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Abstract

This report covers the important topic of stochastic volatility modelling with an emphasis

on linear state models. The approach taken focuses on comparing models based on their

ability to fit the data and their forecasting performance. To this end several parsimonious

stochastic volatility models are estimated using realised volatility, a volatility proxy from high

frequency stock price data. The results indicate that a hidden state space model performs

the best among the realised volatility-based models under consideration. For the state space

model different sampling intervals are compared based on in-sample prediction performance.

The comparisons are partly based on the multi-period prediction results that are derived in

this report.

Keywords: Stochastic Volatility, high frequency data, linear models, multi-period prediction,

forecasting performance.
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Chapter 1

Introduction

In finance and business it is clear that uncertainty is ever present. The introduction of preven-

tive measures generally does not obliterate this uncertainty although it may help to mitigate

it. What is left must at least be quantified if possible. Quantified uncertainty is denominated

risk. Modelling risk can take on two distinct forms: parametric and non-parametric mod-

elling. In the first a model is assumed in terms of an equation or set of equations that are

assumed to describe the quantity being modelled in terms of a parameter set. In the second

the quantity of interest is estimated from the data using a variety of statistical techniques

that do not assume a parameterised form.

The main thrust of this report is that of modelling financial risk in general and of volatility

in particular. Financial risk is defined in (Watsham, 1998) as the undesirable change in the

value of a financial commitment. Given the generality of this definition we see that this in-

cludes a whole range of different types of risk: market risk, credit or default risk, operational

risk, legal risk, liquidity risk and model risk among other types. It is beyond the scope of

this report to expand on this. The above can be combined into either micro risk or macro

risk. The former is also called unsystematic or specific risk since this is the type of risk

that is specific to the financial instrument (such as legal, operational, model, volatility and

correlation risk). On the other hand, macro, or systematic, risk is common to all types of

financial instruments. This includes market, currency and interest rate risk just to mention

a few types. Although these kinds of risk are often not independent from each they are often

modelled separately.
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To value many financial commitments we need to determine the amount of risk of the under-

lying factors affecting them. In the case of many types of options on stocks this will involve

modelling the riskiness of the underlying stock. By ‘riskiness’ here we mean a measure of

change in value over some time-interval and it is usually measured by the volatility of the

stock. In that the option is to be exercised some time in the future this will involve forecast-

ing the volatility of the stock. One way of doing this will be considered in Chapter 3. First

some background to financial modelling will be given.

1.1 Financial Modelling

We can trace the beginning of financial theory back to the (Bachelier, 1900) dissertation on

speculation. This work marks both the origin of the continuous-time mathematics of stochas-

tic problems and the continuous-time economics of option pricing. With respect to the latter

Bachelier presented two different derivations of the Fourier partial differential equation as

the equation for the probability distribution of what we now call Brownian motion. Modern

financial theory began in the late 1950’s. Before then the focus was mainly on the time value

of money. The theory that was presented in (Markowitz, 1952) was ground-breaking. The

topic of this work, mean - variance analysis, has since been investigated in depth and has

become the standard way of approaching portfolio optimization by practitioners. The issue of

the trade off between profit and risk is seminal but it is the latter that is most often modelled.

One reason for this is that the risk factor dominates the expected returns. Another is that

the variance of returns is highly predictable whereas the returns themselves are not .

Building on Markowitz, (Sharpe, 1964) and (Linter, 1965) introduced the Capital Asset Pric-

ing Model (CAPM) which later became so key in measuring the performance of investments.

The idea behind this model is that the components of a portfolio of assets are associated

with a value of non-diversifiable risk. This value is denoted the β of the asset. During the

same decade one of the major building blocks of economic theory - the efficient market the-

ory - was introduced by (Samuelson, 1965) and (Fama, 1970). This hypothesis along with
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empirical evidence presented by (Kendall, 1953) indicate that future asset returns are not

‘forecastable’. The late 1960’s and the 1970’s saw an advance in the development of finan-

cial models involving dynamic asset allocation and choice under uncertainty. CAPM was

extended to inter-temporal valuation. Under one period CAPM an asset risk measure is

given by a single value, the β of the asset, but with this extension we are dealing with a

multi-dimensional measure. For the kinds of models being developed during this period the

partial and stochastic differential equations and integral equations governing these models

were much more complex than had been worked with before in this field. (Ross, 1976) intro-

duced the Arbitrage-Pricing Theory (APT) which can be viewed as a generalised competitor

to CAPM.

The well known Black and Scholes (BS) model was introduced by (Black and Scholes, 1973)

and (Merton, 1973) and revolutionised the financial research and practice of the time. The

reason for this being that this model makes precise in a straightforward manner the way in

which to price European options. For a given stock a dynamic trading strategy can be found

which will replicate the returns of an option to that stock. Hence the fair price for the option

is the value of the replicating strategy. The model is straightforward in the sense that there

is just one input which is not directly observable: the volatility of the stock. Estimating the

volatility then became a key issue in finance and many sophisticated models have since been

developed to this end. (Cox et al., 1979) remodelled the BS pricing derivation to a simple

binomial stochastic process formulation.

The 1980’s brought unification and extension of existing theories. In particular the BS model

was generalised using the concept of stochastic integrals, (Harrison and Pliska, 1981), (Duffie

and Huang, 1985) and (Duffie, 1986), a definition of which will follow in the preliminaries.

(Cox et al., 1985b) and (Cox et al., 1985a) then extended the general pricing framework to

allow for stochastic interest rates. A final work of particular interest is that of (Heath et

al., 1992). These authors showed how hedging could be carried out on derivative securities

associated with bonds. The Heath-Jarrow-Morton model is now key in the world of option

pricing.
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This concludes a brief overview of the history of financial modelling up the beginning of

the 1990’s. A more detailed description of outstanding relevant contributions of more recent

years will be left for the presentation of specific areas of financial modelling such as estimation

techniques, dynamic volatility models and implied volatility in subsequent sections. The rest

of this report is organised as follows. In Chapter 2 background theory to the applications of

the subsequent chapters is presented. In Chapter 3 timescales in forecasting volatility will

be considered using the Kalman Filter. In Chapter 4 filtering for high frequency data will

be presented for linear state models. The conclusion includes suggestions for further work as

well as a summary of the main results from the empirical and theoretical work.
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Chapter 2

Modelling and statistical

preliminaries

A series of modelling and statistical preliminaries will now be presented as an introduction

and motivation for the work that will be carried out in subsequent chapters.

2.1 System Identification

Before we can model anything that is of interest to us we must first identify a system that

is representative of the entities we are seeking to model in terms of their evolution. This has

been done for a long time in some form or another. When the outcome of the entities we are

seeking to model is completely random we say we have a stochastic system. In either case

the first step to system identification is to choose an appropriate modelling structure. There

are many issues that determine the choice of such a structure. In a deterministic setting

discretising the differential equation(s) that describe the process(es) we are seeking to model

will involve considering stability and convergence criteria. In a stochastic setting we will be

concerned with incorporating all relevant information from observed data so as to predict

as best as we can future phenomena conditioned on this information. If we are modelling

several processes simultaneously we need to determine the relationship between these and to

incorporate this into our modelling structure. Having determined such a structure we seek

representative values of its parameters. In some situations we may be able to measure the

corresponding physical phenomena and determine these parameters to arbitrary precision.

5



Often, however, due to physical uncertainty, noisy measurements and unobservability issues

we may have to make do with estimating such quantities.

The process of system identification can in practice be broken down into several steps. The

first step is to identify a model structure as described above. The next two steps involve

calibrating and then validating our model. For this we need to choose a data set from which

the values of the entities we are seeking to model can be extracted. In many situations part

of this data set will be used to estimate the parameters of the model - i.e. calibration - and

the rest will be used to back-test the estimated model - i.e. validation. Provided the results

of the validation are satisfactory to some degree we can then claim that a system has been

identified. For a more in depth exposure to a parametric approach to identification for which

we have sought to summarize above see (Ljung, 1987).

2.2 Model Validation

Having estimated a model the validation of it can be carried out using two main approaches

which we denote as internal and external validation.

The first consists of testing the model’s performance as a stand alone problem. In this way

we may be testing such things as the model’s correct specification, the goodness of fit and the

optimality of the parameter set.The second consists of comparing the model with competing

and/or benchmark models. The values of the criteria for choosing between the models in

consideration are likely to mean little on their own. In the context of comparison however

these values can be very significant.

Firstly the internal approach will be presented. There are two main issues in testing for mis-

specification. Firstly the reliance of the model on the correct specification is a determining

factor in its validation. Secondly the tests carried out should be powerful enough to check

for any misspecification. Currently there is a large array of tests to choose from in any major

area of statistical testing. Normality tests are often carried out as many model specifications

assume this property. This assumption is mostly for practical purposes but this does not
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necessarily imply it is unrealistic. The goodness of fit of a model is not such a clear cut

matter. The main focus of this dissertation is linear state volatility models. In this context

for example the popular R2 measure is not necessarily an adequate indicator of the goodness

of fit for volatility models, see (Andersen, 2000). Instead an internal measure such as the set

of prediction errors may be more realistic and useful. Moreover it is important to bear in

mind that fitting the data is not the main issue. A whole range of methods can be employed

to get a model that fits the data but the real question is whether this model is relevant. On

the other hand goodness of fit plays an important role in model validation and it would be

unwise to disregard it completely. The covariance matrix of the parameter set (see appendix)

gives a measure of the optimality of the parameter set in two contexts. In the context of

the particular model that has been selected the diagonal entries of covariance matrix of the

parameter set are the asymptotic standard errors on the parameters. However these values

give us no assurance of the quality of the estimates over a set of (competing) models. In the

context of the complexity of the model the off-diagonals are considered. In that these entries

give the correlation between parameters these will show whether or not the model is over

parameterised. Hence if the parameters are strongly correlated there is some redundancy in

the parameters and we may want to simplify the model. Statistical tests have been devel-

oped to determine whether a subset of a larger model set, i.e. nested models, is adequate to

describe data. The f-test for example gives a criterion for deciding between models in this

context whereas the AIC criterion is used more generally to decide between competing models.

For the external validation approach we compare our model with a known model in terms of

which gives better performance or fits the data the best. These known models are often called

benchmark models. They may be known to perform reasonably well or are simply popular

due to their tractability. In the context of this report these will be constant volatility and

GARCH models as shall be seen. If we find our model outperforms a benchmark model we

have some guarantee of the validity of our model. More will be said about this when we come

to numerical results and the introduction of the relevant models.
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2.3 Information and Probabilistic modelling

The type of information used determines the methodology that is used in modelling. It is of

interest to consider the modelling performance from the forecasting angle as this is the main

approach taken to modelling in this report. As is so often the case there is a tradeoff between

parsimony and using all relevant information in a model for forecasting. Parsimony is not

just for the sake of simplicity. Having many factors in a model can lead to collinearity, i.e. the

factors are correlated which in turn means there is redundancy. On the other hand the model

should take advantage of all the relevant information to get as much accuracy in the forecast.

In quantitative models for forecasting the variables or factors that might influence the quan-

tity that is being forecast constitute this ‘information’, which we denote the information set.

