy of the density estimator (3.10) 

in terms of minimum MISE is studied in Figures 3.8 and 3.9. The MuSE curves for different 

SIRs suggest that a proper choice of the kernel width is obtained by taking k0 E (1.5,3.5) 

in (3.41). In particular, for a fixed SNR the minimum MISE is given by values of k0 which 

decrease with increasing SIRs. This fact is in agreement with the analysis of Section 3.2.3. In 

fact, for SIR -* oo the noise-plus-CCI approaches the Gaussian distribution, and from (3.36), 

(3.39), and (3.41) follows that ko(t) = 1/(27ru6F(p)) 1/6  , 1. Figures 3.8 and 3.9 also 

55 



Non-parametric trellis equalization in the presence of non-Gaussian interference 

Known Channel - SNR = 20 dB, n = 44 
4.5 

4 

3.5 

3 

w 2.5 
Cl) 

2 

1.5 

0.5 

n 

SIR =O,3..., 12dB 

Approximate min MIS

/  

LO)er 

 

Approximate min MISE (3.45) 

0 	2 	4 	6 	8 	10 	12 	14 	16 

k 0  

Figure 3.8: Simulated MISE ofthe estimated density in the case ofknown channel, as afunction 
of the kernel width parameter k 0  of equation (3.41). GSM TUO profile, SNR = 20 

dB. 
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Figure 3.10: Error performance in the case of known channel. GSM TUO profile, SNR = 30 
dB. 

report the minimum MISE calculated from (3.45) with the estimated ko(t) at SIR = 0 dB. 

The calculated values are seen to be in good agreement with the minimum MISE obtained by 

simulation. Figure 3.10 shows the bit-error rate (BER) performance of the proposed receiver 

in the case of known channel for the signal of interest and SNR = 30 dB. The MAP non-

parametric equalizer is compared with the MAP trellis processor that assumes additive white 

Gaussian disturbance. The parametric equalizer uses the metric (3.9), and operates directly on 

the output of the matched filter. The figure also addresses the effect of doubling the data set 

for density estimation, as discussed in Section 3.2. The error rate curve for n = 44 is seen 

to increase around the singular point SIR = 3 dB. This is due to the fact that at this particular 

level of interference the CCI-plus-noise densities conditioned to different transmitted symbols 

may partially overlap, depending on the phase difference between the desired and co-channel 

signals. This situation corresponds to the occurrence of comparable metric increments for 

different branches of the ISI trellis. The results of Figure 3.10 indicate that the non-parametric 

equalizer offers a potential improvement of more than two orders of magnitude in terms of BER 
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Figure 3.11: Error performance in the case of estimated channel. GSM TUO profile, SNR = 30 
dB. Density estimator with fixed kernel width 0Q = 0.05. 

at the equalizer output. For the non-parametric equalizer with n = 44, from the simulation of 

16000 bursts per BER point no error has been detected at the corresponding output of the 

channel decoder. 

Figures 3.11 to 3.14 illustrate the equalizer and decoder performance when the channel of 

the signal of interest is estimated from the training symbols. In these simulations, we also 

introduce an LPE filter for prewhitening of the coloured disturbance. As discussed in Section 

3.2, choosing the prediction order involves a trade-off between performance and complexity. In 

the figures, a 16-states trellis and a 2-taps LPE filter are used for both the parametric and non-

parametric equalizer (see also [112]). The regularization coefficient A of (3.57) is fixed to 10- 2 . 

The plots refer to the case n = 44, which consistently provides a gain of about 0.5 dB with 

respect to using the original training set size n = 22. Finally, Figures 3.13 and 3.14 include the 

performance obtained by iterative channel estimation [59]. In this case, after the equalization 

of the entire burst, the data decisions are fed back to produce an improved channel estimate, 
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Figure 3.12: Error performance in the case of estimated channel. GSM TU50 profile, SNR 
= 30 dB. Density estimator withfixed kernel width üj = 0.05. 

which is used in a second pass equalization. One observes that at low SIRs the performance 

of all the equalizers is affected by the error associated with the channel estimate. However, the 

collected results show that the non-parametric approach still provides a performance gain of 

about 4 dB at a BER = 10- 2  at the output of the channel decoder. 

Notice that the performance of both the channel and density estimators may be further im-

proved by the use of decision-feedback from the decoder output. The latter approach results 

particularly attractive for receivers implementing iterative equalization and decoding [59]. As 

discussed in [59], the above iterative channel estimation schemes imply an increased imple-

mentation complexity. In particular, the use of feedback from the output of the channel decoder 

may cause latency problems with the 8-burst interleaving scheme of GSM [125]. This problem 

is mitigated in third-generation TDMA cellular standards, which employ a reduced interleav-

ing depth [59]. Further study should investigate improved channel estimation techniques in the 

presence of non-Gaussian noise. 
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Figure 3.13: Error performance with iterative channel estimation. GSM TUO profile, SNR 
= 30 dB. Density estimator with fixed kernel width a = 0.05. 

The above simulations refer to a synchronous interference scenario. This model is reason-

ably accurate in some practical situations, such as a GSM system with synchronized base sta-

tions and small cell size. Simulation with asynchronous interference shows that the proposed 

non-parametric equalizer still outperforms the conventional trellis processor. However, in the 

presence of asynchronous CCI, the proper approach consists in introducing an adaptation of 

the estimated density. In this respect, further research should address the study of the perfor-

mance/complexity trade-off of schemes based on adaptive density estimation. 

3.5 Concluding remarks 

A probabilistic trellis processor has been studied for trellis equalization of the ISI channel in the 

presence of non-Gaussian interference. The proposed approach is based on the non-parametric 

estimation of the density function of CCI-plus-noise by kernel smoothing techniques. Major 
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Figure 3.14: Error performance with iterative channel estimation. GSM TU50 profile, SNR 
= 30 dB. Density estimator with fixed kernel width o = 0.05. 

advantages of this technique are its intrinsic robustness and general applicability to those cases 

where there are difficulties in accurate modelling the interference. The chapter has consid-

ered the design of the optimum smoothing parameter for complex densities, and provided an 

analysis of the MUSE performance of the density estimator. With respect to the problem of 

density estimation with the availability of a small volume of data, symmetry conditions have 

been identified that allow to actually double the size of the training set. The problem of de-

riving sufficient statistics for data detection in the presence of non-Gaussian correlated noise 

has also been discussed, and the use of a whitening filter for the disturbance has been studied. 

The implementation cost of the proposed equalizer has been compared to that of the conven-

tional parametric equalizer and the optimum equalizer based on joint detection, using explicit 

complexity formulas as a function of the algorithm parameters. 

Simulation results have been reported for the GSM system, showing that despite the limited 

volume of training data, the proposed strategy can provide a significant improvement of the er- 
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ror performance with respect to the receiver that assumes Gaussian disturbance. The proposed 

non-parametric technique can be applied to trellis processors implementing symbol-by-symbol 

MAP estimation or ML sequence estimation. In the case of a MAP equalizer, the collected data 

show that estimating the actual statistics of the non-Gaussian disturbance allows for an addi-

tional gain in terms of improved quality of the output reliability information for soft-decision 

decoding. The above MAP equalizer is therefore particularly suitable for application as an inner 

soft-in/soft-out module in iterative equalization and decoding. 
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Chapter 4 
Soft-output space-time equalization 

The use of antenna arrays can help to combat co-channel interference (CCI) in wireless digital 

mobile systems. in interference-limited scenarios, spatio-temporal filtering techniques [4411-

[47], [110] can be competitive with respect to trellis based algorithms, because of the difficul-

ties of accurately modelling the space-time characteristics of the interference, especially for 

asynchronous cellular systems [48]. 

