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ABSTRACT 
 

ANALYSIS OF AN AIR-SPACED PATCH ANTENNA NEAR 1800 MHz 

Hermine N. Akouemo Kengmo Kenfack, B. S. 

Marquette University, 2011 

Microstrip antennas are a type of printed antenna which consists of a patch on top 
of a grounded substrate. A major limitation for the performance of the patch antenna is 
the dielectric substrate. The idea of using air as dielectric was therefore considered to 
overcome that limitation because air has the lowest permittivity and no loss. The goal of 
this work is to build an air-spaced patch antenna, with the minimum resonant frequency 
at 1800 MHz and with a return loss of at least 10 dB. 

 
This work is novel because the air-spaced patch antenna has not been extensively 

studied. Existing literature on patch antennas with dielectric were used for the design of 
the antenna (dimensions of the patch, ground plane and height) and to understand the 
principles of operation of microstrip patch antennas in general. Simulations using the 
NEC code and experiments in the RF laboratory were used for this air-spaced patch 
antenna study. 

 
The Numerical Electromagnetic Code (NEC) was used as the simulation tool in 

this work. The air-spaced patch antenna was simulated to find a trend for the variation of 
the return loss and impedance with the resonant frequency. Simulation also helped 
determine cases that will not be meaningful to explore in the experiment. 

 
The experiment was done in the RF laboratory of Marquette University College of 

Engineering. Two procedures were used to calculate the patch dimensions using two 
different sources ([2], [3]). They lead to two patch antennas that were tested. For each 
antenna, the height of the dielectric substrate and the recess feed distance were varied. 
Antenna 2 (procedure 2 - [3]) provided the best results with a resonant frequency of   
1800 MHz and a return loss of 21 dB.  

 
It was found that the error between experimental and simulation resonant 

frequency is generally 5% or less. This error increases as the dielectric height increases, 
and as the recess distance increases. Simulation results roughly follow the experimental 
results trend. 
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Chapter I - Introduction 

I.1 Motivation 

A microstrip patch antenna is a type of printed antenna which, in its simplest 

form, consists of a layered structure with two parallel conductors separated by a thin 

dielectric substrate. The lower conductor acts as a ground plane and the upper conductor 

acts as the radiator (fraction of a wavelength in extent) [2].  

 

 

Figure 1: Rectangular microstrip patch structure [2] 

 

Patch antennas can be in many different shapes. The rectangular patch antenna is 

the simplest configuration of microstrip patch antennas. Rectangular patch antennas are 

very easy to fabricate. They can be used for a variety of applications: satellite 

communications, radars, command and control, feed element in complex antenna 

fabrication, biomedical radiator, etc. Microstrip antennas can also be used for many 

military and commercial devices, such as use on aircraft or space antennas. 
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There is an increasing demand for the use of microstrip antennas in wireless 

communications due to their inherently low back radiation, ease of conformity and high 

gain as compared to wire antennas. Microstrip antennas are used in cellular phones, 

telecommunications applications in general (base station, radio, etc), TV, Radio, etc. 

Arrays of microstrip antennas are used in broadcast satellite receiver antennas to achieve 

an increase of bandwidth [5]. In satellite communications, the design of the microstrip 

antenna reported at S-band for remote sensing satellites can be adapted to provide the 

circularly polarized conical patterns required for effective data transmission between the 

satellite and earth at both UHF and S-band frequencies [8]. Microstrip antennas are also 

used as feed element in complex antennas and they are used in Doppler and other radar 

applications. This list of applications of microstrip antennas is not exhaustive. The 

number of applications increases with the increases in advantages and awareness of 

possibilities of microstrip antennas. 

Microstrip antennas became popular around 1970 [2] due to availability of good 

substrates and better theoretical models. They can be of various shapes depending on the 

applications and the type of polarization to be achieved. Linear and circular polarizations 

are easy to achieve with simple changes in feed position and the antennas can operate in 

dual frequency mode.  

Microstrip antennas have several advantages compared to conventional 

microwave antennas. Some of the principal advantages of microstrip antennas are: 

• Lightweight, low volume and thin profile configurations, which can be made 

conformal 

• Low fabrication cost; mass production is easy with this type of product 
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• Linear and circular polarization are possible with simple changes in feed position 

• Can be easily integrated in other microwave circuits 

• No cavity backing is required 

• Dual frequency and dual polarization antennas can be easily made 

However, microstrip antennas also have disadvantages compared to conventional 

microwave antennas including: 

• Narrow bandwidth 

• Low efficiency (loss can sometimes considerably reduce the gain) 

• Poor scan performance (most microstrip antennas radiate into a half plane) 

• Poor isolation between the feed and the radiating elements.  

• Lower power handling capability (maximum roughly 100W) 

Microstrip patch antennas can be of various geometrical shapes (rectangle, disk, 

square, ellipse, etc.). The most widely used configuration is the rectangular one because 

of the simplicity of its structure.  

 

I.2 Problem statement 

Microstrip patch antennas usually have a dielectric between the patch itself and 

the ground plane, which reduces the efficiency of the antenna. Using a dielectric with low 

permittivity and low loss tangent is one way of improving the efficiency of the antenna 

and widening the bandwidth. Generally foam is used as dielectric substrate with the 

lowest dielectric constant for patch antennas. Foam has a dielectric constant of 1.03 and 

very low dielectric loss factors (tan δ=0.0008), but the surface of the foam is not well 

defined, which makes it impractical to deposit material directly on it. Foam is also a 
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porous material. Therefore, the idea of using air as the dielectric is investigated here.  Air 

is a dielectric with permittivity of 1 and with loss tangent of 0. With air as dielectric, the 

bandwidth is improved because the fields at the edges of the patch are less confined.  

This thesis consists of analyzing a rectangular air-spaced patch antenna near   

1800 MHz. The analysis consisted of designing two different patches using two different 

literatures; two patch antennas were simulated and built; the patch antennas parameters 

were measured and the results were compared with published literature. Patch antennas 

studies have not specifically investigated the air spaced case. Reported predictions 

indicate that for a microstrip patch antenna to deliver good results a dielectric of at least 

2.2 should be used to build the antenna [2], [3]. 

 

I.3 Summary of previous work 

Literature found has studied a patch antenna with air gap in the dielectric or a 

patch antenna using foam.  A patch antenna with an air layer in the dielectric is reported 

in [17]. The air layer is used to improve the performance of the antenna and the dielectric 

is important to reduce the antenna volume. This type of structure is used for GSM 

(Global System for Mobile communications) applications because they require the 

antenna to be very thin. The choice of foam as dielectric with lower permittivity (�� = 

1.03) is reported in [22]. It has been noted that foam is a porous material and the surface 

of the foam is not well defined. An air-spaced patch antenna case is described in [16]. 

However, in their approach, some design parameters are determined using simulation 

through commercial software. Without those parameters, computing the dimensions of 

the patch is not possible. Our approach is to use conventional equations as guidelines to 
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design the patch (to compute the dimensions of the patch). It will be shown here that a 

thorough study of the air-spaced patch antenna can result in the derivation of simple 

formulas for the patch design.  

 

I.4 Outline of the thesis 

 Chapter II of this work discusses the theory of microstrip antennas. The analysis, 

design and simulation tool for rectangular patches is also described in Chapter II. The 

simulation of air-spaced patch antennas is described in Chapter III. The simulation is 

used to analyze the air-spaced rectangular patch antenna and to provide guidelines about 

the experiment. Chapter IV discusses the experimental setup, various phases of the 

experiment, and the results obtained. A comparison between analytical, simulation and 

experimental results is discussed in Chapter V.  A conclusion about the work done and 

future work are also described in Chapter V. 
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Chapter II – Theory 

II.1 Patch Antenna Configurations 

There are virtually an unlimited number of patch shapes for which radiation 

characteristics may be calculated. The basic configurations used in practice are: 

• Square 

• Rectangle 

• Disk 

• Ellipse 

• Ring 

• Pentagon 

• Equilateral triangle 

Their radiation characteristics are similar despite the difference in geometrical shape. 

