3,753 research outputs found

    A lower bound on complexity of optimization under the r-fold integrated Wiener measure

    Get PDF
    AbstractWe consider the problem of approximating the global minimum of an r-times continuously differentiable function on the unit interval, based on sequentially chosen function and derivative evaluations. Using a probability model based on the r-fold integrated Wiener measure, we establish a lower bound on the expected number of function evaluations required to approximate the minimum to within ϵ on average

    09391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems

    Get PDF
    From 20.09.09 to 25.09.09, the Dagstuhl Seminar 09391 Algorithms and Complexity for Continuous Problems was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Sequential search based on kriging: convergence analysis of some algorithms

    Full text link
    Let \FF be a set of real-valued functions on a set \XX and let S:\FF \to \GG be an arbitrary mapping. We consider the problem of making inference about S(f)S(f), with f\in\FF unknown, from a finite set of pointwise evaluations of ff. We are mainly interested in the problems of approximation and optimization. In this article, we make a brief review of results concerning average error bounds of Bayesian search methods that use a random process prior about ff

    Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function

    Get PDF
    This paper addresses the problem of speech separation and enhancement from multichannel convolutive and noisy mixtures, \emph{assuming known mixing filters}. We propose to perform the speech separation and enhancement task in the short-time Fourier transform domain, using the convolutive transfer function (CTF) approximation. Compared to time-domain filters, CTF has much less taps, consequently it has less near-common zeros among channels and less computational complexity. The work proposes three speech-source recovery methods, namely: i) the multichannel inverse filtering method, i.e. the multiple input/output inverse theorem (MINT), is exploited in the CTF domain, and for the multi-source case, ii) a beamforming-like multichannel inverse filtering method applying single source MINT and using power minimization, which is suitable whenever the source CTFs are not all known, and iii) a constrained Lasso method, where the sources are recovered by minimizing the â„“1\ell_1-norm to impose their spectral sparsity, with the constraint that the â„“2\ell_2-norm fitting cost, between the microphone signals and the mixing model involving the unknown source signals, is less than a tolerance. The noise can be reduced by setting a tolerance onto the noise power. Experiments under various acoustic conditions are carried out to evaluate the three proposed methods. The comparison between them as well as with the baseline methods is presented.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    Iterative Random Forests to detect predictive and stable high-order interactions

    Get PDF
    Genomics has revolutionized biology, enabling the interrogation of whole transcriptomes, genome-wide binding sites for proteins, and many other molecular processes. However, individual genomic assays measure elements that interact in vivo as components of larger molecular machines. Understanding how these high-order interactions drive gene expression presents a substantial statistical challenge. Building on Random Forests (RF), Random Intersection Trees (RITs), and through extensive, biologically inspired simulations, we developed the iterative Random Forest algorithm (iRF). iRF trains a feature-weighted ensemble of decision trees to detect stable, high-order interactions with same order of computational cost as RF. We demonstrate the utility of iRF for high-order interaction discovery in two prediction problems: enhancer activity in the early Drosophila embryo and alternative splicing of primary transcripts in human derived cell lines. In Drosophila, among the 20 pairwise transcription factor interactions iRF identifies as stable (returned in more than half of bootstrap replicates), 80% have been previously reported as physical interactions. Moreover, novel third-order interactions, e.g. between Zelda (Zld), Giant (Gt), and Twist (Twi), suggest high-order relationships that are candidates for follow-up experiments. In human-derived cells, iRF re-discovered a central role of H3K36me3 in chromatin-mediated splicing regulation, and identified novel 5th and 6th order interactions, indicative of multi-valent nucleosomes with specific roles in splicing regulation. By decoupling the order of interactions from the computational cost of identification, iRF opens new avenues of inquiry into the molecular mechanisms underlying genome biology

    Linear State Models for Volatility Estimation and Prediction

    Get PDF
    This report covers the important topic of stochastic volatility modelling with an emphasis on linear state models. The approach taken focuses on comparing models based on their ability to fit the data and their forecasting performance. To this end several parsimonious stochastic volatility models are estimated using realised volatility, a volatility proxy from high frequency stock price data. The results indicate that a hidden state space model performs the best among the realised volatility-based models under consideration. For the state space model different sampling intervals are compared based on in-sample prediction performance. The comparisons are partly based on the multi-period prediction results that are derived in this report
    • …
    corecore