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Abstract

This thesis describes the development of a numerical algorithm for the fully nonlinear
simulation of free-surface waves. The aim of the research is to develop, implement
and investigate an algorithm for the deterministic and accurate simulation of two-
dimensional nonlinear water waves in a model test basin. The simulated wave field
may have a broad-banded spectrum and the simulations should be carried out by an
efficient algorithm in order to be applicable in practical situations. The algorithm
is based on a combination of Runge-Kutta (for time integration), Finite Element
(boundary value problem) and Finite Difference (velocity recovery) methods. The
scheme is further refined and investigated using different models for wave generation,
propagation and absorption of waves.

The accuracy and stability of the numerical scheme are investigated and the numerical
dispersion error is determined for several discretisation paranieters. It was found that
stable, second order accurate discretisations can be obtained using first order Finite
Elements and second order Finite Differences. The results also showed that a global
projection method, using Finite Elements for velocity recovery, results in unstable
discretisations. By a suitable choice of the grid density parameter the dispersion
error of a small amplitude regular numerical wave can be annihilated by cancellation
of errors. A physically relevant error measure for broad banded wave simulations is
introduced and mass and energy conservation show to be sufficiently small for accurate
simulations.

Wave generation methods based on models of physical wave makers and methods for
numerical wave generation are described and evaluated. The discrete wave board
transfer functions for flap- and piston-type wave generators are determined and it
is concluded that the numerical wave generator produces slightly higher waves than
expected from continuous analysis. It was also found that application of the algorithm
to wave simulation may result in unstable discretisations for specific geometries in
combination with certain numerical grids.

Measurements that were performed on the reflection properties of beaches in the
model basin are compared to a numerical wave absorption method. The introduced
absorption method consists of combined pressure damping, horizontal grid stretching
and application of a Sommerfeld condition. Strict energy decay is guaranteed and the
combination allows for effective absorption for a broad range of frequencies. Reflection
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coefficients smaller than 0.7 % can be achieved at relative low computational cost. It
is also shown that by suitable choice of parameters the combined absorption method
can reasonably approximate the measured reflections on artificial beaches in the basin.

The algorithm was further applied to several benchmark tests confirming the validity
of the results. Also the direct comparison with measurements showed satisfactory
agreement.

The numerical scheme was used to investigate the long time evolution of nonlinear
wave groups. The efficiency and accuracy of the algorithm allowed to explore the
dynamics of these waves on an unprecedented time and spatial scale. This has led to
detailed information and new insights in the long time evolution of bichromatic wave
groups and served as a basis for further experimental and analytical investigations.

A study on the propagation of a confined wave group over a bottom topography,
the disintegration of a confined wave train and an elaborate study involving numer-
ous measurements and simulations on the evolution of bichromatic wave groups are
presented. The disintegration of a wave train in groups has been observed, but the
complete splitting into clearly separated groups cannot be rigorously confirmed by
the numerical results. Investigation of the evolution of a confined (NLS-soliton) wave
group over a bottom topography showed the defocussing of the group and the gen-
eration of a large free solitary wave. The long time evolution of bichromatic waves
showed spatial periodic variations of the wave spectrum, indicating recurrence. An
appropriate scaling was experimentally constructed that relates the ratio of amplitude
and original frequency difference (w/q) to the observed spatial recurrence periods.
Examination of the envelope evolution of the bichromatic waves show the splitting
of the original envelope in two distinguishable envelopes. These distinguished groups
are observed to interact in at least two qualitatively different ways, both showing
envelope recurrence.
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Notations

In the table below, the notations used throughout this thesis are listed in alphabetic
order of their first symbol (first the notations starting with a Roman symbol then the
notations starting with a Greek symbol). Besides a short description of the notation,
the section where the notation is introduced is given for further reference.

Notations starting with a Roman symbol

a amplitude of a regular wave [section 3.1]
a stroke amplitude of a wave board to generate a linear regular wave

with amplitude a [subsection 4.1.1]
half breadth of the wedge wave maker [section 4.2]

a(.,-) bilinear form [subsection 2.2.4 and appendix A]
A amplitude of the wave envelope [subsection 3.1.2 and section 6.2]

A Matrix resulting from linearisation of the discretised equations [sub-
section 3.2.2, subsection 4.1.4 and subsection 5.4.2]
bilinear form [subsection 2.2.4 and appendix A]

b matrix resulting from the linearisation of the discretisation of the
driving terms [subsection 4.1.4]

c phase velocity of a regular wave [section 3.1]
e9 group velocity of a linear wave group [section 3.1]

velocity parameter ill the Sommerfeld condition [subsection 5.3.1]
c.c. complex conjugated of the previous expression
C coefficient of an evanescent mode [subsection 4.1.1]

d parameter describing the geometry of a flap-piston wave maker [sub-
section 4.1.1]

d, depth of the wedge wave maker [section 4.2]

D index set containing the node numbers associated with grid points on
the free surface [subsection 2.2.4]

e measurement error in reflection coefficient [subsection 5.2.1]

E discrete energy [section 3.4]
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f(.) function defining the Dirichiet data on FD [section 2.2.4 and ap-
pendix A]

J vector function containing the dynamic equations as q = ¡(q, t)
[subsection 2.2.2J

a force [subsection 2.1.1]
g gravitational constant [subsection 2.1.1]
g(.) function defining the Neumann data on FN [subsection 2.2.4 and

appendix A]

vector containing the coefficients of the approximation of g() [sub-
section 4.1.4].

h the water depth
hgrid grid refinement parameter [subsection 3.2.3]
H wave height (crest to through distance) [subsection 3.1.2]
H' (Il) function space [subsection 2.2.4 and appendix A]
H'/2 (F) function space [subsection 2.2.4 and appendix A]
I index set containing the node numbers in V that do not belong to D

or S [subsection 2.2.4]
k wavenumber of regular wave k = 2ir/À [subsection 3.1.1]

complex wavenumber of a linearly damped regular wave [subsec-
tion 5.4.1]

averaged wavenumber in bichromatic wave [section 6.3]
i parameter describing the geometry of a flap-piston wave maker [sub-

section 4.1.1]
L total length of computational domain
LB length of beach without horizontal stretching of the grid [subsec-

tion 5.3.3]

Leff length of beach with horizontal stretching of the grid [subsec-
tion 5.3.3]

M discrete mass [section 3.4]
vector normal to a surface (pointing outward) [subsection 2.1.2]

rix number of nodes in horizontal direction [subsection 3.2.1]
riz number of nodes in vertical direction [subsection 3.2.1]
N Finite Element base function associated with global node number i

[subsection 2.2.4]

AI index set containing the node numbers associated with grid points on
N [subsection 4.1.4]

p (fluid) pressure [subsection 2.1.1]
p[FEM] polynomial order of the base functions used in the finite element

approximation for [subsection 3.2.2]

p[FD] polynomial order on which the finite difference scheme to approxi-
mate I is based [subsection 3.2.2]
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q amplitude of a single wave component in a regular wave
flap stroke amplitude resulting in a wave amplitude q [subsec-
tion 6.3.1]

q vector containing the discrete variables involved in time integration
[subsection 2.2.2 and subsection 3.2.2]

r reflection coefficient [subsection 5.2.1]
R dispersion operator [subsection 5.4.1]

vector tangential to a surface [subsection 2.2.5]
S index set containing the node numbers associated with grid points on

the Sommerfeld boundary [subsection 5.4.2]
S' surface tension [subsection 2.1.2]
S linearised surface tension [subsection 3.1.1]
t time [subsection 2.1.1]
T wave period (T = ) [subsection 3.1.1]

Tmod modulation period (period of a wave group) [subsection 6.3.1]
u horizontal velocity [subsection 3.1.2]

fluid velocity vector [subsection 2.1.1]
V index set containing all node numbers [subsection 3.2.2]
x horizontal coordinate [subsection 2.1.1]
z vertical coordinate [subsection 2.1.1]

Notations starting with a Greek symbol

(x) coefficient of the pressure damping term ü(x) [subsection 5.3.2]
polynomial coefficients of o(x) = c0 + o1x + a2x2 [subsection 5.3.2]

/3 parameter governing the vertical grid density [subsection 3.2.1]

/3' coefficient in front of the linear term A in the Non Linear
Schrödinger equation [subsection 3.1.2 and section 6.2]

-y parameter governing the horizontal grid stretching in the dissipation
zone [subsection 5.3.3]

'y' coefficient in front of the nonlinear term APA in the Non Linear
Schrödinger equation [subsection 3.1.2 and section 6.2]
surface tension coefficient [subsection 2.1.2]

F boundary of the domain [subsection 2.2.4 and appendix A]
part of F on which Dirichlet data is specified [subsection 2.2.4 and
appendix A]

part of F on which Neumann data is specified [subsection 2.2.4 and
appendix A]

small perturbation parameter (h/.))2 [subsection 3.1.2]
relative frequency of modulation disturbance [subsection 6.3.3]

xvii



wavenumber difference in bichromatic wave [section 6.3]
Lt discrete time step [subsection 2.2.2]

horizontal mesh width [subsection 3.2.2]
vertical mesh width [section 3.2.1]
frequency difference in bichromatic wave [section 6.3]
period difference in bichromatic wave [section 6.3]
perturbation parameter a/h [section 3.1.2]

e perturbation parameter ka [section 6.2]
slow spatial variable in moving frame of reference = e (x - c9t)
[subsection 3.1.2 and section 6.2]
function describing the free surface elevation [subsection 2.1.2]
vector containing the z-coordinate of the boundary nodes on the free
surface [subsection 3.2.2]
phase function [subsection 3.1.2]

À wavelength (À = ) [subsection 3.1.1]
eigenvalue of A [subsection 3.2.2]

ji zero'th order approximation of the dispersion operator R. R ji .

[subsection 5.4.1]

dynamic viscosity [subsection 2.1.1]
u kinematic viscosity [subsection 2.1.1]
V gradient operator. V = (,... 3Xj, where n is dimension of the

spatial domain X of the function 9 (x E X; t) on which V operates.

p fluid density [subsection 2.1.1]
a relative phase velocity error resulting from discretisation [subsec-

tion 3.3.1]

& Parameter controlling the length of the tangential free surface grid
correction vector [subsection 2.2.1]

a(a, b) maximum value of a for a < À < b. [subsection 3.3.2]
r slowly varying time i- = e2t [section 6.2]

linear free surface potential [subsection 5.3.2]
vector containing the potential values at the discrete grid points.
An additional superscript denotes a restriction of to the index set
symbolised by the superscript.
velocity potential [subsection 3.2.2]
discrete approximation of 4' [subsection 2.2.4]

'I' acceleration potential 4' = It [section 4.2]

regular wave frequency [subsection 3.1.1]
averaged frequency in bichromatic wave [section 6.3]

Il open domain in Rd, d = 2,3 [section 2.1].
discrete approximation of ft [subsection 2.2.4]
fluid vorticity = V x [subsection 2.1.1]
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Chapter 1

Introduction

1.1 A hydrodynamic laboratory

A hydrodynamic laboratory is a complex of facilities in which maritime structures
such as freight carriers, ferries and oil riggs are tested on a model sca'e. Before
the actual construction, owners and designers need precise information about the
hydrodynamic properties of their design. Questions as whether or not the contract
velocity of the design will be achieved are answered by testing in a model test basin.
Other important aspects such as safety, maneuverability and controllability can also
be investigated at this stage.

A hydrodynamic laboratory usually has several facilities that are used for different
testing purposes. When the hull resistance of a ship needs to be determined, a model
is towed through still water. To obtain information about dynamic properties such
as the stability and e.g. the maximum roll angles, model tests are performed in
a seakeeping basin. In a seakeeping basin waves and possibly wind are generated
while the ship is kept at a fixed position or sails through the tank. Although there
are situations were the ship is towed by a carriage, most of the model tests are
performed by self propulsion. These models have active rudders, stabilising fins or
propellers that should allow for a steady course through the basin, while the carriage
moves over the model and facilitates the measurements. These towing tanks are
usually narrow basins and do therefore not allow for simultaneous manoeuverability
testing. The new SMB (Seakeeping and Manoeuvering Basin) at MARIN (Maritime
Research Institute Netherlands) has the unique capability to combine manoeuvering
and seakeeping model tests (Fig. 1.1 on the following page). The construction of
the SMB started in 1998 and was operational in mid 1999. It is a 170x40x5 {m3]
water basin with 330 individually controlled wave maker segments on two sides and
artificial beaches on the opposing sides. A giant carriage spanning the 40 meter
width can follow a vessel sailing through the basin at a maximum speed of G [m/s].
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2 INTRODUCTION

Figure 1.1: The new Seakeeping and Manoeuvering Basin (SMB) at MARIN, Wa-
genin gen. The individual controllable segments of the wave maker on the
long side are clearly visible on the foreground.

To evaluate the hydrodynamic properties of the ship the reaction of the vessel to a
certain external force is measured. In seakeeping tests one is mainly interested in the
ship motions and forces due to loads caused by waves.

In order to meaningfully test their ship, designers need to specify in what wave con-
ditions the ship should be tested. A ferry operating solely in the North Sea between
England and the Netherlands does not need to be tested for tropical hurricane waves.
Every geographical area has its own wave characteristics, which are captured in a low
dimensional model with the significant period (T5) and the significant wave height
(H5) as the most important dimensions. At the basis for these low dimensional mod-
els is most of the time a 'linear' interpretation of reality. The waves are thought to
consist of a summation of regular waves and the parameters governing the dynam-
ics of ships are thought to have a linear dependence on the amplitude of the waves.
Although for many situations this is an accurate and useful model of reality, it does
not adequately describe extreme situations in which nonlinear interactions between
waves significantly influence the wave field. Model testing under extreme conditions
is however becoming more and more relevant for designers. Besides the generation
of waves for regular testing in 'linear seas' it therefore becomes increasingly impor-
tant to be able to generate extreme wave conditions at a prescribed position in the
tank. To generate these conditions, accurate wave generation hardware and steering
algorithms are essential. The new facilities of MARIN are equipped with sufficiently
accurate hardware. Every segment of the wave maker is controlled by an individual
electric motor allowing for precise control of the wave board position.

In 1997 the Mathematical Physics group of the department of Mathematics at the
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Figure 1.2: Relation between the different components of the LabMath project.

University of Twente together with MARIN and the Indonesian Hydro dynamic Labo-
ratory (IHL) started the LabMath program. The aim of this program was to develop
applicable mathematics for the better controllability of the wave and current gener-
ation at hydrodynamic laboratories. The program consisted of four projects: (i) the
development of nonlinear surface wave models, (ii) experimental wave measurement
techniques, (iii) modelling and simulation of wave-current interaction and (iv) fully
nonlinear numerical simulation of waves in a basin.

The relation between these projects is schematically depicted in Fig. 1.2. Assume that
a specified spatial temporal wave pattern t) in the basin is desired, By using a
suitable (nonlinear) surface model, a steering signal for the wave makers is derived.
Then, a fully numerical simulation is used to investigate whether or not the proposed
steering signal will produce the desired wave characteristics. If not, the steering signal
to the wave maker has to be adapted and the new signal can again be numerically
evaluated. Finally the steering signal is sent to the wave makers in the physical basin
and measurements must show whether or not the specified spatial-temporal pattern is
indeed produced. If this process would have been performed by trial and error in the
physical basin, valuable tank-time would have been consumed. The fully numerical
simulation also allows for easy parameter variation studies and the wave data is avail-
able on a fine spatial-temporal resolution, not achievable by measurement techniques
in the physical basin. This high resolution data can be used for the development
and validation of simplified free-surface models. It is stressed however, that con-
tinuous cross validation with physical experiments is essential and that the validity
limits of the models should always be carefully examined. The measurements that
are performed in the model test basin are also used to provide information for the
development of the mathematical models that describe the artificial beaches and the
wave-current interaction.

The efforts of the LabMath project have been focused on two-dimensional (depth and
longitudinal direction) flow in the model basin. Follow-up research projects to extend
the results and numerical algorithms to a three-dimensional basin have been granted.

4 (x.t) 4- customer



4 INTRODUCTION

Preliminary results of the three-dimensional simulations, performed by the author,
showed promising results and indicated that the algorithm can indeed be effectively
used for 3d wave simulations. As part of the LabMath project Eddy Cayhono is
working on nonlinear surface models (see e.g. van Groesen et al. (2001)) and Helena
Margeretha researches mathematical models that describe wave current interaction
(see e.g. Margeretha et al. (2001)). Sorne aspects of the measurement techniques
have been treated in Westhuis (1997) and further research and development on these
techniques was performed by MARIN.

This thesis reports on the development of the numerical algorithm for fully nonlinear
simulation of waves in a two-dimensional model basin. In summary, the aim of this
research project was to develop, implement and investigate an algorithm for the (i)
deterministic and accurate simulation of (ii) two dimensional nonlinear waves (no
breakers) (iii) synthesised from a broad banded spectrum (iv) in a hydrodynamic
model test basin (y) by an efficient algorithm allowing simulations to be performed
in overnight jobs.

We conclude this section by quoting prof. Bernard Mohn who was the invited speaker
for the 22nd George Weinblum Memorial Lecture (Mohn (1999)): "As the oil industry
moves into deeper waters, the need for cross-validation of results from numerical codes
and model tests becomes more acute. In 1000 or 2000 m water depths, it is not
possible to test a complete production system (FPSO + risers and moorings) at an
appropriate scale, and a combined use of numerical software and model test results
becomes necessary. This means that the wave systems produced in the numerics and
in the tank must be perfectly known and controlled. If they cannot be made to be
identical, then one should know how to manage the numerical and experimental tools
to cope with their differences."

1.2 Numerical simulation of nonlinear waves

The numerical simulation of nonlinear waves follows from the mathematical model
that is used to describe the wave dynamics. Based on the continuum hypothesis, the
conservation of mass and momentum in an isothermal flow lead to the Navier-Stokes
equations for the fluid velocity, pressure and density. These equations simplify to
Euler's equations for the velocity if the fluid is considered inviscid. An additional
assumption on the incompressibility and the irrotationahity of the fluid allows for
the introduction of a velocity potential that completely determines the velocity field
(potential flow model). Under the conditions leading to the potential flow model, the
equations that describe the evolution of the air-water interface can be expressed in
terms of the potential and the shape of the interface itself. Further assumptions on
the shape of this surface and the water depth lead to numerous free-surface models,
in which all quantities are restricted to the free surface. As will be motivated in
Section 2.1 the potential flow model provides an adequate description for the surface
dynamics for nonlinear water waves. The assumptions leading to the more simple
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surface models conflicts with the design criteria mentioned at the end of the previous
section. It is however stressed that for specific situations, surface wave models can
accurately describe (nonlinear) wave dynamics.

The numerical simulation of nonlinear water waves using the potential-flow assump-
tion has been studied since the mid 1970's. Longuet-Higgins & Cokelet (1976) were
the first to simulate an asymmetric overturning deep water wave. They used a con-
formal mapping approach with space periodic boundary conditions and an artificial
pressure distribution to enforce the breaking. Since then, many researchers have taken
up the topic of nonlinear wave simulation, often in combination with wave-body in-
teraction. Extensive reviews on the topic of wave simulation are given by Yeung
(1982) and Tsai & Yue (1996). More recently Kim et al. (december, 1999) reviewed
the research on the development of Numerical Wave Tanks (NWT's). In a NWT,
the emphasis is both on wave simulation and wave-body interaction and aims at the
replacement (not simulation) of an experimental model basin (also called Experimen-
tal Wave Tank). Because of the availability of these extensive and recent reviews,
no literature overview is presented here. References are given throughout this thesis
when appropriate.

Most numerical methods for potential flow wave simulation are based on the mixed
Eulerian-Lagrangian method (employed by Longuet-Higgins & Cokelet (1976)) to
separate the elliptic Boundary Value Problems (BVP) from the dynamic equations
at the free surface. The vast majority of available numerical schemes that simulate
free-surface potential-flow, approximate the BVP using a Boundary Integral (BI) for-
mulation. This formulation is then discretised using Boundary Elements (BE) (e.g.
Donimermuth et al. (1988) [2d constant panel method], Romate (1989) [3d second-
order panel method], Grilli et al. (1989) [2d higher order boundary elements] and
Celebi et al. (1998) [3d desingularised BI]. Other methods to solve the BVP are Fi-
nite Difference [FD] and Finite Element [FE] methods to discretise the potential-flow
field equations. In FD methods (e.g. Chan (1977) and DeSilva et al. (1996)) the geom-
etry is usually mapped to a rectangular domain to efficiently implement the numerical
scheme. This is not necessary for the FE methods, but although the FE method has
been widely used in steady state (viscous) flow problems and linearised free surface
problems (e.g. Washizu (1982)) it did not receive much attention in nonlinear poten-
tial flow problems until recently (e.g. Wu & Eatock Taylor (1994) [fixed walls] and
Cai et al. (1998) [fixed walls and mapping to a rectangular domain]). The use of FE
methods in viscous numerical free surface simulation was also recently reported by
Braess & Wriggers (2000). Finally, the spectral method based on a Taylor expansion
of the Dirichlet-Neumann operator developed by Graig & Sulem (1993) is mentioned
as an alternative to the BE, FD and FE methods. For numerical studies involving
wave breaking in potential flow we refer to Vinje & Brevig (1981), Dommermuth et al.
(1988), Banner (1998) and Tulin & Waseda (1999) [experimental data and numerical
simulations] and Guignard et al. (1999) [shoaling of solitary wave]. Many authors
(e.g. Longuet-Higgins & Cokelet (1976) [BE], Dold (1992) [BE], Wu & Eatock Tay-
lor (1994) [FE] and Robertson & Sherwin (1999) [FE]) report on the appearance of
saw-tooth instabilities during numerical simulation. In order to simulate wave prop-
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agation over sufficiently long time, additional smoothing of the intermediate results
or regridding is used to avoid numerical instabilities.

The numerical algorithm and implementation presented in this thesis differs from the
previously reported schemes in the combination of the following aspects:

a direct (no mapping) field discretisation of the successive boundary value prob-
lems using a Finite Element method with a successive velocity recovery using
Finite Differences.

marginally stable linearised spatial discretisation due to the combination of
Finite Elements and Finite Differences (no smoothing necessary).

the inclusion in the numerical simulation of a model for artificial beaches that
are used in the experimental wave tank.

a focus on the simultaneous accurate simulation of nonlinear waves of different
wavelength on a single numerical grid.

a modular, object-oriented algorithm for the implementation of the geometry,
allowing for the separated development, implementation and testing of e.g. wave
makers and numerical beaches.

1.3 Contents and outline of the thesis

This section describes the main contents of the thesis and serves as an outline for
quick reference to the appropriate (sub)sections. The results of the investigations
have been ordered as follows. Chapter 2 describes the mathematical model and nu-
merical algorithm, Chapter 3 investigates the numerical simulation of waves without
the influence of artificial wave generation and/or absorption. These latter two topics
are treated in Chapter 4 and Chapter 5 respectively. In Chapter 6 the numerical
algorithm is used to investigate the long-time evolution of wave groups and the final
Chapter 7 contains concluding remarks and recommendations for further research.

Many of the captions of the figures in this thesis contain a list of numerical parameters
that were used to perform the presented simulation from which the presented results
have been derived. Although this might distract the reader from the intention of the
figure, this data is provided to enable the repeating of the numerical simulations by
other researchers. An important aim of the presentation of the research has been to
provide sufficient information for complete reconstruction of all presented results.

In the following subsections the content of Chapters 2-6 is summarised. The first
paragraph of each section contains a brief abstract describing the structure of the
chapter in relation to its section division. The next paragraphs in the subsection
discuss the contents of the chapter in more detail and in relation to its subsection
structure.
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10

lo

(a) Spatial-temporal grid refinement for
linear Finite Elements and second order
Finite Differences. The log-log graph
shows that energy-norm error is propor-
tional to hrid

Figure 1.3: Two figures from Chapter 3. (a) Grid refinement study in Subsection 3.2.3
on page 60. (b) analysis of discrete dispersion relation in Subsection 3.3.1
on page 63.

Chapter 2 - Governing equations

The aim of this chapter is to introduce the equations that describe the free-surface dy-
namics [2.1], the numerical algorithms to approximate the solution of these equations
[2.2] and the implementation of this algorithm in a compututational method [2.3].

In Section 2.1 the field equations describing potential flow are derived [2.1.1] and the
assumptions leading to these equations are discussed. Next, the equations govern-
ing the free-surface dynamics are derived [2.1.2] resulting in the final set of governing
equations. Section 2.2 starts by describing the numerical treatment of the free sur-
face [2.2.1] and the resulting structure of the top-level time-marching scheme [2.2.2].
This time marching scheme consists of the repeated construction and solution of a
boundary-value problem followed by a velocity recovery step. The use of field methods
versus boundary-integral methods to solve the boundary value problems are compared
[2.2.3] and based on this comparison the choice for the Finite Element Method is mo-
tivated and further discussed in detail [2.2.4]. For the velocity recovery methods [2.2.5]
a global projection method and finite differences are discussed.

The chapter ends with some brief comments on the object-oriented structure of the
implementation in Section 2.3 and the definition of the scope of the investigations in
Section 2.4 for Chapters 3,4 and 5.

1.5

0.5

(b) The o- = O curve connects the values
of the grid density parameter ¡3 for which
the phase velocity of the numerical wave
equals the exact linear phase velocity.

0.5 1.5 2 2.5
Alt,

3.5 4
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Chapter 3 - Free-surface waves

The focus of Chapter 3 is on the analysis of the numerical methods introduced in the
previous chapter with respect to free surface waves in a basin with natural bound-
aries. After a brief introduction of some relevant equations for the description of
(nonlinear) wave propagation [3.1] the accuracy and stability of the numerical scheine
are investigated [3.2]. To further quantify the numerical errors and the effect of the
discretisation parameters, the error of the discrete dispersion relation is established
[3.3]. The stability and error analysis of the previous sections are mainly based on
the linearisation of the discretised equations. In order to assess the accuracy of the
fully nonlinear discretisation, the discrete mass and energy conservation is investi-
gated [3.4]. The chapter ends with some applications [3.5] and the conclusions [3.6] of
this chapter.

In Section 3.1 the linearised free-surface equations and the resulting dispersion re-
lation for linear waves [3.1.1] are derived. Next, the deep water Stokes waves and
the Boussinesq, KdV and NLS equations [3.1.2] are introduced for future reference.
Section 3.2 starts with the introduction of the gridding [3.2.1] and the introduction of
the vertical grid density parameter ß. The effect of this parameter and other numer-
ical parameters on the stability of the numerical scheme is then investigated [3.2.21.

First the spatial discretisation of the governing equations are linearised and a Von
Neumann stability analysis is performed. The results show that scheme is marginally
stable when Finite Differences are used as a velocity-recovery method. The use of a
global projection method can however lead to unstable spatial discretisations and is
therefore rejected as a suitable method. Next the stability of the discretisation of the
time integration is investigated. The growth rates of eigenvectors due to 4-stage and
5-stage Runge-Kutta methods are determined and compared when applied to the lin-
earised spatial discretisation. It is concluded that a 5-stage method is preferable over
a 4-stage method. After these discussions ori the stability of the linearised discretised
equations, the convergence of the nonlinear discretisation is investigated by a system-
atic grid refinement study [3.2.3] showing that the numerical scheme is second-order
accurate (see also Fig. 1.3 on the preceding page). Section 3.3 starts by introducing
the relative dispersion error a [3.3.1] and investigates the effect of the grid on this
parameter. It is shown that for a specified wavelength this error can be made zero
due to cancellations (see also Fig. 1.3 on the page before). To investigate the qual-
ity of the simulation of a broad banded wave spectrum, the maximum error a(a, b)
over a range of wavelength on a single grid is introduced [3.3.2] and the effect of the
numerical parameters is examined. Analysis of the computational complexity of first
and second order FE implementations and extensive variations of the FD polynomial
orders and other grid parameters result in a graph in which the minimal achievable
a(1/4, 4) error as a function of the computational effort is given. The results show
that by suitable choice of the nonuniform grid distribution and the FD polynomial
order, a reduction in the a(1/4, 4) error by a factor loo can be achieved given the
same computational effort. This allows for accurate simulations over realistic time
scales of a complete wave basin in overnight jobs.
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To further investigate the quality of the nonlinear simulation, the effect of numerical
parameter variations on the discrete mass and energy evolution is investigated in Sec-
tion 3.4. It is concluded that the discrete mass and energy are very slowly decreasing
functions of time and are positively influenced by choosing the nonuniform grid con-
figurations. Section 3.5 of this chapter describes two applications of the numerical
method. The first application discusses the results of a benchmark problem on the
evolution of a nonlinear sloshing waves [3.5.1]. The second application concerns the
simulation of the splitting of solitary waves over a bottom topography [3.5.2]. At the
end of the chapter the conclusions of the investigations are summarised [3.6].

Chapter 4 - wave generation

Chapter 4 is concerned with the numerical simulation of wave generation. A distinc-
tion is made between wave generation methods based on models of physical wave
makers (such as flap- and piston-type [4.1] and heaving wedge [4.2] wave makers) and
methods based on numerical velocity generation models [4.3].

In Section 4.1 the numerical simulation of flap- and piston wave makers is discussed.
Upon presenting a linear model describing both wave makers [4.1.1], the numerical
modelling is discussed in more detail [4.1.2]. The gridding around the wave maker and
the treatment of the free-surface grid points near the wave maker are examined. A
grid convergence study is performed [4.1.3] to investigate the correct implementation
of the numerical scheme. Similar to the linear analysis of Chapter 3, the discretisation
of the wave generator is constructed [4.1.4] and the discrete Biésel transfer functions
- relating the wave board stroke and the wave amplitude - are determined. Also, the
wave envelope near the wave board, that is largely determined by evanescent modes, is
determined from linear analysis and compared to continuous results (see also Fig. 1.4
on the following page). It is concluded that even for relative fine (with respect to the
previous chapter) horizontal and vertical grid resolution, the discrete transfer function
for high frequencies is overpredicted by the discretisation. For accurate simulations,
the discrete transfer functions should therefore be used when wave board steering
signals are synthesised from a target wave spectrum. Based on the linear analysis
it is also shown that in the present formulation, the intersection grid point between
the wave maker and free surface should be treated analogous to the free-surface grid
points.

In Section 4.2 the results on a comparative study on a forced heaving wedge wave
maker are presented. After some remarks on the computation of the force on the
wetted wedge, a linear stability analysis [4.2.1] is performed on the discretisation.
This study showed and erratic stability behavior that sensitively depends on the grid.
The section on the wedge wave maker is concluded by presenting the results of the
comparison [4.2.2] with other numerical methods. In general good mutual agreement
was found between the results of fully nonlinear codes. Section 4.3 treats two practical
numerical wave generation methods. First a combined flux-displacement wave maker
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Figure 1.4: Comparison between the exact and a numerical solution of the (linear)
wave envelope near the wave maker. Accurate representation of the
evanescent modes is necessary to simulate the effects of nonlinear inter-
actions near the wave maker (from Subsection on page 97)

is introduced [4.3.1] in which the wave generation is partially governed by wave board
displacement and partially by numerical flux generation. The second numerical wave
generation method implements a combined generating potential with a Sommerfeld
condition [4.3.2] to absorb reflected waves with the same frequency as the generated
wave. It is shown by transient generation of a small standing wave that this is an
adequate wave generator for small amplitude waves. This chapter on wave generation
ends with the gathered conclusions [4.4] from the previous sections.

Chapter 5 - wave absorption

The main emphasis in Chapter 5 is on the numerical simulation of wave absorption.
First the absorption of waves in a hydrodynamic basin [5.1] is examined. Then the
measurements that were performed at the beaches of the new seakeeping and manoeu-
vering basin at MARIN [5.2] is presented. These measurements are later compared to
results of numerical wave absorption methods [5.3] and the most promising methods
are further analyzed [5.4]. The results of the simulations, analysis and measurements

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
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are then compared and discussed [5.5].

In Section 5.1 a brief overview on passive [5.1.1] and active [5.1.2] wave absorbers in a
physical basin is presented. Then, in Section 5.2, the measurements that were per-
formed on the concepts for the artificial beaches of the new SMB are treated. First the
method to determine the reflection coefficient (r.c.) [5.2.1] is described. This descrip-
tion includes the measurement setup and two different methods (envelope modulation
and spectral decomposition) to extract the r.c.'s from the data. The results for two
artificial beaches are presented [5.2.2] that show relative large unexplained scattering
of the data probably caused by measurement and r.c. model assumptions.

The next Section 5.3 introduces several methods for numerical wave absorption. The
Sommerfeld condition [5.3.1], the energy dissipation zone [5.3.2] based on pressure
damping, the horizontal grid stretching and their combination are discussed in more
detail. The combined absorption zone is expected to provide the most efficient and
robust numerical wave absorption and it is shown that energy decay in this zone is
guaranteed. The reflection coefficients of the combination are first determined by us-
ing a continuous approximation [5.4.1] of the linearised equations for constant, linear
and parabolic damping functions. This continuous analysis is based on a plane wave
assumption and uses an approximation for the dispersion operator R in the linear
damping zone. Next, the reflection coefficients are determined from analysis of the
linearised discretised equations [5.4.2]. The effect of the additional damping terms and
Sommerfeld condition on the discrete spectrum is determined and it is shown that the
envelope modulation method to determine the r.c. 's provides accurate results when
used in combination with the linearised discretised equations. The intersection point
between the free surface and the boundary on which the Sommerfeld condition is
defined is investigated and it is shown that artificial eigenvectors appear in the dis-
cretisation. Based on the analysis of these additional vectors it is concluded that
the implementation of the intersection point as a Sommerfeld condition is preferable
over the treatment of this point as a free-surface particle. Following this discussion,
the effect of the additional equations following from discretisation of the Sommerfeld
condition on the stability of the time integration is investigated. It is shown that the
Sommerfeld condition can impose a severe restriction on the time step and that the lo-
cal horizontal mesh width Ax° near the Sommerfeld boundary should be significantly
larger in order not to influence the stability of a simulation without a Sommerfeld
condition. Discrete analysis of the polynomial damping functions showed characteris-
tic difference in r.c.'s for constant and linear damping functions but similar results for
linear and parabolic damping functions. The combined effect of damping, stretching
and Sommerfeld condition showed that high-frequency waves can significantly reflect
from the stretched grid, but that this can be compensated by a suitable choice of the
damping coefficient. The stretching allows for large damping zones with relative few
grid points thus providing an efficient method.

In Section 5.5 the resulting estimates for the r.c. based on the analysis in previous
sections is discussed. Comparison of the continuous approximations and the con-
verged numerical approximations [5.5.1] showed that for constant damping functions
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(a) Configuration to approximate a
transparant beach. Reflection coeffi-
cients smaller than 0.7% are achieved
over a wide range of frequencies at the
cost of extending the computational do-
main with two times the depth.
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Figure 1.5: Reflection coefficients from the combined absorbing zone developed in
Chapter 5. A distinction is made between a transparent numerical beach
(Subsection 5.5.2 on page 159) and the simulation of the artificial beach
in a model test basin (Subsection 5.5.3 on page 161).

good mutual agreement is achieved for high-frequency waves but that the continu-
ous model generally gives higher r.c. estimates than the discrete results. As it has
been checked that the numerical results have converged, the difference can only be
contributed to the plane wave assumption underlying the continuous analysis. For
linear damping functions the agreement between the continuous and discrete results
is poor. Although both methods show the same trends, the quantitative differences
are large. It is shown that the result is quite sensitive to the dispersion operator
approximation and it is thus concluded that this approximation in combination with
the plane wave assumption leads to wrong predictions of the reflection coefficients.
Based on the discrete investigations, a combination of parameters is selected that
results in minimal reflection coefficients [5.5.2] over the significant range of wavelength
at the computational cost of extending the domain with two times the depth (see also
Fig. 1.5). Through extensive parameter variation studies, a combination was selected
that reasonably fits the scattered reflection coefficients that were previously measured
[5.5.3] (see also Fig. 1.5). The chapter ends with Section 5.6 in which the conclusions
of this chapter are summarised.

Chapter 6 - wave groups

In Chapter 6 the developed numerical scheme, including wave generation and absorp-
tion is used to study the long time evolution of nonlinear wave groups. After an
introduction and a literature review [6.1] the propagation of confined wave group [6.2]
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(b) The nonlinear spatial evolution of
the spectral components of a bichromatic
wave (see Subsection 6.3.2 on page 184

and Fig. 6.15 on page 196).

Figure 1.6: The evolution of nonlinear bichromatic wave groups.

over an uneven bottom topography is studied. Next, a more extensive study involving
numerous measurements and simulations on the evolution of bichromatic wave groups
[6.3] is presented. The conclusion of these investigations are summarised at the end
of this chapter [6.4].

In Section 6.1 the literature on the evolution of modulated wave trains [6.1.1] and
bichromatic waves [6.1.2] is reviewed. Section 6.2 then starts with the motivation
for the study of confined wave groups and introduces the coefficients governing the
Nonlinear Schrödinger (NLS) equation. A numerical simulation of a disintegrating
wave train shows the splitting in solitary wave groups but the anticipated separation
is not observed on the investigated time scale. Next, the construction of an initial
solution for the propagation of a confined solitary wave group [6.2.1] is investigated.
The sub- and super harmonics that are freed when the first-order component of the
NLS solitary wave group solution is imposed are identified. After these additional
waves have propagated sufficiently far from the main group, this group is isolated and
used for the investigation of the effect of depth variation [6.2.2]. The result of the
increasing depth is the freeing of a bound long wave and the defocussing of the wave
group which transforms in a wave train on shallow water.

Section 6.3 starts with some notations used for the investigation of the evolution of
a periodically generated bichromatic wave group. First, a number of measurements
[6.3.1] are presented that have been performed at the High Speed Basin at MARIN.
These measurements clearly show the steepening of the waves at the front of the
group of steep bichromatic waves. These measurements are then compared to the
results of numerical simulations (that actually preceded the measurements) and ex-
cellent agreement [6.3.2] is observed (see also Fig. 1.6). To investigate the long time
evolution, the dimensions of the numerical basin are then stretched far beyond the
realm of a physical model basin. The spatial evolution of different energy modes
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are identified (see also Fig. 1.6) and the results of the numerical simulations are
presented in these low-dimensional representations of the wave group evolution. The
non-stationary behavior of the bichromatic wave group evolution is investigated [6.3.3]
in three different ways. First the spatial recurrence period of the different modes is
identified and an appropriate scaling is found to unify the results. Next the relation
with the Benjamin-Feir instability of nonlinear deep water wave trains is examined.
Although some correspondence is found, the growth factors of the side bands cannot
be completely explained by this theory. Finally the evolution of the wave envelope is
investigated. The results of the fully nonlinear numerical simulation are compared to
simulations using the NLS equation as an Initial Boundary Value Problem (IBVP).
Opposed to the usual spatial periodic simulation of the NLS, the IBVP approach re-
covers the asymmetric evolution and when corrected with the nonlinear Stokes group
velocity, good quantitative agreement is found. Investigation of the wave group enve-
lope evolution from the fully nonlinear simulations, also showed two typically different
long-time envelope behavior, (i) the splitting of the original wave in two groups in
which one is periodically overtaken by the other and (ii) the splitting in two wave
groups in which one periodically bounces between its neighbouring groups. All the
results of these investigations on nonlinear wave group evolution are summarised in
the final section [6.4] of the chapter.



Chapter 2

Mathematical Model and
Numerical Algorithm

The simulation of waves in a liydrodynamic model test basin requires four stages of
development. Firstly a mathematical model to describe the relevant physical process
in the basin needs to be constructed, resulting in a set of governing equations with
additional boundary and initial conditions. Next, these equations are either solved
exactly or, when no exact solution is available, the solution of these equations is ap-
proximated using a numerical algorithm. After verifying the stability and consistency
of the numerical algorithm, this algorithm needs to be implemented in a computer
code and finally the applicability of the numerical algorithm and the validity of the
results needs to be established. In this chapter the mathematical model and algorithm
are described for the simulation of free-surface waves without addressing issues related
to wave generation and absorption. These latter aspects and the numerical analysis
involving stability arid validation will be dealt with in the subsequent chapters.

2.1 Mathematical model

To describe and investigate the evolution of waves in a laboratory, a mathematical
model is constructed. The mathematical model is based on the equations of fluid
mechanics for which many classical textbooks, e.g. Lamb (1932) and Landau &
Lifshitz (1987) are available. In this section the equations governing the dynamics of
water with a free surface will be derived to introduce the notations and clarify the
assumptions. The classical water-wave problem consists of solving the Euler equations
in the presence of a free surface. The field equations will be derived in Subsection
2.1.1. The nonlinear evolution of waves is governed by the boundary conditions at
the free surface which are introduced in Subsection 2.1.2.

15
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2.1.1 Field equations

The starting principle for the derivation of the equations of fluid mechanics are the
conservation of mass and momentum. The flow is assumed isothermal and therefore
the conservation of energy is not considered. For a fixed control volume I mass
conservation is expressed as

fpdcl+fp.ftdS=0, (2.1)

where p(, t) is the fluid density, t) the fluid velocity and í the outward normal.
Applying Gauss' divergence theorem, the surface integrals can be transformed into
volume integrals and allowing the contol volume to become infinitesimally small leads
to the differential form

+ V () = 0, (2.2)

which for icompressible flow reduces to

(2.3)

Newton's second law of motion states that the change in momentum equals the total
force acting on the control volume,

f pd! + f pdí
=

f T . ildS + f (2.4)

where for Newtonian fluids and incompressible flow the stress tensor T (molecular rate
of transport of momentum) is given as T = pI+21i'D (p is the static pressure, I is the
unit tensor, D is the rate of strain tensor and jt' is the dynamic viscosity). Only gravity
is considered as a body force and is acting in negative z-direction, = (0,0, _g)T

Using Gauss' divergence theorem the integral form of the conservation equation can
be expressed in differential form as

(2.5)

For Newtonian fluids and incompressible flow this reduces to

ai /+ pV (v) = (Vp) + p V Vv + p.. (2.6)

To motivate farther simplification of Eq. (2.6) the vorticity is introduced as

S'=Vxi. (2.7)

A velocity field is called irrotational if = 0. Taking the material derivative of
and substitution of Eq. (2.6) results in the vorticity transport equation

- (.V)+vV.V (2.8)
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In Eq. (2.8), u = is the kinematic viscosity. Fr0111 Eq. (2.8) one can observe
that in the absence of viscosity (i.e. p' = 0) an initialy irrotational velocity field
((V x ) L=o = 0) will remain irrotational for all time. Both for numerical simulations
as for experiments in the laboratory, the initial state of the velocity field is rest (and
thus irrotational), and therefore the velocity field will remain irrotational if viscous
effects are neglected completely and for all times.

In the presence of viscosity but with an initial irrotational velocity field, diffusion
will mainly occur near the boundaries, because variations in the second derivative of
the velocities will be largest there due to the no-slip boundary condition. However,
the oscillatory nature of wave phenomena, ensures that the direction of the flow
often changes, so most of the inward diffusion will be restricted to a thin boundary
layer. The thickness of this Stokes boundary layer is of order O (/) where w is
the frequency of the wave motion in [rad/s]. As the kinematic viscosity of water is
of order 10_6 {rn2/s] and the frequencies are typically of order 1, the boundary layer
thickness is of order i0 [m]. Therefore the viscous effect are considered negligible
small with respect to the wave lengths of interest (À > i [m]). However, when large
second order spatial derivatives of the velocity occur (e.g. near breaking situations
or other violent fluid motion) or very long time scales are considered, the inward
diffusion may become significant. For references and applications of the simulation of
low Reynolds numbers free-surface flows, we refer to Tsai & Yue (1996).

For an irrotational vector field IT a scalar potential function 4) exists such that

IT = V4). (2.9)

Substitution of Eq. (2.9) in Eq. (2.3) leads to the Laplace equation for the potential
4),

VV4)=0. (2.10)

In the next section the free surface will be introduced and the boundary conditions
at the free surface are derived.

2.1.2 Free-surface boundary conditions

Assume that the open domain C W' has a boundary F that marks the fluid-air
interface. Free-surface flow is usually considered as a limiting case of a two-phase
flow in which the dynamics of one phase (in this case air), is greatly simplified or
ignored. In this case, the velocity field of the air is considered zero and a constant
atmospheric pressure is assumed. This leads to two conditions at the free-surface
interface: the kinematic and the dynamic condition.