Among the shapes listed, rectangular and circular patch antennas are widely used. Some 

particularities of other shapes compared to the rectangular shape are described below. [8] 

• Square patches essentially provide only a circular polarization 

• Circular disk microstrip elements may be easily modified to produce a range of 

impedances, radiation patterns and frequencies of operation 

• Pentagon and elliptic structures provide circularly polarized radiation patterns 

using a single feed 

• Triangular patches provide radiation characteristics similar to those of rectangular 

patches with a smaller size 
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II.2 Rectangular Patch Antenna Theory 

The rectangular shape of the microstrip patch antenna is the most used 

configuration and is the simplest patch structure. The substrate thickness is much less 

than a wavelength. A patch antenna can be analyzed using the transmission line model, 

the cavity model or the full-wave model. Patch antennas are typically used at frequencies 

ranging from 1 to 100 GHz. They are resonant antennas, which mean that they are 

usually operated near resonance in order to obtain real-valued input impedance. 

The structure of a microstrip patch antenna is shown in Figure 1. A patch antenna 

consists of a single metal patch suspended over a ground plane. The two conductors are 

separated by a dielectric substrate. In Figure 1, � is the length of the patch, � is the 

width of the patch, and � is the thickness of the dielectric substrate. Here the radiating 

patch is rectangular. A microstrip patch antenna near resonance has real input impedance, 

narrow bandwidth and a low to moderate gain.  

Many substrate materials are used for microstrip antennas. The dielectric constant 

ranges from 1.17 to about 25 and the loss tangent ranges from 0.0001 to 0.004. 

Commercially available substrates include teflon/glass cloth (�� � 2.5), RT/duroid-5880 

(�� � 2.2) and alumina (�� � 9.8). An air-spaced patch antenna can also be built and in 

this case the dielectric is air (�� � 1 ). Two approaches usually used for design of 

microstrip antennas with dielectric will be presented using the case �� � 1 . These 

approaches are known to be inaccurate when the dielectric is air, so we will try to find a 

good correlation between the results and derive a conclusion from the analyzed problem. 
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II.2.1 Design procedures for rectangular microstrip patch antenna 

 The goal of a design is to achieve specific performance characteristics at a 

specified operating frequency.  

 

II.2.1.1 Dimensions of the patch, effective length and effective width 

Dimensions refer to the parameters for the design of the microstrip antenna 

structure. Let us define some terms which will be used in this section: 

• c  is the speed of the light in free-space 

• � is the resonant frequency 

• �� is the dielectric constant of the substrate 

• �� is the wavelength in free space 

• ��  is the wavelength in the dielectric substrate 

 

Energy is stored in the dielectric and the air. It is convenient to define an effective 

permittivity ���� that accounts for both energies and allows for only one permittivity in 

the analysis. The effective permittivity also allows for an effective wavelength ����. 

The effective permittivity can be estimated using the formula: [2] 

���� � �� � 12 � �� � 12 �1 � �����/�
 

(1)                                              

where  � must be greater than �.  
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• Thickness of the substrate � 

The choice of the dielectric substrate with an appropriate thickness is the first step in 

the design of the microstrip antenna. The thickness of the dielectric substrate is usually 

much smaller than one wavelength (on the order of 0.01), and it is usually chosen for the 

desired bandwidth.  

 

• Patch element width � 

The patch width has a minor effect on the resonant frequency and the radiation 

pattern of the antenna. It affects the input resistance and the bandwidth. The patch width 

also affects cross-polarization characteristics. The patch width is given by formula (2). 

[2] 

� � �2� � 2�� � 1 

                                                            (2)                                  

which is equal to  ��/2 since �� � 1. 

The patch width can also be selected to obtain good radiation efficiency. 

 

• Patch element length � 

The patch length determines the resonant frequency, and is a critical parameter in 

design because of the inherent narrow bandwidth of the patch. 

The length can be found using two procedures: 
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- It can be chosen slightly less than a half-wavelength [3]. One choice is to express 

the length as: 

� � 0.49��                                                                  (3) 

- The length can also be found by calculating the extension length Δ� ([2], shown 

in Figure 2) of the patch and use it to determine �. The effective length of the 

patch is defined as: 

 �� � � � 2Δ� � ����/2                                                    (4) 

 

Figure 2: Top View of a microstrip patch element 

 

In the air-spaced patch antenna case, ���� � �� � �� . 

 

� can be derived as, � � ��/2 � 2∆�. The extension length is given by formula (5). [2] 

∆�� �  0.412 "����� � 0.3$ %�� � 0.264'
"����� � 0.258$ %�� � 0.8'  

                                                     (5)                                                                                     

• Recess feed distance ( 

Usually the input impedance at the edge of the patch is too large. The input 

impedance can be matched to 50 Ω by varying the feed location. As the feed point moves 
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from the edge of the patch toward the center, the impedance decreases till it reaches an 

impedance minimum. The impedance as a function of the feed location or the recess feed 

distance, for the rectangular microstrip element, is given by the formula (6) [3]. 

 

)*+ � ,120�-� � . 377��√��1 .234�,5(- � 2346,5(-1 � 234�,5(- 1
240��"1 � 234�,5(-$  

                                                                                                                                           (6) 

The 50-Ω-impedance point can be determined by solving for (, given )*+ � 50Ω. The 

corresponding distance is the recess distance, the distance from the edge of the patch 

toward the center. The feed element should be placed at this location. 

 

II.2.1.2 Common design procedures 

 Some parameters have to be specified in order to design the patch. Specified 

information includes the permittivity (���� � 1), the resonant frequency (�), the height 

of the substrate (�), and the fact that � has to be less than � to avoid other resonances in 

the cavity model. Two common design procedures are established: 

 

1) Procedure 1 [3] 

• Specify � and � 

• Compute � � 0.49� using (3) 

•  Choose � less than � 

• Calculate the recess feed location by using (6)  
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2) Procedure 2 [2] 

• Specify � and � 

• Determine � by using (2) 

• Determine � by calculating Δ� and by using (5) 

• Calculate the recess feed location by using (6) 

 

II.2.2 Transmission Line Model 

The rectangular microstrip patch antenna can be modeled as a section of 

transmission line. The transmission line model represents the patch antenna as an array of 

two radiating slots separated by a low-impedance transmission line of a certain length. It 

is the easiest technique to analyze rectangular patch antennas but the least accurate.  

 

II.2.2.1 Fringing effects 

In practice, the fields are not confined to the patch. A fraction of the fields lie 

outside the physical dimensions � 8 � of the patch, because the dimensions are finite. 

This is called the fringing field. Since some of the waves travel in the substrate and some 

in the air (depicted in Figure 3), an effective permittivity is introduced to account for the 

fringing field along all the edges of the patch and the wave propagation in the patch.  
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Figure 3: Electric field lines 

 

The amount of fringing depends on the dimensions of the patch and the height of 

the dielectric substrate. Therefore the ground plane has to be big enough to support 

fringing fields in order to be acceptable. The effective permittivity ���� is equal to the 

permittivity of the dielectric itself �� , in the case of an air-spaced patch antenna, because 

the dielectric is air ,�� � 1-.  

