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ABSTRACT 

Fractional partial differential equations (FPDEs) have become essential tool for the 

modeling of physical models by using spectral methods. In the last few decades, 

spectral methods have been developed for the solution of time and space dimensional 

FPDEs. There are different types of spectral methods such as collocation methods, 

Tau methods and Galerkin methods. This research work focuses on the collocation 

and Tau methods to propose an efficient operational matrix methods via Genocchi 

polynomials and Legendre polynomials for the solution of two and three dimensional 

FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi 

polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and 

variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it 

helps to generate functional expansions with less degree and small coefficients 

values to derive the operational matrix of derivative with less computational 

complexity as compared to Chebyshev and Legendre Polynomials. The results have 

been compared with the existing methods such as Chebyshev wavelets method, 

Legendre wavelets method, Adomian decomposition method, Variational iteration 

method, Finite difference method and Finite element method. The numerical results 

have revealed that the proposed methods have provided the better results as 

compared to existing methods due to minimum computational complexity of derived 

operational matrices via Genocchi polynomials. Additionally, the significance of the 

proposed methods has been verified by finding the error bound, which shows that the 

proposed methods have provided better approximation values for under consideration 

FPDEs.
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ABSTRAK 

Persamaan Pembezaan Separa Pecahan (PPSP) telah menjadi alat penting untuk 

pemodelan model fizikal dengan menggunakan kaedah spektral. Dalam beberapa 

dekad yang lalu, kaedah spektral telah dibangunkan untuk penyelesaian PPSP bagi 

terbitan dimensi masa dan ruang. Terdapat pelbagai jenis kaedah spektral seperti 

kaedah kolokasi, kaedah Tau dan kaedah Galerkin. Kajian ini memberi tumpuan 

kepada kaedah kolokasi dan kaedah Tau untuk mencadangkan kaedah matriks 

operasi yang berkesan melalui polinomial Genocchi dan polynomial Legendre untuk 

penyelesaian dua dan tiga dimensi PPSP. Tambahan pula, dalam kajian ini, kaedah 

asas seperti wavelet Genocchi dan kaedah Ritz-Galerkin berasaskan polynomial 

Gennochi telah diperolehi untuk menangani PPSP dan PPSP peringkat 

pembolehubah . Alasan di sebalik menggunakan polinomial Genocchi adalah bahawa 

ia membantu untuk menghasilkan kembangan fungsi dengan nilai pekali yang kecil 

dan cara memperoleh matriks operasi pembezaan yang kurang rumit pengiraannya 

berbanding dengan Polynomial Chebyshev dan Legendre. Hasilnya telah 

dibandingkan dengan kaedah yang sedia ada seperti kaedah wavelet Chebyshev, 

kaedah wavelet Legendre, kaedah penguraian Adomian, kaedah lelaran variasi, 

kaedah perbezaan terhingga dan kaedah unsur terhingga. Keputusan berangka telah 

mendedahkan bahawa kaedah yang dicadangkan telah memberikan hasil yang lebih 

baik berbanding dengan kaedah yang sedia ada disebabkan oleh  pengiraan matriks 

operasi adalah kurang rumit dengan polinomial Genocchi. Selain itu, kepentingan 

kaedah yang dicadangkan telah dibukti dengan ralat sempadan, yang menunjukkan 

bahawa kaedah yang dicadangkan telah memberikan nilai anggaran yang lebih baik 

untuk PPSP. 
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VOFPDEs –  Variable-order fractional partial differential equations 

ADM –  Adomian decomposition method 
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RVIM –  Reconstruction of  Variational iteration method 
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CGL –  Chebyshev Gauss Lobatto 

SL-GL-C –  Shifted Legendre Gauss-Lobatto collocation method 

FIDEs –  Fractional integro-differential equations           

SLOM –  Shifted Legendre operational matrix 

NSFDM –  Non-standard finite difference method 

SFDM –  Standard finite difference method 

MWR –  Method of weighted residuals 

SLC –  Shifted Legendre Collocation method 

FBE –  Fractional Burgers’ Equation 

KDV –  Korteweg de Vries equation 

GFBWFs – Fractional-order Bernoulli wavelet functions 

Q-SLT – Quadrature Shifted Legendre Tau method 

KV – Kelvin-Voigt equation 
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CHAPTER 1

INTRODUCTION

This chapter is comprised of some preliminaries given in section 1.1 that have been

used in this research work. The reason to conduct this research is illustrated in section

1.3. To achieve the research aim, four objectives have been set in section 1.4. The

scope of research and the main contribution are discussed in section 1.5 and section

1.6 respectively. Section 1.7 consists of thesis organization.

1.1 Preliminaries

In this section, some basic definitions of FPDEs, mathematical solution, solution

methods and method of weighted residuals (MWR) are explained.

1.1.1 Fractional partial differential equations

FPDEs are the generalization of classical partial differential equations (PDEs) with the

fractional order derivatives Dα. The general form of FPDEs (Al-Khaled, 2015) can be

written as

Dα
t u(x, t) = Lu(x, t) +Nu(x, t) + g(x, t), m− 1 < α 6 m, (1.1)

where u(x, t) is the unknown function, L is the linear operator, N is the general

nonlinear operator and g(x, t) is the source term. Similarly if the fractional order

derivative is replaced with the variable order derivative then the equation would be
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