When the continuity equation Eq. (2.3) is integrated over a control volume 11(t) whose
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The force due to the surface tension is proportional to the mean curvature of the
surface. If the surface is implicitly defined, this may be defined directly in terms of
the two radii of curvature. When the surface is considered to be a function (x, t)

of the horizontal coordinates x and time, the mean curvature can be expressed in
terms of derivatives of 1) as

= 7 ( v
(2.16)i+V2J

The factor is the surface tension and for water has a value of 7.3 10_2 [N/m] (at
T=293 [K]). It will be shown in Section 3.1.1 that the effect of surface tension can be
neglected with respect to the scales of interest in the present study. When Eq. (2.15)
is applied to the free surface, it is referred to as the dynamic boundary condition. We
will proceed by expressing the kinematic and dynamic boundary conditions (2.14)-
(2.15) h terms of the velocity potential I.

1Here we have used the notation = (x, z), to distinguish the horizontal coordinate x (one- or
two-dimensional, depending on the dimension of f) from the vertical coordinate z.

boundary S(t) moves in time we find

J0(t)
(2.11)

and using Leibniz rule one derives

_fPtdS+fPdS0 (2.12)

where represents the velocity with which the integration boundary moves. From
Eq. (2.12) the following condition for the boundary velocity can be directly obtained

f( j) .dS = 0. (2.13)

This condition states that at the boundary the normal component of the fluid velocity
has to be equal to the normal component of the free-surface velocity,

Vflbfl. (2.14)

The boundary condition Eq. (2.14) is a kinematic relation and therefore the condition,
when applied to the free surface, is usually referred to as the kinematic boundary
condition.

The second boundary condition follows from the continuity of the normal stresses
at the water-air interface and from contributions due to surface tension. If viscous
effects are neglected (as is assumed) this results in a relation between the pressure of
water and that of the air and the forces due to surface tension,

Pwater - Pair = (2.15)
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Substitution of the potential definition Eq. (2.9) in the momentum equation Eq. (2.6)
and ignoring viscosity results in

(2.17)

which can be expressed as

v(+v4)I2++gz) =0. (2.18)

Integration of Eq. (2.18) results in the Bernoulli equation

¿34) 1 2 P
+ IV4)I + - + gz = f(t) (2.19)

from which the integration constant f(t) can be eliminated by redefining 4).

Denoting j(x, t) as the free-surface boundary between water and air, and substituting
Eq. (2.15) in Eq. (2.19) the dynamic boundary condition at the free surface can be
written as

34) 1 . Pair8' +gr=0 on z=(x,t). (2.20)
p

The kinematic boundary condition Eq. (2.14) can also be formulated in terms of i
and 4) as

on z=îj(x,t) (2.21)

which is usually expressed as

m=4)-1x4)x-1y4)y on z=î(x,t). (2.22)

Assuming the fluid to be incompressible and inviscid with an irrotational velocity
field and assuming the free-surface boundary between water and air to be a single-
valued function of the horizontal coordinate and time, the following equations
govern the motion of the free surface

(2.23a)

V V4) = O in 1 (2.23b)

V4).iV onU (2.23c)

(2.23d)

+ IV4)I2 +
Pair - S,

+ gij = O on z = i(x, t) (2.23e)
¿3t 2 p

= - - on z = ij(x,t) (2.23f)
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For a treatment on the existence, uniqueness and regularity of a solution of the Laplace
boundary-value problem on a domain with corners confer e.g. Kawohl (1980). When
initial conditions for the potential and the free surface are added, equations (2.23a)-
(2.23f) define a well-posed initial value boundary problem for ij and .

2.2 Numerical algorithm

In general no exact solution is available to equations (2.23a)-(2.23f). In these sit-
uations, discretisation methods can be used to find the solution of the free-surface
equations. A discretisation method approximates the differential equations by a set
of algebraic equations. The numerical solution belongs to a finite-dimensional (mathe-
matical) space and usually provides results at discrete locations in time and/or space.

2.2.1 Free surface

For references to the simulation of nonlinear free-surface flow we refer to the review
papers of Scardovelli & Zaleski (1999), Dias & Kharif (1999), Tsai & Yue (1996),
Yeung (1982) and Schwartz & Fenton (1982). For an overview of numerical methods
applied to a more general class of problems in fluid mechanics the book of Ferziger
& Ferié (1999) could be consulted. Kim et al. (1999) recently presented a review
paper specifically related to the development of numerical wave tanks. In Scardovelli
& Zaleski (1999) the methods to solve free-surface flow are categorised by the use of
the grid employed to subdivide 1 in small elements as follows:

Fixed grid methods: The fixed grid methods can be subdivided in two subcat-
egories

Marker methods. Free-surface markers are used to define the interface
surface in a fixed grid environment, see e.g. Unverdi & Tryggavson (1992)

Volume of Fluid (VOF) Methods. In these methods the free surface is the
result of an evaluation of the fraction of fluid in a grid volume. The VOF
algorithm solves the problem of updating the volume fraction given the
fixed grid, the velocity field and the fractions at the previous time step.
There are basically two methods for approximating the free-surface inter-
face from these volume fractions. A simple line interface calculation (SUC)
and a piecewise linear interface construction method (FLIC). Both meth-
ods however construct discontinuous approximations of the free-surface
interface. These kind of methods have been applied successfully to 'green
water' and sloshing applications (see e.g. Fekken et al. (1999) and van
Daalen et al. (1999)). For an extensive literature survey on VOF methods
for free-surface flow problems see Scardovelli & Zaleski (1999).
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Because of the way the free surface is approximated, the Marker methods and
VOF methods are also referred to as surface-capturing techniques.

Grid-free methods: To eliminate problems related to fixed or moving grid
methods (partial) grid elimination methods such as Boundary-Integral Methods
(BlM) and the Particle-in-Cell (PIC) method (originally by Harlow (1964)) have
been developed. Another promising framework in which the coupling between
particles and the grid is not retained is the Smoothed Particle Hydrodynamics
(SPH) method by Monaghan (1992). In this latter method the differential equa-
tions are solved using particles and smoothing kernels that define the intensity
of interaction between particles. Although initially developed for astrophysi-
cal applications, this method can also be used to solve free surface problems
(Monaghan (1994)). The SPH method has recently been adopted by Fontaine
et al. (2000) to successfully simulate the breaking of waves (including plung-
ing jets and splashing). For a recent overview to grid-free methods we refer
to Belytschko et al. (1996). It is noted that a grid free method that does not
eliminate the grid ori the free surface (like a boundary-integral method), can be
referred to as a surface-tracking technique.

Moving-grid methods: In these methods the grid is allowed to move, thus letting
the grid itself define the free-surface position. The motion of the grid in a mixed
manner between the Lagrangian motion and the fixed Eulerian point of view
(the Arbitrary Lagrangian Eulerian method, ALE) was first introduced by Hirt
et al. (1974). In contrast to surface-capturing techniques, moving grid methods
are also referred to as surface-tracking techniques.

In this thesis a surface-tracking method is used for the following reasons. Firstly, the
position and velocity of the free surface are of principal interest and for an interface-
tracking method this interface is well-defined and can be more accurately calculated.
Secondly, the aim of the simulations is not to capture complicated phenomena such
as spilling, breaking and splashing of waves in which case a fixed grid or grid-free
method might be more suitable.

Since the first successful numerical methods in the simulation of fully nonlinear free-
surface waves by Longuet-Higgins & Cokelet (1976), use has been made of the mixed-
Eulerian-Lagrangian (MEL) procedure in which the solution of the spatial equations
are solved in the Eulerian (fixed grid) frame and the integration of the free-surface
boundary conditions is performed in the Lagrangian manner. Integration in the La-
grangian frame implies that the grid points that are on the free surface are identified
with material particles and thus move with the velocity field. A complete Lagrangian
treatment of the free-surface grid points however leads to loss of control over the grid
density (see e.g. Broeze (1993)) and might thus adversely affect stability and accu-
racy. Therefore an Arbitrary Lagrangian Eulerian (ALE) method is used with respect
to the boundary points. The ALE method was initially developed by Hirt et al. (1974)
for discretising the Navier Stokes equations and its implementation was considerably
more complicated than needed for our purposes. After a Lagrangian integration of
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Figure 2.1: The grid displacement on the boundary follows from the material displace-
ment corrected with a tangential correction vector.

the variables, including the grid points, the grid is adjusted and the variables associ-
ated with the grid points are updated in such a way that the conservation laws are
satisfied. The final displacement of the grid points at the free surface thus follows
from a correction to the displacement of the material points (see also Fig. 2.1).

The grid velocity correction on the free surface cannot be chosen arbitrary. Eq. (2.14)
states that the normal component of the fluid velocity has to equal the normal com-
ponent of the free-surface velocity. Therefore, mass conservation is not violated (in
the infinitesimal case) as long as the velocity of a free-surface grid point is corrected
with a velocity vector tangential to the free surface. It should be noted that for fi-
nite time step Lt the tangential correction vector is not perpendicular to the normal
vector of the grid on which the Laplace problem is solved. Also, the tangential and
normal vector might not be well-defined due to the discretisation of the free surface.
Therefore the error in mass conservation will be of the same order of magnitude as
the method for time-integration and surface approximation, although the truncation
error might be slightly larger.

There is a degree of freedom in the length of the correction vector. Local grid cor-
rection parameters &i and &2 are introduced to indicate this freedom. The correction
vector is tangential to the free surface and thus of the form

o

(2.21)

For every grid point the parameterisation parameters have been normalised such that
O corresponds to Lagrangian motion of the grid point, and & = 1 corresponds

to only vertical motion of the grid point.

As the dynamic equations of the potential have been derived in the Eulerian frame of
reference, the evolution of the potential F (subscript i now numbers the grid point
and not the coordinates) needs to be updated with the actual grid motion. Given
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the velocity Vj in grid point .j, the governing equation for the position of the grid
point is thus given by

Dx
Dt =V4'i+Vcor.

Using the dynamic boundary condition (2.23e) and ignoring surface tension the dy-
for in isnamic equation x given by

- J

(2.25)

Notice that for & = i the non-zero, i.e. z-component, of Eq. (2.25) can be identified
with the dynamics for j in Eq. (2.231). Although analytically identical, the numerical
implementation is slightly different as a direct discretisatiori of Eq. (2.23f) would lead
to evaluation of i at the not-yet updated surface. The discretisation of Eq. (2.25)
on the other hand determines ij on the Lagrangian updated surface.

2.2.2 Time stepping

The set of equations (2.23a)-(2.23f) is elliptic in space and parabolic in time. There-
fore, the numerical method to solve the spatial part of the equations is essentially
different from the method to solve the time dependent part. Since the first suc-
cessful numerical methods in the simulation of fully nonlinear free-surface waves by
Longuet-Higgins & Cokelet (1976), use has been made of the so called mixed-Eulerian-
Lagrangian (MEL) procedure in which the solution of the spatial equations are solved
in the Eulerian (fixed grid) frame and the integration of the free-surface boundary
conditions is performed in the Lagrangian manner. Following this well-established
procedure the numerical algorithm is split in a time-integration part and a part con-
cerning the solution of a boundary-value problem on a fixed geometry. After discreti-
sation of the geometry and the equations, we are left with a set of algebraic equations
(see also Section 3.2.2) that can be denoted as

qt = J(q,t). (2.28)

The vector q contains the free-surface-geometry and -potential and possibly other
variables that have prescribed dynamics. Because the geometry of the domain and
the boundary values are completely determined by q, the solution of the Laplace
problem is a function of q and incorporated in the function f. Whenever the function
f needs to be evaluated numerically, a boundary-value problem has to be solved.
Given the time step t we denote the approximation of the solution q of Eq. (2.28)
at time iz.t as q7 q(nt).

D4 9ti + (V + Vcor) VF (2.26)
Dt

/ o

- o cT2 V4 gxjz (2.27)
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There are several methods to numerically integrate Eq. (2.28) in time. Generally,
these methods can be categorised in implicit and explicit methods depending on
whether or not the equation for approximating q is implicit or explicit. Although
implicit methods have the favorable property that they are unconditionally stable for
linear f, they are more elaborate to implement. Another disadvantage of implicit
methods to solve Eq. (2.28) is that they are based on an iterative scheme and thus
many evaluations of f are necessary which is computationally quite expensive. Several
explicit time-integration methods have been used by several authors to solve the free-
surface equations (Adams-Bashforth-Moultori formulae, Taylor series methods and
Runge-Kutta methods). When time derivatives of the potential are also needed (e.g.
for the evaluation of pressures) it may be beneficial to use a combination of a Runge-
Kutta method and a Taylor series expansion (e.g. Broeze (1993)). The most widely
used methods however are the Runge-Kutta methods which we have also adopted.
The advantages of these methods are that they do not require derivatives of f and
that the approximation of q depends only on q_ . Moreover they are accurate and
can be easily tuned for specific purposes (see also Section 3.2.2).

The explicit s-stage Runge-Kutta (RK) integration method determines the value of
the vector qni using the following formula

qn = qn + tfl bf
i=1

where

fi = J(q,t)

= (qn + tn tn +
j=i

The coefficients a, b and e can be chosen freely and determine the order of the scheme.
The presented Runge-Kutta method can be easily extended to include adaptive time
steps and continuous output (cf. Dormand (1996) for details).

Although only four stages are needed to create a fourth order RK scheme, the degrees
of freedom that are available in a fourth order 5-stage method can be used to minimize
the principal (i.e. fifth) local truncation error term. The principal error is reduced by a
factor of approximately 7 with respect to an optimal 4-stage fourth order RK formula.
It is shown in Dormand (1996) that for a benchmark application (gravitational 2 body
orbit problem) the additional computational effort is more than compensated for by
the improvement in accuracy.

In Fig. 2.2 on the next page the numerical algorithm is visualised in which the solution
of the Laplace BVP problem has explicitly been incorporated. The steps (A) and (F)
are computational steps that follow from the Runge-Kutta formulae Eqs. (2.29)-
(2.31). In step (E) the right-hand side of the discretised form of e.g. Eq. (2.25)-(2.27)
is determined. Steps (B)-(D) are necessary to provide the velocity approximation

(2.29)

(2.30)

(2.31)
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needed in step (E). The solution of the boundary-value problem in step (C) will be
discussed in the next two subsections. Some aspects of the implementation of this
algorithm will be further discussed in Section 2.3.

2.2.3 Field method versus Boundary-Integral method

So far, we have not commented on the approximation of the boundary-value problem.
There are two main methods to solve the boundary-value problem for Laplace's equa-
tion in step (C): field methods and boundary-integral methods. The field methods
can roughly be divided in finite-difference and finite-element methods (finite-volume
methods are not taken into account, following the discussion at the start of Sec-
tion 2.2). Although finite difference methods could be used, the implementation of
such a method on a non-rectangular geometry and the implementation of the bound-
ary conditions, makes this method less suitable than a Finite Element (FE) method.
This section outlines the main advantages and disadvantages of a boundary-integral
method versus a FE approximation of the field equations with respect to the simula-
tion of waves in a model test basin.

Most of the existing numerical schemes to solve the free-surface equations are based
on Boundary-Integral methods. A boundary-integral method (BlM) employs Green's
theorem to reduce the differential equation in to an integral equation on r. It
therefore has the great advantage that the number of unknowns is much smaller
than the number of unknowns of a field discretisation method. Another advantage
of a boundary-integral method is that no effort has to be put in the gridding of Il.
However, the equations on r are more complicated than the field equations and the
numerical methods to discretise them are relatively expensive in terms of floating-
point operations. After discretisation, there is a direct global coupling between all
the unknowns and in general no exact formula are available for evaluating the matrix
coefficients. For a general introduction to integral equations in fluid mechanics see
e.g. Power & Wrobel (1995) and for an application to free-surface simulation see e.g.
the thesis of Romate (1989).

A field approximation of Laplace's equation by e.g. a finite element method (FEM)
returns the solution throughout the domain and not only at the boundary. Its main
disadvantages are that number of unknowns is much larger and one is concerned with
the gridding of . On the other hand, the computation of the matrix resulting from a
FE discretisation is quite straightforward. For a large family of finite elements, exact
and readily computable formulae are available for the matrix entries (see e.g. the
appendix (B.1)).

Although it might seem that from a computational point of view a BlM is preferable
over a FEM because of the reduced number of unknowns, this is not always true. It is
stressed that the efficiency of a numerical method depends on its field of application.
Therefore no general statement can be made about the efficiency of Boundary-Integral
methods over Field-Discretisation methods or vice versa. Although it was found that



NUMERICAL ALGORITHM 27

for the simulation of waves in a hydrodynamic model test basin, a FE method is highly
efficient, studies concerning interaction with fixed or floating structures showed the
effectiveness of a higher-order BI method (see e.g. Huijsmans et al. (1999)). In Gai
et al. (1998) a heuristic comparison is given in which it is demonstrated that an
approximate solution of the boundary-value problem for Lapice's equation can be
obtained more efficiently by a FE discretisation. This is due to a combination of the
sparse structure of the matrix arising from FE discretisation and the availability of
good preconditioners.

In the following paragraphs this general heuristic comparison between a field discreti-
sation arid a boundary-integral equation and a relevant example with respect to a
model test basin will be presented. At the end of this subsection we will mention
some recent developments regarding other efficient solution methods of the Laplace
boundary-value problem.

General heuristic comparison

The following heuristic comparison (mainly from Gai et al. (1998)) indicates that
heuristically a FE based solution of Laplace's equation can be obtained more efficiently
than a solution of a Boundary-Integral method. In the following we will simply refer
to a FE based field discretisation method as FEM and to methods based on the
Boundary-Integral equations as BlM.

Consider a square/box domain (d = 2, d = 3, respectively) with uniform grid with ri
grid points per spatial variable. The number of unknowns is then of order O(n"1)
for BlM and order o(d) for FEM. The matrix associated with the linear system
that follows from a boundary-integral description is dense, meaning that most matrix
entries are non-zero. The number of non-zero entries per row in a FEM matrix is
independent of n and therefore one matrix-vector multiplication for the FEM ma-
trix needs O(n') multiplications, whereas one matrix-vector multiplication with the
BlM matrix needs O(n2(d_1)) multiplications. The BIM-matrix is in general well
conditioned, so an appropriate iterative solution procedure converges in a number of
iterations independent of n. Therefore the total computational costs for one solution
of the linear system associated with a BlM approximation is O(n2(

A FEM matrix is in general not well conditioned; the matrix associated with the FE
discretisation of Laplace's problem (on the square domain) has a spectral condition
number , that is 0(1/h2) = 0(n2) (independent of d and the order of Finite Ele-
ments used (cf. e.g. Axeisson & Barker (1984))). Since for a Conjugate Gradient
Method the number of iterations is O(/), the total computational effort for a FEM
approximation using a CG-method is 0(n+l). One might conclude that, on basis of
this heuristic comparison, a BlM is more efficient for d = 2 and BlM and FEM are
equally efficient for d = 3 when iterative solvers are used.

d_1))

When a preconditioner is applied to the system of equations arising from FEM, the



spectral condition number of the resulting system can be greatly reduced. Especially
in the case when no breaking of waves occurs, the fluid domain can be efficiently
mapped to a rectangular domain, and an optimal preconditioner can be constructed
which results in a uniform spectral condition number. This specific preconditioner
is based on the fact that the transformed Laplace operator is spectrally close to the
untransformed Laplace operator. The precondition step can in that case be per-
formed by a so-called fast solver (e.g. FFT) that requires slightly more than O(fl°)
computations.

Other preconditioners, such as the incomplete Cholesky factorisation also lead to
almost uniform spectral condition numbers. Such a factorisation can be efficiently
carried out at O(nd) cost. For a recent review on preconditioning techniques in
computational fluid dynamics we refer to Turkel (1999). An optimal preconditioner,
under mild conditions, for second order self-adjoint elliptic problems is presented in
e.g. Axeisson & Vassilevski (1990). Another possibility to construct efficient solvers
is by means of a domain embedding technique, cf. e.g. Börgers & Widlund (1990).
When such near optimal preconditioners are used, the computational costs for a FEM
and BlM are of the same order for d = 2. For d = 3 the BlM is a factor n more
expensive than the FEM.

In the next paragraph, a representative example will be given to illustrate the com-
putational effort for the two-dimensional situation. In this example, the linear system
resulting from the FEM discretisation will be solved by a Gaussian Elimination proce-
dure for symmetric and banded matrices. This method requiers O(nb3) floating-point
operations where b is the bandwidth of the matrix and is thus only more efficient than
the optimaly preconditioned CG method if b3 «n.

Numerical Wave Tank example

Assume that the model basin is 180 [m] long and 5 [ml deep. This geometry is discre-
tised by 1000 points in the horizontal direction and 15 points in the vertical direction
(these are realistic values). Discretisation of boundary-integrals requires at least one
full matrix, which means that approximately 4 106 matrix entries need to be stored.
For a linear FEM on a triangular grid, the number of non-zero matrix entries is ap-
proximately 5 iü. This small number is due to the sparsity and symmetry of the
matrix. A solution of a linear system with this FE matrix can be obtained using
a Symmetric Gaussian Elimination procedure in approximately 5 106 floating-point
operations. For the BI matrix a single matrix vector multiplication already takes ap-
proximately 4. 106 floating-point operations. In general, several (» 10) matrix-vector
multiplications have to be performed to obtain a solution of this system iteratively.
It is clear that even if the construction of the matrix entries is not taken into account,
a FE approximation on a regular grid can be obtained at lower computational effort
than a BI approximation.

0f course the accuracy of the approximation needs also to be taken into account for
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a full comparison. Such a comparison of the accuracy would be very elaborate, but
when e.g. the FE grid in the above example is refined by a factor 2, the resulting
number of non-zero matrix entries would be slightly less than 2 iü. The number of
floating-point operations to solve the system using the Symmetric Gauss Elimination
procedure would be less than 7 iO. In this case, the FE method is computational
equivalent to the solution of a BI matrix when the BI system converges to the same
precision within 17 iterations. Remark however that the solution of the compared FE
discretisation is directly available on the whole domain at a twice as dense mesh using
an inefficient solver. Finally it should be noted that the condition number of the BI
matrix rapidly deteriorates when the aspect ratio of the domain increases.

It is not the intention to give a general comparison between Finite Element and
Boundary-Integral methods, but the above example illustrates that it is a misunder-
standing to think that a FE approximation is always computationally more expensive
than a BI approximation. Of course, the above example is not conclusive and many
aspects have not been touched upon. However, comparison with other computer codes
based on integral equations indicated that for wave tanks (large aspect ratios) field
approximations can be obtained more efficiently than boundary-integral approxima-
tions. These observations greatly contributed to the effort of developing a FE based
numerical scheme for water wave simulations.

Recent developments

Recent developments (Nabors et al. (1994) and Scorpio et al. (National Academic
Press, Washington DC)) have shown that a very efficient multi-pole expansion method
based on a BlM can been constructed that has a computational and memory cost of
O(n"). This method is based on the clustering of collocation points and sources and
to replace their influence by a single multi-pole. However, this method requires some
tuning and at this moment it is not clear to what extent it can be applied to numerical
wave tank simulations. Domain decomposition techniques (cf. e.g. Wang et al. (1995)
and de Haas & Zandbergen (1996)) for boundary-integral methods, can also improve
the computational cost of a BlM considerably. The aim of the domain decomposition
applied to Numerical Wave Tanks is to achieve a computational complexity that
increases linearly with the length of the domain: an achievement already satisfied by
a FE discretisation. Preliminary results indicate that both the multi-pole expansion
and domain decomposition are less robust methods. However, these methods are
continuously under development and the availability of a general and robust O(ri'1')
numerical scheme would be of great practical value.

In the case of FE methods, multigrid solution methods have become increasingly
popular in the last years. The implementation of a multigrid FEM to nonlinear wave
problems is however not straightforward due to the non-rectangular geometry and
the large aspect ratio of the domain. Implementation of a CG solver with a V-cycle
multigrid preconditioner to three-dimensional flow simulations, showed that straight-
forward Jacobi preconditioning was more efficient (in terms of total computational
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time) for a wave tank geometry. For a unifying treatment of domain decomposition
techniques using, among others, multigrid methods for elliptic equations we refer to
Smith et al. (1997).

Some of the considerations mentioned in the previous paragraphs have already been
mentioned in Westhuis (1997) and were used as a starting point of this research.
We have therefore not further investigated the use of boundary-integral methods md
focused on the development of a finite element method. In the next subsection, the
approximation of the solution of the boundary-value problem using the Finite Element
Method will he presented.

2.2.4 Finite Element Method

The solution of the Laplace boundary-value problem is approximated using a Finite
Element Method. This method is well established and many textbooks (e.g. Connor &
Brebbia (1976), Brezzi & Fortin (1991) and Zienkiewicz & Taylor (1994)) are available
ori the subject. The method employs the weak formulation of the boundary-value
problem which can often be found directly by minimizing the appropriate energy
functional. For notations and definitions of the used spaces we refer to the appendix
(A).

Weak formulation

Assume that the open set Il has a bounded Lipschitz continuous boundary F. Consider
the following bilinear form a(.,.) on ft

a(u, y)
=

f Vu . Vv dft (2.32)

Furthermore, assume that the boundary r = FD U rN consists of two disjunct parts.
On FD a Dirichlet condition is defined and r' is equipped with a Neumann condition.
Consider the two following problems:

Find a function '1 that satisfies for given g E H_h12(FN) and f e H'/2(["3)

= U in (2.33a)

= f on (2.33b)

n = g (2.33c)

Find a function E H'(cl) such that

- E HFD (2.34a)

a(F - D,V) = a(jj,v) + (g,v)r Vv E (2.34b)

for a given D E H'(Il) that satisfies 7D4D = f



Polygonial approximation

Figure 2.3: Visualisation of the relation between boundary grid points (see also Fig. 2.1
on page 22), free surface and boundary of the polygonal approximation of
the domain

In appendix A the necessary definitions and theorems are presented to show that
problems (A) and (B) are equivalent for a(.,.) as in Eq. (2.32) and have a unique
solution . The duality bracket (, )p is an extension of the scalar product on L2(f D),
i.e. for g,v E L2(F) one can identify (g,v)r with fg(s)v(s) ds

The spaces used in problem (A) and (B) are infinite dimensional. In order to obtain
a numerical approximation of a suitable finite-dimensional subspace needs to be
defined that does not violate the assumptions under which the equivalence of (A) and
(B) was proven. There are many choices for these subspaces, but we will focus on
the classical finite-element spaces of piecewise polynomial functions. In the following,
we will explicitly assume that lies in the two-dimensional plane.

Firstly, the geometrical approximation of the domain 1 is assumed to be polygonal,
and is thus a geometric approximation of the contour of the actual fluid domain. The
vertices of the polygonal located at the free-surface coincide with the boundary grid
points introduced at the beginning of this section. Next a triangulation T on 1 is
defined as

(2.35)
KET

such that any two triangles K, and K2 in T are either disjoint or share at most
one side or one vertex. The classical FE subspaces consist of piecewise (on every
triangle) polynomials. The order of the polynomial is denoted as p. The subspace
of piecewise continuous polynomials with the H' -norm is denoted as V C H' (ci).
Every triangle K contains several (depending on p) nodes. A single node can belong
to multiple triangles. These nodes are thought to have a global numbering and the
set V is constructed as the junction of all node-indices. Every node i is associated
with a position x and a function N. This function is defined such that

N(x) = i

N(x) is polynomial of order p on every triangle K- to which node i belongs and
N(x) = O on all other triangles.

Boundary grid points Free surface
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3. N(x7) = O for all nodes n i that share a triangle with node i.

As a result, all N are independent and (with an additional constraint on the relative
positions of the nodes i) span the space V.

As the finite dimensional subspace V C HL, the space spanned by the base function
N for which N (xi) is zero when x is a boundary grid point belonging to rD is
constructed. The following index sets are now defined:

I = {i N E V0}, (2.36a)

V = {i I N E V \ V}. (2.36b)

The function FD is approximated with the base functions belonging to the subset V
and its approximation is denoted as

= (2.37)
iEV

Correspondingly, the unknown - 4D is approximated by

= >ajN. (2.38)
iEI

The coefficients ß are determined in such a way that 6D approximates f on 1'D, which

is achieved by choosing /3 = f(x) for all i E V. Problem (B) can be completely
restated with respect to V and V0 and therefore from the unique approximation
that satisfies

a(, y) = -a(3D, y)
+

f g(s)v(s) ds Vv E V0 (2.39)

the approximation 3 = +4D of the discretised boundary value problem for Laplace's
equation can be constructed.

Substitution of Eq. (2.37) and Eq. (2.38) in Eq. (2.39) results in

iE iEV F
a(N,N) = 3 a(NiNi)+fg(s)Nj(s) ds Vj EI (2.40)

where the statement Vv E V0 has been replaced by the equivalent statement VN j E
I. Equation (2.40) is a linear system in c that can be solved in order to obtain
the approximate solution . The efficient construction of the base functions and
exact forniulae to determine the integrals a(N,N) are given in appendix Bi. It
is well known that for complete polynomials of order p the truncation error of the
approximation is O(h'), where h is the typical grid width.

The use of higher-order FE's

Although the implementation of second and higher order polynomial base functions in
the piecewise continuous approximation on a rectangular geometry is straightforward,
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this is not the case for a curved geometry. If the triangular element family, described
in appendix B.1 is used, the resolution of the geometrical approximation is reduced
when the number of degrees of freedom (DOF) is kept constant. The use of paramet-
ric elements, in which the shape of the element is expressed in terms of the same base
functions that interpolate the unknowns on the element, can be used to create piece-
wise polynomial surfaces. However, a drawback is that exact analytical integration
on the element is not possible and a numerical integration method should be applied.
Another complication is that in some boundary nodes the potential solution is locally
C' continuous while in other boundary points it is not. This inconsistent treatment
of boundary points can lead to undesired effects. The use of a mixed formulation of
the boundary-value problem, in which both the potential and the velocity are approx-
imated, does not lead to more accurate results for the velocity if the same polynomial
order for both approximations is used (cf. Zienkiewicz & Taylor (1994) p.321) than
when the velocity is recovered directly using a global projection method.

Another possibility for a higher order FE is the use of C' continuous representation
of the boundary and potential approximation instead of the C° family described in
the appendix. An advantage would be that a continuous velocity approximation is
directly available from the FE solution. The computational complexity would however
increase considerably and it should be investigated whether or not this is a worthwhile
trade-off. It is noticed that a C' triangular element needs a fifth-order polynomial
base function, requiring 21 degrees of freedom. Currently, noii-rectangular CN finite
elements with N 2 are not available at all. A promising application of higher order
elements could be the C elements, developed by Givoli & Vigdergauz (1994). These
elements are used at boundaries only, where they locally represent the potential by
CN continuous base functions. In the interior of the domain standard C° elements
can be used. The C' elements were originally constructed for the implementation of
higher-order absorbing boundary conditions. However, they also might be useful as
free surface elements in numerical water wave simulations. The applicability of higher
order parametric hp, triangular C' or C elements for free-surface simulation is not
further examined in this thesis because of the satisfactory results that were obtained
using linear elements (see also Chapter 3).

2.2.5 Velocity recovery

The result of the solution of Eq. (2.40) is the approximation of the potential 1.
Numerical evaluation of the dynamic and kinematic boundary conditions Eqs. (2.25)-
(2.27) however, requires an approximation of the velocity at the free surface. Direct
differentiation of the potential approximation results in a lower order, discontinuous
velocity with inferior accuracy. To achieve more accurate derivatives several recovery
techniques are available. Among them are nodal averaging and global projection
techniques using the original polynomial expansions (e.g. Wu & Eatock Taylor (1995)
for an application of global projection to wave simulation). More recently Zienkiewicz
& Zhu (1992) proposed a local projection technique on a patch of elements using a
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single polynomial expansion of the function describing the derivatives (the so-called
Super Convergent Patch Recovery Technique [SCPRT], see also Babuska et al. (1996)).
The convergence of the recovered velocity using the SCPRT can be an order higher
than the order of convergence of the potential. Another possibility to recover the
velcoity at the free surface is the use of local finite differences (see e.g. Cai et al.
(1998)). In the following paragraphs we introduce the global projection method and
the local finite difference method that have been used as velocity recovery methods.

Global projection method

The direct differentiation of the potential in general results in an approximation of
the velocity field of an order lower than the approximation of the potential. As

pointed out by Greaves et al. (1997), one possibility to improve the accuracy of the
velocity for evaluation of the kinematic and dynamic boundary conditions, is to find
the best approximation of V1 in the same space as the approximation in which 1
was determined. This method can also be interpreted as a resampling of the velocity
at the Gauss-Legendre integration points. It is well known that at these integration
points the FEM approximation converges one order faster. It is therefore general
practice (cf. Zienkiewicz & Taylor (1994), p.348) to sample the velocities (strains) at
these integration points to obtain a more accurate approximation of the velocity field
than by direct differentiation of the potential representation.

The approximation of the potential is of the form

(2.41)

and therefore, by direct differentiation, the velocity field is approximated by

= VN1 (2.42)

The resampled recovery of the velocity, denoted as , is also represented in terms of
the polynomial base function as

= vN (2.43)

and the coefficients v are determined from the minimisation of the functional

D()= j_I2da (2.44)

The minimisation of this convex functional directly leads to the following algebraic
equation for í

(VF - 5)N1d1 = O Vi e V. (2.45)
ici

Substitution of Eq. (2.42) and Eq. (2.43) in Eq. (2.45) results in

JvNNd = VNNd1 Vj E V.
0jEV jEV

(2.46)
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from which the coefficients vj can be directly obtained.

This method was implemented by Otto (1999) as a velocity recovery option in the de-
veloped code (see also Section 2.3) that implements the numerical algorithm. He found
by performing nonlinear numerical simulations that application of this method leads
to unstable high-frequency waves. This was also observed by Wu & Eatock Taylor
(1995) who however did not relate this to the specific implementation of this velocity
approximation method. These authors circumvented the instabilities by smoothing
the free surface after each time-integration. In Section 3.2.2 it is shown by linear
stability analysis that it is the velocity approximation method that leads to an un-
stable numerical scheme. The super-convergent patch recovery is a local version of
the global projection method in which the minimisation is performed over a patch
of elements instead of the whole domain. Because of the disappointing results of the
global projection method, the SCPRT was not further investigated.

Finite Difference recovery of the velocity

As an alternative to the global recovery method of the previous paragraph, a local
Finite Difference (FD) method can be used to recover the velocity at the free surface.
Many different FD scheme's (based on one- or two-dimensional polynomial approxi-
mations) can be developed and several have been investigated by Otto (1999). Here
we introduce our original implementation and we will comment on extensions at the
end of this section. The original finite difference scheme was based on independent
approximation of the tangential derivative of the potential from the free-surface data
only and on the one sided, one dimensional approximation of the non-tangential ve-
locity at the free surface from the field solution. The truncation error in the finite
difference scheme is of the same order as the order of the polynomials used for the
construction of the scheme.

Fig. 2.4 on the following page illustrates the method to determine the tangential
velocity for the case that quadratic polynomials are used. The method can and has
been extended to polynomials of arbitrary order in a similar fashion. Assume that
the positions of three grid points x, i = 1,0, 1 are given at the free surface. The
potential at these points is denoted as , i = 1,0, 1. As an approximation of
the tangential derivative of the free surface at x0, the tangential derivative of the
quadratic polynomial through x, evaluated at x0 is determined (Fig. 2.4(a)). This
local approximation of the surface tangent at x is denoted s. To accurately calculate
the polynomial coefficients, all calculations are performed in a local frame of reference
with its origin at z0 and its orientation such that local positive z-axis is normal to the
line through x_1 and xi. This orientation of the local frame of reference is illustrated
by the arrow-frame depicted in the figure. Besides improved numerical accuracy, the
procedure of first determining a local frame of reference also allows for a more general
implementation of the method as we are riot restricted to apply it to free surfaces
that are a function of the spatial variable.
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Figure 2.4: Illustration of the quadratic method used to determine tangential vector s
(a) and tangential derivative of the potential at the free surface (b).

The parameterisation along the local polynomial that approximates the free surface is
denoted by s. In Fig. 2.4(b) the potential j is plotted as a function of s. To determine
an approximation of the tangential derivative 1 in x0, the same procedure is followed
as described in the previous paragraph. After the polynomial approximation of 4 as
a function of s has been constructed the derivative of this polynomial at the point x0
is taken as the approximation for the value of the tangential derivative of in x and
denoted as

The approximation of the non-tangential derivative of the potential at the free surface
that is needed for the evaluation of the velocity, is determined in a similar manner.
Below the free-surface nodes are situated on which the potential is known and through
which polynomial approximations can be constructed in a similar way (see Fig. 2.5
on the next page). Using the technique described in the previous paragraphs, a
non-tangential vector ,c and the derivative of the potential along this vector can be
determined. Of course in this case, the tangential vectors and derivatives are evaluated
at the end nodes in stead of the central nodes.

The approximation of the velocity V at the free surface node x is thus obtained
directly as a solution of

VcF.s = (2.47)

= (2.48)
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Figure 2.5: Illustration of the geometric configuration used to determine the non tan-
gential vector and potential derivative at the free surface.

Otto (1999) also investigated the use of 2-dimensional polynomials of different or-
ders to directly interpolate the potential values at the nodes. The surface velocity
approximation V is then determined by direct differentiation of this 2 dimensional
polynomial. Based on extensive numerical simulations, he came to the following con-
clusions

Higher-order (p> 2) 2-dimensional polynomials can lead to improved accuracy
of simulations where fixed impermeable boundaries are modelled.

Two-dimensional polynomial approximations result in less accurate or even un-
stable simulations when moving boundaries are involved in the simulation.

Further studies showed that the improved accuracy using higher-order polynomials
can also be achieved using 1-dimensional polynomials and therefore the use of 2-
dimensional polynomials to construct local finite difference formula was not further
investigated.

2.3 Implementation

In this section the implementation of the numerical algorithm, depicted schematically
in Fig. 2.2 on page 25, will be briefly discussed. Examination of the scheme shows
that there are three levels of computation depending on the extent to which a step in
the algorithm is global or local. At the highest level, the control of the complete loop
itself and the implementation of step (C) is performed. At the intermediate level the
computations that require local knowledge of the numerical grid, steps (B) and (D),
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are situated. At the lowest level, the computations related to the time-integration of
a single unknown qj, steps (A), (E) and (F), are implemented. Components of this
lowest level will be called particles and components of the intermediate level are called
domains. The implementation of a component consists of the implementation of a
data structure and the implementation of the interface with that data structure. The
interface of all domains is identical and so is the interface of all particles. A domain
may e.g. represent a model of the wave maker or of a numerical beach. Examples of
particles are free-surface grid points but also numerical particles that implement e.g.
a Sommerfeld condition. Coniponents (of all levels) only share information through
their interfaces, the actual implementation is thus hidden from other components.
In Object Oriented (00) programming methods, the blue print of a component (the
data structure and interface) is called a class while an implementation (of the interface
and actual data) of a class is called an object. Multiple objects can be constructed
froni a single class. New classes can be constructed from old classes by the concept
of inheritance. The new class contains all functionality of its ancestor class and only
additional interfaces and data structures are coded.

The 00 programming approach to the implementation of the numerical algorithm
allows to independently develop, implement and test domains and particles and then
freely combine them into different configurations. A master-domain and master-
particle have been developed that define all the necessary interfaces. Newly devel-
oped and implemented domains can be used without additional coding with existing
domains as long as the new domain is inherited from this parent. The master-particle
has also implemented all uniform operations , (A) and (F), so the only coding for
new particles is the implementation of step (E). The same approach has been used for
the implementation of the grid generation algorithms and the implementation of the
Finite Element Method. The result is a clear, code efficient, maintainable and easy
extendable computer program which proved of great value in the development, imple-
mentation and testing of over 20 different domains (different kind of wave generators,
numerical beaches, naval structures, grid structures, finite elements, finite difference
schemes, etc.) that can be used in arbitrary combinations.

2.4 Scope of the investigations

In this chapter Eqs. (2.23a)-(2.23f) governing the motion of the free surface on a
layer of water have been derived. For many practical situations, the solution of
these equations cannot be obtained exactly and numerical techniques are necessary
to find an approximate solution. The numerical algorithm developed in this thesis
is classified as a surface-tracking. mixed Eulerian-Lagrangian (MEL) method. It
is based on the explicit time-integration of the dynamic and kinematic boundary
conditions. The solution of the Boundary-Value Problem for the potential in the
fluid is approximated using a Finite Element Method based on piecewise continuous
polynomial approximations. The velocity is recovered from the potential using Finite
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Differences or a global projection method.

The main aim of the investigations is to develop the numerical algorithm to include
the generation and absorption of waves and to establish the accuracy, stability, ap-
plicability and efficiency of the numerical methods with respect to the simulation of
nonlinear gravity waves in a hydrodynamic model test basin. Secondary, the investi-
gations aim for a rationale to choose the free parameters in the numerical algorithm
such as the numerical grid density, the polynomial orders of the FE and FD approx-
imations and parameters related to the generation and absorption of waves, given
practical limitations on e.g. the available computing time.
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Chapter 3

Simulation of Free-Surface
Waves

This chapter considers the numerical simulation of free-surface waves using the nu-
merical algorithm introduced in the previous chapter. A complete model of waves in
a hydrodynamic model test basin consists at least of three parts: the generation, the
propagation and the absorption of waves. In this chapter we focus on the propagation
of waves and therefore investigate the numerical scheme using the natural boundary
conditions ou the lateral walls. The natural boundary conditions correspond to fixed
impermeable walls and the corresponding physical system is an open container filled
with water and is given by

n = O on lateral boundaries. (3.1)

The numerical methods introduced in the previous chapter will be investigated for
this boundary condition. The dispersive properties, stability and accuracy will be
examined in order to ascertain the quality of the numerical solutions.

First some linear and nonlinear models of water wave propagation will be briefly intro-
duced to provide reference solutions. Secondly, the rate of convergence and stability
of the numerical scheme will be investigated. The effect of several velocity recov-
ery and Finite Element schemes on the stability is examined. From analysis of the
time integration, some results regarding the dissipative properties of the discretised
equations are derived.

Next, the dispersive properties of the numerical scheme will be investigated. This
dispersive investigation is based on the linearisation of the discretised governing equa-
tions. The influence of different numerical methods on the dispersion relation will be
made quantitative. In relation to the accuracy the issue of computational complexity
will be considered. Several nonlinear simulations are carried out to establish the mass
and energy conserving properties of the numerical algorithm.
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Finally, two applications of the numerical algorithm on problems with natural bound-
ary conditions will be presented. The first application is related to a comparative
study of a sloshing wave in an open container. The second application is a study of
the splitting of solitary waves when propagating over an uneven bottom.

3.1 Linear and non-linear wave models

This section introduces the basic concepts of propagating linear water waves and some
non-linear wave theories that will be used to investigate the result of the numerical
simulations. Both linear and non-linear water waves are well-established fields of
research and for an extensive overview we refer to the textbooks of Debnath (1994)
and Dingemans (1997a,b). The following subsections are by no means extensive and
only highlight some of the aspects of linear on nonlinear wave theory that are used
in the course of this thesis.

3.1.1 Progressive periodic linear waves

Consider the free surface that is unbounded in the horizontal direction on a uniform
layer of water with depth z = h. The linearisation of the equations is performed in
two steps to clarify the origin of the conditions for linearisation. Firstly, the quadratic
terms in 4 and ì in Eqs. (2.23b)-(2.23f) are discarded, but the equations are still
evaluated at the free surface, resulting in

= O h < z < î(x,t) (3.2a)

+gij O z=11(x,t) (3.2b)

= z = ii(x,t) (3.2c)

= O z = h. (3.2d)

In Eq. (3.2b) S = -y3V V is the linearisation of the surface tension S' defined in
Eq. (2.16).

Using the standard technique of separation of variables a basic solution of Eq. (3.2a)
satisfying the bottom boundary condition (3.2d) is sought as

(x,z,t) = Ci [cosh(k(z + h))J [Aiei + A2ei'] T(t) (3.3)

where the notation k = kl has been used. Substitution of Eq. (3.3) in the linearised
boundary equations (3.2b)- (3.2c) results in

82T(t) + (gktanh (k(ii(x, t) + h)) (i + T(t) = 0 (3.4)
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From Eq. (3.4) it is observed that the linearised boundary conditions around z =
ij(x, t) do not have a solution that can be obtained by the separation of variables,
because clearly the equation for T(t) is not independent of x.

