18 research outputs found

    Implementation of variational iteration method for various types of linear and nonlinear partial differential equations

    Get PDF
    There are various linear and nonlinear one-dimensional partial differential equations that are the focus of this research. There are a large number of these equations that cannot be solved analytically or precisely. The evaluation of nonlinear partial differential equations, even if analytical solutions exist, may be problematic. Therefore, it may be necessary to use approximate analytical methodologies to solve these issues. As a result, a more effective and accurate approach must be investigated and analyzed. It is shown in this study that the Lagrange multiplier may be used to get an ideal value for parameters in a functional form and then used to construct an iterative series solution. Linear and nonlinear partial differential equations may both be solved using the variational iteration method (VIM) method, thanks to its high computing power and high efficiency. Decoding and analyzing possible Korteweg-De-Vries, Benjamin, and Airy equations demonstrates the method’s ability. With just a few iterations, the produced findings are very effective, precise, and convergent to the exact answer. As a result, solving nonlinear equations using VIM is regarded as a viable option

    Solving two-dimensional coupled Burgers equations via a stable hybridized discontinuous Galerkin method

    Get PDF
    The purpose of this paper is to design a fully discrete hybridized discon-tinuous Galerkin (HDG) method for solving a system of two-dimensional (2D) coupled Burgers equations over a specified spatial domain. The semi-discrete HDG method is designed for a nonlinear variational formulation on the spatial domain. By exploiting broken Sobolev approximation spaces in the HDG scheme, numerical fluxes are defined properly. It is shown that the proposed method is stable under specific mild conditions on the stabi-lization parameters to solve a well-posed (in the sense of energy method) 2D coupled Burgers equations, which is imposed by Dirichlet boundary conditions. The fully discrete HDG scheme is designed by exploiting the Crank–Nicolson method for time discretization. Also, the Newton–Raphson method that has the order of at least two is nominated for solving the obtained nonlinear system of coupled Burgers equations over the rect-angular domain. To reduce the complexity of the proposed method and the size of the linear system, we exploit the Schur complement idea. Numerical results declare that the best possible rates of convergence are achieved for approximate solutions of the 2D coupled Burgers equations and their first-order derivatives. Moreover, the proposed HDG method is examined for two other types of systems, that is, a system with high Reynolds numbers and a system with an unavailable exact solution. The acceptable results of examples show the flexibility of the proposed method in solving various problems

    Numerical solution of fractional partial differential equations by spectral methods

    Get PDF
    Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields

    The numerical simulation of nonlinear waves in a hydrodynamic model test basin

    Get PDF
    This thesis describes the development of a numerical algorithm for the fully nonlinear simulation of free-surface waves. The aim of the research is to develop, implement and investigate an algorithm for the deterministic and accurate simulation of twodimensional nonlinear water waves in a model test basin. The simulated wave field may have a broad-banded spectrum and the simulations should be carried out by an efficient algorithm in order to be applicable in practical situations. The algorithm is based on a combination of Runge-Kutta (for time integration), Finite Element (boundary value problem) and Finite Difference (velocity recovery) methods. The scheme is further refined and investigated using different models for wave generation, propagation and absorption of waves

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    New developments in Functional and Fractional Differential Equations and in Lie Symmetry

    Get PDF
    Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore