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Abstract
In this paper, a hybrid compact-CIP scheme is proposed to solve Korteweg-de
Vries-Burgers equation. The nonlinear advective terms are computed based on the
classical constrained interpolation profile (CIP) method, which is coupled with a
high-order compact scheme for third-order derivatives in Korteweg-de Vries-Burgers
equation. The strong stability preserving third-order Runge-Kutta time discretizations
is adopted in this work. A test case is presented to demonstrate the high-resolution
properties of the proposed compact-CIP scheme.

Keywords: high-order compact schemes; CIP schemes; Korteweg-de Vries-Burgers
equation

1 Introduction
In , Korteweg and de Vries [] developed the Korteweg de Vries (KdV) equation to
model weakly nonlinear waves. It has been used in several different fields to describe var-
ious physical phenomena of interest. The KdV-Burgers (KdVB) equation which is derived
by Su and Gardner [] appears in the study of the weak effects of dispersion, dissipation,
and nonlinearity in waves propagating in a liquid-filled elastic tube. Recently, the nonlin-
ear fractional partial differential equations, such as fractional KdV-Burgers equation [],
fractional Schrödinger-Korteweg-de Vries equations [] and fractional Burgers’ equations
[], were also presented to describe many important phenomena and dynamic processes
in physics. Some theoretical issues concerning the KdVB equation, such as the travel-
ing wave solution, have received considerable attention []. A number of exact solitary
wave solutions to KdVB equations have been found in the past few years. The exact so-
lutions of a compound KdVB equation were obtained by using a homogeneous balance
method in []. By using the special truncated expansion method, Hassan [] constructed
solitary wave solutions for the compound KdVB equation and discussed the generalized
two-dimensional KdVB equation. The Exp-function method is applied to obtain gener-
alized solitary solutions and periodic solutions for the KdVB equation in []. In the past
several decades, many authors have paid attention to studying the numerical methods for
solving KdVB equations. Soliman extended the variational iterations method to solve the
KdVB equations []. A new decomposition method was presented to find the explicit and
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numerical solutions of the KdVB equations without any transformations, linearization or
weak nonlinearity assumptions in []. The element-free Galerkin (EFG) method for nu-
merically solving the compound KdVB equation was discussed by Rong-Jun and Yu-Min
in []. The explicit restrictive Taylor approximation (RTA) was implemented to find nu-
merical solution of KdV-Burgers in []. Nonlinear dispersive wave propagation problems
that described the KdVB equations in [] were simulated by high-order compact finite
difference schemes coupled with high-order low-pass filter and the classical fourth-order
Runge-Kutta scheme.

In , based on implicit interpolations, high-order compact (HOC) difference
schemes for different derivatives were developed by Lele []. These implicit schemes
were very accurate in smooth regions, and they have spectral-like resolution properties
by using the global grid. Li and Visbal applied the compact schemes coupled with high-
order low-pass filter for solving KdV-Burgers equations in []. In the past few years, it
has been popular for using the less diffusive and less oscillating CIP scheme which was
developed by Takewaki et al. [] to solve hyperbolic equation. The classical CIP schemes
which were essentially written as the semi-Lagrangian formulation were low-diffusion
and stable. The scheme can solve hyperbolic equations with third-order accuracy in space
[]. However, the original CIP method [, –] utilizes auxiliary boundary conditions
for the spatial gradient information. Usually, in order to get the values of derivation on
the node, it has to differentiate the equation with spatial variable. The procedure is easy
while the velocity is constant, but it is difficult for complex equations. By using the com-
pact scheme for the values of derivation on the nodes, we present a new compact scheme
based on the characteristic method for solving KdV-Burgers equations.

In this paper, a new numerical method named compact-type CIP schemes based on
combination of CIP and high-order compact schemes is advanced to solve the KdV-
Burgers equations. The present scheme is mainly based on the idea of characteristic
method; as a new ingredient, the high-order compact scheme is employed to obtain the
derivatives rather than differentiate the equation with spatial variable to construct a CIP
scheme, and then resolution properties can also be obtained. By comparing with the clas-
sical compact scheme for solving KdV-Burgers equations, no filter is used to overcome
non-physical oscillations.