These variables are often called the independent variables and the quantity being forecast is

called the dependent variable. For autoregressive models, which shall be considered further

on in this work, independent variables are previous values of the same time series. There are

also forecasting methods that are not model-based. In finance the foremost example of this

is implied volatility. The implied volatility of an financial instrument is an estimate of the

volatility as implied by the prices of certain derivatives on this instrument. The idea behind

using this kind of estimate is to let the market expectation alone determine the volatility of

an instrument as opposed to making use of a model-based estimate1 based on assumptions

that may at times be hard to verify. From the point of view that the market aggregates

all possible information, backing out information for estimation from derivative prices makes

sense.

Now the scene has been set a more formal approach to forecasting in terms of conditioning

will be presented. This will be initiated with a series of definitions.

Let us denote a probability space by (Ω,F , P ) where Ω is the outcome space, P is the prob-

ability measure and F a σ-field or σ-algebra of subsets of Ω, i.e. the set of all subsets of Ω

1although implied volatility estimates may be combined with a modelling structure to infer parameter

values as shall be seen.
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A probability measure P on (Ω,F) is a function mapping F onto (0, 1) such that

- P (Ω) = 1

- if A ∈ F then P (Ac) = 1− P (A)

- if A1, A2, ..., An, ... ∈ F then P (∪∞n=1An) =
∑∞

n=1 P (An).

A σ-field F is a collection of subsets of Ω such that

- Ω ∈ F

- if A ∈ F then Ac ∈ F

- if A1, A2, ..., An, ... ∈ F then ∪∞n=1An ∈ F .

Let X be a random variable on (Ω,F) be defined as

X :





Ω −→ R

ω −→ X(ω)

so that a random variable is a function mapping an outcome to a real number.

The σ−field, σ, generated by X is defined to be the collection of all sets of the form {ω ∈
Ω : X(ω) ∈ A} where A is a subset of R. Let G be a a sub-σ-algebra of F . We say that X

is G-measurable if every set in σ(X) is also in G. We can also say that X is adapted to G.

The intuition behind the above is that the content of the σ−field is exactly the information

obtained by observing X.

The unconditional expectation of X is defined to be

E(X) =
∫

Ω
X(ω)dP (ω) (2.1)
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The above is equivalent to the mean value of the random variable over the entire outcome

space. Unconditional refers to there not being any conditions to provide information on the

set of outcomes. Once an event has been realised the outcome space is reduced to a subset

of Ω. Let G be a sub-σ-algebra of F . The conditional expectation of E(X | G) is defined to

be any random variable that satisfies

1. Y = E(X | G) is G-measurable

2. For every set A ∈ G, we have that E(X | G) =
1

P (A)

∫

A
X(ω)dP (ω) (2.2)

In practice it is of interest to consider not just random variables but random, or stochastic

processes, i.e. a sequences of random variable {Xt : t ∈ T} where if the process is of discrete-

time T = 0, 1, 2, ... and if it is of continuous-time T = [0,∞).

Within this context the concept of observing the random process can be introduced. A

filtration, or information flow, Ft, t ≥ 0, is defined to be the sequence of σ-fields such that

F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ ... ⊂ Ft (2.3)

A random process is adapted to the filtration Ft if the process Xt is Ft-measurable. In

other words Xt does not carry more information than Ft. A final point is that the stochastic

process Xt is always adapted to the natural filtration generated by Xt:

Ft = σ(Xs, s ≤ t) (2.4)

This is then in essence all the past and present information associated with the stochastic

process.

We are now in a position to introduce a stochastic process called Brownian motion.

2.4 Brownian motion and Stochastic Integration

Brownian motion is central to probability theory and has far-reaching applications. It was

named after the biologist Robert Brown at the beginning of the 19th century and was devel-

oped further at the beginning of the 20th century by Louis Bachelier, Albert Einstein and
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Norbert Wiener.

Standard Brownian motion is a continuous-time stochastic process B(.) such that

- [B(0)]=0.

- For any times 0 ≤ t1 < t2 < ... < tk the changes [B(t2)−B(t1), B(t3)−B(t2), ..., B(tk)−
B(tk−1)] are independent Gaussian with [B(s)−B(t)] ∼ N(0, s− t).

- For any given realisation, B(t) is continuous in t with probability 1.

Brownian motion is a specific type of the more general Wiener-Lévy process which also

allows for non-normal increments and discontinuous trajectories, i.e. the process can jump

randomly. More precisely it is composed of both a Gaussian component and a pure jump

component. The Wiener term is most often associated with the Gaussian component and

the Lévy term with the jump component2. Since Brownian motion has a Gaussian compo-

nent but no jump component it can be simply denoted a Wiener process. The more general

Wiener-Lévy process will be considered in more detail in the section on jump-diffusion mod-

els. It may be of interest to consider special processes derived from Brownian motion. One of

these is called a Brownian Bridge which is a process within a given interval that has a fixed

end point at zero but evolves as a Brownian motion in between. Stochastic interpolation

using a shifted Brownian Bridge involves a skewed Brownian Bridge since the interval start

and end points can take any values and need not coincide.

A key feature of Brownian motion is that it is no where differentiable as the trajectories

are not of bounded variation. Standard calculus cannot therefore be applied being replaced

by stochastic calculus. This theory pioneered by Itô is vast and is a major building block

in financial theory. We will limit the overview of this theory to the introduction of the Itô

formula and the Itô Stochastic Integral.

The theory of stochastic processes begins at formulating the derivation of functions of a

Wiener process. Let Xt = f(Wt) for some given f and the Wiener process Wt. The usual
2there seems to be some ambiguity in nomenclature but the general consensus appears to be in this fashion.
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chain rule does not apply for this equation but if f is sufficiently smooth Taylor’s theorem

can be applied to give

Xt+δt −Xt = f ′(Wt)(δWt) +
1
2
f ′′(Wt)(δWt)2 + ... (2.5)

where δWt = Wt+δt−Wt. Note that (δWt)2 can be approximated by its mean δt and higher

order terms are insignificant as δt → 0. The Itô formula is the limit of (2.5) with higher order

terms ignored,

dXt = f ′(Wt)dWt +
1
2
f ′′(Wt)dt (2.6)

which is a shorthand form for (the integrated form)

Xt −X0 =
∫ t

0
f ′(Ws)dWs +

1
2

∫ t

0
f ′′(Ws)ds (2.7)

(2.6) can be generalised for time as an independent variable in the function Y = f(t,Wt).

This formula then gives

dY = fw(W )dW + [ft(t,W ) +
1
2
fww(t,W )]dt (2.8)

The Itô formula above is for a Wiener-Lévy process without a jump component. For this

formula for processes with a jump component cf. (Cont and Tankov, 2004, p. 276).

Since f ′(W ) is stochastic and the integrator is the limiting difference of a stochastic process

that although continuous is not differentiable the first term on the right hand side of (2.7)

must be treated differently from the normal Riemann integral. This integral is known as the

Itô Stochastic Integral and will be defined in what follows.

For some finite time T let (Xt)0≤t<T be a stochastic process adapted to (Ft)0≤t<T the natural

filtration of the Brownian motion such that

E
∫ T

0
(Xt)2dt < +∞ (2.9)

The stochastic integral of (Xt) w.r.t. the Brownian motion Wt is defined as a limit in the

mean-square sense
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∫ t

0
XsdWs = lim

n→∞

n∑

i=1

Xti−1(Wti −Wti−1) (2.10)

A simple statement of the definition above begs explanation. The background theory for the

construction of this integral is not so straightforward. For a rigorous treatment of the steps

leading up to this definition readers are referred to (Mikosch, 1998, section 2.2. ).

2.5 Maximum Likelihood Estimation

Maximum Likelihood provides an estimator that maximises the probability of an observed

event. It was introduced by (Fisher, 1912). Let Xn be some observed scalar-valued i.i.d.

Gaussian random process. At each time n the probability density of Xn is given as

p(Xn) =
1√

2πE(Xn − E(Xn))2
exp

(
− (Xn − E(Xn))2

2E(Xn − E(Xn))2

)
(2.11)

The joint probability of the set of T observations occurring in the order in which they are

observed is

P (Xn) =
T∏

n=1

[
1√

2πE(Xn − E(Xn))2
exp

(
− (Xn − E(Xn))2

2E(Xn − E(Xn))2

)]
(2.12)

Maximising the joint probability (2.12) is denoted maximising the likelihood of observations.

For this reason the joint probability function P is often substituted by L to represent likeli-

hood. Often E(Xn) and/or E(Xn−E(Xn))2 are not known but can be estimated conditional

on parameterised past information. Indeed even the process Xn can be dependent on a set

of parameters. A parameter set θ is sought that maximises the likelihood at each time step

n based on past information Fn−1,

max L(Xn | θ,Fn−1) = max

{
T∏

n=1

[
1√

2πE(Xn − E(Xn))2
exp

(
− (Xn − E(Xn))2

2E(Xn − E(Xn))2

)]}

(2.13)

Maximising L is equivalent, to all extent and purposes, to maximising the log of L. This

transformation is carried out purely for computational ease. The transformed function of

(2.13) becomes
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Llog(Xn | θ,Fn−1) = −
T∑

n=1

log(E(Xn − E(Xn))2 −
T∑

n=1

(
− (Xn − E(Xn))2

E(Xn − E(Xn))2

)
(2.14)

when constant terms are ignored. The likelihood of a vector-valued i.i.d. Gaussian process

can be defined in a similar way.

In certain financial applications it is the asset return or variance process that constitute the

observable process. More will be said about this in the section on GARCH and state-space

models.

2.6 Dynamic volatility models

In this section dynamic volatility models will be introduced. Although these are arguably

the foremost way of modelling volatility we should note that static volatility models are still

widely used, especially in industry and when modelling the correlation in volatility. Mod-

elling volatility dynamically has played a central part in finance since a phenomenon was

observed (Mandelbrot, 1963) in the variances of returns called clustering, i.e. that these

variances cluster around some level for a certain period of time before returning to a mean

level. This clustering phenomenon implies serial correlation in the return variance which

in turn means that they can be predicted to some degree. Many methods have since been

proposed for modelling the above phenomenon. These fall roughly into three categories3:

GARCH-type4 models, “pure” Stochastic Volatility (SV) models, often denoted Stochastic

Variance5 models and Jump-Diffusion models. SV models assume the volatility follows an

Itô process satisfying a SDE driven by Brownian motion or some other stocastic process. In

this way the dynamics of the variance is given by a function of “past” variance plus a noise

term. Using SDE’s is sensible from the point of view that volatility is known to be random.

However, as there is already randomness in the stock price process, having an extra source

of randomness means that the market will no longer be complete. For an overview of the
3although they can be unified, see for example, (Albanese and Kuznetsov, 2003).
4an acronym for Generalized Autoregressive Conditional Heteroscedasticity with Conditional Heteroscedas-

ticity referring to the variance of returns being serially correlated over time.
5the variance of returns is a proxy for the volatility of returns which is unobservable. As most volatility

models use this proxy we may at times simply refer to these as Stochastic Variance models.
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implications of this fact see (Bjork, 2004)). ARCH and GARCH-type models on the other

hand imply deterministic, time-varying volatility and were first introduced by (Engle, 1982)

and (Bollerslev, 1986). Perhaps partly due to their simplicity and flexibility they have since

become very popular principally in industry. Jump-diffusion models have been around for

some time for a variety of purposes. In general these models concern the dynamics of the

asset price/return. Modelling volatility with random jumps is a special case of jump-diffusion

models that tie in jumps in the volatility with jumps in the asset price. Although they in

theory reproduce the statistical features often present in the data these models are often hard

to implement.