This chapter considers a diversity receiver for the Enhanced Data rates for GSM Evolution 

(EDGE) system, which is being standardized as an high-data rate evolution of GSM and TDMA/ 

136. The new system will provide data rates significantly higher than GSM through the use of 

an 8-PSK modulation scheme instead of GMSK, and link adaptation implemented by adaptive 

modulation and coding (AMC). AMC transmission will support different modulation and cod-

ing schemes (with the GMSK format retained for the lower rate transmissions), dynamically 

selecting the modulation and code rate to match the varying link quality [35], [81]. The EDGE 

standardization activities within the European Telecommunications Standards Institute (ETSI) 

are considering both packet- and circuit-switched based systems: Enhanced General Packet Ra-

dio Service (EGPRS) and Enhanced Circuit Switched Data (ECSD) [35]. For EDGE in 8-PSK 

modes, due to the increased dimensionality of the modulation symbol alphabet and the corre-

sponding exponential increase of the number of states of the 1St trellis, the implementation of 

optimum trellis equalizers becomes unrealistic. Therefore, linear or decision feedback filtering 

techniques, or reduced-state trellis equalizers have to be considered. 

In digital receivers employing the concatenation of an equalizer and a channel decoder, the 

performance is improved by soft-decision decoding and iterative equalization and decoding 

[57], [59]. In this respect, as we have seen in the previous chapters, MAP trellis equalizers [9] 

have the advantage of intrinsically providing optimal a posteriori probability as a soft-output 

value delivering reliability information to the channel decoder. On the other hand, in a diver-

sity receiver employing (nonprobabilistic) linear or decision-feedback space-time filtering, this 

reliability information is not available, and has to be computed by a suitable post-processing. 
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This fact, not often addressed in previous studies, has a significant impact on the decoder per-

formance. 

Space-time equalization for multiple antenna receivers in the presence of CCI and intersym-

bol interference (ISI) have been widely studied in the recent literature (see, e.g., [44], [45] 

and references therein). In particular, [46] provides the analysis of receiver structures based on 

space-time linear filtering followed by a decision-feedback section or a (single-input) trellis pro-

cessor. In the latter case, the space time front-end filtering aims to maximize the signal-to-CC! 

plus noise ratio at the input of the trellis equalizer (without suppressing ISI), while whitening 

the CCI and noise components [46]. The asymptotic performance (for infinite-length filters) of 

the space-time receiver that uses a full state trellis processor after space-time filtering is only 

marginally superior to that of an MMSE decision-feedback equalizer (DFE) [46]. A diversity 

receiver for joint convolutional coding and decision-feedback equalization has been recently 

proposed [126], which employs a space-time DFE with soft decision feedback. However, in 

[126] the DFE output is directly fed to the channel decoder. 

In order to fully exploit the potential advantage of the coding scheme, the decoder should be 

provided with (an approximation to) the a posteriori probability on the coded bits, derived 

from the output of the space time equalizer. The present chapter studies 8-PSK EGPRS trans-

mission schemes with interleaving and convolutional coding [125], and with a diversity receiver 

employing linear and decision-feedback space-time filtering based on the deterministic least-

squares (LS) criterion. The chapter discusses and quantifies by computer simulation the effect 

on the receiver performance of the quality of the soft-output values (reliability information on 

the coded bits) delivered by the space-time equalizer. In particular, the study compares the 

performance of soft values based on burst statistics and short-term statistics of the equalizer 

output error. This work considers the implementation of regularized training-based algorithms 

for space-time equalization. However, the soft output calculation can be applied to enhanced 

space-time processors based on a semi-blind or training-like approach (see [110], [48] and ref-

erences therein). 

The chapter is organized as follows. Section 4.1 introduces the system model and formalizes the 

problem of regularized least-squares space-time equalization. Section 4.2 studies the derivation 

of the reliability information at the output of the deterministic equalizer. The method is based 

on the computation of the sample variance of the output disturbance. The same section also 

addresses the use of the above soft-output calculator in conjunction with soft-decision feed- 
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back [74], [128], [129] and derives the optimum (mean-square) soft-decision device for 8-PSK 

symbols. The system performance is analysed by computer simulation in Section 4.3. Finally, 

conclusions are drawn in Section 4.4. 

4.1 Space-time equalizer 

4.1.1 System model 

The EGPRS system reuses the GSM carrier spacing of 200 kHz and the symbol rate of 271 kHz. 

The transmitted data are protected by a rate 1/3, constraint length 7 punctured convolutional 

code, with block interleaving over 4 bursts (20 msec) [125]. As in GSM, the burst format 

includes a 26 symbols training sequence midamble, 2 x 58 data symbols, 2 x 3 tail and 8.25 

guard symbols. 

We assume that P + 1 co-channel signals are transmitted over independently fading multipath 

channels to the M-branch diversity receiver shown in Figure 4.1. The received signal at the 

m-th antenna, 1 <m < M, can be expressed as 

r. (k)= x.(k) +nm (k) = 	d(°)  (k —)h(k,) + m (k), 	(4.1) 

where Xm (k) denotes the signal of interest with data symbols d(k) = d °  (k), and 

P v-i 

nm (k) = >d(')(k— £)h ) (k,e)+Wm (k) 	 (4.2) 
P=1 £=O 

represents the sum of noise and CCI. The noise wm (k) is modelled as a complex zero mean 

Gaussian random process with variance a2  . This chapter considers the case where the trans-

mitted data (k), 0 <p < P for the p-th co-channel user are taken from an 8-PSK symbol 

alphabet. The complex tap-gains h2)  (k, £), 0 < £ < v— 1 denote the equivalent discrete-time 

impulse response for the p-th co-channel. It is assumed that each burst of data is received under 

quasi-stationary propagation conditions, so that h) (k )  £) h(e). Both synchronous and 

asynchronous interference scenarios are considered, with co-channel signals characterized by 

independent multipath fading processes. 

Indicating by L the time span of the space-time receiver in number of symbol intervals, one 
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Figure 4.1: Linear/decision-feedback space-time receiver 

also has in vector notation 

rm (k) = x,,, (k) + flm (k), 	 (4.3) 

where rm (k) 	[rm (k) 	rm (k - L + i)]T, xm (k) 	[xm (k) ... xm(k - L + i)]T, and 

n,(k) {Th m (k)" flm (k_L+1)]T . 

4.1.2 Regularized linear LS equalization 

The output of the space-time equalizer is written as 

y(k) = 	y. (k) 	 (4.4) 
m=1 
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with 

L-1 

	

1<mM. 	 (4.5) 

Therefore, letting 

r(k) = x(k) + n(k) [ rf(k) 	r(k) IT 	 (4.6) 

and 

T IT, 
CJ 	 (4.7) 

where Cm [cm (0) ... c(L - i)]T, one gets 

y(k) = 	r(k) Cm = rT(k) C. 	 (4.8) 
M=1 

Consider the residual disturbance at the equalizer output, given by the error signal 

e(k) 4  y(k) - d(k). 	 (4.9) 

Introducing the vectors  4  [y(L) 	y(N)I T , d 4  {d(L)... d(N)]T,  and 	y—d = [e(L) 

e(N)IT, we can express in compact form 

y=AC 	 (4.10) 

with the (N - L + 1) x ML matrix A 4  [r(L) . . . r(N)IT. The training-based linear LS 

algorithm minimizes the cost 

J(C)411e112=>1e(i)12 	 (4.11) 

over the training interval. Given the training data sequence {d(k)}fL 1 , we have J(ë) = 

(Äë - 	- = HAHAë - 2Re{A"d} + aHa, where tilde indicates quan- 

tities relative to the burst midamble. Hence, provided that A is full rank 3 , one obtains the 

'The full column rank requirement implies that the matrix A has at least as many rows as column, that is 
N - L +1 > ML. 
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least-squares solution for the space-time filter coefficients [119] 