In order to construct a non-trivial solution, one needs to make a second linearisation
that removes the spatial dependence from the argument of the tangent hyperbolic in
Eq. (3.4). This can be achieved by the approximation

tanh (k(ii(x, t) + h)) tanh (kh) (3.5)

which imposes the following two conditions on 17:

(A) i «h (B) k
1171

«1
For deep water waves (h » A) condition (A) is already satisfied and for shallow
water waves (kh « 1) condition (B) is already satisfied. The conditions (A) and
(B) result in the same set of equations that follow from evaluation of the boundary
conditions (3.2b-3.2c) at z = O instead of z = i (see e.g. Dingemans (1997a)). Under
these conditions, transient solutions of Eqs. (3.2a)-(3.2d) subject to fixed, moving
or oscillating pressure distributions or an initial surface displacement (initial value
problems) can be obtained using combined Laplace (in time) and Fourier (in space)
transformations (cf. e.g. Debnath (1994) Chapter 3).

When the conditions (A) and (B) for geometric linearisation are met, the solution
T(t) of Eq. (3.4) is harmonic and the frequency w is related to the wavenumber k
according to the dispersion relation

w2 = (i + gktanh(kh). (3.6)

Evaluation of the factor 2.94. 104/A2 shows that the influence of the surface
tension is only relevant (> 1%) for wavelengths smaller than approximately 17 [cm].
These waves are called capillary waves and are not in the regime of wave lengths
typical for a hydrodynamic model test basin.

Ignoring the surface tension terms in Eq. (3.6) results in the well-known dispersion
relation for free-surface water waves:

w2 gktanh(kh). (3.7)

Final evaluation of the real-valued progressive wave solutions for and 1) results in

1i(X,t) = acos(kxwt) (3.8a)

(x,z,t)
agcosh(k(zh))

- w cosh(kh)
sin(k . x - wt). (3.8b)

From Eqs. (3.8a)-(3.8b) the velocity and pressure field can be easily obtained and
limiting formulae for shallow and deep water are readily derived. It is noted that the
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dispersion relation Eq. (3.7) also has infinitely many imaginary solutions ik. The
corresponding solutions for tf> arid ij are called evanescent modes (see also Subsec-
tion 4.1.1). These evanescent modes are not progressive but decay exponentially in
the horizontal direction.

Regular progressive linear waves are thus sinusoidal, propagate with a phase velocity
c(k) = w(k)/k and have an exponential decaying velocity profile in the negative z-
direction. There is no mass transport due to the wave propagation and the dispersion
relation Eq. (3.7) is independent of the amplitude. Another important parameter in
linear wave theory is the group velocity which is defined as c9 =

The above travelling wave solutions were obtained on a domain that is unbounded in
the horizontal coordinates. A similar analysis can be made for standing waves in a
container. The additional boundary condition

V4n=0 (3.9)

is then applied at x = O and x L, resulting in a countable number of linear
standing wave solutions. The wave number and frequency of a standing wave solution
also satisfy the dispersion relation Eq. (3.7). It is noted that under these boundary
conditions no evanescent modes exist.

3.1.2 Nonlinear progressive wave models

Stokes (1847) was the first to establish the nonlinear solution for periodic wave trains
on deep water. These solutions are based on systematic power series in the wave slope
ka and are known as the Stokes expansions. Substitution of these expansions in the
governing equations Eq. (2.23b) and (2.23e)-(2.23f results in a series solution of the
free surface ij for a steadily propagating nonlinear wave. The first three terms of the
expansion for the elevation are given as

= acos(0) + ka2cos(28) + k2a3cos(3O) (3.10)

where the phase function is defined as û = (kx - wt). Levi-Civita (1925) proved that
the power series are convergent if the ratio of amplitude to wavelength is sufficiently
small, thus establishing the existence of permanent waves satisfying the exact non-
linear boundary conditions. Struik (1926) extended the proof of Levi-Civita to waves
on finite water depth but it was Krasovskii (1960, 1961) who proved the existence
of permanent periodic waves only to the restriction that their slope is less than the
limiting value of 30 degrees. Later proofs of the existence are given by Keady &
Norbury (1978) and Toland (1978).

The surface profile of these nonlinear solutions is trochoidal instead of sinusoidal and
in contrast to linear waves, Stokes waves have a mean horizontal velocity (Stokes drift
or Lagrangian mean velocity) which is O(wka2) in magnitude. Another noticeable
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difference with respect to linear wave theory is the dispersion relation which is of the
form (ignoring surface tension)

= gk (i + a2k2 + + O((ak)6)) (3.11)

and clearly depends on the amplitude. The consequence is that steep waves travel
faster than less steep waves with the same wavelength. The wave height H for a regu-
lar Stokes wave is defined as the distance between crest and trough and its maximum
on deep water is

(:) = 0.14.
max

It should be noted that the Stokes expansion for shallow water is only valid for
very small wave steepness. More precisely, the Stokes parameter (also called Ursell
parameter)

a/h 1 a/It
(kh)2 - 471.2 (h/.\)2

should be small (which is automatically satisfied for deep water waves). When the
Stokes parameter is of order one, the nonlinear shallow water wave equations can be
derived. Introducing the expansion parameters

E = a/h (3.14)

S = h2/A (3.15)

and expanding the fluid potential in S and substitution into the non-dimensional
governing equations, retaining both order E and S terms, results (in one horizontal
dimension) in the Boussinesq (1872) equations:

(3.12)

(3.13)

which are equivalent (in normalised variables and after regularisation) to the following
equation (also called improved Boussinesq equation)

2
1 2 1 2th1- gh32

= 0x2 j971
+ h . (3.17)

When additional assumptions are made concerning the relative permanency of the
waves and uni-directional propagation the following equations can be derived from
Eq. (3.16a)-(3.16b)

Th + (1 + 7i»)x + S1xxx = O (3.18)

Ut + EUUx + 7 - SUtXX = O (3.16a)

Tlt + {u(1 + e)] - = 0. (3.16b)
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which in dimensional variables becomes

it + v"gh(i + +
6

= 0.
3

(3.19)

Equations (3.19) is known as the Korteweg & de Vries (1895) (KdV) equation and
has been extensively studied. Both the Boussinesq and the KdV equations have
periodic and solitary wave solutions (known as solitons for the KdV equation). The
solitary solutions have a sech2 profile and the periodic solutions are called cnoidal
waves because of their typical cn2 profile, where cn is the Jacobian elliptic function.
The cnoidal waves have the same property as the Stokes waves, i.e. they have steeper
crests and flatter troughs.

The Stokes expansion is only valid for ak « (kh)3 (a small Stokes parameter Eq. (3.13))
and clearly the cnoidal wave solutions are only valid for small f and (5. Rienecker &
Fenton (1981) developed a numerical method to approximate the steadily progressive
periodic wave solution of Eq. (2.23b)-(2.23f) based on a Fourier approximation of
the potential. The advantage of this technique is that its only approximation is the
truncation of the Fourier series and is thus (in contrast with the Stokes and cnoidal
expansions) uniformly valid for all wavelengths.

Another widely used model equation for nonlinear wave propagation is the Non-Linear
Schrödinger (NLS) equation. The equation describes the dynamic evolution of the
slowly varying complex wave envelope A of a carrier wave with wavenumber k0. I.e.,
in lowest order the solution is of the form

i(x, t) = A(x, t)ei o_4t) + c.c. (3.20)

The NLS equation can be derived in different ways, e.g. by expansion of the nonlinear
dispersion relation, Whitham's equations for the slow modulation of the wave ampli-
tude (Chu & Mei (1970, 1971)), a multiple-scale expansion (Davey (1972), Hasimoto
& Ono (1972)) or from the Resonant Interaction Equations (Phillips (1981)). The
resulting NLS for the complex amplitude A (in a frame of reference moving with the
linear group velocity) is

jAr + ''« - -t'IA2A = 0 (3.21)

where the values of ¡3' and y' depend on the dispersion relation (e.g. van Groesen
(1998)).

3.2 Accuracy and stability

Every numerical solution contains errors. The important thing is to know how large
these errors are and whether or not they are acceptable for the particular application.
The reasons for differences between computed results and measurements are:
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Modelling errors: The differential equation contains approximations and ideal-
isations

Discretisation errors: Approximations are made in the discretisation process

Iteration errors: The error in the iterative method used to solve the discretised
equations

Measurement errors

The first type of errors has already been discussed in Section 2.2 where the motivation
for the simplified potential flow description has been given. The second kind of errors
are usually difficult to quantify and are therefore described by the order of conver-
gence of the method and by comparing approximations to known exact properties
of the model equations. The third type of errors occurs when iterative procedures
are used to solve the large (non-)linear systems arising from discretisations. In all
iterative solutions used in this thesis, the iteration error (relative residu in is set to
10_12 and these errors are thus considered negligible with respect to the discretisation
errors. For references on the iterative solution of (sparse) linear systems we refer to
Barret et al. (1994) and Smith et al. (1997). The last type of errors results from im-
perfect measurement devices and indirect measurements techniques that make use of
an (imperfect) model to post-proces the original measurements (see e.g. the analysis
on the error in the measured reflection coefficient in Subsection 5.2.1).

In general the ultimate goal of a numerical scheme is to obtain a desired accuracy
with least effort or the maximum accuracy with the available resources. As was
pointed out in the introduction of this thesis one of the practical restrictions is that
the computer code that implements the numerical scheme must run on a desktop
computer and simulations need to be finished in overnight jobs. Therefore, we focus
on the maximum accuracy with the available resources and verify whether or not the
results can still be applied for practical situations.

As well-established methods are used to discretise the different elements of the par-
tial differential equation, the consistency of the discretisation is taken for granted.
Therefore the main concern of this section is the convergence and stability of the
numerical scheme. For linear problems, stability and consistency imply convergence
(Lax Equivalence Theorem) and investigation of the (linear) stability is therefore first
performed. Secondly, the rate of convergence of the full set of discretised equations is
investigated by systematic grid refinement. The analysis of stability and convergence
depends on the used grid, and therefore the gridding algorithm for undisturbed wave
propagation is first introduced.

3.2.1 Grid

A grid is a discrete representation of the geometric domain on which the problem
is to be solved. In this thesis structured (also called regular) grids are used. A
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(b) alternating triangular orientation

Figure 3.1: Illustration of two regular gridding strategies. The node connectivity is not
changed during simulations.

regular grid consists of families of grid lines with the property that the members of a
single family do not cross each other and cross each member of the other family only
ones. In all simulations presented in this thesis structured grids of the H- type and
block-structured grids are used.

As we do not consider overturning or breaking waves, no special attention is needed
to grid these complex geometries. Fig. 3.1 shows two typical regular griddings (tri-
angulations) of the domain. The nodes (intersections of the grid lines) are uniformly
distributed over each vertical grid line. The position of the nodes thus depends on the
free surface grid points and is not fixed during a numerical simulation. The element
structure however, is unchanged and the connectivity of the nodes is thus static. Re-
mark that despite the optical illusion, subfigure (a) and (b) of Fig. 3.1 differ only in
node connectivity. In the next section the effect of this type of grids on the stability
will be investigated.

Besides the triangular orientation of the elements in the grid, another variation used
in the simulations is the vertical density of the nodes. As will be shown in the next
sections, the use of a non-uniform grid in the depth is highly beneficial for the accuracy
of the simulation. The level of redistribution of the grid points in the vertical direction
is parameterised by a factor ¡3. At a certain point on the free surface with x-coordinate
i and z-coordinate ij, the local depth is given by h(x). The number of grid points in
vertical direction is fixed, and denoted as nz. The successive distances Lz between
two nodes on the vertical line increases with a certain rate ¡3. The vertical mesh width
of the i-th element in the negative z-direction is thus defined as

¿zi = ß i = 1. . . . n - 1 (3.22)
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3=1/2 3=1 ¡3=3/2

rai
VAI

¡3=2

Figure 3.2: Effect of the redistribution parameter ¡3 on the element density. The num-
ber of grid nodes is kept constant.

where c is solved from

= h(x) + 7T (3.23)

Fig. 3.2 shows the grid for different values of ¡3. Of course, different possibilities exist
to define the grid density, but the used method turned out to work quite well.

The algorithm for determining the grid based on the boundary nodes is identified by
a set of two maps {E, e}. The map E determines the position of the nodes that are
not on the free surface boundary as a function of the position of the boundary nodes.
The map e determines the node connectivity and maps the global node numbers to
the local element node numbers associated with the nodal base functions on each
element. All gridding algorithms used in this thesis are such that E is a continuous
map and O is time invariant.

3.2.2 Stability Analysis

In Section 2.2, the numerical methods and techniques have been introduced to dis-
cretise Eqs. (2.23b)(2.23f). In this section we investigate the stability of the dis-
cretisation with respect to the natural boundary conditions. Rigorous results on the
stability of the discretised nonlinear equations are not available. Instead the problem
is split up in the stability of the time continuous, spatially discretised equations and
the stability of the time integration method. It should be noted that the presented
stability conditions are only necessary and not sufficient for stability of the nonlinear
discretisation.

The Cauchy stability of the time continuous system is obtained by a Von Neumann

o o
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analysis of the linearised discrete equations. The stability of the time integration
method is determined using standard Runge-Kutta results. In order to perform the
Von Neumann analysis, the discretised equations need first to be derived in an appro-
priate form. It is noted that the stability of numerical wave simulations is certainly
not a trivial topic. Almost all developers of numerical codes that implement some
discretisation of the governing equations, mention the 'familiar' saw-tooth instability.
This point-to-point instability results in growth of 2x waves and is removed from the
solution by some kind of smoothing or filtering, cf. e.g. Longuet-Higgins & Cokelet
(1976), Dold (1992) and Robertson & Sherwin (1999).

Discretised equations

Let the set of all nodes be denoted as V and the node numbers whose corresponding
mesh nodes belong to the free-surface boundary be denoted by V. The set of nodes
not belonging to V is denoted as I = V \ D. The notation for the index sets is also
used to map the node numbering as in

N = Nz() (3.24)

As in the previous chapter, the functions N (see definition in 2.2.4) are the base
functions associated with every node i E V. The approximation is represented by

these base functions as

4= (3.25)
jE lUD

The vector p containing the scalar coefficients of the base functions is thought to be
ordered as

grid point on the

Dx
Dt
Du

Dt

D

Dt

(3.26)

The vector containing the position of the grid points on the free surface is denoted as

(3.27)

i.e. first a vector containing the x-coordinate of the grid points, then the vector
containing the z-coordinate of the grid points.

The discretisation of the nonlinear kinematic and boundary conditions for a moving
free surface Eq. (2.25)-(2.27) can be expressed as

= (1_o)Dx[7)]yV (3.28a)

Dz{1)]yD - (3.28b)

(v D (
Dx[,]yD \'\y - Dx[i]yD1i))

.D'[?)]yD g (3.28c)
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In equation (3.28) the operators D map the discrete values of i and x and to the
approximations of the derivatives. When a solution of the boundary-value problem
is involved, this operator depends on the geometry 1 and thus on ij which is made
explicit by using brackets.

D:{iì]

Dx[î7]

D'[iì]

Ox

maps the value of the free-surface potential nodes,
through the approximation of the boundary-value
problem and the recovery method of vertical velocity
to the approximation of 4 at the boundary nodes.

idem for the approximation of 6

approximation of the potential gradient as
(Dx[ij], Dz{i})

maps i to the approximation of i at the boundary
nodes.

In the previous section it was mentioned that all gridding algorithms depend con-
tinuously on i. Therefore the approximation of the solution of the boundary value
problem depends continuously on ï and thus do the operators governing the deriva-
tives. These operators can thus be expanded around i = O as

D*[i] = D*[O] + VD* {0]i + O(?72) (3.29)

Linearisation of Eqs. (3.28) around i = O therefore leads to the following set of
equations

= O (3.30a)
= Dz{O] (3.3Db)

= g. (3.30c)

We now proceed by the explicit construction of D[O]. Substitution of the natural
boundary condition Eq. (3.1), i.e. substitution of g O in Eq. (2.40) results in the
following equation for :

a = a Vj EI. (3.31)
iEI iEV

This equation is written in matrix notation as

A I A VJ1I2 = -tIV 3.32

where the matrices Ajç are dim K x dim r matrices and the elements are given by

= a (NK(), Nc(s)). (3.33)
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The solution is given by

:L_ A-lA V'p -
The linear operator that maps the values of p to the approximation of the vertical
derivative in the nodes of p is denoted as Dz. The components of Dz are ordered as

D
D11 D1

Dv1

It now follows directly that

Dz[0I = [D1AA1v + D,DJ'p1' =

The set of equations (3.30), ignoring the trivial part, can thus be written as

a()(o L(í\
p \gI

For future convenience we will denote the linearised system of discrete equations as

q = Aq (3.38)

In actual computations of A, first all interactions a(N, N) are calculated for all i, j.
The different submatrices are formed by first applying permutation matrices to obtain
the different numberings, defined by the different index sets. After the matrix is thus
efficiently reordered, the submatrices are formed by simple restriction. The inverse
matrix is not constructed by Gauss Elimination but by iterated solutions of the V

(3.34)

linear equations defined by

A11X = (3.39)

where use is made of a single Incomplete Cholesky Factorisation to provide a precon-
ditioner. In this way the matrix A can be efficiently constructed.

Stability of the spatial discretisation

As is well known, the eigenvalues of the matrix A determine the stability of the system
(3.38).

LEMMA i Given the real 2n x 2n matrix

O S
(3.40)I O

If S has eigenvalues vk, then the eiqenvalues of 4 are given by a+k =

(3.35)

(3.36)

(3.37)
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Proof. Using the determinant rule for the Schurr complement we find that

det(pI2 - A) det(JLI) det (i - i (pIa)' (_s)) (3.41)

= ji'det(pI +ji'S) (3.42)

= det(íi2I, + S) (3.43)

So, ji is an eigenvalue of A if and only if ji2 is an eigenvalue of - S. Therefore the
spectrum of A consists of p = ±i\/, where Uk are the eigenvalues of S. U

ASSUMPTION 2 The meshing algorithm {, } and velocity approximation Dz have
the property that

is a continuous function of the free-surface boundary nodes.

D1AA1 + has positive real eigenvalues.

THEOREM 3 The linearised discretised equations (3.38,) are Cauchy stable.

Proof. From the definition of A in Eqs. (3.36)-(3.39), scaling of g and application
of the previous lemma, it directly follows that the eigenvalues of A are all purely
imaginary. Therefore all eigenvectors of the linear system do not grow iii time and
the Von Neumann criterion for Cauchy stability is satisfied.

Using Theorem 3, a computable criterion is available to determine the (linear) sta-
bility of the different FE/FD schemes. This criterion has been checked for many
combinations of FD methods, FE base functions, triangular orientation of the grid
and values of the density parameter ¡3. These results will be discussed briefly in the
next paragraph.

Firstly the stability of the numerical scheme is investigated when the original Finite
Difference implementation (see Section 2.2.5) is used to approximate the vertical
velocity at the free surface. The order of approximation of this velocity is O(hP)
where p is the order of the fitting polynomial. The polynomial order used for finite
differencing to obtain z is denoted as p[FDJ. The polynomial order of the base
functions used in the Finite Element approximation is denoted as p[FEM].

The parameters p[FD], p[FEM], ¡3, the triangular orientation and the number of
nodes mx and nz have been systematically varied. p[FD] was varied between 1 and
4 and first and second order finite elements were investigated. The eigenvalues of A
in equation (3.38) are plotted in Fig. 3.3 for some of these parameter combinations.
All these combinations resulted in almost purely imaginary eigenvalues and are thus
marginally stable. The fact that the eigenvalues do not exactly lie on the imaginary
axis is related to the numerical computation of the eigenvalues. It was also found that
the stability is not influenced by variations in the number of nodes in the horizontal
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and vertical direction (for fixed dimensions of the computational domain), the aspect
ratio of the elements and orientation of the triangular elements.

Evaluation of the stability of the numerical algorithm when the global projection
method (see Section 2.2.5) is used, revealed that this velocity recovery method can
result in an unstable numerical scheme. This is illustrated in Fig. 3.4 in which the
grid, the eigenvalues of Eq. (3.38) and the free-surface part of the (absolute value of
the) eigenvector y3 are visualised when linear finite elements are used. Clearly, the
numerical scheme is unstable for the triangulations depicted in the first and second
row of the figure. Some eigenvalues associated with the high frequency components
have a positive real component. When the orientation of the triangulation is reversed,
the spectrum stays identical, but the orientation of the eigenvector is also reversed.
Further investigation of the eigenvectors indicated that the instability might be related
to whether or not the free-surface corner grid point belongs to i or 2 elements. Indeed,
when the grid was chosen such that the corner grid points belonged to a single element
(third row in Fig. 3.4 on the preceding page), the eigenvalues were all found to be
imaginary. However, examination of the cigenvector shows irregular point to point
oscillations that are not present in the eigenvectors of the Finite Difference schemes.

Stability of the time integration

In the previous subsection the stability of the spatial discretisation was investigated
while the time derivatives were considered to be exact. In this section the stability of
the discretisation of the time integration using an explicit Runge-Kutta (RK) method
(see also Section 2.2.2) is examined.

Consider the n-dimensional linear differential equation

qt = Aq (3.44)

In general one can show that for the s-stage RK formula Eq. (2.29)-(2.31) the following
relation holds between two successive estimates of q = q(nt)

qn--i = P(tA)q (3.45)

where P is called the stability polynomial. The dispersion (or phase) error is defined
as

= r - arg[P(r)] (3.46)

and the method is said to be dispersive of order q if s,(r) = O(r). Here we refer to
van der Houwen & Sommeijer (1972) and state that any m-stage th order RK method
is dispersive of order 2[(p + 1)/2] and the maximal attainable order of dispersion is
2(m - p + 1(p + 1)/2]); here [xj denotes the integer part of x. In this reference a
5-stage third order RK method, defined by the Butcher arrays as in Table B.3, is
presented that is indeed dispersive of order 8.



From straightforward analysis it is readily derived that a necessary and sufficient
condition for stability of the time integration is that the eigenvalues .t of A lie in the
RK stability region defined by P(pt) <1. Applying the RK-scheme defined by Eq.
(2.29)-(2.31) to the equation (3.44) directly leads to the stability polynomials P as a
function of the parameters a, b and e. For the parameters tabulated in appendix B.2,
we find the following polynomials P:

RK44M B.1) P(r) i 1/2r2 + 1/6r3 + 1/24r4 (3.47)(Table = + r +

RK44M denotes the explicit 4-stage fourth order RK scheme with minimised principal
error, RK45M the 5-stage fourth order scheme with minimised principal error and
RK35D the 5-stage third order scheme with minimal dispersion (maximal dispersive
order).

Fig. 3.5 shows the stability region in the upper half plane of the RK44M and RK45M
schemes. In the left figure, one can observe that the stability region of the 5-stage
scheme is slightly larger than the 4-stage scheme. The stability region of the RK35D
scheme (not depicted) is similar to that of the RK45M scheme.

Close examination of the curves around Re() = O shows that the 5-stage stability
region does not include a part of the imaginary axis close to the origin that is included
by the stability region of the 4-stage scheme. Therefore an eigenvector with a pure
imaginary eigenvalue j will decrease in time due to a 5-stage scheme if

1.866 < ztIIm( <3.395. (3.50)

and will increase otherwise. For a 4-stage scheme, this stability region on the imagi-
nary axis is given by

tImGu) <2.8284 (3.51)

where 2.8284 is an approximation of 2/ and evaluated here numerically for compar-
ison with Eq. (3.50). One can argue that the 5-stage method is not a suitable method
for time integration of equation (3.38) because of the unstable region [0, 1.866] on the
imaginary axis However, the following observation needs to be taken into account.
The value IP() is a direct measure for the actual damping or growth of the eigenvec-
tors of A. In Fig. 3.6 on the next page one cari observe the growth factor P(tp) for
ji that are purely imaginary and positive. From this figure two important observations
can be made.

1. Both the 4-stage as the 5-stage method can result in drastic damping of eigenvec-
tors (damping factor of approximately 0.5) with purely imaginary eigenvalues.

11t is noted that the presence of an unstable region on the imaginary axis is also found for the
4th order Adams-Bashforth-Moulton (ABM4) method

RK45M (Table B.2) P(r) = i + r + 1/2r2 + 1/6r3 + 1/24r4 + 1/120r5 (3.48)
RK35D (Table B.3) P(r) = i + r + 1/2r2 + 1/6r3 + 71/1680r4 + 1/112r5(3.49)
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Figure 3.7: The final growth factor after t of simulation time of (a) the fastest evolv-
ing mode (te = 100), (b) the mode corresponding to À = i (te = 100) and
(c) the same mode for t = 1000.

2. In the region O < Im(r) < 1.886, the maximum amplification factor of the 5-
stage method is 1.0047 while the amplification factor of the 4-stage method for
this value is approximately 0.9.

From linear theory (Section 3.1.1) it is readily verified that (in normalised variables)
the maximum eigenvalue of the discrete system (the 'wave' that corresponds to a 2x
wave length) is approximately /7r/Zx. Therefore the maximum expected eigenvalue
of A is i/r/x. For a simulation with time interval of length t' and time step t,
Eq. (3.52) can be used to obtain an a priori bound on Lt and horizontal spatial mesh
width z.x in order to keep the total growth of every eigenvector for t E [0, t] within
a desired bandwidth a.

Fig. 3.7 shows these final grow factors

P(itwJ (3.53)

for three frequencies w and for specified t' as a function of t. Graph (a) shows the
growth of the eigenvector corresponding to the most unstable 2x wave after 100
units of simulation time. It can be observed that for z.t < 0.08 the artificial growth
due to the 5-stage scheme does not exceed 10 %. In graph (b) it can be observed that
a linear wave with À = 1 grows with approximately 1 % when LT = T1 0.2
for the 5-stage scheme. Using a 4-stage method, the wave amplitude decreases with
approximately 5% for the same time step. In graph (c) this comparison is made for
the same wavelength, only now over a simulation time of t = 1000 400TA1 units.
This graph shows that the final artificial amplification due to time integration of this
wave after 400 periods is less than 5 promille if < T/25.
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We conclude by noting that the application of both the RK44M, RK45M and RK35D
schemes in the sinmlation of the nonlinear equations (3.28) resulted in stable simula-
tions in the sense that no artificial blowup was observed. Actually, even the simula-
tions using the 5-stage methods showed a small decrease in discrete energy (see also
Section 3.4) indicating that the dissipative effects of the full nonlinear discretisation
are stronger than the amplifying effect of the 5-stage scheme. Based on these observa-
tions and the small error of the RK45M method, the RK45M method is mostly used
for time integration.

Conclusions

In this subsection the stability of the numerical discretisation has been investigated.
The algebraic equations that discretise the partial differential equations have been
derived and a linear von Neumann analysis was performed. For 1-dimensional Finite
Differences as a velocity recovery method, the eigenvalues of the linearised system were
found to lie on the imaginary axis, independent of the order of the investigated poly-
nomial approximations of the Finite Differences and Finite Elements. Furthermore it
was found that the orientation of the triangular elements and the grid density do not
significantly (< 10_14) influence the real component of the eigenvalues. Therefore,
all investigated FEM/FD schemes have the property that the linearised discretised
equations constitute purely oscillatory dynamics.

When a global projection method is used for the velocity recovery at the free surface,
the total spatial discretisation is found to be unstable and dependent of the triangu-
lation of the domain. Therefore this method is not suitable as a recovery method for
the velocities at the free surface.

Next, the amplification of the eigenvectors due to the time discretisation using a RK
method has been investigated. A 4-stage and a 5-stage method (both of fourth order)
were compared. The 4-stage method has the property that all purely oscillatory modes
are damped and specifically the high frequency components (as long as they are in
the stability region). The 5-stage method has an interval on the imaginary axis on
which these modes are amplified and therefore these modes are not stable. However,
the accuracy of the 5-stage method is larger and, given the total simulation time, one
can obtain bounds for the maximal amplification factor of every mode. Application
to the nonlinear discretisation showed that in actual simulations the total energy
slightly decreases (see also Section 3.4). Therefore the small amplification due to a
5-stage RK integration is always found to be compensated by the dissipation due to
the (nonlinear) spatial discretisation.

3.2.3 Grid refinement

In the following all quantities are normalised by the depth and the gravitational
constant The order of convergence is determined by systematic grid refinement.



Following Roach (1994), the following remarks are made concerning the estimate of
the order of convergence on refined grids.

the grids must be refined substantially (at least 50%)

the grid topology and relative spatial density of grid points should remain com-
parable on all grid levels

the grids should be sufficiently fine that monotone convergence is obtained

For the grid refinement study, the order of the FE and FD polynomials is chosen to
be 1 and 2, respectively, which results in second-order approximations of both the
field solution and the boundary derivative approximation. We want to establish the
overall accuracy of the scheme and therefore as a convergence measure, the difference
in energy between the initial numerical solution and the energy after a fixed period
of time (t = 20) is taken.

IEI = E(20) - E(0)I (3.54)

L ( p(x,t) i
E(t) = I I IVF(x, z, t)II2dz + -(x, t)2 dx (3.55)

Jo -i 2 2 j
The integrals in Eq. (3.55) are calculated over the discretised geometry, i.e. the
junction of all FE triangles and all quantities are exactly integrated. As an initial
condition we take the discretisation of the steady (i.e. 4(x, z, 0) = 0) profile

ii(x, 0) = 0.1 cos(irx) (3.56)

on a domain of length 2. The evolution of this standing wave is nonlinear because
of the relative high steepness (- 0.7 ()rna) The spatial and temporal grid size
/x, z and Lt for /3 = O are uniformly refined as

LX=hgrid i i i
LZ = hgrici hgrji = 1,

, .

Lt = hgrici J

In addition a refinement study is performed for different values of ¡3 (see also Fig. 3.2
on page 49 for a visual interpretation of the value of ¡3) to investigate whether or not
the order of convergence is influenced by the vertical distribution of mesh points. For
this study, the factor h5rid is proportional to the number of grid points in the vertical
direction as J.z is no longer a constant.

From Fig. 3.8 on the following page it is concluded that the overall scheme is of second
order in the energy norm. Moreover, it is observed that increasing the value of /3 (i.e.
a higher grid density near the free surface) results in more accurate computations and
does not influence the order of the scheme. Further investigations showed that the
obtained order of convergence does not change for higher-order FD approximations,
confirming that the lowest order error (FE) is dominant.

(3.57)
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Figure 3.8: Spatial-temporal grid refinement for first order Finite Elements and sec-
ond order Finite Differences. It can be observed from the log-log plot that
the order of convergence in the energy norm is approximately 2 and inde-
pendent of ß.

3.3 Dispersion relation

Although the above analysis, is indicative for the error and the accuracy of the nu-
merical scheme, it does not provide a global indication to the quality of the actual
numerical solutions. This section introduces an analysis of the numerical scheme,
that provides a quantitative insight in the performance of the scheme. It is not an
asymptotic investigation aimed to show some rate of convergence of the results. In-
stead, it provides a relation between the achievable results on overall accuracy given
the available computational effort and choice of numerical parameters.

The analysis of the stability of the linearised discrete equations (3.28) provides an
efficient method to evaluate the dispersive properties of the discretised equations. The
length scale, and therefore the wavenumber of the standing waves corresponding to the
eigenvectors, is exactly known. The eigenvalue that corresponds to a standing wave
with wavenumber k therefore constitutes the dispersion relation z(k). This relation
evidently depends on the numerical parameters and therefore allows for a physical
significant criterion to assess the influence of these parameters. In this section, a
quantitative analysis of the dispersive properties due to spatial discretisation will
be presented. The analysis is performed on the linearised discretised equations arid
provides a measure for the error in the phase velocity of the numerical waves. The
aim is to investigate what performance can be achieved given the available methods
and a restricted amount of computing power. First we will introduce the dispersion



DISPERSION RELATION 63

nz=5
- r,z=10- nz=15

0.08

0.06

0,04

0.02

-0.02

-

(a) Regular mesh (ß = O, nx/h=50, (b) Effect of ß (nx/h=20, nz=1O,

Figure 3.9: The relative phase velocity error of the linearised discretised equations for
different numerical grids.

error measure and its dependence on the wavenurnber. Next, the dependence of this
measure on the polynomial order of approximation of the finite difference and finite
elements will be investigated.

3.3.1 Dispersion error a

As a measure for the dispersion accuracy we introduce

a(k)
(k) -

(3.58)w(k)

where /k is the eigenvalue associated with an eigenvector with wavenumber k and
w(k) is the exact dispersion relation of linear gravity waves (see Eq. 3.7). Remark
that a(k) can be interpreted as the relative error in the phase-velocity of the numerical
wave.

Fig. 3.9(a) shows the graph of a(k) for a given set of numerical parameters on a
uniform mesh (3 = O). As can be observed, the value of a for shorter waves is much
larger than the values for longer waves. This is due to the fact that the potential-flow
solution for shorter waves has larger gradients near the free surface than the solution
for longer waves. Therefore, the regular mesh represents the longer waves better and
consequently, the approximation of the vertical velocity at the free surface is better.
Remark also that the relative error in the phase-velocity for this configuration is rather
high for shorter waves (up to 30%) which is unacceptable for practical simulations.
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Figure 3.10: a = O curve where the phase velocity of the spatially discretised, linearised
equations equals the continuous phase velocity. (nx/h=20, p/FEMJ=1.
p/FDJ=)

In Fig. 3.9(b) the effect of ¡3 on the relative phase error is visualised for a particular
configuration. Clearly, the phase error can be greatly reduced by a suitable choice of

¡3. Remark that the choice of ¡3 does not influence the number of degrees of freedom
of the total scheme.

It is also observed from Fig. 3.9 on the preceding page that a variation of ¡3 is a trade-
off between the accuracy of the approximation of the solution of the Laplace problem

and the accuracy of the Finite Difference approximation of the vertical velocity at
the free surface. For small values of ¡3, the resolution near the free surface is low,
and approximation of the velocities for short waves is inaccurate. By increasing the
resolution near the free surface, the approximation of the surface velocities increases
but the resolution away from the free surface becomes coarser. For longer waves,
the potential variations are not well resolved on these coarser grids, resulting in less
accurate approximations of the potential and thus of the velocities.

Fig. 3.9(b) shows another remarkable aspect of the computational scheme: the factor
¡3 can be chosen such, that for a single regular wave, the phase error is zero. This is
illustrated in Fig. 3.10 where the a = O contour line is plotted as a function of the ¡3

and A. It is thus possible to determine the grid density such that for a specific linear
wave, the phase velocity of the linearised discretised equations equals the continuous
linear phase velocity. This property was also found to be true for different values of

nx/h, p[FEM] and p[FD].
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3.3.2 Minimisation of a(1/4,4)

It was found in the previous section that for a FE/FD scheme, by a suitable choice of
¡3, the relative dispersion error can be made zero. However, in practical applications,
one is usually interested in the simulation of several waves simultaneously on the same
numerical grid. Usually a complete wave spectrum containing many wave components
is desired. To construct a measure that describes the dispersion quality over a range
of waves, the maximum relative phase error is introduced as:

a(a,b) = max
kE[2r/b,2ir/a]

In other words, o-(a, b) denotes the maximum relative error in the dispersion relation
for waves with a wavelength between ah {m] and bh [m]. For uniform grids this
maximum is always attained at the smallest wave k = 271/a. However, as already can
be observed from Fig. 3.9 on page 63, this is not necessarily the case when ¡3 O.

The typical range of wavelengths in a hydrodynamic basin is about [h/4, 4hJ. For
some laboratories, these short waves may already fall in the capillary regime and one
should then be careful to interpret the results.

The aim of this subsection is to derive a rationale for the different numerical pa-
rameters in the computational scheme given the available computational effort. The
parameters that are varied are:

the polynomial order of the Finite Elements used in the approximation of the
field potential, p[FEM] = 1,2.

the polynomial order of the Finite Difference approximation of the vertical ve-
locity at the free surface, p[FD] = 1, .., 4.

the parameter governing the grid density near the free surface, ¡3 = O,... , 1.5.

the number of grid points in the horizontal direction per unit length, mx =
15,. ..100.

the number of grid points in the vertical direction, riz = 7,... , 27.

When first and second order Finite Elements are compared with respect to computa-
tional effort, the number of degrees of freedom (DOF) is kept constant. As a result,
a triangle associated with a first-order FE approximation is twice as small than the
one for a second-order approximation (see also Fig. 3.11 on the next page).

(3.59)

Floating point operations

In order to compare the computational effort, the floating point operations (flop) are
determined to find a solution of the linear system arising from the FE discretisation.
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Figure 3.11: Four first-order and one second-order triangular elements. When first-
and second-order Finite Elements are compared, the number of degrees of
freedom is kept constant and therefore the second-order element triangle
is twice as large.

The computation of this solution takes up the largest part of the approximation
and therefore the computational effort to construct the matrix and to determine
the FD approximations of the surface velocity are neglected. The actual needed
computer time depends not only on the flop count but also on the type of computer
(single processor, massively parallel processors or (parallel) vector processor). As has
been mentioned in the introductory chapter, one of the design criteria is that the
simulation software should run on a single PC which is usually equipped with a single
processor. Therefore, the comparison using the flop count is also a direct measure for
the computational time.

As a direct solver for the linear system arising from the discretisation of the boundary
value problem, a symmetric banded Gauss elimination procedure with back substitu-
tion is adopted. The number of floating point operations for a single solution of the
linear system using this method is counted as:

fiOpSsym. Gauss = nx. B (8 + 7 B + B2), (3.60)

where B is the bandwidth of the matrix (B = nz + i for p[FEM]=1, B 2nz + 2 for
p[FEM]=2). As an iterative solver for the linear system a preconditioned conjugate
gradient (PCG) method is used with incomplete Cholesky factors as a preconditioner.
Both the CG as the Cholesky factorisation are specifically efficient for sparse, sym-
metric and positive definite matrices. The stop criterion for the PCG iterations was
set to

lAx1 - bIl2 <e
1b112

where e = 10_lo was chosen.

For the fill strategy in the incomplete Cholesky factorisation of the matrix
A = [ai, a2.....aJ, a drop tolerance criterion was taken. The drop tolerance level

was set to toi = This implies that the elements for the upper triagonal R matrix
of the decomposition are not stored if

<to1.

(3.61)

(3.62)
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Figure 3.12: The effect of /z, p[FEM] and p[FDJ on the o(1/4, 4) dispersion error.
(3=0, h=1,g=1, zx=1/40)

The number of non-zero elements in R is not a priori known and the exact number
of iterations needed for convergence is also not known in advance. Therefore, the
floating point count is performed a postiori.

Uniform grid

Firstly, we examine the a(1/4, 4) error for uniform grids, i.e. with ¡3 = 0. A systematic
study where x, z, p[FEM] and p{FD] are varied, showed that the results for
zx < 1/40 are virtually independent of Lix. From this study, of which the results are
presented in Fig. 3.12, the following observations are made:

The effect of second-order Finite Elements is negligible with respect to the
a(1/4, 4) error when compared to first-order FE's. Although a second-order FE
approximation does have a positive effect on the longer waves (see Fig. 3.13 on
the next page), the maximum dispersion error is attained at the smallest wave.
The error is not, as one might expect, dominated by the Lx resolution.

The effect of a higher-order FD scheme to approximate is positive and reduces
the error significantly.

For the investigated situations a(1/4, 4) depends almost linearly on z inde-
pendent of p{FEM] and p[FD].
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Figure 3.13: The relative dispersion error cr as a function of the wave length À for
different numerical configurations on a uniform grid. (ß = O, p/FDJ=3,
h=1,g=1,Lx=1/4O)

Fig. 3.14 on the facing page shows the maximum dispersion error as a function of the
computational effort measured in flop's. The horizontal mesh width was kept constant
and the increase in computational effort is the result of the uniform refinement of the
grid in vertical direction.

As expected, the symmetric Gaussian elimination procedure combined with first-order
Finite Elements is more efficient than the iterative solver for smaller (< 35) values
of nz. Extrapolation of the curves, suggests that when a a(1/4, 4)-error lower than 2
% is required, the iterative solver for linear elements becomes more efficient than the
direct solver. The associated computational effort of iO floating point operations
per 2 length units is however unacceptable given the operational constraints. When
second (and higher) order FE's are used, an iterative solver is always found to be
more efficient than a direct solver. However, it was already observed in the previous
study that the effect of second order elements on this error measure is negligible.

A realistic 10 [rnin]simulation of a fully developed sea state would require a computa-
tional domain of length L = 40h over 300TA1 with At = TA1 and Ax = . On a
pentium III 500 [Mhz] computer, such a simulation with a o(1/4, 4) error level of 5%
on a uniform grid would require approximately 45 [hr] of computing time. Besides the
fact that a 5% error in the phase velocity is still considered high, the necessary com-
puting time exceeds the practical 'overnight-job' requirement. The achievable error
level when 12 [hr] of computing time is available would be approximately 15%. The



DISPERSION RELATION 69

i o 106 io7 108

floating point operations (flop)

Figure 3.14: The o(1/4,4) error measure as a function of the computational effort
h=1,g=1,L=2,p[FD]=3,LXx=1/60

results indicate that for small (< 5%) errors, the numerical algorithm on a uniform
grid results in unacceptable long computing time. In the next paragraphs it will be
shown that by choosing ¡3 O, large error reductions can be obtained while keeping
the computational effort fixed. Acceptable levels of accuracy are feasible with linear
elements and only 15 points in the vertical direction.

Nonuniform grid

The above analysis indicates that error levels of 3% are obtainable when a computa-
tional effort of iü floating point operations per 2 length units is invested. However,
as could already be observed in Fig. 3.9 on page 63, increasing the local grid density
near the free surface while keeping the number of DOF constant, can greatly improve
the dispersive properties. In the following paragraphs this improvement is quantified
for the o(1/4,4) measure.

The a(1/4, 4) error was determined for the following combinations of parameters:

-x--- p(FEM]=1 nc. Chal. PCG
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Figure 3.15: 'Optimal' curves from the parameter variation study. The curves visu-
alize the achievable a(1/4, 4) error as a function of the computational
effort. The markers on a curve correspond (in increasing flop direction)
with nz = 7,9,11,13,15.

Systematic variation of these parameters resulted in a total of 270 discretisations.
From these configurations it was observed that an increase of ¡3 from O to 1.5 generally
resulted in a reduction of the error. The flop-a(1/4, 4) curves (as in Fig. 3.17 on
page 72) where determined for all configurations. The four curves with the smallest
errors are plotted in Fig. 3.15. For three configurations on these curves (fiop=(2 x iü,
1 x iO and 2 x 10e), the relative dispersion error a is plotted as a function of the
wavenumber À in Fig. 3.16 on the facing page.

From this study and these figures a number of observations can be made. Firstly, it is
observed that a redistribution of the grid can greatly improve the dispersion properties
of the linearised discretised equations with respect to uniform grids. For example, if
a computational effort of 2 x iO is allowed, the minimal achievable a(1/4, 4)-error on

param. values

p[FEM] i

p[FD] 2, 3, 4
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Figure 3.16: The relative dispersion error cr as a function of the wave length À for
three configurations from Fig. 8.15 on the facing page.

a uniform grid was found to be 2.5 x 10_1 (see Fig. 3.12 on page 67). For the optimal
configuration using grid redistribution, the minimal achievable error is approximately
2.5 x iO-a: an improvement of a factor 100. With the numerical configuration that
requires 3>< 105/(2h) flop's, the realistic simulation sketched at the end of the previous
paragraph can be performed within 4.5 [hrj with an error level <0.3%.

Secondly, the curves of the investigated configurations showed that for nx/h = 61 the
curves are a decaying function of riz, whereas for rix/h = 15 an increasing trend was
observed for higher values of ¡3 (see also Fig. 3.17 on the following page). Thirdly, the
fact that ¡3 = 1.5 for all optimal configurations does not allow for a general conclusion.
For some configurations it was found that a lower value of ¡3 ceteris pari bus was more
efficient. In the case of nx/h = 15 the positive effect of ¡3 is also bounded by a
different error source as can be observed from Fig. 3.17 on the next page. The curve
that bounds the error from below was found to be independent of p[FD].

