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a b s t r a c t

We consider the problem of approximating the global minimum of
an r-times continuously differentiable function on theunit interval,
based on sequentially chosen function and derivative evaluations.
Using a probability model based on the r-fold integrated Wiener
measure, we establish a lower bound on the expected number
of function evaluations required to approximate the minimum to
within ϵ on average.
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1. Introduction

The global optimization problem is to approximate the minimum of a function that may have
more than one local minimum. In this paper we are interested in how many function or derivative
evaluations are required in order to obtain an ϵ approximation to the global minimum. We consider
function classes that are subsets of C r([0, 1]) for some r ≥ 1. In the worst-case setting this problem
is intractable without further restriction on the class of functions; for any approximation to the
minimum based on a finite set of function and derivative values, there are elements of C r([0, 1])
with those values and with arbitrarily large error. If we assume a bound on

f (r)
, then Θ(ϵ−1/r)

function evaluations are required to obtain an error of at most ϵ; see [4]. An alternative to the worst-
case analysis is an average-case analysis.We present such an analysis for randomunivariate functions
distributed according to the r-fold integratedWiener measure. This measure has been used in several
studies of the efficiency of numerical methods, including global optimization [4] and zero-finding
[2]. Additional problems are treated in [3]. We use the probability model and notation of [2], where
the authors describe the average-case complexity of zero-finding. The global optimization problem
considered here can be thought of as the problem of approximating a particular zero of the first
derivative.
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For the probability model that we consider, an average-case analysis is presented in [4] that shows
that an ϵ approximation can be obtained with at most

C

(1/ϵ)1/(r+1/2) log(1/ϵ)1/(2r+1) (1.1)

evaluations (see Eq. (8) in [4]), where C depends on r but not on ϵ. In this paper we establish a lower
bound on the complexity, showing that for r ≥ 2 any algorithm needs at least a constant times

log(1/ϵ)1/((2r−3)(2r+1))

evaluations. For r = 1, at least a constant times

log(1/ϵ)1/3

evaluations are required.
The gap between the upper bound given by (1.1) and the lower bound of this paper is very large.

The upper bound (1.1) was derived from on upper bound for L∞ approximation, and it was stated that
it seemed unlikely that the bound was sharp for optimization. We conjecture that for optimization it
is possible to obtain an ϵ approximation with a number of function evaluations that is bounded by a
multiple of log(1/ϵ)c for some c > 0.

The question of a lower complexity bound in the case of r = 0 was treated in [1], where it was
shown that to obtain an error of at most ϵ, a constant times log log(1/ϵ) log(1/ϵ) function evaluations
are necessary.

The complexity of zero-finding under the probability model considered here for r ≥ 2 was ex-
amined in [2] (there the boundary conditions were chosen to ensure the existence of a zero). The
average-case complexity of computing an ϵ-approximation to a zero is of order log(1/ϵ) if the num-
ber of function evaluations is nonadaptive. However, if the number of evaluations can be chosen adap-
tively, then the average-case complexity is of order log log(1/ϵ). (The constant factors giving upper
and lower bounds depend on r and the boundary values.)

2. Problem formulation

We are interested in approximating the global minimum of a member of a class F of functions f :

[0, 1] → R that are at least once continuously differentiable. Aftermaking some function evaluations,
we construct an approximation A(f ) to the minimizer of f , and our goal is to make f (A(f )) −

min0≤t≤1 f (t) small.
We undertake an average-case analysis based on a variant of the Wiener measure. The r-fold

integrated Wiener measure is obtained by r-fold integration of the Brownian motion paths. We
translate each path by a suitable polynomial so that prescribed boundary conditions are satisfied,
thereby obtaining a conditional r-folded Wiener measure [2]. Let r ≥ 1 denote the smoothness, and
a = (a0, . . . , ar) and b = (b0, . . . , br) the boundary conditions at 0 and 1, respectively. We consider
a class of functions

F = {f ∈ C r([0, 1]) : f (i)(0) = ai, f (i)(1) = bi, for i = 0, 1, . . . , r}.

In order to ensure that the global minimum occurs in the interior of the interval, we assume that
a1 < 0 and b1 > 0. Equip the space C r([0, 1]) with the norm

‖f ‖ = max

‖f ‖∞ , . . . ,

f (r)


∞


,

where

‖f ‖∞ = sup
0≤s≤1

|f (s)| .