2.6.1 Stochastic Volatility models

A short overview of stochastic volatility models follows. The basic stochastic volatility model

is a two state discrete time model describing the dynamics of the asset price return, rt, and

the volatility, σt, of the form

rt = κσtεt

ln σ2
t+1 = φ lnσ2

t + ηt. (2.15)

where εt and ηt have mean zero and variances equal to one and β2 respectively. Here it

is of interest to generalise the above model to any model with a time-varying stochastic

representation for the asset price return volatility, or some function of the volatility. Moreover

the return dynamics will be allowed to take forms other than (2.15) but our interest lies in

the volatility dynamics so the former will be put to one side in this brief presentation. This

goes against the bivariate form for stochastic volatility models as often given in the literature

but allows for a more focused exposure. We will begin with the general continuous time SV

model which is given by

dY (t) = α(Y, t)dt + β(Y, t)dW (t) (2.16)

where α and β are given functions, usually continuous in (Y, t) and W (t) is a Wiener process,

i.e. dW (t) is white noise. The volatility, σ, is some positive function, f say, of Y . As special

cases of the general model above we have: the CIR or Feller model, (Cox et al., 1985b), the
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lognormal model, and the Ornstein Ulenbeck (OU) model to cite the most common ones.

The Feller model is given by

dY (t) = α(κ− Y (t))dt + β
√

Y (t)dW (t) (2.17)

When the Wiener process above is correlated with the underlying stock price’s Wiener process

and f(Y ) =
√

Y we have the Heston model, (Heston, 1993). The lognormal model is given

by

dY (t) = C1Y (t)dt + C2Y (t)dW (t) (2.18)

The well known Hull-White model, (Hull and White, 1987), is (2.18) with f(Y ) =
√

Y .

Finally the OU model is given by

dY (t) = α(κ− Y (t))dt + βdW (t) (2.19)

(Scott, 1987) works with the above model for f(Y ) = ey.

The OU and Feller models are mean reverting ones, i.e. the volatility frequently leaves an

average level but then reverts back to it at a certain rate. One of the SV model that will be

considered in this report is of the OU-type. Whatever the model structure, the main issue in

SV modelling is how to estimate the model parameters given that volatility is unobservable.

A common way of doing so is to model the volatility as a hidden state. This approach often

involves a set of linear space-space equations, with the hidden state being estimated using the

output of the Kalman filter and the parameters by a likelihood function. Another approach

is to assume the volatility takes values according to the state of a hidden Markov chain, cf.

(Elliott et al., 2003). In this setting there are a finite number of states that are estimated

using a noisy observation process.

2.6.2 GARCH-type models

Let us consider the residuals, ε(k), obtained from subtracting the mean return from the

actual returns r(k), and the variance, σ2(k) of these residuals6. A ARCH/GARCH model

stipulates that these residuals are conditionally normal ε(k) | F(k − 1) ∼ N(0, σ2(k)). In a

GARCH-type model the variance terms are given in terms of past residuals and past variance

terms
6in certain applications the residuals come from a regression of the returns on several explanatory variables.
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σ2(k) = γ + β1σ
2(k − 1) + β2σ

2(k − 2) + ... + βpσ
2(k − p) +

α1ε(k − 1)2 + α2ε(k − 2)2 + ... + αqε(k − p)2 (2.20)

(2.20) is known as a GARCH(p,q) model.

Considering these residuals as the observable process as given in the section on Maximum

Likelihood it is not difficult to verify that the log-likelihood (2.14) for a GARCH model is

Llog(ε(k) | Fk−1, θ) = −
T∑

k=1

log(σ2(k))−
T∑

k=1

(ε(k))2

σ2(k)
(2.21)

Considering (2.20) for p=q=1, and with a slight simplification of notation, we have,

σ2(k) = γ + βσ2(k − 1) + αε(k − 1)2 (2.22)

Thus we find values of γ, α and β that maximise (2.21) for k = 1, ..., T . Since the log-

likelihood function has a closed form, estimation and calibration via maximum likelihood is

straightforward. GARCH(1,1) with γ = 0 is known as the exponential weighted moving aver-

age (EWMA) model. This model in a similar way to GARCH-type models is very popular in

industry. Common variance estimates are given as weighted averages of past squared returns.

To keep these estimates relevant the weights will decrease as we move back through time.

It turns out that a exponential decrease leads to the parsimonious EWMA model formulation.

Since they were proposed in the 80’s, ARCH and GARCH-type models have since been built

upon to incorporate modelling features that better describe, as empirical evidence would

suggest, the properties of the entities that are sought to be modelled. Two of the foremost

of these features are the ‘leverage effect’ and excess kurtosis. It has been observed that

negative returns tend to increase the volatility more than positive ones of the same magni-

tude. This form of asymmetry is denoted the leverage effect. Let us note that the standard

GARCH model does not allow for this feature. Excess kurtosis means that returns distri-

butions tend to have ‘fatter’ tails than the Gaussian distribution. Examples of models that

allow for some of these features are (exponential) EGARCH, (Nelson, 1991), and t-GARCH,

(Bollerslev, 1987). The former allows for negative parameters while guaranteeing that the
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volatility remains positive that and can also incorporate the leverage effect. The latter uses

the student t-distribution in the calibration of the model parameters. The literature appears

to indicate however that in many applications a standard parsimonious representation such

as GARCH(1,1) suffices.

Clearly correlations between stocks is also an important issue to be considered. Multivariate

GARCH models have indeed been considered for examples see (Engle and Kroner, 1995) and

(Bollerslev et al., 1988). Finally it is worth mentioning the existence of GARCH models for

option valuation, see for example (Duan, 1995) and (Heston and Nandi, 2000).

Finally although GARCH models appear to be quite distinct from SV models they have

been shown to be limiting approximations of these. There are certain SV models where

the relation between these and GARCH models has been demonstrated. This is the case

for Stochastic Autoregressive Volatility models, see (Fleming, 2003) and (Meddahi and Re-

nault, 1997), and for Heston’s square root model, see (Heston and Nandi, 2000). The pivotal

work of (Nelson, 1990) provided the framework for this by interpreting the continuous time

limit of a discrete time GARCH processes.

2.6.3 Jump-diffusion models

A short overview of jump-diffusion7 models follows8. For a comprehensive survey readers are

referred to (Cont and Tankov, 2004). A general jump-diffusion model for the asset price S is

given by

dS(t) = α(S, t)dt + β(S, t)dW (t) + dZ(t) (2.23)

where α and β are given functions, usually continuous in (S, t) and the second term is a diffu-

sion. Z(t) is a specific type of Wiener-Lévy process, namely it is a process with independent

and stationary increments with jumps, no Gaussian component and no drift. A process with
7although we will restrict our attention to the jump part of these models to remain in a general framework

this nomenclature is preferred.
8although we are within the framework of dynamic volatility models jump-diffusion models will be intro-

duced more generally with volatility models with random jumps presented as a special case.
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jumps is defined to be one where the instantaneous variance can be singularly large at a finite

number of points. (Bates, 1996) extended the Heston model to include jumps. In (Barndorff-

Nielsen and Shephard, 2001) the Lévy process was assumed to follow a generalised inverse

Gaussian law whilst in (Merton, 1976) the timing of the jumps was assumed to follow a Pois-

son distribution. Jumps in the stock price are related to discrepancies in business time and

calendar time which has led to work on time-changed Lévy processes, (Geman et al., 2001)

and (Carr and Wu, 2004). Time-changed processes are ones for which the underlying time of

a time-dependent process is allowed to have random jumps. The motivation behind this ap-

proach is to make a transformation to a world which has nice properties for valuation and/or

which allows empirically observed properties to be characterised. In the context here business

time will follow a stochastic process with jumps. In (Carr et al., 2003) the rate of the jumps

and time change is tied in with the volatility which produces the well documented leverage

effect. Another approach for incorporating leverage, introduced by (Barndorff-Nielsen and

Shephard, 2001), is to use the same jumps in the volatility and in the price. As well as lever-

age another property of non-normality, excess kurtosis, can arise from a substantial jump

component. It is important to verify how well Jump-diffusion models reproduce the profiles

of empirically observed implied volatility surfaces and smiles, cf. (Bakshi et al., 1997) and

(Skiadopoulos et al., 2000). For valuing contingent claims allowing for jumps in the volatility

see for example (Naik, 1993).

It should be pointed out that models with jumps go beyond stock price models for typically

daily frequencies. More generally these have been introduced to reproduce/model the sta-

tistical features often found in financial time-series data right across the ball. Of particular

interest here is their use in modelling ultra high frequency data. Since tick-by-tick prices

remain at some level until a transaction causes these to jump to a new level the dynamics of

ultra high frequency data follow a non-Markovian process with jumps, there is no diffusion

component. Theory from fractional Brownian motion provides opens up work in this area

that was pioneered by the Olsen group, cf. (Muller et al., 1993). For further research in this

direction see (Scalas et al., 2000), (Woerner, 2003) and (Woerner, 2005).
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2.7 State-space formulation and the Kalman filter

In many dynamical systems the entity that is sought to be modelled is not directly observable,

i.e. this entity, known as the (hidden) state is measured in noise. However if the noise is

assumed to be known in distribution this state can often be estimated in a particularly efficient

way. Such a estimation procedure delivers pointwise estimates. If less is known about the

measurement noise one may have to make do with set membership estimation. A special case

of the former situation is when the unobservable variable is a linear function of observable

variables. There is a particular class of SDE’s that lend themselves to an unobservable, yet

tractable and efficient, model formulation - the OU-type process (2.19). For simplicity a first

order Euler discretisation of this SDE will be considered,

xn+1 = axn + b + wn+1, (2.24)

where a = 1−α∆, b = ακ∆, and wn+1 = β(W (t+∆)−W (t)), where ∆ represents a typically

small time interval. Consider the situation where the state variable xn is unobservable yet

there is a variable, yn say, that is observable and is an affine function of xn of the form,

yn = cxn + fn, (2.25)

When fn = d + un. where un is typically white noise, a ‘State-Space’ system can be set up

of the form,

xn+1 = axn + b + wn+1

yn = cxn + d + un, (2.26)

where E(wn) = E(un) = 0, E(w2
n) = q2 and E(u2

n) = r2. E(un) and E(wn) are known as

error terms. The first and second equations of the above State-Space system are known as

the transition equation and the measurement equation respectively. It should be noted that

(2.25) as a model in its own right is called a ’General Linear Model‘.

It is of interest to generalise (2.26) to multiple states and multiple observable variables,
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xn+1 = Axn + b + Qεn+1

y
n

= Cxn + d + Rη
n

(2.27)

where xn, b and εn are vectors of length N and y
n
, d and η

n
are vectors of length M . C is a

M×N matrix, R is a M×M matrix and A, B and Q are N×N matrices. These parameters

could be specified to be time-dependent. This would involve introducing evolution equations

for the unknown parameters as extra states. The main issue that limits this approach is the

curse of high dimensionality. For this reason only time-invariant systems are considered here

although further in this work one of the parameters will be introduced as time dependent.