	

o  arg min J(ë) = 	 (4.12) 

where 

N 

R A 	1 	AHA = 	1 	r*(i) rT(i) 	 (4.13) 
N—L+1 	N—L+1 

i=L 

is the time-averaged correlation matrix of the equalizer input, and 

N 
1 	

A H  d = 	1 	 r*(i)d(i) 	 (4.14) 
N—L+1 	N—L+1 

i=L 

is the time-averaged cross-correlation vector between the equalizer input and the transmitted 

data. Correspondingly, the equalizer output results y(k) = r(k) . It is worth em-

phasizing that during the equalizer operation on the payload, the received vector r(k) and the 

corresponding matrix A will be generally different from those used to estimate the coefficient 

vector E. Denoting by A± A (A"A) 1 A" the Moore-Penrose pseudoinverse of the matrix 

A [119], [130], in (4.12) it is R'p = Ad, and the equalizer output can also be rewritten as 

y(k) = rT(k) Ad =- y = AAd. At the burst midamble one has S? = AAa, which corre-

sponds to the orthogonal projection of d onto the range space of A [119]. Hence, ë - d = 

(AA —I)d, where I denotes the (N—L+ 1) x (N—L+ 1) identity matrix. In this case we say 

that the equalizer is in its least-squares conditions, and AHë = (AHAA+ - AH)a = 0, i.e., 

the error vector is orthogonal to the range of the matrix A (principle of orthogonality) [119]. 

A means of mitigating a possible ill-conditioning of the least-square problem (4.11) (i.e., a 

nearly rank deficient matrix A) is to include in the cost a stabilizing functional or regularizing 

operator cHA  c where A is a positive-definite matrix. This gives the lJchonov functional [122] 

J'(c) 	hell 2  + CH Ac. 	 (4.15) 

Choosing A =AI, with I denoting the ML x ML identity matrix, the cost function (4.15) 

becomes 

X(c) 	hhell 2  + \ IIC112 	 (4.16) 
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where A> 0 is a regularization coefficient. For small A, (4.16) corresponds to a minimization 

subject to the constraint that the solution c0  has minimum norm. The regularization coefficient 

relaxes the full-rank condition for the solution of the LS problem (see [122] and references in 

[48] and [122]). In this case, the solution (4.12) becomes 

arg min J'(ë) = (R+AI)', 	 (4.17) 
C 

and 

y(k) = rT (k) (1k. + Al) — 'P - 	 (4.18) 

4.1.3 Regularized LS decision-feedback equalization 

With a decision-feedback space-time equalizer, the output signal can be expressed as 

M±1 	M+1 

y(k) = 	y. (k) = 	r(k) Cm. 	 (4.19) 
M=1 	 m=1 

In (4.19), the vectors rm (k) and Cm , 1 <m < M, are defined as in the previous section, and 

YM+1(k) = r 1  (k) CM+1 	 (4.20) 

where, denoting by L1 = L and Lb the number of forward and backward filter coefficients, 

CM+1 	[ CM+1(0) •.. CM+1(Lb - 1) IT 	 (4.21) 

rM+1(k) [ 1(k - D) •.. ci(k - D - Lb + 1) ]T 	 (4.22) 

with D delay parameter. As shown in Figure 1, the symbols i(k) in (4.22) represent the hard or 

soft symbol decisions' at the output of the feedforward space-time filter [74], [126]. Therefore, 

letting 

CA[ cf c' 	C1 
IT 	 (4.23) 

4d(k) = d(k) in correspondence to the training sequence midamble. 
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r(k) 4 [ rf(k) 	r'(k) 	r31(k) ]T 	 (424) 

one has 

y(k) = rT(k) c. 	 (4.25) 

Hence, one still writes (4.10), where the matrix A is now (N—L1 —D —Lb+ 1) x (MLf+Lb). 

With the above notation, the decision-feedback LS and regularized LS cost functions can still 

be formalized according to (4.11) and (4.16), with the respective solutions given by (4.12) and 

(4.17). 

4.2 Calculation of the soft-output values 

According to the notation introduced in Section 4. 1, the equalizer output is expressed as 

y(k) = d(k) + e(k), 	 (4.26) 

where d(k) E {d() = i2/Q ,  1 < q Q = 81. One also writes d(k) = M(b1 (k) b2 (k) 

bflQ (k)), where M denotes the mapping rule of the coded bits onto the modulated PSK sym-

bols, and flQ = 1092 Q. From the central limit theorem, the residual disturbance e(k) can be 

modelled as a Gaussian noise process. We further assume the disturbance e(k) to be white. 

This is justified by taking into account that the feedforward part of the optimum space-time 

decision-feedback equalizer whitens the sum of CCI and noise both spatially and temporally 

[46] (observe that this does not hold for the linear space-time equalizer [46], where this assump-

tion is expected to penalize to a certain extent the decoder performance). The bit log-likelihoods 

for channel decoding will then be computed by treating the error e(k) as a white Gaussian noise 

process, which is characterized by its mean and variance, e(k) = .N(ij, 

4.2.1 Bit log-likelihoods 

In order to perform soft-decision decoding, the channel decoder must be provided with relia- 

bility information on the coded bits. This reliability measure can be given in terms of the bit 
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log-likelihoods 

Pr(b2 (k) = +1y(k)) 	
(4.27) L(b(k)y(k)) - log Pr(b

2 (k) = —lIy(k)) 

Define by S(b = +1) and S(b 2  = — 1) the subsets of symbol indexes corresponding to bi  = +1 

and b2  = — 1, respectively 

S(b 2  = +1) {q : 	= M(b b 	b' 	+1 •.. 	J 	(4.28) 
flQ  

S(b2  = — 1) {q 	= M(b b •..= —1 	b)}. 	(4.29) 

Then 

	

Pr(b2 (k) = +lIy(k)) = 	Pr(d(k) = d() y (k)) 	(4.30) 
qES(b=+1) 

	

Pr(b(k) = —lIy(k)) = 	Pr(d(k) = d( ') ly(k)) 	(4.31) 
qES(b 1 =-1) 

where 

	

Pr(d(k) = d"Iy(k)) = P
r(d() ,y (k)) - 	p(y (k)d()) Pr(dM) 	

(4.32) 
p(y(k)) 	- 	p(y (k)(d()) Pr(d())  

Hence, using (4.30)-(4.32) in (4.27) gives 

L(b1 (k)Iy(k)) = log 
>.IqES(b1=+1) p(y(k) I d()) Pr(d()) 

(4.33) 
lqES(b=-1) p(

y (k)d()) Pr(d()) 

and for Pr(d()) = 11Q, 1 <q <Q 

qES(b=+1) p(y(k) d()) 

	

L(b2 (k)Iy(k)) = log 	 (4.34) 
IqES(b=-1) 

p(y(k)(d()) 

From the assumptions on e(k) = y(k) - d(k), we have p(y(k)Id(k)) = .N(d(k) + 77, cr2) 

p(y(k)jd(k)) = 

	

1 e_I 	)_d(k)_i,12/u2 . 	 (4.35) 
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4.2.2 Implementation in the logarithmic domain 

The derivation of the log-likelihoods L(b 2 (k)(y(k)) can be carried out without the need of 

computing the logarithm of a sum of probabilities. 