 

II.2.2.2 Simple transmission line model 

 The simple transmission line model was the first technique used to analyze a 

rectangular microstrip antenna. It was developed by Munson in 1974 [13]. Here the 

dielectric is modeled as a section of transmission line (shown in Figure 5). The 

characteristic impedance Z0 and the propagation constant β, for the line are determined by 

the patch size and the substrate parameters. A patch of dimensions � 8 � is shown in 

Figure 4. The periphery of the patch is described by four walls at 9 � 0, � and ; � 0, �. 

The four edges of the patch are classified as radiating slots or non radiating slots. The 

radiating slots (along � or 9 � 0, �) are associated with slow field variation and the non 

radiating slots (along �  or ; � 0, � ) should have an integral multiple of half-wave 

variations along the edges (�  or ; � 0, � ), such that there is an almost complete 
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cancellation of the radiated power from the edge. In the far field, the electric field from 

the non radiating slots is very small and assumed negligible.  

    

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Fringing field along each slot of the patch antenna 

 

The edges at 9 � 0, �   radiate most of the power and are characterized by 

admittances Ys= Gs + jBs with s = 1, 2 (see Figure 5). Gs is the conductance associated 

with the power radiated from the edge walls and Bs is the susceptance due to the energy 

stored in the fringing field near the edge. Yc is the characteristic admittance of the patch 

fed (as a transmission line) at 9 �  �. Since the edges in Figure 5 are identical, Y2 = Y1, 

G2 = G1 and B2 = B1.  
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B2 G2G1

 

 

Yc

Zin

 

Figure 5: Transmission line model equivalent circuit 

 

Using the model depicted in Figure 5, an expression for the resonant input 

impedance can also be found using (6). It is important to notice that this model is 

applicable for rectangular patch only and the effects of substrate and input reactance are 

not considered [2]. 

 

II.2.3 Cavity Model 

 The cavity model is used to determine the normalized electric field within the 

dielectric substrate. The model considers the microstrip antenna as a cavity which means 

that the patch is over the ground plane and the two are separated by a dielectric substrate. 

The patch and the ground plane are considered as perfectly electric conductors and the 

edges of the dielectric substrate (walls of the cavity) as magnetic walls (perfectly 

magnetic conductors). These assumptions are based on the following observations for 

thin substrates (h << λ) (see Figure 6): 



 

• The fields in the interior region do not vary 

• The electric field is x

components in the region bounded by the patch and the ground plane. This 

observation is used to assume that the

walls. 

• The electric current in the patch has no component normal to the edge 

patch, which implies that the tangential component of 

negligible and a magnetic wall can be placed along the periphery.

 

When the microstrip patch is energized, a charge distribution is established on the upper 

and lower surfaces of the patch

distribution is controlled by an attractive and a repulsive mechanism. Most of the charge 

concentration and current flow remain underneath the patch because the attractive 

mechanism dominates. This domina

small. The geometry of the microstrip patch fo

Figure 6: Rectangular microstrip geometry for the cavity model

ds in the interior region do not vary along the x direction 

The electric field is x-directed only and the magnetic field has only the transverse 

components in the region bounded by the patch and the ground plane. This 

observation is used to assume that the top and the bottom of the cavity are electric 

The electric current in the patch has no component normal to the edge 

patch, which implies that the tangential component of  along the edge is 

negligible and a magnetic wall can be placed along the periphery.

When the microstrip patch is energized, a charge distribution is established on the upper 

and lower surfaces of the patch and on the surface of the ground plane. The charge 

distribution is controlled by an attractive and a repulsive mechanism. Most of the charge 

concentration and current flow remain underneath the patch because the attractive 

. This dominance occurs because the height-to-width ratio

small. The geometry of the microstrip patch for the cavity model is shown in 

 

: Rectangular microstrip geometry for the cavity model
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directed only and the magnetic field has only the transverse 

components in the region bounded by the patch and the ground plane. This 

top and the bottom of the cavity are electric 

The electric current in the patch has no component normal to the edge of the 

along the edge is 

negligible and a magnetic wall can be placed along the periphery. 

When the microstrip patch is energized, a charge distribution is established on the upper 

and on the surface of the ground plane. The charge 

distribution is controlled by an attractive and a repulsive mechanism. Most of the charge 

concentration and current flow remain underneath the patch because the attractive 

width ratio is very 

r the cavity model is shown in Figure 6. 

: Rectangular microstrip geometry for the cavity model [2] 
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Since the height-to-width ratio (�/�) is small, the tangential magnetic fields at 

the edges would not be exactly zero but will be very small, and therefore an 

approximation made in the cavity model is to treat the side walls as perfectly magnetic 

conducting walls. The fields’ configuration within the cavity can be found using the 

vector potential approach, equivalence principle and assuming that there is no fringing of 

the fields along the edges of the cavity. Considerations used to define the model are: 

• Only field configurations will be considered within the cavity because fringing of 

the fields along the edges of the patch are very small (� < �). 

• Bottom and top of the cavity are considered perfectly electric conducting, and the 

four side walls are considered perfectly magnetic conducting. 

Consider a TMx situation, then: 

(7) 

The magnetic vector potential must satisfy the homogeneous wave equation: 

 (8) 

Using the separation of variables method, the analytic solution of the potential vector is 

found to be (9).  

 

 

(9) 

where xk , yk , zk  are the wavenumbers along the x, y and z directions, respectively.  

Using the boundary conditions: 

 

 

2 2 0x xA k A∇ + =

[ ] [ ]1 1 2 2 3 3cos( ) sin( ) cos( ) sin( ) cos( ) sin( )x x x y y z zA A k x B k x A k y B k y A k z B k z = + + + 

x xA A e
→ ∧

=
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(10) 

 

 

The wave propagation numbers xk , yk , zk  are derived.  

 

 

(11) 

 

 

This reduces the vector potential equation to: 

 

(12) 

 

where m, n and p represent the number of half-cycle field variations along the x, y and z 

axis respectively. The electric field is related to the magnetic vector potential by the 

equation: 

 

(13) 

  

An expression for electric field and magnetic field components using equation (9) 

is derived as follows: 
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The electric and magnetic fields within the cavity are therefore: 
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Amplitudes of the electric/magnetic field cannot be determined only with the 

cavity model.  To account for radiation, a loss mechanism has to be introduced. The 

effective loss tangent parameter is one way of taking into account loss. The effective loss 

tangent is chosen appropriately to represent the loss mechanism of the cavity, and the 

cavity is therefore considered like an antenna. 

Since the wavenumbers are subject to the constraint:  (16) 
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The resonant frequencies for the cavity are given by the formula: 

  

(17) 

 

The dominant mode with the lowest resonant frequency is            mode because  

                  . The electric field configuration for the             mode is shown in Figure 7. 

 

 

Figure 7: TMx
010 mode for rectangular patch antenna [2] 

 

We are using the             mode so field equations reduced to: 
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To determine the far field, the field equivalence principle is used. The microstrip is 
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density Ms. The far field produced by ˆ an E
→

×  over a closed surface, is the same as that 

produced by a surface magnetic current 
SM

→
 over the same surface (see formula 19). 

Since the tangential electric field on the top and bottom faces, as well as the tangential 

magnetic field on the vertical surfaces, are zero, the only contribution to the equivalent 

sources are the tangential electric field aE
→

, on the vertical surface of the cavity (see 

Figure 8). To account for the presence of the ground plane, image theory is used and it 

doubles the equivalent magnetic density current. 

  

 (19) 

where n̂  is the unit outward normal. 