The above state-space formulation became an increasingly popular modelling procedure since

(Kalman, 1960) and (Kalman and Bucy, 1961) developed what is now known as the Kalman-

Bucy Filter, or simply the Kalman Filter (KF). Under a state space specification such as

the one above the KF procedure is a predictor-corrector scheme in which the covariance of

estimation error is minimised. In this way the state estimates that are delivered are optimal9

among all other one-step predictor schemes if the disturbances are Gaussian. If this is not the

case and the model has been misspecified the filter still delivers estimates that are optimal

in regards to all other linear predictors.

Let us denote the KF conditional one-step-ahead estimate of the hidden state, x̂n+1|n, and the

covariance of this estimate, Pn+1|n. The innovation, or vn, is defined as the difference between

the observation at time n and an affine function of the previous step’s state prediction,

y
n
− Cx̂n|n−1 − d. The correction is based on the innovation itself, its variance, Fn and the

state estimate variance. Related to this correction is the Kalman gain, Kn, defined below.

It is usual to combine the prediction and correction equations into one set of equations. The

Kalman Filter equations as given in (Harvey, 1989, p. 100-106), and, with slightly different
9in the MSE sense.
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notation, are reproduced here for convenience

vn = y
n
− Cx̂n|n−1 − d

Fn = CPn|n−1C
T + RRT

Kn = APn|n−1C
T F−1

n

x̂n+1|n = Ax̂n|n−1 + b + Knvn

Pn+1|n = A(Pn|n−1 − Pn|n−1C
T F−1

n CPn|n−1)A
T + QQT (2.28)

The KF can be considered a weighted recursive least squares problem although for time-

invariant systems such as the one considered here there is convergence to equal weighting.

The KF algorithm is recursive as the state is updated for every measurement based on (an

affine function of) the previous state. In many cases the system will be stationary, i.e. the

mean and covariance of the state do not depend on time. For time-invariant systems, as the

one above, when the roots of A are inside the unit circle this will be the case.

To initialise the KF estimates for the mean and variance of the initial state, x̂0 and P0

respectively, are needed. If the model is stationary these values can consistently be set equal

to the expected stationary state and the variance of the stationary state respectively, cf.

(Anderson and Moore, 1979, p. 64-70). As we see from the following equations

x̂0 = b/(IN −A), P0 = QQT /(IN −AAT ) (2.29)

these moments are just given in terms of the unknown parameters. If the model is not sta-

tionary the model must be initialised in some other way, often using a diffuse of proper prior

for the covariance. A diffuse prior in some special cases takes the form P0 = kIN for some

large k. In general the use of a diffuse prior calls for extending the KF and correcting the

likelihood function. A proper prior generally only applies to observable models in which the

first p set of observations is used for constructing priors.

The setup above assures optimality of the state estimates for given parameters. However

these may not be known. The optimal parameter set is defined to be the one which minimises

the difference between predicted values of yn and the actual observations, i.e. the prediction
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error. The minimisation is carried out under a certain weighted average procedure derived

from better known as Maximum Likelihood.

In the case of the univariate State-Space model (2.26) the parameters can be estimated as

described above in a straightforward manner if we assume the observed variables are Gaussian.

Thus (2.14) can be written as

Llog(yn | θ,Fn−1) = −
T∑

n=1

log(E(yn − E(yn))2 −
T∑

n=1

(
− (yn − E(yn))2

E(yn − E(yn))2

)
(2.30)

We see that the above is in prediction error form but it is of interest to view it in terms

of the KF output. Thus when substituting E(yn) by Cx̂n|n−1 + d along with some other

substitutions (2.30) becomes

Llog(yn | θ,Fn−1) = −
T∑

n=1

log Fn −
T∑

n=1

v2
nF−1

n (2.31)

In the context of maximising the log-likelihood we see from (2.31) that the innovations with

a smaller variance are given more weight in the optimisation. The parameter vector which

maximises the likelihood of the observations is called the maximum likelihood estimate. It is

worth pointing out that if the state-space is multivariate the expression (2.31) suffers minor

modifications.

A Gaussian Filter being applied to a model which is not necessarily Gaussian implies that the

state estimates may be biased and thus the estimation will be suboptimal. In Quasi-Maximum

Likelihood Estimation (QMLE), (Bollerslev and Wooldridge, 1992), these biases are ignored

in the actual estimation. These are however accounted for when calculating standard errors

on the estimates. Details of this for a univariate State-Space model estimated from the output

of the Kalman Filter are given in Appendix A.

2.8 Multi-step prediction

Multistep prediction can also be considered using the parameters of the one-step-ahead state

space equations. The Kalman filter equations, (2.28), are a combination of prediction and

updating equations. The derivation of the multi-step prediction equations comes from re-

peatedly applying the one-step prediction equations. Updating equations are not considered
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as there is no way to update the state or error estimates. For m, say, step-ahead prediction

the state estimate and variance equations for the univariate model with serially uncorrelated

error terms are

x̂n+m|n = amx̂n +
m−1∑

j=0

ajb

Pn+m|n = a2mPn +
m−1∑

j=0

a2jq2 (2.32)

or in terms of the previous step predictions

x̂n+m|n = ax̂n+m−1|n + b

Pn+m|n = a2Pn+m−1|n + q2

F ∗
n = c2Pn|n−m + r2, (2.33)

The total10 variance of state estimates would then be the sum of Pn+i|n, i = 1, ..., l. We

also have an expression for the innovations variance based on m-step ahead prediction:

F ∗
n = c2Pn|n−m + r2. It is important to point out that the innovations variance is a model-

based estimate that is used in the Kalman Filter to contribute towards ’on-line‘ best linear

state prediction. Although it is principally the observed actual deviation in the innova-

tions that will determine the quality of a multi-step forecast a model-based estimate as the

expression for the innovations variance above may still be indicative of how good a forecast is.

As pointed out in (Johnston and Harrison, 1986), some care is needed if dealing with flow

variables for which predictions involve the cumulative effect of some variable several steps

ahead. Clearly this is the case in forecasting volatility, the volatility of a future period up to

lead time m is given by the sum of the future sub-periods. For flow variables (2.33) does not

apply.

Assume the error terms in the univariate model (2.26) are serially uncorrelated and uncorre-

lated with each other. Under these assumption we have derived the following two propositions.
10in the sense of accumulating the variance estimates from one- and two-step prediction
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Proposition 1. The total variance of the state estimates, P̄n for the cumulative state pre-

diction, ˆ̄x, for m steps is,

P̄n = E(x̄− ˆ̄x)2 =




m−1∑

j=0

aj




2

Pn+1|n +
m−2∑

i=0




i∑

j=0

aj




2

q2, (2.34)

where,

x̄ =
m∑

j=1

xn+j . (2.35)

Proof: See appendix.

Proposition 2. The total innovations variance, F̄n for the cumulative state prediction, ˆ̄x,

for m steps is,

F̄n = E(ȳ − cˆ̄x−md)2 =




m−1∑

j=0

aj




2

c2Pn−m+1|n−m +
m−2∑

i=0




i∑

j=0

aj




2

c2q2 + mr2, (2.36)

where

ȳ =
m−1∑

j=0

yn−j (2.37)

and

ˆ̄x =
m∑

j=1

x̂n−m+j|n−m. (2.38)

Proof: See appendix.

Finally it is worth pointing out that there is a simple multi-step expression for the GARCH(1,1)

model:

σ2(n + k) = βkσ2(n) + γ

k−1∑

i=0

βi + α

k∑

i=1

βi−1ε2(n + k − i). (2.39)

Now that the scene has been set some applications of the theory that has been presented

will be given.
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Chapter 3

A Stochastic Volatility Model from

high-frequency stock price data:

calibration, forecasting and the

choice of timescales

3.1 Introduction

For a decade or so high frequency financial data has been readily available and for this reason

modelling volatility in particular has reached an altogether higher level. Volatility estimated

using a historic sample of high-frequency data with equal weights is called realised volatil-

ity (RV). For an empirical study on the properties of RV as an estimator see (Andersen et

al., 2001). It has been shown that if the asset path is sampled sufficiently frequently integrated

volatility, a natural measure for the variation over a given interval, can in theory be estimated

from RV with arbitrary precision, see (Andersen and Bollerslev, 1998) and (Nelson, 1992).

For certain very liquid assets data for every minute, or even more frequent than this, is avail-

able. RV as a volatility proxy plays a pivotal role in volatility estimation and SV models have

been formulated based on the properties of RV. The building blocks for the use of realised

volatility as a proxy for the variance in returns stems from the theory of quadratic variation

introduced in this context by (Andersen and Bollerslev, 1998) and (Barndorff-Nielsen and
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Shephard, 2001). More generally we have the theory of power variation that has also been

developed by the latter authors as well as by (Woerner, 2003) and (Woerner, 2005) and is a

powerful tool.

In this chapter we will follow to some extent the work of (Barndorff-Nielsen and Shep-

hard, 2002) using RV in estimating SV models. The SV model will be estimated and cali-

brated based on a Gaussian OU process for instantaneous volatility. This approach differs

from (Barndorff-Nielsen and Shephard, 2002) since these authors consider combining non-

Gaussian Ornstein-Uhlenbeck (OU) type processes where as we consider a single Gaussian

OU process. The overall objective is to complement the body of empirical research on fore-

casting horizons and sampling procedures. In particular we wish to provide some empirical

evidence as to the choice of sampling interval for short and long run forecasts. Work that

most resembles this contribution is to be found in (Andersen et al., 1999). These authors

study the choice of sampling frequency for different forecast horizons for exchange-rate data.

They work with a GARCH model and employ the diffusion approximations of (Nelson, 1990).

In contrast we work with a fixed sampling frequency and vary the sampling interval1 accord-

ing to the forecast horizon. Furthermore we work with an unobservable SV model. We take

advantage of the fact that the model specification we employ lends itself to multi-period

prediction. As such this is carried out for shorter sampling intervals and compared with

one-step-ahead prediction for longer ones but for the same forecast horizon. Although this

study is fairly small scale and the prediction comparisons are only ex-ante, this paper can be

considered as motivational work in the increasingly important field of empirical forecasting

evaluation.

The rest of the chapter is organised as follows. In Section 2 the model used for forecasting

volatility will be presented. In Section 3 the calibration procedure for the state and parameter

estimates of this model will be described. In Section 4 the numerical results of the model

validation and choice of time scales will be given.
1In GARCH models the notion of a sampling interval does not exist as it coincides with the sampling

frequency. A de facto exception to this is when the variance at a relatively low frequency is implied from the

parameters of a model estimated at a higher frequency, see (Drost and Nijman, 1993)
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3.2 Linear State-Space formulation

In this section the model for forecasting realised volatility will be presented.

First of all consider the following continuous-time model for log-stock price returns,

dSl(t) = µdt + σ(t)dB(t), (3.1)

where Sl(t) is the log-stock price, for some 0 < δ ¿ 1, dSl(t) = Sl(t + δ) − Sl(t) is the

log stock price return and µ is the drift. dB(t) is the differential of Brownian motion and

is N(0, dt)-distributed. Furthermore it is uncorrelated with σ2(t) 2. When σ is constant

dSl(t) ∼ N(µdt, σ2(t)dt), which is known as the lognormal model for the stock price continu-

ously compounded returns, S(t+δ)/S(t) where S(t) is the price level. In economic terms µ is

the nominal dt-growth rate when σ2(t) = 0 3 , i.e. the no-arbitrage nominal dt-growth rate.