In fact, from (4.33) one can write [13] 

iqES(bj=+1) p(y (k)d()) Pr(d()) 
L(b(k)y(k)) = log 

>1q€S(bj=-1) p(y (k)d(q)) Pr(d()) 

= max' { log p(y(k)Id('))  + log Pr(d("))} - max' {1ogp(y(k)d) + log Pr(d) } 
qES(b1=+1) 	 qES(b=-1) 

(4.36) 

where max' Ix, y} max{x,y} + log(1 + e tVI), and 

1 
log p(y (k ) d(t1)) = - log(7ra2 

 ) - - Iy(k) - 	- I 2 . 	(4.37) 

	

Further simplification is obtained by approximating max'{x,y} 	max{x,y} (max-log ap- 

proximation) [13], [92]. For equiprobable symbols we finally have 

1 
L(b(k)Iy(k)) = 

O 
{ 	mm 	Iy(k) - 	

- 	- mm 	y(k) - 	- 7712 } 
 qES(b=+1) 	 qeS(b=-1) 

(4.38) 

The above formulation also allows to take into account a priori information on the coded bits, 

which can be included in the terms log Pr(d())  in (4.36). At this point, in order to compute 

the log-likelihood values for soft-decision decoding by means of (4.34) and (4.35) or (4.38), 

what is required is an estimate of the mean 77 and variance a2  of the output error e(k). It is 

worth noting that operating in the logarithmic domain, besides reducing the implementation 

complexity of the APP calculator, has the additional advantage of avoiding possible numerical 

problems for low values of a2 . 

4.23 Variance estimators 

This section considers some practical estimators for the variance of the disturbance e(k) = 

Js1(7, a2 ) at the output of the space-time equalizer. The task of estimating the output variance 
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is complicated by the small amount of available data. This restriction is necessary to ensure that 

the quantity to be estimated does not appreciably change over the duration of the observation 

interval. 

We assume an ergodic process, so that the ensemble averages are approximated by time av- 

erages over the observation interval. Therefore, given the data values X 1 ,... , X,, we will 

compute the sample mean 

and the sample variance 

(4.39) 

ô.2_' 	IX-I 2 . 	 (4.40) 

Although mathematically equivalent, the two-pass algorithm (4.40) is numerically preferable 

with respect to the familiar textbook algorithm à 2  = (1/(n— 1)) [I 	IXiI2  -nII2} [131], 

[122]. As is known, the estimates (4.39) and (4.40) are independent, 	.Af(71, u2 /n), and 

2(n - 1) &2 /0.2 
= X(n_l)' where x denotes the chi-squared distribution with n degrees of 

freedom [114]. Hence 

Var(â2) = o 4/(n - 1). 	 (4.41) 

Moreover, the estimator 
[ 

o-2 ] given by (4.39), (4.40) is the minimum-variance unbiased 

(MVU) estimator of[ij a 2 ] [114]. 

In the presence of rounding errors in the calculation of (4.39), (4.40) from quantized data, the 

accuracy of the above estimator can generally be improved by the corrected two-pass algorithm 

[131], [122]. In this case, after calculation of the sample mean (4.39), the sample variance is 

obtained as 

= 	
1 2 1, 	(4.42) 

n-1  

where the second term in the RHS of (4.42) corrects the roundoff error of the first term [131]. 
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4.2.3.1 Estimator based on the known training symbols (TS) 

Under the assumption that the equalizer operates in its least-squares conditions, an estimate 

of the variance of the output disturbance for a given transmitted burst can be obtained by us- 

ing the training sequence midamble. In this case, considering that E{r*(k)rT(k)}  R and 

E{r*(k)d(k)} p, one has the mean square error [119] 

	

E{lë(k)12} = emjn cT + e'fte 0  - 2 	Re{ëp}, 	 (4.43) 

with ë,, given by (4.17). Alternatively, the variance can be obtained by taking the true error 

ê(k) and computing 

	

E{le(k) - E{e(k)}1 2 }, 	 (4.44) 

where the ensemble averages are then approximated by time averages over the burst midamble. 

Although considering the ensemble averages it is E{ë(k)} = E{y(k)}—E{d(k)} = E{iT(k)} 

- E{d(k) } = 0, when using local error statistics we will compute the actual mean value of 

the error over the observation interval. In this case, using (4.39) and (4.40), the variance of is 

o-2 /n, while the variance of&2  is o 4 /(n - 1). 

4.23.2 Estimator based on the distance from the finite alphabet (FA) 

One problem with estimating the variance from the training symbols at the burst midamble is 

that it is not guaranteed that the space-time equalizer operates under least-squares conditions 

over the entire burst. In fact, even when the propagation channels can be considered quasi-

stationary, the statistics of the output error can abruptly change in the presence of asynchronous 

interference. Moreover, in the case of decision-feedback equalization, the error statistics de-

pend on possible decision errors. One way to alleviate this problem is to compute the error 

statistics taking into account the data from the payload. In this respect, a possible approach is 

to compute 

	

8.2 = E{Ie(k) - E{e(k)}1 2 }, 	 (4.45) 

where ê(k) is the estimated error at the output of the space-time equalizer, and with the ensem- 

ble averages approximated by time averages over a given time interval using (4.39) and (4.40). 
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As an estimate ê(k) of the error for the payload symbols we consider the distance from the 

finite alphabet at the equalizer output [127]. Denoting by 1(k) the estimated symbols obtained 

by hard-decision, we have 

ê(k) = y(k) - (k). 	 (4.46) 

Of course, the accuracy of the above estimator is guaranteed only in the absence of decision 

errors. 

4.2.3.3 Estimator based on the signal constant modulus property (CM) 

This section introduces an alternative approach for estimating the error variance from the pay-

load symbols. To the best of our knowledge, this technique has not been previously reported in 

the literature. 

Taking into account the circularly symmetric distribution of e(k), one has E{(Re{e(k)} - 

E{Re{e(k)}}) 2 } = E{(Im{e(k)} - E{Im{e(k)}})2} = 0 .2 /2. Therefore, one can ap-

proximate the variance a2/2  by a measure of the fluctuation of the envelope at the equal-

izer output around the unit circle. To prove this, we compute the variance of the quantity 

6(k) 4 Iy(k)I - d(k)I, with y(k) = d(k) -+-e(k). We start by observing that 

Q 
E{(6(k) - E{6(k)}) 2 } = >E{(6(k) - E16(k)1) 2  Id(k) = d()} 

q=1 

Pr(d(k) = d('') ) 

= E{(6(k) - E16(k)})21d(k) = d()} . 	 (4.47) 

Similarly 

Q 
E{i5(k)} = >E{6(k)Id(k) = d( 1)}Pr(d(k) = d( ') ) 

q=1 
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= E{6(k)Id(k) = d()}. 

Hence 

E{(6(k) - E{6(k)}) 2 } = E{(5(k) - E{o(k)Id(k)})21d(k)} 

Letting x Re{e(k)} and  A Im{e(k)}, and taking d(k) = 1 +jO one writes 

6(k)Id(k)= /(1+x) 2 +y2 —l. 

(4.48) 

(4.49) 

(4.50) 

The function g(x, y) = /i + x2 ) + y2 - 1 can be approximated by its Taylor series about the 

point (x = xo,y = yo) 

	

i9gl 	

1 02gL'YO 

2 

	

g(x,y)g(xo,yo)+—I 	x+ 	y+—( 	 x 

	

OxI 	ay 	2 aX2 xo,yo 	xo,yo 

	

82g 	a2 91 	2 

	

+83y 	XY+ Y ). 
xo,yo 	

57y-2 
xO'YO 

(4.51) 

Then, with x and y independent Gaussian random variables with zero mean and variance o = 

17 
2 = 	using (4.51) for x0 = 0, ho = 0 yields 

	

E{5(k)ld(k)} = E{g(x,y)} g(0,0)+ 	 2 1O 
+ 	2 . 	(4.52) 

Therefore, from (4.51), (4.52), and neglecting moments of order higher than 2 [75] 

E{(6(k) - E{(k)Id(k)}) 2 ld(k)} = E{(g(x,y) - E{g(x,y)}) 2 } 

lOg lag I -I 
o,o 

)22f( 	)22 	 (4.53) 
I 10,0 

Finally, taking into account that Og/Oxjo,o = 1 and Og/Oy I o ,o  = 0, and using (4.53) in (4.49), 

one obtains 

E{(6(k) - E{6(k)})2} Y2  /2 	 (4.54) 
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Figure 4.2: Bias and variance of different variance estimators as afunction of the sample size, 
for the zero-mean Gaussian disturbance model (a2  0.01). Averages computed 

over 400 independent trials. 