Denote the Borel σ -algebra of F by F . Let Pr denote the distribution of the r-fold integrated Wiener
process.

We now describe the class of algorithms for which our lower complexity bound holds. For the
average-case analysis, certain Borel measurability restrictions are required so that the integrals that
appear below are well defined. The formal description of an algorithm follows. The initial evaluation
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point t1 ∈ [0, 1] andorder of derivative j1 ∈ {0, . . . , r} are fixed, and f (j1)(t1) is evaluated. Termination
is determined by a sequence of measurable maps

hi : Ri
→ {0, 1}.

If h1(f (j1)(t1)) = 1 the algorithm terminates, otherwise a new point t2 and order of derivative j2 are
chosen and the process continues. Suppose that the algorithm has performed k evaluations. If

hk

f (j1)(t1), . . . , f (jk)(tk)


= 0

then we compute

tk+1

f (j1)(t1), . . . , f (jk)(tk)


, jk+1


f (j1)(t1), . . . , f (jk)(tk)


,

where

tk+1 : Rk
→ [0, 1], jk+1 : Rk

→ {0, . . . , r}

are Borel measurable. Then f (jk+1)(tk+1) is evaluated. The total number of evaluations is

n(f ) = inf

k : hk


f (j1)(t1), . . . , f (jk)(tk)


= 0


.

The approximation to the minimizer is given by

A(f ) = φn(f )

f (j1)(t1), . . . , f (jn(f ))(tn(f ))


for measurable maps φd : Rd

→ [0, 1], d ≥ 1. Then A : F → [0, 1] is measurable.
Let N : F → Y = ∪

∞

d=1([0, 1] × {0, . . . , r} × R)d denote the information operator, where

N(f ) =

(ti, ji, f (ji)(ti)), 1 ≤ i ≤ n(f )


.

This operator is measurable F /Y, where Y is the smallest σ -field on Y that contains sets of the form
d∏

i=1

(Ai, ji, Bi)

for d ≥ 1, ji ∈ {0, . . . , r}, and Borel sets Ai, Bi. Let Qr = N · Pr denote the image of Pr under N . Since
(F , ‖·‖) is a complete separable metric space, there exists a regular conditional probability Rr :

F × Y → [0, 1], so that

Pr(A ∩ N−1(B)) =

∫
B
Rr(A, y)Qr(dy)

for every B ∈ Y, A ∈ F .
We refer to n(f ) as the cardinality of information, and take the cost of an algorithm, when applied

to the function f , to be n(f ). Since we are interested in a lower bound, we assume that n(f ) is finite
and ignore the cost of the computations involved in computing the evaluation points and constructing
the approximation. The error, when applied to f , is

∆(f ) ≡ f (A(f )) − min
0≤t≤1

f (t).

Given a probability measure Pr defined on F , we define the average cost and average error

cost(A,N) =

∫
F
n(f )Pr(df ),

and

error(A,N) =

∫
F
[f (A(f )) − min

0≤t≤1
f (t)]Pr(df ) =

∫
F
∆(f )Pr(df ).

We define the local error given the information y ∈ Y by∫
F
[f (A(f )) − min

0≤t≤1
f (t)]Rr(df , y) =

∫
F
∆(f )Rr(df , y).
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Since ∫
F
f (A(f ))Rr(df , y)

is the conditional mean of f given the information y evaluated at the point A(f ), the local error is
minimized by choosing A(f ) to be the first minimizer of the conditional mean; then∫

F
f (A(f ))Rr(df , y) = min

0≤t≤1

∫
F
g(t)Rr(dg, y).

Since this is the optimal choice, this is the only one we consider in the rest of the paper, and the local
error is

min
0≤t≤1

∫
F
f (t)Rr(df , y) −

∫
F
min
0≤t≤1

f (t)Rr(df , y). (2.1)

The form of the statement and proof of the lower bound are slightly different for r = 1 and for
r ≥ 2. In order to treat both cases together, we introduce the notation q = min{r, 2}. Our result is

Theorem 2.1. Let 0 < ϵ < 1/16 and r ≥ 1 and consider an arbitrary algorithm (A,N) that has average
error at most ϵ:∫

F
∆(f )Pr(df ) ≤ ϵ.

Then there exists a positive number C(r, a, b) such that the average cost of the algorithm is at least∫
F
n(f )Pr(df ) ≥ C(r, a, b) · log(1/ϵ)

1
(2r+1−2q)(2r+1) .