The diffusion typically dominates the drift and although modelling the drift dynamically is

considered most work is concentrated on estimating the volatility. We are also assuming that

there is no risk premium, or at least we do not price market risk.

σ2(t) is called the spot volatility. The spot volatility is unobservable as is the actual volatility

σ2
n, which is given by,

σ2
n =

∫ n∆

0
σ2(u)du −

∫ (n−1)∆

0
σ2(u)du, (3.2)

where ∆ is typically a small time interval. In this way actual volatility is a piecewise con-

stant process representing the total return variation in the interval ∆. Note that σ2
n is not

an approximation. Since volatility is a flow variable integrated volatility is a natural measure

for the volatility over some interval.

Realised volatility defined as the sum of M squared intraday changes over a fixed interval,
2In practice a small negative correlation is observed between these two terms. Many authors incorporate

correlation in the model, cf. (Heston, 1993). However for an unobservable one such as the one that will be

considered in this paper this assumption is needed for the model to be tractable
3as E(S(t + δ)/S(t)) = exp(µ+1/2σ2(t))dt.
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zn =
M∑

j=1

[
Sl

{
(n− 1)∆ +

∆(j + 1)
M

}
− Sl

{
(n− 1)∆ +

∆j

M

}]2

, (3.3)

is an estimate of σ2
n. Each squared return is an approximation to the spot volatility. If the

objective is to model the spot volatility alone a rolling sample of intraday returns, (Andreou

and Ghysels, 2002), would typically be used. Realised volatility is a consistent estimate as

M → ∞ while it is unbiased when µ = 0. For this reason it is perhaps the most popular

volatility proxy and is used as a benchmark in assessing out of sample performance for a

whole range of models’ forecasts. For the sampling interval that are used in this paper µ is

indeed very close to zero and thus the bias is small enough to be ignored. In practice, due to

discontinuity in the stock price path, the returns are typically only sampled every couple of

minutes inducing a restriction on the size of M. This implies that zn will be a noisy estimate

of the actual volatility. Thus we have the measurement equation,

zn = σ2
n + un, (3.4)

where E(un | σn) = 0. Since realised volatility is the sum of squared returns measured

in noise the measurement noise will be asymptotically normal. A state space formulation

can then be set up to estimate and predict actual volatility. Employing the Kalman filter

provides state estimates that are optimal, in a MSE sense, if the noise is Gaussian and

are best linear estimates even if the noise is non-Gaussian. We will use a mean reverting

Gaussian Ornstein-Uhlenbeck (OU) type stochastic process to model the actual volatility.

The reason for using a mean reverting process is that it has been observed that volatility

stays close to a mean level for a period of time and when volatility leaves this mean level

pressures of supply and demand cause it to revert to it at a certain rate; see (Fouque et

al., 2000) for a more in depth explanation. Mean reversion and autoregression are terms for

the clustering phenomenon that has already been referred to. A first order discretisation of

the OU-process, dσ2(t) = a(b− σ2(t))dt + βdW (t), together with the measurement equation

give the state-space model,

σ2
n+1 = φσ2

n + Γ + qηn+1

zn = σ2
n + rεn, (3.5)
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where rεn = un, φ = 1− a∆,Γ = ab∆, q = β
√

∆ and where the disturbances ηn, or innova-

tions, and , or measurement noise, εn, have a unit variance. The state equation innovations εn

are uncorrelated with the return innovations. (Barndorff-Nielsen and Shephard, 2002) show

that E(u2
n) = r2 is a function of ∆ as well as the mean, variance and autocorrelation of the

continuous time OU process. Although these authors give the relation between these and the

mean, variance and covariance of the discrete time model practical implementation remains

an issue. Instead we decide to estimate the model without incorporating this dependence on

∆, i.e. we take r as a parameter to be estimated.

In the last few years substantial theoretical work has been carried out designed at formu-

lating models which reproduce the statistical features often found in financial time-series

data. Of note is the work by (Barndorff-Nielsen and Shephard, 2002) and (Barndorff-Nielsen

and Shephard, 2001) on Lévy processes and integrated volatility. These authors show how

non-normality and leverage can be incorporated in SV models for high frequency data. A

non-Gaussian OU process of the form dσ2(t) = −λσ2(t)dt + dZ(λt) will typically lead to

an ARMA(1,1) representation. The latter implies that σ2
n+1 = φσ2

n + Γ + qηn+1 + qθηn
4.

An alternative formulation, or one that can be used in addition, is to use a mixture (linear

combination) of OU processes, (Barndorff-Nielsen and Shephard, 2002). In this way σ2
n+1

is composed of several OU processes or ‘components’. These authors report positive results

for this specification over using a single process. The model (3.5) can be called a Realised

Volatility Unobserved Components (RV-UC) where there is only one component. The curse

of dimensionality hinders using many components although from the literature it appears

that two or three components suffices.

In the next section the calibration of the above model will be considered.
4A model of this form is tractable but from the implementation carried out appears to offer little improve-

ment in fitting the data we consider
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3.3 The calibration procedure

For the calibration of the above model the hidden state will be estimated using the Kalman

Filter and the parameters by a Maximum Likelihood method.

3.3.1 Kalman Filter

The Kalman Filter is a recursive algorithm which gives a conditional one-step-ahead estimate

of the hidden state, σ̂2
n+1|n, and the variance of this estimate, Pn+1|n. The former is principally

given as some function Kn of the previous step’s state estimation variance and noise variance

as well as the previous step’s innovation. The innovation in this setup is nothing more than

the difference between the observations and the previous step’s state prediction, zn− σ̂2
n|n−1.

The state estimation variance is principally given as a function of Kn and the variance of

innovations, Fn, as well as noise variance. The Kalman Filter equations (2.28) for the present

setup are

vn = zn − σ̂2
n|n−1,

Fn = Pn|n−1 + r2,

Kn = φPn|n−1F
−1
n ,

σ̂2
n+1|n = φσ̂2

n|n−1 + Γ + Knvn,

Pn+1|n = φ2Pn|n−1 + q2 −K2
nFn. (3.6)

From the above it can be seen that the states are being estimated by one-step-ahead predic-

tion. To initialise the Kalman Filter estimates for the mean and variance of the initial state

are needed. Due to the simplicity and stationarity of the model these values can be set equal

to the expected stationary volatility and the variance of the stationary volatility respectively.

As we see from the following equations, σ̂2
0 = Γ/(1− φ), P0 = q2/(1− φ2), these moments

are just given in terms of the unknown parameters.

To compare forecasting two-step ahead and four-step ahead with a shorter sampling interval

with one-step with a longer one some of the equations of (3.6) will have to be extended to

31



two-step and four-step. In particular state variance and innovation variance equations are

required. The equations for these were introduced in the section on multi-step prediction.

When c = 1, as is the case in model (3.5), for two steps these are,

P̄n = E(σ̄2 − ˆ̄σ2)2 = (φ + 1)2 Pn+1|n + q2, (3.7)

where,

σ̄2 = σ2
n+2 + σ2

n+1. (3.8)

The total variance of innovations is given by,

F̄n = E(v̄)2 = (φ + 1)2 Pn−1|n−2 + q2 + 2r2, (3.9)

where,

v̄ = (zn + zn−1)− (σ̂2
n|n−2 + σ̂2

n−1|n−2). (3.10)

and similar expressions for four steps.

In the next section the estimation of the model parameters will be considered using the

output of the Kalman Filter.

3.3.2 Maximum Likelihood Estimation

As was seen in the preliminaries the general idea of Maximum Likelihood estimation is that

the model parameters are chosen in such a way as to maximise the joint probability function

of the observations. This will involve minimising the innovations and their variance. Consider

the joint probability function of the observations conditional on past observations,

P (zn | θ, Zn−1) =
T∏

n=1

p(zn | Zn−1, θ), (3.11)

where θ is the vector of parameters, Zn = {zn, ..., z1} and T is the sample size. Once the

observations have been realised P (zn | θ, Zn−1) is reinterpreted as the likelihood function
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L(.). Assuming that the probability densities are normal, maximising the likelihood of the

observations is equivalent to maximising the log-likelihood,

Llog(zn | θ, Zn−1) = −
T∑

n=1

(
log Fn +

v2
n

Fn

)
, (3.12)

when the constant term is ignored. We see from (3.12) that the innovations with a smaller

variance are given more weight in the optimisation. The parameter vector which maximises

the likelihood of the observations is called the maximum likelihood estimate.

The assumption that the noise terms in (3.5) are Gaussian means that a standard Gaussian

Filter, such as the Kalman Filter described earlier can be applied to obtain the innovations

and their conditional variances. A Gaussian Filter being applied to a model which is not

necessarily Gaussian implies that the state estimates may be biased and thus the estimation

will be suboptimal. In Quasi-Maximum Likelihood Estimation (QMLE), (Bollerslev and

Wooldridge, 1992), these biases are ignored in the actual estimation. These are however

accounted for when calculating standard errors on the estimates. The Kalman Filter can be

extended to deal with models with non-linearity in the state although one has to make do with

approximations. The Euler discretisation of the Feller model (2.17) for f(Y ) =
√

Y , σ2
n+1 =

φσ2
n + Γ + β

√
σ2

n ηn+1, leads to a particularly simple extension and approximation. The only

difference in (3.6) is the last equation which is extended to Pn+1|n = φ2Pn|n−1 + σ̂2
nq2−K2

nFn.

The σ̂2
n term has been substituted in for the unknown σ2

n.

3.3.3 Choice of sampling interval

Having set up the model and the calibration procedure the objective in this paper is to look

at choosing a suitable sampling interval over which to calculate the volatility and to fore-

cast. In this way the sampling interval that best captures the underlying mean reverting

dynamics will be examined. A sampling interval with a better fit to the data will imply a

better forecasting performance as shall be seen. So that the comparisons can be made on an

equal par the forecast horizon should be equal for the different sampling intervals. To carry

out such a procedure both one and two-step-ahead forecasts in succession will be needed for

the shorter sampling interval. In this way the same forecasting horizon can be considered as
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for the one-step-ahead forecast for a longer sampling interval. Thus for a shorter sampling

interval the cumulative predicted volatility from the one and two steps will be taken as the

volatility over the relevant forecast horizon.

3.4 Numerical Experiments

A relevant data set of two very liquid assets was used as input to the state space model.

PriceData provided 10 minute intraday data for IBM from April 1997 to January 2005 and

Citigroup from May 1997 to March 2005 and giving over 76300 observations. From this we

took the first 76128 returns corresponding to N = 1952 days of data given that there were

39 bars per day. Days that contained no data whatsoever, such as holidays and weekends,

were ignored. For simplicity overnight and over-weekend/holiday returns were not treated

any differently to the intraday ones. (Koopman and Hol, 2002) suggest alternative treatments.