Therefore, we take the variance estimate 

= 2E{(6(k) - E{6(k)}) 2 }, 	 (4.55) 

where again the ensemble averages are approximated by time averages over a given interval. 

The performance of the estimator using (4.39) and (4.40) has been estimated numerically by 

generating directly the signal (4.26) with e(k) = .N(0, a2 ). The results reported in Figures 

4.2 to 4.6 are obtained by averaging over 400 independent simulation runs. The estimator 

(4.55) based on the signal constant modulus property (CM) is compared with the estimator of 

(4.45), (4.46), based on the distance from the finite alphabet (FA). Figures 4.2 to 4.4 show the 

mean and variance of the estimators as a function of the sample size n, for values of the true 

variance a2  = 0.01, a2  = 0.1, and a2  = 1. Figures 4.5 and 4.6 give the behaviour of the 

mean and variance of the estimators as a function of the true variance, for sample size n = 15 
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Figure 4.3: Bias and variance ofdjfferent variance estimators as afundion of the sample size, 
for the zero-mean Gaussian disturbance model (2 = 0.1). Averages computed 

over 400 independent trials. 

and n = 100, respectively. As shown in the figures, the estimator based on the distance from 

the finite alphabet has a smaller variance than the estimator (4.55). The variance of the FA 

estimator results equal to a4 /(n - 1) for low values of 0.2,  i.e., in the absence of decision 

errors. However, the estimator (4.55) based on the constant modulus property provides a lower 

bias for values of the true variance cr 2  > 0.1. 

4.2.3.4 Burst statistics versus short-term statistics 

An important design parameter for the variance estimation is the length of the observation 

interval. For the estimator based on the training symbols, the observation interval is given by 

the training sequence midamble. However, as already pointed out, computing the variance using 

the data from the payload, one has to consider the effect of abrupt changes of the error statistics 

due to asynchronous interference and/or feedback of possible decision errors. Therefore, the 
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Figure 4.4: Bias and variance of different variance estimators as afunction of the sample size, 
for the zero-mean Gaussian disturbance model (0 2  = 1). Averages computed over 

400 independent trials. 

simulation study will compare for the different scenarios the performance of variance estimators 

that compute burst statistics - i.e. perform time averages using the data of the entire burst - 

with that of estimators based on short-term statistics, obtained on observation intervals given 

by a sliding window of a predetermined length [127]. 

Note that, since variance estimation is performed after equalization, computing short-term or 

burst statistics does not affect the operation of the space-time equalizer. Clearly, the variance 

estimators that make use of the payload symbols imply a (moderate) increase of the receiver 

complexity with respect to the case of training-based estimator. 
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4.3 Soft-decision feedback by nonlinear mean-square estimation 

The robustness of the space-time receiver studied in the previous sections can be further im-

proved by the additional use of soft values for the local feedback of tentative decisions in the 

decision-feedback equalizer. 

The technique of soft-decision feedback has recently found wide application, due to its inherent 

capability to reduce error propagation in decision-feedback equalization [128], [129], reduced-

state trellis equalization [133], [74], and iterative channel estimation [94], [59]. Soft decision 

of binary data has been studied, e.g., in [74], [128], [129] and [94], while the case of QPSK 

symbols has been addressed in [126], [134]. This section derives the nonlinearity for optimal 

(mean-square) soft decision of 8-PSK symbols, under the assumption that the residual distur-

bance is modelled as additive, white, Gaussian noise (AWGN). 

81 



100  

W 
0 
z 

D 
z 

z 
w 

0 

I- 
(I) 
w 

i0 2  

10  

10 8  

Soft-output space-time equalization 

Variance Estimaon, n = 100 

	

-2 	 -1 	 U 

	

10 	 10 	 10 

TRUE VARIANCE, 

Figure 4.6: Bias and variance of different variance estimators with sample size n = 100, for 
the zero-mean Gaussian disturbance model. Averages computed over 400 indepen-
dent trials. 

We assume the equalizer output signal model (4.26) with e(k) = f(O,a 2 ). Optimum soft 

decision on the symbols d(k) can be obtained by nonlinear mean-square estimation according 

to (see Appendix B) 

d(k) = arg min E{I d(k) - f(y(k)) 1 2 1 = E{d(k)jy(k)} 
f(y(k)) 

Q 
= 	Pr(d(k) = d() y(k)) .  

q=1 

Observe that the term Pr(d(k) ly(k)) in (4.56) can be expressed as 

- Pr(d(k),y(k)) 
Pr(d(k)Iy(k)) - 
	Pr(y(k)) 

(4.56) 
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Pr(y(k)Id(k)) Pr(d(k)) 	 (457) = 	
Pr(y(k)Jd(k) = d()) Pr(d(k) = d()) 

Then, since for a fixed time k, e(k) is a Gaussian random variable 

Pr(y(k)Id(k)) = p(y(k) - d(k)) = (4.58) 

assuming equiprobable symbols (4.57) gives 

e2 Re{y(k)d(k)}/a2 	
(4.59) Pr(d(k)jy(k)) = 

i? 	
2Re{y*(k)d()}/a2 

It is easy to see that in the case of binary symbols substituting (4.59) in (4.56) gives a nonlinear 

characteristic expressed by the familiar sigmoid function [74], [128], [129], [94] 

d(k) = arg min E{ d(k) - f(y(k)) 1 2 } 
f(y(k)) 

tanh( 2Re{y(k)} 	 (4.60) 
012  

=  ). 

Analogously, for a 4-PSK constellation from (4.56), (4.59) one obtains [126] 

arg min Ell d(k) - f(y(k)) 1 2 1 
f(y(k)) 

= —[tanh( Rely  ( )+j tanh( VIm{y(k)} 
72 	 0-2 	 U2 )]. 	(4.61) 

In the case where the transmitted data d(k) are taken from an 8-PSK symbol alphabet, d(k) e 
{ei21r/Q 1< q Q = 81, and letting y j  4 Rely(k) }, Y2 Im{y(k)}, one has 

Q 
e2 1je{ y*(k)d()}/ a2  = e2y1/a2 + e2I22  + e_2hI'2  + 

+ e(y112)1'a2 + e(12)k2 + 	 + 
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= coshOyl  + 2 cosh( ) +4cosh( " ' )cosh( 2 	 (4.62) 
0 

and 

Q 
q)2{Y*(k)d}/a 2  = e2 h1 2  +je2!122 - e_ 2!u1a2  _.je 2Y2  

q=1 

+ 	+j)e 1+22  + 

+----(-1 _j)e\(12)b02 ± ---(1 
v/ 	 v/  

= 2 sinh( 	+ j2 sinh() + 2V2- sinh(
'f2Y2  

	

)cosh( 	) 
012 	 012 	 Or2 	cr2  

	

+32-,cosh( 	)sinh( 	). 	 (4.63) 

Hence, substituting (4.59) in (4.56) and taking into account (4.62) and (4:63) yields 

	

= arg min E{Id(k) - f(y(k)) 12 = a(y(k))//3(y(k)) 	(4.64) 
f(y(k)) 

where 

2Re{y} + \/sinh(\1:te{Y})  cosh( [2Irn{y} 
) o(y) sinh( 

012 012 o-2 

2Im{y} ±v"cosh( 	{} )VIm{Y})] 	
(4.65) +j[sinh( u2 

	 12 	
sinh( 	

a2 

and 

2Re{y} 	21m{y} 
fl(y)cosh( 	2 )+cosh( 	2 
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Re{y} 	\/ 	 (4.66) cosh( +2cosh( 	2 	) 

The nonlinearity (4.64) can be easily implemented in a look-up table. In this case, the only com- 

putational cost derives from the calculation of the quantities Re{y(k)}/a 2  and Im{y(k)}/ 2 , 

where the variance of the output error can be estimated with the techniques of Section 4.2.3. 