The proof of Theorem 2.1 appears in the next section. In the remainder of this section we justify
two simplifying assumptions that will be used in the proof. The first is to base our approximation on
all function and derivative values at each of the selected points. Because the vector process

f (t), f ′(t), . . . , f (r)(t)


has the Markov property, this will simplify the calculations since the conditional processes between
evaluation points are independent. For f ∈ F , let

f [t] =

f (t), f ′(t), . . . , f (r)(t)


(2.2)

denote the Hermite information of order r . We assume that at each step a point t ∈ (0, 1) is chosen
and f [t] is evaluated. Since we seek a lower bound, we count the cost of each such evaluation as 1
instead of r + 1.

For convenience, let us renumber the evaluation points in increasing order. Given Hermite
information at 0 ≤ t1 < t2 < · · · < tn ≤ 1, let µn(t) denote the conditional mean and σ 2

n (t) the
conditional variance at t . Conditional on (ti, ji, f (ji)(ti)), 1 ≤ i ≤ n, the processes

{f (s) : ti−1 ≤ s ≤ ti}
are independent Gaussian processes. The conditional mean µn is the polynomial of degree at most
2r +1 interpolating the observed function and derivative values at the endpoints of each subinterval;
that is, for each i,

µn[ti] = f [ti].
The conditional variance at t ∈ [ti−1, ti] is given by

σ 2
n (t) =

1
(2r + 1)(r!)2


(t − ti−1)(ti − t)

ti − ti−1

2r+1

; (2.3)

see Eq. (4.2) in [2].
The second simplification is to base the computation of the local error not on the conditionalmean,

but on a simple function that majorizes the conditional mean with high probability. The majorizing
functions are given in the following
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Lemma 2.2. There exists a number β ≥ 1 and a measurable set Fβ ⊂ F with the following properties:

(1) Pr(Fβ) ≥
1
2 ;

(2) For any n ≥ 1 and any set of points 0 ≤ t1 < t2 < · · · < tn ≤ 1, if we construct the conditional
mean µn with respect to f [t1], f [t2], . . . , f [tn] for f ∈ Fβ , then for all s ∈ [−t∗n , 1 − t∗n ],

µn(t∗n + s) − µn(t∗n ) ≤


β |s| if r = 1,
βs2 if r ≥ 2,

where

t∗n = inf{t ∈ [0, 1] : µn(t) = min
0≤s≤1

µn(s)}

is the first minimizer of µn.

Proof. According to Lemma 4.1 in [2], for r ≥ 1 there exists a constant L1 = L1(r) such that

sup
ti−1≤s≤ti

f ′(s) − µ′

n(s)
 ≤ L1 · (ti − ti−1)

r−1
· sup
ti−1≤s≤ti

f (r)(s)
 . (2.4)

If r ≥ 2, then there exists a constant L2 = L2(r) such that

sup
ti−1≤s≤ti

f ′′(s) − µ′′

n(s)
 ≤ L2 · (ti − ti−1)

r−2
· sup
ti−1≤s≤ti

f (r)(s)
 . (2.5)

Thereforeµ′

n


∞

≤
f ′


∞
+ L1 ·

f (r)


∞
≤ (1 + L1) ‖f ‖ ,

and so

µn(t∗n + s) − µn(t∗n ) ≤ (1 + L1) ‖f ‖ |s| .

Then we can choose β > max{1, |ai| , |bi| , 0 ≤ i ≤ r} large enough so that

Pr


‖f ‖ ≤

β

1 + L1


≥

1
2

and take

Fβ =


f ∈ F : ‖f ‖ ≤

β

1 + L1


.

Similarly, if r ≥ 2, thenµ′′

n


∞

≤
f ′′


∞

+ L2 ·
f r

∞
≤ (1 + L2) ‖f ‖ ,

and so

µn(t∗n + s) − µn(t∗n ) = sµ′

n(t
∗

n ) +

∫ s

u=0

∫ u

v=0
µ′′

n(t
∗

n + v)dv du

≤
1
2
s2
µ′′

n


∞

≤
1
2
s2(1 + L2) ‖f ‖ .