The data were preprocessed by stochastically interpolating any missing values in the data

within a one day period. The standard deviation value used in the interpolation was an

average of standard deviation values from a group of sub-intervals proceeding the missing

price range. In calculating the standard deviation of these sub-intervals the stock prices were

scaled by the stock price value in the middle of the interval. The reason for using an average

of sub-interval values was to lessen the dependence of the standard deviation on the drift,

the impact of which was seen to be otherwise quite significant. The motivation for scaling

was due to the fact that the standard deviation of unscaled stock prices were seen to be

proportional to the stock price level. Scaling the stock prices nullified this dependence.

It should be noted that preprocessing the data had little impact on the total variation of

the data, i.e. the variance of the raw data, with missing prices taking the value zero, and the

variance of the data after the intervention, were very similar. The fact that after carrying

out the preprocessing every trading day contained a full set of stock prices meant that we

could proceed to estimating a model for sampling intervals of one day (or multiples of one

day).
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The stock price path was sampled every 10 minutes corresponding to M = 39, 78 and 156 in

(3.3) for ∆ = 1, 2 and 4 respectively. Although the choice of sampling frequency was is a little

ad hoc the emphasis here is on the choice of sampling interval. Moreover for the purposes

of comparison of different sampling interval procedures what is most important is that the

sampling frequency is fixed. The value of µ in (3.1) was close to zero so the bias in using

realised volatility as an estimate of actual volatility was ignored. Realised volatility outliers

corresponding to values in the upper 0.5% percentile of the sample were effectively removed

by setting the values of these equal to the mean of the observations.

The optimisation of (3.12) was carried out using Matlab’s fmincon algorithm. fmincon is an

algorithm tuned to finding the optimum parameter set of a non-linear function of several vari-

ables with constraints. It uses a sequential quadratic programming method. In this method,

the function solves a quadratic programming problem at each iteration. An estimate of the

Hessian of the Lagrangian is updated using the BFGS formula. In the model in question

there are natural constraints on some of the variables such as φ < 1 5 and 0 < q, r < ∞.

Starting off with these it became apparent that a local optimum was being found. Having

some idea of the magnitude of the parameters some of the bounds were then tightened. After

carrying this out a better (and probably global) optimum was arrived at.

The estimates for φ, Γ, q and r and are given in the following table:

Table 1. Parameter values for IBM and Citigroup stocks

IBM stock Citigroup stock

∆ = 1 ∆ = 2 ∆ = 4 ∆ = 1 ∆ = 2 ∆ = 4

φ 9.44 ∗ 10−1 9.20 ∗ 10−1 8.21 ∗ 10−1 9.71 ∗ 10−1 9.46 ∗ 10−1 9.22 ∗ 10−1

Γ 2.39 ∗ 10−5 7.05 ∗ 10−5 3.25 ∗ 10−4 1.54 ∗ 10−5 5.95 ∗ 10−5 1.73 ∗ 10−4

q 1.08 ∗ 10−4 2.66 ∗ 10−4 8.47 ∗ 10−4 1.10 ∗ 10−4 3.12 ∗ 10−4 6.84 ∗ 10−4

r 4.31 ∗ 10−4 7.68 ∗ 10−4 1.26 ∗ 10−3 4.83 ∗ 10−4 8.77 ∗ 10−4 1.65 ∗ 10−3

5this constraint assures some degree of stationarity and is a consequence of the assumed underlying dy-

namics.
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Let us note that φ, the serial correlation, decreases as the sampling interval increases whereas

the magnitude of the disturbances increases. This is to be expected as it demonstrates that

less predictive power implies more noisy predictions. Along with comparing the forecasting

performance of different time scales the model should be validated. To this end standard

errors on the parameters will be found. Besides this, a comparison will be made with the

forecasting performance of a constant volatility model.

A Bayesian approach to parameter estimation would be to find the whole distribution of

the parameter estimates. This is carried out using prior information on the parameters’

distributions together with a likelihood function. Here the classical approach is taken where

only the first two moments of the parameter estimates’ distribution are considered. The first

moment corresponds to the values given in the table above. The ‘standard errors’ correspond

to the second moment, i.e. the diagonal entries of the parameter covariance matrix. This

matrix was estimated taking into account the non-normality of disturbances and as such we

will refer to the errors being QMLE standard errors. These, having been normalised w.r.t.

their nominal values, are given in the following table:

Table 2. QMLE standard errors for the IBM and Citigroup stocks

IBM stock Citigroup stock

∆ = 1 ∆ = 2 ∆ = 4 ∆ = 1 ∆ = 2 ∆ = 4

φ 5.56 ∗ 10−7 5.04 ∗ 10−5 1.69 ∗ 10−5 7.94 ∗ 10−8 2.06 ∗ 10−6 2.30 ∗ 10−4

Γ 1.10 ∗ 10−4 1.14 ∗ 10−3 6.63 ∗ 10−5 6.76 ∗ 10−6 4.76 ∗ 10−5 1.10 ∗ 10−3

q 8.40 ∗ 10−7 5.89 ∗ 10−6 5.92 ∗ 10−6 8.32 ∗ 10−7 3.93 ∗ 10−6 1.43 ∗ 10−4

r 5.36 ∗ 10−6 1.04 ∗ 10−4 1.38 ∗ 10−5 8.47 ∗ 10−7 1.32 ∗ 10−5 3.71 ∗ 10−5

The standard errors on the estimates as shown in the table above are seen to be small for

all three sampling intervals under consideration and for both stocks.

The motivation for the QMLE approach taken here was that the literature suggests that

disturbances in a model structure such as the one chosen here are non-normal. This was

confirmed by a Jacque-Berra test. There will thus be estimation biases induced that we

have ignored. However the focus here is on actual forecasting performance rather than the
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statistical validity of the underlying model.

A comparison will now be made between forecasting two steps and four steps ahead for a

shorter sampling interval against forecasting only one step ahead respectively for a longer

sampling interval. This will be done first for ∆ = 1 against ∆ = 2, then for ∆ = 2 against

∆ = 4 and then finally for ∆ = 1 against ∆ = 4. In the following tables there is a summary

of the forecasting performance results for the two stocks. The performance is based on

the average conditional state variance, the average innovation and the average variance of

innovations.

Table 3. Comparison of forecasts for the IBM and Citigroup stocks

IBM stock Citigroup stock

∆ = 1, 2-step ∆ = 2, 1-step ∆ = 1, 2-step ∆ = 2, 1-step

1/T
∑T

1 P̄n+1|n 1.71 ∗ 10−7 1.95 ∗ 10−7 2.17 ∗ 10−7 2.82 ∗ 10−7

1/T
∑T

1 | v̄n | 4.35 ∗ 10−4 4.85 ∗ 10−4 4.43 ∗ 10−4 5.11 ∗ 10−4

1/T
∑T

1 F̄n 5.42 ∗ 10−7 7.84 ∗ 10−7 6.83 ∗ 10−7 1.05 ∗ 10−6

∆ = 2, 2-step ∆ = 4, 1-step ∆ = 2, 2-step ∆ = 4, 1-step

1/T
∑T

1 P̄n 7.89 ∗ 10−7 1.17 ∗ 10−6 1.17 ∗ 10−6 1.16 ∗ 10−6

1/T
∑T

1 | v̄n | 8.89 ∗ 10−4 9.67 ∗ 10−4 9.27 ∗ 10−4 1.02 ∗ 10−3

1/T
∑T

1 F̄n 1.97 ∗ 10−6 2.77 ∗ 10−6 2.70 ∗ 10−6 3.89 ∗ 10−6

∆ = 1, 4-step ∆ = 4, 1-step ∆ = 1, 4-step ∆ = 4, 1-step

1/T
∑T

1 P̄n 7.20 ∗ 10−7 1.17 ∗ 10−6 9.36 ∗ 10−7 1.16 ∗ 10−6

1/T
∑T

1 | v̄n | 7.99 ∗ 10−4 9.67 ∗ 10−4 8.37 ∗ 10−4 1.02 ∗ 10−3

1/T
∑T

1 F̄n 1.46 ∗ 10−6 2.77 ∗ 10−6 1.87 ∗ 10−6 3.89 ∗ 10−6

where T = N/∆ and where for one-step P̄n = Pn|n−1 and F̄n = Fn and v̄n = vn as given

in (3.6). For purposes of comparison the states themselves are of the orders 10−3 to 10−4.

As can be seen from the above tables the prediction performance is generally better for the

multi-step prediction. Although the difference in the multi-step versus one-step results is not

very significant the consistency of these strongly favours forecasting using a shorter sampling

interval. This may appear to be counterintuitive due to the fact that for the longer intervals

there are twice or four times as many points in the sample. However this demonstrates that
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the mean reversion dynamics are not being captured so well for longer sampling intervals. Al-

though the focus here is on actual forecasting performance rather than the statistical validity

of the model, as has been pointed out, a statistical test was carried out. The Durbin-Watson

test confirmed that the innovations were not serially correlated.

Finally a validation of the model for ∆ = 1 will now be made by means of comparison with

a constant volatility (CV) model and a daily GARCH(1,1) model, i.e. the model σ2(k) =

γ + βσ2(k− 1) + αε2(k− 1) where ε(k− 1) are daily demeaned returns and ε(k) | F (k− 1) ∼
N(0, σ2(k)). F (k − 1) is the information set including all the information available up to

time k− 1. This will be done in terms of the out-of-sample innovations of the two models for

different sample sizes. These will be given by the difference between the measurements and

the predicted out-of-sample volatility values, for 10 points, i.e stepping ten points ahead using

the out-of-sample predictions to step ahead, one step at a time. Table 4. gives a summary

of the results for ∆ = 1, N= 800, 1150 and 1500 days, each entry being an average of the

absolute values of the innovations over the ten data points,
∑10

i=1 | σ̂2
N+i|N − zN+i |:

Table 4. Out-of-sample innovations for the IBM and Citigroup stocks

N = 800 N = 1150 N = 1500

CV: IBM stock 1.95 ∗ 10−4 3.01 ∗ 10−4 2.35 ∗ 10−4

SV: IBM stock 1.67 ∗ 10−4 1.20 ∗ 10−4 1.16 ∗ 10−4

GARCH: IBM stock 1.45 ∗ 10−4 9.62 ∗ 10−5 1.19 ∗ 10−4

CV: Citigroup stock 3.81 ∗ 10−4 4.09 ∗ 10−4 4.56 ∗ 10−4

SV: Citigroup stock 1.45 ∗ 10−4 1.39 ∗ 10−4 1.20 ∗ 10−4

GARCH: Citigroup stock 7.49 ∗ 10−5 6.45 ∗ 10−5 1.48 ∗ 10−4

Constant volatility and GARCH models are commonplace in industry and can be used as

benchmark models. It can be seen from the table that for all three sample sizes SV outper-

forms constant volatility considerably, despite the simplicity of the SV model that was used

and that the estimation procedure was relatively straightforward. The SV model’s superior

out-of-sample performance gives us a fair degree of confidence in it and in this way also in

the results previously given on the choice of sampling intervals. It can be seen however that

the GARCH model generally performs better than the SV model. (Andersen and Boller-
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slev, 1998) have shown that GARCH models perform well out of sample when using realised

volatility as a proxy for the ex-post volatility as confirmed also here. However rejecting the

SV model is not warranted because of the lack of consistency in the out-performance of the

GARCH model over the SV model.