Note that when the samples y(k) are correlated, (4.64) corresponds to the simplifying assump-

tion that the a posteriori probability of d(k) is a function only of the current observation y(k). 

In this case the above approach, although suboptimum, has the advantage of simplicity and low 

implementation cost with respect to the use of a trellis aposteriori probability (APP) calculator 

(see, e.g., [74], [126]). 

It is worth mentioning that the above approach with a variance estimate based on time average 

over a sliding window differs from some previously proposed soft-decision schemes (see e.g. 

[126]). The use of a short-term variance results in an adaptive nonlinear device, which can 

provide an advantage in the presence of nonstationary output statistics. 

4.4 Numerical results 

The performance of the EGPRS receiver with soft-output space-time equalization has been es-

timated through computer simulation of the MCS-5 coding scheme [125]. The results refer 

to a simulation length of 10 5  coded data blocks. According to the system model described in 

Section 4. 1, the simulator includes an M-dimensional frequency selective multipath channel, 

CCI, and additive temporally and spatially white Gaussian noise. One dominant synchronous 

or asynchronous interfering cell is assumed, with the co-channel users transmitting independent 

8-PSK signals. Ideal frequency hopping is implemented. The noise and interference powers 

are identified by the signal-to-noise ratio (SNR) and the signal-to-interference ratio (SIR), re-

spectively. Unless stated otherwise, in the simulations the SNR is kept fixed to 35 dB. The 

channel is modelled according to the GSM typical urban (TU) profile with classical Doppler 

spectrum [76]. The receive antenna array is modelled as a linear array with M elements spaced 

by 3A/M, where A denotes the carrier wavelength. The corresponding array response is ob-

tained by assuming a uniformly distributed angle of arrival within a 90 deg sector. 

The receiver includes a square-root raised cosine filter with roll-off 0.12. We simulate the 

regularized linear LS (L-LS) spatio-temporal equalizer with a time span of L = Lf = 5 
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Figure 4.7: Bit-error rate performance of the linear (L-LS) and decision-feedback (DF-LS) 
equalizers with M = 2 receive antennas and synchronous M. 

coefficients, and the regularized decision-feedback LS (DF-LS) spatio-temporal equalizer with 

Lf = 5 coefficients for the feedforward filters and Lb = 3 coefficients for the feedback filter. 

In all cases the regularization coefficient is chosen equal to A = iO'. The calculation of the 

soft-output values at the equalizer output is implemented in the logarithmic domain using the 

max-log approximation (4.38). 

4.4.1 Synchronous CCI 

In the case of synchronous CCI, the simulation considers the use of M = 2 receive antennas. 

Figure 4.7 shows the bit-error rate (BER) performance of the linear LS and decision-feedback 

LS equalizers for the TV multipath profile with a mobile speed of 3 km/h (TU3). As exemplified 

in Figure 4.8, in the case of linear equalization the output error distribution remains almost 

stationary within the time slot. In this situation, the variance estimators based on the burst 

statistics have the advantage of a larger amount of observation data over the estimators based 
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Figure 4.8: Example ofthe variance estimate of one burst obtained (])from burst statistics, and 

(2) from short-term statistics using a sliding window of length W = 15. Linear 
equalizer with M = 2 receive antennas and synchronous M. 

on short-term statistics. Reasonably accurate estimates are also obtained using the training 

sequence symbols. The total block-error rate (BLER) performance [76] reported in Figure 4.9 

shows that for this scenario there is no substantial difference between computing the reliability 

information from the training sequence (TS estimator) and from the data of the entire burst 

(PA and CM estimators). Here, the schemes based on short-term statistics are penalized by the 

higher estimation variance. In fact, as can also be seen from Figures 4.2 to 4.6, the estimation 

variance increases monotonically by reducing the sample size n. 

The results are significantly different for the decision-feedback equalizer. In this case, as il-

lustrated in Figure 4.10, the error statistics is often highly nonuniform due to the presence of 

decision errors and error propagation. Correspondingly, one expects a performance advantage 

for the estimators based on short-term statistics. The behaviour of the different variance estima-

tors is quantified in Figure 4.11 in terms of mean-square error (MSE) with respect to the sample 
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Figure 4.9: Block-error rate perfonnance of the soft-output linear equalizer with M = 2 re-
ceive antennas and synchronous M. 

variance based on the known symbols, computed over a sliding window of length W = 15. The 

resulting BLER performance is shown in Figure 4.12. The plot indicates that calculating the 

soft-output values based on a window of length W = 15 produces about one order of magni-

tude reduction in BLER with respect to using the statistics obtained from the training sequence 

midamble. One also observes that the estimators based on the distance from the finite alpha-

bet (FA) and on the deviation of the signal modulus (CM) give substantially the same BLER 

performance. 

4.4.2 Asynchronous CCI 

In the presence of asynchronous CCI, we consider the use of M = 4 receive antennas. The 

BER performance of the L-LS and DF-LS equalizers for the TU50 multipath profile is shown 

in Figure 4.13. In this scenario, different parts of the single time slot of the signal of interest 

are affected by (a portion of) independent asynchronous co-channel bursts from an interfering 
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DF-LS, M= 2 — TU3 FH, Synchronous CCI, SIR= -16 dB, SNR = 35dB 
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Figure 4.10: Example of the variance estimate of one burst obtained (1) from burst statistics, 
and (2) from short-term statistics using a sliding window of length W = 15. 
Decision-feedback equalizer with M = 2 receive antennas and synchronous CCI. 
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DF-LS, M =2— TU3 FH, Synchronous CCI, SNR =35 dB 
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Figure 4.11: Mean-square error of the variance estimates obtained (1) from burst statistics, 
and (2) from short-term statistics using a sliding window of length W = 15. 
Decision-feedback equalizer with M = 2 receive antennas and synchronous CCI. 

10 1  

LU 
Cl) 

10 2  

90 



Soft-output space-time equalization 

100 
	 DF-LS, M = 2— TU3 FH, Synchronous CCI, SNR = 35 d13 

10_i 

10 
w 
-J 

-J 

I- 
10_ 

10  

10 

tL 

—Ci-- Burst Stat., 75 
—0--- Burst Stat., FA (1) 
-- - - Short-Term Stat., FA (2) 
—0-- Burst Stat., CM (1) 
--0-- Short-Term Stat., CM (2) 

Known Data (1) 
Known Data (2) 

-25 	 -20 	 -15 	 -10 	 -5 

SIR, dB 

Figure 4.12: Block-error rate performance of the soft-output decision-feedback equalizer with 
M = 2 receive antennas and synchronous M. 

91 



Soft-output space-time equalization 

100 
	 M = 4- TJJ50 FH, Asynchronous CCI, SNR = 35 d13 

I- 

0 
I- 

0 

NJ 
-1 

'U 

0 
LU 
LU 

I.- 

LU 
M 

-0--- L-LS 
--D - - DF-LS 

1 0 2 1 
-10 	 -5 	 0 

	
10 

SIR, d13 

Figure 4.13: Bit-error rate performance of the linear (L-LS) and decision-feedback (DF-LS) 
equalizers with M = 4 receive antennas and asynchronous CCI. 

cell. Since the space-time equalizer is designed on the basis of the CCI affecting the training 

sequence midamble, the output error statistics will present a step behaviour at the point where 

the CCI changes. Therefore, as shown in Figure 4.14, the BLER performance of the linear 

equalizer are now significantly improved by computing the reliability information based on 

the short-term error statistics. The results indicate a BLER reduction of two to four orders of 

magnitude with respect to the technique based on the training sequence midamble. 