3.4 Mass and energy conservation

The results of the previous investigations are obtained by analysis of the linearised
discretised equations. These results are quantitative and provide a rationale for the
choice of a combination of methods and grid parameters. The analysis has provided
a measure for small (linear) waves, the numerical method aims at the simulation of
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Figure 3.17: The effect of 13 on the attainable o-(1/4,4) error curves. For larger 13 the
error has a lower bound independent of p/FDJ.

nonlinear waves. Therefore the global aspects of mass and energy conservation for
nonlinear simulation will be further examined quantitatively in the next section. The
discretised equations (3.28) are not the result of the variation of a discretised Hamil-
tonian energy and therefore, no exact energy conservation can be expected. However,
convergence of the discretisations implies convergence to an energy conserving solu-
tion. In this section the deviations from mass and energy conservation are investigated
as a function of the grid parameters and the numerical methods, similar as in the pre-
vious section. This section explicitly deals with nonlinear waves and therefore the
wave height becomes a relevant parameter. Similar to the previous section, natural
boundary conditions are used on the lateral boundaries. The simulation is performed
using the following initial conditions for f and

1](x,O) = Hcos(kx) (3.63)

(x,z,O) = 0 (3.64)

These initial conditions are discretised and as an energy error measure

Erei (t)
0)

(3.65)

is taken, where E(i) is the total discrete energy (see Eq. (3.55)) at time t and E0 is
the total potential energy of the system at rest (i.e. with ì 0). As a measure for
the mass deviations we take

M(t) - M(0)
Mrei(t) = M(0)

13=0

e--- 3=0.5
13=0.75

-.- 13=1
13=1.25

e 13=1.5

nx/h=15

(3.66)
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Figure 3.18: Illustration of the grid used for the simulations to determine energy and
mass conservation. (nx/h = 31, nz = 11, 3 = 1, A = 2, H/A = 1/lo

Fig. 3.18 shows a typical initial grid for the simulations performed to assess the mass
and energy conservation.

It was found that in all simulations, the relative energy and mass oscillate around
a trend line (see e.g. Fig. 3.19 on the following page). To characterize this be-
havior, the linear trend and the standard deviation of the E(t) and M(t) signals
are determined. The length-interval over which the trend is computed is 50 peri-
ods of the linear standing wave associated with the initial conditions. The trend
coefficient and standard deviation are determined for different configurations of the
numerical algorithm. Given the orders of approximation and grid parameters, the
evolution of an initial profile is determined for the combinations of steepness (H/A =
1/10, 1/15, 1/20, 1/25 arid 1/30) and wave length (A = 1/4, 1/2, 1,2 and 4).

From Fig. 3.20 on page 75 one can observe that for uniform grids, the linear trend
coefficients of both the mass and the energy are quite small, even for steep waves.
However, the standard deviation for the energy error is relatively large. For the
shortest A = 1/4 waves (resolved with only 7 grid points in the horizontal direction),
the standard deviation can be as large as 0.3. Remark that this deviation is almost
independent of the steepness of the initial wave. It is further observed that for this
uniform grid, the standard deviation with respect to the relative mass error mainly
depends on the steepness and not on the wavelength. In Fig. 3.21 on page 76 the
evolution of the relative mass and energy deviations for an 'optimal' configuration
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Figure 3.19: The relative error of the energy Eq. (3.65) and mass Eq. (3.66) for a
nonlinear standing wave. (nx/h = 31, p[FEMJ=1, p[FD]=2, nz 11,

/3 = 1.5 zt = 0.06, A = 2, H/A = 1/30

found in the previous section is investigated. It is directly observed that the use of
a nonuniform grid leads to an overall improvement when compared to Fig. 3.20 on
the next page. Roughly speaking, all trend coefficients and standard deviations are
reduced by a factor of 10. Remark that for the shorter waves the standard deviation
is still independent of the steepness, indicating that the standard deviation is mainly
related to the lack of horizontal resolution of the short waves.

Further studies where more grid points in the horizontal direction are used showed
lower standard deviations. When nx/h = 61 grid points are used and the other
parameters are kept constant, the standard deviation for the smallest wave can be
reduced to 0.01. For this configuration the average trend coefficient for mass and
energy are i0 and respectively. The average standard deviations of the
mass and energy are 10-6.5 and i0, respectively.

The following trends with respect to the standard deviations of both mass and energy
have been observed:

The standard deviation decreases with the wave length. Clearly, this is an
effect of the increase in spatial resolution per wavelength. From the results on
the dispersion error (Fig. 3.16 on page 71), this improvement cannot be related
to a better velocity approximation.

The standard deviation increases with the steepness. This is probably related

3
Erei(t)

2 tiIlilI 4I il'' I s 's 1.51 i1 il_!.I

O 20 40 60 80 100 120 140 160 180



101og of linear trend coefficient
ofM (t)

rei

101og of hnear trend coefficient
ofE (t)

rei

0.1

0.08

0.06

0.04

101og of s.d. from
linear trend line of M (t)

rei

4

Figure 3.20: The contour plots of the '° log of the trend coefficients (that have negative
Sign) and standard deviations for a uniform (13 = 0) numerical grid.
(nx/h = 31, p/FDJ=2, p[FEM]=1, nz = 11, t 0.06)

to the truncation error of the geometrical and algebraic approximation of the
horizontal derivatives at the free surface.

Investigations to whether or not the standard deviations are related to the local
horizontal resolution near the fixed walls showed no relation. It is thus concluded
that the deviations cannot be improved by local grid refinement near the horizontal
walls.

3.5 Applications

In this section two applications of the numerical algorithm using natural boundary
conditions will be described. The first application is related to a validational study
on the sloshing of a wave in a rectangular container. The second application concerns
the splitting of a solitary wave over an uneven bottom.
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Figure 3.21: The contour plots of the '° log of the trend coefficients (that have negative
sign) and standard deviations. The numerical configuration is identical
to Fig. 3.20 on the page before except that the grid density ¡3 = 1.5.

3.5.1 Comparative study on a sloshing wave

In 1994 Det Norske Ventas (DNV) initiated a comparative study for researchers
involved in fully nonlinear water wave calculations (cf. Nestegârd (1994)). One of the
test cases in the comparative study was the calculation of a sloshing wave. Given the
dimensions of the water tank (h x L = 70m x 160m) and the initially steady surface
profile

ij(x,0) = 12 [i - (x/53)2] e_I76)2, (3.67)

participants in the comparative study were asked to compute the surface elevation
and horizontal and vertical surface velocities at t = 9.2 [s] at z = 60 [m]. In this
subsection, the evolution of the initial condition Eq. (3.67) is computed to compare
the results with the values obtained by the participants of the validation study. For the
simulation, a regular grid of 15 x 160 nodes with a time step t = 0.1 and /3 = 1.5,
p[FD]=2 was used. The space-time evolution of the initial condition Eq. (3.67) is
plotted in Fig. 3.22 on the next page.

There were 7 participants that contributed to this comparative study. Most of the
participants used methods based on the Boundary Integral Equation formulation.
Table 3.1 summarizes the results of the participants added with the results obtained
by using the numerical algorithm of the present thesis. As can be observed, the results

2 3 4 2 3 4
2./h 21h

2'h 4
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Figure 3.22: s - t plot of the evolution following from the initial conditions (3.67) of
the comparative study on sloshing waves.

of the presented method are in reasonable mutual agreement with the results obtained
by the other participants.

3.5.2 Solitary wave propagation over uneven bottoms

In this section we describe an application of the developed numerical method for
the problem of steadily propagating solitary waves and the splitting of such waves
during run-up over a bottom. Although the problem is not on the typical scale of a
hydrodynamic model test basin, it describes an interesting phenomena by itself. As
the problem does not involve any special lateral boundary conditions, it can be used to
investigate the applicability of the developed numerical scheme. As the propagation
of solitary waves is a subtle balance between dispersion and nonlinearity, accurate
simulation of the evolution of a solitary wave is only possible when both these aspects
are well discretised.

The application of the numerical scheme to the splitting of a solitary wave is moti-
vated by investigations of Pudjaprasetya (1996) and van Daalen et al. (1997). The
splitting of solitary waves has been investigated since the seventies by Grimshaw
(1970) and Johnson (1973) and we refer to Johnson (1994) for further references. In
Pudjaprasetya (1996) a KdV model is developed to numerically simulate the evolu-
tion of a soliton over an uneven bottom. In van Daalen et al. (1997) this splitting is
compared with fully nonlinear numerical simulations using a boundary-integral panel
method developed by Romate (1989) and later improved by van Daalen (1993). Van
Daalen et al. reported the fully nonlinear simulation of the splitting of solitary waves
into 2 separated solitary waves after run-up. By introducing a larger change in depth,
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Table 3.1: Comparison of the surface elevation ij, the horizontal velocity u and the
vertical velocity y of the free surface at t = 9.2 [s}, x = 60 fm] obtained by
the participants in the comparative study of DNV (cf. Nestegârd (1994))
with the results obtained by the present method.

splitting into three solitary waves is predicted by KdV models. However, this three-
way splitting process has not been reproduced by numerical simulation of the fully
nonlinear surface equations.

The simulations on solitary wave evolution in this section are performed to

verify whether the developed numerical scheme can reproduce the results on the
splitting of a single solitary wave into two solitary waves.

investigate if the numerical scheme allows for the splitting of a solitary wave into
three solitary waves. This has, to our knowledge, not yet been accomplished by
other fully nonlinear surface wave simulations.

The geometric dimension for these simulations are L = 300 [m] and h0 = 0.5 {m] and
the total simulation time is 120 [s]. The value of the mesh parameter ¡3 is set at a
value of 1.5 in accordance with the previous investigations. The polynomial orders are
p{FEM]=1 and p[FD]=2, and the time step is chosen t = 0.05. The fixed horizontal
mesh width is L.x = 0.1 [m] and the number of nodes in the vertical direction is fixed
at nz = 7.

As an initial condition a steady profile is used

ij(x, 0) = 0.215 . sech(1.18 . z). (3.68)

This initial condition was constructed empirically with the aim to obtain a reasonable
steady propagating solitary wave with a height of approximately 0.1 {m]. The result of
the evolution of this initially steady solution is visualised in Fig. 3.23 on the preceding

part. nr. rì(60, 9.2) u(60, 9.2) v(60, 9.2)

1 -3.803 -2.456 -0.363

2 -3.860 -2.280 -0.560

3 -3.815 -2.414 -0.445

4 -3.759 -2.411 (-)0.602

5 -3.820 -2.417 -0.580

6 -3.803 -2.417 -0.572

7 -3.720 -2.480 -0.690

our result -3.788 -2.401 -0.561
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Figure 3.23: Solitary wave propagation. (a) space-time plot of Eq. (3.68), rì(x, t) >
O.O5H01 is plotted. (b) snapshot of free surface. (c) Closeup of figure (b)
around the oscillating tail.
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Figure 3.24: (a) Different snapshots of the evolution of Eq. (3.68) (b) Comparison
of the numerical solitary wave with an exact Boussinesq solitary wave
solution Eq. (3.69)
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page and Fig. 3.24 on the page before. From these figures the following observations
can be made

In Fig. 3.23(a) the space-time evolution of the initial profile Eq. (3.68) is visu-
alised by plotting all values ì(x, t) > 5 10, i.e. 5% of the height of the solitary
wave. The figure clearly shows an isolated wave moving at constant velocity.

In Fig. 3.23(b) the spatial structure of the solitary wave for a fixed time step
is shown. Although the solitary wave seems indeed the only free-surface distur-
bance, closer examination of the tail of the solitary wave in Fig. 3.23(c), shows
the presence of a wiggly tail. The amplitude of the oscillating tail decreases fur-
ther away from the solitary wave and its maximal amplitude is approximately
2% of the height of the solitary wave. The wiggling tail is a consequence of
the way the solitary wave was generated. More sophisticated initial solutions,
e.g. parts of analytical Rienecker-Fenton cnoidal solutions (cf. Rienecker &
Fenton (1981) and van Daalen et al. (1997)), could be used to improve the com-
pactness of the solitary wave. It turns out however, that the empirical solitary
wave generation method by Eq. (3.68) is sufficient for describing the splitting
phenomena.

Fig. 3.24(a) also shows the constant shape of the solitary wave by plotting the
surface elevation at regular time intervals. In Fig. 3.24(b) the numerical solution
is compared to the exact solitary wave solution

+ H)t
î(x,t)=Hsech2 (-/ 4h3(1+II/h)

3H

of the Boussinesq equation with improved frequency dispersion, Eq. (3.17) on
page 45.

The solitary wave solution Eq. (3.69) is translated to fit to the position of the
numerical solitary wave. Note however, that the width of the solitary wave solu-
tion (3.69) is fixed by the amplitude and therefore is not fitted. The comparison
between the analytic solitary wave of the improved Boussinesq equation and the
numerical wave is excellent. Comparison of the numerical wave with solitary
wave solutions of the Korteweg-de Vries (KdV) and the Benjamin-Bona-Mahony
(BBM, Benjamin et al. (1972)) equations showed less good agreement.

The velocity of the numerical solitary wave is approximately 2.427 [mIs], which is
in close agreement with velocities obtained from analytical models; KdV & BBM:
c = (i + = 2.436 [m/s]; Boussinesq: e = /g(h + H) = 2.426 [m/s]. Remark
that the velocity of the Boussinesq model resembles more closely the velocity obtained
from the numerical simulation than the KdV and BBM velocity. The previous figures
and comparisons show that the empirically chosen initial condition Eq. (3.68) indeed
produces a solitary wave and this solitary wave more closely resembles the solitary

(3.69)
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Figure 3.25: Illustration of the grid used for the simulation of solitary wave splitting
over the bottom topography (h1 = 0.25).

solution of the improved Boussinesq equation than the solitary wave solution of the
KdV and BBM equation.

As indicated in the introductory part of this section, the main interest is in the
dynamics of this propagating solitary wave when the bottom topography contains a
slope. The bottom increases linearly from the original depth h0 = 0.5 [m] to a new
water depth h1. During the propagation over the slope, the wave will be partially
reflected but the vast majority of the wave energy is transmitted. The solitary wave
no longer 'fits' on the new depth and therefore disintegrates into solitary waves and
radiation. Fig. 3.25 shows the grid around the solitary wave as it is propagating
directly above the slope.

This process of wave splitting depends on the slope of the beach and the new water
depth after the slope. In all simulations, the depth linearly increased from h 0.5 at
x = 30 to h1 at x = 40 [m]. Fig. 3.26(a)-(e) show the numerical solutions at t = 119
[s] for different values of the final depth h1. Clearly the original solitary wave deforms
and for decreasing depths the splitting into new solitary waves is visible. Remark
however that this process is quite gradual and that what appears to be a periodic
tail just behind the original solitary wave in (a) and (b) can be identified with a new
solitary wave in (c).

The distinct separation into two solitary waves (situation where h1 = 0.3068) reported
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Figure 3.26: The solitary wave of Fig. 3.23 has run up a linear slope from h0=O.5 to
h1 from x = 30 [mJ to x = 40 /mJ. The figures show snapshots of the
free-surface elevation at t = 119 ¡s] for different final depths h1.
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Figure 3.27: z-t plot of the splitting of the solitary wave of Fig. 3.23(a) over a bottom

slope (between z = 30 and z = 40 [mJ) from a depth of h0 0.5 to h1 =
0.3068 /mJ (see also Fig. 3.26 on the facing page(d)). i(x, t) > 0.05H is
plotted.

by previous authors was reproduced. The splitting is visualised in Fig. 3.27 where

oniy the values for ij > 0.005 have been plotted.

As could be observed from Fig. 3.26(e), the splitting into three solitary waves is also
found as a numerical solution of the nonlinear free-surface equations. This three-way
splitting is visualised in Fig. 3.28 on the next page, in which again oiiy the values
larger than 0.05H are plotted. From this figure the difference in speed of the three
identified solitary waves can be observed. The velocities of the split solitary waves are
compared to the theoretical velocities of a Boussinesq solitary wave in Table 3.2. It is
found that the velocities of the fully nonlinear solitary waves are in close agreement
but differ slightly from the solitary wave solution of the Boussinesq equation with the

same wave height.

3.6 Conclusions

We conclude this chapter by summarizing the main results obtained in the previous
sections. All numerical results in this chapter were obtained with respect to natural
boundary conditions.

150
x[m]

200 250

It was found from linear Von Neumann stability analysis that the numerical scheme

50 100
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x [m]

Figure 3.28: x-t plot of the splitting of the solitary wave over a bottom slope (between
x = 30 and x = 40 [mJ) from a depth of h0 = 0.5 to h1 = 0.25 /m] (see
also Fig. 3.26(e)). i(x, t) > 0.05H is plotted.

Table 3.2: Wave height and velocities of the numerical solitary waves after splitting
compared to the velocities of the Boussinesq solztary wave solutions with
the same wave height.

Wave nr. Hrium CfuII CBq

1 0.164 1.996 2.015

2 0.0538 1.710 1.726

3 0.0126 1.590 1.605
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is stable for all investigated polynomial orders of the Finite Elements and Finite
Differences, independent of the grid density and the orientation of the FE triangles.
Moreover, it was found that the global projection method resulted in an unstable
numerical scheme, specifically for the higher frequencies. This explains the need for
additional smoothing when this method is used for velocity recovery.

Analysis of the Runge-Kutta tilne integration showed that in contrast to a 4-stage
method, a 5-stage method results in growing solutions of the linearised discretised
equations. However, actual amplification factors were found to be very small. In non-
linear simulations, it was always found that the energy slightly decreases and therefore

it is concluded that the numerical dissipation caused by the geometric modelling com-
pensates the amplifications due to the use of a 5-stage method.

A grid refinement study showed that for p[FEM]=1 and p[FD]=2 the numerical
scheme is second-order accurate with respect to the energy.

A parameter variation study has been performed to examine the dispersive properties
of the linearised discretised equations. A physically significant error measure a has
been introduced that corresponds to the relative error in the phase velocity of the nu-
merical linear waves with respect to continuous linear waves. In practical applications

many waves with different frequencies are simulated using one numerical grid. There-
fore, the maximum dispersion error over a range of wave lengths was introduced. The
limits for the wave lengths were set to 1/4 to 4 times the water depth which contains

the vast majority of waves generated in the laboratory.

It was found that by a suitable choice of grid density parameters and polynomial
order of approximations of the FE's and FD's, the maximum relative error dispersion
a(1/4, 4) can be reduced by a factor loo for the same computational effort. It was
also found that in the range of allowable computational effort the use of second-
order Finite Elements does not lead to an efficiency improvement with respect to the

a(1/4,4) error.

Quantitative examination of the mass and energy conservation of the numerical algo-

rithm showed that mass and energy very slowly decrease as a function of time. The
relative error in the mass and energy has been computed for different wavelengths

and wave steepness. The use of a nonuniform grid again showed significant reduction
of the error. The amplitude of the oscillations of the energy error around its trend is
mainly due to the horizontal resolution of the wave.

Two applications of the numerical algorithm to non-linear wave problems have been
presented. A comparative study on the sloshing of a wave in a container showed

good agreement with other numerical results. The second application concerned the
splitting of a solitary wave over an uneven bottom. The previously reported splitting
in two solitary waves was reproduced. By further decreasing the final depth, a splitting
in three solitary waves was found to occur. The velocities of the solitary waves that
result from the splitting process are in good agreement with theory.
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Chapter 4

Simulation of Wave
Generation

In the previous chapter the developed numerical scheme was investigated with respect
to natural boundary conditions imposed at the lateral walls. These natural boundary
conditions correspond to impermeable fixed walls. To introduce surface wave dynam-
ics under these boundary conditions, an artificial initial condition on the free-surface
elevation and velocity was imposed. In this chapter other methods will be investigated
to generate free-surface dynamics in a numerical wave tank. The available methods
are (e.g. Kim et al. (1999)):

Prescribed free-surface position and velocity; possibly with space periodic bound-
ary conditions.

Discrete Internal Singularities.

Numerical velocity generation at the inflow boundary.

Wave-maker motion.

The prescribed free-surface technique (1) in combination with space periodic boundary
conditions has been used to study the evolution of periodic signals ou relative small
computational domains (e.g. Longuet-Higgins & Cokelet (1976)). It is noted however,
that the forced spatial periodicity may result in artificial evolution, especially when
long time scales are involved. The discrete internal singularities method (2) was
originally developed by Brorsen & Larsen (1987) for methods based on a boundary
integral formulation. Recently, Clément (1999b) developed internal spinning dipoles
generating uni-directional waves. In the following sections, the numerical velocity
generation (3) and wave-maker motion technique (4) are examined, because these
techniques are closely related to the actual wave generation process in a model basin.

87
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The main emphasis is on the numerical aspects of wave generation. The actual steering
of the wave makers, including the construction of second-order steering signals is
discussed in detail by e.g. Schäffer (1996). In an experimental model basin, waves
are usually generated using a wave maker. There are three types of wave makers: (a)
piston-type wave makers (b) flap-type wave makers (c) plunger-type wave makers. At
MARIN, flap-type wave makers are exclusively used for wave generation.

In Section 4.1 the flap and piston type wave makers are introduced and their imple-
mentation in the numerical scheme developed in the previous chapters is discussed.
The numerical model is analyzed to determine stability and to obtain the discrete
Biésel transfer functions relating the wave board stroke to the generated wave ampli-
tude. In Section 4.2 the heaving wedge type wave maker is discussed. Linear stability
analysis is performed and the results of a comparative study with other numerical
methods are presented. In Section 4.3 two special implementations of numerical ve-

locity generation are discussed. The results of this chapter are summarised in the
concluding Section 4.4.

4.1 Flap- and piston-type wave maker

The most commonly used wave makers in model basins are the flap- and piston-
type wave maker. The piston-type wave maker is a vertical board that oscillates in
the horizontal direction. A flap-type wave maker is a hinged board that oscillates
around a rotation point. The numerical simulation of these flap- and piston-type
wave makers involves the movement of the grid near the oscilating wave board. In
Subsection 4.1.4 the applicability of the discretisation is examined by comparing the
results from the linearised discretised equations to results from the exact theory on
linear waves generated by a wave maker.

The first theory on linear forced waves in water of finite depth was presented by
Havelock (1929). Linearised solutions for both flaps and piston-type wave makers
were later derived by Biésel (1951). These solutions are based on linearisation of
both the free-surface elevation and the stroke of the waveboard. Since then, many
extensions of this theory involving second-order contributions have been presented. A
complete second-order wave-maker theory for planar wave makers has however been
developed only recently by Schäffer (1996).

4.1.1 Linear theory

Following the wave-maker characterisation of Schäffer (1996), both flap- and piston
type wave makers can be represented by the same linear model as
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T(t) = iäe

is given by

(4.2)

ag cosh (k (z + h)) 'i(kjx_t) (4.4a)(x,z,t) cosh(kh)w
i=o

i1(z,t) = aCjei(kix_wt), (4.4b)

i=1

where the kg's are solutions of

= gk tanh (kh). (4.5)

Of course, only the real part of these complex solutions corresponds to physical quan-
tities. Remark that, unlike Eqs. (3.8a)-(3.Sb) not only the progressive wave solution
k0 is incorporated, but also the so-called evanescent modes k»> 1. These evanescent
modes correspond to imaginary solutions of the dispersion relation (4.5). The pro-
gressive mode is sinusoidal in the horizontal direction and hyperbolic in the depth,
while the evanescent modes are sinusoidal in the depth and hyperbolic in the hori-
zontal coordinate. The coefficients C are determined by substitution of Eqs. (4.4a)

and (4.2) in Eq. (4.le), multiplying by icosh(k(z + h)) and integrating the result

L=O inÇ (4.la)

17j=4 onz=O (4.lb)

t-971 onz=O (4.lc)

=O onz=h (4.ld)

= g(z)T(t) on x = O. (4.le)

with a radiation condition for x -* oc. Both the kinematic and dynamic boundary
conditions, as the stroke function of the wave board have been linearised. The type
of wave generation is governed by the function g(z) in Eq. (4.le), which is defined as

g(z)={

1+ for (hd)zO
O for h<z<(hd).

In Eq. (4.2), z = (1 + 1) is the center of rotation of the board and d > O is the
elevation of the hinge over the bottom. If the center of rotation is below the bottom,
then d = O. The case i = oc, d = O corresponds to a piston-type wave maker and the

case where i = d < O corresponds to a flap-type wave maker (see also Fig. 4.1 on

the following page).

The general solution of the set of Eqs. (4.la)-(4.le) for a harmonic oscillating wave
board, i.e. with T(t) as

cjt (4.3)



Figure 4.1: A piston- and a flap-type wave maker, the values i and d of Eq. (.2)
determine the wave-maker type.

over the depth. This projection on the base functions cosh (k (z + h)) leads to the
following formula for the coefficients C.

A1 (ka)
C =sinhkihA(k)

with

A1 (lcd)

Piston-type, 1, d0 Flap-type, 1-d<O

(4.6)

d + i
(k3d) +

i cosh (kid) - cosh (kh)sinh (kh) - sinhh+l h+l k
(4.7)

A2 (ki) = {kh + sinh (kh) cosh (kh)]. (4.8)

The function co(w) is called the Biésel transfer function, which gives the relation
between the amplitude a of the wave board and the amplitude a of the progressive
wave as

a = C0a. (4.9)

Figs. 4.2 and 4.3 show the magnitude of the evanescent modes as a function of the
non-dimensionalised frequency for the wave-maker values i = d = 0.68. These
values for i and d correspond to the flap-type wave makers used at the Seakeeping
and Manoeuvering Basin at MARIN. Clearly, the effect of the evanescent modes can
have a large influence on the total amplitude of the wave quantities at the wave
board. As pointed out by Schäffer (1996) it is therefore important to take the second-
order evanescent mode interactions into account when developing a second-order wave-
maker theory. Tri order to accurately simulate the generated waves in the fully non-
linear numerical algorithm, these evanescent modes need also to be well resolved on
the grid.

90 SIMULATION OF WAVE GENERATION
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Figure 4.2: (a) The Biésel transfer function C0 and the total magnitude of the evanes-

cent modes i C1 at x = O of Eq. (4.6), (b) The relative magnitude of
the evanescent modes compared to the progressive mode. (i = d = 0.68)

Figure 4.3: The first .10 imaginary wavenumbers ikh and the corresponding relative

contribution of the evanescent mode C/ICoI for different frequencies i =
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Connecting elements

Figure 4.4: The stiffness matrices for i and 12 are constructed separately using natu-
ral boundary conditions on the interface. The matrices of = i u!U1ì2
is constructed by the addition of the element contributions of !ìe.

4.1.2 Numerical modelling

It was already mentioned in Subsection 2.3 that the numerical modelling of the ge-
ometric domain is approached in a modular way. The geometry is e.g. split up in a
wave-maker domain and a wave propagation domain ì2. These domains are inde-
pendently developed and implemented in a computer code. All grid nodes are defined
and controlled by the local domain grid generation algorithm. The finite elements
are also locally constructed using natural boundary conditions (V n = O) on the
lateral sides. Before proceeding with the global time marching scheme (see Fig. 2.2
on page 25), the highest level of the numerical algorithm connects the independent
domains by adding elements as is schematically depicted in Fig. 4.4. The additional
contribution to the interaction integrals a(.,.) results in a change of the algebraic
equations obtained from the FEM discretisation of the individual domains. For linear
base functions, the combined new equations are identical to the equations obtained
from direct FEM discretisation of the total domain ì = 11 U Í1 U Remark
that for higher-order elements (p{FEM] >2) also additional equations appear when
the interface elements are added, due to the introduction of new base functions.

In the previous chapter, the performance of the numerical scheme on a domain with
natural boundary conditions has been examined. In this section, the numerical grid
and performance of the scheme for a flap wave maker is investigated. At the outflow
boundary of the wave-maker domain, natural boundary conditions are imposed. This
assures that (if the number of nodes in the vertical direction is identical) the wave
maker can be connected directly to the propagation domain of the previous chapter.
In this section we will introduce some grid structure parameters for the developed
wave maker domain. Because the grid generation of a piston follows by analogy
from the grid generation of the flap-type wave maker, only the grid structure of the
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Figure 4.5: The numerical grid near a flap wave maker. The structure of the grid is
governed by the rotation point of the flap, the density factors ßi, /32 and
the fraction of grid points on the flap board.

flap-type wave maker is introduced.

The structure of the grid around a flap wave maker is governed by (a) the rotation
point of the flap, (b) the grid density parameters on the flap /3i and on the outflow
boundary /32 and (c) the fraction of grid points on the flap. The grid is constructed

from two regular blocks (topological equivalent to rectangular blocks) as depicted
schematically in Fig. 4.5.

The grid generation of a block consists of two parts: (1) definition of the grid nodes

on the four block-boundaries and (2) generation of the grid points inside the block.
The boundaries of block A in Fig. 4.5 are defined by the free-surface boundary nodes,

the node distribution on the flap and the node distribution on the outflow boundary.
The lateral boundaries are defined by the grid distribution parameters /3, and /32 (see

Eq. (3.22)-(3.23). The grid points on the lower horizontal boundary of block A are
uniformly distributed over the block boundary.

The nodes in the interior of a block follow from a partition of the vertical lines
connecting the nodes on the upper-horizontal block boundary and the lower horizontal
block boundary. The distribution of the nodes on these lines varies linearly from the
node distribution of the left boundary to the node distribution on the right boundary.

This process is formalised in the following way. Assume that the block consist of

Nr x Nz nodes. The coordinates of the nodes of the grid are defined as m(i, j) =

(xi, z). At the i = i boundary, the relative distance between the j> i node and the
j = i node is given as

n(1,Nz) n(1,j)3- n(1, Nz) - n(1, 1)1

and at the j = Nx boundary. the relative distances are given as

In(Nx, Nz) - n(Nx,j)I
NxUì - n(Nx,Nz)n(Nz,1)I

(4.10)

(4.11)
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The coordinates of the interior nodes (1 <i <Nx, i <j <Nz) are now defined as

fNx -n(i,j) = n(i, 1) + (n(i, Nz) - n(i, 1)) N - ' + i )) (4.12)

By this construction process a smoothly varying grid is generated that depends con-
tinuously on the position of the nodes of the flap and the nodes on the free surface.
Remark that the grid is only well-defined if the left and right boundary have a small
curvature. In all applications we consider, the left and right boundary of a block are
straight lines, and the resulting grid is always well defined.

Grid points on the wave maker

The position of the grid points along the wave-maker board is determined from the
position of the grid point at the intersection between the free surface and the wave
maker. The distribution of the grid points from the rotation point to the intersection
point is defined by ß (see also Eq. (3.22)-(3.23)). The motion of this intersection
grid point is Lagrangian and its normal (with respect to the wave maker) velocity
is prescribed by the motion of the wave maker. To obtain the velocity vector at
this intersection point the tangential velocity along the wave board is determined
using Finite Differences. The normal velocity at the nodes is determined from the
prescribed angular-velocity of the board and the distance between the node and the
rotation point. The normal velocity varies linearly over the wave board and is thus
represented exactly by the restriction of first- or higher-order polynomial FE base
functions to the boundary.

Free-surface grid points

If the grid points at the free surface are only allowed to move in the horizontal
direction (& = i in Eq. (2.24)), the distance between the free-surface grid point at
the wavemaker (which has to move completely Lagrangian, i.e. & = O) and the first
free-surface grid point can become very large or very small and even negative for
large amplitudes of the wave board and small horizontal mesh width. Clearly the
simulation halts as soon as the distance becomes negative and the free-surface node
has 'penetrated' the wave-maker board.

To avoid this grid point collision problem there are several possibilities:

Fixation of the horizontal position of the first free surface grid point such that
it cannot be reached by the wave board. Although this avoids the collision
problem for long and small regular waves it results in very inaccurate results for
higher and shorter regular waves due to the extremely large local mesh width.
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Identification of all surface grid points with material points. Although this works
for a short period of time, it will finally result in uncontrolled grid motion with
possibly locally a very small mesh width, leading to unstable results if the time
step is not adapted.

Use a mixed Lagrangian description, e.g. setting â = , for the first free-surface
grid point and let the value of â slowly reduce to â = O for the next free-surface
points. This will solve the problem for a longer time than the previous solution,
but there are still some problems involved. (1) the starting value of â is arbitrary
and (2) because the value of â is non-zero, the grid point will partially behave as
a material point and therefore experience an non-zero average velocity. When
performing simulations for long time, we found that the latter effect becomes
significant, leading to large local mesh width and finally to solution breakdown.

To avoid the problems associated with the above possibilities, an active-grid
procedure was developed. This procedure is based on a local and dynamic con-
struction of â such that the horizontal local grid velocity is a predefined factor
of the horizontal grid velocity of the intersection point. This factor decreases
linearly from 1 near the wave make to O at some specified distance from the
wave maker.

The active-grid procedure is formalised as follows. Let the free-surface grid points be
numbered as (xi, z), i = O,... , n. The grid point x0 corresponds to the intersection
point and its horizontal velocity is denoted as u0. The desired horizontal grid velocity
of x with i > O is

D ihxi = (1 + = u0

which defines â dynamically for O as

i I- x)i

(x)i
If = O then the value of â is irrelevant and is set to zero. The result of the above
dynamic and local definition of â is that the grid stretches in the horizontal direction
with the motion of the flap. This construction makes it possible to perform long time
simulations using the wave maker with arbitrary fine grids near the wave maker and
a priori bounds on the minimal/maximal grid width.

4.1.3 Grid convergence

To check the implementation of the wave maker a grid refinement study was performed
for a typical wave. This refinement study was performed for several values ¡3 of the
grid distribution on the flap. The geometrical configuration was h = 1, L = 10,
the gravitational constant g equals i and the rotation point of the flap was set at

(4.13)

(4.14)



96 SIMULATION OF WAVE GENERATION

X

Figure 4.6: Free-surface elevation att = 20 for 3 refined grids (g = 1, h = 1, A 0.05,

d = 0.5, w=1.8, 2 p[FEMJ=1, pFDJ=2,.

z = 0.5. A wave was generated with an intended amplitude (based on linear theory)
of A = 0.05 with a frequency w = 1.8. The vertical grid distribution factor 32 (see

also Fig. 4.5 on page 93) at L = 10 is set to ¡32 = 1. The grid was uniformly refined

with a parameter hgrjd. The following table gives the number of nodes in the vertical
direction (nz) and the number of nodes above and including the rotation point (îizi)
and the number below the rotation point (flZ2) for the three refined grids.

The horizontal mesh width arid time step depend on hgrid as = hgrid and

Lt hgrjcj. In Fig. 4.7 the grid near the wave maker is plotted at t = 12 for

hgrid 1/2 and ßi = 1. The convergence was checked for ¡3i = 0, i,... (the grid
distribution factor on the flap, see Fig. 4.5 on page 93). It was found that the surface
elevation 7] at t = 20 converged for all investigated values of ¡3f. As an example
Fig. 4.6 shows the free surface for three refined grids with ¡3 = 1.

hgrid flZ TiZi flZ2

1 9 6 3

1/2 17 11 6

1/4 33 21 11
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Figure 4.7: Grid near the wave maker for one of the simulations in the convergence
study. t 12. hgrjd = 1/2, i 1)

4.1.4 Linear analysis

This ssubsection is an extension of the linear analysis of Section 3.2.2. The same
notation is used arid not further introduced here. A new index set Js/ is defined that
holds the indices of all nodes (xi, z) that are part of the wave-maker boundary Fw.
Remark that there is exactly one node, the intersection point, that belongs to , but
does not belong to I. Moreover, this node belongs to D when the intersection point
is considered as a part of the free surface.

Discretised equations

The normal velocity g(z), see also Eq. (4.le), along the boundary Fv is approximated
by the restriction of the node functions N to F" as

(z) = .qNIÇN (4.15)
iE

where the values of = gj are simply determined as

g = g(zj). (4.16)
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For notational convenience the bilinear form b is introduced as

b(g,v) = (g,v)ÇN
= fN

g(s)v(s)ds. (4.17)

Substitution of Eq. (4.15) and (4.17) in Eq. (2.40) leads to the following extension of
Eq. (3.31),

a = a + b ( iNilrNNiIrN) Vj E I. (4.18)

iCI jED iEJ/

Similar to the introduction of the matrices Acj. in Eq. (3.33), the matrices Bjc are

introduced as

(Bxc) = b (N)qi)IrN,N1(j)IFN) (4.19)

Analogous to the construction of Eq. (3.36) the following is readily derived,

Dz [0] = [D1AA1 + + = + LAr. (4.20)

The linearised discretised equations for a wave generator are thus given by

q,=Aq+b. (4.21)

where the matrix A in Eq. (4.21) is identical to the matrix A in Eq. (3.36) and the
matrix b = L.. The linear stability of the equations including the discretisation
of the wave maker is thus not affected by the wave maker. In Chapter 5 this linear
analysis is extended to include an absorbing boundary (Sommerfeld condition). This
boundary condition is completely transparent to progressive linear waves when the
phase speed of the linear regular wave is provided. With this additional boundary
condition the periodic solutions of the linearised discretised equations can be obtained.
We are specifically interested in the envelope of the linear free-surface elevation, which
is computed by first solving for time periodic solutions q = given = as

(iwl - A)j = b. (4.22)

Eq. (4.22) is solved using a preconditioned Conjugate Gradient Squared (CGS) method
with incomplete Cholesky factors (ICF) as preconditioners. When the drop tolerance
of the ICF is set to iO4 the relative residue converges typically to a value < 1012

within 10 iterations. The envelope is then determined as

As the function g(z) is normalised to i for z = 0, the Biésel transfer function of the
numerical wave-maker model can be directly determined from the envelope amplitude

.
In Fig. 4.8 the numerical (from linear analysis of the discretised equations) and

analytical (from Eq. (4.6)) Biésel functions are plotted for several grid configurations
to illustrate the effect of the grid parameters ß, nx/h and nz. The parameters that
were kept constant are: p{FEM]=1, p[FD]=2, L = 8, i = d = 0.68. When nz = 11
nodes are used in the vertical direction, the number of grid points on the flap nz1 is
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chosen to be 7 (corresponding to 5 elements). For the case that riz = 21 vertical nodes
are used, the number of grid points on the flap is chosen as nz1 = 12. In Fig. 4.9 on
page 101 the Biésel transfer function is plotted for nx/h = 25 with nz = 11. From
these figures the following observations are made.

For small frequency waves, the relation between the exact and numerical Biésel
function is satisfactory, but for high frequency waves, the numerical transfer
functions are higher than the exact results.

Increasing the number of grid points in the vertical direction leads to better
approximation of the exact transfer function but a measurable difference is still
present. Increasing the number of grid points in the horizontal direction leads to
smoother curves around the high frequencies and a small overall improvement.

Changing the grid distribution ¡3 on the flap only shows significant improvement
for high frequency waves and for sufficient horizontal resolution. However, for
nx/h = 25 (fig. 4.9 on page 101) it is observed that the numerical estimate for
high frequency waves (w > 3) corresponding to wave lengths smaller than 0.7,
the estimated values severely deviate from the exact values for all values of ß.
The choice of i3 = O and w = 5 (, = 6) even lead to a numerical solution
without progressive waves.

In all figures, it seems that for w <3, the numerical values agree best with the
exact values for ¡3 = 0, whereas for the high frequencies /3 > O seems to give
the better results.

To further investigate to what extent the evanescent modes are resolved, the numerical
and exact wave envelope near the free surface are plotted. In Fig. 4.10 the numerical
and exact envelopes near the wave maker are shown for a modestly resolved grid
configuration (ax/h = 31, nz = 11, ¡3i = 1.5, 132 = 1.5, riz1 = 8, 1 = d = 0.68).
The exact result follows from Eq. (4.4b) where the first 10 evanescent modes have
been used to approximate the infinite sum. As can be observed, the correspondence is
quite satisfactory for w/h/g = i and w/h/g = 2 (corresponding with A > h). For

= 3 some deviations between the numerical and exact result can be observed.
For higher frequencies w/h/g = 4 and w/h/g = 5 (corresponding to A < h) the
shape of the envelopes is quite similar, but as was already observed from the previous
figures, the numerical amplitude is higher than the theoretical amplitude.

Overall it is concluded that relative fine horizontal and vertical grids are necessary to
accurately model the flap-type wave generation for high frequency waves compared
to the grids needed for accurate wave propagation. This is most probably related to
the larger velocity gradients occurring from the transition of the prescribed velocity
field near the wave maker to the progressive wave velocity field. The results show
however that reasonable results for the near field wave envelope can be achieved for
the I = d = 0.68 flap, if the grid density parameter is chosen as = 1.5 and
rizi 8 and nix/h > 31. It is however recommended that the linear analysis of the
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(4.23)

2. The intersection point is treated as not belonging to FD. In this case the poten-
tial at the intersection point is added as a degree of freedom to the equations.

1.5 2 2.5 3 3.5 4 4.5 5

w (h/g)112

Figure 4.9: The numerical and theoretical Biésel transfer functions for different values
of /3 for nz = 11, nz1 = 7 and nx/h = 25.

discretised equations outlined in Section 4.1.4 is used to construct the discrete transfer
functions and that these are used instead of the exact Biésel transfer functions when
numerical flap driving signals are generated from target wave spectra.

Intersection point

The surface grid point at the intersection between the free surface and the wave-maker
board has to coincide with a material point. Therefore the motion of the intersection
grid point x is described by the equation (see also Eq. (2.25) with Vcor = 0)

Dxi..
Dt

However, there appear to be two possibilities to treat the potential at the intersection
point:

1. In the discretisation of the boundary value problem, the intersection point is
considered to belong to ID. In this case a Dirichiet condition has to be imposed
at the intersection point. Because the intersection point is thus considered
part of the free surface it is treated almost identical to free-surface nodes. The
only difference is that the normal derivative of the potential is prescribed by a
function instead of finite differences along the free surface.

0.5

o
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Figure 4.10: Comparison between the exact (see Subsection ij.1.1 on page 88) and
numerical wave envelope near the wave generator. (pfFEMJ=1, p/FDJ=.2,
rix/h = 31, riz = 11, ßi = 1.5, ¡32 = 1.5, riz1 = 8, i = -d = -0.68)

The potential at the intersection point follows from a solution of the boundary
value problem with Dirichlet conditions prescribed on the free-surface nodes.
Thus no dynamic equation for I at the intersection point is necessary. Again,
for evaluation of the velocity at the free surface, the normal derivative is pre-
scribed analytically.

Remark that the first implementation (Bernoulli at the intersection point) was chosen
in Chapter 3. One of the reasons for this was the consistent treatment of the free-
surface grid points when two domains are coupled as in Fig. 4.4 on page 92. More
importantly, the second implementation leads to unstable simulations. Linear anal-
ysis of the second implementation requires some careful treatment of the grid points
index sets D and I but can be performed analogous to the analysis in Section 4.1.4.
An important difference is that the vectors for 7] and j/ are not of the same length
and that the matrix Ld is thus not longer square. In Fig. 4.11 on the next page the
eigenvalues of the matrix associated with the linearised discretised equations are com-
pared for the two different treatments of the intersection point. As can be observed,
the second implementation leads to an unstable discretisation. This instability was

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
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Figure 4.11: Meshes and eigenvalues for a typical configuration with (0) being the
nodes were a Dirichlet condition is applied.

also found in preliminary nonlinear simulations of the second implementation. In
retrospect, the instability is not so remarkable considering the following observation.
The discretisation of the second implementation is equivalent to the implementation
of a homogeneous Neumann condition over the free-surface boundary from z = O to
x = zx. Such an implementation is therefore clearly not consistent and marginal
stability can therefore not be expected.

4.2 Wedge wave maker

In 1999 a comparative study was organised by the Numerical Wave Tank group of
the International Society of Offshore and Polar Engineering (ISOPE). The results of
the computations of all participants in the comparative study have been gathered,
analyzed and published by Tanizawa (2000). In Fig. 4.12 on the following page the
geometric configuration of a heaving wedge, used in the benchmark test, has been
sketched. The wedge wave maker has a prescribed sinusoidal heave motion

Z = a sin(wt), (4.24)

where Z is the vertical displacement with respect to the rest position of the wedge. w
and a are the frequency and the amplitude of the motion, respectively. As a result of
the wedge-motion a regular wave with wavelength A is generated. The ratio between
the half breadth of the wedge a and the depth of the wedge d (both at rest) is

o 0.05 01

o 10
-16

X 10

o2 42
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Figure 4.12: Configuration of the wedge for the comparative study. Prescribed vertical
motion of the wedge results in the generation of waves.

a,/d = 0.4. The wave tank has a depth h = 3d and a length L of more than
four times the wavelength A. The domain is assumed to be unbounded for x * cx.
Of course, in numerical simulations, a numerical beach must be employed to absorb
the waves within a finite distance from the wedge. In Chapter 5 this aspect of the
numerical simulation is treated in more detail. The numerical simulations are started
from the rest situation with a start-up time of approximately four periods of the
wedge motion and continue until the wave field is periodic.