We used the fact that t∗n is a minimizer of µn and so µ′
n(t

∗
n ) = 0. Then we can choose β > max

{1, |ai| , |bi| , 0 ≤ i ≤ r} large enough so that

Pr


‖f ‖ ≤

2β
1 + L2


≥

1
2
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and set

Fβ =


f ∈ F : ‖f ‖ ≤

2β
1 + L2


. �

3. Proof of Theorem 2.1

Denote the normal cumulative distribution function by

Φ(y) =
1

√
2π

∫ y

x=−∞

e−x2/2 dx,

and set Ψ (y) = 1 − Φ(y) and ϕ(y) = Φ ′(y). Repeated integration by parts, using ϕ′(y) = −yϕ(y),
yields

Ψ (z) = 1 − Φ(z)

=
1
z
ϕ(z) −

∫
∞

x=z

1
x2

ϕ(x)dx

= ϕ(z)

1
z

−
1
z3

+
3
z5

− 15
∫

∞

x=z

1
x6

ϕ(x)dx


.

Therefore,

Ψ (z) ≤ ϕ(z)

1
z

−
1
z3

+
3
z5


,

and so

ϕ(z) − zΨ (z) ≥ ϕ(z)


1
z2

−
3
z4


.

If z ≥
√
6, then

1
z2

−
3
z4

≥
1
2z2

,

and so we have the inequality

ϕ(z) − zΨ (z) ≥
1
2z2

ϕ(z), z ≥
√
6. (3.1)

Let us suppose an algorithm has made n evaluations, obtaining information

y =

(ti, ji, f (ji)(ti)), 1 ≤ i ≤ n


.

In terms of the conditional mean µn and its minimizer t∗n , the local error is given by

µn(t∗n ) −

∫
F
min
0≤t≤1

f (t)Rr(df , y).

The conditional distribution of the minimum of f over a subinterval [ti−1, ti] is not known except for
the case r = 0, which we exclude. We will approximate the conditional error in two steps. First we
use the expected undershoot at a fixed point in a subinterval to give an upper bound on theminimum
over the subinterval. Then instead of computing the expected minimum using the conditional mean
µn, we replace µn with the majorizing function given in Lemma 2.2. Further, we consider only the
error to the right or left of t∗n (whichever subinterval is larger).

First, let us consider the expected absolute undershoot ofµn(t∗n ) by f (t), whichwe denote by γn(t).
Since conditional on y, for ti−1 < t < ti,

f (t) ∼ N(µn(t), σ 2
n (t)),
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we have

γn(t) =

∫
F
(µn(t∗n ) − f (t))+Rr(df , y)

=

∫
∞

x=−∞


µn(t∗n ) − µn(t) − σn(t)x

+
ϕ(x)dx

= σn(t) (ϕ(θn(t)) − θn(t)Ψ (θn(t))) ,

where

θn(t) =
µn(t) − µn(t∗n )

σn(t)
. (3.2)

Let {si} be arbitrary points with ti−1 ≤ si ≤ ti, 1 ≤ i ≤ n. Then for every f , the local error satisfies

µn(t∗n ) −

∫
F
min
0≤t≤1

f (t)Rr(df , y) ≥ µn(t∗n ) −

∫
F
min
1≤i≤n

f (si)Rr(df , y). (3.3)

Let us consider the local error for a function f ∈ Fβ (recall Lemma 2.2). If we require that the local
error does not exceed δ, then for each i we require that γn(si) ≤ δ. Since γn(si) is decreasing in θn(si),
if we replace µn by a function g that satisfies g(t∗n ) = µn(t∗n ) and g(s) ≥ µn(s)∀s, then γn(si) will be
no larger and so must also be at most δ. Thus by Lemma 2.2, we can replace µn(t) − µn(t∗n ) in the
numerator of θn, defined at (3.2), by β

t − t∗n
 if r = 1 and by β(t − t∗n )

2 if r ≥ 2.
Without loss of generality, assume that t∗n ≤ 1/2 and that tj ≤ t∗n < tj+1 for some j. (If not, then we

consider the subinterval to the left of t∗n below.) Then the expected error to the right of t∗n is at least
as large as in the case where tj = t∗n ≤ 1/2. Since we seek a lower bound, we can consider only the
error to the right of t∗n . Then we have 1/2 ≥ t∗n = tj < tj+1 < · · · < tj+k = 1, where k is the number
of evaluations to the right of t∗n . To simplify some of the subsequent expressions, set τi = tj+i − tj and
Ti = tj+i − tj+i−1, 1 ≤ i ≤ k.