The remainder of the paper is organized as follows. In Section , CIP is described in
brief, then high-order compact schemes are given. The numerical algorithm of the present
schemes is described in this section. The merit of our present method for KdVB equation is
displayed in Section , a comparison of numerical solutions with exact solutions is carried
out to illustrate the capability of the method for nonlinear dispersive equations. At last,
a short discussion of the present method is given in Section .

2 Descriptions of methods
In this paper, we consider the following generalized KdV-Burgers equation []:

ut + (α + βu)uux + γ uxx – δuxxx = , (.)

where α, β , γ and δ are real constants. The equation can be split into two parts

ut + a(u)ux = , (.)
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ut = –γ uxx + δuxxx, (.)

where a(u) = (α + βu)u.

2.1 The CIP method
In this section, we review the CIP method briefly. The CIP method in [] uses cubic-
polynomial interpolation to get the values of function on nodes. The primary goal of the
numerical algorithm will be to retrieve the lost information inside the grid cell between
these digitized points. We differentiate the advective phase of equation (.) with the spa-
tial variable x, then we get []

∂g
∂t

+ a(u)
∂g
∂x

= –g
∂a(u)
∂x

, (.)

where g = ∂u/∂x stands for the spatial derivatives of u. For the computational domain
[a, b], we only consider a uniform grid with a space step �x = b–a

N . If both the values of u
and g are given at two grid points, the cubic polynomial at the nth step can be written as

Un
i (x) = aiX + biX + gn

i X + un
i , (.)

where X = x – xi, and coefficients ai, bi, ci and di will be obtained with the following con-
strains:

Un
i (xi) = un

i , Un
i (xiup) = un

iup, (.)

where iup = i – sgn(a(ui)), the sign sgn(a(ui)) stands for the sign of a(ui). Then the coeffi-
cients of the cubic polynomial are given

ai =
gn

i + gn
iup

�x
i

+
(un

i – un
iup)

�x
i

,

bi =
(un

iup – un
i )

�x
i

–
gn

i + gn
iup

�xi
,

(.)

where �xi = xiup – xi. Thus, the profile u and g at the (n + )th step can be obtained by
shifting the profile by a(ui)�t

un+
i = Un

i
(
xi – a(ui)�t

)
,

gn+
i = U

′n
i

(
xi – a(ui)�t

)
.

(.)

We define ξi = –a(ui)�t, then the formulates are rewritten as

un+
i = aiξ


i + biξ


i + gn

i ξi + un
i , gn+

i = aiξ
n
i + biξ

n
i + gn

i . (.)

It can be seen that we only use two points in CIP schemes to get un+
i . Then we display

the implementation of this method, while the computational boundary is complex and less
boundary points need to be handled. The CIP method uses only two neighboring stencils,
but keeps third-order precision. In this sense, high-order precision is gained though less
computational stencils are used. For more details about CIP schemes, readers can refer to
[].
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2.2 High-order compact scheme
Lele developed high-order linear compact difference schemes based on implicit inter-
polations in []. These implicit schemes are very accurate in smooth regions and have
spectral-like resolution properties by using the global grid. The finite difference approxi-
mation to the derivative of the function is expressed as a linear combination of the given
function values, then, by solving a tridiagonal or pentadiagonal system, the derivatives of
the function can be obtained. In this section, a review of formulas for first-order, second-
order and third-order derivatives is presented. For more details about the high-order com-
pact schemes, readers can refer to [, ].

.. The derivatives at interior nodes
In this paper, the KdVB equation on a uniform mesh is considered, the point values and
the derivatives are indicated by ui, u′

i, i = , . . . , N . For the first-order derivatives at interior
nodes, we have the formula []

u′
i + α

(
u′

i– + u′
i+

)
+ β

(
u′

i– + u′
i+

)
= c

ui+ – ui–

h
+ b

ui+ – ui–

h
+ a

ui+ – ui–

h
. (.)