The benchmark problem specifies a set of nine different combinations of the dimen-
sionless frequency and dimensionless amplitude for the wedge motion. These nine
combinations are given in Table 4.1 together with the wavelength according to linear
theory and non-dimensionalised by the half breadth of the wedge a.

Table 4.1: Benchmark test cases with dimensionless amplitude and frequenQv of the
wedge motion and the dimensionless wavelength, a, w and A are non-
dimensionalised by the half breadth of the wedge a and the gravitational
acceleration g.

The time signals of the following quantities were submitted for comparison with the

case nr. ã/a w2aa,/g A/arn case nr. ä/a w2aw/g A/am

1 0.2 0.2 29.1 6 0.4 1.0 6.3

2 0.2 0.6 10.5 7 0.6 0.2 29.1

3 0.2 1.0 6.3 8 0.6 0.6 10.5

4 0.4 0.2 29.1 9 0.6 1.0 6.3

5 0.4 0.6 10.5
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numerical results of the other participants: (i) the free-surface nodes for 0 < x < 4A
(ii) the free-surface velocity for 0 < x < A and (iii) the hydrodynamic force on the
wedge. In order to calculate the hydrodynamic force the pressure is integrated over
the wetted surface So of the body:

F= / pndS. (4.25)
J so

The pressure can be calculated from the potential solution using Bernoulli's equation
(2.19), which is repeated here for convenience:

= gz - - . (4.26)

Only the last term in Eq. (4.26), the time derivative , cannot be approximated
directly from a single available potential solution. This derivative can be approxi-
mated using potential solutions at different time steps by numerical differentiation,
for example by backward differences or even by central differences if the pressures are
calculated in a post-processing phase of the computation. This, however, can lead to
poor estimates of 4t as has been mentioned by e.g. de St. Q. Isaacson (1982) and
Celebi et al. (1998).

A more suitable method of approximating 4 is to construct a new boundary-value
problem for 4t itself that can be solved after the solution of the boundary value
problem for 4 has been obtained, as was pointed out by Tanizawa & Sawada (1990).
This can be done at any time when a pressure calculation is required. The boundary
value problem for 'I' = 4 on a domain with fixed impermeable walls is given by

= g - onz

O onz=1)(x,t)

The Neumann boundary condition for 'P on a moving boundary like a wave maker
is more elaborate. A general method to derive the expression for W is given by
Tanizawa & Sawada (1990). For a two dimensional surface this expression at a point
p on a moving surface F that rotates with an angular velocity & around a moving
hinge is given as

ô a /o2 ac

ôs

In Eq. (4.30), a and y are the acceleration and the velocity of the rotation point,
respectively, and 9 is the angular velocity of the plate r around the rotation point
(see also Fig. (4.13 on the next page)). For a flap-type wave maker Eq. (4.30) reduces
to Eq. (4.31)

32 3= e - +

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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z

(0,0) X
vo

Figure 4.13: Frame of reference and symbol notation for the determination of the nor-
mal derivative of j at a point p on a plate that is rotating aronnd a
moving point.

and for the wedge type wave maker, Eq. (4.30) reduces to Eq. (4.32)

= sin(a) + Z sin(a) (4.32)

In Eq. (4.32) , Z(t) is the vertical position of the wedge (as e.g. in Eq. (4.24)) and a
the constant angle of the wedge's face with the vertical, which is approximately 21.8

degrees for the wedge in the comparative study.

4.2.1 Analysis

Before proceeding to the comparison of the results of the test cases (Table 4.1) alinear
stability analysis with respect to the spatial discretisation is performed. The main
and important difference with the linear stability analysis of the flap and piston type
wave maker is the non-rectangularity of the domain. Therefore the stability results
from Section 3.2 cannot be directly applied.

Analogous to the derivation of the linearised discretised equations for the flap wave
maker in Subsection 4.1.4, the linearised discretised equations for the wedge can be
written as

q1 =zAq+bT(t). (4.33)

The matrix A is now constructed using a FEM and FD discretisation on a non-
rectangular domain, see e.g. the grids in Fig. 4.14 on the facing page. In this figure
one can already observe that, in contrast to the results from Chapter3, the eigenvalues
of A do not lie on the imaginary axis for all numerical parameters. When the wedge
amplitude a + 0, the eigenvalues always converged to the imaginary axis. The
instability of some grid configurations is thus not solely due to the parameters ¡3
/32 and nz1 (the number of grid points on the wedge).
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Figure 4.14: A stable and an unstable grid configuration for the linear stability anal yss
of the heaving wedge.

The stability of the different grid configurations was investigated and some of the
results are presented in Table 4.2, 4.3 and 4.4. A discretisation is called unstable
if the real part of at least one eigenvalue is larger than iO'- and stable if the real
part of all eigenvalues is smaller than 10b0. In all investigated configurations the
discretisation was found to be either stable or unstable by this definition. The results
of the investigation however did not lead to a clear a priori criterion to establish the
stability. However, the following observations were made

The stability does not depend on the order of the polynomial approximation of
the Finite Differences or on the triangular orientation of the elements.

For the investigated range of values, increasing ßi for the same number of nodes
on the wedge may turn an unstable discretisation into a stable discretisation.
The reverse has not been observed.

Increasing the value of ¡32 for rix/h = 41 has a positive effect when a low number
of nodes are used on the wedge, while it has a negative effect when many nodes
are used on the wedge.

For finer horizontal mesh width (nx/h = 81) the increment of ¡9 results in
unstable discretisations for all investigated situations.

It is thus concluded that stable discretisations are not guaranteed for the heaving
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wedge geometry. The stability depends on the grid and it is therefore recommended
to perform a linear stability analysis before proceeding with the nonlinear simulations.

Table 4.2: Stable (o) and unstable (z) grid configurations for the heaving wedge (nz =
11, L = 1. nx/h = 41, p[FDJ=2, fixed triangular orientation).

Table 4.3: Stable (o) and unstable (z) grid configurations for the heaving wedge (L =
1, nz = 15, nx/h = 41, p[FDj=2,), fixed triangular orientation

4.2.2 Results

Seven researchers participated in the comparative study on the heaving wedge. Their
computational methods and some details on the numerical parameters are given in
Table 4.5 on the next page. In this table the column labelled with p denotes the
order of polynomial base functions used in the discretisation method. Furthermore
it is noted that BEME is a second-order Taylor expansion method and thus not
fully nonlinear. All methods, except the FVM, use the potential flow formulation of

riz1 ¡3=O
/32=0

/3=1/2
/32=0

/3=1
/32=0

3=O
/32=1

ß1/2.
/32=1

ßi=1
/32=1

4 x x o o o o

5 x o o o o o

6 o o o o o o

7 o o o o o o

8 o o o x o o

oz1 ¡3 = O ßi = 1/2 ß = i ß = O ßi 1/2. ßi = i
/32=0 /32O /32=0 /32=1 /32=1 /32=1

.5 x o o o o o

6 x o o o o o

7 o o o o o o

8 o o o o o o

9 o o o o o o

10 o o o x o o

il o o o X O O



Table 4.4: Stable (o) and unstable (z) grid configurations for the heaving wedge (L =
1, nz = 11, nx/h = 81, fixed triangular orientation).

Table 4.5: Brief description of the methods of the participants in the ISOPE bench-
iriark tests. The FVM solves the incompressible NS equations, the other
methods solve the potential flow problem.

the free-surface wave problem. The FVM method is applied directly to the Navier-
Stokes equations. Because of the difference in underlying equations and because this
participant only contributed for a small number of test cases, the results of this method
are not used in the present presentation of the results. For the numerical simulations
with the present method, a numerical beach was used to absorb the radiated wave.
This beach was designed to minimize reflections and more details can be found in
Chapter 5. The actual numerical simulations were performed by Otto (1999). In
Fig. 4.15 on the following page the free-surface elevation is plotted for ä/a = 0.2
and w2aw/g = 0.2 (Case 1). The elevation of four different methods has been plotted
and the results are found to be in reasonable good agreement. The results that were
obtained with the present method are denoted by the label FEM. The free surface
for the most extreme case 9 (a/a,1, = 0.6 and c2aw/g = i is plotted in Fig. 4.16.
This figure clearly shows some difference between the different numerical solutions.
The linear and quadratic BEM and the FEM method show comparable results. It is

rz1 ¡3i=O
/32=0

3=1/2
/32=0

ì3il
¡32=0

ßi=0
/32=1

@=1/2,
132=1

ßi=1
132=1

4 x x o x x x

5 x o o x x x

6 o o o x x x

7 o o o x x x

8 o o o x x x

indication description p ¿ix Lit nzwedge

BEM A Fully Nonlin. 1 .\/20 T/20 -. T/40 21

BEM B Fully Nonlin. 2 À/20 À/30 T/25 T/30 21

BEM C Fully Nonlin. 2 A/18 T/20 - T/160 11

BEM D Fully Nonlin. i )/6 )/25 T/50 11

BEM E 2nd order n.a. )/60 T/60 31

FEM Fully Nonlin. 1 À/20 ' .\/30 T/20 T/30 4 27

FVM Fully Nonlin. ? .X/20 T/540 T/700 40

WEDGE WAVE MAKER 109



110

0.06

0.04

0.02

. 0
ç.

-0.02

-0.04

-0.06
o

- FEM
o BEMA
+ BEMC -

BEM E

10 20 30 40 50
x/a

w

SIMULATION OF WAVE GENERATION

60 70 80 90 100

Figure 4.15: The free surface elevation ri computed by different numerical methods for
low frequency and small amplitude waves (case 1 in Table 4.1).

noted that the wave steepness H/X = 0.13 which is more than 90% of the theoretical
maximum. These extremely steep waves cannot be accurately reproduced by a second-
order method, which is clearly visible in Fig. 4.16.

Besides the waves radiated by the heaving wedge, the forces on the wedge have been
compared. Added mass and damping coefficients were computed and the second and
third-order forces on the wedge have been determined for the different numerical
methods. The results of this analysis are plotted in Fig. 4.17 on the next page. In
general, the results of BEM A-C are in good agreement for all quantities and for
all frequencies. The approximations of BEM D for the added-damping coefficients
are relatively low. The second- and third-order forces on the heaving wedge are
given in plot (c) and (d). The second-order Taylor expansion BEM E estimates the
second-order forces for the higher frequencies rather high and evidently returns a
zero valued third-order component. The BEM D appears to predict the third-order
forces significantly higher than BEM A-C, while the FEM predicts a lower third-order
force than BEM A-C for this frequency. Overall it is concluded that in general good
mutual agreement is observed for the fully nonlinear BEM methods BEM A, BEM B
and BEM C. The approximations obtained using the developed FEM are in reasonable
agreement but show some deviation of the average result for the high frequencies.
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Figure 4.16: The free-surface elevation i computed by different numerical methods for
high frequency and large amplitude waves (case 9 in Table .4.1).
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4.3 Numerical velocity generation

The results from the analysis on the wedge indicate that the stability of the numer-
ical method is influenced by the non-rectangular geometry of the domain. Remark
however that for flap- and piston type wave makers, this cannot be concluded from
linear stability analysis. For some applications of the numerical method, one is less
interested in an exact physical representation of the wave maker. In these cases a nu-
merical velocity generation mechanism can be employed on the inflow boundary. In
this section we consider two special types of numerical velocity wave generation mech-
anisms that have been developed for practical applications. The first is a combined
flux-displacement wave maker and the second mechanism is a combined generation-
absorption wave maker for regular waves.

4.3.1 Combined flux-displacement wave maker

The idea of the combined flux-displacement wave maker is to allow an arbitrary
correlation between the prescribed velocities on the inflow boundary and the actual
displacement of that boundary. This concept was developed to increase the stability of
the simulations. It was found that for very long simulations (t> lOOT) the simulation
might break down due to instabilities around the wave maker. It was already found
by experience that when the wave board geometry was kept fixed and only velocities
are prescribed, simulations could be carried out for longer times.

The correlation between the flux and the displacement of the wave maker is controlled
by the parameter â already introduced in Section 2.2 The parameter â indicates
to what extent a free-surface grid point is a material point. For â = O, the free-
surface grid point coincides with a material point, and for â = 1 the free-surface
grid point is displaced along the tangent of the free surface in such a way that the
x-coordinate remains unaltered. In physical modelling of piston-, flap- or wedge-type
wave generators, the values of â for the intersection point must be set to â = O
because the grid point must remain on the wave maker surface.

When the value of â at the free surface is chosen to be 1, the intersection point only
moves up and down. However, the normal velocity along the wave maker boundary
is still prescribed according to the virtual wave-maker motion. In this situation, the
wave-maker boundary produces numerical flow and can be interpreted as a model
for a complicated pump-system. For values of â between O and 1 the intersection
point, and thus the complete wave-maker boundary, varies between a non-moving flux
generating boundary and a consistently moving boundary. The physical equivalence
for e.g. â = 1/2 is a flap that moves with half the amplitude of the original wave
maker but produces additional flux through its boundaries to compensate for this
difference.
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4.3.2 Absorbing wave maker

Both in experimental as in numerical wave tanks, active absorption mechanism are
used. In an experimental wave tank, the active wave absorption mechanism measures
the elevation ri or near the wave generating flap and corrects the flap-displacement
to absorb incoming waves. This mechanism can be reproduced in the numerical
simulation method, but for regular waves a simpler numerical procedure is available
for a numerical wave tank. The aim of this kind of wave generation is to construct
a boundary condition that generates regular waves and absorbs waves with the same
frequency that travel in the other direction.

The exact solution of a progressive linear wave moving to the right is given by

- wcosh(k(z+h))
(x, z, t) = A cos(kx - wt). (4.34)

k sinh(kh)

One possibility to generate a regular wave is thus to impose the condition

= - A' cosh(k(z + h))
ôt - k sinh(kh)

sin(c.t) on F (4.35)

on the non-moving wave-generating boundary. The boundary does not move, but
an artificial potential satisfying a linear progressive wave is imposed as a Dirichlet
condition on this boundary.

We assume that a second wave (caused by reflections against the opposing wall or an
other obstruction) is propagating with the same frequency in the negative x-direction.
The potential in the domain is thus thought to be build up as

(4.36)

The outgoing regular wave satisfies the travelling wave equation
4- 4-

'15t +Cs O. (4.37)

When this condition is restricted to the boundary it is often referred to as a Sommer-
feld condition. Substitution of c = - and Eq. (4.34) in Eq. (4.36) and differentiation
with respect to time at z = O leads to

= c5 + (4.38)

w4-

= çb +- z (4.39)

=
+
(_ (4.40)

2wcoshkz+h)) w= A
k sinh(kh)

sin(wt) + (4.41)

Imposing Eq. (4.41) as a boundary condition on the generating boundary thus com-
bines the generation of a regular wave with the absorption of regular waves of the same
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frequency and can thus be used as a combined wave-generating/absorbing boundary
condition.

It is important to notice that the above derivation does not take nonlinear effects
into account. Reflections of the transient waves during start-up and nonlinear inter-
actions will result in many different frequency components that will be only partially
absorbed by this condition. Another important aspect of this combined wave genera-
tor/absorber is the effect of the Sommerfeld condition on the stability of the numerical
discretisation (see also Section 5.3.1 on page 129).

To illustrate this method, the following numerical simulation is performed. A small
regular wave (A = 0.01, w = 1.6) is generated using the combined wave genera-
tor/absorber using a linear startup ramp for O < t < 1.25T to avoid large initial
accelerations. The transient waves are completely reflected against the opposing wall.
The combined wave-generator absorber should partially absorb the transient waves
during startup and completely absorb the reflected regular waves. After sufficiently
long time the transients should therefore be absorbed completely and a standing wave
remains.

This can be observed in Fig. 4.18 on the next page were the x-t plots of the surface
elevation have been plotted. In Fig. 4.18(a) the first 6 periods are shown in which
the generation of the transients and their reflection can be observed. Along the x = O
axis one can observe that the progressive wave is indeed of the correct amplitude. In
Fig. 4.18(b) the x-t plot for 24T < t <30T is visualised. Clearly, the regular standing
wave can be observed with an amplitude of 0.02, confirming the applicability of the
generating/absorbing regular wave generator. This absorbing wave maker was also
used successfully in the fully nonlinear numerical studies on the wave forces acting on
a captive heaved ship section (Huijsmans et al. (1999)).

4.4 Conclusions

In this chapter three types of numerical wave generation have been discussed. For
flap- and piston-type wave generators the linear stability and convergence of the
discretisation was established. The discrete Biésel transfer functions were determined
for a number of numerical grids and compared with exact transfer function. It was
found that the discrete wave maker produces slightly higher waves (up to 10% for
high frequencies) than expected from linear theory. Additional grid resolution in
the horizontal and vertical direction is necessary to obtain more accurate transfer
functions and representation of the effect of the evanescent modes. If this resolution
is not available for some reason, the proposed analysis should be performed on the
numerical scheme to obtain the transfer functions of the discretised system. It has
been observed both in fully nonlinear simulations, as well as from linear analysis, that
on poorly resolved high frequency waves ( <6), no progressive waves are generated
at all.
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Linear stability analysis of the wedge wave maker showed that stability depends on
the grid structure around the wedge. It is therefore recommended to perform a
linear stability analysis to a planned grid when a wedge-type wave maker is used.
Comparison of the forces on a heaving wedge with other numerical methods has been
presented. In general good agreement is found between other methods and results of
the present method.

Two specific numerical velocity wave makers have been presented: a combined flux-
displacement wave maker and an absorbing/generating wave maker. The combined
flux-displacement wave maker allows for more stable fully nonlinear long time sim-
ulations, and the absorbing/generating wave maker can be efficiently used when re-
flections from obstructions placed in the numerical wave tank need to be absorbed at
the wave maker.

It has been found in nonlinear numerical simulations that for the generation of large
amplitude waves, using either flap type or numerical velocity type of wave generation,
stability of the simulation is not evident and additional refinement of the grid near
the wave maker may be necessary to avoid growing instabilities at the free surface
near the wave maker.



Chapter 5

Simulation of Wave
Absorption

In this chapter the modelling and simulation of the absorption of waves in a model
basin will be discussed. Firstly, different kind of physical wave absorption mechanisms
will be presented. Measurements performed at MARIN to assess the quality of some
artificial beach concepts will be discussed. The reflection coefficients obtained from
the measurements do not support a low dimensional model for the artificial beach.
Secondly, a number of numerical methods to model wave-absorption and -reflection
are presented. The implementation of these methods is analyzed to investigate the
corresponding reflection coefficients and the effect on the stability of the numerical
scheme. Based on these investigations, two numerical beach concepts are developed,
analyzed and implemented. The first beach concept aims at achieving minimal reflect-
ing properties at low computational costs. The second concept aims at reproducing
the obtained reflection coefficients from the measurements.

5.1 Experimental wave absorption

A model basin in a hydrodynamic laboratory is designed to act as a model environment
for open sea conditions. To represent these conditions, the waves need to propagate
through the basin as if the basin is not bound by horizontal walls. The incoming
wave field is reproduced by a wave generation mechanism such as has been discussed
in chapter 4. Against the walls opposite to the wave generators, wave absorbers are
positioned to absorb the incoming waves. The aim of these wave absorbers is to
minimize the reflective influence of the walls opposite to the wave generators.

Two types of wave absorption in an experimental wave tank are distinguished: active
and passive wave absorbers. The most appealing example of a passive wave absorber
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is a sand beach. An active wave absorber can be best compared to an inversely
operating wave maker. These two absorption mechanisms are briefly discussed in the
following two subsections.

5.1.1 Passive wave absorption

In a wave tank used for coastal or waterway model testing, physical models of sand
beaches can be the subject of the investigations. However, in an experimental wave
tank designed for hydrodynamic applications, the beaches are purely artificial and
only intended to maximally absorb the waves. On the one hand, the artificial beach
should take up as less space as possible to maximize the model testing area. On the
other hand, the reflections against the beach should be small enough, not to influence
the model testing significantly.

A straightforward but effective artificial wave absorber is a sloping bottom. In order
to have small reflections from such an artificial beach, the slope must be very small.
This requirement clearly conflicts with the requirement of maximal model testing
space and is thus not frequently encountered in a hydrodynamic model basin.

When the previous seakeeping basin of MARIN was constructed in 1957, a study on
artificial beaches was performed by van Lammeren & Vossers (1957). They reported
on 12 different artificial beach concepts (including gravel beaches and overflows) and
concluded that a curved plate with grating (investigated by Delft (1955)) yielded
satisfactory results. Gratings of different size were investigated and the final choice
was eventually constructed in wood. The concept of parabolic plates with gratings
was also used for the artificial beaches at the Indonesian Hydrodynamic Labora-
tory (constructed in 1995). Hollow perforated stainless steel grating were used and
measurements showed that these artificial beaches had better overall reflection char-
acteristics. For the construction of the artificial beaches in the new SMB at MARIN,
a new series of design tests was performed by Kapsenberg (1999). Some results of
these tests are presented in Section 5.2.

Another kind of passive wave absorber is a construction composed of partially sub-
merged layers of wire-netting. This wave absorber was used in front of the wave
generators at the old seakeeping basin at MARIN to absorb spurious waves generated
during the wave generation process. A similar wave absorption technique has been
developed at the Canadian Hydraulics Center. An upright wave absorber composed
of porous expanded metal sheets is placed in front of the opposing wall. An advantage
of this absorber is that the absorption characteristics can be tuned by changing the
number, placing and porosity of the sheets. A disadvantage is the amount of space
required for the positioning of the sheets.
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5.1.2 Active wave absorption

An active wave absorber is best compared to an inversely operating wave maker.
Based on real-time measurements of e.g. the wave height or the pressure, a control
mechanism steers the board of the active wave absorber in such a way that the
incoming wave is transmitted. The main advantage of an active wave absorber is
that it requires only very little space, thus leaving more space for model testing.
Another advantage is that it can be tuned specifically to reduce resonant oscillations
in the tank and to reduce the basin stilling time between experiments. There are
however two major drawbacks of such an absorption mechanism when compared to
passive absorbers. Firstly, it is much more expensive than passive wave absorption.
Secondly, the active wave absorber is only suitable for a certain range of frequencies,
depending on the geometry of the wave board. Although active wave absorbers are
available in some wave tanks (e.g. Canadian Hydraulics Center, Danish Hydraulics
Institute and MARIN), they are usually not used as a replacement of passive wave
absorbers. Instead, the most common use of active wave absorption technology is
to combine the absorption method with the existing wave generator. Such a system
is also referred to as a reflection compensation system. Based on measurements on
or near the wave maker instantaneous additional steering information is generated
to adjust the motion of the board to absorb unwanted reflections. This technology
has been implemented at the new Seakeeping and Manoeuvering Basin and Offshore
Basin at MARIN. For a recent review on (two-dimensional and multi-directional)
active wave absorption methods confer Schäffer & Klopman (2000).

5.2 Measurements of wave reflection on beaches

For the construction of the artificial beaches in the new SMB at MARIN, a series of
design tests were performed. These experiments and the results have been reported by
Kapsenberg (1999). The artificial beaches are to be placed both on the long (North)
side as on the short (West) side of the SMB. The tank geometry of both sides is
however not identical as can be observed in Fig. 5.1 on the following page.

The design of the artificial beach was made by Delft Hydraulics, Bos (1997), and
consists of a straight (A), a curved (B) and again a straight part (C). These parts are
depicted in Fig. 5.2 on the next page where the dimensions of the final configuration
for the beach on the West side are also given. Reflection coefficients were determined
for different values of the length of part (A), the relative height of the still water level,
the angle of part (C) and two types of gratings. The plate (E) in Fig. 5.2 was placed
to investigate the performance of the beach when placed in the West side of the SMB.
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Figure 5.1: Geometry of the Seakeeping and Manoeuvering BASIN (SMB) near the
beaches at the West side (short side) and the North side (long side) of the
basin.
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Figure 5.3: Position of the wave elevation probes relative to the intersection of the
still water with the beach. Dimensions are in {m] and are not depicted
proportionally.

5.2.1 Determination of the reflection coefficients

The measurements were performed in the High Speed Basin at MARIN using a model
of the artificial beach designs. This basin is equipped with a hydraulic flap type wave
generator (hinged 1.27 [m] above the bottom) and has a still water depth of 3.57 [m]
and a length of 220 [m]. The measurements were scaled to a water depth of 5 [m]
corresponding to the water depth in the SMB. Figures and results presented in this
section are also scaled to 5 [m] water depth.

The wave elevation was measured at 9 positions using resistance type wave gauges.
Fig. 5.3 shows the positions of the first 8 wave probes relative to the intersection of
the still water and the beach. The nineth wave probe is positioned 70 [m] from this
intersection point and is used to determine the incoming wave amplitude.

The reflection coefficient for a beach is defined by modelling the beach as a linear
filter. A plane incident wave with frequency w and complex amplitude A(w) is
reflected by the beach and therefore another wave travelling in the opposite direction
with the same frequency but complex amplitude Aref (w) is observed. The reflection
coefficient r(w) is then defined as

r(w)
A(w)
Are f(W)

Note that the reflection coefficient is defined as a complex quantity. However, in
practice one usually refers to the absolute value, In, as the reflection coefficient.
Another used definition of the reflection coefficient is the ratio of the incoming and
reflected wave energy, i.e. rl2. We will use the word reflection coefficient mostly in
the second sense (i.e. InI). A fixed wall has by this definition a reflection coefficient
of 1 and a completely absorbing beach has a reflection coefficient of zero.

7 8

(5.1)
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Not the complete time signal obtained from the wave probe measurements was used
to determine the reflection coefficient. Only the time interval that contains the pri-
mary incoming and reflected wave is used for analysis. These time signals thus do not
contain the contribution of the wave that has reflected from the beach and also re-
flected from the wave maker. There are two main methods to determine the reflection
coefficient from the wave height measurements. These two methods will be discussed
in the following paragraphs.

Wave envelope modulation

The first method to determine the reflection coefficient is based on the spatial mod-
ulation of the envelope of the wave elevation of a regular wave. The (linear) wave
elevation due to an incoming wave with amplitude a and a reflected wave with reflec-
tion coefficient r 1i arg(r) is given by

i(x, t) = aei(_wt) + rae_ks_wt) + c.c. (5.2)

= (1 + re2) aei(_wt) + c.c. (5.3)

An asymptotic method, introduced by Ursell et al. (1960) can be used, to determine
the reflection coefficient IrL Determining the envelope variation A fr0111 Eq. (5.3)
results in

A2(x) = a2(1 - 2lrl cos (2kx - arg(r)) + rl2). (5.4)

Taking the square root of Eq. (5.4) and using a Taylor approximation one obtains

A(x) = a (i - rl cos (2kx - arg(r)) + 0 (In2)) . (5.5)

The spatial wavelength of the modulation of the envelope A is thus halve the wave-
length of the incoming wave. The reflection estimate is based on the determination
of the maximum and minimum of the envelope modulation. If the (constant) ampli-
tudes of time signals at fixed different positions are determined, a 2k wave is fitted
through these points, if the maximum and minimum of this fitted wave are denoted
as Amax and Amir, then the approximation of the reflection coefficient is given (from
Eq. (5.5)) as

Aax - Amin
rl = Amax + Amin

+ 0(r2).

Kapsenberg (1999) uses a comparable method to determine the reflection coefficient
by directly fitting r in Eq. (5.4) to the measured envelope data.

A priori knowledge of the expected envelope wavelength can be used to determine an
optimal spacing of the wave probes. It is clear that the probes should in any case not
he equally distributed at -r.\ distances if the expected wavelength is A.

(5.6)



For small amplitudes and reflection coefficients, the variations in the envelope can be
i quite small (8 [cm] wave with 5% reflection leads to a wave envelope amplitude of 4
I [mm]). Assume that the maximum and minimum envelope have a resulting error of
- emas and emjn respectively. This leads to the following relation between the reflection

coefficient estimate based on the actual values and the estimate based on the biased
values.

2(emaxAmjn - eminAmax)
TIbias =

(Amas + emax + Amin + emin) (Amas + Amin)
= r+e

When emax = emin = e, the following estimate is obtained

(eer = a+e

which results in a relative error in rl smaller than 2.5% for practical values of e and
a. Substitution of the undisturbed amplitude a and choosing the worst error scenario
e nias emin = e, this reduces to a maximum error estimate of

e
(5.10)

a

The error in the wave gauges used at the experiments is determined (from the still
water level time signals) at approximately 0.1 [cm]. We assume that this is also the
error level of the amplitude determination which leads to a worst case error estimate
of ê for small wave amplitudes (2 cm) of approximately 5 percent points. For inter-
mediate amplitudes (8 cm) and high amplitudes (15 [cm]) this leads to worst case
error estimates of 1.25 percent points respectively 0.67 percent points. For the small
amplitude waves this worst error estimate is of the same order as the expected reflec-
tion coefficients. For the high amplitude waves, the linearity assumption underlying
the model for the reflection coefficient becomes questionable and errors in the model
probably will be dominant over this measurement error.

To give an indication of this magnitude we substitute the measurement error term
e with the first nonlinear Stokes term -ka2 (see also Eq. (3.10) on page 44) and
determine the best-case error estimate from Eq. (5.9) as

er=r i + ka
ka

(5.11)

Based on this substitution one can observe that for a steep wave H/A = 0.08 with
a = 0.1 [m] this leads to a relative error indication of approximately 20%.

Spectral decomposition for irregular waves

The second method to determine the reflection coefficients is based on spectral analysis
of the measurements and has been developed by Mansard & Funke (1980). The
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(5.7)

(5.8)

(5.9)



spectrum of a measured signal s(x, t) at some point x = x is given as

= f s(x,t)edt. (5.12)
2ir

Hence (assuming linearity of the equations governing the signal), at every measuring
point x we should have the identity

A(w)e" + Aref (w)e = (w) (5.13)

where k and w are related by the dispersiorì relation. Instead of forcing strict equality
the squared summed error

(Ajnc(w)k + Areí(w)e_ik - (5.14)

is miiiimised for and Aref. This procedure results in the following estimate
for the reflection coefficient based on p measurements of the signal at the locations
x=xn,n=1...p

r =
n(w)e'

n=1 n=1

n(w)e

- t1
n(w)eik

p

(5.15)

The main advantage of this method is that it can be applied to irregular wave fields.
The result of the procedure is the reflection coefficient over a range of frequencies
instead of a an estimate at a single frequency. A disadvantage of the method is the
accuracy of the estimate. This is related to the accuracy with which the spectrum
can be estimated. Accurate estimates of the spectral power density would require
very long time traces. This desired time interval is not available because secondary
reflections against the wave board will contaminate the signal. Furthermore, the
reflection estimates are only valid for the range of frequencies where (i) the energy
density is significant and (ii) the coherency between the measurements of the different
wave probes is close to 1.

It turns out that in practical experiments, these limitations are quite stringent and
that the error estimates of the coefficients are in the same order of magnitude as the
estimates themselves. As with the spacing of the probes for the wave-envelope method,
careless positioning of the probes may lead to failure of the method. Suryanto (1999)
extended this method for a nonlinear wave model but found that the results were only
slightly influenced and negligible with respect to other errors in this analysis.

5.2.2 Results

Both the wave envelope method and the spectral decomposition method have been
used to estimate the reflection coefficients of the artificial beach. The wave envelope
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method was however mostly used because it allows for more control over the incoming
waves (including the amplitude) and the envelope estimates could be easily checked
visually. Several tests were performed to investigate the repeatability of the analysis
(different time traces of the same experiment) and the repeatability of the experiments
(different experiments and a different position of the wave-gauge array). From these
tests it was found that the repeatability of the envelope analysis is reasonable for
most frequencies. For small amplitude, high frequency waves, large deviations were
found, which can be explained from the analysis in the previous section.

In the next two paragraphs some general remarks are iliade regarding the different
experiments that were performed to chose the final beach configurations for the North
and West side of the SMB at MARIN. It is remarked that all experiments were per-
formed in oblique waves. The effect on the reflection coefficient of waves approaching
the beach at an angle was not investigated.

North-side basin

For the experiments using the geometry configuration of the North side of the basin,
the length of part (A) (see Fig. 5.2 on page 120) is 0.8 m and the plate (E) is removed.
Variation of the slope of part (D) and variation of the mean water level showed
that a zero water level together with a 1 degree slope results in the most favorable
reflection coefficients. Adding small roughness and lengthening the beach showed no
significant improvement. For a steepness of 0.02 the reflection coefficient was found to
be smaller than 10 % for all investigated frequencies. The reflection coefficients were
also determined for other steepness but unfortunately no relation was found between
the steepness and the reflection coefficient.

West-side basin

Based on the optimal configuration for the North side of the SMB, the reflection co-
efficients were determined when plate E was positioned to model the geometry of the
West-side basin. For a wave steepness of 0.02 these reflection coefficients were found
to be hígher for the low frequencies and smaller for the high frequencies. Lengthen-
ing of the beach with 2 meters (length of part A is now 2.8 [m]) showed significant
improvement. Further lengthening showed a slight worsening of the reflection coeffi-
cients.

Discussion

Fig. 5.4 on the following page shows the reflection coefficients that were determined
from the experiments on the final beach configurations. The crosses correspond to a
single measurement and the numerical value plotted next to the cross corresponds to
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Figure 5.4: Reflection coefficients (determined using the envelope modulation tech-
nique) for the final configurations of the beaches at the North and West
side of the basin. The values near the measurements correspond to the
amplitude of the incoming regular wave. (h=5 /m], g=9.81 [mis2]
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the amplitude (in cm) of the incoming wave.

Both configurations show that the amplitude influences the estimated reflection co-

efficient in an irregular fashion. Higher amplitudes do not lead to higher or lower
reflection coefficients. The absence of this trend is also observed for the steepness.
The results appear to support the observation that:

the error in the measured reflection coefficient is significant for small amplitude
waves.

s the linear filter model of the beach is not adequate for high amplitude waves.

Despite these shortcomings some conclusions can be made about the reflective prop-
erties of the artificial beaches. For the North (long) side of the basin the reflection
coefficients are relatively high (10%-20%) for long waves (w < 2). With increasing
frequency the reflection decreases, but seems to slightly increase at w = 3 [radIs].
Between w 3 and w = 3.5, the reflection coefficient further decreases to around 3
%. For frequencies larger than w = 3.5 the reflection coefficient slightly increases but
remains under 10 %.

The beach at the West side has some noticeable differences with the North-side beach.
The most important observation is that the reflection coefficients are overall smaller.
This is most clearly visible in the relative low reflection coefficients around w = 3
Erad/sl compared to the reflection coefficient of the North-side beach for this frequency.
The overall lower reflection coefficient is mainly due to the fact that the West-side
beach is 2 meters longer than the North-side beach.

In general one should be careful to interpret the results of Fig. 5.4 on the preceding
page because of the measurement and model errors that bias the results. Comparison
of the results of these tests to similar tests on the artificial beaches in the previous
basin and the new beaches at the JilL showed however that the new artificial beaches
result in significantly smaller reflection coefficients.

5.3 Numerical wave absorption

Just as an experimental wave tank, a numerical wave tank is also modelled as a
bounded region in space. The techniques that can be used in an experimental wave
tank to minimize reflections have been summarised in the previous section. A wave
absorption technique like the active wave absorber can be directly used as a concept
for a numerical model. An artificial beach over which the waves spill, break and
splash is however not easily translated into a numerical model. The direct numerical
simulation of turbulent breaking and splashing would require elaborate numerical
techniques and huge amounts of computer resources. The numerical simulation of
wave breaking and splashing is a research topic by itself (cf. e.g. Guignard et al.
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(1999) and Fontaine et al. (2000)) and may lead to important insights in the process.
Most numerical wave tanks however, do not aim at modelling the experimental wave
tank, but at modelling open sea conditions.

In this chapter we consider numerical wave absorption that aims at:

reproducing the reflection characteristics of the artificial beach in the experi-
mental wave tank.

achieving minimal reflection from the numerical beach.

The numerical scheme must be able to simulate the evolution of a broad banded spec-
trum of waves on the same grid. Therefore the numerical wave absorption techniques
niust be 'blind' in the sense that they require no a priori knowledge on the incoming
wave field. The implementation of the absorption technique will be evaluated by ex-
amining the reflection coefficient for waves with wavelength between A/h = 1/4 and
A/h = 4.

First the different numerical methods available for numerical wave absorption will
be discussed. Based on literature and experience, a numerical beach concept will be
discretised and analyzed. It is then examined to what extent both of the above aims
can be realised by this numerical beach. There are three main categories in which the
numerical methods for wave absorption in a potential flow numerical wave tank can
be divided:

Open boundary conditions. In these methods, that have been reviewed by
Romate (1992), (differential) equations are imposed on the outflow boundary.
There are three types of methods that can be categorised as open boundary
conditions:

Spatial periodic boundary conditions. These conditions were originally
used by Longuet-Higgins & Cokelet (1976) in their pioneering paper on
fully nonlinear wave simulation.

Matching boundary conditions. This technique is based on the matching
of the inner solution with a (often linear) radiating solution on the exterior
domain (cf. e.g. Dommermuth & Yue (1987)). A similar method is to
construct a DtN relation at the boundary from the exterior problem and
use this condition as a boundary condition on the interior (cf. e.g. Givoli
(1992) and Sierevogel (1998))

Sommerfeld (1949) condition. This condition prescribes the partial differ-
ential equation I + cF = O on the absorbing boundary. This condition
is transparent to fixed profiles that propagate with a constant speed c. An
often used extension to the Sommerfeld condition, where the phase velocity
is locally estimated every time step, was developed by Orlanski (1976) and
applied to surface waves by Chan (1977). With this extension the method
is often referred to as the Sommerfeld/Orlanski method.



Dissipation zone. The governing equations are locally modified to dissipate the
energy and thus damp out the wave energy locally (first introduced by Baker
et al. (1981) and Israeli & Orszag (1981)). These dissipative zones can be used
both at the downstream side of the tank and near the wave maker. Near the
wave maker the damping is only applied on the difference between the desired
outgoing wave and the undesired reflected wave.

Active Wave absorption. This numerical technique is analogous to the active
wave absorption techniques in an experimental model basin (see Section 5.1.2).
However, more data is available for the control laws (potential, pressure, veloc-
ities, etc.). The control laws themselves are usually based on linear theory (cf.
e.g. Duclos et al. (2000) for an application).

Instead of a single absorption technique, a combination of a Sommerfeld condition
and a numerical dissipation zone, originally suggested by Israeli & Orszag (1981) is
often used. This combination is known to have more favorable reflection properties for
a broader range of frequencies than a single boundary condition and the concept has
been adopted and extended by many authors (e.g. Ohyama & Hsu (1995), Clément
(1996)). A disadvantage is that a relative long ( 10)) dissipative zone is needed to
obtain sufficiently low reflection coefficients, increasing the associated computational
costs for some methods considerably. A recent comparative study of several numerical
absorption techniques can be found in Clément (1999a).

5.3.1 Sommerfeld condition

The equation

+ = 0 (5.16)

has as a general solution = cÏ(x - c5t). This condition (applied at e.g. x = 0) is
transparent to profiles that move undisturbed and with fixed velocity c. For regular
waves, with wave speed w/k = e = c the Sommerfeld condition therefore acts as a
perfect absorbing boundary condition. Regular waves with a different wave speed are
however partially reflected. This reflection can be easily obtained by substitution of
a regular wave solution

= eir_j + re__t) (5.17)

in Eq. 5.16, and evaluate the expression at x = 0. The reflection r is then readily
found to be

Cs - w/k
C5

(5.18)

Implementation of the Sommerfeld condition requires an a priori and fixed choice for
the phase velocity e5. To avoid this rigid choice, which conflicts with the 'blind-beach'
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requirement, the parameter c can be constructed dynamically during numerical simu-
lation. Based on information on the spatial-temporal history of cJ, an approximation
for the (time-local) c can be constructed. This was suggested by Orlanski (1976)
and implemented for free-surface wave computations by Chan (1977). However, this
method is not very robust as it will predict incorrect values for c if small reflections

do occur.

Another way to improve the Sommerfeld condition to obtain more favorable reflection
coefficients for a broader range of frequencies is to combine multiple phase velocities
as

u[8 + ca] = 0. (5.19)
i=1

Using only two components in Eq. (5.19) (c1 = 1 and c2=0.2) will already result in a
reflection coefficient Ir < 0.13 for k E [0. . .25]. However, accurate approximation of
the higher-order derivatives in Eq. (5.19) can become a problem in the implementation
of this condition.

For complex-valued potential functions and pseudo-differential operators a more gen-
eral frame work can be constructed. Consider the differential equation

{a + Piar)] 4) = 0 (5.20)

the reflection coefficient r associated with Eq. (5.20) as a boundary condition is

iw - P(ik)
r = . . (5.21)

zw - P(zk)

For deep water waves, the dispersion relation can be simplified to w2 = k and therefore

the choice of P(k) = f(k) = leads to low reflection coefficients for large k. The

combination of this condition for large k with the standard Sommerfeld condition
with c = 1 results to the equation

[a+a]{0+f(0)]4) =0. (5.22)

Eq. (5.22) leads to a reflection coefficient r < 0.007 for k E [0. . . oc). Unfortunately,
the pseudo-differential operator f(0) is not local and therefore computationally not
suitable as an absorbing condition. A Taylor expansion of around e.g. k = 6 can
be used as an approximation of /k as

+ 1/12V(x 6). (5.23)

Using the approximation (5.23) in Eq. (5.22) results in the second-order complex

partial differential equation

4)u + + 4)) + (i + 4)xt + 0. (5.24)
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When this differential equation is used as an absorbing boundary condition a reflection
coefficient rJ < 0.055 for k e [0. . . 25] can be obtained. The implementation of
this boundary condition is however not straightforward because (i) the potential was
assumed to be complex valued (ii) the presence of higher-order partial derivatives and
(iii) the effect of this condition on the stability of the total numerical scheme.

5.3.2 Dissipation zone

A dissipation zone is a region in the discretised domain where the physical equations
are modified in order to rapidly dissipate energy from the numerical solution. The
equations for undisturbed free-surface potential are conservative. That no energy is
dissipated can also be easily observed from the Hamiltonian structure of the equations
for ij and = Consider the Hamiltonian

i=
- J

IVI2dz + g(i2 - h2). (5.25)
2 -h 2

The free-surface elevation ij and the potential at the free-surface are the canonical
variables and the canonical equation

(o _i (o7
\\?J,It \j o) \i

is equivalent to the nonlinear free-surface conditions Eq. (2.23e)-(2.23f) without sur-
face tension; Zakharov (1968) and Broer (1974). The Hamiltonian density (5.25) can
be interpreted as the sum of the kinetic and potential energy. When natural boundary
conditions are assumed, the time derivative of the total energy is given by 5j7-1 as

= 0 (5.28)

from which it can be observed that energy is a conserved quantity. To construct a
numerical dissipation zone, the equations have to be adapted in such a way that the
energy will strictly decrease in the dissipative zone. Adding the functions a(x) > O
and ¡3(x) O to Eq. (5.26) as

(_a(x) 1
1 /3(x))

results in

= + (S7-L,1k)

= (c5H, a(x)?) + (5,71, ß(x)8,77)
2 9- max{c}lI89LII - max{/3}IIRL

< 0.

(5.26)

8L = (5.27)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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Clearly, there are many ways to add non-physical damping by choosing a and ß. We
prefer to choose ß 0 because this choice retains the kinematic boundary conditions.
The additional contribution to the dynamic equation for a O can be incorporated
in the atmospheric pressure p in Eq. (2.23e) as

p(x,t) = a(x)(F - 1xx) = a(x)/1 + (5.34)

The redefinition of the atmospheric pressure p by Eq. (5.34) is the only modification
of Eqs. (2.23a)-(2.23f) and therefore mass conservation is still guaranteed. The air
above the free surface is acting as a kind of damper with respect to the free surface.
The pressure force always opposes the free-surface motion. Because /i + i > 0,
energy decay is also guaranteed when p(x) = a(x)4' is chosen (redefinition of a). If
the vertical unit vector is denoted as è the condition

e. ff> O (5.35)

implies sgn () = sgri (CF:) at z = i(x, t) and therefore the damping function

p(x) = a(x)CF: l:=ii(x,t) (5.36)

leads to guaranteed energy decay with mass conservation if a(x) > 0. Condition
(5.35) states that the free surface is not overturning which was already a condition
for the introduction of i.