We apply the lower bound (3.3) with the choice of points

sj+i = tj+i−1 +
tj+i − tj+i−1

2r + 1
, 1 ≤ i ≤ k.

Set

ζr =
r!

√
2r + 1(2r + 1)2r+1

(2r)(2r+1)/2
,

so that
σn(sj+i) = ζ−1

r T r+1/2
i

using (2.3).
We will use the following fact several times in the sequel.

Lemma 3.1. The expression

r!(2r + 1)2r−1/2

(2r)r+1/2
(3.4)

is increasing in r ≥ 2.
Proof. We will show that the function of a real variable

g(x) =
0(x + 1)(2x + 1)2x−1/2

(2x)x+1/2

is increasing in x ≥ 2 by showing that the derivative of its logarithm is positive. We have

d
dx

log(g(x)) =
0′(x + 1)
0(x + 1)

+ log


(2x + 1)2

2x


+

4x2 − 6x − 1
2x(2x + 1)

.

0(x + 1) is positive and increasing for x ≥ 2, and 4x2 − 6x − 1 > 0 for x ≥ 2, and so log(g), and
therefore g , is increasing on [2, ∞). For integer arguments g(r) is equal to the expression in (3.4). �
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Recalling the notation q ≡ min{r, 2} ∈ {1, 2} and applying Lemma 2.2,

θn(sj+i) =
µn(sj+i) − µn(tj)

σn(sj+i)

≤
β

tj+i−1 − tj + Ti/(2r + 1)

q
1
ζr
T r+1/2
i

=
β (τi−1 + Ti/(2r + 1))q

1
ζr
T r+1/2
i

.

In order to apply inequality (3.1) we need to show that for each i,

θn(sj+i) >
√
6.

Note that Ti ≤ 1, β ≥ 1, and r − q ≥ 0 implies that

ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

≥
ζr

(2r + 1)qT r+1/2−q
i

≥
r!(2r + 1)2r+3/2−q

(2r)r+1/2
.

For r = 1 = q the last expression has value

3 · (3/2)3/2 >
√
6.

For r ≥ 2 = q the expression is

r!(2r + 1)2r−1/2

(2r)r+1/2
,

which is increasing in r ≥ 2 by Lemma 3.1, and with r = 2 takes the value

10(5/4)5/2 >
√
6.

Therefore θ(sj+i) >
√
6 and we can apply inequality (3.1) to obtain

γn

sj+i


= σn(sj+i)

ϕ(θn(sj+i)) − θn(sj+i)Ψ (θn(sj+i))


≥ σn(sj+i)

1
2θn(sj+i)2

ϕ(θn(sj+i))

=
1
2ζr

T (2r+1)/2
i ϕ


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

−2

.

Therefore,

log

γn

tj+i−1 + (tj+i − tj+i−1)/(2r + 1)


≥ − log(2ζr) − log(

√
2π) +

(2r + 1)
2

log(Ti)

−
1
2


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

− 2 log


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i


.

In order for the error to be at most δ over the subinterval [tj+i−1, tj+i], we must have that

log (δ) ≥ − log(2ζr) − log(
√
2π) +

(2r + 1)
2

log(Ti)

−
1
2


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

− 2 log


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i


,
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or

log (1/δ) ≤ log(2ζr
√
2π) −

(2r + 1)
2

log(Ti)

+
1
2


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

+ 2 log


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i


. (3.5)

We claim that the last expression is at most
ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

,

or, equivalently, that

1
2


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

− log(2ζr
√
2π) +

(2r + 1)
2

log(Ti)

− 2 log


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i


≥ 0. (3.6)

The function x → x2/2 − 2 log(x) is increasing for x ≥
√
2, and

ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

≥
ζr

(2r + 1)qT r+1/2−q
i

≥
ζr

(2r + 1)q

=
r!(2r + 1)2r+3/2−q

(2r)r+1/2

≥
r!(2r + 1)2r−1/2

(2r)r+1/2

≥ r!

2r + 1
2r

r

(2r + 1)r−1.

For r = 1 the last expression is equal to 3/2 >
√
2, and for r ≥ 2, the expression is at least r!(2r+1)r−1

≥ 2. Therefore, the expression on the left in (3.6) is increasing in τi−1, so we need only establish the
inequality for τi−1 = 0, which is equivalent to showing that

ζ 2
r β2

2(2r + 1)2qT 2r+1−2q
i

− log

ζ 2
r β2/(2r + 1)2q


− log(2ζr

√
2π)

−
6r + 3 − 4q

2(2r + 1 − 2q)
log


1
Ti

2r+1−2q


≥ 0.