 

 

Figure 8: Equivalence principle equivalent [2] 

 

The walls along the width (W) axis are called radiating slots because the 

equivalent magnetic current densities are both of same magnitude and of the same phase. 

Thus these sources add in a direction normal to the patch.  

ˆ0, 2S S aJ M n E
→ → →

= = − ×
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There are two orthogonal planes in the far field region. One is designated as E-plane and 

the other designated as H-plane. The far zone electric field lies in the E-plane and the far 

zone magnetic field lies in the H-plane. The E-plane is the x-y plane and the H-plane is 

the x-z plane (see Figure 8). 

The two walls along the length (L) axis are called non-radiating slots because the 

equivalent magnetic current densities are of same magnitude but opposite phase. Thus the 

fields radiated by these two slots cancel each other in the H-plane. Because the 

corresponding slots on opposite walls are 180o out of phase, the corresponding radiations 

cancel each other in the principal E-plane (see Figure 9). 

 

Figure 9: Current densities on non-radiating slots of rectangular patch antenna [2] 

 

The far field is determined by considering only radiating slots. The antenna is 

therefore considered as two parallel radiating slots. The slots are identical, so the total 

electric field is the electric field of a two-element linear array. The electric field radiated 

by one slot is E1 and the array factor is AF, so the product E1AF is the total electric field. 
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The method used to find the electric field E1 on the radiating patch is similar to finding 

the electric field on a uniformly illuminated rectangular aperture.  

 

II.2.4 Feeding techniques 

Matching between the feed line and the antenna can be achieved by properly 

selecting the location of the feed line, and this location also affects the radiation 

characteristics. 

Many feed techniques can be used for microstrip antennas. The four most popular 

techniques are: 

• Microstrip line feed: the microstrip line is a conducting strip, with width much 

smaller than the patch width (see Figure 10). The microstrip line feed is easy to 

fabricate, easy to match and simple to model. 

 

Figure 10: Microstrip antenna microstrip line feed 

 

•  Coaxial probe feed: it is a coaxial-line feed where the inner conductor of the coax is 

attached to the patch while the outer conductor is connected to the ground plane (see 
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Figure 11). The coaxial probe feed is easy to fabricate and to match but is difficult to 

model and requires soldering.  

 

Figure 11: Microstrip antenna coaxial probe feed 

 

• Aperture coupling: it consists of two substrates separated by a ground plane (see 

Figure 12). The microstrip feed line and the microstrip patch are located on different 

sides of the ground plane. The energy of the microstrip line is coupled to the patch 

through a slot on the ground plane. That is the reason why it is the most difficult to 

fabricate of all four techniques. Aperture coupling is easy to model and results in a 

narrow bandwidth. Matching is performed by controlling the width of the feed line 

and the length of the slot. [2] 

 

Figure 12: Microstrip antenna aperture-coupled feed 
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• Proximity coupling: the energy of the microstrip line is electromagnetically coupled 

to the patch through a second substrate (see Figure 13). Proximity coupling has the 

largest bandwidth of all four techniques, is easy to model and has low spurious 

radiation. The length of the feeding stub and the width-to-line ratio of the patch can 

be used to control the match. [2] 

 

Figure 13: Microstrip antenna proximity-coupled feed 

 

II.3 Rectangular air-spaced patch antenna design 

The goal is to have the antenna resonate at 1800 MHz, with a return loss of at 

least 10 dB and with air as the dielectric. From the common design procedures of section 

II.2.4, two different patch sizes have been computed. The center frequency is chosen to 

be 1800 MHz, which implies a wavelength �� � 16.66  cm. The height should be 

between 0.003�� and 0.05��, it is chosen to be 0.03�� = 0.5 cm.  

 

1) Procedure 1 [3] 

• Length of the patch: � � 0.49�� � 8.17 which is close to 8.2 cm 
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• Width of the patch: � is chosen to be 7.6 cm  

• Recess feed distance: using formula (6), ( � 2.5 cm 

 

2) Procedure 2 [2] 

• Length of the patch: Δ� is computed from equation (5) and Δ� � 0.31 cm 

then, � � ��/2 � 2Δ� � 7.6 cm 

• Width of the patch: � is chosen to be 7 cm 

• Recess feed distance: using formula (6), ( � 2.5 cm 

 

These two designs have been fabricated. Experimental results are discussed in 

chapter IV and chapter V. 

 

II.4 NEC Theory  

The Numerical Electromagnetic Code (NEC) is the software used here to simulate 

the air-spaced patch antenna. The objectives of the simulation are: 

• To obtain a better understanding of the design  

• To provide a means of observing the results using various inputs 

The simulation is expected to predict some characteristics of the experimental results. 

Accuracy is expected between the experimental results and the simulation results. 

Simulation results will be compared to experimental results. 
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II.4.1 NEC Introduction 

The Numerical Electromagnetic Code is an antenna modeling software package 

[12]. NEC was developed in 1970s at Lawrence Livermore laboratories. The code is 

based on the Method of Moments (MoM). The most recent version in public domain of 

NEC is NEC-2. While there are a number of excellent MoM codes available, NEC-2 is 

used in this work, because it is freely available and it is a powerful computational engine.  

Structures are modeled in NEC through a grid of thin wires. Wires in NEC are 

modeled by short straight segments. The NEC solution is the current on the wire 

segments. From the currents, NEC can compute the far field radiation patterns, input 

impedances, and near fields.  

In NEC, the current on each segment is represented by a constant, a sine and a 

cosine. The thin wire approximation considers that since the wire is very thin, the current 

density on each segment does not depend on the wire azimuthal angle ϕ. The current 

density is only along the axis of the wire. 

 

II.4.2 Structure modeling guidelines 

A wire segment in NEC is defined by the coordinates of its two end points and its 

radius. Simple ideas for modeling structures in NEC code use short and straight 

segments. Some guidelines are important to follow when modeling with NEC in order to 

obtain accurate simulation results: [13] 

• The wire segment length ∆ should be less than 0.1λ and greater than 0.001λ at the 

desired frequency 
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• The wire segment length ∆ should be at least 4 times larger than the diameter d of 

the wire 

• A wire should be at least nine segments per half-wavelength 

• All segments length should be equal within a model as much as possible. 

• Segments must not overlap  

• Segments with small 2∆/d should be avoided at bends 

• Segments that are electrically connected must have coincident end points. If the 

separation between the ends of two segments is less than 0.001 times the length of 

the shortest segment, the segments will be treated connected by the NEC code. 

• The angle between two connected segments should not be extremely small to 

avoid overlaps 

• Parallel wires should be several radii apart 

• A segment is required at each point where a network connection or voltage source 

will be located 

 

The guidelines given above are the most common sources of error in NEC, and it 

is important to test the accuracy of the results after simulation. It is also possible to 

generate inaccurate data due to other error sources.  

Image theory is used in NEC to model an antenna over a ground plane. There are 

four types of ground plane in the NEC code: 

• Perfectly conducting ground plane: here the code generates an image of the 

structure reflected on the ground plane. The image ground plane is infinite in this 

case. The image is exactly equivalent to a perfectly conducting ground plane.   
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The height in that case should be at least several times the radius for the thin-wire 

approximation to be valid. 

• Finitely conducting ground plane: the image of the structure is generated and 

modified by the Fresnel plane-wave reflection coefficients. This method should not 

be used for structures close to the ground plane and is of limited accuracy. 

• A wire ground screen may also be modeled using the Sommerfeld/Norton method 

when the structure is slightly raised above the ground plane. 

• NEC also includes a radial-wire ground screen approximation and two-medium 

ground approximation based on modified reflections coefficient in the wire ground 

screen case. 