In Section 5.4 the effect of the dissipative zone using the damping function Eq. (5.36)
will be investigated for simple polynomial functions a. Of course there are many
other possibilities for the functions a and /3. Grilli & Horillo (1997) e.g. proposed a
method in which the coefficients of the dissipative zone are dynamically determined
based on the energy flux entering the dissipation zone.

5.3.3 Grid stretching

If large reflections of short waves from the dissipating zone are to be avoided, the
coefficient a in Eq. (5.36) should slowly increase from zero. Long waves will propa-
gate quickly through the dissipation zone with relative small values of and are
therefore slowly damped. As a consequence the length of the dissipation zone should
be rather long to have good absorbing properties for both short and long waves. It
was found that the length of the dissipative zone, should be in the order of 10h to
obtain sufficiently small (< 5%) reflection coefficients for all wavelengths of interest.
The additional computational effort to include a dissipation is thus considerable with
respect to a length of 40h for a typical basin.

To reduce the computational effort a horizontal grid stretching technique has been
applied to the grid on which the dissipation zone is implemented. The distance
between two nodes x (increasing i corresponds to the downstream direction) on the
same horizontal grid line is increased as

Jx1 - xii = 'yixi - xi_j J. (5.37)
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Figure 5.5: (a) Horizontally stretched grid with nx = 31 and -y = 1.04. (b) The
effective increment of the domain when nx = 61 for different values of -y.
(c) Eigenvalues of the matrix associated with the grid in (a).

If N nodes are used in the horizontal direction for the dissipation zone and these are
stretched according to (5.37), the length of the zone Lf is increased by a factor

Lff N_1
LB N('yl)

LB denotes the length of the dissipative zone if the N points would have been equidis-
tantly separated. In Fig. 5.5 the mesh structure (a) and the eigenvalues (c) associated
with the linearised discretised equations using this mesh are plotted. The stability of
the numerical scheme is not affected by the stretching of the grid. This property has
been found to be independent of N, p[FEM], p[FD], 3 and triangular orientation of
the elements.

5.3.4 Combined absorbing zone

When the velocity c of the Sommerfeld condition (Eq. (5.16)) is chosen to be 1,
this condition will absorb the long waves relatively well, whereas the short waves
are almost completely reflected as follows from Eq. (5.18). On the other hand a
dissipation zone can be constructed that has good reflective properties for the shorter
waves. The combination of this dissipation zone and the Sommerfeld condition can
lead to the desired reflective properties for a broader range of frequencies, as was

(5.38)
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suggested by Israeli & Orszag (1981) and implemented by Chapman (1985) for free-
surface waves. In order to reduce the computational cost of this implementation the
grid is stretched in the horizontal direction to increase the effective length of the
dissipation zone without increasing the computational costs. In Subsection 5.4.1 the
reflection coefficient of this combined beach concept is investigated analytically for
different polynomial function a(x). In Subsection 5.4.2 on page 141 the reflection
coefficients of the discretisation are determined and the effect of the grid stretching
on the reflection, the computational effort and the time step is investigated.

5.4 Analysis of numerical wave absorption

In the following two subsections the reflection coefficients are determined for the
dissipating zone with a Sommerfeld condition. In Subsection 5.4.1 the continuous
equations are approximated and based on these approximations the reflection coeffi-
cients are estimated. In Subsection 5.4.2 the numerical discretisation of the pressure
damping and the Sommerfeld condition is constructed. Based on this construction,
the reflection coefficients for the linearised discretised dissipation zone are determined.
The results of the continuous and numerical analysis are compared and discussed in
Section 5.5.

5.4.1 Continuous analysis of reflection coefficients

In this subsection we obtain estimates for the reflection coefficients of a numerical
beach that consists of a dissipation zone and a Sommerfeld condition. The results in
this subsection have been presented by Westhuis (2000). In Dairymple et al. (1991)
the reflection coefficients are determined for a model of a porous structure. This model
corresponds to the addition of a frequency dependent damping term proportional to
w4 to the dynamic boundary condition. Romate (1998) obtains reflection coefficients
for a dissipation zone using the wave equation as an underlying model for wave prop-
agation. In both references no Sommerfeld condition is included in the analysis. In
the following region (I) refers to the part of the computational domain in which the
waves can propagate undisturbed; region (II) denotes the numerical dissipation zone
from x = O to x = LB.

At the free surface of region (II) the pressure is varied in accordance with Eq. (5.36)
as

p(x,t) = ct(x)(x,z,t) on z = i7(x,t) (5.39)

and at the downstream vertical boundary x = LB a Sommerfeld condition is applied

F(x,z,t)+c4(x,z,t) =0 at z LB. (5.40)
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In order to find analytic estimates we simplify the problem by linearizing the free-
surface equations and by assuming that region (I) is not bounded to the left. We
therefore do not consider the wave maker in this analysis. Starting point of the
analysis are thus the linear free surface equations:

rit = (5.41)

çb = g?p (5.42)

where all functions are evaluated at z = O. This set of first-order differential equations
can also be written as:

øtt = 9 - Pt (5.43)

In the current context a linear operator and its symbol are related by the follow-
ing definitions (cf. e.g. Hörmander (1971) for an introduction to Fourier integral
operators)

R(x)
=

f r(x - y) (y)dy (5.44)

where

r(x - y) = - f (k)edk (5.45)

The solution of Laplace's equation on the linearised geometry gives the linear disper-
sion operator R as

tanh(kh)
k

(5.46)

resulting in the kernel (cf. e.g. Broer (1974) and Dingemans (1997b))

i (xy\r(xy)=--lntanh
h ) (5.47)

which determines the relation between the horizontal and vertical velocity at the free
surface by:

= ôRq5. (5.48)

Assuming the solution of Eq. (5.43) to be harmonic in time,

= (5.49)

and substituting Eqs. (5.39), (5.48) and (5.49) for Eq. (5.43) results in the following
equation for ç5:

= gRç - iwcx(x)Rç. (5.50)



In region (I) (where a(x) = O) the solutions travelling to the right are given by

= df (e + Ciei) (5.51)

where df is a complex constant and k and k are the real and purely imaginary
solutions, respectively, of the dispersion relation:

w2 = gk2il. (5.52)

The coefficients of the imaginary wave number components C in Eq. (5.51) determine
the evanescent modes. As has been pointed out by Dairymple et al. (1991) the
process of obtaining the solution across the interface between region (I) and (II)
involves the coupling of the principal and all evanescent modes. To simplify the
analysis the contributions of these evanescent modes will however be neglected. This
commonly used assumption in the analysis of wave phenomena is called the plane-
wave assumption. Because of the linearity of the equations, the reflected waves from
region (II) have the same frequency, but travel in the opposite direction, the general
solution in region (I) under these assumptions is thus given by:

(7)1 = dfe + (5.53)

The general solution of Eq. (5.50) in region II is given as

= df'A(x) + d"B(x) (5.54)

where A(x) and B(x) are two linearly independent solutions of Eq. (5.50) and df' and
are again two complex constants. We assume that an incoming (i.e. k 0) wave

of unit amplitude (i.e. df = 1) is partially reflected from region (II) with complex
amplitude d2' = r. For a unique solution to exist in the complete domain, continuity
of and ç along the interface between region (I) and (II) is a necessary and sufficient
condition (cf. e.g. Romate (1998). I.e. we require that

7)1 = (7/I (5.55)
x=O x=O

= . (5.56)
x=O x=O

Substituting Eqs. (3.53) and (5.54) in Eqs. 5.55) and (5.56) the following Eqs. (5.57)
and (5.58) are derived:

1+i' = df'A(0) + d'B(0) (5.57)

ik - ikr = d'A(0) + d'B(0) (5.58)

The solution 7)" also has to satisfy the Sommerfeld condition Eq. (5.40) at x = LB,
resulting in

iw [df'A (LB) + d2"B (LB)] = c5 [df'A (LB) + d2"B (LB)] . (5.59)

Once the functions A(x) and B(x) are found from solving Eq. (5.50) for specified
a(x), the set of Eqs. (5.57)-(5.59) can be solved directly for (df', 4' and r) and thus
the absolute amplitude of the reflection coefficient rl can be determined.
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Piecewise damping functions

From the previous analysis it follows that the reflection coefficient can be obtained
for dissipation zones when the solutions A(x) and B(x) of Eq. (5.50) have been deter-
mined This concept can be extended for piecewise defined damping functions c. Let
the n intervals that partition the damping region (II) be denoted as i = {x, xi] and
let a(l) be defined only on i. Let the general solution of Eq. (5.50) on the interval
i be denoted as d A(I) + d Continuity of the solution and its derivative
along the interfaces together with the boundary condition at x = L, results in a set
of 2n + i linear equations that can be solved for d, i i . . . n, j = 1. 2 and r.

When the independent solutions of Eq. (5.50) are available for certain functions a(x),
the reflection coefficient can be obtained for dissipation zones consisting of a succes-
sive combination of these functions. In the next subsection (approximations of) the
solutions for the functions A(x) and B(x) for constant, linear and parabolic damping
functions a(x) are determined.

Solutions for constant damping

For a constant damping function

c(x) = (5.60)

it can be verified directly that harmonic functions of the form

= + d'e (5.61)

are solutions of Eq. (5.50). Here is essentially complex and w and must be related
by the dissipative dispersion relation

= 2j)( - iwco) (5.62)

This equation can be solved exactly for w

w = ±k/gf«k) - 2aJ2(k) (5.63)

Remark that k if a0 O and is complex instead of the real valued k.

Solutions for linear damping

Equation (5.50) is rewritten as

- w2
= g - iwa(x)

(5.64)
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Solutions of Eq. (5.64) will in general not have spatial harmonic solutions so the
operator R is not acting on a single mode and can thus not be reduced to pre mul-
tiplication with R. In order to simplify Eq. (5.64) we assume however that there
exists a complex i such that the result of the operator R can be approximated by a
pre-multiplication with .

4. (5.65)

If such a can be found, Eq. (5.64) simplifies to

Çxx p(g - ic.a(x))
(5.66)

For the linear damping function

ax) a0 + aix/LB (5.67)

and constant ¡ the general solution of Eq. (5.66) can be obtained by the transforma-
tion

(= ¡Ti [giw (ao +ax/LB)] (5.68)

and substitution of
¡TLa1

LB

in Eq. (5.66), resulting in

-t« + - o
The general solution of Eq. (5.70) is known (e.g. Whittaker & Watson (1965)) to be

= d1 () + d2 /K1 () (5.71)

where I(z) and K(z) are the modified Bessel functions of the first and second kind,
respectively. Thus, two linearly independent solutions are obtained and the reflection
coefficient can be calculated from Eqs. (5.57)-(5.59).

Solutions for parabolic damping

The general parabolic damping term is denoted as

a(x) = a0 + a1x + a2x2 (5.72)

where the scaling in x by LB is included in the coefficients a1 and a2. Substitution
of Eqs. (5.65) and (5.72) in Eq. (5.66) results in

- iw(ao + a1x + a2x2))
w2 -

(5.73)

(5.69)

(5.70)



By introducing the transformation

2

iwc2 ( -
' 02J

2
g - iL) ( -

and the abbreviation

2ia2 Y=
L)

Eq. (5.73) can be transformed to

(5.74)

(5.75)

(5.76)

which is a differential equation of the hypergeometric type. The general solution of
Eq. (5.76) is given by

= d1 F([a,b],[c],) +
d2Ç_cF([a - c + 1, b - c + 1], [2 - C], ) (5.77)

with

i /9+9
(5.78)a

=
i ¡2 - 7

(5.79)b = -:v t92

1
(5.80)c = -

The generalised hypergeometric function F(nt, ¿ z) in Eq. (5.77) is defined by

__ (-1i
r(n+k)\ zki1 F(n)

(5.81)F(n,d,z) = ¡
k!k=O fl1=i F(d) )

where F is the gamma function, i.e.:

F(z)
= f e_ttz_ldt (5.82)

Choice of fl

The solutions in the previous two paragraphs were obtained for modifications of equa-
tion (5.64). It was assumed that a constant fi satisfying Eq. (5.65) can be determined.
A natural candidate for such a constant fl is the choice

fl = 1/k. (5.83)
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Figure 5.6: The function f«k) tanh(k) its deep water approximation and a narrow
banded spectrum. The operation R is the product in Fourier space of .t
with the spectrum of .

This approximation is motivated by the observation that when a(x) is slowly varying,
i.e. when c and ct2 are small, the solution is still assumed to be narrow banded
around k and a zeroth-order approximation of R around k results in the approximation

= 1/k (see also Fig. 5.6).

A different approximation is obtained if the coefficient ji is allowed to depend on the
spatial coordinate, if the damping term is considered to be locally almost constant,
the local wave number would be related to the damping coefficient in deep water as

k= 'a'.
(5.84)

g - iwa

Motivated by this observation, the coefficient ii(s) could be approximated as

ji(s)
= k(x)

- iwa(x)
(5.85)

The result of this choice on the solution for linear damping functions is that with

(= g - ic(x) (5.86)

JT

(3_/+4
= d1

23 ) +d2( (5.89)

and

193 =
WLB'

(5.87)

Eq. (5.64) reduces to
1922 + = 0 (5.88)

with general solution
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In Section 5.5 the effect of these two approximations of equation (5.64) following from
the different choices of on the estimated reflection coefficient are presented.

5.4.2 Discrete analysis of reflection coefficients

In this subsection, the linearised discretised equations are derived for the numerical
implementation of the dissipation zone, stretching and Sommerfeld condition. The
stretching only changes the grid on which the equations are discretised and therefore
does not lead to a different structure of the equations.

Sommerfeld condition

The Sommerfeld condition is implemented by adding the equation

= c (5.90)

on the downstream vertical boundary. This equation is implemented as a Dirichlet
condition on the downstream wall and is therefore treated analogous to the Dirichlet
condition for the free surface. Let the index set containing the nodes that belong to the
downstream boundary be denoted as S and the vector containing the approximated
value of the potential be denoted as

Taking this extra Dirichlet condition into account leads to the following extension of
Eq. (4.18)

a
iEI

= a a
iD iES

+h E I. (5.92)
iEjV

Remark that in this equation the index set I = V \ (S U V) instead of I = V \ S. The
linear operator that maps the values of to the approximation of the vertical and
horizontal derivative in the nodes of is denoted as Dz and DX, respectively. The
components of D* are ordered as

(5.91)

D=
D11

Di
D81

D1

Dv
Ds

D18 -

D88

(5.93)



Pressure damping

Discretisation of the additional pressure damping terms

p(x,t) = a(x)F(x,t)

is straightforward by definition of the vector

=c(xV()) i=1...ID

The linearised discretised equations including wave generation and Sommerfeld ab-
sorption, can thus be written as

O Ly L8\ 7LA
= gI O O + O (5.104)

O cKv c8KsJ \Sj \cKAr

(5.105)

(5.106)

where x is the horizontal coordinate of the node N. In the region outside the dissi-
pation zone, the value of c(x) in Eq. (5.105) is zero. The inclusion of the linearisation
of the discretised damping terms (5.105) results in
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With the definitions of

L = [D1AA1 + D] (5.94)

L = [D,iAjAis + D8] (5.95)

LAr = [D,iABiN] (5.96)

(5.97)

Kp = [DffsiAAiv + D] (5.98)

K8 [DffsiAAis + D.8] (5.99)

Kj = [DIABIJI] (5.100)

the discretisation of the Sommerfeld condition leads to

= c{Dp]8

(5.10 1)

(5.102)

c8Kvç - CsKSÇDS - cKv. (5.103)

with

q = A =

q(=Aq+b

10 Lv

gI TL
\ O -cKv

L5

TL8

cK5
b 0

\cKNJ

(5.107)

(5.108)
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Figure 5.7: (a) The eigenvalues of A in (5.108) and (b)-(d) the real part of the eigen-
vectors for three specific eigenvalues related to . (p[FDj=2, p/FEMJ=1,
nx/h_-21, nz=10, ß = 1.5, 'y = 1.06, L0 = 10, c(x) = 0.05 for x > 8,
without a Sommerfeld condition)

where

T = diag{}. (5.109)

In Fig. 5.7 the eigenvalues of A in (5.108) are plotted for a(x) = 0.05, x > 8,
using grid stretching but without a Sommerfeld condition. The most characteristic
observation is the appearance of two spectral branches. The eigenvectors associated
with the branch of eigenvalues closest to the imaginary axis are mainly restricted to
the undamped region. The eigenvectors associated with the branch that is positioned
further away from the imaginary axis are mainly restricted to the dissipation zone.
One can also observe that, even for this very long dissipating zone, the eigenvectors
associated with long waves (like in subfigure (b)) are not well damped.

The effect on the spectrum when the discretisation of the Sommerfeld condition with
i is added can be observed in Fig. 5.8 on the next page. The result of the

additional Sommerfeld equation is twofold. Firstly, an additional set of negative
real eigenvalues associated with the new equations is observed near Re(t) 3.
Secondly, the eigenvalues with small imaginary component around the origin have a
larger negative real part than in Fig. 5.7. This indicates that also the longer waves
are more rapidly damped.

Although the inspection of the eigenvalues may hint at the qualitative effect of the

elgenvalues eigenvectors

.i =-0.001 8484-0.378491
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ReQi)

Figure 5.8: The eigenvalues of A for the same configuration as in Fig. 5.7 on the
preceding page with an additional Sommerfeld condition with c = 1.

absorbing layer, one is primarily interested in the reflection coefficient r. This coef-
ficient can be obtained by determining the envelope variations from Eq. (5.107) and
using the Ursell formula (5.6). By prescribing = where corresponds to a
profile of a wave maker and seeking solutions of the form q = 4eit, the complex
amplitude can be found by solving

(iwl - A) b. (5.110)

Eq. (5.110) is solved using a preconditioned Conjugate Gradient Squared (CGS)
method with incomplete Cholesky factors (ICF) as preconditioners. When the drop
tolerance of the ICF is set to iú the relative residue converges typically to a value
< 10_12 within 10 iterations. The envelope of the solution is determined as

For reflection coefficient determination, we have typically used a domain of length
12h (without horizontal stretching) and the numerical beach starts at z = 10h. The
effect of the evanescent modes on the wave envelope is not significant further than
3h from the wave maker and 3h from the beach interface at z = 10h. The maximum
Amax and minimum value of the envelope Aenv are thus determined over the
interval [3h, 7h] and Eq. (5.6) is applied to obtain the reflection coefficient estimate.

In order to verify the applicability and the accuracy of the above reflection coefficient
approximation, the method is used to estimate the reflection coefficient when a piston
wave-maker is used in combination with a Sommerfeld condition on the opposing wall

Aenv 141. (5.111)
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Figure 5.9: Comparison of the exact reflection coefficients of the Sommerfeld condition
for the i dimensional wave equation and the reflection coefficients obtained
by linear analysis of the discretised equations.

with c = 1. The reflection coefficient estimate is compared to the exact reflection
coefficient (5.18) of the Sommerfeld condition for the wave equation with the exact
dispersion relation.

As can be observed from Fig. 5.9 the approximation using the envelope variations
obtained from the linear solution of the discretised equations, results in an accurate
estimate of the reflection coefficient for small values of this coefficient.

Intersection point with Sommerfeld boundary

Until now we have not commented on the intersection point between the free surface
and the boundary where the Sommerfeld condition is applied. In the derivation at
the beginning of this section, the intersection point was chosen to belong to the free
surface. Therefore the vector oV and í are both of the same length and the Bernoulli
equation is applied to the free surface, while the Sommerfeld condition is applied to
the nodes below the free surface.

When the Sommerfeld condition is applied at the free-surface node instead of the
Bernoulli equation, the vector and í are not of the same length and the matrices
change due to the redefinition of the index sets. The first index of the index set D
corresponds to the leftmost node at the free surface. Nodes at the free surface are
then numbered sequentially. The first index in the index set S corresponds to the
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Figure 5.10: (a) the eigenvector belonging to an eigenvalue for the Bernoulli- and
Sommerfeld-type intersection point. (b)-(c) spectrum of the linearised
discretisation; the eigenval'ues marked with (z) correspond to special
eigenfunctions.

node on or closest to the free surface (depending on the implementation).

In Fig. 5.10 (b)-(c) the two spectra of A are drawn. Both implementations lead to a
stable discretisation. The difference between the two discretisations can be observed
(i) in the slightly different eigenvectors (see (a)) corresponding to the same (up to
5 digits) eigenvalue and (ii) the eigenvalues in (b)-(c) that are marked by a cross
(x) instead of a point (). For both implementations, the eigenvalues (x) correspond
to special eigenvectors that appear to lack any physical significance and are a pure
numerical artefact. In the following paragraphs, these eigenvectors are constructed
explicitly. For both constructions we assume that the triangular element that has the
intersection point as a vertex, has no interior point as a vertex.

Consider the case where the intersection point belongs to the free surface. The vector

q = y E constructed as

(.5.112)

-40 -20 o -40 -20 O

ReQi) Re(ii)

0.02

0.01 - (a)

Sommerfeldlo

I
o X.

-lo (b)
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where

Vs =

The vector y is an eigenvector with complex eigenvalue i of the matrix

V ==

/0

'0/

1Remark that this property is not true for 2-dimensional polynomial approximations

(5.113)

that follows from the linearisation of the discretisation of the free-surface equations
and the Sommerfeld condition. This property is independent of p[FD], /3, nx and nz.
The proof follows easily when it is shown that Lvvv _1/D (for the definition of
L see (5.94)). That this is true follows from two observations

The triangular element that has the intersection point as a vertex, has no interior
point as a vertex. Therefore the contribution of the intersection point to A1 is
zero. Therefore the only non-zero contributions in the last row of Lvvv come
from

Because the 1-dimensional finite-difference method uses only a single point on
the free surface for the approximation of the vertical derivative of I at a single
point, the matrix is a diagonal matrix. The elements in this matrix are
normalised to one, without loss of generality.

By definition of L it follows that the vector Lvvd is zero everywhere except a unity
value at the last index and is thus equal to

When the intersection point is modelled to belong to the Sommerfeld boundary, a
similar special eigenvector exists. Recall that for this situation the vectors 1j) and vV

are not of equal length. Consider the vector y E Rd+(d_1) as

(5.115)

A=
OI
O

Lv

0

KV
0

R8)
(5.114)
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where

(J

\ 1)

This vector is an eigenvector of

VV =
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L'5 = (5.116)

/ O L L5

/ o\
A= I 0 0 (5.117)

\ o)
O -KV KsJ

with real eigenvalue = 1. The proof follows directly if Lsv5 = V and K,5v5
vs. This can be shown by following a reasoning similar to the one in the previous
paragraph. For Lsvs, the contributions of D1AA15 become identical zero and
only the contribution of D5 remains. Except for the last row, the matrix D8 iS
equal to zero because the values at the Sommerfeld boundary contribute only to the
approximation of the vertical derivative at the intersection point. Again the element in
the first colunin of the last row can be normalised without loss of generality, leading to
the desired result L5v8 = r,'. The second condition, K5v3 = -y8 follows directly
by observing that D8 is a diagonal matrix that can be normalised.

The above derivations depend on whether or not the triangular element at the in-
tersection point has a vertex whose corresponding node belongs to I. When this
condition is not satisfied, there is a non-zero contribution in Ai or A15 from the
intersection point leading to very small but non-zero contributions in the last row
of e.g. D1AA1v. The corresponding special eigenvalues and eigenvectors for
these situation were however found to be almost identical to the situation for which
the triangular element satisfies the condition.

Based on the observation that the eigenvalues of the special eigenvectors for the
Sommerfeld implementation are (i) real and (significantly) negative and thus quickly
damp and (ii) impose less stringent conditions on the RK stability region, the im-
plementation of the Sommerfeld-type for the intersection point is preferred over the
Bernoulli-type.

Stability of the Sommerfeld condition

In the previous paragraphs it was already observed that the extra eigenvalues associ-
ated with the additional equations due to the Sommerfeld condition are real. Based
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Figure 5.11: Minimum value of eigenvalues when the Sommerfeld condition is applied
related to the stability constraints imposed by the imaginary eigenvalues
related to the wave propagation.

on the analysis of the second-order discretisation of the Sommerfeld condition for
uniform meshes,

,(i,rix) 3J(i,nx) 4(,flX_1) + L-2)
2.x (5.118)

the position of these eigenvalues is thought to depend linearly on the value c5 and on
the value of x1 near the boundary.

The eigenvalues are negative and therefore the spatial discretisation is stable. The
negative values might however lie outside the RK-stability interval (see also Chapter 3
Section 3.2.2). Variation of the number of nodes in the vertical direction nz and ß
showed no significant influence on the position of these eigenvalues. In Fig. 5.11 the
minimal real eigenvalue tmj, due to the additional Sommerfeld condition is plotted
for different values of c and for different nx/h. The minimum real eigenvalue is
indeed observed to be proportional to c5 and 1/Lx as

prnin -----. (5.119)2Zx
In fully nonlinear simulations with narrow banded spectra around a central period
T a common choice for the time step is iT = 1/20T. Given this time step, the
intersection of the 5 stage Runge-Kutta stability region with the real axis is approx-
imately 3.2167/At. This value has been plotted as a horizontal line in Fig. 5.11
for the smallest A = 1/4h and longest A = 4h wave considered in Chapter 3. From
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the intersection of these horizontal lines with the curves representing the minimal
eigenvalue due to the Sommerfeld condition, one can observe that the time step has
to be decreased for many configurations if a Sommerfeld condition is added. E.g. for
a time step of 1/20 of the period associated with the A/h = 1/4 wave on a grid with
nx/h = 61 nodes, the discretisation becomes unstable for c > 0.6.

Remark that the smallest wave has a frequency of approximately If the time
step is chosen such that this wave is stable, the intersection of the stability region
with the negative real axis is at u 20.64 for the finest rix/h = 151 grid. Given the
stability region of an RK method, denote the intersection with the largest modulus
of this region with the positive imaginary axis with Zjm and the intersection with the
negative real axis as Zre. The value of the minimal real eigenvalue only depends on
the local horizontal mesh width at the Sommerfeld boundary and will be denoted as

x0. The RK integration is thus stable if

t <min {izirni
Zx 2zx°

IZreIir 3c
(5.120)

(5.123)

where Lx is the smallest appearing horizontal mesh width in the discretisation. From
condition (5.120) one can observe that the previous stability condition is not affected
by the Sommerfeld condition if

LX0>
ZreI 2/

(5.121)

Because the maximum value of c is i and the maximum ratio is 1.0554 for the
RK schemes investigated in Section 3.2.2, the more rigorous condition on x0,

xo > Vf (5.122)

will result in a stable method if the method without the Sommerfeld condition was
also stable.

The suggested stretching of the grid in the horizontal direction to increase the effective
range of the dissipation zone, has the additional benefit that the local horizontal mesh
width near the downstream boundary is significantly increased. When N nodes in the
horizontal direction are used in the dissipation zone, the horizontal mesh width near
the free surface is a factor y'' larger. For the situation with N = 61 and y = 1.04, this
means a reduction of almost a factor 11 in /1mjfl, resulting e.g. for nx/h = 61 in stable
simulations for all c and zT within the range plotted in Fig. 5.11 on the page before.
The effect of stretching on the eigenvalues due to the Sommerfeld discretisation can
also be observed in Fig. 5.8 on page 144. If no stretching would have been used, these
eigenvalues are situated around ¡i 30. To assure that the additional Sommerfeld
condition does not influence the stability of the numerical scheme, a combination of
N and 'y needs to be chosen such that
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Figure 5.12: The reflection coefficients of constant, linear and parabolic damping func-
tions. (nx/h=3.l, nz=11, [3 = 1.5, L = 12, LB = 2, g = 1, h = 1)

A similar analysis can be performed on the additional equations following from a
discretisation of the absorbing wave maker boundary condition of Subsectioll 4.3.2
on page 113. For this situation, the local mesh width cannot be easily stretched and
small time steps may be necessary to obtain stable discretisations.

Effect of damping and stretching

In Fig. 5.12 the reflection coefficients are plotted for constant a(x) = a0, linear a(x) =
a1x and parabolic damping functions a(x) = a2x2. The length of the dissipation zone
is LB = 2 and no Sommerfeld condition is applied. From this figure it can be observed
that for small values of a0 long waves are significantly reflected. For larger values of
a0 the reflection coefficient decreases for these long waves but the short waves reflect
against the sudden jump in a across the interface. The reflection coefficients for linear
and parabolic damping are quite similar. For larger values of ai and a2 the short
waves are damped quite well, but the long waves still reflect with reflection coefficients
of rl > 0.3. Although this is not depicted in Fig. 5.12 one can easily envision that for
larger values of a1 the short waves will again reflect against the quick change in a.
It is also noticed that the parabolic damping function does not show a characteristic
different behavior than the linear damping function. We therefore focus on constant
and linear damping and do not consider parabolic damping functions in detail further.

Fig. 5.13 on page 153 shows the reflection coefficients for a combination of linear damp-
ing functions a(x) = 'x, a Sommerfeld condition with velocity c and stretching
of the grid in horizontal direction with a factor y. The length of the beach without
stretching is LB = 2. From this figure it can be observed that the additional Sommer-
feld condition greatly reduces the reflection coefficients when compared to Fig. 5.12.
It is also observed that for small damping coefficients a1, the reflections against the
stretching grid become significant for larger values of -y. Recall that larger values of y

constant damping linear damping parabolic damping

2 3 4 5 2 3 4 5 2 3 4 5

o) (h/g)112 w (hlg)1a O) (h/g)112
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also imply larger values of Lei f and therefore a smaller slope a1 ¡Leí f of the damping
function. The value of c slightly changes the reflection profiles and it can be observed
that for intermediate values of a1, c = 0.8 results in lower reflection coefficients for
long waves when the grid is stretched than the reflection coefficients for c = 1. This
is due to the reduction in phase speed of the regular wave after propagation through
the stretched dissipation zone.

5.5 Results and discussion

In this section the expressions for the reflection coefficient estimates derived in Sec-
tion 5.4.1 and 5.4.2 are compared and discussed. Based on the linear analysis of
the discretised equations, a combination of parameters is determined that results in
a combined absorbing beach that approximates a transparent boundary. Based on
the results from these sections and the measurements that have been described in
Section 5.2, a numerical beach will be constructed that has approximately the same
reflection coefficients as the artificial beach in the SMB at MARIN.

5.5.1 Continuous equations and numerical results

We recall that the method to obtain the reflection coefficient from the continuous
equations is based on a plane wave assumption. Therefore, no equivalence is to be
expected with the results obtained by analysis of the linearised discretised equations.
Firstly, the reflection coefficients for a = O (no damping) will be compared. Fig. 5.14
on page 154 shows the continuous reflection coefficient and the reflection coefficients
obtained from linear analysis of the discretised equations for c = 1. In general, good
agreement is observed but the estimated numerical reflection coefficients are slightly
higher than the continuous reflection coefficients.

Constant damping

After substitution of the solution (5.61) in Eqs. (5.57)-(5.59), the complex valued
solution for the reflection coefficient is obtained as

e2i ( - c5) ( + k) + (w + ck) (k - k)

e2ikLB ( - Csk) (k - k) - (w + csk) (k + k)

where k is a function of w and related by the dispersion relation

w2=ktanhk (5.125)

and k is related to w as

w2 = (1 - iaow) ktanhk (5.126)
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Figure 5.14: Reflection coefficients obtained using the continuous equations from 5..1
and the the analysis of the linearised discretised equations for c = i and
a = O (g=1, h=1. LB = 2, y = 1, ¡3 = 1.5, rix/h = 31, nz = il, L = 8)

The solutions k of Eq. (5.126) for given w are non-trivially distributed over the com-
plex plane. A direct procedure to obtain all solutions has been developed by Mclver
(1998) using a Riemann-Hilbert approach by loakimidis (1988). As pointed out by
Mclver even double roots of Eq. (5.126) may exist. A complete eigenfunction ex-
pansion of Eq. (5.43) with p as in Eq. (5.39) with a(x) = a0 may therefore include
generalised eigenfunctions at these double roots.

In Fig. 5.15 on the next page the zero-contours of the real and imaginary part of
k tanh k

.
are plotted for w = 2 and two values of a0. The intersection of

these zero-contours where k ±i(2n + 1) (tanh(k) is not defined) correspond to the
solutions of Eq. 5.126. The points k = ±i(2n + 1) are the dots in the figure. The
cross plotted in the right-upper plane corresponds to the deep water approximation
k = w2/(1 - iaow). As can be observed, the deep water assumption still results
in good approximations of the principal wave number. In the following paragraphs
the deep water assumption will be used to approximate the 'most progressive' wave
number k.

In Fig. 5.16 on page 157 the reflection coefficients for a dissipation zone consisting
of a linear damping function a(x) = ao and a Sommerfeld condition with c. = i are
compared for different values of a0. Investigation of the wave patterns showed that
the 'wiggling' part of the reflection curve for small values of ctow corresponds to waves
that:

1. are partially reflected against the discontinuity in a at the interface with the
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Figure 5.15: The zero-contours of the real component (solid line) and imaginary corn-
ponent (dashed line) of k tanh k The intersections where
k ±i(2n + 1) correspond to solutions of Eq. 5.126.

numerical dissipation zone.

2. have propagated through the dissipation zone, partially reflected against the
Sommerfeld condition and travelled back through the dissipation zone.

The wiggling is due to the interference between these two left-going waves and is
predicted both by the continuous analysis as by the discrete analysis for small values
of a0w. For larger values of cc.J the reflection coefficient is completely determined by
the first type of reflections. The part of the wave that travels through the dissipation
zone and reflects against the Sommerfeld condition is completely damped before it
reaches the start of the dissipation zone for the second time. Therefore no interference
between the two type of reflections occurs and the reflection coefficient is determined
as if LB * cc. We therefore examine the reflections coefficient for kLB -+ oc.
Multiplication of the nominator and denominator by e_2* in Eq. (5.124) results in

e2(2j*L8) ( ck) (k + k) + e_2*
( + csk) (k k)

e_2(2*L5) (w csk) (k k) e_2iLB (w + csk) (k + k)

from which it can be directly observed that

(.5.127)

(5.128)
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which results in deep water in

iwaoum r=
kL-+oo iwc0-2

Taking the absolute value of Eq. (5.129) results in

hm Ir =
L-*oo

wcEoIrI---,

2w + a1 - + 4w2
hm In =kL-oo 2wa1 +

This expression simplifies for c «2w in

alIrI.4w

w2a

w2a + 4

(5.129)

(5.130)

The conclusion of the previous analysis is that for large values of kLB but for wa0 «2

(5.131)

which is in agreement with the results of both the linear analysis and the discretised
equations as can be observed in figure 5.16 on the next page.

For smaller values of kLB the continuous and discrete reflection coefficients are not
in mutual agreement. A series of grid refinement studies confirmed that the reflection
coefficients of the discrete analysis had converged. The discrepancy between the con-
tinuous estimate and the numerical estimate must therefore be due to the plane wave
assumption used in the continuous analysis. Apparently, neglecting the evanescent
modes in the constant dissipating zone results in an overestimate of the reflection
coefficients.

Linear damping

The expression for the reflection coefficient using a linear damping function a(x) =
a1x when the limit kLB- oc for the approximation ¡i(x) 1z«x) with the deep
water assumption is

(5.132)

(5.133)

For large values of w the reflection coefficient therefore strictly decreases with in-
creasing w which is a significant difference compared to the asymptotic behavior for
constant a(x) = a0.

Fig. 5.17 on page 158 shows the reflection coefficient for linear damping functions
a(x) = aix/L8 and a Sommerfeld absorption boundary with c = 1. In every
subfigure 3 curves are plotted. The solid curve is the graph of the reflection coeffi-
cient obtained by linear analysis of the discretised equations. The dashed curve is
the reflection coefficient obtained using the simplified continuous plane wave model,
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Figure 5.16: Reflection coefficient estimates obtained from linear analysis of the con-
tinuous equations and of the discretisation. (constant damping function)
(g=1, h=1, c=1, LB = 2, 'y = 1, /3 1.5, nx/h = 31, riz = 11, L = 12)

Eq. (5.64)-(5.65), with the approximation = j. The dotted curve is the reflection
coefficient obtained using the approximation (x) as in Eq. (5.85). Again
the convergence of the reflection curve obtained by the discretisation has been verified.

From this figure and the above analysis it is concluded that:

For the investigated range of parameters, the approximation using ¡i(x) =
1w(x) in the simplified continuous model Eq. (5.66) results in smaller re-
flection coefficients than the choice j . The latter choice for results in an
overprediction of the reflection coefficients from discrete analysis for almost the
complete range of investigated frequencies.

The simplification of the continuous equations for linear damping functions -
the plane wave assumption and the operator approximation - results in poor
estimates of the reflection coefficient.

The reflection coefficient on a long numerical dissipation zone using a linear
damping function ci(x) a1x for small waves is proportional to ai/w.
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Figure 5.17: Reflection coefficients of the continuous model using the approximations
Eq. (5.83) (dashed) and Eq. (5.85,) (dotted) and the result of the analysis
of the linearised discretised equations (solid line) for c = i and different
values of a1 (linear damping function). (q=1, h=I, LB = 2, 'y = 1,
ß 1.5, nx/h = 31, nz = 11, L = 12)
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Figure 5.18: The reflection coefficients for the beach configuration a1 =
0.3/Le! [1/g], y = 1.04, c3 = 0.7 n.x/h=31, nz=11, ß = 1.5,
L=12,LB=2,g=1, h=1)

5.5.2 Transparent beach

It was found that for the grid configuration used in Fig. 5.13 on page 153 (i.e.
nx/h=31, nz=11, 3 1.5, L = 12, L93 = 2, g = 1, h = 1) the smallest reflection
coefficients were obtained for al/Le!! = 0.3, -y = 1.04 and c = 0.7. The reflection
coefficients are plotted in Fig. 5.18 and show that all reflection coefficients are smaller
than 0.7 %. The slow increase of the reflect,ion coefficient for the higher values of w
is due to reflections on the stretching of the grid.

Although the configuration LB = 2, 'y = 1.04, c5 = 0.7 and ai/Le1 = 0.3 results
in minimal reflection coefficients for the principal range of frequencies, the choice

= 1 over c = 0.7 is sometimes preferable when shallow water waves (like solitary
waves) also need to be absorbed. Remark that these very small reflections (<0.7%)
over the range of waves between À = -h and À = 4h is achieved at the relatively
small computational cost of increasing the computational domain with a length of
2h. Choosing c = i over c = 0.7 results in an increase of the reflection coefficient at
w = 1.2 and w = 1.25 to approximately 0.019 and 0.008, respectively. The reflection
coefficients at all other frequencies do not significantly change. Because of the very
small reflections, the above configuration with either e5 = 0.7 or c = 1 will be referred
to as the transparent numerical wave absorber.

To illustrate the effectiveness of this configuration in the fully nonlinear case, the
following numerical simulations are presented: (i) comparison of the free-surface ele-
vation for two different positions of the beach and (ii) the investigation of the evolution
of an initial condition resulting in a broad continuous spectrum of travelling waves.
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Figure 5.19: The wave elevation of a nonlinear bichromatic wave for 405 < t < 430
at z = 400 [m] and two configurations using the optimal configuration of
Fig. 5.18: (solid line) dissipation zone starts at z = 400 [m]; (open dot)
dissipation zone starts at x = 1000 /mJ,)

Effect of translated beach

A highly nonlinear bichromatic wave (h = 5 [m], g = 9.81 [m2/s], T1=1.8 [s], T2=2.2
[s], ql=q2=0.08 {m], z.T = 0.1 [s]) is generated using a flap-type wave maker and the
numerical beach is placed at z = 80h from the wave maker. The wave elevation is
recorded at z = 80h and compared to the wave signal for the same simulation, but
with the numerical beach translated to z = 200/i. The two signals are plotted in

Fig. 5.19 and are seen to be almost identical. It is concluded that the effect of the
numerical beach on the simulation is negligible and therefore performs adequately as
a transparent boundary.

Broad banded spectrum

An initially prescribred free-surface method is used to generate a wave train containing

many frequency components. As a numerical absorption the optimal beach of this
section is used. For this simulation h = 5 [m], g = 9.81 [mIs2], nz/h = 26 and

= 0.1 [s]. As an initial condition the proffle

Elevation at x=400m

415
t [s]

420 425 430

i(x,0) = asech(2x) (5.134)

0.2 comp. domain = 400m + beach
o comp. domain = 1000m + beach
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is taken. The numerical dissipation zone starts at x = 12h. The graphs in Fig. 5.20
on the following page are x-t plots of i where values of i > 5 x iO are plotted as
black dots. The plots in Fig. 5.20 (a)-(c) are the result of simulations with a = 0.2
[mJ while in (d)-(f) a = 0.6 {m] was chosen. In plots (a) and (d) no dissipation zone
is used but only a Sommerfeld condition with e = 1. In plots (b) and (e) only a linear
dissipation zone is used but no Sommerfeld condition. In (c) and (f) the combination
of the damping and Sommerfeld condition is used. From this figure the effectiveness
of the Sommerfeld condition for long waves and the effectiveness of the dissipation
zone for short waves can be observed. Also, for nonlinear time-domain simulations
for waves with many frequency components, the concept of combined linear damping,
stretching arid a Sommerfeld condition proves to be a robust, stable and adequate
numerical beach concept for a relatively small computational effort (extension of the
domain by 2h).

5.5.3 Approximation of the physical beach

In the previous subsection the numerical parameters that result in the smallest achiev-
able reflection coefficients using the numerical wave absorber have been presented. In
this subsection, parameters are sought that will result in a reasonable representation of
the measurements presented in Subsection 5.2. It has also been investigated whether
geometric modelling of the West-side basin (see Fig. 5.1 on page 120) could improve
correspondence between the numerical and measured reflection coefficients; this was
however not observed. It is stressed that there is no physical connection between the
numerical models (Sommerfeld condition, pressure damping and grid stretching) and
the artificial beach used in the experiments. Matching of the results is therefore an
ad hoc procedure of trial and error that is guided by the following three observations:

The value of e5 determines a local minimum on a desired frequency in the lower
frequency part of the spectrum.

The value of n determines the value of the reflection coefficients for the central
frequencies

The values of -y influences the slope of the reflection curve in the high-frequency
range.

Based on extensive variations keeping nx/h = 31 fixed of the above parameters the
following two configurations of numerical parameters were chosen:

North side SMB LB = 2, 'y = 1.0365, c = 0.5, 1/L5ff = 0.015 (5.135)

West side SMB LB = 2, 'y = 1.04, e5 = 0.45, ci/Lff = 0.02 (5.136)

During the investigations it was observed that by adding a threshold to ci(x) as

(x) = a(x) = O < x < 0.4h
(5.137)

a(x) = 0.4h < X < Lef f
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Figure 5.21: Measured reflection coefficients and the reflection coefficients for two nu
merical damping models for the beach on the North side of the SMB

resulted in a highly oscillating reflection curve. The reflection curves both with and
without this threshold and the measured reflection coefficients (see also Fig. 5.4 on
page 126) are plotted in Fig. 5.21 and Fig. 5.22. The oscillations due to the additional
threshold are probably due to the interference of the waves reflected against the two
jumps in a(x).

One reason to include the threshold in the function a(x) could be to introduce a
similar spreading of the reflection coefficients as was found in the measurements.
Very small variations in w lead to quite different reflection coefficients. However, it
must again be stressed that there is no physical representative model underlying the
numerical beach, let alone the choice of a.

5.6 Conclusions

In this chapter the numerical modelling of artificial beaches in a wave tank has been
discussed. Firstly, the measurements on the artificial beaches of the new SMB and
OT at MARIN have been described. The reflection coefficients at the West side of the
SMB are < 10% for all investigated regular waves. The reflection coefficients on the
North side are slightly higher than the coefficients on the West side which is due to
the fact that the beach on the North side is two meters shorter. Examination of the
measurements showed that the estimated reflection coefficients are not independent

- N=60, y=l.0365, C =0.5, cx1=0.015
N=60, y=1 .0365, c=0.5, a(x) see plot(b)

* measured data (north side SMB)

,

4.5 5 5.5 6
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Figure 5.22: Measured reflection coefficients and the reflection coefficients for two nu-
merical damping models for the beach on the West side of the SMB.

of the wave amplitude. Also no strong correlation was found between the steepness
of the wave and the reflection coefficient.