An illustration of the error distribution for the decision-feedback equalizer is given in Figure 

4.15, which clearly shows the step behaviour of the error statistics. Under these conditions, 

a major impact on the decoder performance derives from the capability of discriminating the 

quality of bits pertaining to the different portions of the burst. The total BLER performance 

reported in Figure 4.16 shows for both FA and CM estimators a significant BLER reduction of 

two to four orders of magnitude (corresponding to a SIR gain of about 20 dB) with respect to 

the receiver employing a TS-based soft-output. 
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Figure 4.14: Block-error rate performance of the soft-output linear equalizer with M = 4 

receive antennas and asynchronous CCI. 
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Figure 4.15: Example of the variance estimate of one burst obtained (1) from burst statistics, 
and (2) from short-term statistics using a sliding window of length W = 15. 
Decision-feedback equalizer with M = 4 receive antennas and asynchronous 
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Figure 4.16: Block-error rate performance of the soft-output decision-feedback equalizer with 
M = 4 receive antennas and asynchronous CCI. 
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Figure 4.17: Block-error rate performance of the soft-output space-time equalizer with hard 
and soft decision feedback M = 2 receive antennas and synchronous M. SNR 
=35dB. 

4.4.3 Soft -decision feedback 

The results of the previous sections refer to the use of probabilistic information on the quality 

of the output of the deterministic space-time equalizer. This section addresses the additional 

use of soft values for local feedback of the tentative decision in the DF-LS equalizer. 

The performance of the nonlinearity (4.64) for soft decision-feedback soft-output space-time 

equalization has been analysed by computer simulations and compared to the case of hard-

decision feedback. The results refer to the EGPRS coding schemes MCS-5 and the synchronous 

CCI scenario of Section 4.4.1 with M = 2 receive antennas and TU3 propagation. In the 

simulations, hard or soft feedback is used in conjunction with the soft-output calculation based 

on the distance from the finite alphabet (FA variance estimator). Depending on the signal-to-

distortion ratio at the equalizer output, soft-decision feedback can provide an improved BER 

performance by reducing the effect of error propagation [128]. From our point of view, the 
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Figure 4.18: Block-error rate performance of the soft-output space-time equalizer with hard 
and soft decision feedback M = 2 receive antennas and synchronous M. SNR 
= 25 dB. 

substantial value is here the improved quality of the reliability information at the equalizer 

output, which can produce an additional gain at the output of the channel decoder. Figures 

4.17 and 4.18 report the simulated BLER performance corresponding to an SNR of 35 dB and 

25 dB, respectively. In Figure 4.17, the space-time equalizer is in the condition to effectively 

reject the interference and correspondingly the use of soft-decision produces only a marginal 

gain (see also [128]). However, comparison with Figure 4.18 shows that the soft-decision 

feedback scheme provides improved robustness in those cases where the equalizer operation is 

affected by additional impairments like a reduced input SNR. 

4.5 Summary 

This chapter has studied the performance of channel decoding for an antenna array receiver em-

ploying a deterministic spatio-temporal equalizer in an interference-limited scenario. A simple 
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method has been proposed to derive the reliability information on the coded bits at the equalizer 

output, which is based on the estimation of the output error variance over a given time window. 

In particular, the study has investigated different variance estimators based on burst statistics 

and short-term statistics of the output error. The simulation results obtained for EGPRS MCS-5 

show that the receiver block-error rate can be significantly reduced by the selection of a proper 

rule to derive the a posteriori probability on the coded bits. In the presence of nonstationary 

disturbance, the performance is largely dominated by the capability of tracking the variations of 

the output error statistics by using an APP calculator based on a short-term variance estimator, 

with again of up to 20 dB in terms of SIR. 

The chapter has also addressed the use of the above soft-output calculator in conjunction with 

soft-decision feedback based on nonlinear MS estimation. The optimum MS soft-decision de-

vice for 8-PSK symbols has been derived, and its effectiveness has been assessed by simulation 

of the EGPRS MCS-5 coding scheme. The collected data show that, although most of the 

gain often derives from the use of the appropriate output APP estimator, soft-decision feedback 

provides additional robustness to the soft-output LS space-time equalizer. 

The above results show that probabilistic techniques can be effectively applied to a receiver 

implementing a deterministic space-time filtering algorithm. Furthermore, the design of proba-

bilistic processing can be as critical to the overall receiver performance as the actual space-time 

algorithm, and results essential to the development of an effective and robust equalizer for 

interference-limited scenarios. 
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Chapter 5 
Conclusions 

This thesis has considered the application of probabilistic techniques to equalization of the 

mobile radio channel in the presence of IS!, noise and interference. In particular, dealing with 

receivers that implement the concatenation of an equalizer and a channel decoder, the work 

has emphasized the importance of delivering probabilistic information on the quality of the 

equalizer output in interference-limited scenarios, where it is often difficult to accurately model 

the disturbance. 

In the case of MAP trellis equalization in the presence of non-Gaussian interference, improved 

output reliability information can be provided by a novel technique based on non-parametric 

estimation of the density function of the interference plus noise. In the proposed approach, 

the fundamental issue of density estimation with a limited volume of training data has been 

addressed by applying kernel smoothing techniques. In this respect, symmetry conditions have 

been identified, which effectively double the size of the training set. The thesis has consid-

ered the design of the optimum smoothing parameter for complex densities, and provided an 

analysis of the MISE performance of the density estimator. The study includes a discussion on 

the problem of deriving sufficient statistics for data detection in the presence of non-Gaussian 

correlated noise. Major advantages of the proposed strategy are its intrinsic robustness and 

general applicability. Simulation results are provided for the GSM system, showing signifi-

cantly improved error performance with respect to the conventional trellis equalizer based on 

the Gaussian assumption, and improved quality of the output reliability information for soft-

decision decoding. The collected data refer to a synchronous interference scenario. However, 

the approach may be extended to the case of asynchronous interference by introducing an adap-

tation of the estimated density. Further work should also investigate the proposed equalizer in 

conjunction with improved channel estimation techniques for non-Gaussian noise. 

For multiple-antenna receivers, interference cancellation by means of deterministic space-time 

filtering techniques can often provide an effective alternative to trellis equalization, with advan-

tages in terms of robustness and implementation cost. Linear or decision-feedback space-time 

equalizers based on the deterministic LS criterion have the further advantage of not relying on 
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Conclusions 

an estimate of the channel response, or on particular assumptions on the statistical model of 

the interference. To enable the use of deterministic space-time equalizers in receivers based on 

soft-value processing, a simple method has been proposed for deriving the reliability informa-

tion on the coded bits at the equalizer output. The technique is based on the assumption that the 

feedforward space-time filters produce an (approximately) uncorrelated output error. The ap-

proach relies on the estimation of the output error variance, which can be periodically updated 

within each burst. Simulation results for the EDGE/EGPRS system show that the receiver per-

formance can be significantly improved by tracking the variations of the output error statistics 

by a soft-output calculator based on a short-term variance estimator, with performance gains of 

up to 20 dB. The thesis has also addressed the use of soft-decision feedback, where the anal-

ysis includes the derivation of a nonlinearity for soft decision of 8-PSK symbols. Computer 

simulations show that soft-decision feedback provides additional robustness to the proposed 

soft-output LS space-time equalizer. 