3.5 Conclusion

The contributions of this chapter are three-fold. First we have illustrated calibration and

(in-sample as well as out-of-sample) forecasting performance of a stochastic volatility model

using high frequency asset price data. Secondly we have compared different sampling inter-

vals in terms of forecasting performance. Our study suggests that the serial correlation in

volatility is best modelled over a shorter sampling interval. With these results in hand we

can apply the model to the estimation of the volatility term structure. Finally the superiority

of out-of-sample prediction performance using a SV model over using a constant volatility

model is demonstrated.
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Chapter 4

Linear models for high frequency

data with and without filtering

It is known however high frequency price path data are subject to microstructure noise and

so estimates of the volatility from price path differentials are also noisy, cf. (Zumbach et

al., 2002), (Andersen et al., 1999), (Bai et al., 2003) and (Bollerslev and Zhou, 2002). Be-

yond this there are other sources of measurement noise the impact of which depends on the

sampling frequency. A whole range of statistical methods that had previously been applied

mainly in problems in engineering and physics have been proposed and implemented to deal

with noise in volatility. Filtering the noise using a Gaussian Filter such as the Kalman Filter

for linear systems and the Extended Kalman Filter for non-linear systems is the obvious way

of doing this; see (Anderson and Moore, 1979) for the theory and (Barndorff-Nielsen and

Shephard, 2002), (Owens and Steigerwald, 2006) and (Alizadeh et al., 2002) for applications.

Some other less standard approaches to filtering are given in (Bandi and Russell, 2004),

(Zumbach et al., 2002). Hidden Markov Chain models have also been applied, (Turner et

al., 1989), (Hamilton and Susmel, 1994) and (Elliott et al., 2003), although these estimation

methods are perhaps generally more well suited to interest rate and commodity modelling.

Simulation based methods are quite popular, cf. (Chib et al., 2002). In a multivariate setting

noise has been dealt with using certain shrinkage techniques stemming from physics-based

research, cf. (Plerou et al., 2002) and (Andersson et al., 2005). Last but not least GARCH

models deliver filtered estimates of the volatility, cf. (Nelson, 1992). More details on GARCH
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models as filters will be given later on in this chapter. Work has been carried out on esti-

mation without filtering by defining an optimal sampling frequency in which minimum noise

contamination is weighed against consistency. See (Ait-Sahalia et al., 2005), (Oomen, 2002)

and (Bandi and Russell, 2004).

As has been alluded to, when the sampling frequency is high, RV is subject to microstructure

noise that contaminates the measurement of the true volatility. Each high frequency squared

return in (3.3) is an approximation to the spot volatility as defined earlier. Let us note a di-

chotomy in regard to sampling. As the sampling frequency increases the measurement noise

moves towards normality but on the other hand the microstructure noise also increases1.

Numerous studies have been carried out on the impact of microstructure noise. It appears

that above a sampling frequency of around five minutes microstructure noise contributes sig-

nificantly to price path measurements. It may be shown that RV underestimates the actual

volatility in the presence of this kind of noise. At lower frequencies measurement noise re-

sults in particular from using (Sl(t + δ) − Sl(t))2 as an approximation to σ2(t). Although

high frequency squared returns are unbiased estimators, the variance of the estimation error

increases as M decreases. This estimation error is called idiosyncratic noise. The objective

here is to assess the importance of filtering for a sampling frequency in which it unlikely

that microstructure noise is present and in which at the same time idiosyncratic noise is

relatively small. To this end filtered volatility estimation and unfiltered model calibration

will be carried out comparing in- and out-of-sample forecasting performance. An issue that

makes a study of this kind particularly relevant is that a hidden state estimation limits the

introduction of explanatory variables other than past (filtered) estimates of the same series.

If the empirical results indicate little difference in the filtered and unfiltered approaches direct

estimation of observable models will have some justification.

1clearly increasing the sampling interval resolves this issue but the emphasis here is on short duration

volatility measures.
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4.1 Introduction to the models

The question arises of how persistent volatility really is and how well it can be forecast.

In the previous chapter we had established that filtered RV was highly persistent and that

out-of-sample prediction performed fairly well. In the case of unfiltered estimates we shall

see that for a RV model with a noise term there is not much persistence and performs poorly

in comparison to the hidden state model. By contrast for the same RV model with a non-

standard estimation procedure a fair degree of persistence is imputed but similarly to the

previous model both in- and out-of-sample average innovations are larger than for the hidden

state model. This is not surprising if we consider Fig. 1. where we see just how noisy RV is.
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−3 Fig 1. Daily estimates of RV and actual volatility

RV
Actual volatility

The poor performance of the two observable models is at odds with the results for the

observable GARCH models, cf. (Andersen and Bollerslev, 1998), but the difference is that

our estimates2 are non-filtered. GARCH models implicitly filter out measurement noise. As

shall be seen our results point to filtering in the context of RV even when working at a

relatively low sampling frequency.

Throughout this chapter we shall be considering three estimation methods in the context of

RV: Quasi Maximum likelihood estimation for a latent SV model, Quasi-GARCH Maximum

Likelihood and Non-linear Least Squares (NLLS) estimation for a SV one-factor model.
2from 10 minute returns over a day
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4.1.1 Latent SV model

The first model to be considered is the state-space model of the previous chapter,

σ2
n+1 = φσ2

n + γ + qηn+1,

zn = σ2
n + rεn. (4.1)

Since the model and its estimation procedure are identical to those in the previous chapter

the next model will be introduced.

4.1.2 Quasi-GARCH Maximum Likelihood SV model

The second model to be considered is a Stochastic Volatility-type model in the sense that

it has an extra source of randomness other than the asset price one but its structure and

calibration procedure is akin to that of a GARCH model. Standard GARCH models owe

their popularity to being simple to estimate and versatile. Traditionally daily or weekly

GARCH processes were considered but the advent of high frequency data and the temporal

aggregation results of (Drost and Nijman, 1993) brought a lot of consideration to GARCH at

high frequency. These authors showed how certain GARCH models at one frequency could

be inferred from models at another frequency. Thus for certain specifications one could for

example estimate a model at a frequency of five minutes say and infer the daily GARCH

model. Unfortunately there appear to be two issues that may impede using temporal aggre-

gation. The first is that at a high frequency estimation is computationally burdensome. The

second is that strong intraday periodic patterns have been observed as first pointed out by

(Andersen and Bollerslev, 1997).

We may still be able to make use of high frequency data using a parsimonious model akin

to the GARCH(1,1) specification and calibrated in a similar way. For these reasons we keep

the nomenclature, despite the deviation from a standard GARCH model as explained above

and shall be seen, and denote the estimation as ‘quasi-GARCH’. We substitute the variance

terms of the GARCH(1,1) model by RV. In this way the model takes the form

zn = γ + φzn−1 + αε2
n−1 + ηn (4.2)
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where ηn is zero mean and zn is RV and εn are daily demeaned returns. When using RV

together with daily returns information is lost in the latter relation to the former. Having

said this we still feel that it is sensible approach and if α turns out to be significant in the

above model including rn−1 as an additional factor makes sense. Moreover the simplicity of

the above model makes it a good candidate for widespread implementation by practitioners.

Unlike the SV model in the next section the distribution of noise in (4.2) is left unspecified,

although we assume normality of returns.

To calibrate the above model we consider the probability density of the daily demeaned

returns, with mean zero and (the realised volatility estimate of the) variance zn,

p(εn) =
1√

2πzn
exp

(
− ε2

n

2zn

)
(4.3)

then maximise the joint log-likelihood

Llog((εn) = −
T∑

k=1

log zn −
T∑

k=1

ε2
n

zn
(4.4)

ignoring constants. We then substitute the variance by its prediction from (4.2) and max-

imise the pseudo-log-likelihood

Llog(εn | Fn−1, θ) = −
T∑

k=1

log(γ + βzn−1 + αε2
n−1)−

T∑

k=1

ε2
n

γ + φzn−1 + αε2
n−1

(4.5)

Thus in the above model the variance process will be discontinuous and in a sense a random

process though not the true random process for volatility by any stretch of the imagination.

The model above allows variance to vary randomly but is driven by prediction errors which

are not minimised leading to lack of efficiency. We seek to see however if there is some

improvement for in- and out-of-sample forecasting as compared to standard (non-linear)

least squares (NLLS) estimation. GARCH models assume a smooth process whereas the

true data generating process for variance is a random process. GARCH models are therefore

misspecified to some degree since the assumption is that variance is only time-varying while

the true data generating process is used for the model calibration. However these are known

to perform very well as demonstrated in the previous chapter.
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4.1.3 NLLS estimation of a one factor SV model

The third model is has the structure of the previous model except that we assume the noise

is Gaussian

zn = γ + φzn−1 + αε2
n−1 + ηn (4.6)

where ηn ∼ N(0, C). The estimation procedure is simply carried out by minimising the

sum of the squares of prediction errors but to keep close to the estimation procedures of the

previous two models we will approach the estimation by maximising the likelihood. Let us

denote ηn as the prediction error process and let us consider the joint log-likelihood of this

process

Llog(ηn | Fn−1, θ) = −
T∑

n=1

log(C)−
T∑

n=1

(zn − γ − φzn−1 − αε2
n−1)

2

C
(4.7)

ignoring constants. Maximising the above is equivalent to NLLS as the variance is constant.

Via the above likelihood formulation we see that we have a handle on other specifications for

the noise such as a GARCH specification but there seems to be no particular reason why it

should be anything else but constant in variance.

In the next section parameter estimates and forecasting results will be presented.

4.2 Numerical results

The data set

The data set used was the same as that of the previous chapter and the preprocessing was

the same as well. Similarly to the last chapter the stock price path was sampled every 10

minutes corresponding to M = 39 in (2.17) for ∆ = 1. This choice of sampling frequency

was not entirely ad hoc. It was of interest to see at relatively high frequency (but not ultra

high) what the impact of the measurement noise would be while at the same time the sample

would be large enough for reliable estimation.

The focus here is on in-sample and out-of-sample prediction. Before displaying these results

it is of interest to show the parameter estimates of the different models. The value of the

45



parameter α for the observable models was not significant so only the other two parameters

are displayed. The estimates for φ and γ are given in the following table:

Table 5. Parameter values for IBM and Citigroup stocks

IBM stock Citigroup stock

RV-UC Quasi-Garch NLLS RV-UC Quasi-Garch NLLS

φ 9.44 ∗ 10−1 9.00 ∗ 10−1 3.88 ∗ 10−1 9.71 ∗ 10−1 9.00 ∗ 10−1 3.63 ∗ 10−1

γ 2.39 ∗ 10−5 9.32 ∗ 10−5 2.51 ∗ 10−4 1.54 ∗ 10−5 6.90 ∗ 10−5 3.07 ∗ 10−4

For the estimation of the above models normal and independent observations were assumed.

However for each of the models these assumptions were consistently rejected by statistical

tests. Thus we find ourselves in the QML estimation setup. QML standard errors on the

estimates have been produced and we find that these were large for the observable models

but small for the hidden model.

A comparison of in-sample prediction for the three models will now be presented. This will

be based on the average of the absolute values of the innovations over the whole sample. It

can be seen from the table below that the hidden SV model performs the best followed by

the RV model and then Quasi-GARCH model.