 

  



30 

 

 

 

Chapter III – NEC Simulation 

III.1 Simulation setup 

The rectangular patch antenna in NEC can be modeled as a rectangular mesh grid 

with precise number of segments. The ground plane is chosen to be perfectly conducting 

and infinite. The goal is the same as the one of section II.3: the antenna has to resonate at 

1800 MHz, with a return loss of at least 10 dB and with air as dielectric. 

An example of rectangular patch antenna modeled in NEC-2 is shown in Figure 

14. The feed point is shown in red on Figure 14 and lies along the x-axis. The structure is 

at a height h from the ground plane (see Figure 15). The ground plane is the z = 0 plane 

(it is an infinite ground plane). 

 

 

Figure 14: Geometry of microstrip patch antenna designed in NEC (3-D view) 

 



31 

 

 

 

 

Figure 15: 2-D view (along the Y-axis) of the microstrip patch antenna in NEC 

 

Two microstrip patch antennas were simulated in NEC at four different heights 

and at four different recess feed locations. The wire radius is set to 0.025cm. The 

dimensions of each square in the grid are a function of the patch size and the recess feed 

location. Table 1 is displayed below and shows an example of the dimensions of each 

square’s grid versus recess feed location and the total number of segments for the two 

antennas at a height of 0.25 cm.  

 

Antenna Recess feed 

location (cm) 

dx (dimension along 

the x-axis)  in cm 

dy (dimension along 

the y-axis) in cm 

Total number 

of segments 

Antenna 1 

L = 8.2 cm 

W = 7.6 cm 

1.5 0.3154 0.3166 1299 

2 0.3416 0.3455 1103 

2.5 0.3154 0.3166 1299 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

1.5 0.3166 0.3182 1103 

2 0.3454 0.3500 923 

2.5 0.3166 0.3182 1103 

 

Table 1: Dimensions of the patch in the NEC simulation 
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It should be noted that all the guidelines listed in section II.3.2 are completely 

obeyed.  The target frequency is 1800 MHz, which implies a wavelength of 16.66 cm. 

This means that the segment length should be chosen between 0.016 cm and 1.6 cm. The 

average length in this model is 0.3 cm. the radius of the wire is 0.025 cm which is much 

less than eight times the bigger segment length of 0.35 cm. all other conditions set for the 

guidelines are met. 

In Table 1, dx represents the segment length along the patch width and dy 

represents the segment length along the patch length. A change in height (increase or 

decrease) will not affect the results of Table 1, it will just be a shift of the patch up or 

down, but will affect the results of the electric field or return loss. The dimensions of the 

grid do not depend on the patch size, but depend on the recess feed location distance. The 

simulation software tends to divide the wires in number of segments such that one will be 

crossing as close as possible to the feed segment. 

 

III.2 Simulation results  

The experiment setup of the NEC simulation is presented in Table 2.  
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Antenna Recess feed 

distance (cm) 

Height  (cm) 

Antenna 1 

L = 8.2 cm 

W = 7.6 cm 

 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

 

1.5 

0.25 

0.5 

 

2 

0.25 

0.5 

 

2.5 

0.25 

0.5 

 

3 

0.25 

0.5 

  

Table 2: Experiment setup of the NEC simulation 

 

Table 2 shows the predefined parameters used in the simulation. For each patch of 

dimensions L × W, four recess feed distances (distance from the edge of the patch toward 

the center of the patch) are simulated: 1.5 cm, 2 cm, 2.5 cm and 3 cm. The recess feed 

distance of 3 cm is close to the zero impedance point; therefore it is not meaningful to go 

further than 3 cm. For each recess feed location, two heights (0.25 cm and 0.5 cm) are 

simulated. In total, each antenna has 8 simulation scenarios with an infinite ground plane. 

It has to be mentioned that the simulation is done using a step in frequency of 5 MHz. 

Measurements obtained for the NEC simulation are presented in Table 3. 
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Antenna Recess feed 

location 

(cm) 

Height 

(cm) 

Actual recess 

feed location 

(cm) 

Center 

frequency 

(MHz) 

S11 (dB) 

 

 

Antenna 1 

L = 8.2 cm 

W = 7.6 cm 

 

 

1.5 

0.25  

1.5769 

1700 -3.631 

0.5 1685 -8.477 

 

2 

0.25  

2.0500 

1680 -4.473 

0.5 1655 -11.688 

 

2.5 

0.25  

2.5231 

1675 -8.123 

0.5 1635 -30.854 

 

3 

0.25  

3.0750 

1655 -22.475 

0.5 1615 -9.717 

 

 

 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

 

1.5 

0.25  

1.5833 

1830 -3.942 

0.5 1805 -9.927 

 

2 

0.25  

2.0727 

1805 -5.348 

0.375 1760 -9.858 

0.5 1770 -15.828 

0.6 1750 -29.858 

 

2.5 

0.25  

2.5333 

1795 -11.139 

0.35 1780 -20.257 

0.375 1775 -24.824 

0.5 1750 -18.164 

 

3 

0.25  

3.1091 

1770 -12.271 

0.5 1725 -4.772 

  

Table 3: NEC simulation results 

 

Table 3 indicates that antenna 1 in general, does not really lead to good results 

comparing all numbers. Some important conclusions that can be derived from Table 1 

are:  
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• As the height increases, the resonant frequency decreases  

• Results fail for d = 3 cm in most cases because it is very close to the zero 

impedance point (d = 3.5 cm) 

• As the recess feed distance increases, the resonant frequency decreases  

• A height of 0.25 cm is too short for the size of the patch antenna 1. It does not 

lead to the minimum return loss goal of 10 dB 

• The smaller patch leads to better results compared to the larger patch 

 

From Table 3, return loss values (- S11(dB)) do not follow a particular trend as the 

height or the recess distance increases/decreases. For example for antenna 1, as the height 

increases, S11(dB) decreases for d = 1.5, 2 and 3 but increases for d = 3 cm. In the 

simulation, return losses are not very accurate. 

 

An example of NEC input and output files are presented in Appendix C. A plot 

example of the data for antenna 2, height = 0.25 cm and recess feed distance = 2.5 cm is 

shown in Figure 16. It shows the frequency along the horizontal axis and the return loss 

in dB along the vertical axis (S11(dB) = 10 log(S11) and RL = - S11(dB)). The graph shows 

the resonant frequency with the return loss maximum value at that peak frequency. 
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Figure 16: S11 plot of antenna 2, patch size 7.6 cm × 7 cm, height 0.25 cm and recess feed 
distance 2.5 cm. 

 

The antenna design predicts the best recess feed location at 2.5 cm. The couples 

(d = 2 cm, h = 0.5 cm) and (d = 2.5 cm, h = 0.25 cm), shown in Table 3 for antenna 2, 

depicts the best possible case scenarios. These two cases slightly modified are shown in 

Figure 17 and Figure 18. The idea is that the resonant frequency/maximum peak of the 

return loss should be as close as possible to the Smith chart origin for the antenna to be 

perfectly matched. If the minimum peak value of S11(dB) is under the resistive line of the 

Smith chart, it means that the impedance is more capacitive. The height of the dielectric 

substrate in that case has to be increased to reduce the capacitance. Inversely, if the 

minimum peak value of S11(dB) is above the resistive line of the Smith chart, it means 

that the impedance is more inductive. The height of the dielectric substrate in that case 

has to be decreased to reduce the inductance. 

 



 

 

Figure 17: d = 2 cm, h = 0.5 cm case

 

In Figure 17, above, the height is modified from 0.5 cm to 0.6 cm.