If the schemes are restricted to β ≥  and c = , this provides a one-parameter α-family
of fourth-order tridiagonal scheme with

β = , c = , a =



(α + ), b =



(α – ). (.)

A simple sixth-order tridiagonal scheme is given by the coefficients

α =



, β = , c = , a =



, b =



. (.)

The scheme can be rewritten as follows:

u′
i +



(
u′

i– + u′
i+

)
=




ui+ – ui–

h
+




ui+ – ui–

h
. (.)

For the second-order derivatives at interior nodes, we have the formula []

u′′
i + α

(
u′′

i– + u′′
i+

)
+ β

(
u′′

i– + u′′
i+

)

= c
ui+ – ui + ui–

h + b
ui+ – ui + ui–

h + a
ui+ – ui + ui–

h , (.)

which provides a one-parameter α-family of fourth-order tridiagonal schemes with

β = , c = , a =



( – α), b =



(– + α). (.)

A sixth-order tridiagonal scheme is also given with

α =



, β = , c = , a =



, b =



, (.)

then the sixth-order tridiagonal scheme for (.) can be rewritten as follows

u′′
i +




(
u′′

i– + u′′
i+

)
=




ui+ – ui + ui–

h +



ui+ – ui + ui–

h . (.)
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For the third-order derivatives at interior nodes, the following formula is given in []:

α
(
u′′′

i– + u′′′
i+

)
+ u′′′

i = b
ui+ – ui+ + ui– – ui–

h + a
ui+ – ui+ + ui– – ui–

h , (.)

which provides an α-family of fourth-order tridiagonal schemes with a = , b = α – .
The simple sixth-order tridiagonal scheme is given with α = 

 , a = , b = – 
 .

.. Non-periodic boundaries
For those near boundary nodes, approximation formulas for the first-order derivatives of
non-periodic boundary problems are given by one-side formulation as follows []:

u′
 + αu′

 =

h

(au + bu + cu + du),

u′
N + αu′

N– = –

h

(auN + buN– + cuN– + duN–).
(.)

The coefficients for the schemes of third- and fourth-order derivatives are given by

a = –
 + α


, b =

 – α


, c =

α – 


, d =
 – α


(third order),

α = , a = –



, b =



, c =



, d = –



(fourth order).
(.)

The sixth-order scheme is also given, where the first and second points need to be handled.
For the first point, the formula is

u′
 + αu′

 =

h

(au + au + au + au + au + au), (.)

where

α = , a = –



, a = –



, a = ,

a = –



, a =



, a = –



.

(.)

For the second point, the formula is

αu′
 + u′

 + αu′
 =


h

(bu + bu + bu + bu + bu + bu), (.)

where

α =



, b = –



, b = –



, b =



,

b = –



, b =




, b = –



.

(.)

The dissymmetry condition is used for the N th and (N – )th points.
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The boundary formulations for the second-order derivatives also were constructed in
[].

u′′
 + αu′′

 =


h (au + bu + cu + du + eu),

u′′
N + αu′′

N– = –


h (auN + buN– + cuN– + duN– + euN–).
(.)

For the third-order accuracy, the coefficients are given as follows:

a =
α + 


, b = –

α + 


, c =
α + 


,

d =
α – 


, e =

 – α


.

(.)

2.3 The proposed compact-type CIP method
In this section, a new compact-type CIP scheme is proposed for equation (.). The present
scheme is mainly based on the idea of characteristic method; as a new ingredient, the high-
order compact scheme is employed to obtain the derivatives rather than differentiate the
equation with spatial variable to construct a CIP scheme. To explain the present scheme,
we consider the KdVB equations as follows:

ut + αuux + γ uxx – δuxxx = , (.)

where α and δ are constants. We split the solution of equation into two phases

∂u
∂t

+ αu
∂u
∂x

= , (.)

∂u
∂t

= δuxxx – γ uxx. (.)