The above results show the relevance of probabilistic processing for equalization of the mobile 

radio channel in the presence ofapriori unknown non-Gaussian interference, and demonstrate 

the advantages of techniques that do not rely on a statistical model of the input disturbance for 

application to modern TDMA cellular systems. 
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Appendix A 
Log-MAP algorithm 

For completeness, this appendix reports the derivation of equations (3.3), (3.4) of the log-MAP 

trellis equalizer. Since Pr(bk,ro,... , rN_1) = Pr(bklro,... ,rN_1) Pr(ro,... ,rN_1), the 

log-likelihood ratio (3.2) can be expressed as 

L(bkro,... , rN_1)=log 	Pr(,Lk+l,ro,... , rN_1) 
Ik+1 ES(bk=+1) 

- log 	 Pr(,tk+lro,... ,rN_1), 	 (A.1) 

ILlc+i ES(t)k=1) 

where Pk 	(bk_i,... ,bk_L +1) denotes the generic IS! state at time k and S(bk = bk) is the 

set of trellis states corresponding to the transmitted symbol bk = bk. In (A.1), the quantity 

Pr(Iuk, r0,... , r_) can be factorized as 

Pr(ik,ro,... ,rN_1) =Pr(/k,ro,... ,rk_i) .Pr(rk,... ,rN_iI/lk,ro,... ,rk_1) . ( A.2) 

But, given Pk  and the independence of the samples nk,  the outputs rk, 	ry_ I are indepen- 

dent of r0,... , TJ, which implies 

Pr(/ik,ro,... , 7 N_1) = Pr(/Lk,rO,... , rk_1) .Pr(rk,... ,rN_1I/Lk) . 	(A.3) 

Following [18], one obtains that each term of (A.3) can be solved recursively, 

Pr(Iik,ro,... TN-1) = [ E Pr(k_l,ro,...  ,rk_2) . e(k-1) I 

Pr(rk+l,... ,rN_1p. 1 ) .e(k) 
] 

ILk+l 
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where 

e' 	Pr(/Lk+lI/tk) Pr(r,) 	 (A.5) 

is the exponentiated metric increment for the transition 6k (Pk —f  Ik+1)' and Pr(rkk) = 

Pr(rk Iik+1, pk). In (A.4), the first term represents the forward recursion, where the probability 

of the state Pk  is given by the probabilities of the previous states ILk_i  weighted with the 

transition metric e ( k_ 1) . The second factor is time-reversed and represents the backward 

recursion. 

The logarithm of a sum of M exponential terms earn  can be efficiently computed as [13], [15], 

[12] 

M-1 

log E earn = max'{ao,... , aJ,f_}, 	 (A.6) 
m=O 

with max' Ix, y} 4  max{x,y} + log(1 + eI'l). In fact, letting 

• .12 = max {ao,ai} = log(eao +e) = max{ao,ai} +Iog(1 +eo-ail), 

(A.6) can be derived recursively as [15] 

f = max {ao, a1, (Y2} = log(e12 + e°2) = max{f2, a2} + log(1 + e_lf2_x2l) 

fm 	max'{ao,... ,aM_1} =1og(efM +eM_l) = max{fM_1,aM_1} 

+log(1 + eIfM_l'M_hi). 

Using (A.6), (A.1) can be rewritten as 

L(bklro,... ,rN_1) = 	max' 	log Pr(k 1 ,ro,... ,TN_l) 
I'k+l ES(bk=+l) 
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- 	max' 	log Pr(,tk+l, TO,... , rN_i), 	 (A.7) 
ILk+1 ES(bk=-1) 

where from (A.4) 

logPr(/-i,ro,... ,rN_i) = max'{1ogPr(fL_l ,ro,... ,rk_2) - 

+ max'{ log Pr(rki,... ,TN_1I/2k+1) - A(k)I. 	 (A.8) 
tLk+l 

In (A.7) and (A.8), the quantity 

	

A(zk) 	log  Pr(pkro,... ,rN_1) 

is the overall accumulated metric for the state ILk  at time k. Defining now the accumulated 

metrics in the forward and backward recursions as 

	

A'(ILk) 	1ogPr(/2k ,ro,... ,rk_1) 

log Pr(rk,... ,rN_1IILk) 

and using (A.3) and (A.4), one has 

L(bklro,... ,rN_1) = 	max' 	A(pk+l) - 	max' 	A(ILk+l) 	(A.9) 

A(ILk+i E S(bk)) = 	- (k) + 	E S(bk)) 	(A. 10) 

with ek = (ILk 	Ik+1 E S(bk)), and 

	

A'(pk)= max'{A'(IL k _l)—( k _l )} , 	 (A.11) 
lk-1 

= max' {Ab(ILk+2) - )k+1)} . 	 (A.12) 

Therefore the algorithm consists of computing and storing the metrics A 1  (ILk)  and  A"(ILk+i) 
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corresponding to a forward and backward Viterbi algorithms, and then processing the trellis 

according to (A. 10) and (A.9), which provides the equalizer soft-output. 

For the metric increment )t(k), taking into account that p(rklbk,... , b,_j.i) = pn(rk - 

b,_th), from (A.5) one obtains 

= - log[ Pr(Ilkll 	Pr(r,j)] 

= — logPr(bk) — log p(rkjbk,... 5 bk_L+1) 

L-1 
= —logpn(rk - 	 - logPr(bk). 	 (A.13) 

In a turbo receiver, the a priori information Pr(bk) is generally provided as an L-value 

Pr(bk = +1) Pr(bk = +1) 

Pr(bk  = —1) log 
	

=+1) 

ObseMng that 

bk 	
Pr(bk) 

L(bk) = log 	 (A.14) 
1 - Pr(bk) '  

the term log Pr(bk) in (A.13) can be written as 

log Pr(bk) = bkL(bk) - log(e'"2  + e_L'2), 

where the term 1og(ek)/2  + e'(1)/2 ) does not depend on bk being +1 or —1, and can be 

neglected. Therefore, (A. 13) becomes 

= - logpfl (rk - 	bk_th) - bkL(bk). 
	 (A.15) 
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Appendix B 
Nonlinear mean-square estimation 

The general problem of mean square (MS) estimation of a complex random variable d in terms 

of another complex random variable y consists of finding the function f(y)  that minimizes the 

MS error [75] 

E E{d - f(y)12}. 	 (B.1) 

(13.1) can be equivalently rewritten as 

E = E{E{ld - f(y)121y}}• 	 (B.2) 

Since the quantities E{ld - f(y)121y} are positive, one has that e is minimum if E{Id - 

f(y)121v} is minimum for every y. But 

El Id - f(y)1 2 1y} = E{IdI2 Iy} + If(y)12 - f(y)E{d*Iy} - f*(y)E{dly} 	(B.3) 

which is minimum for [114], [75] 

1(Y) = E{djy}. 
	 (13.4) 

Therefore E{dly}, the conditional mean of d given y, is the optimum nonlinear estimator of d 

(in the MS sense). The corresponding minimum value of(B.1) results 

= E{E{Id - E{dy}I 2 ly}}, 	 (B.5) 

which is the conditional variance of d given y, averaged over all observations y. 

Letting € = d - f(y) with f(y) = E{djy}, one derives 

E{cly} = E{dly} - 1(Y) = 0 	 (B.6) 
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and 

E{ cf*(y)} = E{E{ ef*(y ) I y }} 

= E{f*(y) . E{€y}} = 0, 	 (B.7) 

i.e., the error c is uncorrelated with E{dly}. This implies that all the available information 

about d has been encoded in E{dly}. 

Since f(y) = E{dly} minimizes the risk e = E{!d - f(y)I2} according to Bayes estimation 

theory E{dy} is the Bayes estimate of d for the cost function C(d - f(y)) = Id - f(y)1 2 . 

It is possible to show [135] that the conditional mean is also the Bayes estimate for any sym-

metric and convex cost C, provided that the aposteriori density p(dly) is symmetric (about the 

conditional mean). 

106 



Appendix C 
List of publications 

C. Luschi and B. Muigrew, "Non-parametric trellis equalization in the presence of non-

Gaussian interference", in Proc. 10th IEEE Workshop on Statistical Signal and Array 

Processing, (Pocono Manor, PA, USA), pp.  201-205, Aug. 2000. 
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