A combination of three numerical methods is porposed as a numerical model for the
artificial beach: (i) an energy dissipation zone (ii) a Sommerfeld radiation condition
on the downstream vertical boundary and (iii) stretching of the grid in the horizontal
direction along the dissipation zone. The energy is dissipated through the additional
term a(x) in the dynamic free-surface condition. For positive c«x) strict energy
decay is guaranteed and mass is still conserved. This combined numerical beach model
was investigated both before and after numerical discretisation.

In the continuous analysis a plane-wave assumption was made to simplify the analysis.
Comparison with the converged reflection coefficients of the discretised equations
showed that this simplification leads to an overestimate of the reflection coefficients
for constant functions a(x) = a0 for small values of waj. The approximation of the
dispersion operator by Eq. (5.65), to obtain analytical solutions for the governing
equations when a(x) = a1x, resulted in poor estimates of the reflection coefficient
when compared to the discrete results. It is therefore concluded that models based on
the suggested operator approximation are inadequate, although higher-order (Padé)
approximations of the symbol R may lead to better approximations.

Linear analysis of the discretisation of the equations showed that stretching of the grid
does not affect the linear stability of the numerical scheme. The Sommerfeld radiation

15 2 2.5 3 3.5 4

(b) w [radis]

0.08

0.06
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condition, that was implemented as a Dirichlet boundary condition, will influence the
stability of the time integration as the additional eigenvalues due to this condition can
be situated outside the stability region of the RK scheme. Analysis showed that the
position of this eigenvalue on the real axis is inversely proportional to the horizontal
mesh width near the downstream boundary and may result in a severe restriction
on the time step. Stretching of the grid has therefore two main advantages: (i) the
effective length of the dissipating zone is greatly increased without any additional
computational cost and (ii) the local horizontal mesh width near the Sommerfeld
boundary is much enlarged leading to no additional constraints on the time step. If
the horizontal grid is stretched too fast short waves will significantly reflect against
the grid. An optimal configuration of the three numerical concepts is constructed
with the property that r < 0.007 for all waves with wavelength h/4 < .\ < 4h
for a computational effort equivalent to an extension of the domain with 2h. This
optimal beach was tested in the fully nonlinear case by measuring the effect of the
translation of the beach and by examining the effect on a broad banded wave train. It
is concluded that the constructed optimal configuration is both efficient and effective
as a transparent boundary for a wide range of frequencies. A numerical parameter
variation study of the combined beach concept was performed to tune the reflection
coefficients to the measured data. A combination of parameters was found to result
in a reasonable approximation of the scattered data from the measurements. It was
found that an additional threshold in the damping function a(x) resulted in oscillatory
behavior of the reflection coefficients.
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Chapter 6

Nonlinear Wave Groups

The investigations of the Chapters 3-5 dealt with the generation, propagation and
absorption of waves in a numerical wave tank based on the principles outlined in
Chapter 2. In this chapter, the developed numerical scheme will be applied to in-
vestigate the long-time evolution of nonlinear wave groups. Firstly, the evolution of
a confined wave group and the effect of a specific bottom topography in a coastal
region will be investigated. Secondly, the evolution of bichromatic wave groups will
be examined. Predictions of the numerical simulations are validated against exper-
iments that have been performed at MARIN. Good agreement is observed between
the experimental and the numerical results. Both the numerical and experimental
results show a strong nonlinear deformation of the wave group envelope. The nu-
merical method is then used to predict the long-time evolution beyond the spatial
dimension of the physical wave tank. This long-time evolution of the wave group
shows intriguing temporal structure and spatial recurrence phenomena. Investigation
of the spatial variation of the wave spectrum and analysis of the nonlinear equations
motivates the introduction of a parameter governing the deformation process of these
bichromatic waves.

6.1 Previous investigations

The nonlinear evolution of (confined) wave groups has been the subject of investiga-
tions since the 1960's. The subject is directly related to the instability of uniform
wave trains The reason is that the first experimental evidence of wave train instabil-
ity showed grouping of the wave. The grouping evolves from (exponentially) growing
symmetric side bands close to the central frequency of the wave train, resulting in a
modulated wave train.

167
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6.1.1 Modulated wave trains

Although the first existence proofs of periodic deep water solutions to the nonlinear
free-surface equations were already given at the beginning of the previous century,
the stability of these solutions was taken for granted until the 1960's. Lighthill (1965)
used Whitham (1965) averaged Lagrangian theory to examine the solution of a smooth
initial wave packet for deep water waves. His solution predicted that the nonlinearity
would lead to a focussing of energy towards the center of the pulse as the packet
evolved in time, but the solution became singular in finite tir. Lighthill commented
that such behavior is indicative of the presence of an instability associated with non-
linear deep-water waves. Benjamin & Feir (1967) were however the first to prove that
a uniform continuous wave train is indeed unstable to modulational perturbations of
its envelope. Both Benjamin (1967) as Feir (1967) give experimental proof to pro-
vide some evidence for their theoretical proven instability. They speculate that as a
result of the exponential growth of the unstable sideband band frequencies, the wave
train would finally disintegrate and the energy would spread over a broad spectrum.
Feir (1967) also showed experimentally the disintegration of a single confined wave
group into two wave group pulses. Hasselmann (1967) speculates that the results of
Benjamin & Feir supports his claims that due to the resonant nonlinear interactions
the wave energy will be evenly spread over all wave numbers in any wave spectrum
(Hasselmann (1963)).

Lighthill (1967) uses Whitman's theory to examine the same problem as Benjamin
& Feir and also shows instability, but gives different conditions for the instability.
The solution again leads to a singularity in finite time (Whitman's theory should be
asymptotically valid). Zakharov (1968) shows that the nonlinear free-surface bound-
ary conditions are Hamiltonian and that if the wave number variation is small, the
governing equations can be reduced to the Non-Linear Schrödinger (NLS) equation
for the wave envelope. His mode-interaction equations are also known as the Za-
kharov integral equations. Later is has been shown by Caponi et al. (1982) that the
Zakharov equations itself are not Hamiltonian, while the free-surface equations have
a Hamiltonian structure (cf. also Broer (1974) and Miles (1977)).

Chu & Mei (1970, 1971) use a multiple-scale method to derive the NLS equations.
Their equations are similar to the ones of Lighthìll except for an additional term in the
dispersion relation proportional to a which eliminates the singularity encountered
by Lighthill. Their numerical scheme however, breaks down when the amplitude
a becomes zero. The experiments that they preformed however showed that the
envelope of a deep water Stokes train tends to disintegrate into smaller envelope
pulses of permanent form. Zakharov & Shabat (1972) give an exact solution to the
initial value problem of the NLS for sufficiently fast vanishing initial values. The
exact solution predicts that an arbitrary smooth initial wave packet will eventually
disintegrate into a definite number of envelope solitons which are stable to collisions.

Both Hasimoto & Ono (1972) as Davey (1972) report that the wave envelope for
small wave number variations satisfies the NLS. Hasimoto & Ono propose that the



PREVIOUS INVESTIGATIONS 169

end state of the instability of nonlinear wave trains might be a series of solitary
envelope pulses of permanent form. Bryant (1974) shows that permanent waves can
be identified with Stoke waves for deep water and with cnoidal waves for shallow
water, with a continuous range of wave profiles in between. Yuen & Lake (1975)
prove that Whitman's theory when applied consistently to the order considered, also
yields the NLS and they experimentally confirm the soliton properties of confined
wave packets. Now the discrepancies between Whitman's theory and the Benjamin-
Feir instability are resolved because the NLS produces the Benjamin-Feir instability
for an initially uniform wave train. This is also later shown by Stuart & Diparma
(1978).

Yuen & Lake (1975) also perform detailed experiments to confirm that the NLS
provides a quantitatively satisfactory description of the long-time evolution of wave
packets. Lake & Yuen (1977) then re-examined the experiments of the initial reported
instabilities by Benjamin and Feir. They showed that the long-time evolution of
a modulated continuous wave train exhibits Fermi-Pasta-Ulam (FPU, Fermi et al.
(1940)) recurrence. The previously observed disintegration of the modulated wave
train into a pulse was only an intermediate state. They also show numerically that
the NLS exhibits this kind of recurrence. Later it has been shown (see e.g. Akhmediev
& Ankiewicz (1997), pp. 50-57) that the BF-instability is related to an exact solution
of the NLS. Lake & Yuen (1977) accounted for the apparent discrepancies between the
numerical and experimental results by correcting the theoretical wave steepness with
the measured wave steepness (ka = 0.78(ka)meas). Yuen & Ferguson (1978b) further
explored the relationship between the Benjamin-Feir instability and recurrence in the
NLS, also in two space dimensions (Yuen & Ferguson (1978 a)).

Longuet-Higgins (1978a,b) presents fully numerical simulations using periodic bound-
ary conditions establishing reference material for the stability regions and initial
growth rates. Dysthe (1979) extends the nonlinear Schrödinger equation to be appli-
cable to wave packets of broader bandwidth by adding a higher-order term correction.
The correction for the wave steepness previously introduced by Lake & Yuen (1977)
was shown to be fictional by the same authors (Yuen & Lake (1982)) and they con-
cluded that theories should be improved. They propose the use of the Zakhorov
integral equations and obtained better agreement of the side-band growth-rates than
given originally by Benjamin and Feir. Stiasnie (1983) showed that Dysthe's equa-
tion cari be deduced from Zakharov's integral equation by using the narrow bandwidth
approximation. Janssen (1981) obtains a nonlinear evolution equation for the ampli-
tude of the sidebands from analysis of Dysthe's equation and the result exhibits the
FPU recurrence phenomena and are in qualitative agreement with the experimental
findings. Bryant (1982) show that there is a critical depth as a point of bifurca-
tion between permanent waves and wave groups of permanent envelope. Melville
(1982) conducts a series of sideband evolution experiments (all including breaking)
from which he concludes that the end state of the evolution is inevitably a breaking
event followed by partial recurrence, tending to lower frequencies. He did not observe
any recurrence of the FPU type as reported by Lake et al. (1977). However his ini-
tially used wave steepness was a factor two higher (ka = 0.2) than that used by the



170 NONLINEAR WAVE GROUPS

previous authors. Lo & Mei (1985) numerically compute the long-time evolution of
nonlinear wave trains using Dysthe's equation showing wave train disintegration and
FPU recurrence phenomena. Trulsen (1989) later improved this numerical method
for solving Dysthe's equation. The stability analysis on the Zakharov equation is ex-
tended by Crawford et al. (1991) who obtain an expression of the initial growth rates
for finite values of ka and find better agreement with experimental and numerical re-
sults. Their results also show restabilisation for large values of ka. Krasitskii (1994)
modifies the Zakharov integral equations preserving the Hamiltonian structure of the
free-surface problem. Colin et al. (1995) show that the stability does not depend on
the irrotationality assumption.

Nonlinear simulations on the evolution of nonlinear unstable wave trains have been
performed by several authors using periodic boundary conditions. Landrini et al.
(1998) however compared several numerical surface methods (NLS, Dysthe, Krasit-
skii) to fully numerical simulations (using the code developed by Wang et al. (1995))
and concluded that the Krasitskii model shows the closest agreement to the fully
nonlinear solution for long-time unstable waves. Tulin & Waseda (1999) report ex-
tensively on fully nonlinear numerical results and measurements on the occurrence
and the effect of breaking in the unstable wave train.

For further references we refer to the review article of Yuen & Lake (1980) on wave
instabilities and the review of Hammack & Henderson (1993) on Resonant Interaction
Theory. A thorough mathematical description and numerous references on issues
related to the nonlinear instability of water waves can be found in Debnath (1994),
Chapters 7-8.

6.1.2 Bichromatic waves

Most of the previous reported investigations have been focused on the stability of a
slightly modulated uniform wave train. Lo & Mei (1985) are the first to report on
the long-time evolution of an unstable bichromatic wave group. Their measurements
(performed by G.J. Keller, 1982) show the steepening of the waves at the front and
the asymmetric evolution of the wave group envelope. Comparison with numerical
experiments based on Dysthe's equation showed reasonable agreement. Lo & Mei
use their numerical scheme for long-time calculations and observe the splitting of the
bichromatic wave group in two groups with different speeds. Comte & Boudet (1991)
present some measurements and gives some fully nonlinear numerical computations
on bichromatic wave groups. The measurements and computations are not directly
compared. They also observe the asymmetric evolution of the wave group but do
not report on recurrence or long-time evolution. Comparable experimental results on
bichromatic waves as presented by Lo & Mei, have also been provided by Stansberg
(1997). In Moubayed & Williams (1994) the full second-order solution of bichromatic
waves produced by a wave maker in a wave fiume is presented. However, a second-
order theory cannot account for (third-order) resonant interactions. Taylor & Ohl
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(1999) uses the method by Graig & Sulem (1993) (spectral method based on expansion
of the Dirichlet-Neumann operator with symmetric spatial boundary conditions) to
investigate bichromatic wave groups and observe focussing. The spatial and time
scales are however far too small to comment on long time evolution and they mention
that more data on vast times scales is necessary to obtain conclusive results.

It is surprising that systematic experimental results on the fully nonlinear evolution
of bichromatic wave groups are not available in the literature. We also did not found
systematic fully nonlinear numerical investigations on the long-time evolution of these
waves.

6.2 Confined wave groups

During the initial course of our investigations, questions concerning the validation of
the developed computer program frequently arose. One of the first (cf. Westhuis &
Andonowati (1998)) validation studies that was performed, considered the simulation
of the evolution of a confined wave group. Similar calculations had been performed
by de Haas (1997) who used a Domain Decomposition Boundary Integral Method to
solve the evolution of these large wave structures. Initially, he used the first-order
solution of the potential and elevation for a confined wave group and investigated
the effect of second-order contributions to the stationarity of the propagating wave
group. De Haas found that the addition of bound second-order contributions could
compensate partially the generation of free second-order components. However, a
stationary propagating confined wave group was not achieved. In this section we
examine the same first-order confined wave group and use an engineering approach to
isolate the stationary part. After it has been confirmed that this approach leads to a
reasonable stationary evolution of a confined wave group, the effect of the evolution
of this wave group is investigated when the water depth is slowly decreased to half of
the original depth.

NLS coefficients

As an initial condition for the simulation of confined waves, a modulated carrier wave
with wavenumber k is used. It is well known that the modulation amplitude satisfies
the Non Linear Schrödinger equation. This equation describes the evolution of the
complex-valued amplitude envelope of a narrow-banded spectrum. To obtain the
coefficients of the NLS-equation (3.21) the method of multiple-scale expansion has
been used. This method was also originally employed by Hasimoto & Ono (1972) for
two-dimensional and Davey & Stewartson (1974) for three-dimensional wave packages.
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The potential and free surface are expanded as
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Substitution of (6.la)-(6.lb) in the equations governing the nonlinear free-surface
evolution (2.23a)-(2.23f) on page 19, ignoring surface tension and equating the coef-
ficients for Emei, m = 1,2,3 and n = 0, 1,2 to zero leads after lengthy algebra to
expressions for ? and (F as
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Where A(e, T) is a slowly varying complex-valued amplitude function. To avoid res-
onance in the n = 1,m = 3 expressions, this amplitude has to satisfy

It is noted that these coefficients determine the evolution of the amplitude of the
potential. A simple scaling argument shows that the y' coefficient for the amplitude
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The coefficients f3' and 'y' in the NLS-equation (6.5) are given as
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with

c'J

1

= 16sinh'q (cosh4q + 8 - 2tanh2q)

q=kh
g

The normalised value of 'y is plotted in Fig. 6.1 from which it can be observed that
it changes sign around kh 1.363. For ß"y' < O, Eq. (6.5) is known as the self-
focussing NLS allowing confined solitary solutions for A. Because for gravity waves
always ß' < O, this condition is equivalent to the condition 'y' > O which results in
the condition kh > 1.363 in order for solitary solutions of the envelope to exist. The
soliton solution of Eq. (6.5) in physical coordinates is given by

X

4

2

2

4
1.36 1.362 1.364

kh

Figure 6.1: The norrnalised coefficient 2'y/(k2w) governing the nonlinearity in the
NLS equation.

of the free surface is 'y17 = 'y'
()2.

This value of-y17 coincides with the result obtained
by e.g. Dingemans (1997b) pp. 918 ' who found 'y as

+
= (

+ 2 4sinh2q

2gsinh2q c - gh + k0w0k

'This reference contains a misprint: the second power instead of the fourth power of the sinh in
the denominator of ,c has been printed.

A(x, t) = a0sech a0 (x - cgt)) e_uit. (6.14)

(6.11)

(6.12)

(6.13)
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Disintegrating wave trains

Before the NLS was introduced as a model equation for the modulation of narrow
banded wave train, Feir (1967) already reported on the appearance of a second wave
group from a wave pulse experiment. Later systematic experiments were performed
by Yuen & Lake (1975) for ka < 0.1 and Su (1982) for ka > 0.1 on confined wave
trains. Their results are in agreement with the predictions of Zakharov & Shabat
(1972) that a wave train that sufficiently fast decays for Ix -+ will disintegrate
in solitary wave groups and a small oscillatory tail. The results of Su have been
reproduced qualitatively by numerical simulations of Lo & Mei (1985) using Dysthe's
equation. Shemer et al. (1998) also performed some experiments for wave groups
on intermediate water depth and compare the results to numerical solutions of the
NLS-equation. Although symmetric initial data remain symmetric under the NLS-
equation, they consider the NLS-equation as a robust model for the description of
wave groups in water of intermediate depth.

The experiments of Su (1982) have been simulated using the numerical method of
Chapter 2 and for the cases that no breaking events occurr (ka < 0.14) disintegration
of the wave train in solitary wave groups was found. Some simulations that were
performed showed however a slightly different behavior than the experiments of Su
suggest for further downstream wave signals. Similar to the experiments of Su (1982),
a wave train is generated by modulating a regular wave ka with a ramp function s(t).
For the results presented in this paragraph, this ramp function is given in Eq. (6.15).

1/4t 0<t<4
i 4<t<24

(6.15)
1(t-24)/4 24<t<28
O t>28

The depth is h = 5 [m] arid for the carrier wave we choose a = 0.1 [m], T = 2 [s]
from which it follows that ka 0.10 and kh » 1.363. The numerical simulation
was performed with the following numerical parameters: rix = 5122, L = 1000 [m],
Ax = 0.2. riz = 9, ¡3 = 1, At = 0.1, RK45M time integration, p[FEM]=1 and
p{FD]=2. The velocity generating type of numerical wave generation as described in
Subsection 4.3.1 was used and for the absorbing beach the optimal configuration of
Section 5.5.2 v employed. The results of this simulation are plotted in Fig. 6.2 on
the facing page. The figure shows the time signals at different positions along the
numerical tank. From x = 5 [m] to x = 450 [m], the disintegration and focussing
of the wave train into several wave groups can be clearly observed. Although one
might expect the further separation of the groups (as suggested by Su and also by Lo
& Mei), this is in fact not observed at x = 600 [m] and x = 750 [m]. It is possible
that this is just an intermediate step in the splitting process. However, it shows that
based on the observations until x = 450 [m] one may not conclude that the distinct
solitary groups are established and will propagate independently and with their own
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velocities.

The lower plot in Fig. 6.2 shows the total discrete energy (see Eq. (3.55) ) as a function
of the simulation time. One can observe that after the wave train has been generated
(t > 28), the total energy slowly decreases, which is due to numerical dissipation and
mass-loss through the Sommerfeld condition. This energy decay is in agreement with
the findings of Section 3.4. Between t = 28 [s] and t = 600 [s] approximately 3.6 % of
the energy has been dissipated. The experiments and numerical simulations of Yuen
& Lake, Su, Lo & Mei and our own numerical simulations support the concept of
interpreting deep water ocean waves as interacting wave groups of permanent form.
The simulation of a single confined solitary wave group over a bottom topography is
therefore representative to the understanding of the properties of ocean waves heading
to shore.

6.2.1 Propagation over an even bottom

To directly compare the results with the results obtained by de Haas (1997) and de
Haas et al. (1997) the depth is set to h = 12 [m], and the carrier wave frequency
is given by = [radis]. The wave number is k 0.12385 and the wavelength

50.73. The simulation is performed with an initial envelope wave amplitude of
1 [m] and the center of the wave group is positioned at z = 1500 [m]. Remark that
kh = 1.486> 1.363 and thus a solitary wave solution to the NLS-equation exists.

Using this data the potential is prescribed according to Eq. (6.14) and the corre-
sponding first-order free-surface elevation iu are prescribed as the initial values for
the simulation. The numerical parameters used for the simulation are mx = 6000,

= 1.25 [m], nz 9, t = 0.1 [s], RK45M time integration and natural boundary
conditions were used at both sides (implying full reflection of the waves against these
walls). Both the time step as the horizontal mesh width were chosen small in order
to accurately represent 2k-waves. For this case, the simulation of a single time step
on a 500 [Mhz] Pentium III processor takes approximately 8.4 [s]. A simulation over
500 [s] for this configuration thus takes approximately 12 hours of computer time.
The memory usage is approximately 61 [Mb] which poses no severe problem on a
contemporary PC computer configuration.

Directly after the simulation was started the envelope of the wave group was observed
to start oscillating. Second- and zeroth-order wave components (1)22 and 1702) are
bound to the wave group and compensated by generation of their associated free 2k
harmonic waves and nonharmonic solitary wave. The generation of these free waves
was also observed by de Haas and can be found in other quadratic free-surface models
(cf. e.g. Pelinovsky et al. (1999) for a KdV application).

The top plot in Fig. 6.3 on the next page shows the wave elevation at t = 500 [s]. The
dashed line is the initial wave group envelope and the different free components that
cari be observed in the upper plot are labelled with (a)-(d) and are shown in more
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Figure 6.3: Free-surface elevation at t = 500 [s] using a first-order confined wave group
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0.5

o

-0.5

Figure 6.4: Wave group at t = O is isolated from the solution at t = 500 in Fig. 6.3
and used as an initial condition. The elevation at t = 500 [s] using this
condition has also been plotted.

detail in the other plots of the figure. The center of the main group (d) is around
X = 4280 implying a wave group velocity of approximately speed of 5.56 [m/sJ which ìs
slightly faster than the linear group velocity C9 5.52 [m/s]. The central wave group
has a bound set-down that was compensated by the free solitary wave (e) which has a
phase speed of approximately 10.84 [m/s] which is in good agreement with the critical
speed c 10.85. The free 2k waves that are generated by the adapting wave group
are visible in subplot (c) in which it can be clearly observed that the wavelength of
the carrier wave in this group is half the original wave length. The group velocity of
this wave group is estimated at approximately 3.24 [m/s] which is in good agreement
with the linear group velocity for a free 2k wave of 3.24.

The two other observed free-surface disturbances (a) and (b) are the result of a free
k wave group and a free 2k wave group that have propagated to the left after the
simulation was started. This is possibly due to the mismatch in potential and thus
the mismatch in velocity that was initially imposed. At t=500 [s], the wave group
(b) is travelling to the right because it was completely reflected against the wall at
x = O [m]. Based on its position, the average speed of this group must have been
approximately 5.80 [m/s] which is considerably higher than the expected speed of
approximately 5.56 [m/s]. The left travelling 2k wave group is just reflecting from the
left wall and its speed is estimated to be 3.32 [m/s] which is again slightly faster than
the expected speed. A very small negative valued solitary wave was also observed to
travel to the left after starting the simulation. At t 500 [s] this wave is not visible
because it is just interacting with the main wave group (d). In de Haas et al. (1997)
different initial conditions (inclusion of higher-order terms and using Taylor series to
better approximate the potential at the free surface given the first-order solution)
are examined but the above described free waves still emerge from the initial wave
group. In order to obtain an initial condition that produces a confined wave group
without significant secondary waves, the simulation in Fig. 6.3 is continued for another
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I J

1000 2000 3000 4000 5000 6000 7000
x [ml

o



CONFINED WAVE GROUPS 179

-1-- -
scale bottom = 1:10

-2 I I

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

x[m]

Figure 6.5: Free-surface elevation of tile WCV group propagating over the bottom to-
pography visualised (scale 1:10) in the upper plot.

100 seconds after which the central group is considered to be fairly isolated from all
secondary free waves. The wave group potential and free surface are then 'cut' and
used as new initial conditions when centered around z = 2120 {m]. The free surface of
this initial condition and the elevation after another 500 [s] of simulation are plotted
in Fig. 6.4 on the facing page. From this figure it can be observed that there are
still some spurious waves emerging from the wave group. However, significantly less
disturbances are present than in the original simulation. It is also observed that the
group does not appear to remain symmetric and slightly flattens. Despite these minor
shortcomings the initial condition obtained from 'cutting' the solution of the previous
calculation can be used as a practical initial condition for examination of the effect
of an uneven bottom.

6.2.2 Propagation over a slope

The evolution of a stationary wave group is examined when the bottom is slowly
(with respect to the carrier wave length) raised. The depth is constant at h = 12 [m]
from z = O to z = 2500 {m] and increases linearly to h = 6 [m] from z = 2500 [mJ to

t=0 [s]
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x = 3000 [m]. As an initial condition the 'cut' wave group from the previous subsection
is used and now positioned at x = 1500 [m]. The length of the computational domain
was increased to 10,000 [m] and thus nx = 8000 grid points are used in the horizontal
direction. All other numerical parameters are kept identical. The simulation time
is extended to t = 900 [s] which resulted in a computational time of 28 hours on a
Pentium III 500 [Mhz] PC and approximately 82 [Mb] of memory resources were used.

The resulting wave elevation of the wave group propagating over this bottom topogra-
phy is plotted for two different time steps in Fig. 6.5 on the page before. The top plot
shows the initial solitary wave group (scale 1:1) and the bottom topography (scale
1:10). The two other plots in Fig. 6.5 show the wave group at t 500 [s] and t = 900
[s]. At t = 500 [s], the wave group has propagated almost 2 [km] over the new depth
and it can be observed that the group is flattening and widening. Because on the new
depth h = 6 [m] the wavelength is ) 42 and therefore kh 0.922 < 1.363. The
NLS-equation describing the envelope of the wave group is no longer self-focussing
and therefore the energy is spread over the group instead of focused in the center.
This is in agreement with the observed shape of the wave group for t = 900 [s] and
with the observations of Barnes & Peregrine (1995). The decreasing depth thus leads
to a drop of the maximum wave height. Another remarkable phenomena that can
be observed from Fig. 6.5 is the long free solitary wave that is generated from the
adapting wave group. In front of this wave a very small depression of the elevation
of approximately 0.02 [m] is observed. The length of this solitary wave is of the sanie
order as the length of the confined wave group and its amplitude is approximately 0.1
[m].

6.3 Bichrornatic wave groups

A bichromatic wave group is the periodic signal resulting from the linear superpo-
sition of two regular waves with different frequencies (bichromatic). Consider the
superposition of two regular waves with frequencies w1 and W2 and equal amplitude q

(x,t) = qcos(kix - wit) + qcos(k2x - w2t) (6.16)

= 2qcos ((kx - Awt)) cos(kx - t) (6.17)

= A(x,t) (ext) + c.c.) (6.18)

wherek=k1 k2, Lw=w1 w2 ,
k WI2 and(x,t)=kx't.

From Eq. (6.17) it is observed that the wave group can be interpreted as a carrier
wave (k, ), modulated by an envelope wave (k, sw). The phase speed of this latter
wave envelope is and is referred to as the wave group velocity of the bichromatic
wave.

Although for many practical purposes linear theory produces satisfactory approxima-
tions of the underlying nonlinear process, this is not the case for the propagation of
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certain classes of bichromatic waves. This was clearly demonstrated by Stansberg
(1997) in which an experimental study in a wave tank was reported. The measured
wave groups that were generated using only two frequencies, showed large deviations
from linear theory at some distance from the wave maker.

These observations motivated the investigations presented here for the following rea-
sons. Firstly, the observed profoundly nonlinear wave behavior provided an interesting
test case for the fully nonlinear wave simulations. Not only could be investigated to
what extent the results can be reproduced numerically, but the numerical simulations
can be extended over a much larger domain (cf. Westhuis et al. (2000)). Secondly,
the numerical simulations would provide valuable information for the development
and benchmarking of analytical wave models (e.g. van Groesen et al. (2001) and
Suryanto et al. (2001)). In contrast to measurements, the numerical simulation pro-
vides high resolution spatial information and parameters can be easily varied. The
cost of numerical simulations is also a fraction of actual experiments in a wave tank.
Thirdly, the evolution of (extreme) hichromatic waves is also of direct interest for
the hydrodynamic laboratory. It is an extreme but relevant example that shows the
non-stationarity of the wave spectrum with respect to the length scale of the model
basin. The extreme nonlinearity can however also be used to control the generation
of freak waves.

In the next sections the results of both experimental as numerical simulations on a
variety of bichromatic wave groups are presented. In Subsection 6.3.1 the experimen-
tal setup and results will be described in detail. The next subsection (6.3.2) describes
the numerical simulations that have been performed. It will be shown that numerical
and experimental data are in good mutual agreement. Next, the numerical simula-
tions are carried out over an extended spatial domain and the observed recurrence
and wave group envelope dynamics will be presented and discussed.

In Subsection 6.3.3 the observed nonlinear dynamics will be related to the Benjamin-
Feir instability and NLS-theory. From these relations a parameter is motivated that
governs the non-stationarity of the nonlinear bichromatic wave group evolution.

6.3.1 Measurements

The experimental results presented in Stansberg (1997) consisted of the time signals
of a bichromatic wave train at different positions. Using the same wave data, these
experiments were in first instance simulated numerically using the fully nonlinear
method described in this thesis and the results showed good qualitative agreement.
Next, the initial wave data was slowly varied and the numerical simulations were
repeated to see the effect of wave amplitude and frequency differences. Based on
these numerical results, a series of experimental investigations was setup to validate
the observed asymmetries and focussing of the wave group. Also, these carefully
controlled experiments could be used for direct comparison with the results from
numerical simulations.
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x'O

Figure 6.6: Scaled sketch of the experiment setup performed at the MARIN high speed
basin (actual depth h=3.6 [m]). The wave elevation was measured at the
center line of the tank at z = 0, 10, 40, 60,... , 180 [mJ and at z = 80
/mJ and z = 120 /mJ at of the tank width.

The measurements on bichromatic wave groups were performed at the High Speed
Basin at MARIN and have been reported by Westhuis & Huijsmans (1999). A

schematic sketch of this facility and the position of the measurement probes is de-
picted in Fig. 6.6. In order to measure the spatial evolution of the travelling wave
group, resistance type wave probes were positioned at z = O {m], z = 10 [m] and
z = 40,60,... , 180 [m] at the centerline of the tank. At z = 80 [m] and z = 120 [m],
additional probes were positioned at 1/4 of the tank breadth to investigate possible
3D effects. The probe at z = O [m] is mounted on the wave generator and thus mea-
sures the run-up against the wave board. The time interval during which the signals
were measured is 700 [s]. Data was acquired on model scale at a sample frequency of
50 [Hz], which corresponds to a sample frequency of 50\/3.6/5 [Hz] at h = 5 [m].

The steering signal Eq. (6.19) for the stroke of the flap was sent directly to the wave
maker and is strictly bichromatic

S(t) = R(t) ( cos(wit) + cos(w2t)), (6.19)

so no second-order wave maker theory was used to correct the signal. Using the
linear theory from Chapter 4 the value of q is related to the desired value of the wave
amplitude q. In Table 6.1 on the next page the experiments performed for different
combinations of periods T1 and T2 and the amplitudes q = q = q are summarised.
All experiments and simulations were performed around the central period T = 2 [s].

T1 = T - zT (6.20)

= T+.pT (6.21)

For future reference and to interpret the results in scaled variables, we note that for
T = 2 one can identify = and ka q.

The experiments and numerical simulations for q = 0.08 [m] and T = 0.2 [s] corre-
spond to the experiment reported by Stansberg (1997). The performed measurements
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Table 6.1: A x marks the bichrornatic wave experiment (E) or a numerical simulation
(S) with the periods T = 2 ± T/2, and amplitude q that were performed.
(b) indicates that the experiment/simulation was performed but that either
wave breaking was observed in the wave tank or that the numerical scheme
was terminated due to onset of breaking.

are in the columns identified by (E) and cells marked with (x). When wave breaking
was observed during the experiment, the cell is marked with (b). The wavelength of
the carrier wave of the linear wave group is almost the same for all experiments and
satisfies (L 6 = 1.25h). After the transient start-up effects have passed, the time
signals at all probe-positions, showed that the signals are periodic in the modulation
period Tmod = . Because in all experiments and numerical simulations T = 2 [s],
the modulation period is Tmod = - T. Examination of the signals from the
probes that were placed at - tank breadth at z = 80 [m] and z = 120 [m] showed no
signs of standing waves across the breadth of the tank for any of the experiments.

For small initial amplitudes the wave elevation differs only very little froni linear
theory. Figs. 6.7-6.10 show part of the time traces of the free-surface elevatíon at
the different positions in the tank for the highest amplitude waves for every tested
combination of (T1,T2). For (T1,T2)=(1.8.2.2) [s] andq = 0.1 [m], Fig. 6.7 on page 185
shows that the wave group appears to have a fairly constant shape at the different
positions in the tank. Although locally steep waves (H/A 0.09) are measured, they
do not give direct indications for asymmetries of the evolving wave group. When
the period difference is however slightly decreased to (T1,T.2)=(1.92.1) [s] (see also
Fig. 6.8) the symmetry of the wave group clearly breaks. Steepening at the front of the
wave group is observed as a prelude to the apparent splitting of the group in two wave
groups. At z = 80 [m] a local extreme wave can be observed also with a steepness of
approximately 0.09. However, examination of the video's of the experiment showed
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spilling breakers indicating the presence of even steeper waves.

A similar breaking of the symmetry and the appearance of a second wave group is
visible in the results presented in Fig. 6.9 on page 187. The combination
(T1,T2)=(L925,2.075) [s] with q = 0.09 [m] shows similar envelope evolution as
(T1,T2)=(1.9,2.1) [s], q = 0.09 [m], but at a slower spatial pace. Remark also that if
a ship model would have been positioned at z = 100 [m], it would experience almost
no significant wave heights (<0.05 [ml) for approximately 8 seconds. Then, within 4
seconds a 0.55 [m] high wave passes the ship after which the wave height drops to 0.25
[in] and then slowly decreases to the initial calm situation in about 13 seconds. Such a
wave system can thus be used to repeatedly measure the effect of a steep wave impact
on the model. The periodicity of the event allows to obtain enough data to apply
accurate statistics. Both in these measurements as in the previous measurements, the
maximum measured wave height exceeds the prediction of linear theory by more than
150 %.

In Fig. 6.10 on page 188 the time signals are plotted for (T1,T2)=(1.95,2.05) [s] and
q = 0.07 [m]. This figure confirms the same wave group envelope deformation process
of steepening and shows the possible onset of splitting. Again, the spatial pace at
which the deformation is observed is slower than in the previous figures. Remark the
resemblance of the wave group envelope at z = 60 [m] in Fig. 6.8, at z = 80 [ml in
Fig. 6.9 and at z = 140 [m] in Fig. 6.10. It is noticed however that the maximum
wave height measured in Fig. 6.10 on page 188 is approximately the same as for the
other two experiments while the initial amplitude is lower. This indicates that for
the other experiments, the steepening of the wave group was interrupted by breaking.
Therefore smaller initial amplitudes can lead to a higher ratio between the maximum
measured wave height and linear prediction which is confirmed by the experiments.
Although in some of the experiments breakers have been observed, these breaking
events were typical spilling breakers that do not dissipate much energy.

6.3.2 Numerical simulations

Numerical simulations have been performed using the same initial data as for the
experiments described in the previous subsection. It should be noted that during the
investigations, these numerical simulations were performed prior to the experiments
that were used to verify the numerical predictions. The numerical simulations were
performed with the following numerical parameters: h = 5 [m], g = 9.81 [m/s2],

0.2 [m], L = 200 [m], riz = 9, ¡3 = 1, i.t = 0.1 [s], RK45M time integration,
p[FEM]=1 and p[FD]=2. The flux-displacement wave generator (Section 4.3.1) was
used with the consistency parameter set to zero, implying that only flux is generated
through the boundary and no physical displacement of the wave maker. The i and d
flap parameters (see also Section 4.1) are identical to the wave generator of the basin
used for the experiments. The vertical grid density parameters are set to /3 = 0,
¡32 = i and 5 grid points are used on the flap. The effect of using different values
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of the consistency parameter have been investigated and except for phase-differences,
the data is in mutual agreement. The steering signal sent to the numerical wave
maker is identical to the signal used for the experiments (Eq. (6.19) on page 182).
The linear ramp function

R(t) = t
(6.22)

L i t>t
was used to slowly increase the wave maker to avoid large initial accelerations. For the
absorbing beach the optimal configuration described in Section 5.5.2 was employed.
The optimal beach was used instead of a model because no measurement data was
available on the artificial beach in the basin. Furthermore, the investigations of this
chapter are more concerned with the properties of evolving wave groups, rather than
with the simulation of the beaches. Therefore the effect of reflections is kept as low
as possible. The simulations over an effective tank length of 200 [m] (= 40h 30))
use approximately 11 [Mb] of memory. On a single 500 [Mhz] Pentium III processor
every 5 minutes of simulation time (= 150T) takes about 1 hour of computational
time.

Using this configuration, all numerical simulations were found to be stable for as long
as the simulations were continued. The numerical beach has been translated to inves-
tigate this effect on the time signals, but no deviations were found. The combinations
of parameters (T1, T.2) and q for which a numerical simulation has been performed
cari be found in Table 6.1. It is noted again that during the investigations, these
numerical simulations preceded the physical experiments. The amplitude and period
parameters of these experiments were chosen based on the numerical simulations.

Comparison with measurements

In Fig. 6.11 on the following page the time signals of the evolving wave group using
(T1,T2) = (1.9,2.1) and q = 0.08 [m] are plotted. The solid lines represent the
measured wave elevation and the dots are the results of the numerical simulation.
The interval of the horizontal axis in the consecutive plots is shifted using the linear
group velocity of the wave group. Remark that the speed of the wave group is slightly
faster than the linear wave group velocity. Because of the differences in the start-up
function and the flux model that were used for wave generation, the phases of the
signals are not aligned and one of the phases needs to be adapted. The additional
time-shift, added to the computational signal was determined such that the wave
group zero-crossings fitted at x = 40 [mJ. As can be observed, the asymmetry of the
wave group is very well predicted by the numerical simulation for x = 40 until x = 100
[m]. At x = 120 [m] and x = 140 [m] the numerical simulations appear to overpredict
the wave behind the peak-wave, although further downstream the agreement becomes
better again.

To investigate the agreement in more detail the power spectra of the measured and
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numerical signal are compared. The model scale sampling frequency of the experiment
was 50 [Hz] and the sampling frequency at SMB scale is thus approximately 42.42
1Hz]. For the comparison of the spectra, the experimental data is resampled by
skipping every three measurements, thus resulting in time signals with a sampling
frequency of approximately 10.61 [Hz]. The time-step between two successive data-
points of the resampled signal is now quite close to the numerical time step zT = 0.1.
To determine the power spectral density accurately, an interval of length 300 [s] of
the periodic signal is taken and divided in 10 overlapping intervals containing 2048
data points, resulting in a spectral resolution of approximately 0.0307 [rad/s] for the
simulations and 0.0325 for the measurements. These signals are then detrended and
windowed (Hanning window) and standard spectral analysis is performed to obtain
power spectral density estimates. These 10 estimates are then averaged to obtain
the final, more accurate, estimate. In Fig. 6.12 a log-plot of the spectral densities
of the measurement and the numerical simulation are plotted for the wave group of
Fig. 6.11. From Fig. 6.12 it can be observed that at z = 10 [m] the power density of
the two spectra are in good agreement except for the high frequencies around w = 8.5
[rad/s]. Further downstream the results are in excellent agreement for the whole range
of frequencies. At z = 120 [m], the energy is spread over a wide range of frequencies,
mostly to the higher sidebands. The results also show that the energy in the second-
order wave components does not exceed 1% of the energy of the original primary
bichromatic components. The primary sidebands however, may grow significantly to
the same order as the primary waves themselves.

Prolongation of the domain

The wave signals from the experiments and simulations in the previous paragraphs
showed significant deformation of the wave group envelope for O < z < 180 [m]. Be-
cause of the excellent agreement of numerical and experimental results, it is expected
that the numerical simulations can also accurately predict the evolution over longer
domains. The computational effort of the numerical method increases linear with
simulation time and tank length. The computational domain is prolonged by a factor
of 5 and the evolution is simulated for 900 [s] (=450 T). Such a case requires approx-
imately 61 [Mb] of memory and takes 21 hours on a Pentium III 500 [Mhz] PC. The
results of these simulations are presented in figures 6.13-6.16.

The upper two plots of Fig. 6.13 on page 193, (T1,T2) (1.8,2.2), show the power
spectrum density estimate of the periodic time signals at different positions in the nu-
inerical tank. It can be clearly observed that there is no significant energy transfer to
the sidebands for both amplitudes. The evolution of this bichromatic wave is therefore
almost completely linear. In the lower three figures the spectrum of the bichromatic
wave (T1, T2) = (1.85, 2.15) is shown at different positions. The appearance of the
sideband energy is clearly visible for q = 0.08 [m]. The lower figure shows the values
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of

çw+-Aw
a(x) = 2 j PSD(w,x)dw (6.23)

\ Jw-w
where the range of integration is such that the energy content can be identified with
a discrete sideband. The coefficients a can be interpreted as the amplitude of the
discrete wave component with frequency w. From the lower plot in Fig. 6.13 on the
preceding page it can be observed that the energy transfer appears periodic in space.
Careful examination however reveals that the upper and lower sideband do not have
the same period and therefore there is no exact recurrence. The steady periodicity
remains remarkable and is not a consequence of the numerical method but a feature of
the dynamic equations. It is also noticed that the relative amplitude of the sidebands
to the amplitude of the primary bands increases with q.

In Fig. 6.14 on the next page the results of the simulations for (T1,T2) = (1.9,2.1)
are summarised. For the small initial amplitudes q < 0.06, the spatial periodicity of
the sideband amplitudes is observed. As was also noted for (T1,T2) = (1.85,2.15),
the spatial period of the 2w2 - w1 is not identical to the period of 2w1 - W2. With
increasing amplitude the period of the 2w2 - w1 sideband increases, while that of the
2wi - W2 decreases. For q = 0.06 [m], one can also observe that the second upper
sideband 3w1 - 2w2 becomes significant and its spatial period appears to follow that
of 2w2 - w1. The second lower sideband contains almost no energy and even for
q = 0.08 one can observe that almost no energy is present in this band. For this
large (q = 0.09 leads to breakers) value of q, the simple periodicity is lost and a more
complicated pattern arises. With some imagination, one observes a symmetry around
i = 560 [m] for all energy components. Remark that the energy transfer between the
different bands has lead to the fact that at some points the energy of the side band
is larger than the energy of the primary band. The lower figure shows a density plot
of the power spectral density estimate for q = 0.08 [m] from which it is observed that
the energy is still well separated in the different bands and the possible symmetry
around x 560 [m] can be observed. The results are in qualitative agreement with
the numerical predictions of Lo & Mei (1985) using Dysthe's equation.

Fig. 6.15 on page 196 shows that for q = 0.04 [mJ almost complete recurrence appears
to be attained. For this specific configuration of q and (T1, T2), the periods of the
lower and upper sidebands appear identical. Based on the results of the previous
simulations, it appears however likely that even further downstream the periods will
show to be slightly different. It is further noticed that the evolution of the modes
appears similar with the results of Fig. 6.14 on the next page. Examine for example
the spatial interval [0,900] for q = 0.06 {m] in Fig. 6.15 with the interval [0,5101 for
q = 0.08 [m] in Fig. 6.14.

Fig. 6.16 on page 197 shows that for higher values of q the evolution of even the main
frequencies cannot be considered sinusoidal. Although some similarity with previous
figures is again observed for the smaller values of q. The difference with the lower
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Table 6.2: Spatial periods obtained from Fig. 6.13-6.16 of the higher side bands (.\)
and the lower side bands (À) for different values of q and .T.

plot of Fig. 6.13 is however striking.