 

d = 2 cm, h = 0.5 cm case, modified in d = 2 cm, h = 0.6 cm

In Figure 17, above, the height is modified from 0.5 cm to 0.6 cm. 
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modified in d = 2 cm, h = 0.6 cm 



 

 

Figure 18: d = 2.5 cm, h = 0.25 cm case

 

In Figure 17 and 18

18, it is seen on the left Smith chart

frequency is under the origin, which mean

has to be increased in order to decrease the capacitance.

modification after an addition of 1 mm to the previous height

resonant frequencies are 

but the resonant frequency value decreases 

modified from 0.25 cm to 0.35 cm.

d = 2.5 cm, h = 0.25 cm case, modified in d = 2.5 cm, h = 0.

17 and 18, the Smith charts of S11(dB) are also shown. In 

left Smith charts that the S11(dB) point corresponding to the resonant 

under the origin, which means that in order to improve the results;

in order to decrease the capacitance. The right pictures show the 

modification after an addition of 1 mm to the previous height and illustrate

 closer to the origin, which improves the return loss

but the resonant frequency value decreases by a small amount. In Figure

from 0.25 cm to 0.35 cm.  
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cm, h = 0.35 cm 

shown. In Figure 17 and 

point corresponding to the resonant 

results; the height 

The right pictures show the 

illustrate that the 

, which improves the return loss in that case 

Figure 17, the height is 
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Chapter IV - Experimental results 

IV.1 Experiment setup 

IV.1.1 Material 

Cost, power loss and performance were trade-off considerations in choosing the 

structure’s material. After analysis of different metals, the formable brass (alloy 260) was 

chosen because it is easy to manipulate (cut and drill holes), affordable and performs well 

with many structures. The characteristics of the formable brass are: 

• Hardness: Rockwell B60-B77, except 0.010" to 0.016" thicknesses are not rated 

• Yield Strength: 52,000 psi 

• Temper: 1/2 Hard (H02) 

The brass sheet is 12mils thick which allows the thickness to be considered negligible. 

Other materials used to build the air-spaced patch antenna are: 

• Nylon washers as spacers between the ground plane and the patch 

• Household Glue used to hold the washers together in order to obtain a specific 

height and it is also used to attach the patch, the spacers and the ground plane 

together 

• Solder iron and solder: they are used to attach the patch to the ground plane using 

the feed line 

• Connectors: coaxial cable as feed line connector between the ground plane and 

the patch, male-female connector to be used to connect the antenna to the vector 

network analyzer 
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• Copper tape: it is used to tape the coaxial feed to the ground plane 

• Vector Network Analyzer (VNA): To measure the S11, the bandwidth and the 

Smith chart of the antenna. The one used is the Agilent 8714ES 

• Discovery Learning Center (DLC): the DLC was used to cut the metal sheet into 

different pieces and to drill holes on the ground plane and the patch pieces 

 

IV.1.2 Methodology 

The first step in the realization of the antenna is the design of the antenna using 

existing literature. After the antenna has been designed, materials were studied and/or 

chosen. Then the following steps were realized in order to build the antenna: 

� Cut the patch antenna and the ground plane pieces at the Discovery Learning 

Center (DLC) 

� Glue the washers together to obtain the desired height 

� Mount the washers on the patch  

� Mount the coaxial feed on the ground plane and make it stand vertically between 

the ground plane and the patch 

� Use solder iron and solder to connect the coaxial feed and the patch 

� Connect the patch to the Vector Network Analyzer and take measurements 

 

IV.1.3 Vector Network Analyzer  

The Vector Network Analyzer (VNA) is a tool that measures the network 

parameters of a one port or two-port device/system. In order to be able to measure the 
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S11, Smith chart and impedance of the antenna, the vector network analyzer has to be 

calibrated. A calibration kit should contain an ‘open’, a ‘short’ and a ‘load’. Because the 

only measurement taken is S11, only one port is used. Steps for the calibration of the 

VNA are: 

1) Set a frequency range: FREQ – START / STOP – number – MHZ  

2) Calibrate the ports: CAL – Prior Menu – User 1-port – User 1-port  

Connect the Open to Port 1 and press Measure Standard 

Connect the Short to Port 1 and press Measure Standard 

Connect the Load to Port 1 and press Measure Standard 

After those steps the VNA is calibrated for the frequency range defined in 1) and the 

VNA is ready to take measurements. Some other important functions of the VNA 

include: 

� SCALE: to rescale the graph- Scale /Div or AUTOSCALE could be used 

� FORMAT: Used to choose the display format Log Mag, Lin Mag, SWR, Delay, 

Phase, Smith chart, Polar, Real, Imaginary, and Impedance magnitude 

� MARKER: To select either marker 1 or marker 2 as the active marker. You can 

also use the function ‘Marker Search’ to find the minimum or the maximum of a 

plot 

� HARDCOPY: Press Start to be able to save pictures on a floppy disk 

If the frequency range has to be changed a new calibration has to be performed. 

The calibration is not affected if the frequency range is modified and returned to the 

original range afterwards. 
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IV.2 Experiment Results 

The goal is still the same as in section II.3: the antenna has to resonate at 1800 

MHz, with a return loss of at least 10 dB and with air as dielectric. The experiment setup 

in the laboratory is the same as the setup of Table 1. The ground plane is not an infinite 

ground plane and it is chosen to be λ × λ (16.66 cm × 16.66 cm) because it only has to be 

big enough to support fringing at the edge of the patch. Experiment was done in three 

phases. 

The first phase consisted of testing both antenna 1 and antenna 2. In this 

experiment, the patch stands over the ground plane using nylon washers (as spacers) 

placed at the four corners of the patch. Results for phase 1 are presented in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

 

 

 

Antenna Recess feed 

location (cm) 

Height (cm) Center frequency 

(MHz) 

SWR (dB) 

 

 

 

Antenna 1 

L = 8.2 cm 

W = 7.6 cm 

 

2 

0.125 1600 -16.3 

0.25 1599 -20.3 

0.375 1562 -26.6 

0.5 1525 -11.1 

 

2.5 

0.125 1612 -11.3 

0.25 1600 -17.1 

0.375 1575 -9.7 

0.5 1525 -8.2 

 

3 

0.125 1575 -11.6 

0.25 1575 -9.9 

0.375 1525 -6.3 

 

 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

 

2 

0.25 1700 -18.4 

0.5 1637 -8.8 

 

2.5 

0.25 1687 -10.7 

0.5 1625 -3.3 

 

3 

0.25 1650 -5.1 

0.5 1712 -8.0 

 

Table 4: Experimental results of phase 1 

 

Data from Table 4 shows that antenna 1, like in the simulation results, does not 

lead to good results. The highest resonant frequency for antenna 1 is 1612 MHz, which is 

10.44% of error (relative error) compared to the goal frequency of 1800 MHz. Antenna 2 

was therefore used for the rest of the experiments. 
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The second experiment consisted of re-testing antenna 2 for accuracy in the 

results with nylon washers still at the corners of the patch. Phase 2 results are presented 

in Table 5 and include measurements of the cases d = 2 cm, h = 0.6 cm and d = 2.5 cm,   

h = 0.35 cm.  