Now

log(2ζr
√
2π) ≤ log


10ζ 2

r /(2r + 1)2q


≤ log

10ζ 2

r β2/(2r + 1)2q

.

The last inequality is from β ≥ 1 and the first is because

ζr

(2r + 1)2q
=

r!(2r + 1)2r+3/2−2q

(2r)r+1/2

is increasing in r ≥ 2 by Lemma 3.1, and at r = 2 = q has the value

5
√
5

16
>

5
8
,
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and at r = 1 = q has the value (3/2)3/2 > 5/8, and so in either case

10ζ 2
r /(2r + 1)2q ≥ 10ζr

5
8

> 2
√
2πζr .

Therefore,

ζ 2
r β2

2(2r + 1)2qT 2r−1−2q
i

− log

ζ 2
r β2/(2r + 1)2q


− log(2ζr

√
2π)

−
6r + 3 − 4q

2(2r + 1 − 2q)
log


1
Ti

2r+1−2q


≥
ζ 2
r β2

2(2r + 1)2qT 2r−1−2q
i

− 2 log

ζ 2
r β2/(2r + 1)2q


− log(10)

−
6r + 3 − 4q

2(2r + 1 − 2q)
log


1
Ti

2r+1−2q


≡
1
2
xy − 2 log(x) −

6r + 3 − 4q
2(2r + 1 − 2q)

log(y) − log(10) ≡ h(x, y),

where we made the substitutions

x ≡


ζrβ

(2r + 1)q

2

≥ min

37

23
,
57

44


=

37

23

(using again the fact that ζr(2r + 1)−q is increasing in r ≥ 2 by Lemma 3.1) and

y ≡ T−2r−1+2q
i ≥ 1.

Now
∂h
∂x

=
y
2

−
2
x

> 0

and for x ≥ 372−3 and y ≥ 1,

∂h
∂y

=
x
2

−
6r + 3 − 4q

2(2r + 1 − 2q)
1
y

≥
372−3

2
−

6r + 3 − 4q
2(2r + 1 − 2q)

≥


372−4

− 7/2 > 0 if r ≥ q = 2,
372−4

− 5/2 > 0 if r = q = 1.

Therefore we need only show that

h(37
· 2−3, 1) ≥ 0.

But

h(37
· 2−3, 1) =

1
2
372−3

− 2 log(37/23) − log(10)

> 136 − 12 − 3 > 0.

By (3.5), we must have that for i ≥ 1,

log (1/δ) ≤


ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

. (3.7)
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For i = 1, τ0 = 0 and (3.7) implies that

log(1/δ) ≤
ζ 2
r β2

(2r + 1)2qT 2r+1−2q
1

,

and so the first subinterval has width

T1 ≤


ζ 2
r β2/(2r + 1)2q

1/(2r+1−2q)

log(1/δ)1/(2r+1−2q)
≡ c(r, δ, β). (3.8)

We will show by induction that for j ≥ 1,

Tj ≤ c(r, δ, β)j2r . (3.9)

We have established this for j = 1 in (3.8); assume that i ≥ 2 and (3.9) holds for j < i. Then

τi−1 =

i−1−
j=1

Tj ≤ c(r, δ, β)

i−1−
j=1

j2r .

To get a contradiction, suppose that

Ti > c(r, δ, β)i2r . (3.10)

Then, 
ζrβ(τi−1 + Ti/(2r + 1))q

T (2r+1)/2
i

2

≤

ζ 2
r β2


c(r, δ, β)

i−1∑
j=1

j2r + c(r, δ, β) i2r
(2r+1)

2q

c(r, δ, β)2r+1i2r(2r+1)

= ζ 2
r β2c(r, δ, β)2q−2r−1


i−1∑
j=1

j2r +
i2r

(2r+1)

2q

i2r(2r+1)

= ζ 2
r β2


ζ 2
r β2/(2r + 1)2q

1/(2r+1−2q)

log(1/δ)1/(2r+1−2q)

2q−2r−1


i−1∑
j=1

j2r +
i2r

(2r+1)

2q

i2r(2r+1)

= ζ 2
r β2 log(1/δ)

ζ 2
r β2/(2r + 1)2q


i−1∑
j=1

j2r +
i2r

(2r+1)