We consider a -D grid with x, x, x, . . . , xN–, xN . At the nth step, the point values of u
are denoted by un

, un
 , . . . , un

N–, un
N . At first, CIP method is applied to the advective equa-

tion (.). If both the values of ui and u′n
i are given at two grid points, the cubic polynomial

at the nth time stage can be written as follows:

Un
i (X) = an

i X + bn
i X + cn

i X + un
i , (.)

where X = xi – x, the coefficients an
i , bn

i , cn
i are given by (.). The predictor-corrector

scheme is employed to calculate the value u∗.
To formulate the classical CIP scheme, equation (.) was used to get the values of u′n

i .
In the present method, the high-order compact scheme (.) is employed to evaluate the
derivatives u′n

i ,  ≤ i ≤ N . In this paper, we use a simple sixth-order tridiagonal scheme
for interior points and boundary points, then the coefficients an

i , bn
i , cn

i in (.) can be
obtained. Temporal discretization for equation (.) can be solved by using a third-order
Runge-Kutta method as follows:

u() = un + �tL
(
u∗),

u() =



un +



u() +



�tL
(
u()),

un+ =



un +



u() +


�tL

(
u()),

(.)
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where L(u) = –γ uxx + δuxxx. The high-order compact formulas (.) and (.) are used
to solve the second- and third-order derivatives in equation (.). In this paper, we use
the sixth-order tridiagonal scheme with the periodic boundary condition.

Supposing the values un
i have been obtained, the essential ingredients of the computa-

tional algorithm for equation (.) consist of the following steps:
. CIP method is used to obtain u∗

a. The values of the first-order derivative on all the nodes are obtained by using the
HOC scheme (.).

b. Predictor-corrector CIP scheme:
(a) Predictor step

u∗∗
i = Un

i
(
xi – αun

i �t
)

= an
i ξi

 + bn
i ξi

 + cn
i ξi + un

i ,

where ξi = –αun
i �t. We also get u∗∗∗ at the (n+ 

 )th time stage by using
linear interpolation or QUICK scheme based on the value un

i .
(b) Corrector step (CIP method)

û∗
i = Un

i
(
xi – αu�

i �t
)

= an
i ξi

 + bn
i ξi

 + cn
i ξi + un

i ,

where u� = 
 (u∗∗ + u∗∗∗).

(c) The predictor and corrector steps are employed again to get u∗.
. High-order compact schemes and Runge-Kutta method for solving equation (.)

(a) High-order formulas (.) and (.) are used to get second- and third-order
derivatives, respectively.

(b) The third-order SSP Runge-Kutta method (.) is used to get the value un+
i .

3 Numerical results
In this section, we provide a numerical example with two different initial conditions for the
present compact-CIP scheme with the third-order SSP Runge-Kutta time discretization.
The non-periodic boundary formulation is applied to (.) (HOC approximation formu-
las for first- and second-order derivatives are used) and periodic boundary conditions for
third-order derivatives in the following example.

Example . We consider the KdVB equation

ut + (α + βu)uux + γ uxx – δuxxx =  (.)

with the initial solution for γ = , δ = –

u(x, ) = –
α

β

(
 + tanh

(
α


√

(–β)
(x)

))
. (.)

We show the numerical solutions for different values of α and β in Figure . If we let β = ,
α = , γ = –, δ = –. The exact solution for this case is []

u(x, t) =


(
sech(θ/) +  tanh(θ/) + 

)
, (.)
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Figure 1 Numerical solutions of Example 3.1 for the equation ut + (α – βu)uux + uxxx = 0 with different
α and β .

Figure 2 Numerical and analytical solutions of Example 3.1 at various time stages.

where θ = – 
 x + 

 t. The numerical and analytical solutions are shown in Figure . The
numerical solutions are identical to the exact solution.

4 Conclusions
In this paper, a high-order compact-CIP scheme is applied to simulate Korteweg-de Vries
Burgers equations. The proposed scheme is mainly based on the idea of characteristic
method; as a new ingredient, the high-order compact scheme is employed to obtain the
derivatives rather than differentiate the equation with spatial variable to construct a CIP
scheme, and then resolution properties can also be obtained. The numerical results show
the good performance and high resolution property of the proposed scheme.
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