 

Antenna Recess distance (cm) Height (cm) Center freq (MHz) SWR (dB) 

 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

 

 

2 

0.25 1700 -18.8 

0.5 1637 -9 

0.6 1625 -13 

 

2.5 

0.25 1687 -10.7 

0.35 1650 -8 

0.5 1620 -13.8 

 

Table 5: Experimental results of phase 2 

 

Here the calibration was also slightly modified to avoid having over 0 dB in some 

case shown in Figure 19. In phase 1, a male connector was included in the circuit after 

the calibration was completed to be able to connect the antenna to the Vector Network 

Analyzer (VNA). The calibration kit components (open, short, load) have male 

connectors at their ends, the VNA’s cable connector is female and the antenna connector 

is female. So the calibration could not be done with the male connector because the 

calibration kit components also have male connectors. A load component of the 

calibration kit with female connector was found and the last step of the calibration was 

modified by including the male connector, connected to the VNA, at that step of the 

calibration. An example of measurement for the phase 2 is shown in Figure 20.  
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Figure 19: Example of measurement with incorrect calibration 

 

 

Figure 20: Example of measurement for phase 2 with improved calibration 



46 

 

 

 

Phase 2 experiments do not consider d = 3 cm. Table 4 indicates that the recess 

feed distance d = 3 cm does not lead to good results because the return loss goal of 10 dB 

is not reached in that case. It is probably due to the fact that it is close to the zero 

impedance point which is 3.5 cm.  

A third experiment was conducted to find if the nylon washers placed at the 

corners of the patch have an influence on the fringing fields at the edges of the patch. For 

phase 3, the nylon washers were placed at the center of the patch where the impedance is 

null. The patch is fixed on the ground plane with the nylon washers. The phase 3 results 

are presented in Table 6. 

 

Antenna Recess feed 

location (cm) 

Height (cm) Center frequency 

(MHz) 

SWR (dB) 

 

Antenna 2 

L = 7.6 cm 

W = 7 cm 

 

2 

0.25 1800 -21.5 

0.375 1730 -20.2 

0.5 1680 -17 

 

2.5 

0.25 1760 -13.5 

0.375 1695 -9.4 

0.5 1645 -7 

 

Table 6: Experimental results of phase 3 

 

An example of measurement for phase 3 is shown in Figure 21.  
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Figure 21: Example of measurement for phase 3 

 

Phase 3 results were considered good enough to be the final results. They were 

considered final results because looking at Table 6, many results are pretty close to the 

goal. It is seen in Figure 21 that the maximum value of S11 is under 0 dB. S11 always 

under than 0 dB indicates an acceptable calibration. In Figure 19, 20 and 21, the peak 

indicates the resonance point. The corresponding frequency and return loss are the 

resonant frequency value and the maximum return loss value.  

Table 6 illustrates that the case d = 2 cm, h = 0.25 cm has a resonant frequency of 

1800 MHz and a return loss of 21.5 dB. d = 2 cm and h= 0.25 cm are not the values at 

which the antenna was designed (d = 2.5 cm and h = 0.5 cm) but lead to very good 

results. In the conclusion and discussion chapter, we will be comparing experimental and 
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simulation results, then we will try to explain the experimental results according to the 

initial designs and to the literature. 
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Chapter V – Discussion, Conclusion and Future work 

V.1 Discussion 

Analytic results are presented in Table 7. They are computed using procedure 2 

from section II.3. A comparison between simulation and experiment results of antenna 2 

are shown in Table 8 and Table 9. Simulation, experimental and analytic results are 

compared in Figure 22 and Figure 23. 

 

Height (cm) Analytical results – Resonant 

frequency (MHz) 

0.25 1885 

0.375 1845 

0.5 1808 

 

Table 7: Analytical results computed using procedure 2 from section II.3 
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Height 

(cm) 

 

Recess 

distance 

(cm) 

Simulation results Experimental results Error 

(% to 

exp. 

freq) 

Frequency 

(MHz) 

S11 (dB) Frequency 

(MHz) 

Return 

loss (dB) 

0.25 2 1805 -5.34 1800 -21.5 0.27 

0.375 2 1760 -9.8 1730 -20.2 1.67 

0.5 2 1770 -15.8 1680 -17 5.35 

0.25 2.5 1795 -11.1 1760 -13.5 1.98 

0.375 2.5 1775 -24.8 1695 -9.4 4.72 

0.5 2.5 1750 -18.1 1645 -7 6.38 

 

Table 8: Comparison between simulation and experimental results 

 

 

Height 

(cm) 

 

Recess 

distance 

(cm) 

Simulation results Experimental results Difference 

of freq.  

(MHz) for 

a same 

height  

Frequency 

(MHz) 

S11 (dB) Frequency 

(MHz) 

S11 (dB) 

0.25 2 1805 -5.34 1800 -21.5 10 | 40 

0.25 2.5 1795 -11.1 1760 -13.5 

0.375 2 1760 -9.8 1730 -20.2 15 | 35 

0.375 2.5 1775 -24.8 1695 -9.4 

0.5 2 1770 -15.8 1680 -17 20 | 35 

0.5 2.5 1750 -18.1 1645 -7 

 

Table 9: Table 8 re-ordered by heights 
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Figure 22: Picture of analytic, simulation and experimental results for d = 2 cm 

 

 

Figure 23: Picture of analytic, simulation and experimental results for d = 2.5 cm 
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Figure 22 and Figure 23 are the plots of analytic, simulation and experimental 

results for recess distances of 2 cm and 2.5 cm respectively. It is seen in those two 

pictures that the analytic results curve is very far off from the simulation and the 

experimental results curves. Another observation from the two figures is that the green 

curve (experimental results) and the blue curve (analytic results) are consistent. 

Analytical results are computed using procedure 2 (from section II.3) which is based on a 

literature [2] using experiments of microstrip patch antennas with dielectric to derive 

general equations and formulas. It is expected that in the case of air-spaced patch 

antennas, analytical results (due to experiments based equations) are not totally coherent 

with experiment results. It is seen in Figure 22 that the red curve (simulation results) does 

not perform well at h = 0.375 cm. One reason is the poor modeling of the case (d = 2 cm) 

which according to Table 1 has the lowest number of segments (923 segments). The 

patch is approximated with a mesh grid in the simulation and a finer grid will generally 

provide more accurate results. 

It is seen in Table 7 that the resonant frequency in the analytic case does not 

depend on the recess distance. Table 9 indicates that there is a variation of the resonant 

frequency when the recess distance is changed. In the simulation results, the variation is 

approximately 15 MHz and in the experimental results, the variation is approximately   

35 MHz.  The return loss also decreases when the recess distance increases.  

Table 8 indicates that the highest percentage of frequency error is 6.38%, and the 

error percentage increases with the height of the dielectric substrate for a specific recess 

distance. For a specific dielectric height, the error percentage also increases with the 

recess distance. Table 8 also illustrates that many error percentages are less than 5% 
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which are acceptable. The minimum error from Table 8 is 0.27% and it is obtained in the 

case d = 2 cm and h = 0.25 cm. It has to be remembered also that the calculation done 

using the literature predict the best case to be d = 2.5 cm and h = 0.5 cm. With more 

extensive research on the microstrip air-spaced patch antennas, equations and/or formulas 

can be derived from experiments to accurately predict the patch dimensions for a desired 

resonant frequency. 