2q

i2r(2r+1)

= log(1/δ)


(2r + 1)

i−1∑
j=1

j2r + i2r
2q

i2r(2r+1)

< log(1/δ),

which contradicts (3.7).
The last inequality used the fact that for i ≥ 2,

(2r + 1)
i−1−
j=1

j2r + i2r
q

< ir(2r+1).
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To see this, note that for r = 1 = q,

3
i−1−
j=1

j2 + i2 = i3 −
1
2
i(i − 1) < i3

for i ≥ 2. If r = 2 = q, then

5
i−1−
j=1

j4 + i4 = i5 −
1
6
i(9i3 − 10i2 + 1) < i5, i ≥ 2.

It remains to consider the case r ≥ 3, q = 2, for which we use the bound

(2r + 1)
i−1−
j=1

j2r + i2r ≤ (2r + 1)
∫ i

1
x2rdx + i2r

= i2r+1
− 1 + i2r .

Therefore, it suffices to show that

i2r+1
− 1 + i2r <


ir(2r+1)1/2

= ir
2
+r/2.

But

i2r+1
− 1 + i2r < 2 · i2r+1

≤ i2r+2 < ir
2
+r/2,

since

2r + 2 < r2 + r/2

for r ≥ 3.
Therefore, we have established that

Tj ≤ c(r, δ, β)j2r , j ≥ 1. (3.11)

Since we must have
k−

j=1

Tj ≥
1
2
,

where k is the number of function evaluations to the right of the minimizer, we need k to satisfy

1
2

≤ c(r, δ, β)

k−
j=1

j2r ≤ c(r, δ, β)k2r+1,

which implies that

k ≥


1

2c(r, δ, β)

1/(2r+1)

(3.12)

=


1
2


(2r + 1)q

ζrβ

2/(2r+1−2q)
1/(2r+1)

log(1/δ)
1

(2r+1−2q)(2r+1) ≡ ν(δ). (3.13)

We have now established that for δ > 0,∫
Fβ∩{n(f )<ν(δ)}

∆(f )Pr(df ) ≥ δPr

Fβ ∩ {n(f ) < ν(δ)}


.

Now suppose that for ϵ ∈ (0, 1/16], an algorithm has average error at most ϵ:

ϵ ≥

∫
F
∆(f )Pr(df ) ≥

∫
Fβ∩{n(f )<ν(δ)}

∆(f )Pr(df ) ≥ δPr

Fβ ∩ {n(f ) < ν(δ)}


. (3.14)
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Taking δ = 4ϵ, (3.14) implies that

Pr

Fβ ∩ {n(f ) < ν(4ϵ)}


≤ 1/4.

Therefore,

1/4 ≥ Pr

Fβ ∩ {n(f ) < ν(4ϵ)}


= Pr


Fβ


+ Pr ({n(f ) < ν(4ϵ)}) − Pr


Fβ ∪ {n(f ) < ν(4ϵ)}


≥ 1/2 + Pr ({n(f ) < ν(4ϵ)}) − 1,

and so

Pr ({n(f ) ≥ ν(4ϵ)}) ≥ 1/4,

which implies that∫
F
n(f )Pr(df ) ≥

1
4
ν(4ϵ).

For ϵ ≤ 1/16,

log(1/(4ϵ)) ≥
1
2
log(1/ϵ),

and so

ν(4ϵ) =


1
2


(2r + 1)q

ζrβ

2/(2r+1−2q)
1/(2r+1)

log(1/(4ϵ))
1

(2r+1−2q)(2r+1)

≥


1
2


(2r + 1)q

ζrβ

2/(2r+1−2q)
1/(2r+1) 

1
2

 1
(2r+1−2q)(2r+1)

log(1/ϵ)
1

(2r+1−2q)(2r+1) .

We conclude that if an algorithm has average error at most ϵ, then the average cost is at least∫
Fβ

n(f )Pr(df ) ≥
1
4
ν(4ϵ)

≥
1
4


1
2


(2r + 1)q

ζrβ

2/(2r+1−2q)
1/(2r+1) 

1
2

 1
(2r+1−2q)(2r+1)

log(1/ϵ)
1

(2r+1−2q)(2r+1)

≡ C(r, a, b) · log(1/ϵ)
1

(2r+1−2q)(2r+1) .

This completes the proof of Theorem 2.1.
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