research

Linear State Models for Volatility Estimation and Prediction

Abstract

This report covers the important topic of stochastic volatility modelling with an emphasis on linear state models. The approach taken focuses on comparing models based on their ability to fit the data and their forecasting performance. To this end several parsimonious stochastic volatility models are estimated using realised volatility, a volatility proxy from high frequency stock price data. The results indicate that a hidden state space model performs the best among the realised volatility-based models under consideration. For the state space model different sampling intervals are compared based on in-sample prediction performance. The comparisons are partly based on the multi-period prediction results that are derived in this report

    Similar works