The differences between simulation results and experimental results (shown in 

Table 8) can be explained with different reasons: 

• The ground plane is considered infinite in the simulation while it is of finite 

dimensions in the experiment 

• The NEC model of the patch antenna is a grid mesh, while it is really a solid 

planar structure 

• In the NEC model of the patch antenna, segments have a central unidirectional 

current; which means that current on top and at the bottom of each segment is the 

same. In the real patch antenna structure, the current and charge on top of the 

patch and the current and charge at the bottom of the patch are different 

(illustrated in Figure 24). 
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Figure 24: Side view of patch antenna with E-fields shown underneath 

 

Many difficulties have been encountered during the practical realization of the 

antenna: 

• Mechanical stabilization of the structure was very difficult to achieve, nylon 

washer are approximate but not quite accurate, and it is not proven that the glue 

permittivity and/or the nylon washer permittivity do not influence the effective 

dielectric constant 

• The coaxial probe was soldered to the patch , and the soldering is not always 

reliable 

• The Vector Network Analyzer (VNA) calibration was not precise. One reason is 

that the calibration kit has an ‘open circuit’ that is not very precise. Another 

reason is that calibration was done using two types of connectors for the same 

antenna (female (load); male (open and short)); the connector of the antenna is 

female and the VNA connector is female, so a male connector is included in the 

calibration but only at the load step because only a ‘load’ component with female 

connector was available. 
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It has to be mentioned that the brass conductivity was not included as a parameter 

of the simulation. A test was conducted to see the impact that the brass conductivity 

would have had on the simulation results. The comparison is recapitulated in Table 10.  

 

Antenna characteristics Resonant frequency S11(dB) 

Antenna 2, h = 0.5 cm 

and  d = 2 cm 

Without brass 1770 -15.828 

Brass included 1770 -16.203 

 

Table 10: Comparison between two simulation results using the brass conductivity 
parameter or not.  

 

Table 10 indicates that adding the brass conductivity as a simulation parameter 

would not have an impact on the resonant frequencies of Table 3. However, the 

bandwidths and the return losses of Table 3 will all change if the brass conductivity is 

taken into account.  

Table 8 and Table 9 illustrate that experimental results were pretty satisfying and 

simulation results do not completely follow the experimental results trend for the 

resonant frequency case. Return loss values for simulation and experimental results were 

not compared due to the fact that parameters such as brass conductivity were not taken 

into account during the simulation. 
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V.2 Conclusion 

The goal was to analyze (design, simulate, build and measure the parameters of 

the antenna) an air-spaced patch antenna near 1800 MHz with a return loss of at least 

10dB and matched at 50 Ω. Goal was set to be able to put a tradeoff limit on acceptable 

results. The predicted values, from the calculation using the literature, are d = 2.5 cm and 

h = 0.5 cm. The best values found using simulation and experimental results are d = 2 cm 

and h = 0.25 cm.  

In the experimental results, as the height increases, the return loss and the 

resonant frequency decrease. Simulation results mostly follow that trend. The bandwidth 

and the return loss have the same trend. As the return loss increases, the bandwidth 

increases and vice versa.  

Experiment lead to good results as shown in Table 8. Figure 22 and Figure 23 

show that the analytical results and the experimental results are not close. It is normal 

because procedure 1 and procedure 2 (from section II.3) are based on the literature which 

used experiment of microstrip patch antennas with dielectric to derive general equation 

and formulas. Extensive experiments on the air-spaced patch antenna case can also lead 

to general equations and formulas. 

 

V.3 Future work 

 The focus of this thesis was to analyze an air-spaced patch antenna. Throughout 

the course of the analysis, simulation and experimentation were helpful to eliminate some 

cases and focus the analysis on specific cases to study. The present literature discusses 
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with microstrip patch antennas using a dielectric substrate. This thesis has analyzed an air 

dielectric case. However, a more precise fabrication of the antenna would result in a more 

mechanically stable structure than the one done by hand in the laboratory. Appendix D 

shows photographs of the air-spaced patch antenna constructed in this work.  

Additionally, parameters of the antennas such as gain, radiation efficiency and 

radiation patterns have not been measured due to a lack of adequate equipment. An in-

depth analysis of those parameters will provide a better characterization of the antenna. 

Also, more simulations of the air space patch antennas might provide derivation of 

equations or formulas for microstrip patch antennas with air dielectric. Most of the 

literature states that a dielectric permittivity less than 2.2 is not recommended for the 

antenna to be well designed [3], [2]. A better simulation will also improve the quality of 

the results by having results that can accurately compare to experimental results. 

Simulation can be improved by using commercial softwares, which are more precise than 

NEC and are able to simulate many other parameters of the antenna such as near fields, 

far fields and radiation pattern. 

Lastly, the microstrip air-spaced patch antenna could be tested in one of the 

multiple applications mentioned in the thesis, to provide some detailed notes and 

guidelines about the practical use of the antenna. Theoretically, it is suggested that the 

air-spaced patch antenna might provide better results than microstrip patch antennas with 

dielectric.   
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APPENDIX A: Symbols and Notations 

�= = permittivity of free space and �� is the permittivity in the medium 

 � = wavelength and is equal to phase velocity of the wave divided by the frequency in 
the medium 

S11 = reflection coefficient  

β = 2π/λ, wave number 

A
→

 = magnetic vector potential 

E
→

 = electric field vector 

H
→

= magnetic field vector 

ω  = the angular velocity 
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APPENDIX B: Parameters of the microstrip patch antenna 

 

 

 

  

Parameter Formula 

Effective dielectric 

constant, �����             (1) 
����� � �� � 12 �  �� � 12 �1 � 12 2���� �>

 

Width, W                     (2) � � �2� � 2�� � 1 

Normalized extension 

length, 
∆?@                      (5) 

∆�� �  0.412 "����� � 0.3$ %�2 � 0.264'
"����� � 0.258$ %�2 � 0.8' 

Length, L              (3), (4)  �� 2 � 2∆�⁄  
0.49�� 

Effective length, Le     (4)  ��2 � ��2√�� 
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APPENDIX C: Example of NEC input and output files (partial listing) 

Input file 

Antenna 2: Patch dimensions L = 7.6 cm, W = 7 cm, h = 0.25 cm and d = 2.5 cm 

CM Nw=22, L=7.600000, W=7.000000, h=0.250000, radius=0.025000 
CM NL=24, dx=0.316667, dy=0.318182, shiftY=-3.500000 
CE all dimensions are centimeters 
GW 1 1 0.000000 -3.500000 0.250000  0.000000 -3.181818 0.250000  0.025000 
GW 2 1 0.000000 -3.181818 0.250000  0.000000 -2.863636 0.250000  0.025000 
GW 3 1 0.000000 -2.863636 0.250000  0.000000 -2.545455 0.250000  0.025000 
GW 4 1 0.000000 -2.545455 0.250000  0.000000 -2.227273 0.250000  0.025000 
. 
. 
. 
GW 1102 1 7.283333 3.500000 0.250000  7.600000 3.500000 0.250000  0.025000 
GW 1103 3 2.533333 0  0  2.533333  0 0.250000  0.025000 
GS 0 0 0.01 
GE 1 0 
GN 1 
FR 0 121 0 0 1400.000000 5.000000 
EX 0 1103 2 1 1.0 0.0 
XQ 
EN 

 

Output file 

Antenna 2: Patch dimensions L = 7.6 cm, W = 7 cm, h = 0.25 cm and d = 2.5 cm 

Frequency       Real imp               Img imp             SWR (dB) 
1400.000000 0.373974 24.068700 -0.105488 
1405.000000 0.381483 24.277900 -0.107254 
1410.000000 0.389298 24.481400 -0.109101 
1415.000000 0.397578 24.681900 -0.111068 
1420.000000 0.406151 24.892500 -0.113084 
1425.000000 0.414854 25.102500 -0.115119 
. 

. 

. 

1995.000000 1.589620 23.417700 -0.452972 
2000.000000 1.551800 23.770000 -0.43979 



63 

 

 

 

APPENDIX D: Air-spaced patch antenna pictures 

 

 

 

Air-spaced patch antenna built in the RF laboratory of Marquette University - Top view 
 
 
 
 

 
 
 
Air-spaced patch antenna built in the RF laboratory of Marquette University – Side view 
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