Table 6. In-sample innovations for the IBM and Citigroup stocks

1/T
∑T

1 | vn |
NLLS RV: IBM stock 2.46 ∗ 10−4

Quasi-GARCH RV: IBM stock 2.75 ∗ 10−4

SV: IBM stock 2.43 ∗ 10−4

NNLS RV: Citigroup stock 3.09 ∗ 10−4

Quasi-GARCH RV: Citigroup stock 3.29 ∗ 10−4

SV: Citigroup stock 2.84 ∗ 10−4

Table 7 gives a summary of the results for samples of sizes N= 800, 1150 and 1500, each

entry being an average of the absolute values of the innovations over the ten data points out

of the sample:
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Table 7. Out-of-sample innovations for the IBM and Citigroup stocks

1/10
∑10

1 | vn |
N = 800 N = 1150 N = 1500

NLLS RV: IBM stock 1.71 ∗ 10−4 2.85 ∗ 10−4 2.45 ∗ 10−4

Quasi-GARCH RV: IBM stock 3.06 ∗ 10−4 3.54 ∗ 10−4 3.13 ∗ 10−4

SV: IBM stock 1.67 ∗ 10−4 1.20 ∗ 10−4 1.16 ∗ 10−4

NNLS RV: IBM stock 2.97 ∗ 10−4 3.73 ∗ 10−4 4.29 ∗ 10−4

Quasi-GARCH RV: IBM stock 1.83 ∗ 10−4 2.37 ∗ 10−4 2.52 ∗ 10−4

SV: Citigroup stock 1.45 ∗ 10−4 1.39 ∗ 10−4 1.20 ∗ 10−4

Out-of-sample performance also favours the hidden SV model as can be seen from the table

above.

4.3 Conclusion

Both the in-sample and out-of-sample results indicate that filtering is paramount and the gain

obtained from this is quite significant. Furthermore the fact that the additional regressor in

the observable model was not significant means that for the setup and data set used there is

no advantage in using observable models over a latent one.
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Conclusion

This report has covered some background theory related to linear state model estimation and

prediction. This theory has successfully been applied in the estimation of models using high

frequency stock price data. One of the conclusions from the empirical work is that filtering

measurement noise improves volatility estimation and prediction for the data set used in this

study. Different sampling intervals for the same forecasting horizon were compared for a

realised volatility model with filtering, namely a latent state space model. The results in-

dicate that the serial correlation in volatility is best modelled over a shorter sampling interval.

Work is presently being carried out in the estimation of two dimensional state space mod-

els. One of these models incorporates implied volatility measurements. The objective is to

compare one and two state models in terms of forecasting performance and how well these

fit the data.
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Notation

E(X) expectation of a random variable X

σ2(t) spot volatility

σ2
n actual volatility

In the identity matrix of size N

i.i.d. independently and identically distributed

Ac The complement of the set A
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Appendix A: Maximum Likelihood

Estimation

Here we seek to show the details behind calculating the covariance error matrix, and from

this the standard errors, of a misspecified univariate hidden state model.

Consider the log-likelihood function,

Llog(θ,Fk−1) = −
n∑

k=1

log Fk −
n∑

k=1

v2
kF

−1
k , (1)

where vk are the innovations, and Fk are their variance, θ is the vector of unknown parameters

and Fk−1 is the filtration generated by the observation process up to time k − 1. The

innovations are defined as,

vk = yk − cx̂k|k−1 − d,

where zk are the observations and x̂k|k−1 are the estimates of the hidden state as given in

(2.28). The minimisation of (1) is equivalent to maximising the probability of the outcome

of the set of observations.

We see from (1) that the innovations with a smaller variance are given more weight in the

optimisation. The parameter vector which maximises the likelihood of the observations is

called the maximum likelihood estimate, θ̂. If the sample size is sufficiently large and under

certain regularity conditions θ̂ can be approximated by the density,

θ̂ ≈ N(θ0, n
−1I−1(θ)), (2)
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where θ0 denotes the true parameter vector. The matrix I(θ) is denoted the information

matrix and is based on derivatives of the likelihood function w.r.t. the parameter vector.

From the above we see that θ̂ is an asymptotically unbiased estimator of θ0. I−1(θ)) is a

minimum variance bound. In large samples we would expect the variance of a estimator to

reach this bound; otherwise it would not be an efficient estimator (Harvey, 1981). There are

two common estimators of I(θ). The second derivative estimator is given by

I(θ̂)2D = −n−1 δ2Llog(θ,Fk−1)
δθδθT

∣∣∣∣
θ=θ̂

(3)

The outer product estimate is given by

I(θ̂)OP = n−1
n∑

k=1

[h(θ̂).h(θ̂)′] (4)

where

h(θ̂) =
δ log lk(θ,Fk−1)

δθ

∣∣∣∣
θ=θ̂

log lk being the individual kth-term of (1). A model is said to be misspecified if, for example,

the errors are not normal even though these have been assumed to be so in the filtering and

estimation process. If this is the case I(θ̂)OP and I(θ̂)2D may diverge significantly from each

other. An approximate covariance matrix for θ̂ was given by (White, 1982),

E(θ̂ − θ0)(θ̂ − θ0) ∼= n−1(I2DI−1
OP I2D)−1 (5)

This approximation may be valid if the model is misspecified. This approach is known as

quasi-maximum likelihood estimation.

To derive the actual expressions for (3) and (4) let us consider the k stage likelihood value,3

log lk = − log Fk − v2
kF

−1
k (6)

Differentiating log lk with respect to the ith element of θ gives the gradient,
3ignoring constants which do not affect the optimization.
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δ(log lk)
δθi

= −
(

F−1
k

δFk

δθi

) (
1− F−1

k v2
k

)− 2
δvk

δθi
F−1

k vk = h(θi, yk) (7)

Differentiating the above with respect to the jth element of θ gives,

δ2(log lk)
δθiδθj

= −
(

F−1
k

δ2Fk

δθiδθj
− δFk

δθi
F−2

k

δFk

δθj

) (
1− F−1

k v2
k

)

−δFk

δθi
F−3

k

δFk

δθj
v2
k + 2

δFk

δθi
F−2

k

δvk

δθj
vk

−2
δ2vk

δθiδθj
F−1

k vk + 2
δvk

δθi

δFk

δθj
F−2

k vk − 2
δvk

δθi
F−1

k

δvk

δθj
(8)

Summing over k in (8) and dividing by n we have the ij-th element of the second derivative

estimate of the information matrix as in (3). If the model is correctly specified the above sim-

plifies considerably. The derivatives of Fk and vk can be found using a set of recursions that

run in parallel with the Kalman Filter. See (Harvey, 1989, p. 140-143), for example, for de-

tails. The presentation of the results for the off-diagonals of covariance matrix in (5) using (3)

and (4) and the information matrix (8) are given in the numerical results section of Chapter 2.

For GARCH models a similar derivation to the one above can be carried out. The expres-

sions however are greatly simplified as the ε(k) terms, corresponding to the vk above, are not

functions of the parameters4 Multivariate state space models on the other hand involve very

extensive derivations even for two state models such as the ones considered in this thesis. For

this reason no multivariate derivations have been presented.

4unless the model is a GARCH regression which has not been considered in this thesis.
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Appendix B: Multi-step Prediction

Proof of Proposition 1.

E[x̄− ˆ̄x]2 = E[xn+m − x̂n+m|n + xn+m−1 − x̂n+m−1|n + ... + xn+2 − x̂n+2|n + xn+1 − x̂n+1|n]2

= E[axn+m−1 + b + wn+m − ax̂n+m−1|n − b + axn+m−2 + b + wn+m−1 −

ax̂n+m−2|n − b + ... + axn+1 + b + wn+2 − ax̂n+1|n − b + xn+1 − x̂n+1|n]2

= E[a2(xn+m−2 − x̂n+m−2|n) + awn+m−1 + wn+m + a2(xn+m−3 − x̂n+m−3|n) +

awn+m−2 + wn+m−1 + ... + a(xn+1 − x̂n+1|n) + wn+2 + xn+1 − x̂n+1|n]2

= ...

= E[am−1(xn+1 − x̂n+1|n) + am−2wn+2 + am−3wn+3 + ... + awn+m−1 + wn+m +

am−2(xn+1 − x̂n+1|n) + am−3wn+2 + am−4wn+3 + ... + awn+m−2 + wn+m−1 + ...

a(xn+1 − x̂n+1|n) + wn+2 + (xn+1 − x̂n+1|n)]2

= E[(am−1 + am−2 + ... + a + 1)(xn+1 − x̂n+1|n) +

(am−2 + am−3 + ... + a + 1)wn+2 + (am−3 + am−4 + ... + a + 1)wn+3 + ...

+(a + 1)wn+m−1 + wn+m]2

= (am−1 + am−2 + ... + a + 1)2Pn+1|n +

(am−2 + am−3 + ... + a + 1)2q2 + (am−3 + am−4 + ... + a + 1)2q2 + ... + (a + 1)2q2 + q2

=




m−1∑

j=0

aj




2

Pn+1|n +
m−2∑

i=0




i∑

j=0

aj




2

q2 (9)
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Proof of Proposition 2.

E[ȳ − cˆ̄x−md]2 = E[yn − cx̂n|n−m − d + yn−1 − cx̂n−1|n−m − d + ...

+yn−m+2 − cx̂n−m+2|n−m − d + yn−m+1 − cx̂n−m+1|n−m − d]2

= E[yn − cxn + cxn − cx̂n|n−m − d + yn−1 − cxn−1 + cxn−1 − cx̂n−1|n−m − d + ...

+yn−m+2 − cxn−m+2 + cxn−m+2 − cx̂n−m+2|n−m − d +

yn−m+1 − cxn−m+1 + cxn−m+1 − cx̂n−m+1|n−m − d]2

= E[ca(xn−1 − x̂n−1|n−m) + cwn + un + ca(xn−2 − x̂n−2|n−m) +

cwn−1 + un−1 + ... + ca(xn−m+1|n−m − x̂n−m+1|n−m) + cwn−m+2 + un−m+2 +

c(xn+1 − x̂n+1|n) + un−m+1]2

= ...

= E[cam−1(xn−m+1 − x̂n−m+1|n−m) + cam−2wn−m+2 +

cam−3wn−m+3 + ... + cawn−1 + cwn + cam−2(xn−m+1 − x̂n−m+1|n−m) +

cam−3wn−m+2 + cam−4wn−m+3 + ... + cawn−2 + cwn−1 + ... +

ca(xn−m+1 − x̂n−m+1|n−m) + cwn−m+2 + c(xn−m+1 − x̂n−m+1|n−m) +

un + un−1 + ... + un−m+1]2

= E[c(am−1 + am−2 + ... + a + 1)(xn−m+1 − x̂n−m+1|n−m) +

c(am−2 + am−3 + ... + a + 1)wn−m+2 + c(am−3 + am−4 + ... + a + 1)wn−m+3 + ...

+c(a + 1)wn−1 + cwn + un + un−1 + ... + un−m+1]2

= c2(am−1 + am−2 + ... + a + 1)2Pn+1|n +

c2(am−2 + am−3 + ... + a + 1)2q2 + c2(am−3 + am−4 + ... + a + 1)2q2 + ...

+c2(a + 1)2q2 + q2 + +mr2

=




m−1∑

j=0

aj




2

c2Pn−m+1|n−m +
m−2∑

i=0




i∑

j=0

aj




2

c2q2 + mr2 (10)
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