6.3.3 Non stationarity

In this subsection the spatial non-stationarity of the wave group, observed from the
numerical and experimental results, will be discussed further. The spatial periods
of the upper and lower frequency bands will be related to non-dimensional parame-
ters. Also a relation with the Benjamin-Feir instability and the nonlinear Schrödinger
equation will be examined.

Spatial period

Firstly it is observed from the numerical simulations presented in the previous para-
graphs that the spatial periods for all higher side bands (w > w1) seem identical. The
same is observed for the lower sidebands. In Table 6.2 the spatial periods obtained
from Figs. 6.13-6.16 have been gathered. It should be noted that these figures are
the periods of the (almost) zero crossings and that they cannot be very accurately
determined in all cases. Because of the observed similarity between the different spa-
tial evolutions, we seek for a suitable way to scale the results and thus establish some
non-dimensional parameter that governs the dynamics.

From the figures of the previous subsection it was already observed that similar pat-
terns arise for different combinations of q and T. Closer examination of the results
shows that similarity (up to a scaling in x) is observed when T/q is approximately
constant. Using this observation, it is found that the appropriate scaling for z is
approximately a factor These scalings are translated in terms of w and non-
dimensionalised with wk resulting in the graphs plotted in Fig. 6.17.

This figure shows that, given the errors in the determination of the spatial periods, the
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spatial dynamics of the evolving wave group is rather consistent under the introduced
scalings. The spatial period of the higher sidebands first increases for (.w/q)/(wk) <
1 and appears to slowly decrease for (w/q)/(wk) > 1. The spatial periods of the
lower frequency bands show in general a decreasing trend for increasing (w/q) / (wk).

It should be noted that all simulations are performed with almost the same value for
k and the scaling of w/q with wk has not been validated by other simulations.

However, (w/q)/(wk) = (w/w)/(ka), the latter being the appropriate scaling for
the growth rates resulting from the Benjamin-Feir instability. This relation with the
Benjamin-Feir instability is further discussed in the next paragraph.

Benjamin-Feir instability

Remark that the modulation amplitude A in Eq. (6.18) on page 180 is not always
positive and therefore one must be careful to interpret this modulation function as an
envelope. One could suggest to interpret the absolute value of Amod as the envelope.
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The function

A(x,t)I (et) + (6.24)

differs however from Eq. (6.18) by a sign-jump (or equivalently phase jump of ir) of
the carrier wave at the zero crossings of Amod. We will refer to wave trains that are
modulated by a positive envelope simply as modulated waves.

To investigate the difference between the modulated and the bichromatic wave, the
bichromatic steering signal with parameters T1 = 1.9 [s], T2 = 2.1 [s] and q = 0.08
[m], is adapted as

s(t) = 2 cos () cos (t). (6.25)

All other numerical parameters (mesh, start-up function and numerical methods) have
been kept constant. The wave elevation resulting from (6.25) can therefore be directly
compared with the results of Fig. 6.11 on page 190. This comparison is visualised
in Fig. 6.18 where the thick solid line is the result from the original simulation on
the bichromatic steering signal. From this figure the sign change of the carrier wave
between two wave groups can be clearly observed at s = i [m] from the wave maker.
At s = 40 [m], the most noticeable difference between the two signals is around the
'zero-crossing' of the envelope. The envelopes of two signals, except near the zero-
crossing, are however still in quite good agreement. Although from s = 80 [mJ to
s = 160 [m] qualitatively the same envelope deformation is observed, there are some
differences. Firstly, the group of the modulated wave propagates slightly faster than
the bichromatic group. Secondly, the wave heights due to the modulated group are
a fraction higher than the bichromatic wave. These two differences are even more
clearly visible further downstream as can be seen in Fig. 6.19 on page 202 where part
of the time signals of the wave elevation at s = 560 [iii] and z = 700 [m] are plotted.
Although the envelopes of the wave are not in alignment, the original sign and phase
differences are remarkably well preserved.

Despite the differences in wave group velocities further downstream and some small
differences in the envelopes around the zero-crossings, the simulations indicate that
the evolution of the modulated and the bichromatic wave train are quite similar. In
Fig. 6.20 on page 203 the spatial evolution of the spectrum is visualised. Firstly it
is noticed from subplot 6.20(a) that (in contrast to the results from the bichromatic
simulations) the wave elevation clearly shows a 'meta' group structure, i.e. a group-
of-groups structure. Furthermore, the almost recurrence of the evolution is visible in
the plots (ci) - (c4) where the PSD has been plotted for four positions in the tank.
Notice that the frequency containing most energy at s = 180 [m] and z = 540 [m]
is the sideband frequency w - w. The spatial evolution of all the sidebands can be
examined in more detail in Fig. 6.20(d). Comparison of this figure with Fig. 6.14 on
page 195 (q = 0.08 [m]) shows some remarkable differences. The spatial evolution of
the spectrum from s = 300 [m] to s = 450 [m] in Fig. 6.20(d) is quite slow (which is
also suggested by 6.20(a)) and this is not observed in Fig. 6.14.
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The spectrum of a linear bichromatic linear wave consists of two distinct frequencies
at w1 and w2. The spectrum of the positive regularly modulated linear wave has
most of its energy at the central frequency ' and in numerous side bands i' ± jw.
To illustrate the spectral relation between bichromatic, positively modulated and a
classical modulated (only two sidebands are used for modulation) wave train, the PSD
of the bichromatic and positively modulated driving signals are compared to the PSD
of the classical modulated signal

s(t)
= ( + cos(wt)) cos (rnt) (6.26)

= cos (rnt) + cos (( + w) t) + cos (( - w) t) (6.27)

in Fig. 6.21 on page 204. This latter signal represents a regular wave modulated by
two symmetrical sidebands. The spatial-temporal evolution of such modulations has
been studied in detail by several authors since Benjamin & Feir (1967) showed that
these modulations are unstable and will grow exponentially for small t. The similarity
of the initial wave group evolutions observed for the bichromatic and modulated waves
(Fig. 6.18) and the initial dominance of the first sidebands w - .w and w + Zw in
Fig. 6.20(d), suggests that (i) a relation exists between the spectral components of
the modulated and the bichromatic wave and (ii) the initial evolution of sidebands of
the modulated wave can be described using the Benjamin-Feir instability.
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Benjamin & Feir (1967) showed that for kh > 1.363 the Stokes wave train (see also
Eq. (3.10) on page 44) is unstable to modulations. In the presence of a regular Stokes
wave with phase 0(x, t) = kx - wt and on infinitely deep water, the regular wave
modes with phases

= k(1 ± tt)x - w(1 ± ö')t (6.28)

will grow exponentially in time if

O < S' <v"ka. (6.29)

The exponential growth rate for small time of the sideband waves is obtained as

S,

2

This instability region and exponential growth rate can also be derived by performing
a modulational stability analysis (cf. Stuart & Diparma (1978)) of the NLS equation
(which can be derived from Zakharov's integral equation). The properties of the in-
stability and the associated growth rates are however only approximations for small
ka. Crawford et al. (1991) extend these results by direct analysis of the Zakharov in-
tegral equation, obtaining growth rates and stability regions for finite ka as a function
of #/(ka).

It is noted that the Benjarnin-Feir instability cannot completely account for the ob-
served non-stationarity of the bichromatic waves. If the linear bichromatic wave with
carrier frequency k and maximum height 2q is compared to an unstable regular wave
with amplitude kq modulated by two sidebands (see also Fig. 6.21 ) then these side-
bands would not grow (according to BF) if (w/)/(kq) > or (.w/w)/(2kq) >
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for bichromatic waves. However, from Fig. 6.17 it is clearly visible that growing
side bands are present for this latter condition.

In the following paragraphs we will establish a relation between the spectral content
of the positively modulated wave and the bichromatic wave, so that Eq. (6.30) can
be used to predict the initial growth rates of the bichromatic components.

Consider the function

F(t) = I f1(t) 0<t<T
(6.31)

f2(t) T<t<2T

where the functions f' and f2 are both T-periodic and can be identified with their
Fourier-series data {»} and respectively, as

oc

f2(t) - (j\ iTLOt- C ),
oc

=
J f (t)e°dt,

The Fourier series coefficients C,, of F(t) are thus given as

C,, =
J

F(t)e_tdt (6.33)

= - f,(t)e tdt+f f2(t)e_mThldt} (6.34)
2T{f

2T

o T

1 rT
=

L (f,(t) + (-1)f9(t)) e_tdt. (6.35)

For the (T1 = 1.9 [s], T2 = 2.1 [s]) bichromatic evolution and corresponding modulated
evolution we assume that for sufficiently small distances from the wave maker (say
x < 120 [m]):

the time signal of the elevation due to the modulated signal is Tmod periodic
and identify it with fi,

the time signal of the bichromatic wave is 2Tmod periodic and is identified with
F(t) where f2 = fi . The latter identification is a simplification of the actually
observed smoothing of the original zero crossing phase jump and the fact that
the signal F(t) has a non-zero mean.

Under these assumptions we find from Eq. (6.35) that

C,,=0 ifniseven (6.36)

T
(6.32)



with

= )
i if(j i)Tmod <t <jTmod, j 1,3,... ,2N3,2N

. (6.43)ti if(j1)Tmod<t<jTmod, j2,4,...,2N2,2N
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and for n is odd we find:

cn
1

fT
f1(t)e°dt (6 37)

= (6.38)

= c' f et(k_)0tdt (6.39)
00
00 2i

= if n is odd. (6.40)
ir(2k - n)00

Eq. (6.40) gives the Fourier series components of the function F(t), given the com-
ponents of the function f(t). The fact that C O for n even is in agreement with
the observations that the energy bands of the bichromatic wave, (k + i)i - kw,
i j = 1,2 k = 1,2,... lie exactly between the energy bands of the modulated wave,
' ± kAw. Under the made assumptions, this equation can thus in principle be used to

relate the growth rate of the side bands of the bichromatic wave to the growth rates
of Eq. (6.30).

The above relation between the Fourier series components of the modulated and
bichromatic wave was based on the specific observations for T = 2 and AT = 0.2,
but can be generalised as follows. In general, the number of periods T = in a
(positive) wave group envelope period T10d = is

mod = =
Tmod T

(6.41)

In the previous described case with T = 2 and AT= 0.2, this leads to mød = 10,
from which the periodicity of the signals and the subsequent analysis follows. In the
case that Timod is not an integer but rational, the following more elaborate relation
can be obtained between the fourier components.

Because of the assumed rationality of rnod there exists a minimal period t such that
the signal f1(t) = cos(4Awt) cos(Dt) is T periodic and f2(t) = I cos(At)I cos(Dt) is
also periodic. It follows that there exists a N such that t = 2NTmod The signals
fi and 12 are clearly related as

f2(t) = s(t)fi(t) (6.42)
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(1) 1 (2)The Fourier series coefficients c0 and are thus related as

i (T
c(2) f2(t)e fltdt (6.44)n

= s(t)f1(t)e (6.45)

/ oc
(s) ikt' / oc

(1) e_itdt (6.46)
=

e
) (

e
)

cc' f (6.47)
k=oo 1=oc

oc oc (i i2ir(k+in))
=

[ 2(k + i n) 1

(6.48)

The Fourier series coefficients {} of s(t) are given by

c =
.- f s(t)etdt (6.49)

2N
1_i)J_1
J

e_tdt (6.50)
T (j-1)T0d

(6.51)

2N
. h

jo/N'
= (_l)i_1eI«i_1)7r/N

kirT
(6.52)

3=1 mod

In the last equality use has been made of the relation t = 2NTmod. Combination
of Eq. (6.48) and Eq. (6.52) leads to a complicated but exact relation between the
Fourier series coefficients of the signals fi and 12. If we assume that sufficiently close
to the wave generator the signals of the bichromatic and modulated wave elevation
satisfy the condition (6.42), the derived relation can be used to compute the growth
rates of the components of the bichromatic wave from the growth rates of the unstable
modes from the Benjamin-Feir instability.

Envelope evolution

In this paragraph the envelope evolution of the bichromatic wave is investigated.
First the correspondence between the predictions of the NLS-equation (governing the
slowly varying amplitude) are compared to the measurements. The solution of the
NLS-equation in non-moving coordinates is approximated as an initial value boundary

.1=1

2N i tTmod
= (i)ï1

J
e_tj_1)Tm0dt

T o
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problem (IBVP). The initial value is the still water solution A(0,x) = O and at the
generating boundary, the prescribed boundary condition is the bichromatic steering
signal

Re(A(t,0)) = s(t)2qcos () (6.53)

Irn(A(t,0)) = (J (6.54)

where s(t) is a smooth start-up function. The length of the computational domain
was taken such that the generated waves did not reach the opposing wall on which the
condition A(t, L) = O was imposed, thus avoiding the implementation of absorbing
boundary conditions for the NLS-equation. The solution of the IVBP is approxi-
mated using an implicit Crank-Nicolson scheme for time integration with a central
finite differences approximation for the spatial derivatives. This scheme was originally
developed by Taha & Ablowitz (1984) and its results compare favorably with results
of other difference schemes (see Chang et al. (1999)). The computer code used for
the simulation was adapted from a computer code written by A. Suryanto. The time
step of the simulations (h = 1, g = 1) is ¿It = 0.5 and the mesh width is ¿Ix = 0.1
with L 80 and Tend = 300. For these dimensions the following values were used

= 0.0111, -y' = 22.874, e9 = 0.2213 and q = 0.016. These values correspond to
q = 0.08 [m] and (T1,T2) (1.9,2.1) [s] in tank dimensions (h = 5 [m]).

This numerical simulation method of the NLS-equation differs from the simulations of
Lo & Mei (1985) on Dysthe's equation and Shemer et al. (1998) on the NLS-equation.
The latter use periodic spatial boundary conditions and solve the equations in a
moving frame of reference. Solving the NLS-equation with symmetric initial data arid
periodic boundary conditions will retain the symmetry of the solution. The fourth-
order terms in Dysthe's equation do allow for asymmetric evolution of symmetric
data, which has been an important reason for this equation to be adopted by many
authors.

In the present numerical simulations of the NLS-equation, a time periodic signal
for IA(x, t)I is observed after the transient startup waves have passed. The periodic
signals are plotted in Fig. 6.22 on page 210 in which the NLS-envelope A(x,t+x/c9)I
(dashed line), the shifted envelope -IA(x, t + x/(c9 + 0.05))I (solid thick line) and the
experiments (solid line) for q = 0.08, (T1, T.2) = (1.9,2.1) (see also Subsection 6.3.1)
have been plotted. In contrast to simulations using periodic boundary conditions,
the IVBP simulations presented in Fig. 6.22 on page 210 do show the symmetry
breaking by the NLS-equation. Moreover, the simulations show reasonable qualitative
agreement between the experiments and the NLS-envelope. There are however some
noticeable differences:

The group velocity of the NLS solution is lower than observed experimentally.
Using the nonlinear deep water dispersion relation Eq. 3.11 on page 45 the
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nonlinear deep water group velocity c1 is obtained as

g (2 + 3a2k2)
(6 55)8k(2+a2k2)

Substitution of k = 1.0112, a = 2q = 0.16 and g 9.81 in Eq. (6.55) results
in = 1.608, and therefore c' - e9 = 0.0506. The additional shift due to
nonlinear group velocity results in the thick lines in Fig. 6.22 on the following
page and shows good agreement with the experimentally found velocity.

s From z = 100 [m] and further downstream, the NLS envelope does not properly
reproduce the splitting of the second group which is observed from the measured
data. The NLS first underpredicts (z = 100 {rn]) and then overpredicts (z 180
[m]) the wave height behind the primary group.

Based on numerical simulations of Dysthe's equation (an extension of the NLS-
equation) Lo & Mei (1985) speculate that the long-time evolution of a bichromatic
wave consists of the splitting of the original group into two groups. These two groups
have different group velocities and thus overtake each other periodically, thus es-
tablishing recurrence as an end-state. The results of the numerical simulations in
Subsection 6.3.2 already provide evidence of the contrary. The spatial evolution of
the upper and lower sidebands do not have exactly the same period and recurrence is
therefore not simply established. The overtaking that was observed by Lo & Mei for
the specific group that they examined (similar to the (T1, T2) = (1.9,2.1) group that
we also examined) can be confirmed by our fully nonlinear numerical simulations. The
envelope of the numerical data is determined using the Hilbert transform technique
and low-pass filtering. The original time signals and the obtained envelopes for the
(T1,T2) = (1.9,2.1) [s], q = 0.08 [m] numerical simulations are shown in Fig. 6.23
on page 211. From these figures one can observe from z = 200 [rn] to z 550 [m]
that a small group splits and is slowly overtaken by the original group. This has also
been visualised in Fig. 6.24 on page 212 where a density plot is shown of the envelope
(in a moving frame of reference (V = 1.68 [rn/s]), determined experimentally from
the group velocity of the primary (largest) group. From this figure the splitting and
interacting of the two group envelopes is clearly visible. This indicates that envelope
recurrence indeed will occur as was suggested by Lo & Mei. However, this overtaking
wave group concept was not observed for all investigated bichromatic groups.

As an example we show the simulated fully nonlinear long-time evolution of the
(T1,T)=(1.95,2.05) [s], q 0.06 [m] wave group. The simulation was performed
on a computational domain with a length of more than 2000 [m] ( 400.\) over 1600
[s] ( 800T) with ìx = 0.2 [m], nx = 10100, rmz = 9, ß = 1.5 and RK45M time inte-
gration with a time step Lt = 0.1 {s]. Simulation of this long-time evolution involved
80,000 constructions and solutions of a boundary value problem for 90,900 unknowns
using more than 160,000 elements per problem.

Time signals at different positions in the numerical tank and their corresponding
envelopes are plotted in Fig. 6.25 on page 213. This figure clearly shows the splitting
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Figure 6.24: Density plot of the envelope evolution T1 = 1.9, I'2 = 2.1, q 0.08
/mJ. The envelope is determined using the Hilbert transform and low
pass filtering. See also Fig. 6.L3.

of the wave group and the formation of two distinct wave groups at x = 1100 [m].
However, as the envelope density plot shows, the end state appears not to indicate
overtaking wave groups as in Fig. 6.24. Closer examination of the signals shows that
the group that has split off 'bounces' between its two neighboring larger groups. It is
thus concluded that at least two qualitatively different ('overtaking' and 'bouncing')
long-time (seemingly recurrent) end states exist for the initially bichromatic nonlinear
wave group.

6.4 Conclusion and discussion

In this chapter the numerical method developed to simulate nonlinear water waves has
been applied to study the long-time evolution of wave groups. Due to the efficiency of
the method, the evolution has been explored on time-scales previously not attainable.

The evolution of a confined wave train is examined which shows good qualitative
agreement with published results. The disintegration of the train in groups has been
observed but the suggested complete splitting into clearly separated groups cannot
be rigorously confirmed by the numerical results. Investigation if the evolution of a
confined (NLS-soliton) wave group showed the generation of second-order free waves
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due to first-order initial conditions. After isolating the primary confined wave group
and establishing the relative permanency of its envelope, the effect of an uneven
bottom on this group is examined. The results show that the group flattens and the
maximum wave height decreases when the bottom increase such that kh < 1.363 on
the new depth. Also the generation of a relative large solitary wave from the original
wave group due to the bottom topography is observed.

A series of experimental and numerical simulations on bichromatic wave trains have
been reported showing large deformation of the wave group due to nonlinearity. It is
shown that on the length scale of the physical basin, the numerical and experimental
results are in satisfactory agreement. The numerical simulations are then extended
over a vastly larger domain to examine the possible end state of the observed defor-
mations. Also the amplitude and modulation period are varied to examine the effect
of these parameters on the evolution. For moderate amplitudes, periodic evolution
of the wave spectrum was found, indicating recurrence. An appropriate scaling was
experimentally constructed that relates the ratio between the frequency difference
and the amplitude () to the observed spatial periods.

The experimental results on the bichromatic simulations are compared to a modulated
wave and based on the similarities it is suggested that the initial growth rates of the
side bands of the bichromatic wave can be related to the growth rates of the side
bands of a simple modulated regular wave (Benjamin-Feir instability). It is noticed
however, that sideband growth was also observed outside the B .-F.instability interval,
indicating a different kind of instability.

Most numerical simulations of the NLS-equation in water wave evolution are based
on the application of periodic boundary conditions in a moving frame of reference.
The NLS-equation is often rejected as an appropriate model for the evolution of
periodic wave groups (in favor of the fourth-order extension by Dysthe), because initial
data remains periodic for the NLS-equation. Numerical simulation of the solution
of the NLS-equation in physical coordinates as an initial boundary value problem
however shows asymmetric envelope evolution that is in qualitative agreement with
the measured data. This shows that the NLS-equation can be used for qualitative
understanding of the asymmetric envelope deformations as long as it is treated in the
context of an initial value problem.

Further examination of the envelope evolution due to fully nonlinear simulations of
bichromatic waves shows the splitting of the original envelope in two distinguishable
envelopes. These distinguished groups are observed to interact in at least two qualita-
tively different ways ('overtaking' and 'bouncing'), both showing envelope recurrence.



Chapter 7

Conclusions and
recommendations

The preceding chapters contain a separate last section in which detailed conclusions
concerning the topic of the chapter are summarised. These detailed conclusions are
not repeated here, but only the more general conclusions are presented and some
recommendations for further research are given.

In this thesis a numerical algorithm for the simulation of nonlinear free surface waves
in a model test basin has been described and investigated. The aim of the research
was to develop, iniplement and investigate an algorithm for the deterministic and
accurate simulation of two-dimensional nonlinear waves in a model test basin. The
simulated wave field may be generated from a broad-banded target spectrum and the
simulations should be carried out by an efficient algorithm in order to be applicable
in practical situations. The developed algorithm is based on a combination of Runge-
Kutta (for time integration), Finite-Element (boundary-value problem) and Finite-
Difference (velocity recovery) methods. The scheme is further refined and investigated
using different models for wave generation, propagation and absorption.

The accuracy and stability of the numerical scheme are investigated arid the numerical
dispersion error is determined for several discretisation parameters. It was found that
stable, second-order accurate discretisations can be obtained using first-order Finite
Elements and second-order Finite Differences. The results also showed that a global
projection method, using Finite Elements for velocity recovery, results in unstable
discretisations. By a suitable choice of the grid density parameter the dispersion
error of a small amplitude regular numerical wave can be annihilated by cancellation
of errors. A physically relevant error measure for broad-banded wave simulations is
introduced and discrete mass and energy conservation are investigated. It was found
that the mass and energy decay due to numerical dissipation is mainly caused by the
geometrical approximation but is sufficiently small for accurate simulations.
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Wave generation methods based on models of physical wave makers and methods for
numerical wave generation are described and evaluated. The discrete wave board
transfer functions for flap- and piston type wave generators are determined and it
is concluded that the numerical wave generator produces slightly higher waves than
expected from continuous analysis. It was also found that application of the algorithm
to wave simulation may result in unstable discretisations for specific geometries in
combination with some grids.

Measurements that were performed on the reflection properties of beaches in the model
basin are compared to the results of a numerical wave absorption method. This ab-
sorption method consists of the combined pressure damping, horizontal grid stretching
and application of a Sommerfeld condition. Strict energy decay is guaranteed and the
combination allows for effective absorption for a broad range of frequencies. Reflec-
tion coefficients smaller than 0.7 % can be achieved at relative low computational
cost. It is also shown that by suitable choice of parameters the combined absorption
method can reasonably approximate the measured reflections on artificial beaches in
the basin.

The algorithm was further applied to several benchmark tests confirming the validity
of the results. Also the direct comparison with measurements showed satisfactory
agreement. The implementation of the numerical algorithm in an Object Oriented
programming language allows for easy extension and maintenance of the computer
code, allowing for the development of more general applications.

The numerical scheme is used to investigate the long-time evolution of nonlinear wave
groups. A study on the propagation of a confined wave group over a bottom topog-
raphy, the disintegration of a confined wave train and an elaborate study involving
numerous measurements and simulations on the evolution of bichromatic wave groups
are presented. The efficiency of the numerical algorithm allowed to explore the dy-
namics of these waves on an unprecedented time and spatial scale. The disintegration
of a wave train in groups has been observed, but the complete splitting into clearly
separated groups cannot be rigorously confirmed by the numerical results. Investiga-
tion of the evolution of a confined (NLS-soliton) wave group over a bottom topography
showed the defocussing of the group and the generation of a large free solitary wave.
The long-time evolution of bichromatic waves showed spatial periodic variations of
the wave spectrum, indicating recurrence as an end state of the evolution. An appro-
priate scaling was experimentally constructed that relates the ratio of amplitude and
original frequency difference (w/q) to the observed spatial periods. Examination
of the envelope evolution of the bichromatic waves show the splitting of the original
envelope in two distinguishable envelopes. These distinguished groups are observed to
interact in at least two qualitatively different ways, both showing envelope recurrence.

Based on the investigations of this thesis, the following recommendations for further
research are given: (i) further development of the existing three-dimensional extension
of the algorithm to investigate the evolution of extreme waves interacting in three di-
mensions; (ii) adaption of the top-level algorithm to include arbitrary numerical grid
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structures, this will allow for more accuracy control near complex geometries; (iii) im-
plementation of the local near-boundary G, continuous finite elements to investigate
whether accuracy or stability improvements can be achieved (iv) further investiga-
tion of mathematical models and measurements of artificial beaches. The current
numerical model lacks physical justification and measurements are not conclusive; (y)
extension of the stability investigations to the nonlinear discretisation, resulting in
more rigorous stability results; (vi) verification of the suggested relation between the
Benjamin-Feir growth rates and the nonlinear bichromatic wave evolution.
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Appendix A

Equivalence of strong and
weak formulation

In this appendix an outline of the proof of the equivalence of the strong and weak
formulation of the boundary value problem in section 2.2.4 is given. For full details
we refer to the lecture notes of Girault & Raviart (1981) and the paper of Kawohl
(1980) for further references therein.

A.1 Sobolev spaces

First, some notations and definitions are introduced. Let l C RI be an open set with
boundary r. V() is defined as the linear space of infinitely differentiable functions
with compact support on 1. The space of distributions on 1, V'(Il), is defined as the
dual space of V(11). Locally integrable functions f can be identified with a distribution
by

221

(f, ) = f f d1 V e D() (A.1)

The Sobolev space Wm'P(1) is defined as

= {v e L' J 3v e L, VH <m} (A.2)

which is a Banach space for the nomi

1/p

JuJJrn,p,o = ( / au(x)Jdx p<oo (A.3)
Iam )
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Wm'P(1) can also be equipped with the following seminorm

/ \1/P
= f 5u(x)IPdx) p < 00 (A.4)

IQI=m

In the special case where p = 2, Tm,2(çì) is denoted as Hm(1) and the subscript
p = 2 is dropped from the norm and seminorm. H() is a Hubert space for the
scalar product

(U,V)m, = J
8u(x)3v(x)dx. (A.5)

IcIm

The scalar product of L2(1 is denoted (explicitly without any subscripts) as

(u,v)
= f f(x)g(x)dx

The space H(1) is defined as the closure of D(1l) with respect to the H Hrn,cì

norm and its dual space is denoted as H_m(). There exists a linear and continuous
mapping 'yo E r (H1 (11),L2 (r)) where 'you denotes the value of u on F. The range
space of -y is denoted as H'/2() which is a proper and dense subspace of L2(r).
Equipped with the norm

If = mf HvUi,çvEH'(Q) 'yov=f

H'/2(I') is a Hilbert space. Its corresponding dual space is denoted H-112(r) and
the duality bracket as (., .)- which is an extension of the scalar product on L2(F).

A.2 Extended Green's formula for the Laplace op-
erator

Green's formula states that if u E H2(1l) and y E H1(1)

(Vu, Vv) = (su, y) + f(Vu n) y df. (A.7)

Consider now the function space

H(V;) = { E [L2()] V .w E L2()}. (A.8)

D() is dense in H(V; 1) and therefore a linear and continuous map 'W + w np
from H(V; Il) into H'/2(F) exists. From this also follows that

(w,Vu) + (V w,u) = (ynw,yov)r Vw E H(V,1l), Vu E H'(1) (A.9)

(A.6)



which finally leads to the following extension of Green's formula.

If u E H1(fl) and L1u E L2(ci) then Vu n E H-'12(r) and

(Vu,Vv) = (u,v) + j(Vu n) y dF Vv E H1(ci). (A.1O)

A.3 Lax-Miigram theorem

Let V be a real Hilbert space with dual space V'; let a(u, y) be a real bilinear form
on V x V and i E V'. Consider the problem

Find u E V such that

a(u,v) = (1,v) Vv E V. (A.11)

If there exits two constants M and c > O such that

a(u, y) < MIuII IivI Vu,v E V (A.12)
a(v,v) > aHvII Vv E V (A.13)

then there exists a unique u E V satisfying (A.11). Moreover the mapping i -+ u is
an isomorphism from V' onto V.

A.4 Equivalence

Let the boundary r be partitioned as F u rN and denote

H,rD = {u E H'(ci) 'yoU = O on rD} (A.14)

which is also a Hubert space with the norm of H' (Il).

Now consider the following two problems:

Find a function (f such that for g E H112 (FN) and f E Hl/2(FD) that satisfies

= O in Çì (A.15a)
on (A.15b)

n = g on (A.15c)

Find a function f) E H'(ci) such that for a f)0 E H'(ci) that satisfies yF0 = f
on ç) and a(u, y) = (Vu, Vv)

(f) (f) E (A.16a)

a((f - 40,v) = a((f0,v) + (g,v)j' VE (A.16b)
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224 EQUIVALENCE OF STRONG AND WEAK FORMULATION

It is noted that f E Hh/2(rD) so there exists a E H-(1) such that 'Yoo = f
o rD. Consider now problem (B) and define 1: y p a(o,v) + (g,v)r. Clearly
u,v * (Vu,Vv) is continuous and a(v,v) = IIVvlI,0 = Iv,0 ciHvII0 where the
last inequality follows from the Poincaré-Friedrichs' inequality. With the identification
of V with HrD and the observation that hilly' Ìvihv+igH_, and therefore i E V',

the conditions of the Lax-Miigram theorem are satisfied and a unique cF E HrD
exists.

(B) * (A) Clearly (A.16a) implies (A.15b) and from Eq. (A.16b) follows by partial
integration t hat

a(,v) = (V,Vv) = (u,v) = O Vv E D(). (A.17)

and therefore z = O in H'(Il) which implies (A.15a). Eq. (A.16b) therefore
also implies

a(V,Vv) = (g,v)r Vv E Hf D

= (g,v)r+(,v) VVEH,ÇD.

Application of the extended Green's formula results in

(g,v)r = (V . n)ç Vv E H1 (O, FD) (A.20)

and thus V4 n = g in H1!2 (F) on FN.

(A) - (B) Multiplication of (A.15a) by y E W () and application of the extended
Green's formula, and substitution of the conditions results directly in (B)).



Appendix B

Details of the numerical
methods

Bd Lagrangian interpolation and simplex coordi-
nates

In this appendix some details are given on the construction of the triangular ele-
ments and interpolation functions that were used for the approximation of the Laplace
boundary value problem. Furthermore, the formulas for the exact computation of the
necessary integrals over arbitrary triangles are given. More details on these methods
and techniques can be found in e.g. Silvester & Ferrari (1983) and Zienkiewicz &
Taylor (1994).

Simplex coordinates

First of all simplex coordinates are introduced as the new coordinates for a triangular
element. An arbitrary point inside a triangle divides the triangle into three areas.
Given the areas of these three sub-triangles with respect to the total area uniquely
defines the original point. These area fractions thus define a new set of coordinates
called simplex coordinates. The resulting relation between original and simplex co-
ordinates can be written as (A is the total area of the triangle, and (xi, y) is the
coordinate of the i'th vertex):
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Figure B. 1: Example of natural numbering of regular spaced nodes on a triangle. The
node number triple (ii k) can be identified with the simplex coordinates
(e123) = (i/3,j/3,k/3)

Simplex coordinates are by definition bounded and define a natural numbering for
regular spaced nodes on the triangle (see Fig. B.1). The node number ijk can be
identified with the simplex coordinates , , = (i/n, j/n, k/n) where n= i+j+k.
The next section describes how to construct a polynomial interpolation function on
the triangle.

Piecewise polynomials on a triangle

Consider the auxiliary polynomials Rrn (n, ) which are polynomial functions of degree

in having m equi-spaced nodes to the left of = in/n and none to the right and has
unity value at = rn/n.

rn-I m-1

Rm(,)= H
7k

- [J(nek) (B.2)

On a triangular simplex the following interpolation functions are defined

Nik = R(n,l)R(n.e2)Rk(n,$) (B.3)

with i + j + k = n. These interpolation formulae are just the classical Lagrange
interpolation polynomials, expressed with respect to the simplex coordinates of the
triangle. The function Njk defines a polynomial of degree n which is zero in all

nodes kim ijk. If sufficient and well-placed nodes are available, a polynomial

s

111 102

012

210 201
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function of arbitrary order can be represented on the triangle as a combination of
these interpolation polynomials.

The nodes are regularly spaced and a node lying on a side can belong to another tri-
angle. When the same technique for constructing polynomials is used for all elements,
the polynomial approximations on different neighboring triangles are continuous over
triangle sides. A global base function N associated with a node x consists of the
union of all local polynomials Nk associated with the node x on triangles to which
x belongs and is zero everywhere else.

Evaluation of a(N, N)

From Eq. 2.40 one can observe that the main effort in the construction of the linear
system to approximate the solution of the boundary value problem is the evaluation
of the integrals

a(NmNn)=J VNmVNd f VNrnVNmdf, (B.4)
Q KeET '

where N and Nm are the global base functions. An element-by-element computa-
tional procedure is used which first determines all the integrals for all base functions
per element and than adds the values to the appropriate integral. It is therefore
sufficient to consider the evaluation of the integral

Smn
=

f VNm VNn dft (B.5)

Transformation to simplex coordinates of a partial derivative of N results in

3xNm- kj (B.6)
j=1

and the derivatives of the simplex coordinates with respect to the spatial coordinates
can be expressed as

Yi+1 - Yi-1
8x 2A

xi_l - x+l
Dy 2A

where the indices are numbered modulo 3; so Yi+1
definition of

= Yi+1 - Yi-1
ci = xi_i - xi + i

(B.7a)

(B. 7b)

= y' if i = 3. Introducing the

(B.8a)

(B.8b)



and substitution of Eq. (B.6)-(B.8b) in Eq. (B.5) results in

3 3i ---- - raNm0Nn
a-

For any triangle the following identities hold

b b + cc = 2A cot 0k (B.lOa)

b + c = 2A(cot O + cot 9k i=j (Blob)

where 0k is the angle of the vertex with number k i j. Using Eq. (B.lOa)-(B.lOb)
Eq.(B.9 reduces to

/ 3Nm 3N, \ / aN 5N \ du
Smn = cotf9kf

k=1 3k+1 k-!) 0k+1 ak_1) = cot

(B.l1)

The matrices Q( k) on the right hand side are now completely determined in terms of
simplex coordinates and can thus be computed once and for all using the interpolation
formula (B.3). When the resulting expression for S is written only integrals I(i,j, k)
remain hat consist of products of powers of the simplex coordinates multiplied by
some constant. Transforming the integral I from Cartesian coordinates to simplex
coordinates results in

i=1 j=1

,.1 1-i
I(i,j,k)

=
= 2 I f (i - i _2)k d1 d2.

A J

(B.9)

(B.12)

The area A is canceled against the determinant of the Jacobian of the transforma-
tion. The integral (B.12) can be evaluated exactly by performing partial integrations.
Partial integration with respect to 2 evaluates as

I(i,j, k) = j1 f f - 2)k1 d1 d2
=

k 11(i,j + 1, k - 1),

(B.13)

so

k' 'k'
I(i,j,k) = i + k)!/j!'@3 + k,O) = (j k)T1' + k,0). (B.14)

If the partial integrations are then performed with respect to j, Eq.(B.14) reduces
to

i!j!k!
= I(0,i+j+k,0). (B.15)I(z,j,k) (i+j+k)!

The right hand side in Eq. (B.15) can be evaluated exactly as

i 1-1 i i
I(O,i +j + k,0) = 2 f f i+j+k d2 d,1 =

lolo z+j+k+1i+j+k+2
(B.16)
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which leads to the exact evaluation of the integral (B.12) as

I(i,j, k)
i!j!k!2

= (B.17)(i+j+k+2)!

After the matrices Q(' are tabulated and stored all integral evaluations up to any
order can be evaluated exactly. Remark that Q does only need to be computed for
a single k and that the other follow from permutations of the vertices.

B.2 Modified Butcher tables

Consider the ODE

qt = f(q,t) (B.18)

Given the time step LT we denote q = q(nt). The explicit s stage Runge-Kutta
integration method determines the value of the vector qniusing the formula

q+ = q + bf

i=1

The following modified Butcher tables (from Dormand (1996) and van der Houwen
& Sommeijer (1972)) give the coefficients a, b and c for three different explicit RK
methods (RK44M, RK45M and RK35D).

Table B.1: Butcher array of RK44M: a 'th order stage RK method with minimised
principal error and dispersive order 4.

b:

o

2/5

3/5

i

2/5

3/20
19/44

3/4

15/44 10/11

11/72

25/72

25/72

11/72

where

fi = f(q,t)

fi = f (qn + tfl t. + ciAtn
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ei

Table B.2: Butcher array of RK45M: a 4 'th order 5 stage RK method with minimised
principal error and dispersive order 4.

Table B.3: Butcher array of RKS5D: a 3rd order, 5 stage RK method with dispersive
order 8.

e

O 5/56
1/5 1/5 25/112

1/3 0 1/3 75/112

1/2 o o 1/2 1/14
1 O 0 01 15/56

0

1/5

2/5

4/5

i

1/5

0

6/5

17/8

2/5

12/5
5

2

5/2 5/8

13/96

o

25/48

25/96

1/12



Appendix C

Nondimensional wave
quantities

In most chapters of this thesis the wave quantities are given in non-dimensionalised
form. Length scales are normalised with the depth h and time scales are normalised
using the gravitational acceleration as /h/g. For reference and look-up purposes the
graph below is provided. The graph relates the different non-dimensionalised wave
quantities , ), T, e and c9 according to the dispersion relation for linear waves
Eq. (3.7). The values for the group velocity c9 and the phase velocity e have been
scaled by a factor (4ir and 22r respectively). For the SMB (h = 5 [ru]) one obtains
quick estimates by approximating /h/g 7/10 and 7. For the HT (h = 3.6
[m]) these values are \/h/g 6/10 and 6.

6

5.5

4.5 -

4-
3.5

3

2.5

2-
15-7/

0.25

-
- T (h/g)2112- . 4itc

2it C (gh)112

11h
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Samenvatting

Dit proefschrift beschrijft bet onderzoek naar een numeriek algoritme ten behoeve
van de sirnulatie van niet-lineaire golven in een model basin. Het doel van het on-
derzoek is orn een algoritme voor de deterministische en nauwkeurige simulatie van
twee dimensionale golven in een model basin te ontwikkelen, te implementeren en haar
eigenschappen te oriderzoeken. Het golfveld dat gesimuleerd moet worden kan uit gol-
ven van verschillende golfiengte bestaan en het algoritme dient efficient genoeg te zijn
opdat het toegepast kan worden in praktische situaties. Het ontwikkelde schema is
gebaseerd op een combinatie drie methoden: Runge-Kutta (voor de tijds integratie),
Eindige Elementen (voor het randwaarde probleem) en Eindige Differenties (voor de
benadering van de snelheden). Het schema is verder verfijnd en onderzocht met be-
hulp van verschillende modellen voor de opwekking, de voortplanting en de absorptie
van golven.

De nauwkeurigheid en stabiliteit van bet numerieke schema zijn onderzocht en de fout
in de dispersie-eigenschappen is bepaald voor verschillende discretisatie-parameters.
Er is gevonden dat stabiele, tot op tweede orde nauwkeurige, discretisaties kunnen
worden geconstrueerd op basis van eerste orde Eindige Elementen en tweede orde
Eindige Differenties. De resultaten laten ook zien dat een globale projectie methode
waarbij Eindige Elementen gebruikt worden orn de snelheden te benaderen, tot niet
stabiele discretisaties leidt. Door een geschikte keuze van een gridparameter, kan de
numerieke fout in de voortplantingssnelheid van een golf met een kleine amplitude
tot nul worden gereduceerd doordat verschillende fouttermen in de benadering elkaar
opheffen. Voor golven met een breed spectrum wordt een fysisch relevante foutmaat
ingevoerd en bet discrete massa- en energie-behoud wordt onderzocht. Het blijkt dat
de geringe afname in de massa en energie voornamelijk wordt bepaald door de be-
nadering van de geometrie, maar dat deze afname voldoende klein is orn nauwkeurige
simulaties uit te voeren.

Verschillende methodes voor de opwekking van golven, gebaseerd op modellen van
fysische golfopwekkers en op numerieke goflopwekkings modellen, worden geintro-
duceerd en onderzocht. De discrete overdrachtsfunctie tussen de slag van de golfop-
wekker en de amplitude van de golf wordt bepaald en hieruit volgt dat de numerieke
golfopwekker een lets hogere golf opwekt dan verwacht kan worden op basis van exacte
analyse. Er werd ook waargenomen dat voor sommige toepassingen met een specifleke
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combinatie van geometrie en numeriek grid, de discretisatie niet stabiel kan zijn.

Metingen die gedaan zijn aan de reflectie eigenschappen van de stranden in een model
basin worden vergeleken met een numerieke golfabsorptie methode. Deze numerieke
golf absorptie methode bestaat uit de gecombineerde toepassing van demping door
het aanbrengen van kunstmatige atmosferische drukverschillen, het oprekken van het
numerieke grid in de voortplantingsrichting en het toepassen van een Sommerfeld
randconditie op de uitstroom wand. De demping zorgt voor strikte afname van de
golf energie en de combinatie zorgt voor effectieve absorptie voor een breed interval
aan frequenties. Reflectie coëfficiênten lager dan 0.7 % zijn haalbaar ten koste van een
relatief geringe hoeveelheid extra rekentijd. Er wordt ook aangetoond dat door een
bepaalde combinatie van parameters van de numerieke absorptie methode, een rede-
lijke benadering van de gemeten reflectie eigenschappen van de kunstmatige stranden
in het model basin kan worden gerealiseerd.

Verder is het algoritme toegepast op enkele vergelijkende testen die de validiteit van de
numerieke resultaten bevestigen. Ook zijn de numerieke resultaten direct vergeleken
met metingen hetgeen goede overeenstemming liet zien.

Als een apart behandeld onderwerp is met behulp van de onderzochte methode de
evolutie van niet lineaire golfgroepen bekeken. Een studie naar de voortplanting van
een begrensde golfgroep over een bodemprofiel en het uiteen vallen van de samenhang
in een begrensde golftrein worden gepresenteerd. Daarnaast wordt een uitgebreide
studie, waarbij talrijke metingen en simulaties betrokken zijn, naar de ontwikkeling
van een bichromatische golfgroep besproken. De efficiêntie van het numerieke algo-
ritme zorgt dat de dynamica van deze golven kan worden onderzocht over zeer grote
afstanden. Het uit elkaar vallen van de begrensde golftrein wordt waargenomen, maar
de verwachte splitsing in afzonderlijke groepen kan niet worden bevestigd. Onderzoek
naar de evolutie van een begrensde (NLS-soliton) golfgroep over een bodemprofiel laat
zien dat de begrensde solitaire groepsstructuur overgaat in een golftrein. Verder wordt
waargenomen dat tij dens dit proces een lange vrije solitaire golf word gegenereerd die
voor de golftrein uitsnelt. De evolutie van een bichromatische golf laat zien dat
het ruimtelij k verloop van het golf spectrum eeri periodiek patroon vertoont hetgeen
wijst op FPU herhaling. Een toepasselijke schaling wordt gevonden die de verhouding
tussdn de amplitude en het frequentie verschil relateert aan de geobserveerde periode.
Verdere beschouwing van de evolutie van de omhullende van de golf laat een splits-
ing van de oorspronkelijke omhullende in twee afzonderlijk herkenbare golfomhullende
zien. De wisseiwerking tussen de omhullende van deze twee groepen laat twee kwali-
tatief verschillende patronen zien die beide wijzen op een herhaling van de evolutie.
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